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ABSTRACT

Phase Stability and Thermodynamic Assessment

of the Np-Zr system. (December 2010)

Saurabh Bajaj, B.Tech., Vellore Institute of Technology

Co-Chairs of Advisory Committee: Dr. Raymundo Arróyave
Dr. Tahir Cagin

Metallic fuels have an important role to play in “fast breeder” Gen-IV type

nuclear reactors, and U-Pu-Zr is one of the prototypical systems. Because of the

variability in fuel chemistry during burn-up, it is important to understand the effect

of minor actinides and fission products on phase stability. Within this framework,

we present a study on phase equilibria in the binary Np-Zr alloy system on which

little work has been published. To resolve the contradictory reports on the order-

ing/clustering trends of the bcc phase, a thermodynamic study is performed using

the CALPHAD method.

The calculated Np-Zr phase diagram is consistent with two sets of data: forma-

tion enthalpies of the bcc phase that are calculated with ab initio KKR-ASA-CPA

electronic-structure method and lattice stabilities of solution phases obtained from

first-principles technique. Another important feature in the Np-Zr alloy system is the

non-stoichiometric δ-NpZr2 phase that forms in a hexagonal C32 structure similar

to the δ-phase in the U-Zr system and the ω-phase in pure Zr. An increase in the

homogeneity range of the δ-phase when going from Pu to Np and to U is attributed to

a lowering of its heat of formation that is caused by an increase in d-band occupation.

Two different possibilities for the stability of the δ- and ω- phases have been proposed

in the present work. Additionally, calculated changes in enthalpy versus temperature
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are plotted for two alloy compositions of the Np-Zr system to guide future experi-

mental work in resolving important issues in this system.

Finally, an ab initio study, implemented with the L(S)DA+U formalism, is per-

formed for pure Np that reveals a transition from a non-magnetic to a magnetic state

at a critical U parameter.



v

To Mom, Dad, and Sameer



vi

ACKNOWLEDGMENTS

This work was supported by Lawrence Livermore National Laboratory under

Task Order B575366 and Master Task Agreement B575363. The work of Alex Landa,
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CHAPTER I

INTRODUCTION

An ever-increasing demand on fossil fuels not only makes a country’s economy en-

ergy dependent, but more importantly, affects the environment by releasing harmful

exhaust gases into the atmosphere. It is also now well-realized that the future energy

portfolio would not be dominated by any single alternate technology, but would be

a mixture of contributions from various different sources, such as wind, solar, fuel

cells, etc. A very promising source of energy that is sure to play an important role

is nuclear energy. It has the capability of producing vast amounts of energy, and

its most beneficial point is that it produces greenhouse-gas-free energy. Currently,

nuclear energy provides 15% of the total global energy needs [1]. A major hindrance

to increasing this number is waste disposal, which now stands at 12,000 tons per year

worldwide [1]. This exorbitant amount of waste is radioactive in nature and thus

needs to be carefully handled and deposited at safe sites. Also, due to the presence

of weapon-grade plutonium in the waste, concerns are raised about the placement

of such material in the hands of organizations that intend to misuse it, leading to

nuclear proliferation.

A potential solution to this problem lies in the use of Generation-IV metallic fuel

fast-breeder reactors. Metallic fuels have been a more popular choice for fuel materials

for such reactors over oxides as they possess the capability of increasing power output

by 30%, thus reducing operational costs and strengthening the economics of nuclear

energy. In particular, the ternary uranium-plutonium-zirconium alloys have distinct

The journal model is IEEE Transactions on Automatic Control.
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advantages in terms of reliability, reactor safety, and fuel cycle economics [2]. These

materials, when used in fast breeder reactors, can transmute to minor actinides, such

as Np, Am, and Cm, and other long-lived fission products due to the high burn-up

rates at which these reactors operate [3]. The minor actinides and other products are

further fissioned/recycled to produce more energy and reduce the amount of waste

output, thus, closing the fuel cycle.

One of the issues with the use of metallic fuels is that the melting points of the

actinides are significantly low: Tm[U] = 11350C, Tm[Np] = 6390C, and Tm[Pu] =

6400C [4, 5]. At high temperatures, there could be a problem of penetration of these

actinides in the cladding. Thus, it becomes necessary to add high melting elements,

such as Ti, Cr, Zr, Mo, to the fuels in order to increase their melting points to a

safe limit. In particular, Zr metal is a good choice for alloying as: it possesses an

additional capability of suppressing inter-diffusion between fuel and cladding, it has

a very low thermal neutron cross-section thus making its alloys inherently safe, and

it can be manufactured using standard fabrication techniques. All these benefits lead

to the achievement of thermal and mechanical stability needed during operation of

such reactors.

