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ABSTRACT 

 

Capacitor-Less VAR Compensator  

Based on a Matrix Converter. (December 2010) 

Divya Rathna Balakrishnan, B.Tech., National Institute of Technology, Karnataka, India 

Chair of Advisory Committee: Dr. Robert S. Balog 

 

Reactive power, denoted as volt-ampere reactive (VARs), is fundamental to ac 

power systems and is due to the complex impedance of the loads and transmission lines. 

It has several undesirable consequences which include increased transmission loss, 

reduction of power transfer capability, and the potential for the onset of system-wide 

voltage instability, if not properly compensated and controlled. Reactive power 

compensation is a technique used to manage and control reactive power in the ac 

network by supplying or consuming VARs from points near the loads or along the 

transmission lines. Load compensation is aimed at applying power factor correction 

techniques directly at the loads by locally supplying VARs. Typical loads such as motors 

and other inductive devices operate with lagging power factor and consume VARs; 

compensation techniques have traditionally employed capacitor banks to supply the 

required VARs. However, capacitors are known to have reliability problems with both 

catastrophic failure modes and wear-out mechanisms. Thus, they require constant 

monitoring and periodic replacement, which greatly increases the cost of traditional load 

compensation techniques. 
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This thesis proposes a reactive power load compensator that uses inductors 

(chokes) instead of capacitors to supply reactive power to support the load. Chokes are 

regarded as robust and rugged elements; but, they operate with lagging power factor and 

thus consume VARs instead of generating VARs like capacitors. A matrix converter 

interfaces the chokes to the ac network. The matrix converter is controlled using the 

Venturini modulation method which can enable the converter to exhibit a current phase 

reversal property. So, although the inductors draw lagging currents from the output of 

the converter, the converter actually draws leading currents from the ac network. Thus, 

with the proposed compensation technique, lagging power factor loads can be 

compensated without using capacitor banks. 

The detailed operation of the matrix converter and the Venturini modulation 

method are examined in the thesis. The application of the converter to the proposed load 

compensation technique is analyzed. Simulations of the system in the MATLAB and 

PSIM environments are presented that support the analysis. A digital implementation of 

control signals for the converter is developed which demonstrates the practical feasibility 

of the proposed technique. The simulation and hardware results have shown the 

proposed compensator to be a promising and effective solution to the reliability issues of 

capacitor-based load-side VAR compensation techniques. 
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NOMENCLATURE 

 

VAR Volt-ampere reactive  

MC 3-phase ac-to-3-phase ac matrix converter 

v1,LN Line-neutral ac network voltage (phase 1) 

v2,LN Line-neutral ac network voltage (phase 2) 

v3,LN Line-neutral ac network voltage (phase 3) 

vi1,LN Line-neutral matrix converter input voltage (phase 1) 

vi2,LN Line-neutral matrix converter input voltage (phase 2) 

vi3,LN Line-neutral matrix converter input voltage (phase 3) 

vo1,LN Line-neutral matrix converter output voltage (phase 1) 

vo2,LN Line-neutral matrix converter output voltage (phase 2) 

vo3,LN Line-neutral matrix converter output voltage (phase 3) 

i1 Ac network line current (phase 1) 

i2 Ac network line current (phase 2) 

i3 Ac network line current (phase 3) 

iLoad1 Load current drawn from ac network (phase 1) 

iLoad2 Load current drawn from ac network (phase 2) 

iLoad3 Load current drawn from ac network (phase 3) 

ii1 Matrix converter input current (phase 1) 

ii2 Matrix converter input current (phase 2) 

ii3 Matrix converter input current (phase 3) 
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io1 Matrix converter output current (phase 1) 

io2 Matrix converter output current (phase 2) 

io3 Matrix converter output current (phase 3) 

Φi Initial phase of matrix converter input voltage (phase 1) 

Φo Initial phase of matrix converter output voltage (phase 1) 

ωi Angular frequency of matrix converter input voltages 

ωo Angular frequency of matrix converter output voltages 

ω Angular frequency of ac network voltages 

VLN,rms RMS value of ac network voltages 

LMC 3-phase choke at output of matrix converter 

H Modulation matrix of matrix converter 

S Switching matrix of matrix converter 

H1 H2 H3 Modulation functions of the Venturini method 

S1 S2 S3 Switching functions of the Venturini method 

q Modulation index of the matrix converter 

fsw Switching frequency of the matrix converter 
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CHAPTER I 

INTRODUCTION 

 

 Reactive power, known as volt-ampere reactive (VARs), is attributed to the 

complex impedance of typical ac power system loads and transmission lines.   Even 

though its presence in the power system network is fundamental, it has several 

undesirable consequences including reduced stability limits (steady-state, dynamic and 

transient) and lowered power transfer capability. It also leads to increased transmission 

losses, inefficient performance of power system equipment and the potential for the 

onset of system-wide voltage instability (caused by variation in the reactive power 

demands of the loads), if not properly compensated and controlled [1]. Reactive power 

compensation is defined as the management and control of reactive power in the ac 

network, achieved by supplying or absorbing VARs from the system [2]. 

 

A. Classification of Compensation Techniques 

 VAR compensation may be achieved by absorbing or injecting reactive power at 

either the transmission level, known as transmission compensation, or near the load, 

known as load compensation [1]. Transmission compensation is used to maintain the 

specified voltage at different buses by injecting variable amounts of reactive power into 

the transmission lines. As a result, the stability limits and the power transfer capability 

are improved and tighter system voltage control is achieved. Transmission compensation  

____________ 
This thesis follows the style of IEEE Transactions on Power Electronics. 
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is performed at the ac network level in the system and does not address the load-side 

source of VARs in the system - the reactive load. Load compensation, on the other hand, 

is aimed at applying power factor correction techniques directly at the load to locally 

supply VARs required by the loads. Consequently, the effective system load – the 

original intended load together with the compensator, appear as unity power factor loads 

that do not draw VARs from the source. So, transmission losses and required current 

carrying capacity of lines are minimized. Further, the power transfer capability and 

stability limits of the system are not deteriorated by the load and voltage instability is 

simplified. Large scale customers such as industries are often penalized for drawing 

excessive reactive power from the ac network; so they are motivated to employ load 

compensation techniques to locally supply VARs to their loads. 

 

B. Previous Work in Reactive Power Compensation 

 Several reactive power compensation solutions that are applicable to load 

compensation have been proposed in the past and are summarized below [2-5]. Load 

compensation employs shunt-connected techniques and so, series compensation methods 

have been omitted from the discussion.  

 

1. Mechanically switched capacitors and reactors 

Initially, mechanically switched capacitor and reactor banks were used to provide 

lagging and leading reactive power to support the power system. Depending on the VAR 

requirement, the banks are switched in and out of the system through mechanical relays 
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and circuit breakers. This approach is fundamentally discrete and the compensation 

solution does not offer continuously variable reactive power support. It also suffers from 

other drawbacks including slow speed of response, lifetime wear-out of the switch 

elements, switching transients and lack of flexible, continuously variable VAR 

compensation. 

 

2. Synchronous condensers 

Synchronous condensers are essentially synchronous motors operated at no-load. 

By varying the excitation field, the rotating loads can be made to supply VARs (under-

excited) or consume VARs (over-excited) from the ac system. The advantages of 

synchronous condensers include continuously variable reactive power support, high 

short-term overload capability and harmonic-free operation. However, they suffer from 

major disadvantages including high installation time and costs, maintenance costs, 

mechanical losses and slow response time. Further, they contribute to high system fault 

current and cannot be easily relocated due to their large size. 

 

3. Static VAR Compensator (SVC) 

With advances in semiconductor technology, the solutions listed above were 

subsequently replaced by the static VAR compensator (SVC) which consists of banks of 

capacitors and reactors that are switched on/off or phase-controlled using thyristors. The 

number of banks switched in at a time depends on the VAR requirement. 
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a. Thyristor-Switched Capacitor (TSC) 

A thyristor-switched capacitor (TSC) consists of banks of capacitors switched in 

and out of the ac power system using a pair of anti-parallel thyristors as shown in Fig. 1. 

The switching in and switching out actions are carried out at instants when the capacitor 

voltage equals the positive or negative peak of the ac line voltage, to prevent switching 

transients. This introduces a maximum response delay of 1 cycle when switching in and 

½-cycle when switching out the capacitor bank [2, 5]. A current-limiting series reactor is 

used to prevent any likelihood of switching transients. The reactor and capacitor form a 

notch filter to prevent resonance with the power system current harmonics. TSC banks 

may be connected in wye or delta configurations, though the latter is preferred when 

unbalanced VAR consumption is expected [5]. 

A TSC has good response time and low maintenance and installation costs as it 

has no moving parts. It also has negligible harmonics when switched appropriately. 

However, a TSC cannot provide continuous VAR control as it is essentially just a solid-

 
 
Fig. 1. Thyristor-switched capacitor 
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state version of the mechanically switched capacitor bank. As each TSC bank requires a 

pair of thyristors, it is uneconomical especially at high voltage levels due to the cost of 

high voltage thyristors and their gate drive circuits. The peak inverse voltage of each 

thyristor is twice the ac network voltage peak. Protective equipment must be installed to 

prevent thyristor failure due to line voltage transients and fault currents. Due to these 

disadvantages, a TSC is practically not an attractive compensation solution. 

 

b. Thyristor-Controlled Reactor (TCR) 

A thyristor-controlled reactor (TCR) consists of shunt capacitors in parallel with 

reactors connected to the power network through a pair of anti-parallel thyristors as 

shown in Fig. 2. The effective reactance of the TCR and so, the reactive power drawn by 

it, are controlled by varying the firing angles of the thyristors. As the firing angle 

increases, the effective inductance of the TCR increases. A filter is used in parallel with 

the TCR as the gating action generates low-order odd harmonics. In three-phase 

 
 

Fig. 2. Thyristor-controlled reactor 
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arrangements, the reactors of the TCR are connected in delta to remove unbalance, while 

the capacitors may be connected in delta or wye.  

With fast response times, acceptable cost and the ability to balance loads, the 

TCR is considered to be a good compensation technique. However, though a continuous 

VAR control range can be achieved, it is discontinuous in time as firing angle 

adjustments can be made only once per ½-cycle. The other disadvantage of the TCR is 

that the reactor must be of a rating comparable to that of the capacitor to be able to 

provide leading VARs as well.  

 

4. Static Synchronous Compensator (STATCOM) 

A static synchronous compensator (STATCOM) is based on power electronic 

converters that behave as ideal ac sources such as the voltage-source and current-source 

inverters shown in Fig. 3 and Fig. 4, respectively. The converters are connected to the ac 

power system network through reactors as shown in Fig. 5. Depending on the relative 

 
 

Fig. 3. VSI-based STATCOM 

 
 

Fig. 4. CSI-based STATCOM 
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magnitudes of the ac network voltage E and the converter voltage V, variable amounts of 

reactive power are injected into the network. When |E| > |V|, the converter injects 

lagging VARs into the ac network and vice versa [2, 5]. 

The power electronic converters are made to operate at high switching 

frequencies using various pulse-width modulation (PWM) techniques. So, the 

STATCOM can provide smoothly variable reactive power as a continuous function of 

time. The high frequency switching harmonics generated can be easily filtered. More 

importantly, the STATCOM does not require large number of reactive elements, thus 

reducing the cost ad size of compensation techniques. Since the STATCOM is a force-

commutated converter operating at high frequencies, it generally employs switches such 

as insulated-gate bipolar transistors (IGBTs) and integrated gate-commutated thyristors 

(IGCTs). However, these switches are not yet developed for high voltage ratings. To 

overcome this issue, multi-level converters are used [2]. The STATCOM is able to 

 
 

Fig. 5. Reactive power flow between ac network and 
STATCOM 
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provide compensation characteristics almost identical to the synchronous condensers. 

However, it does not have the high overload capability of the rotating synchronous 

machine.  

 

5. Compensation using Thyristor-Based Cycloconverters 

Direct ac-ac cycloconverters, naturally-commutated and force-commutated, can 

be used for reactive power compensation [5] in a way similar to inverters, as shown in 

Fig. 6. As the converter is made to draw only reactive or harmonic power, it is sufficient 

to use passive tank circuits at the input of the converter. While naturally commutated 

cycloconverters can inject only leading VARs into the system, force-commutated 

 
 

Fig. 6. STATCOM based on a cycloconverter 
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cycloconverters can be controlled to inject lagging VARs as well [5]. Another 

STATCOM based on the concept of “power doubling” was proposed by Gyugyi [5] and 

implemented in [6], wherein reactive power could be injected by the cyclo-converter 

through both its input and output terminals.  