The present work is based on the thermodynamic study of the Np-Zr alloy sys-

tem, which is a part of the series of alloys in discussion, and will aid in identify-

ing/predicting phase behavior trends in similarly complex alloy systems. The in-

formation available in the literature on the Np-Zr system is scarce and at times,

contradictory. Based on its position between uranium and plutonium in the actinide

row of the periodic table, the alloy behavior of the Np-Zr system was expected [6–

9] to be similar to the U-Zr and Pu-Zr systems. Broadly speaking, there were two
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major noticeable trends from the phase diagrams of these systems: complete mutual

solubility of the high-temperature (HT) body centered cubic (b.c.c) phases and, an

elevation of melting points of the actinide alloys, relative to the pure phases. How-

ever, the results of several differential thermal analysis (DTA) and X-ray diffraction

(XRD) experiments [6–10] pointed towards the immiscibility between the HT b.c.c

phases, γ-Np and β-Zr. Thus, only small changes in the melting points and transition

temperatures of Np-Zr alloys were found due to the resistance to mixing between Np

and Zr. On the contrary, dilatometry, electron probe micro analysis (EPMA) and

micrographic studies [11] showed the Np-Zr phase diagram to be completely ideal,

i.e. complete solubility between the b.c.c phases γ-Np and β-Zr. These experimental

works are discussed in detail in Chapter II.

Another key phase in the Np-Zr system that is important from the point of view

of understanding phase formation behavior is the δ-NpZr2 phase, analogous to the

δ-UZr2 phase in the U-Zr system [12–15]. This phase crystallizes in a C32 structure

(space group:P6/mmm) similar to the ω-phase in pure Zr. The δ-NpZr2 phase is

known to stabilize due to an electron transfer from the actinide valence shell to the

d-band transition element [12, 16]. Detailed discussions on this phase are also offered

in Chapter II.

Even though there is a renewed interest in Zr-based actinide alloys, not much

work has been done to study phase equilibria in these systems. Thus, to improve

our understanding of phase stability, phase equilibrium, and thermodynamics for this

system, it becomes necessary to develop a thermodynamic model based on the CAL-

PHAD approach [17]. Chapter III presents the methodology and approach involved

with this technique which involves the modeling of Gibbs energies of all the phases
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taking part in equilibrium through reliable and consistent experimental data. Such a

model offers many advantages, among them are: (1) it can be extrapolated to regions

of temperatures and compositions which are not easily accessible by experiments, (2)

and it provides an easy way to study how equilibria and reactions are affected by

various external factors. The use of such techniques plays an even important role

since experiments are challenging and expensive for this class of systems.

Ab initio calculations could also prove to be very helpful in determining ground-

state properties of various phases present in this system. There is very little first-

principles information available in the literature on the pure phases in this system. It

is also worth noting that there is a lack in capability of current techniques available

in handling highly correlated and localized systems such as the Np-Zr system we are

dealing with in the current work. Chapter IV provides a brief introduction to the

theory and concepts of the methods employed, and Chapter V presents the results of

calculations performed using these methods.

A summary of the present work is provided in Chapter VI. Finally, in Chapter

VII, it is explained how the results of this work fit within the larger context of

determining phase equilibria in multi-component metallic fuel alloys, and directions on

future work that will be undertaken to achieve this objective will be briefly discussed.
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CHAPTER II

LITERATURE REVIEW

In this chapter, previous experimental and theoretical works are described in detail

along with the results that have been obtained. Analysis and discussions on the

conclusions made from these studies are also presented here.

A. Phase diagram

One of the first attempts to predict the Np-Zr phase diagram was made by John

K. Gibson and Richard G. Haire [6]. The technique of differential thermal analysis

(DTA) was employed as it is well-suited to study small sample elements and com-

pounds. The DTA instrument used, was inserted into an inert-atmosphere glove box

to prevent reaction with air and moisture. High-temperature (HT) studies were per-

formed to study phase relationships, and determine the nature of the reactivity in the

Np-Zr binary alloy system. Alloy samples were prepared by an in situ method, and

since the melting temperature of Zr (1852oC) was higher than the maximum limit of

the DTA (1700oC), the alloys were deemed equilibrated when consistent DTA thermo-

grams were obtained. To measure transition enthalpies, the instrument was operated

in the differential scanning calorimeter (DSC) mode to obtain heating and cooling

curves and which were integrated. For pure Np, the transition temperatures and

enthalpies were: 282oC and 6.6 kJ mol−1 (α-orthorhombic → β-tetragonal), 578oC

and 3.9 kJ mol−1 (β-tetragonal → γ-bcc), 640oC and 4.2 kJ mol−1 (γ-bcc → liquid).

For pure Zr, the measured temperature and enthalpy of the α-hcp to β-bcc phase

transformation were 840oC and 3 kJ mol−1. In the case of alloys, the primary focus

was on determining if there was an elevation of melting point, when small amounts

of Zr were added to Np, just as is the case in U-Zr and Pu-Zr alloys. For the 22,



6

48, and 50 at.% Zr samples, the DTA peaks largely resembled and corresponded to

those obtained for the phase transformations in pure Np, thus suggesting that the

bcc phases of Np and Zr are not completely miscible. This indicates that the Np-Zr

phase diagram may be non-ideal and thus significantly different in character from the

U-Zr and Pu-Zr systems.