Though the cycloconverters seemed to be compact solutions to reactive power 

compensation, they did not gain much popularity as they required a very large number of 

thyristors (36 switches for three-phase converter) which needed to be switched at very 

high frequencies (approximately ten times the line frequency), which was not possible at 

that time. 

 

C. Capacitors in Reactive Power Compensation 

Many typical loads such as motors and inductive loads operate with lagging 

power factor, which means that they consume VARs. So, load compensation techniques 

employ capacitor banks to locally supply the VARs needed by the load. However, 

capacitors are known for being highly unreliable components with both catastrophic and 

wear-out failure mechanisms. With the extensive use of power electronics in VAR 

compensation (as in the voltage source inverter-based STATCOM), aluminum 

electrolytic dc capacitors are widely used due to their advantages of high energy density, 

reasonable voltage ratings and low cost per unit energy. But, 60% of power electronic 

failures are attributed to them [7]. They have a short life-span (generally, less than 

10,000 hours at rated conditions) and must be frequently replaced. The reliability issues 

of aluminum electrolytic capacitors are discussed below. 
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1. Construction of the Electrolytic Capacitor  

A cross-section of the electrolytic capacitor is shown in Fig. 7. The anode of the 

capacitor is an aluminum foil that is coated with aluminum oxide, the dielectric which is 

formed through chemical reactions. The cathode consists of a paper strip impregnated 

with an electrolyte, which is in contact with another aluminum foil. Several layers of 

cathode and anode are wound in an alternating manner [8].  

 

2. Failure Types and Mechanisms of the Electrolytic Capacitor 

Capacitor failure types can be listed as follows [9]:  

i. Early failures: They occur during the first year of energizing the capacitors. They 

are attributed to defects in the manufacturing, testing and installation procedures. 

 
 

Fig. 7. Cross-section of an electrolytic capacitor – taken from [8] 
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ii. Random failures: These less probable failures occur due to operating conditions 

such as lightning surges. 

iii. Wear-out failures: These are attributed to wear-out and aging of the capacitor 

dielectric. They form a large percentage of capacitor failures and will be 

discussed in detail.   

These failures are shown as a function of time in the bathtub curve of Fig. 8. 

Capacitor failures occur through the several mechanisms/modes listed in Fig. 9. 

Early and random failures are attributed to catastrophic mechanisms including open-

circuit, short-circuit, open vent, increased leakage current and electrolytic leakage [10]. 

Wear-out failures in electrolytic capacitors are primarily driven by a mechanism called 

‘partial discharge’ which can be defined as the incomplete charge transfer (discharge) 

occurring across the space (such as gaps) between the electrode and the electrolyte [11]. 

Partial discharge leads to the decomposition of electrolyte, producing hydrogen gas 

 
a – Early failure period b – Random failure period c – Wear-out failure period 

 
Fig. 8. Bathtub curve of capacitor failures – taken from [10] 
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which decreases the corona inception voltage (breakdown voltage) below the voltage 

rating of the capacitor. Operation of such a capacitor results in high internal 

temperatures, arcing, bulging and its consequent failure. The factors contributing to the 

occurrence of partial discharge include higher operating temperatures, manufacturing 

defects and conditions such as over-voltages. 

 

3. Failure Detection Mechanisms 

The equivalent model of a capacitor, shown in Fig. 10, includes an effective 

series resistance (ESR) and an effective series inductance (ESL) along with the capacitor 

[12]. Failure of capacitors is accompanied by a decrease in its capacitance and, more 

 
 

Fig. 9. Different failure mechanisms of capacitor failures – taken from [10] 
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importantly, by an increase in the ESR. Several techniques have been developed to use 

the ESR as a means to monitor the health of electrolytic capacitors and accurately detect 

faults [7, 12, 13]. 

From the above discussion, it is clear that aluminum electrolytic dc capacitors, 

with their catastrophic failure modes and wear-out mechanisms, require constant 

monitoring and periodic replacement. Ac capacitors also suffer from similar reliability 

problems. Thus, capacitors greatly increase the maintenance and operational costs of the 

traditional load compensation techniques and are undesirable components.   

 

D. Proposed Compensation Technique 

This thesis proposes a reactive power load compensator that uses inductors 

(chokes) instead of capacitors to supply reactive power to support the load. Inductors are 

regarded as robust and rugged elements and are not subject to service life-limiting failure 

mechanisms. However, it is also well known that they have lagging power factor and 

consume VARs, which is the opposite reactive power behavior of the capacitor. The 

proposed load compensator interfaces the inductive choke element to the ac network 

with a 3-phase ac-to-3-phase ac direct matrix converter (MC). The MC is controlled by 

the Venturini modulation technique which has the advantageous property that it can 

 
 

Fig. 10. Equivalent circuit of a capacitor 
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enable the MC to invert the phase of the current from the input to the output [14]. So, 

although the inductive choke draws lagging currents from the output of the converter, 

through this current phase reversal property of the modulation technique, the converter 

draws leading currents from the ac network. Thus, with the proposed compensation 

technique, lagging power factor loads can be compensated without using capacitor 

banks. This thesis will examine the fundamental relationships of the matrix converter 

controlled by the Venturini modulation technique and apply them to a shunt-connected 

load-side VAR compensator. 

 

E. Overview of Thesis 

The matrix converter and its historical background are introduced in Chapter II. 

Detailed operation of the converter using the Venturini modulation method is presented, 

and the derivation of the current phase reversal property is examined. Simulation results 

of the converter in MATLAB and PSIM environments are produced and discussed in 

detail.  

The schematic of the proposed VAR load compensator is presented in Chapter 

III. The application of the current reversal property to the compensator is justified. The 

capacity of the compensator is given mathematically. MATLAB and PSIM simulations 

examining the performance of the compensator are also presented. 

The digital implementation of the compensator in hardware is presented in 

Chapter IV. A possible solution to the hardware set-up of the entire system is explored. 
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Control signals of the system, generated using a DSP and a CPLD, are presented. The 

practical feasibility of the proposed compensator is thus shown.  

Conclusion drawn from this thesis are presented in Chapter V. Future work is 

also discussed. 

Portions of Chapters II, III and IV have been previously published in [15] at the 

IEEE 42nd North American Power Symposium (NAPS) 2010.  
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CHAPTER II 

MATRIX CONVERTER AND ITS OPERATION 

 

A. Introduction to the Matrix Converter 

A matrix converter is a direct ac-to-ac force-commutated converter which has the 

ability to transform the magnitude, phase angle and frequency of the input voltage 

without using intermediate energy storage elements. An m/n matrix converter results in 

energy conversion between ‘m’ output phases and ‘n’ input phases. As 3-phase power is 

most widely used, the 3/3 matrix converter (MC) will be considered hereafter. The basic 

layout of the MC, shown in Fig. 11, illustrates that each of the output phases is 

connected to every input phase by a matrix of switches. There are no intermediate 

 
 
 

Fig. 11. Basic layout of a 3/3 MC 
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energy storage elements and the switches are bi-directional (bi-lateral) – capable of 

handling positive as well as negative voltages and currents (four-quadrant operation).  

The concept of direct ac-to-ac converters was introduced by Hazeltine in 1923 

[16], but a detailed treatment was first carried out by Gyugyi and Pelly in [16], where 

they are referred to as frequency changers or cycloconverters. These converters were 

based on the semiconductor device thyristor and were broadly classified as naturally 

commutated (NCCs) and force-commutated (FCCs). Though cycloconverters offered a 

wide range of operational flexibility, their widespread usage was hindered by the large 

requirement of thyristors (36 switches for 3-phase applications) and the difficulty of 

switching these early technology thyristors at relatively high frequencies (approximately 

ten times the line frequency). With developments in power transistor technology, interest 

in cycloconverters was reestablished [17]. However, the earnest development of direct 

ac-ac converters was initiated by the Venturini and Alesina [14, 18] in which they 

introduced the concept of the matrix converter. They developed and analyzed the 

principle of the ‘low-frequency modulation matrix’, which views the converter as a 

single mathematical transfer function (direct modulation method). Following the work of 

Venturini and Alesina, several modulation methods were proposed as summarized in 

[17].  

The Venturini modulation method is characterized by sinusoidal input and output 

waveforms. It has a maximum attainable voltage gain of 0.5, which could be increased to 

0.866 by the addition of common-mode voltages to the output voltages [19]. But, this 

increase is obtained at the cost of greater switching frequencies and implementation 
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complexities. The indirect modulation methods, which model the MC as a two-stage 

transfer function, were analyzed in [20]. These methods were able to increase the voltage 

gain to 1.05 at the expense of low-frequency distortion in the input/output waveforms or 

both [17]. Space vector modulation methods were developed in [21-24] with the aim of 

achieving the superior performance of space vector based inverters in MCs as well. But, 

even these methods have a limited voltage gain of 0.866 and offer similar performance 

as the Venturini modulation method.  

This thesis implements the Venturini modulation method because it can be 

operated such that it has the advantageous current phase reversal property, which is 

fundamental to the operation of the proposed reactive power load compensator. The 

maximum voltage gain of 0.5 is not viewed as a limitation in this application of a matrix 

converter as the output terminals of the MC are internal nodes of the VAR compensator 

and do not connect to any load such as a motor, where the output voltage is important. 

Thus, other modulation methods need not be explored with the aim of improving the 

voltage gain.  

 

B. Application of the Venturini Modulation Method to the Matrix Converter 

 A block diagram of the MC indicating the input and output currents and voltages 

is shown in Fig. 12. The line-neutral input voltages of the MC are given by vi1,LN, vi2,LN 

and vi3,LN, while the line-neutral output voltages are denoted by vo1,LN, vo2,LN and vo3,LN. 

The input and output line currents of the MC are given by ii1, ii2, ii3 and io1, io2, io3 

respectively. While the amplitudes of the input and output voltages are denoted by Vi 
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Fig. 12. Block diagram of MC showing voltages and currents 

and Vo respectively, the phase angles are given by Φi and Φo respectively. The input and 

output side frequencies of the converter are denoted by ωi and ωo.  

The MC can be modeled as a mathematical transfer function, the modulation 

matrix H which relates the input and output voltages.  
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The modulation matrix element Hxy is the transfer function between the xth output phase 

and the yth input phase. Since there are no energy storage elements in the MC and 

assuming that there is no power loss in the MC, the instantaneous three-phase powers are 

equal on the input and output sides. Consequently, the relationship between the input and 

output currents of the MC is given by (3). 
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where HT is the transpose of the modulation matrix H. 

 According to the Venturini modulation method, the proposed generalized 

modulation matrix for the MC [14] is given by (4-6), the detailed mathematical 

treatment of which is presented in [18]. Depending on our requirements of output 

frequency, phase angle and amplitude in relation with the input voltage parameters, the 

corresponding H matrix is derived. 
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The above equations are subjected to the constraints given by (6) to ensure that the 

matrix H is finite, positive, semi-definite and therefore, invertible. 
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C. Derivation of the Current Phase Reversal Property 

Consider the following input voltages for the MC of Fig. 12 such that the input 

frequency ωi is set to ω and the input phase angle Φi is set to 0. 
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Further, let the desired output voltages be in phase with the input voltages and have the 

same frequency, such that 
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Substituting (9) into (4), we obtain the following modulation matrix 
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where 
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It can be seen that the modulation functions H1, H2 and H3 have twice the frequency 

‘2ω’ as that of the input and output voltages. The term ‘q’, known as the modulation 

index, is the ratio between the output and input voltage amplitudes and is a control 

parameter of the modulation functions (5). The coefficient ‘1/3’ is used to limit the duty 

cycle of the MC switches to 2/3, this maximum value being reached when one of the 

other modulation functions becomes zero. The coefficient ‘2’ is used to ensure that the 

output phases are never left unconnected even when one of the modulation functions 

becomes zero. The ‘unity’ term asserts the same property when the required output 

voltages are zero and consequently, ‘q’ is made to be zero.  

The modulation matrix of (10) and (11) must result in the MC operation as 

described in (7) and (8). As verification, (10)-(11) and (7) are substituted into (1). The 

resulting output voltages are obtained as in (12) and they are found to be in conformity 

with the desired output voltage parameters. 
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Let it now be assumed that the output currents have a phase angle Φ with respect to the 

output voltages and are given by 
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Substituting (10) and (13) into (3), the following input currents are obtained 
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The output current io1 can be expressed as a phasor as follows 
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Similarly, the input current io1 can be expressed as a phasor as 
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Comparing (15) and (16), it is clearly seen that there is a reversal in the sign of the phase 

angles of the output and input currents – the current phase reversal property. Similarly, 

this property can be observed in all the phase currents by expressing them in the phasor 

notation. Comparing the voltage and current expressions, it can be observed that while 

the output currents lead the corresponding output voltages by Φ, the input currents lag 

the corresponding input voltages by Φ. This implies that the current phase reversal 

property evaluates to a power factor reversal between the input and output terminals as 

both the input and output voltages have phase angles of 0 degrees. Thus, the modulation 
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matrix H which operates the MC with the special current phase reversal property has 

been established.  