More extensive DTA studies were performed [7], this time using both in situ,

as previously employed, and ex situ (arc-melting) alloying methods. In addition to

using a sample cup that was made of tantalum, Al2O3 cups were also used as it was

found to be more resistant to a reaction with the molten alloys. Although the samples

were heated up to 1400oC, no clearly defined peaks were observed above 640oC for

any of them. Thermograms obtained for the 22 and 27 at.% Zr samples were very

similar, and corresponded to the phase transitions in pure Np, implying that Zr was

largely insoluble in Np. The middle transition at ∼ 550oC in the 22 at.% Zr sample,

manifested as an unresolved doublet indicating two closely spaced transitions. Later

on, it will be seen from the phase diagram, that these transitions are attributed to

the transitions from a two-phase equilibrium: β-Np + δ-NpZr2 to another one: γ-Np

+ δ-NpZr2, and then to: γ-Np + β-Zr.

Room-temperature (RT) X-ray diffraction (XRD) studies were performed on Np-

Zr alloys with 10, 25, 50, 67, 75, and 90 at.% Zr [10]. The presence of four phases:

α-Np, α-Zr, NpZr2, and a phase corresponding to a stoichiometry of either Np4Zr or

Np6Zr, was confirmed in all of the samples. The variation in cell volume of α-Zr, upon

subsequent addition of Np, was obtained from X-ray data recorded after annealing of

the 67 at.% Zr alloy. It was observed that as the annealing temperature was increased

from 300-900oC, there was a decrease in the cell volume of α-Zr, suggesting a decrease
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in solubility of Np in α-Zr. On the contrary, the cell volume of α-Np remained unaf-

fected upon addition of α-Zr, indicating negligible solubility of Zr in α-Np. Another

conclusion made after studying the lattice parameters of α-Zr upon addition of Np,

was that the a0 parameter remained constant whereas, the c0 parameter varied.

Based on the DTA and XRD results, a phase diagram of the Np-Zr system was

proposed [8], shown in Fig. 1, consistent with all the experimental findings. Several

of its features were deemed speculative. However, a miscibility gap between the HT

bcc phases of Np (γ-Np) and Zr (β-Zr) was the essential information to be noted from

the phase diagram.

Fig. 1. Postulated Np-Zr phase diagram by Gibson et al. [8] based on XRD and DTA

experiments.

With the aim of investigating the U-Zr-Np ternary system for determining the
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properties of metallic fuels, Rodŕıguez et al. [11] performed dilatometry, electron

probe microanalysis, and used micrographic techniques to determine the phases present,

phase transformation temperatures, and melting points in the Np-Zr binary system.

Three alloys of compositions 40, 72, and 91 at.% Zr were prepared by arc melt-

ing. Phase transformations of the alloys were determined by dilatometry using rods.

Melting points were determined using a vertical dilatometer, and structures of the

phases present were determined by annealing the alloys to high temperatures and

then quenching them to several temperatures after which they were subjected to

electron-probe microanalysis (EPMA) and microscopic examination. In accordance

with results obtained from the experiments, a tentative phase diagram was drawn, as

shown in Fig. 2, which was characterized by complete mutual solubility between γ-Np

and β-Zr up to the melting point, which is in disagreement with previous findings

[6–8, 10].

Ogawa et al. [16] performed a thermodynamic analysis on the Np-Zr system to

determine the Gibbs excess free energies of mixing and free energies of transforma-

tions. The resulting phase diagram did agree qualitatively but not quantitatively with

the one proposed in Ref. [8]. It was also mentioned that even though the interactions

of Np and U with Zr do not significantly differ, the bcc miscibility gap intersects with

the solidus resulting in limited mutual solubility (see Fig. 1).

To answer important questions about the topology of the phase diagram, Okamoto

et al. [9] investigated by XRD analysis two alloys at compositions 67 and 75 at.%

Zr between 25 and 700oC. Phases observed in both samples at different temperatures

were similar. At room temperature, diffraction lines obtained were due to α-Np, δ-

NpZr2 or α-Zr. The bcc phase of Zr was not observed even up to 700oC suggesting
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Fig. 2. Postulated Np-Zr phase diagram by Rodŕıguez et al. [11] based on the results

of dilatometry and EPMA.

low solubility of Np in β-Zr. From the differences in atomic radii and lattice parame-

ters of γ-Np and β-Zr, the solubility of Zr in γ-Np was found to be ∼ 4 at.%. These

results are in accordance with the tentative phase diagram shown in Fig. 1.

B. δ-NpZr2

The DTA thermograms obtained by Gibson and Haire [6] for the two samples at ∼ 50

and 75 at.% Zr, showed no peaks at low temperatures due to the α→ β transition in

neptunium, suggesting that some Zr was dissolved. In addition, the single peak that

appeared at ∼ 540oC for the 75 at.% Zr sample, may be assigned to an intermediate
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Zr-rich phase. Both observations point to the presence of a δ-NpZr2 phase, similar

in stoichiometry to the δ-UZr2 phase found in the U-Zr system [12–14, 18]. These

results were confirmed in a study where different methods of alloying (in situ and

ex situ) and cup materials (Ta and Al2O3) were used [7]. Also, since all the DTA

results suggested that the analog of the bcc solid solution in U-Zr does not exist in the

Np-Zr system, it was believed that formation of the δ-phase occurred from Np-rich

and Zr-rich solid phases, which, as will be seen later, could be assigned to γ-Np and

α-Zr, respectively.