 

D. Switch Realization of the Modulation Functions 

 The mathematical model of the MC presented in the previous section will now be 

implemented in the switch matrix of Fig. 11. Switching functions which define the 

on/off states of the switches as a continuous function of time are to be derived from the 

modulation functions. The relationships between the input and output voltages and 

currents of the MC can be expressed in terms of these switching functions as  

         (17) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

LNi

LNi

LNi

LNo

LNo

LNo

v
v
v

v
v
v

,3

,2

,1

,3

,2

,1

S

         (18) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

3

2

1

o

o

o
T

i

i

i

i
i
i

i
i
i

S

with         (19) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

SSS
SSS
SSS

S

where the matrix element Sxy represents the switching function governing the switch 

connecting the xth output phase and the yth input phase. 

 Comparing (2) and (19), the modulation function associated with each switching 

function is easily inferred. As there are three basic functions H1, H2 and H3 in the chosen 
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Venturini modulation matrix (10)-(11), the S matrix is constituted by three 

corresponding switching functions  
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It is assumed that the switches are operated at a frequency much higher than the input 

and output frequencies such that their average behavior, given by their duty cycles over 

each switching period, equals the modulation function values at each instant of time. 

Thus, while the H matrix is a ‘low-frequency’ description of the MC, the S matrix 

additionally includes a range of switching harmonics. To obtain the on-off times from 

the duty cycle values (modulation functions), a suitable switching period Tdisc is obtained 

by dividing the time period of the modulation functions into ‘N’ time intervals given by 
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Discrete-time versions of the modulation functions (switch-averaged functions), 

developed by applying a zero-order hold of time period Tdisc as shown in Fig. 13, 

determine the switch duty ratios over each of the ‘N’ intervals. The ‘ON’ times of the 

three switching functions are then derived as 
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   where 10 −≤≤ Nk  
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Fig. 13. Modulation function and its discrete version 
 

 

Within each kth interval, the switches governed by S1 are turned on for time t1, followed 

by the switches governed by S2 and S3 which are turned on for times t2 and t3, 

respectively, as shown in Fig. 14. Based on this pattern, the on-off states of the switches 

can be obtained as a function of time, thus, completely defining the switching functions.  

 

The effective switching frequency is 

   
disc

sw T
f 1

=        (23) 

Fig. 13 implies that as the value of N is increased, the switching functions more 

accurately model the modulation functions.  
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Fig. 14. Switching function for a discrete interval k, 0≤ k ≤ N-1 

 

 

As mentioned before, the MC requires bi-directional switches; but, 

semiconductor switches with inherent bi-directional capability are not yet commercially 

available. So, bilateral functionality is constructed from one or more unidirectional 

 
Fig. 15. Different bi-directional switch realizations based on discrete switches 
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switch elements. Three possible realizations are illustrated in Fig. 15 [17, 25]. The diode 

bridge type realization (Fig. 15(a)) requires only a single controlled switch but is 

generally not practical due to the diode losses. The common-emitter (Fig. 15(b)) and 

common-collector (Fig. 15(c)) configurations are more efficient realizations, but they 

require two gate-drive circuits and careful commutation techniques to prevent converter 

failures. The common-collector configuration is the more preferred switch arrangement 

as it requires lesser number of isolated gate-drive power supplies than the common-

emitter configuration. For example, in the case of the MC, while the common-emitter 

configuration requires 9 isolated power supplies, the common-collector configuration 

requires only 6 supplies. This reduced number of supplies is also an advantage in view 

of the isolation distance between independent voltage potentials within the MC.  

 

E. Simulation Results 

The system shown in Fig. 16 has been considered for simulation study. The MC 

is connected to a 3-phase wye-connected source of 480V (rms) line-line voltage and 60 

 
 

Fig. 16. System simulated to study MC operation 
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TABLE 1.    System parameters used for simulation 
 

Parameter Value 

Line-to-line input voltage of the MC V
LL,rms

 480 V 
Three-phase load at the MC output 20mH 

Angular frequency of power grid voltage ω 2π*60 rad/s 

Discrete intervals per period of modulation function N 100 

Hz frequency. A 3-phase inductive load of 20 mH is considered at the output of the MC. 

The operating parameters of the MC are summarized in TABLE 1. From (21) and (23), it 

is seen that the resulting switching frequency is 12 kHz. Line filters must be used 

between the MC and the source to eliminate the high order harmonics in the input 

currents. They have been excluded from the initial study to obtain a better understanding 

of the MC operation. The effect of filters on the system will be considered later in this 

chapter. 

 

1. Simulation in MATLAB 

The ‘ON’ times of the switches are obtained using (22). The switching functions, 

which are vectors of 1’s and 0’s, are derived by expressing these ‘ON’ times in terms of 

a suitable time step. The simulated modulation and switching functions are shown in Fig. 

17. The switch-averaged function, obtained by averaging the switching functions over 

every switching period Tdisc, closely follows the corresponding modulation function. 

This indicates that the switching function models the modulation function as expected.  
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Fig. 17. Modulation functions and switching functions 
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The switching sequence followed in the Venturini technique is shown in Fig. 18 and is in 

accordance with Fig. 14 

 
 

Fig. 18. Switching sequence of the Venturini method 

 

The line-neutral input and output voltages, obtained using (17) are shown in Fig. 

19. The switching nature of the output voltages, which sequentially take the values of all 

three input voltages, is apparent from the figures. It can be seen that the fundamental 

components of the output voltages, obtained by using the Fast Fourier Transform (FFT), 

are stepped down from the inputs by a factor of ‘q’ (0.3), and are in phase with the 

corresponding input voltage. 
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Fig. 19. Line-neutral input voltages and output voltages of the MC 

The currents of the MC are shown in Fig. 20. The input currents are seen to be switching 

between the output currents as indicated by (18). The fundamental components of the 

input currents are stepped down by a factor of 0.3 when compared to the output currents. 
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More importantly, each input current has exactly the opposite phase as the corresponding 

output current, as expected from (13) and (14). Thus, the Venturini modulation method 

is seen to assert the unique property of phase reversal between the input and output 

currents. 

 
Fig. 20. Output currents and input currents of the MC 
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The fundamental components of the voltages and currents of one phase of the MC are 

shown in Fig. 21.  

 
 

Fig. 21. Accuracy of MC waveforms for switching frequency of 12kHz 
 

The magnitudes and phase angles of the fundamental components of the MC 

voltages are summarized in TABLE 2. Slight differences between the simulated and 

expected values can be noted from the table. Also, a closer observation of Fig. 21 shows 

that the input and output voltages are not exactly in phase, and the input and output 

currents are not exactly out of phase. This deviation has been found to be attributed to 

the modeling inaccuracy introduced by the Venturini method while deriving the 

switching functions from the discrete-time modulation functions (Fig. 13).The difference 

between the modulation function and its discrete version for a switching frequency of 12 

kHz is shown in Fig. 22.  
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TABLE 2. Comparison of expected and simulated output voltages of the MC 
 

Magnitude 
 

Phase 
 

 

Expected  
value 

Simulated  
value 

Expected  
value 

Simulated  
value 

vo1,LN 117.58 V 118.27 V 0° -1.80° 

vo2,LN 117.58 V 118.27 V -120° -121.80° 

vo3,LN 117.58 V 118.28 V 120° 118.20° 

io1 15.59 A 15.69 A -90° -91.81° 

io2 15.59 A 15.69 A 150° 148.20° 

io3 15.59 A 15.69 A 30° 28.20° 

ii1 4.68 A 4.85 A 90° 90.11° 

ii2 4.68 A 4.85 A -30° -30.11° 

ii3 4.68 A 4.84 A -150° -150.00° 

 
 

Fig. 22. Comparison between modulation and switch-averaged functions for 
switching frequency of 12kHz 
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As mentioned earlier, the discrete versions follow the original modulation 

functions with greater accuracy as the zero-order hold period Tdisc is decreased. In other 

words, as the switching frequency is increased by using larger values of ‘N’, the 

switching functions will more closely model the modulation functions. The modeling 

inaccuracy is depicted for a switching frequency of 1.2 kHz (N=10) in Fig. 23 and Fig. 

24. In Fig. 24, the phase difference between the modulation function H1 and the 

geometric mean of the discrete version of H1 is approximately 0.26 radians. The phase 

difference in voltages of Fig. 23 is also approximately the same (0.32 radians).  Thus, the 

correlation between the modeling error of the Venturini method and the inaccuracy in 

the MC waveforms is further ascertained. 

 
 

Fig. 23. Accuracy of MC waveforms for switching frequency of 1.2 kHz 
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Fig. 24. Comparison between modulation and switching functions for switching 

frequency of 1.2 kHz 

 

The voltage and current waveforms for a switching frequency of 120 kHz (N=1000), 

shown in Fig. 25, illustrate near-ideal behavior of the MC. Practically no difference 

exists between the modulation function and its discrete function as illustrated in Fig. 26.  
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Fig. 25. Accuracy of MC waveforms for switching frequency of 120kHz 
 

 
 
 
 
 
 

 
 

Fig. 26. Comparison between modulation and switch-averaged functions 
for switching frequency of 120kHz 
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2. Simulation in PSIM 

The system of Fig. 16 was implemented in PSIM as shown in Fig. 27. The 

control logic for switch signal generation is provided in Appendix B. The line-neutral 

input and output voltages are shown in Fig. 28.  

 

 
 

Fig. 28. PSIM simulation - line-neutral input and output voltages of the MC 
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The input and output currents of the PSIM-simulated system are shown in Fig. 29. 

 

 
 

Fig. 29. PSIM simulation - output and input currents of the MC 

The fundamental components of the MC voltages and currents are given in TABLE 3. 

Comparing the values with those of TABLE 3, it can be seen that the PSIM simulations 

are in close agreement with the MATLAB simulation results (the magnitude values 
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differ by a maximum of ±3.6%, while the phase angle values differ by a maximum of 

±2.5%).  

 

TABLE 3. Magnitudes and phase angles of fundamental components of MC waveforms 
 

PARAMETER MAGNITUDE PHASE ANGLE 

Line-neutral MC input voltage (phase 1) vi1 391.92 V -0.02° 

Line-neutral MC input voltage (phase 2) vi2 391.92 V -120.02° 

Line-neutral MC input voltage (phase 3) vi3 391.92 V -119.98° 

Line-neutral MC output voltage (phase 1) vo1 114.48 V -1.76° 

Line-neutral MC output voltage (phase 2) vo2 117.31 V -119.50° 

Line-neutral MC output voltage (phase 3) vo3 119.85 V -118.21° 

MC input current (phase 1) ii1 4.93 A 91.12° 

MC input current (phase 2) ii2 4.79 A -31.32° 

MC input current (phase 3) ii3 4.68 A -148.65° 

MC output current (phase 1) io1 15.50 A -91.20° 

MC output current (phase 2) io2 15.79 A 148.76° 

MC output current (phase 3) io3 15.64 A 27.86° 

 
 

3. Addition of Input Line Filters 

Second-order filters are required between the voltage source and the MC to 

reduce harmonic content of the currents drawn from the source. Several filter topologies 

have been discussed in literature [26, 27] some of which are shown in Fig. 30. The filter 

topology of Fig. 30 (d) has been chosen due to its high damping factor and relatively 
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Fig. 30. Some input filter topologies 

lower losses. The PSIM schematic of the system with input filters is shown in Fig. 31. 

Damping resistors connected in parallel with the inductors reduce ringing effects. The 

cut-off frequency ωcut-off of the filter is chosen as 1.2 kHz, which is 1/10th the switching 

frequency. The filter parameters are chosen according to (24). The damping resistor is 

chosen to result in a filter damping factor ζ of 0.5. It is then adjusted during simulation 

to improve the system performance. The resulting filter parameters are given in TABLE 

4.  
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      (24) 

TABLE 4. Input line filter parameters 
 

PARAMETER VALUE 

Per-phase inductance Lfilter 

 
1 mH 

Per-phase capacitance Cfilter 

 
20 µH 

Per-phase damping resistor Rdamp 

 
10 Ω 
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The line-neutral voltages of the system are given in Fig. 32. The upper row 

shows the source voltages, while the second row displays the MC input voltages (after 

the filter stage). The last row shows the resulting MC output voltage of phase 1. It is 

seen that the filter contributes to some ringing in the MC input voltages. As the damping 

resistor is increased, the ringing effect decreases; however, it deteriorates the filtering 

action of the input filter.  

 
Fig. 32. PSIM simulation with input filters - source, MC input and MC output voltages (phase 1) 

 

The currents of the system are shown in Fig. 33. The top-most row shows the three 

output currents of the MC. The MC input current of phase 1 is shown in the second row, 

while the filtered current drawn from the voltage source is given in the last row. The 

figure shows that appropriate filtering has taken place. 
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Fig. 33. PSIM simulation with input filters – MC output, MC input and source currents (phase 1) 

 

 

The magnitudes and phase angles of the fundamental components of the MC 

waveforms are summarized in TABLE 5. It is seen that the filters have not altered the 

basic operation of the MC – the current phase reversal property. A comparison with 

TABLE 3 shows the unfiltered and filtered cases to be in close agreement (magnitudes 

and angles differ by a maximum of ±3.5% and ±1%, respectively). 
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TABLE 5. Magnitudes and phase angles of fundamental components of waveforms for the MC system 
with input filters 

 
PARAMETER MAGNITUDE PHASE ANGLE 

Line-neutral MC input voltage (phase 1) vi1 394.83 V -0.04° 

Line-neutral MC input voltage (phase 2) vi2 394.78 V -120.04° 

Line-neutral MC input voltage (phase 3) vi3 394.80 V -119.96° 

Line-neutral MC output voltage (phase 1) vo1 110.81 V -1.36° 

Line-neutral MC output voltage (phase 2) vo2 113.79 V -119.06° 

Line-neutral MC output voltage (phase 3) vo3 116.22 V -118.53° 

MC input current (phase 1) ii1 4.77 A 90.88° 

MC input current (phase 2) ii2 4.65 A -31.54° 

MC input current (phase 3) ii3 4.54 A -148.96° 

MC output current (phase 1) io1 15.02 A -90.97° 

MC output current (phase 2) io2 15.33 A 149.09° 

MC output current (phase 3) io3 15.18 A 28.03° 

 

In conclusion, it is seen that the simulation results support the mathematical 

analysis of the MC using the Venturini modulation method. The current phase reversal 

property has been presented and is applied to the problem of VAR compensation in the 

following chapter. 
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CHAPTER III 

THE PROPOSED VAR COMPENSATOR 

 

The Venturini modulation method for a MC was introduced in Chapter II and 

modulation functions H1, H2 and H3 were developed as in (10) and (11) which operate 

the converter such that the phase of currents are reversed between the input and the 

output. Simulation results of the MC system shown in Fig. 16 further illustrate this 

property by showing that while the output currents lag the output voltages due to the 

inductive element, the input currents actually lead the corresponding input voltages. 

Thus, the inductor on the MC output is made to appear as a capacitor at the MC input by 

the Venturini modulation method.  

This current phase reversal property of the MC finds important application in 

reactive power load compensation, where capacitors are used extensively to locally 

provide lagging VARs to loads, despite their serious reliability issues. This thesis 

proposes a reactive power load compensator consisting of the MC with a 3-phase choke 

(inductive) element connected at its output terminals. By controlling the modulation 

index ‘q’, the MC can be operated to draw variable leading VARs from the source, while 

the choke draws lagging VARs from the MC output terminals.  
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A. System Description and Analysis 

The layout of a test case ac power system with a lagging load that needs 

compensation is shown in Fig. 34. The proposed VAR compensator is shunt-connected 

to the system at a point near the load. Though the source is typically ∆-connected, its 

wye equivalent has been used to facilitate understanding the phase relationship between 

phase currents and voltages. The line-neutral ac network voltages are denoted by v1,LN, 

v2,LN and v3,LN and are also equal to the MC input voltages vi1,LN, vi2,LN and vi3,LN, 

respectively. The magnitude and frequency of the voltages are denoted by VLN,rms and ω 

respectively.  The line-neutral MC output voltages are given by vo1,LN, vo2,LN and vo3,LN. 

 
 

Fig. 34. The proposed VAR compensator 
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The 3-phase choke element, denoted by LMC, draws currents io1, io2 and io3 from the 

output terminals of the MC. The currents drawn by the MC from the system are denoted 

by ii1, ii2 and ii3, while the currents drawn by the load are given by iLoad1, iLoad2 and iLoad3. 

The total currents drawn by the effective load, the original lagging load in parallel with 

the compensator, are given by i1, i2 and i3.  

Let the ac network and MC input voltages be given by (25). Let it be assumed 

that in order to provide complete load compensation, the MC is operated with a 

modulation index ‘qcomp’. Then, from (12), we obtain the MC output voltages as in (26). 
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The choke element draws currents that lag the MC output voltages by exactly 90° as 

given by (27). By virtue of the current reversal property of the Venturini modulation 

method (13)-(14), the input currents of the MC are then derived as in (28). 
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The instantaneous input power per-phase is obtained as a product of the input voltages 

and currents of the compensator 
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Using standard trigonometric identities, we have 
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It is seen that the instantaneous power associated with the MC input has only a negative 

double frequency component. This indicates that while the MC does not consume any 

real power, it supplies reactive power to the ac network. The total three-phase reactive 

power supplied by the MC to the ac network is then given by 
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So, in order to compensate a load requiring ‘Q’ lagging VARs, the MC must be operated 

at a modulation index ‘qcomp’ which satisfies (31). From this equation, it is seen that the 
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reactive power compensated by the MC increases with the modulation index. Further, 

lesser the choke inductance LMC, greater is the compensation. The choke value is decided 

by considering the maximum required compensation at the modulation index limiting 

value which is 0.5. 

 

B. Simulation Results 

The system shown in Fig. 34 was simulated in MATLAB and the parameters 

used are listed in TABLE 6. The line-to-line voltage (phase voltage) of the ∆-configured 

ac power grid is chosen as 480 V which results in the line-to-neutral voltage of 277.13 V 

for the wye-model in Fig. 34. The maximum required reactive power compensation is 

given by 

  ( )( )..costan 1 fpPQ LoadLoad
−×=      (32) 

TABLE 6. System parameters used for simulation 
 

PARAMETER VALUE 

Line-to-neutral power grid voltage VLN,rms 277.13 V 

Angular frequency of power grid voltage ω 2π*60 rad/s 

Per-phase resistance of load RLoad, per phase 14.75 Ω 

Per-phase inductance of load LLoad, per phase 29.34 mH 

Total rated real power of load PLoad 10 kW 

Power factor of load p.f. 0.8 

Total maximum load reactive power requirement Qload 7.5 kVAR 

VAR rating of compensator 8.0 kVAR 

MC output-side inductance LMC 20 mH 

Discrete intervals per period of modulation function N 100 

Operating modulation index qcomp 0.4954 
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The VAR rating of the compensator is chosen accordingly. The required LMC is 

calculated using (31). The chosen ‘N’ gives a reasonable switching frequency of 12 kHz. 

Using the chosen MC parameter values, the modulation index is recalculated using (31). 

 

1. Simulations in MATLAB 

The system is simulated in MATLAB as mentioned in Chapter II. The input and 

output voltages of phase 1 of the MC are given in Fig. 35. The input and output currents 

of the MC phase 1 are shown in Fig. 36. The phase relationships between the 

fundamental components of the input and output voltages and currents are illustrated in 

Fig. 37. 

 

 
 

Fig. 35. MATLAB simulation - Input and output voltages (phase 1) of the MC 
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Fig. 36. MATLAB simulation – Output and input currents (phase 1) of the MC 

 

 
 

Fig. 37. MATLAB simulation - Phase relationships between voltages and currents of 
the MC 
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The simulation result of Fig. 38 shows that reactive power compensation has been 

achieved. Though the load draws lagging current iLoad1, the effective load (the 

compensator and the original load) draws unity power factor (UPF) current i1 that is in 

phase with the ac network voltage. 

 
 

Fig. 38. MATLAB simulation – Lagging load currents and UPF ac network currents 
showing the achieved reactive power compensation 

 

The variation of reactive power compensation with the modulation index ‘q’ for 

the given compensator parameters is shown in Fig. 39. As expected from (31), the VAR 

compensation increases with the square of the modulation index. Since there were no 

losses modeled in the converter, there is no real-power flow. Interestingly, the figure 

shows a small offset in the relationship between ‘q’ and the reactive power compensated. 

For example, when ‘q’ is zero, the reactive power compensated is non-zero (90 VAR). 
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Fig. 39. Variation of lagging reactive power compensated and real power drawn 

by the MC with modulation index ‘q’ 

This error, which is the result of the switching functions not exactly implementing the 

modulation functions, decreases with an increase in the value of ‘N’, as explained in 

Chapter II. Another solution to the error that might be explored in future work is the 

introduction of a phase shift ‘δ’ in the modulation functions as in 
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2. Simulation in PSIM 

The ac network system with the lagging load and compensator were simulated in 

PSIM as shown in Fig. 40. The bi-directional switches of the MC are implemented in the 

common-collector configuration as shown in Fig. 41. The switching function (S1, S2, S3) 

generation is the same as for the simulations shown in Chapter II and is explained in 

 
 

Fig. 40. PSIM schematic of ac network power system with a load and the proposed VAR compensator 
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Fig. 41. Bi-directional switch sub-circuit of the MC (common-collector configuration) 

Appendix B. A switching sequence known as the four-step commutation is implemented 

to generate the final 18 gating signals (S11P, S11N, S21P, S21N etc.). The four-step 

sequence is required to prevent commutation failure in the MC. The PSIM schematic of 

the control logic is given in Appendix B.  

 

a. Four-step commutation logic 

During the commutation of an output current of the MC from one input phase to 

the other, a safe switching sequence must be implemented so as to prevent an open-

circuit on the output and a short-circuit of the input phases. The four-step commutation 

logic is one of the most popular ways used to ensure this safety. The logic can be easily 

explained with the help of the example shown in Fig. 42, where the output current is 

transferred from input phase 1 to input phase 2. Then, S1P and S1N can be termed as the 

outgoing switches, while S2P and S2N are known as the incoming switches. Let it be 

assumed that the outgoing and incoming switches are governed by switching functions 
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S1 and S2, respectively. According to the current direction shown, it can be seen that only 

S1P and S2P carry current during the commutation. Then, the four-step commutation 

logic results in the switching sequence shown in Fig. 43. The ‘inactive’ S1N is turned off 

first, followed by the switching on of the incoming ‘active’ S2P. The outgoing switch 

S1P is then turned off, after which the switch S2N is turned on.  

 
 

Fig. 42. Example for four-step commutation 
 

 
 

Fig. 43. Switching sequence for example four-step commutation 
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The time between each step of the commutation is decided based on the required 

turn-on and turn-off times of the switches, to ensure the safe transfer of current between 

the switches. The IGBT-based MC module FM35R12KE3 by EUPEC has been used as a 

reference for the simulation. The IGBTs used in this module have total turn-on and turn-

off times of 135 ns and 610 ns, respectively [28]. As PSIM is a fixed time-step software, 

turn-on and turn-off times of 200 ns and 800 ns have been considered so as to result in 

reasonable simulation run-times. Accordingly a clock signal (CLK) of time period 200 

ns is used as a base for the commutation logic. It is seen that switching signals to the 

outgoing IGBTs follow the corresponding switching function after a delay of 0 CLK and 

5 CLK depending on whether they are carrying current or not. Similarly, the signals to 

the incoming switches follow their corresponding switching function after a delay of 4 

CLK and 9 CLK cycles depending on their current carrying status. Following this logic, 

the four-step commutation has been implemented in PSIM using shift registers to 

generate the delayed versions of the switching functions. A 4x1 multiplexer is used to 

choose between the four delayed versions based on the current carrying status of the 

IGBTs and whether they are outgoing or incoming. Changes in the current direction or 

the switching functions during the commutation period can disrupt the switching 

sequence, causing over-voltages and over-currents in the MC. To prevent such 

situations, detection of the currents and switching functions is synchronized with an 

ENABLE signal that has a time period equal to the commutation duration (2 µs).  
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b. Results of the Simulation 

The three switching functions S1, S2 and S3 are shown in Fig. 44 and Fig. 45.  

 
 

Fig. 44. Switching functions S1, S2 and S3 

 
 

Fig. 45. Switching functions S1, S2 and S3 (zoomed in) 
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The commutation process is shown in Fig. 46 and Fig. 47 for the cases when the 

switches are carrying positive and negative currents, respectively.  

 
 

Fig. 46. Four-step commutation between S11P, S11N, S12P and S12N when io1 > 0 

 
 

Fig. 47. Four-step commutation between S11P, S11N, S12P and S12N when io1 < 0 



63 
 

The function of the ENABLE signal which detects changes in switching signals 

and current only on its rising edge is shown in Fig. 48. It is seen that the changes in the 

switching function values and the current directions are asserted on the gating signals 

only at the rising edge of the ENABLE signal.  