The 50 and 75 at.% Zr samples, prepared by arc-melting, were also subjected to

RT powder XRD [7]. It was found that both samples were dominated by the same

phase whose diffraction lines were assigned to bcc phase. However, in Ref. [13], it

was shown that the δ-phase is comprised of four hexagonal cells that were oriented in

such a way that the X-ray lines would point to a cubic symmetry. Thus, the actual

symmetry of the δ-phase is hexagonal, and not bcc.

It has been concluded from previously reported XRD and neutron diffraction

results on the δ-UZr2 phase [13–15], that the diffraction pattern obtained agree best

with a partially ordered and modified C32 structure, similar to the ω-phase of Zr

as shown in Fig. 3, in which a Zr atom occupies the (0, 0, 0) position, and U and

Zr atoms are randomly located at the (2
3
, 1

3
, 1

2
) and (1

3
, 2

3
, 1

2
) sites. In the study

performed by Gensini et al. [8], the XRD lines coincided with a structure for the

δ-NpZr2 phase, thus confirming the assumption. The only experimentally validated

data on the composition range of the δ-phase was mentioned in the work by Rodŕıguez

et al. [11], where it was found that this phase extends from about 65.3 to 78.2 at.% Zr.
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Fig. 3. The hexagonal ω-C32 structure.

Further reasoning for the appearance of diffraction lines that corresponded to

a bcc structure instead of the hexagonal ω-structure was provided by Ogawa et al.

[16]. It was shown that if in a bcc structure, two of the three equidistant (111) planes

move towards one another along the [111] direction, and collapse into one while the

third remains in its original position, the resulting structure is the so-called ω or C32

structure.

The temperature and extent of formation of the δ-phase, which are important

features in the Np-Zr phase diagram, were analyzed with XRD experiments performed

by Okamoto et al. [9]. The intensity of the diffraction lines corresponding to NpZr2

was found to be much stronger in the 75 at.% Zr alloy than at 67 at.% Zr which, in

principle, is the stoichiometric composition for this solid solution, thus indicating a

wide composition range of stability for this phase. The temperature of formation was

found to be ∼ 550oC, and since, at this temperature, γ-Np and α-Zr are the stable

forms, it was concluded that NpZr2 forms from γ-Np and α-Zr. As its formation is

not from a single mutual solid solution, like in the U-Zr system, this results in slow
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formation kinetics and a shift in stoichiometry for this phase.

C. ω-Zr

As described in the previous section, the δ-NpZr2 phase is structurally similar to the

ω-phase solid solution. The ω-phase has been the subject of numerous theoretical and

experimental works that started more than fifty years ago when it was first discovered.

The ω-phase was first discovered by a high-pressure X-ray technique conducted

by Jamieson [19] in Ti and Zr. At high pressures, the diffraction patterns and inten-

sities corresponded to the ω-phase with a hexagonal symmetry and, as a distortion

of the bcc phase. The lattice points were determined to be (0, 0, 0), (2
3
, 1

3
, 1

2
) and (1

3
,

2
3
, 1

2
).

It is well known that the hcp structure of Zr is the stable phase at ambient pres-

sure and temperature and that it transforms to the bcc phase at higher temperatures.

However, when pressure increases at ambient temperature, Zr first undergoes a α →

ω transformation and then a ω → β transformation as shown in Fig. 4. Botstein

et al. [20] studied the α → ω phase transformation in Zr using high pressure tech-

niques. It was concluded that at ambient pressure, and temperatures less than 200

K, the ω-phase is the stable phase of Zr. Enthalpy of transformation, ∆Hα→ω
Zr , was

found to be -553 J/mole. This small value indicates the slow kinetics in ω-phase

formation at low temperatures, and is in accordance with the result of having only

small amounts of this phase present in the sample. This conclusion was confirmed

by theoretical calculations performed by Vohra [21], from which the results indicated

a possibility of retaining the ω-phase in a metastable form after pressure release at
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ambient conditions. Impurities in samples also plays an important role and may affect

the occurrence of this phase. A hysteresis effect was also observed with temperature

during this transformation. This phenomenon of marginal stability or metastability

of the ω-phase against the hcp phase became the subject of numerous ab initio works

to determine the ground state of Zr. However, due to the extremely small difference

in energy between these phases, the results pointed to two different conclusions: the

ω-phase is the lowest energy phase of Zr [22–24] or, the hcp phase is the lowest en-

ergy phase of Zr [25–28]. This ambiguity seems to remain unresolved, and due to this

uncertainty, both possible scenarios are considered in the present work. Model 1 will

be calculated considering the hcp phase as the ground state of Zr and, Model 2 will

be calculated considering the ω-phase as the ground state of Zr.