 
 

Fig. 48. Function of the ENA (enable) signal 

 

The input and output voltages of phase 1 of the MC obtained using the four-step 

commutation technique with the Venturini modulation method are shown in Fig. 49. The 

load current iLoad1 is shown to lag the ac network voltage by the power factor angle 

(36.87°) in Fig. 50. The effective load current drawn by the original load and the VAR 

compensator is also shown. It is seen that this ac network current is in phase with the ac 

network voltage, indicating that no reactive power is being transmitted from the source 
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to the original load. Thus, reactive power compensation has been achieved by the 

proposed compensator.  

 

 
 
Fig. 49. The input and output voltages (phase 1) of the MC using four-step commutation with Venturini’s 

modulation method 

 
 

Fig. 50. Ac network current (load + compensator currents) in relation to the ac network voltage, showing 
that VAR compensation has taken place 
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It can be noted from the figure that the ac network current is not exactly in phase with 

the voltage. As explained before, this difference is due to the inaccuracy introduced by 

the discrete modulation functions and can be eliminated/reduced by increasing the 

switching frequency, appropriately adjusting the modulation index ‘q’ or investigating 

other modulation methods. 

The proposed VAR compensator based on the Venturini modulation method is 

shown to be an effective solution to reliability issues of traditional capacitor-based 

compensation techniques. Simulation results strongly support the theoretical proposition, 

thus establishing the compensator as a viable and promising solution. 
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CHAPTER IV 

DIGITAL IMPLEMENTATION OF CONTROL SIGNALS 

FOR THE MATRIX CONVERTER 

 

The role of the control logic for the MC is to first generate the basic switching 

functions S1, S2 and S3 and then use four-step commutation to result in the final 18 

switching signals. This chapter presents a hardware implementation of the control logic 

using a digital signal processor (DSP) and a complex programmable logic device 

(CPLD) as shown in Fig. 51. 

 
 

Fig. 51. Hardware set-up of the control logic for the MC 
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The block diagram of the control logic is given by Fig. 52 and is explained 

below: 

i. DSP: The TMS320LF2407A, a 16-bit fixed point processor that runs at the rate 

of 40 million instructions per second (MIPS), is designed for high-performance 

control-based applications and is chosen for the implementation. The DSP is 

programmed in the C language using the Code Composer Studio software. The 

main function of the DSP is to generate the three switching functions S1, S2 and 

S3. As the three functions are mutually exclusive, two of them are found to be 

sufficient to generate all the switching signals. Two timers (T1 and T2) of the 

DSP, are used in the compare/PWM (pulse-width modulation) to produce S1 and 

S3, respectively. Look-up tables are used to store the different ‘ON’ times given 

by t1 and t3, which are loaded into the timer compare registers using the interrupt 

system of the DSP. The DSP is also required to generate digital current direction 

signals that are used by the CPLD in the commutation logic. In the case when the 

entire compensator is designed in hardware, voltage and current sensor outputs 

 
 

Fig. 52. Block diagram of the digital implementation of control signals for the MC 
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are converted to digital signals by the DSP’s analog-to-digital converter (ADC). 

However, in the VAR compensator, it is known that the output currents of the 

MC lag its output/input voltages by 90° due to the choke element at the MC 

output. So, the current directions have been predicted based on the switching 

functions which are actually in phase with the MC voltages. 

ii. CPLD: The EPM7128SLC84-7 from the Altera MAX7000S family is chosen to 

implement the commutation logic. It is an EEPROM-based PLD with 128 macro-

cells that can provide speed or power optimization. The CPLD is programmed 

using Quartus-II and its schematic is as shown in Fig. 53. The four-step 

commutation is implemented using a state-machine, which is found to be more 

efficient and robust than the logic presented in Chapter III. It does not require the 

additional ENABLE signal which can induce delays in the switching signals. The 

clock CLK is externally generated by the DSP using one of its timers. The switch 

signal outputs are registered using flip-flops triggered by the global clock of the 

CPLD, to avoid asynchronous glitches in the outputs. 

The switches of each output phase of the MC are controlled by the state-machine 

shown in Fig. 53. From the figure, it is seen that the states 1, 10 and 19 are event-

triggered by the falling or rising edges of the incoming S1 and S3, while the other states 

are pre-determined by the previous states. 
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The definition of states is provided in TABLE 7, where S1P/S1N, S2P/S2N and 

S3P/S3N denote the positive and negative switches governed by S1, S2 and S3 

respectively.  

TABLE 7. State table showing switching signal outputs 
 

STATE OUTPUTS 
STATES 

S1P S1N S2P S2N S3P S3N 

0 0 0 0 0 0 0 
1 1 1 0 0 0 0 
2 1 0 0 0 0 0 
3 0 1 0 0 0 0 
4 0 0 0 0 0 0 
5 1 0 1 0 0 0 
6 0 1 0 1 0 0 
7 0 0 1 0 0 0 
8 0 0 0 1 0 0 
9 0 0 1 1 0 0 

10 0 0 1 1 0 0 
11 0 0 1 0 0 0 
12 0 0 0 1 0 0 
13 0 0 0 0 0 0 
14 0 0 1 0 1 0 
15 0 0 0 1 0 1 
16 0 0 0 0 1 0 
17 0 0 0 0 0 1 
18 0 0 0 0 1 1 
19 0 0 0 0 1 1 
20 0 0 0 0 1 0 
21 0 0 0 0 0 1 
22 0 0 0 0 0 0 
23 1 0 0 0 1 0 
24 0 1 0 0 0 1 
25 1 0 0 0 0 0 
26 0 1 0 0 0 0 
27 1 1 0 0 0 0 
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The switching functions obtained as DSP outputs are given by Fig. 55 and Fig. 

56. The ‘START’ signal corresponds to the first pulse of the switching functions given 

by ‘k=0’.  

 
 

Fig. 55. Switching functions S1 and S3 generated by the DSP 
 
 
 

 
Fig. 56. Zoomed-in image of the switching functions 
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The current directions are shown in Fig. 57 as generated by the DSP. If only the 

‘positive’ signal corresponding to an output current is high, the current is positive and if 

only the ‘negative’ signal is high, the current is negative. The current is otherwise zero. 

 
 

Fig. 57. Current directions generated by the DSP 

 

Screenshots of the switching signals for each MC output phase are shown in Fig. 

58, Fig. 59 and Fig. 60. 

 

 

 

 

 



74 
 

 
 

Fig. 58. Switching signals for output phase 1 
 

 

 

 
 

Fig. 59. Switching signals for output phase 2 
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The commutation sequence for switches S11P, S11N, S12P and S12N, which are 

governed by the functions S1 and S2, is shown in Fig. 61, for positive current io1.  

 

 
Fig. 60. Switching signals for output phase 3 

 
Fig. 61. Commutation sequence for switches governed by S1 and S2 for 

positive output current 
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Four-step commutation for S11P, S11N, S12P and S12N is shown in Fig. 62 and Fig. 63 

for negative and zero output current directions, respectively.  

 
 

Fig. 62. Commutation sequence for switches governed by S1 and S2 for 
negative output current 

 
 

Fig. 63. Commutation sequence for switches governed by S1 and S2 for zero 
output current 
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The commutations between switches governed by S2 - S3 and S3 - S1 are shown in Fig. 64 

and Fig. 65, respectively  

 
 

Fig. 64. Commutation sequence for switches governed by S2 and S3 for 
positive output current 

 
 

Fig. 65. Commutation sequence for switches governed by S3 and S1 for 
negative output current 
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A block diagram of the complete hardware implementation of the proposed VAR 

compensator is given in Fig. 66. The components of the diagram are listed and explained 

below [17, 29, 30]. 

i. Matrix converter module: The module FM35R12KE3 by EUPEC, based on 18 

common-collector IGBTs, may be used in the implementation [25]. The switches 

are rated at a collector-emitter voltage of 1200 V and a collector current of 35 A.  

ii. Input filters: As seen previously, LC line filters are required to reduce input 

current distortion. Several factors must be considered while designing these 

filters such as cut-off frequency, damping factor, over-voltages and over-

currents. Also, some lower harmonics might be amplified on adding the filter. 

iii. Clamp circuit: The matrix converter must be protected from over-voltages due to 

input line disturbances and output current faults. Clamp circuits consisting of fast 

recovery diodes and a capacitor are used to safely disseminate the energy. 

iv. Gate-drive circuit: The matrix converter module FM35R12KE3 requires six 

isolated gate-drive supplies [25] consisting of 60 Hz laminated transformers, 

linear regulators and optical isolators. The drive circuit must be designed well to 

have fast response time and excellent signal isolation. 

In addition to the above components, excellent noise immunity must be ensured through 

careful design as the MC has a large number of switches. In addition, the MC is more 

prone to line unbalances and distortion due to the lack of intermediate energy storage 

elements. So, techniques that account for disturbances must be employed [30].  
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Fig. 66. Block diagram of hardware implementation of the VAR compensator 

 

From the above description, it can be seen that the hardware implementation of 

the entire VAR compensator is a rigorous process involving several factors. However, its 

development and design is not essential to this thesis as previous work [29-31] indicate it 

to be practically possible. On the other hand, the implementation of the control logic in 

hardware is more critical and relevant to this thesis. The results presented in this chapter 

show that the Venturini modulation method can be implemented accurately using a DSP 

and a CPLD. Thus, the proposed VAR compensator has been shown to be a practically 

feasible solution. 
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CHAPTER V 

CONCLUSION 

 

Reactive power in the ac power system network is attributed to the complex 

impedance of the loads and the transmission lines. While it is fundamental to the system, 

reactive power is detrimental to the reliability, efficiency and overall performance of the 

ac network. This thesis focuses on load-side reactive power compensation, a technique 

used to manage the reactive power requirement of loads by absorbing or supplying 

VARs to the ac network. The existing capacitor-based solutions to VAR compensation 

have been reviewed in detail. The serious reliability issues of capacitors resulting from 

catastrophic and wear-out failure modes have been explained. Thus, the need to 

eliminate capacitors from load-side VAR compensation techniques has been established. 

The thesis proposes a load compensation technique based on the 3-phase ac-to-3-phase 

ac matrix converter, which uses inductors instead of capacitors, to locally supply VARs 

to loads. 

The Venturini modulation method has been chosen to control the matrix 

converter as it can enable the converter to operate with the advantageous current phase 

reversal property. Through this property, though the inductive element of the proposed 

compensator consumes VARs from the matrix converter, the converter supplies VARs to 

the ac power system network. Detailed analysis of the operation of the matrix converter 

using the Venturini method has been taken up in the thesis to establish the current phase 

reversal property. The application of the matrix converter and inductors to VAR 
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compensation has been justified through mathematical analysis. An expression for the 

VARs compensated by the proposed system has also been established. Simulation 

studies carried out in the MATLAB and PSIM environments support the theoretical 

analysis. Results for a specific case establish that load-side VAR compensation is 

achieved by the proposed solution as per the initial claims. Associated practical concerns 

such as input line filters and four-step commutation have also been addressed. Finally, a 

digital implementation of the switching control signals that uses a DSP and a CPLD has 

been presented to emphasize the practical feasibility of the proposed topology. The 

hardware generated results show that the Venturini modulation method can be 

effectively implemented as in theory and can be further applied to the proposed VAR 

compensator. Previous work shows the hardware implementation of the entire 

compensator to be a rigorous but practically feasible process. So, its development is not 

seen to be critically essential to this thesis. Thus, the proposed capacitor-less VAR 

compensator has been shown to be an effective and promising solution to the reliability 

issues of traditional capacitor-based VAR compensation techniques. 

Future work in this area might include studies on the hardware implementation of 

the entire proposed topology and associated practical issues including over-voltage and 

over-current protection, line-filtering and noise isolation. Additional research maybe 

conducted on improving the performance characteristics of the matrix converter such as 

speed of response and harmonic content of voltage and current waveforms. Other 

modulation techniques might also be explored. 
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APPENDIX A 
 

(a) MATLAB Code to show VAR compensation: 

%--------------------------------------------------------------- 

% PROGRAM TO MODEL VAR COMPENSATOR AS APPLIED TO (AC 

NETWORK+LOAD) SYSTEM 

%--------------------------------------------------------------- 

 

global dt Tsim t 

global ncycles n 

global Vutil_LL_rms Vutil_LN_pk 

global V1util_LN V2util_LN V3util_LN 

global futil wutil 

global fsw 

global Vi1_MC_LN Vi2_MC_LN Vi3_MC_LN 

global Vo1_MC_LN Vo2_MC_LN Vo3_MC_LN 

global Vo1_MC_LN_fund Vo2_MC_LN_fund Vo3_MC_LN_fund 

global io1_MC io2_MC io3_MC 

global io1_MC_fund io2_MC_fund io3_MC_fund 

global ii1_MC ii2_MC ii3_MC 

global ii1_MC_fund ii2_MC_fund ii3_MC_fund 

 

%--------------------------------------------------------------- 

% Time set-up of simulation 

%--------------------------------------------------------------- 

dt = (1/60)*1e-5;       % Time step 

ncycles = 2;         % No. of 60Hz fundamental cycles 

n = ncycles*2;      % No. of 120Hz switching cycles 
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Tsim = ncycles*(1/60);  % Total simulation time 

t = 0:dt:Tsim-dt;        % Time vector 

 

%--------------------------------------------------------------- 

% Setting up the ac network 

%--------------------------------------------------------------- 

Vutil_LL_rms = 480*1000;    % Line-Line RMS ac network voltage 

[V]  

 

% Line-Neutral Peak ac network voltage [V] 

Vutil_LN_pk = (2^0.5)/(3^0.5) * Vutil_LL_rms;      

 

futil = 60;             % Fundamental frequency [Hz] 

wutil = 2*pi*futil;    % Angular fundamental frequency  

 % [rad/s] 

 

% Line-Neutral ac network voltages (varying with time) 

V1util_LN = Vutil_LN_pk * cos(wutil*t);       

 % Taken as 0 reference for  

                   % phasor representation 

V2util_LN = Vutil_LN_pk * cos(wutil*t - 2*pi/3); 

V3util_LN = Vutil_LN_pk * cos(wutil*t + 2*pi/3); 

%--------------------------------------------------------------- 

% Setting up the load: P = 10kW, Q = 7.5kVAR 

%--------------------------------------------------------------- 

 

Rload = 14.7458;          

Lload = 29.3358e-3; 
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phiload = atan(Lload*wutil/Rload); 

Zload = (Rload^2 + (Lload*wutil)^2)^0.5; 

 

% Determine the currents drawn by the load 

iload1 = (Vutil_LN_pk/Zload) * cos(wutil*t - phiload); 

iload2 = (Vutil_LN_pk/Zload) * cos(wutil*t - 2*pi/3 - phiload); 

iload3 = (Vutil_LN_pk/Zload) * cos(wutil*t + 2*pi/3 - phiload); 

 

%Expected reactive power drawn by load 

Pload_expected = (Vutil_LL_rms^2/Zload)*cos(phiload); 

Qload_expected = (Vutil_LL_rms^2/Zload)*sin(phiload); 

 

% Defining the load on the MC  

% (3-phase 4-wire balanced inductive Y-Load [H]) 

Lmc_perphase = 0.1169;  

 

% Determination of required modulation index 'q' of the  

% compensator to maintain unity power factor of the entire  

% system 

q = ((Qload_expected*Lmc_perphase*wutil)^0.5)/Vutil_LL_rms; 

 

% Calling function ‘MC’ to calculate the matrix converter  

% operation 

MC(q,Lmc_perphase); 

 

 

% Total ac network currents 
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iutil1 = iload1 + ii1_MC; 

iutil2 = iload2 + ii2_MC; 

iutil3 = iload3 + ii3_MC; 

 

% Fundamental components of total ac network currents 

iutil1_fund = iload1 + ii1_MC_fund; 

iutil2_fund = iload2 + ii2_MC_fund; 

iutil3_fund = iload3 + ii3_MC_fund; 

 

% -------------------- PLOTS ----------------------------------- 

% Define custom-plot functions using global variables 

 

(b) MATLAB Code for the function ‘MC’: 

%--------------------------------------------------------------- 

% FUNCTION TO MODEL STATIC VAR COMPENSATOR BASED ON 3/3 MATRIX  

% CONVERTER FOR USER-DEFINED MODULATION INDEX 'q' 

%--------------------------------------------------------------- 

 

function [] = MC(q,Lmc_perphase) 

 

global dt Tsim t 

global ncycles n 

global Vutil_LL_rms Vutil_LN_pk 

global V1util_LN V2util_LN V3util_LN 

global futil wutil 

global fsw 

global Vi1_MC_LN Vi2_MC_LN Vi3_MC_LN 

global Vo1_MC_LN Vo2_MC_LN Vo3_MC_LN 
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global Vo1_MC_LN_fund Vo2_MC_LN_fund Vo3_MC_LN_fund 

global io1_MC io2_MC io3_MC 

global io1_MC_fund io2_MC_fund io3_MC_fund 

global ii1_MC ii2_MC ii3_MC 

global ii1_MC_fund ii2_MC_fund ii3_MC_fund 

 

%--------------------------------------------------------------- 

% Setting up the MC parameters 

%--------------------------------------------------------------- 

fi = 60;           % Input frequency (Hz) of MC 

fo = 60;    % MC Output frequency (Hz) 

fmc = fi + fo;  % Modulation function frequency =  

 % output+input frequencies of MC (Hz) 

wmc = 2*pi*120;     % Modulation function angular  

 % frequency [rad/s] 

 

%--------------------------------------------------------------- 

% Modulation, Switching and Switch-Averaged Functions 

%---------------------------------------------------------------  

% Modulation Functions H1, H2, H3 

H1 = 1/3 + (2/3)*q*cos(wmc*t); 

H2 = 1/3 + (2/3)*q*cos(wmc*t - 2*pi/3); 

H3 = 1/3 + (2/3)*q*cos(wmc*t + 2*pi/3); 

 

% ---- Derivation of switching & switch-averaged functions ----- 

 

% (a) Switching frequency 

Tmc = 1/fmc;    % Modulation function period (s) 
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Nsw = 100; % Number of switching periods  

                  % per modulation function period 

Tsw = Tmc/Nsw;       % Switching period (s) 

fsw = Nsw*fmc;     % Switching frequency (Hz) 

 

% (b) ON times of the 3 basic switching functions for each  

% switching period within a modulation function period 

k = 0:Nsw-1;    

t1 = (Tsw/3)*(1 + 2*q*cos(wmc*k*Tsw)); 

t2 = (Tsw/3)*(1 + 2*q*cos(wmc*k*Tsw - 2*pi/3)); 

t3 = (Tsw/3)*(1 + 2*q*cos(wmc*k*Tsw + 2*pi/3)); 

 

% (c) Defining ON times in terms of time step 'dt' 

n_Tsw = round(Tsw/dt); 

n_t1 = round(t1/dt);                        

n_t2 = round(t2/dt); 

n_t3 = n_Tsw - n_t1 - n_t2; 

 

% (d) Switching & switch-averaged functions over 1 switching  

% period Tmc 

% Switching functions 

S1 = 0;     % Initializing to 0 

S2 = 0; 

S3 = 0; 

% Switch-averaged functions 

Sw_avg1 = 0;   % Initializing to 0 

Sw_avg2 = 0; 

Sw_avg3 = 0; 
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for i = 1:Nsw; 

    S1 = [S1 ones(1,n_t1(i)) zeros(1,n_t2(i)) zeros(1,n_t3(i))]; 

    S2 = [S2 zeros(1,n_t1(i)) ones(1,n_t2(i)) zeros(1,n_t3(i))]; 

    S3 = [S3 zeros(1,n_t1(i)) zeros(1,n_t2(i)) ones(1,n_t3(i))]; 

    Sw_avg1 = [Sw_avg1 t1(i)/Tsw * ones(1,n_Tsw)]; 

    Sw_avg2 = [Sw_avg2 t2(i)/Tsw * ones(1,n_Tsw)]; 

    Sw_avg3 = [Sw_avg3 t3(i)/Tsw * ones(1,n_Tsw)]; 

end 

 

S1 = S1(2:length(S1));     % Discarding initial 0 

S2 = S2(2:length(S2)); 

S3 = S3(2:length(S3)); 

Sw_avg1 = Sw_avg1(2:length(Sw_avg1)); 

Sw_avg2 = Sw_avg2(2:length(Sw_avg2)); 

Sw_avg3 = Sw_avg3(2:length(Sw_avg3)); 

 

% (e) Switching & switch-averaged functions over 'n' switching  

% periods 

S1n = 0;     % Initializing to 0 

S2n = 0; 

S3n = 0; 

Sw_avg1n = 0; 

Sw_avg2n = 0; 

Sw_avg3n = 0; 

 

for i = 1:n; 

    S1n = [S1n S1]; 
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    S2n = [S2n S2]; 

    S3n = [S3n S3]; 

    Sw_avg1n = [Sw_avg1n Sw_avg1]; 

    Sw_avg2n = [Sw_avg2n Sw_avg2]; 

    Sw_avg3n = [Sw_avg3n Sw_avg3]; 

end 

 

S1n = S1n(2:length(S1n));  % Discarding initial 0 

S2n = S2n(2:length(S2n)); 

S3n = S3n(2:length(S3n)); 

Sw_avg1n = Sw_avg1n(2:length(Sw_avg1n)); 

Sw_avg2n = Sw_avg2n(2:length(Sw_avg2n)); 

Sw_avg3n = Sw_avg3n(2:length(Sw_avg3n)); 

 

%--------------------------------------------------------------- 

% Output voltages of MC 

%--------------------------------------------------------------- 

 

% Math-derived line-neutral output voltages of MC: Using  

% H1,H2,H3 

Vo1_MC_LN_math = H1.*Vi1_MC_LN + H2.*Vi2_MC_LN + H3.*Vi3_MC_LN; 

Vo2_MC_LN_math = H2.*Vi1_MC_LN + H3.*Vi2_MC_LN + H1.*Vi3_MC_LN; 

Vo3_MC_LN_math = H3.*Vi1_MC_LN + H1.*Vi2_MC_LN + H2.*Vi3_MC_LN; 

 

% Switched line-neutral output voltages of MC: Using S1n,S2n,S3n 

Vo1_MC_LN = S1n.*Vi1_MC_LN + S2n.*Vi2_MC_LN + S3n.*Vi3_MC_LN; 

Vo2_MC_LN = S2n.*Vi1_MC_LN + S3n.*Vi2_MC_LN + S1n.*Vi3_MC_LN; 

Vo3_MC_LN = S3n.*Vi1_MC_LN + S1n.*Vi2_MC_LN + S2n.*Vi3_MC_LN; 
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% Switch-averaged line-neutral output voltages of MC:  

% Using Sw_avg1n,Sw_avg2n,Sw_avg3n  

Vo1_MC_LN_swavg = Sw_avg1n.*Vi1_MC_LN + Sw_avg2n.*Vi2_MC_LN ... 

    + Sw_avg3n.*Vi3_MC_LN; 

Vo2_MC_LN_swavg = Sw_avg2n.*Vi1_MC_LN + Sw_avg3n.*Vi2_MC_LN ... 

    + Sw_avg1n.*Vi3_MC_LN; 

Vo3_MC_LN_swavg = Sw_avg3n.*Vi1_MC_LN + Sw_avg1n.*Vi2_MC_LN ... 