Fig. 4. The pressure-temperature phase diagram of Zr [29].

The role of d-electrons in stabilizing different phases in the transition metal se-

ries was investigated by Pettifor [30] from band energy calculations within the atomic
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sphere approximation (ASA). It was found that atomic levels broadened into bands

and changed their energies and occupation, particularly the d-band whose contribu-

tion was more important than for other bands. It was also pointed out that pressure

changes also lead to a change in d-band occupancy, as shown in Fig. 5, triggering a

phase change in these elements. Under compression, the s-band is pushed toward the

core region, decreasing the s-d spacing, and thus increasing the d-band occupancy.

This was confirmed in an electronic structure study by Vohra et al. [31] on the α and

ω phases of Zr. The band structure results showed a decrease in s-d spacing at high

pressures that was confirmed by an X-ray photoelectron spectroscopy (XPS) study.

Fig. 5. Changes in s-, p-, and d-band occupations as functions of Wigner-Seitz radius

calculated from FPLMTO calculations [12].
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The d-electron role in stabilizing the ω-phase and its alloys was studied exten-

sively by Vohra [32]. It was concluded that the ω-phase in pure transition metals and

their alloys can be stabilized at high pressure and, be retained at ambient conditions

in a metastable state after appropriate thermal and pressure treatments. The relative

stability of different crystal structures was measured by the bonding contribution of

the d-band, U bond
d , given by,

U bond
d =

∫ Ef

Ed
b

nd(E)(E − Cd)dE (2.1)

where, Ef is the Fermi energy, Ed
b is the bottom of the d-band, nd(E) is the density

of states of the d-band, and Cd is the center of gravity of the d-band. Thus, the

structure that has the lowest value of U bond
d is the most energetically favorable for a

given d-band occupancy, nd(E). This proposition was studied by calculating bonding

energies of the α, ω, and β phases as a function of the change in d-band occupation

at RT and pressure as shown in Fig. 6. The result showed that as d-electrons were

added, the bonding energy of the α-phase was the lowest, followed by the ω-phase

and lastly, the β-phase.

The theory according to which an increase in the number of d-electrons gov-

erns the structural phase stability in transition elements, was tested by high-pressure

XRD experiments [33, 34]. The hcp → ω → bcc phase transitions were observed at

pressures of 67 kbar and 330 kbar.

XRD analysis by Xia et al. [35] found the bcc phase of Zr to stabilize at high

pressures, in accordance with the theory of stabilization of bcc structures of transition

metals at high pressures due to an increase in the d-band occupancy. In a follow-up
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Fig. 6. Bonding energy of the α, ω, and β phases as a function of a change in d-band

occupation for an AB alloy system [32].

work, Xia et al. [36] performed XRD experiments and assigned the equilibrium trans-

formation pressure, at room temperature, to be 350 kbar between ω-Zr and bcc-Zr.

The model of the β → ω transformation was first proposed by Hatt et al. [37]

after correlating a model with results from XRD data. A gliding of {112}β planes

along the 〈111〉β direction results in a sequence that corresponds to the formation of

the hexagonal C32 structure. It was later adopted in several work as the bcc to ω

transformation mechanism in Zr [16, 25, 38, 39].

In the case of alloys, if the alloying element can supply electrons to the d-band, a

compound, having a structure similar to the ω-structure in Zr, can be stabilized at a

certain composition in the system. Many works have been devoted to the study of this
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alloying effect which is equivalent to pressure application [12, 32, 40–43]. This phase

transition series was also noted from the plot of structural energy differences obtained

from canonical bands, as a function of d-band occupancy [44]. With an increase in

pressure, hcp initially transforms to C32, and then to bcc. On the experimental

side, this was confirmed by high-pressure studies on alloys [45, 46] that indicated the

stabilization of ω-phase type structures due to an increase in pressure at some alloy

compositions. In an analysis of the stabilization of the δ-phase [16], it was concluded

that the C32 structure is stabilized with respect to α-Zr (hcp) by the addition of Np,

thus suggesting favorable mixing between the valence shells of the actinide and the

d-shell of Zr.

D. θ-Np4Zr

In Ref. [10], a phase, whose diffraction lines did not correspond to either Np, Zr or

NpZr2, was observed in all samples of compositions 10, 25, 50, 67, 75, and 90 at.%

Zr. These lines were in better agreement with those corresponding to a compound of

stoichiometry Np4Zr, rather than Np6Zr, and may have a counterpart in the Pu-Zr

system [47, 48].

E. Phases of pure Np

Neptunium metal exhibits three allotropic forms, α-, β-, and γ-phases [49] as shown

in Table I.

The decreasing trend toward magnetism as one goes from U, which is a su-

perconductor, to Np and Pu which are non-superconducting but have a tendency

toward magnetism, and then to Am, Cm, Bk which appear to have well-defined local

moments [50, 51], has been attributed to an increase in f-d hybridization along the



18

Table I. Crystal structure data of pure Np [49].

Phase Symmetry Lattice parameters (Å) Density (g/cm3)

a b c

α Orthorhombic (Pnma) 6.663 4.723 4.887 20.45

β Tetragonal (P4/nmm) 4.897 4.897 3.388 19.36

γ Bcc (Im3m) 3.526 3.526 3.526 18.00

actinide series of the periodic table [52]. Thus, actinide metals may be separated into

two groups: first being from Th up to Pu, in which 5f electrons are in narrow bands

hybridized with the 6d ones, while in the second group starting with Am, a more

standard lanthanide behavior is observed, where the 5f states are localized below the

Fermi energy. All of this adds up to Np being exchange-enhanced, nearly magnetic

metal. However, as seen from the nuclear magnetic resonance (NMR) and Mössbauer

effect (ME) measurements, it does not order magnetically [53].

The measured atomic volume of Np was found to be ∼ 12 cm3/gram-atom [4],

which happens to be the lowest in the actinide series. The similarity between the

trends in atomic volume of the light actinides (Th-Np) and the transition metals

suggested, early on, that the light actinides were part of a 6d transition series. There

is then a sharp increase in volumes from Np to Am (with Pu being in the middle),

after which the trend is similar to that of the lanthanides [4]. The cohesive energy and

bulk modulus of Np is found to be ∼ 481 kJ/mol and ∼ 750 kbar, respectively [4]. The

thermal conductivity of actinides falls with an increase in atomic number and reflects

an increase in electrical resistivity. These facts point to the important role played by

electrons. Thermal conductivity is mostly independent of temperature and for Np is

found to be ∼ 7 Wm−1K−1 [4]. The calculated maximum in f-electron contribution
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to metallic bonding in Np coincides with the smallest metal-metal distance and the

lowest melting point among the actinides. The average atomic distance is 3.0 Åin the

α-phase, 3.03 Åin the β-phase, and 3.05 Åin the γ-phase [4]. Thus, high-temperatures

do not affect the degree of f-f overlap, and this observation is consistent with the non-

magnetic behavior of Np.
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CHAPTER III

THE CALPHAD METHOD

The thermodynamics of solution phases is first described here as it forms the funda-

mental basis of the CALPHAD method. Solution is a term refered to a system in a

solid, liquid or gaseous state, which exhibits solubility between the various compo-

nents that make up the system. With relevance to the present work, thermodynamics

of two-component systems or binary solutions will be dealt with in the following.

A. Ideal mixing

Ideal mixing represents an ideal case of no mixing or interactions in solutions. Sta-

tistical thermodynamics defines entropy in terms of disorder in the system. Kelvin

and Boltzmann gave a mathematical formulation of this definition as:

S = k logeW (3.1)

where, k is Boltzmann’s constant and W is a measure of disorder in the system. If in

a binary solution, out of a total of N sites n sites are occupied by A-type of atoms

and the rest, (N − n) sites, by B-type atoms as shown in Fig. 7,

Fig. 7. Schematic representation of random mixing of A and B atoms/molecules in a

binary solution [17].

The disorder or probability of distribution in this case is given by,
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W =
N !

n!(N − n)!
(3.2)

The entropy of this solution then is,

S = k loge
N !

n!(N − n)!
(3.3)

After applying Stirling’s approximation and subsequent simplifications, the entropy

change for ideal mixing is given by,

S = −R(xalogexa + xblogexb) (3.4)

Thus, the Gibbs energy of mixing in case of no interactions between constitutive

elements is given by,

Gideal
mix = RT (xalogexa + xblogexb) (3.5)

B. Non-ideal mixing

In reality, there is always some kind of interactions between different atom types in

a solution. These interactions can either be attractive or repulsive in nature. The

effects of such interactions are incorporated via the excess mixing energy term, Gxs
mix,

which is modeled in the simplest way according to the regular solution model:

Gxs
mix = Ω xaxb (3.6)

where, Ω is a regular solution parameter. Its sign depends on the nature of chemi-

cal interactions, positive for repulsive and negative for attractive interactions. The

tendency to form a miscibility gap or two-phase structures in binary solution phases
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increases with an increase in magnitude of this regular solution parameter. In the

case of attractive interactions or negative values of the regular solution parameter,

the tendency is to form continuous solid solutions.

Equations (3.5) and (3.6) combine to give the Gibbs energy of solution,

Gmix = RT (xalogexb + xblogexb) + Ω xaxb (3.7)

However, in the presence of crystallographically distinct phases, the Gibbs energy

at end-points of the mixing curve have to be calculated, thus requiring to define

reference states for the pure components. The Gibbs energy is then written as,

G = Gref + Gideal
mix + Gxs

mix (3.8)

where Gref is given by,

Gref =
∑
i

xiG
o
i (3.9)

where, xi is the mole fraction of component i, and Go
i is the Gibbs energy of the phase

for pure component i.

C. Thermodynamic models

Solution phases are modeled via various methods, two of which are described here.