    + Sw_avg2n.*Vi3_MC_LN; 

 

%--------------------------------------------------------------- 

% Output currents of MC 

%--------------------------------------------------------------- 

% Initialization of currents based on steady state values 

io1_MC_0 = (q*Vi_LN_MC_pk/(wi*Lmc_perphase))*cos(-pi/2); 

io2_MC_0 = (q*Vi_LN_MC_pk/(wi*Lmc_perphase))*cos(-pi/2-2*pi/3); 

io3_MC_0 = (q*Vi_LN_MC_pk/(wi*Lmc_perphase))*cos(-pi/2+2*pi/3); 

 

% Time Integration of voltage across the load inductor  

io1_MC = (1/Lmc_perphase)*cumtrapz(t,Vo1_MC_LN) + io1_MC_0;  

io2_MC = (1/Lmc_perphase)*cumtrapz(t,Vo2_MC_LN) + io2_MC_0;  

io3_MC = (1/Lmc_perphase)*cumtrapz(t,Vo3_MC_LN) + io3_MC_0; 

 

%--------------------------------------------------------------- 

% Switched input currents of MC: Using S1n,S2n,S3n 

%--------------------------------------------------------------- 

ii1_MC = S1n.*io1_MC + S2n.*io2_MC + S3n.*io3_MC; 

ii2_MC = S2n.*io1_MC + S3n.*io2_MC + S1n.*io3_MC; 



96 
 

ii3_MC = S3n.*io1_MC + S1n.*io2_MC + S2n.*io3_MC; 

 

%--------------------------------------------------------------- 

% Fundamental components of voltages and currents 

%--------------------------------------------------------------- 

% Use function 'freqdom':  

% [fund_mag fund_ph] = freqdom(signal,sampling time) 

 

% Output voltages 

[Vo1_MC_LN_fundmag Vo1_MC_LN_fundph] = freqdom(Vo1_MC_LN,dt); 

[Vo2_MC_LN_fundmag Vo2_MC_LN_fundph] = freqdom(Vo2_MC_LN,dt); 

[Vo3_MC_LN_fundmag Vo3_MC_LN_fundph] = freqdom(Vo3_MC_LN,dt); 

 

Vo1_MC_LN_fund = Vo1_MC_LN_fundmag*cos(wi*t + Vo1_MC_LN_fundph); 

Vo2_MC_LN_fund = Vo2_MC_LN_fundmag*cos(wi*t + Vo2_MC_LN_fundph); 

Vo3_MC_LN_fund = Vo3_MC_LN_fundmag*cos(wi*t + Vo3_MC_LN_fundph); 

 

% Output currents 

[io1_MC_fundmag io1_MC_fundph] = freqdom(io1_MC,dt); 

[io2_MC_fundmag io2_MC_fundph] = freqdom(io2_MC,dt); 

[io3_MC_fundmag io3_MC_fundph] = freqdom(io3_MC,dt); 

 

io1_MC_fund = io1_MC_fundmag*cos(wo*t + io1_MC_fundph); 

io2_MC_fund = io2_MC_fundmag*cos(wo*t + io2_MC_fundph); 

io3_MC_fund = io3_MC_fundmag*cos(wo*t + io3_MC_fundph); 

 

 

% Input currents 
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[ii1_MC_fundmag ii1_MC_fundph] = freqdom(ii1_MC,dt); 

[ii2_MC_fundmag ii2_MC_fundph] = freqdom(ii2_MC,dt); 

[ii3_MC_fundmag ii3_MC_fundph] = freqdom(ii3_MC,dt); 

 

ii1_MC_fund = ii1_MC_fundmag*cos(wi*t + ii1_MC_fundph); 

ii2_MC_fund = ii2_MC_fundmag*cos(wi*t + ii2_MC_fundph); 

ii3_MC_fund = ii3_MC_fundmag*cos(wi*t + ii3_MC_fundph); 

 

%--------------------------------------------------------------- 

% Real & Reactive Power drawn by the MC from the ac network at  

% fundamental frequency 

%--------------------------------------------------------------- 

% Per-phase and total real power drawn by the MC 

P1_MC = 0.5 * Vutil_LN_pk * ii1_MC_fundmag * ... 

 cos(0-ii1_MC_fundph); 

P2_MC = 0.5 * Vutil_LN_pk * ii2_MC_fundmag * ... 

 cos(-2*pi/3-ii2_MC_fundph); 

P3_MC = 0.5 * Vutil_LN_pk * ii3_MC_fundmag * ... 

 cos(2*pi/3-ii3_MC_fundph); 

P_MC = P1_MC + P2_MC + P3_MC; 

 

% Per-phase and total reactive power drawn by the MC 

% Lagging VARs: +ve, Leading VARs: -ve 

Q1_MC = 0.5 * Vutil_LN_pk * ii1_MC_fundmag * ... 

 sin(0-ii1_MC_fundph); 

Q2_MC = 0.5 * Vutil_LN_pk * ii2_MC_fundmag * ... 

 sin(-2*pi/3-ii2_MC_fundph); 

Q3_MC = 0.5 * Vutil_LN_pk * ii3_MC_fundmag * ... 
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 sin(2*pi/3-ii3_MC_fundph); 

Q_MC = Q1_MC + Q2_MC + Q3_MC; 

Q_MC_theor = -1.5*((q*Vutil_LN_pk)^2)/(wutil*Lmc_perphase); 

 

(c) MATLAB Code for the function ‘freqdom’ to determine the fundamental 

components of MC voltages & currents: 

function [fund_mag, fund_ph] = freqdom(signal,timestep) 

Fs = 1/timestep;         % Sampling frequency 

x = signal;      % Time domain signal 

L = length(x);       % Length of signal 

F = fft(x); 

 

% Positive spectrum 0:L/2 or 0:(L-1)/2 

if(mod(L,2)==0)       

    k = L/2; 

else 

    k = (L-1)/2; 

end 

F = F(1:(k+1));      % Positive spectrum 

FFT_mag = abs(F)/(L/2); % Magnitude of spectrum with  

 % de-scaling 

FFT_ph = angle(F);    % Phase of spectrum in radians 

freq = (Fs/(2*k))*(0:k); % Frequency axis 

i_fund = 60*k/(Fs/2) + 1;  % Index corresponding to fundamental 

fund_mag = FFT_mag(i_fund); 

fund_ph = FFT_ph(i_fund); 
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APPENDIX B 

 

The software version used is PSIM Professional Network Version 8.0.3.400. 

(a) The PSIM element ‘Simplified C block’ has been used to generate the basic three 

switching functions – Refer to Fig. 33 

 
 
Fig. 67. PSIM C block used for generation of S1, S2 and S3 

 

Content of the C block: 

int K, K1, H1, H2, H3, N; 
double time, fm, Tseq, q, pi, t1, t2, t3, wm, tm, phi; 
  
pi = 3.1459; 
 
{ 
 fm = x1; 
 tm = 1/fm;  
 N = x3; 
 q = x2; 
  wm = 2*pi*fm; 
 Tseq = 1/(N*fm); 
 phi = 0; 
} 
 
{ 
 time = t; 
 K = floor(time/Tseq); 
 K1 = K % N; 
} 
 
{ 
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 t1 = (Tseq/3) * (1 + 2*q*cos(K1*Tseq*wm - phi)); 
 t2 = (Tseq/3) * (1 + 2*q*cos(K1*Tseq*wm - 2*pi/3 - phi)); 
 t3 = (Tseq/3) * (1 + 2*q*cos(K1*Tseq*wm + 2*pi/3 - phi)); 
} 
 
{ 
 if( t < (K*Tseq + t1) ) 
  H1 = 1; 
 else 
  H1 = 0; 
 if( t >= (K*Tseq + t1) && t < (K * Tseq + t1 + t2) ) 
  H2 = 1; 
 else 
  H2 = 0; 
 if( t >= (K * Tseq + t1 + t2) && t < ((K+1) * Tseq) ) 
  H3 = 1; 
 else 
  H3 = 0; 
} 
 
 y1 = H1; 
 y2 = H2; 
 y3 = H3; 
 

(b) PSIM Logic used for four-step commutation: Refer to Fig. 49 

− The basic three switching functions are used to derive the 18 switching signals 

S11P, S11N, S12P, S12N etc. 

− ‘CLK’ has a period of 200 ns, while ENA has a period equal to 2200 ns. 

− The signal ‘Sw_curr’ is 1 when current flows through the corresponding switch 

and is 0 otherwise. It is obtained from the sensed output currents using appropriate 

‘simplified C code’ and is synchronized with the signal ENA 

− The ‘Edge Detector’ uses the simplified C block to detect the rising and falling 

edges of the switching functions 
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Fig. 68. Generation of the basic three switching functions 

 
Fig. 69. Generation of delayed versions of the 

switching functions 

 
Fig. 70. Generation of the switching signal 
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APPENDIX C 

 

a) DSP Code : Generation of switching functions S1, S2, S3 and generation of output 

current directions 

 
/* Header file for register declarations */ 
#include "regs2407.h" 
     
/* Look-up tables: ON-times ‘t1’ and ‘t3’ */ 
int n_t1[100] = {
 2000,1998,1993,1984,1972,1956,1938,1915,1890,1862, 
    
 1830,1796,1759,1720,1678,1634,1587,1539,1490,1438, 
    
 1386,1332,1278,1223,1167,1111,1055,1000,945,890, 
    
 836,784,733,683,635,589,545,503,463,426, 
    
 392,361,332,307,285,266,250,238,229,224, 
    
 222,224,229,238,250,266,285,307,332,361, 
    
 392,426,463,503,545,589,635,683,733,784, 
    
 836,890,945,1000,1055,1111,1167,1223,1278,1332, 
    
 1386,1438,1490,1539,1587,1634,1678,1720,1759,1796, 
    
 1830,1862,1890,1915,1938,1956,1972,1984,1993,1998 }; 
      
int n_t3[100] = {
 2667,2714,2760,2803,2844,2882,2919,2952,2982,3010, 
    
 3034,3055,3073,3088,3099,3107,3110,3111,3108,3101, 
    
 3092,3078,3062,3042,3018,2992,2962,2931,2896,2857, 
    
 2817,2774,2730,2683,2634,2584,2533,2480,2425,2370, 
    
 2315,2260,2203,2148,2093,2038,1983,1930,1878,1827, 
    
 1778,1730,1685,1641,1600,1562,1526,1492,1462,1435, 
    
 1410,1389,1371,1357,1346,1339,1334,1334,1337,1343, 
    
 1352,1366,1383,1403,1426,1452,1482,1515,1550,1587, 
    
 1628,1670,1715,1761,1810,1861,1913,1966,2019,2074, 
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 2129,2185,2241,2296,2352,2407,2461,2514,2567,2617 }; 
         
      
int k = 0;                             
int m = 0; 
 
/* Dummy function to trap spurious interrupts */            
void dummy_int(void) 
{        
 while(1) 
 { 
  WDKEY = 85;   /*0x0055h; */ 
  WDKEY = 170;   /*0x00AAh;*/ 
 } 
} 
 
/* Function to service the T1CINT interrupt */      
interrupt void timer_int(void) 
{    
 
 if(k<99)         /* For N pulses, k<(N-1) */ 
 { 
  k = k + 1; 
  PEDATDIR = 65527; /* FFF7h - OFF for k<>0 */ 
 } 
 else    
 { 
  k = 0; 
  PEDATDIR = 65535; /* FFFFh - ON for k = 0 */ 
 } 
  
 T1CMPR = n_t1[k];  /* Updating new on-times 

(k=0 to 100) of S1,S2,S3 */    
 T2CMPR = n_t3[k];  
     
     EVAIFRA = 65535;   /* FFFFh - Reset all EVA 

GroupA flags */ 
 asm(" clrc INTM");        
 return; 
}          
 
/* Function to service the T2CINT interrupt */      
interrupt void curr_int(void) 
{    
    if(m<199) 
     m = m + 1; 
    else 
     m = 0; 
     
    if(m>=0 && m<17)                 
     PADATDIR = 65390; /* FF6Eh */ 
    else if(m==17)                       
     PADATDIR = 65382; /* FF66h */  
    else if(m>17 && m<50)                
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     PADATDIR = 65398; /* FF76h */  
    else if(m==50)                       
     PADATDIR = 65366; /* FF56h */  
    else if(m>50 & m<83)                 
     PADATDIR = 65367; /* FF57h */  
    else if(m==83)                       
     PADATDIR = 65303; /* FF17h */  
    else if(m>83 & m<117)                
     PADATDIR = 65431; /* FF97h */  
    else if(m==117)                      
     PADATDIR = 65415; /* FF87h */  
    else if(m>117 & m<150)               
     PADATDIR = 65423; /* FF8Fh */  
    else if(m==150)                     
     PADATDIR = 65422; /* FF8Eh */  
    else if(m>150 & m<183)               
     PADATDIR = 65454; /* FFAEh */  
    else if(m==183)                      
     PADATDIR = 65326; /* FF2Eh */  
    else if(m>183 & m<200)               
     PADATDIR = 65390; /* FF6Eh */  
         
    EVAIFRB = 65535;  /* FFFFh - Reset all EVA  

GroupA flags */ 
asm(" clrc INTM");        
return; 

}                         
                
/* Main Function */                 
void main(void) 
{         
/* ------------Initialization---------------- */ 
 asm(" setc INTM"); /* Disable interrupts */        
 asm (" clrc CNF"); /* Configure block B0 to  

data memory */ 
 IMR = 0;    /* 0000h - Mask interrupts at  

core level */ 
 IFR = 65535;   /* FFFFh - Clear interrupt flags  

at core level */ 
 WDCR = 111;   /* 006Fh - Disable WD Timer */ 
 SCSR1 = 13;  /* 000Dh - Clear Illegal Addr bit  

& Enable EVA,EVB clock inputs */ 
 WDKEY = 85;   /* 0055h - Reset WD counter */ 
 WDKEY = 170;   /* 00AAh */   
 WSGR = 0;    /* 0000h - Set wait-state generator 

for - 0 wait states */      
 MCRA = 65535;  /* FFFFh - Assign primary  

functionality to PortA/B Pins */ 
 MCRB = 65535;  /* FFFFh - Assign primary  
     functionality to PortC/D Pins */ 
 MCRC = 65535;  /* FFFFh - Assign primary  
     functionality to PortE/F Pins */ 
 
/* ------------End of Initialization---------- */ 
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/* -----------Start of Actual Code------------- */   
              