1. Random substitutional model

In this model, the components occupy crystal sites in a random manner rather than

in an ordered manner, as shown in Fig. 8. Thus, gases, liquids and some metallic

solid solutions are represented very well by this model.
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Fig. 8. Random occupation of sites on a bcc structure [17].

In the present work, the liquid, orthorhombic, and tetragonal phases are modeled

in this manner. One of the simplest non-ideal models is the regular solution model

which considers no dependence of the nature of interactions between the components

on the composition of the solution. The Gibbs free energy expression of such a model

is given similar to (3.8) as,

Gφ
m =

∑
i=Np,Zr

xi
oGφ

i + RT
∑

i=Np,Zr

xilogexi + xNpxZrL
φ
Np,Zr (3.10)

where, Gφ
m denotes the Gibbs energy of phase φ, xi is the mole fraction of compo-

nent i, oGφ
i defines the Gibbs energy of the phase containing the pure component i,

obtained from the SGTE database [54] and, LφNp,Zr is an interaction parameter that

incorporates the effects of non-ideal mixing. To account for dependencies on changes

in composition, this parameter is expanded using Redlich-Kister formalism [55] as,

LφNp,Zr =
∑
v

LφNp,Zr(xNp − xZr)
v (3.11)

The above equation for Gxs
mix is considered a regular solution when v = 0 and non-

regular solution when v > 1. Th binary interaction parameter is made temperature-
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dependent using,

vLφNp,Zr = vA + vBT (3.12)

where vA and vB are model parameters to be optimized.

2. Sublattice model

This method of modeling phases can be applied to a variety of phase types such as

interstitial and solution phases. The sublattice model can be visualized as consisting

of interlocking sublattices as shown in Fig. 9.

Fig. 9. A bcc structure shown with preferential occupation of sites by atoms on the

two simple cubic sublattices [17].

Its crystalline nature does not particularly represent a crystal structure within its

general definition, however, certain external terms and conditions can be imposed to

simulate special structure types. In this method it is necessary to define the fractional

site occupation of each component in all the sublattices, which is given by,

syi =
nsi
N s

(3.13)

where nsi is the number of atoms of component i on sublattice s.
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In many cases when vacancies are involved and become important to model a

phase, such as an intermetallic phase, the site occupation is modified as,

syi =
nsi

nsV a +
∑
i

nsi
(3.14)

where nsV a gives the number of vacancies on sublattice s.

The Gibbs energy reference state is obtained when only pure components can be

considered as existing on each sublattice, and is given by,

Gref
m =

∑
I0

PI0(Y )oGφ
I0 (3.15)

where PI0 represents the corresponding product of site fractions when each sublattice

is occupied by only one component. In general, PIZ is the site fraction product when

only one sublattice contains Z components and the remaining sublattices are occupied

by one component. Gφ
I0 is the Gibbs energy of the compound defined by I in phase φ.

For example, if a two-sublattice phase is modeled as (A,B)1(C,D)2, where A, B, C

and D are the components of this phase, the Gibbs energy reference state is written

as,

Gref
m = yAyCG

o
AC + yAyDG

o
AD + yByCG

o
BC + yByDG

o
BD (3.16)

The ideal entropy of mixing in this case is given by,

Gideal
mix = RT

∑
s

N s
∑
i

ysi logey
s
i (3.17)

Vacancies are included in the fractional site occupation term, ysi . The ideal entropy
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term in the above expression, includes all possible configuration contributions by all

components mixing in each sublattice.

The Gibbs excess energy of mixing for the two-sublattice system described pre-

viously as (A,B)1(C,D)2, is given by,

Gxs
mix = y1Ay

1
BL

0
A,B:∗ + y1Cy

1
DL

0
∗:C,D (3.18)

The above equation represents the regular solution format, and L0
A,B:∗ and L0

∗:C,D are

the regular solution mixing parameters for each sublattice that are independent of

the site occupation on the other sublattice. The sub-regular format includes the site

occupation on the other sublattice as,

Gxs
mix = y1Ay

1
By

2
CL

0
A,B:C + y1Ay

1
By

2
DL

0
A,B:D + y1Cy

1
Dy

2
AL

0
A:C,D + y1Cy

1
Dy

2
BL

0
B:C,D (3.19)

Similar to the formalism in the case of the random solution model, the parameters

are made composition dependent as,

L0
A,B:C = y1Ay

1
By

2
C

∑
v

LvA,B:C(y1A − y1B)v (3.20)

The other parameters are modeled in a similar manner. The final Gibbs excess energy

of mixing is given by,

Gxs
mix =

∑
Z>0

∑
IZ

PIZ(Y )LφIZ (3.21)

Thus, the total Gibbs energy of this phase is obtained by combining the reference

energy, ideal entropy contribution and excess energy contribution from (3.15), (3.17)

and (3.21), respectively, which is given by,



27

Gφ
m =

∑
I0

PI0(Y )oGφ
I0 + RT

∑
s

N s
∑
i

syiloge
syi +

∑
Z>0

∑
IZ

PIZ(Y )LφIZ (3.22)

D. Evaluation of Gibbs energy parameters

After having made a decision of the model for the Gibbs energy of each phase to be

considered for a given system, and entering all experimentally measured quantities

in an input file (.POP), the next step in the CALPHAD method is the evaluation of

the parameters. This is carried out using an optimizer code that essentially revolves

around Gibbs energy minimization. This type of code is based on the aim of reducing

the statistical error between the experimental data and the calculated phase equilibria

as much as possible.