 /* Timer 1 - generates S1    at P1, pin 12 */ 
 /* Timer 2 - generates S3    at P1, pin 13 */ 
 /* Timer 4 - generates CPLD clock  at P4, pin 28 */              
              
 /* Configuration of GPTCON A/B for timers 1,2,3,4 */   
 GPTCONA = 73;  /* 0049h - Enable compare outputs, 

T2 active high, 
T1 active low operation */                       

 GPTCONB = 70;  /* 0046h - Enable compare outputs, 
T4 active low, 
T3 active high operation */                      

                                              
  
 /* Set timer period registers */ 
 T1PR = 3332;  /* Tdisc/DSP_clk -1 = 40M/12k - 1 */ 
 T2PR = 3332;   
 T4PR = 3;    /* CPLD_clk/DSP_clk - 1 

= 100n/25n - 1 */ 
  
 /* Reset all timer counter registers */ 
 T1CNT = 0; 
 T2CNT = 0; 
 T4CNT = 0; 
  
 /* Set Timer 4 compare value & enable operation */ 
 T4CMPR = 2;   /* On-time = 50% time period */ 
  
 T4CON = 4174;     /* 104Eh - Enable compare, 

up-counting mode, enable timer */   
  
 /* Timers 1 & 2 compare interrupts set-up */ 
 EVAIMRA = 0;  /* 0000h - Disable all EVA  

GroupA interrupts */ 
 EVAIFRA = 65535;  /* FFFFh - Reset all EVA 

GroupA flags */ 
     EVAIMRB = 0; 

EVAIFRB = 65535; 
     
     EVAIMRA = 256;  /* 0100h - Enable T1CINT */   
     EVAIMRB = 2;  /* 0002h - Enable T2CINT */ 
     IMR = 6;   /* 0006h - Unmask INT2(T1CINT), 

INT3(T2CINT) level interrupts */   
 asm(" clrc INTM"); /* Clear INTM bit */ 
  
 /* S1 & S3 generation */ 
  
 T1CMPR = n_t1[k]; /* Setting initial on-times (k=0)  

of S1, S2, S3 */ 
 T2CMPR = n_t3[k]; 
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T2CON = 4294; /* 10C6h - Start T2 with T1, all T1 
features */ 

T1CON = 4166; /* 1046h - Enable compare, compare 
reload condition, up-counting mode, 
enable timer */  

  
 /* Tracking k = 0 */ 
 MCRC = 65527;  /* FFF7h - IOPE3 (P1, pin 11) */         
 PEDATDIR = 65535; /* FFFFh - ON for k = 0 */ 
  
 MCRA = 65286;   /* FF06h - IOPA 7-6 4-3 5-0 */ 
 PADATDIR = 65390; /* FF6Eh */  
  
  
while(1) 
 { 
  ; 
 } 
  
}                       
     

b) VHDL code for state machine : ‘perphase_commutn_blk’ (refer to Fig. 53) 

library ieee; 
use ieee.std_logic_1164.all; 
 
entity perphase_commutn_blk is port( 
  
 S1, S3 : in std_logic; -- Basic 3 switching functions 
 curr_pos : in std_logic; -- Output phase current  

-- 1 if curr>0, 0 otherwise 
 curr_neg : in std_logic; -- 1 if curr<0, 0 otherwise 
 commutn_clk: in std_logic; -- CPLD Clock  

-- (freq = 25.175MHz) 
  
 -- Positive & Negative switch signals governed by S1_blank 

S1P, S1N : out std_logic;  
-- Positive & Negative switch signals governed by S2_blank 

 S2P, S2N : out std_logic;  
-- Positive & Negative switch signals governed by S3_blank 

 S3P, S3N : out std_logic );  
 
end perphase_commutn_blk; 
 
architecture behavioral of perphase_commutn_blk is 
 signal present_state,next_state: integer range 0 to 27 :=0; 
 signal edge_detect: integer range 0 to 4 :=0; 
 signal wait_count: integer range 0 to 8 :=1; 
 signal wait_clk: integer range 0 to 8 :=1; 
 signal commutn_state: integer range 0 to 1 :=0; 
 signal S1_prev,S3_prev: std_logic :='0'; 
 
begin  
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 state_assign: process(present_state, edge_detect, curr_pos,  

curr_neg) 
 begin 
  case present_state is 
    
   when 0 => S1P <= '0'; S1N <= '0'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '0'; S3N <= '0'; 
       
      if (edge_detect=4) then  
       next_state <= 1; 
      else       
       next_state <= 0; 
      end if; 
      wait_clk <= 1; 
      commutn_state <= 0; 
   
   when 1 => S1P <= '1'; S1N <= '1'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '0'; S3N <= '0'; 
        
      next_state <= 25; 
      wait_clk <= 1; 
      commutn_state <= 1; 
        
   when 2 => S1P <= '1'; S1N <= '0'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '0'; S3N <= '0'; 
        
      next_state <= 5; 
      wait_clk <= 8; 
      commutn_state <= 1; 
        
   when 3 => S1P <= '0'; S1N <= '1'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '0'; S3N <= '0'; 
           
      next_state <= 6; 
      wait_clk <= 8; 
      commutn_state <= 1; 
       
   when 4 => S1P <= '0'; S1N <= '0'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '0'; S3N <= '0'; 
        
      next_state <= 9;  
      wait_clk <= 8; 
      commutn_state <= 1; 
        
   when 5 => S1P <= '1'; S1N <= '0'; 
      S2P <= '1'; S2N <= '0'; 
      S3P <= '0'; S3N <= '0'; 
        
      next_state <= 7;  
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      wait_clk <= 2; 
      commutn_state <= 1; 
        
   when 6 => S1P <= '0'; S1N <= '1'; 
      S2P <= '0'; S2N <= '1'; 
      S3P <= '0'; S3N <= '0'; 
       
      next_state <= 8;  
      wait_clk <= 2; 
      commutn_state <= 1; 
       
   when 7 => S1P <= '0'; S1N <= '0'; 
      S2P <= '1'; S2N <= '0'; 
      S3P <= '0'; S3N <= '0'; 
       
      next_state <= 9;  
      wait_clk <= 8; 
      commutn_state <= 1; 
       
   when 8 => S1P <= '0'; S1N <= '0'; 
      S2P <= '0'; S2N <= '1'; 
      S3P <= '0'; S3N <= '0'; 
       
      next_state <= 9;  
      wait_clk <= 8; 
      commutn_state <= 1; 
       
   when 9 => S1P <= '0'; S1N <= '0'; 
      S2P <= '1'; S2N <= '1'; 
      S3P <= '0'; S3N <= '0'; 
        
      next_state <= 26;   
      wait_clk <= 1; 
      commutn_state <= 1; 
        
   when 10 => S1P <= '0'; S1N <= '0'; 
      S2P <= '1'; S2N <= '0'; 
      S3P <= '0'; S3N <= '0'; 
       
      next_state <= 13;  
      wait_clk <= 8; 
      commutn_state <= 1; 
        
   when 11 => S1P <= '0'; S1N <= '0'; 
      S2P <= '0'; S2N <= '1'; 
      S3P <= '0'; S3N <= '0'; 
        
      next_state <= 14;  
      wait_clk <= 8; 
      commutn_state <= 1; 
        
   when 12 => S1P <= '0'; S1N <= '0'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '0'; S3N <= '0'; 
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      next_state <= 17;  
      wait_clk <= 8; 
      commutn_state <= 1; 
        
   when 13 => S1P <= '0'; S1N <= '0'; 
      S2P <= '1'; S2N <= '0'; 
      S3P <= '1'; S3N <= '0'; 
       
      next_state <= 15;   
      wait_clk <= 2; 
      commutn_state <= 1; 
       
   when 14 => S1P <= '0'; S1N <= '0'; 
      S2P <= '0'; S2N <= '1'; 
      S3P <= '0'; S3N <= '1'; 
       
      next_state <= 16;  
      wait_clk <= 2; 
      commutn_state <= 1; 
        
   when 15 => S1P <= '0'; S1N <= '0'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '1'; S3N <= '0'; 
       
      next_state <= 17;   
      wait_clk <= 8; 
      commutn_state <= 1; 
        
   when 16 => S1P <= '0'; S1N <= '0'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '0'; S3N <= '1'; 
       
      next_state <= 17;  
      wait_clk <= 8; 
      commutn_state <= 1; 
       
   when 17 => S1P <= '0'; S1N <= '0'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '1'; S3N <= '1'; 
           
      next_state <= 27;    
      wait_clk <= 1; 
      commutn_state <= 1; 
        
   when 18 => S1P <= '0'; S1N <= '0'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '1'; S3N <= '0'; 
       
      next_state <= 21;   
      wait_clk <= 8; 
      commutn_state <= 1; 
        
   when 19 => S1P <= '0'; S1N <= '0'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '0'; S3N <= '1'; 
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      next_state <= 22;   
      wait_clk <= 8; 
      commutn_state <= 1; 
        
   when 20 => S1P <= '0'; S1N <= '0'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '0'; S3N <= '0'; 
       
      next_state <= 1;    
      wait_clk <= 8; 
      commutn_state <= 1; 
        
   when 21 => S1P <= '1'; S1N <= '0'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '1'; S3N <= '0'; 
       
      next_state <= 23;   
      wait_clk <= 2; 
      commutn_state <= 1; 
        
   when 22 => S1P <= '0'; S1N <= '1'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '0'; S3N <= '1'; 
       
      next_state <= 24;   
      wait_clk <= 2; 
      commutn_state <= 1; 
        
   when 23 => S1P <= '1'; S1N <= '0'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '0'; S3N <= '0'; 
       
      next_state <= 1;    
      wait_clk <= 8; 
      commutn_state <= 1; 
        
   when 24 => S1P <= '0'; S1N <= '1'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '0'; S3N <= '0'; 
       
      next_state <= 1;    
      wait_clk <= 8; 
      commutn_state <= 1;   
    
   when 25 => S1P <= '1'; S1N <= '1'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '0'; S3N <= '0'; 
        
      if (edge_detect=1) then 
       if (curr_pos='1') then 
        next_state <= 2;  
       elsif (curr_neg='1') then 
        next_state <= 3;  



111 
 

       else    
        next_state <= 4;  
       end if; 
      else      
       next_state <= 25;  
      end if; 
        
      wait_clk <= 1; 
      commutn_state <= 0;   
       
   when 26 => S1P <= '0'; S1N <= '0'; 
      S2P <= '1'; S2N <= '1'; 
      S3P <= '0'; S3N <= '0'; 
        
      if (edge_detect=2) then 
       if (curr_pos='1') then 
        next_state <= 10;  
       elsif (curr_neg='1') then 
        next_state <= 11;  
       else    
        next_state <= 12;  
       end if; 
      else      
       next_state <= 26;  
      end if; 
        
      wait_clk <= 1; 
      commutn_state <= 0;  
        
   when 27 => S1P <= '0'; S1N <= '0'; 
      S2P <= '0'; S2N <= '0'; 
      S3P <= '1'; S3N <= '1'; 
        
      if (edge_detect=3) then 
       if (curr_pos='1') then 
        next_state <= 18;  
       elsif (curr_neg='1') then 
        next_state <= 19;  
       else    
        next_state <= 20;  
       end if; 
      else      
       next_state <= 27;  
      end if;    
        
      wait_clk <= 1; 
      commutn_state <= 0;  
        
  end case; 
   
 end process state_assign; 
  
 state_clocked: process(commutn_clk) 
 begin 
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  if rising_edge(commutn_clk) then 
   if (wait_count=wait_clk) then 

-- Moving to next state 
    present_state <= next_state; . 
    wait_count <= 1; 
   else 
    present_state <= present_state; 
    wait_count <= wait_count + 1; 
   end if; 
    
   -- Detecting falling/rising edges of input  

-- switching signals. 
   if(commutn_state=1 and edge_detect/=0) then 
    edge_detect <= edge_detect; 
   else 
    if(S1_prev='1' and S1='0') then 
    -- falling(S1_blank) & rising(S2_blank) 
      edge_detect <= 1;   
    elsif(S3_prev='0' and S3='1') then 

-- falling(S2_blank) & rising(S3_blank) 
     edge_detect <= 2;     
    elsif(S3_prev='1' and S3='0') then 

-- falling(S3_blank) & rising(S1_blank)  
     edge_detect <= 3;     
    elsif(S1_prev='0' and S1='1') then  

-- only rising(S1_blank) 
     edge_detect <= 4;     
    else  
    -- no edge detected 

edge_detect <= 0;     
    end if; 
   end if; 
    
   S1_prev <= S1; 
   S3_prev <= S3; 
    
  end if; 
   
 end process state_clocked; 
end behavioral; 
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