1. Minimization procedure for single-phase equilibria

In the case of solution phases where enthalpies and entropies are temperature depen-

dent, the Gibbs energy minimization is carried out by minimizing the function,

∆G1φ =
∑
i

xφiG
φ
i − Gφ = 0 (3.23)

A Newton-Raphson method is used for rapid convergence. An initial temperature

is chosen and both ∆G1φ and ∆G1φ/dT are calculated and then used to estimate a

new temperature where ∆G1φ is expected to be equal to zero as shown in Fig. 10. If

this new temperature does not satisfy the convergence condition, a new temperature

is chosen. This process is repeated until ∆G1φ=0.



28

Fig. 10. Schematic diagram showing the process of calculating the temperature at

which ∆G1φ=0 [17].

2. Minimization procedure for two-phase equilibria

The following mass balance equations will be utilized in the calculation of a two-phase

equilibria,

Ni =
∑
φ

Nφ
i (3.24)

and,

∑
i

N i = M (3.25)

where, Ni is the total number of mole of component i in the system, Nφ
i is the number

of moles of component i in phase φ and, M is the total number of moles in the system.
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The following is the presentation of the general minimization procedure. At first,

the phase equilibrium is assumed to be single-phase. Then, an arbitrary amount

of the second phase is introduced in the system and in accordance with the mass

balance equations, a corresponding change is made in the composition of the first

phase followed by the calculation of the Gibbs energy. The composition of this phase

is then kept constant and the amount of the second phase is then varied with a

corresponding change in its composition, to maintain mass balance, so that the Gibbs

energy is minimized as shown in Fig. 11.

Fig. 11. First stage in the iteration process of Gibbs energy minimization of a Cu-Ni

alloy at composition x0 in Cu, and at 1523 K [17].
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The selection of the amount of the second phase to be varied can be made by

calculating the second derivative of G with respect to Nliq to obtain the composition

at which dG/dNliq=0, as shown in Figs. 12 and 13.

Fig. 12. Gibbs energy versus N liq in an alloy shown schematically.

This process is repeated until the Gibbs energy is minimized. The same pro-

cedure is then applied by varying the amount and composition of the first phase as

shown in Fig. 14(a).

This cycle is repeated as shown in Fig. 14(b) and 14(c) until a minimum is

obtained in the Gibbs energy and the convergence criteria is satisfied.

3. Stepping and mapping

The previous procedures are for the calculation of equilibrium points at specific com-

position, temperature and pressure. However, for phase diagram calculations when

changing a particular condition, such as composition or temperature in the present

case, a procedure known as stepping is employed. In this process, the property is in-
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Fig. 13. Calculation of the second derivative of G with respect to N liq to obtain the

minimum in Gibbs energy.

creased in small amounts or steps, and then the stability of the phase is checked at this

step. If the phase is stable at that particular step, it is used as a starting point for the

next step. This process is repeated until the conditions are not satisfied. Mapping is

the process by which a phase diagram is plotted and employs the calculated results of

the stepping code to map a phase boundary. Binary phase diagrams have two degrees

of freedom that are most commonly represented by the temperature and composition.

The requirements from a calculation method must be to: reduce the degrees of

freedom, calculate the Gibbs energy of the system and, use some iterative technique

to minimize the Gibbs energy. Also, the robustness and the speed of the calculations

depend heavily on the choice of starting guesses for the model parameters. Even

though the calculation methods being used might be global minimization programs,

there is always a possibility for the calculation to get stuck at a local minimum and

thus giving an incorrect equilibrium result. Hence, it is always recommended to have
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(a) (b)

(c)

Fig. 14. Second, third, and fourth stage in the iteration process of Gibbs energy min-

imization of a Cu-Ni alloy with composition x0 in Cu, and at 1523 K [17].

some prior knowledge of the phase diagram equilibria. This problem is most evident

in the case of phases that have a miscibility gap. In case of availability of prior

information on the miscibility information, such a phase is then given start points for

both #1 and #2 phases by the program and it ensures the convergence accounts for

both minima. In the present work, a similar approach is followed for the bcc phases

where two sets, BCC#1 and BCC#2 are introduced in the system. However, in a

generalized environment, this method would fail if unknown miscibility gaps were
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present or if there was an order/disorder transition associated with the phase. Thus,

some prior knowledge of miscibility gap or ordering is necessary to obtain reasonable

accuracy and speed of execution.

4. The PARROT programme

The PARROT module [56] is integrated with the Thermo-Calc package [57] and is

essentially based on the following governing principles:

- Establish a criterion for best fit: This criterion is based on a maximum likeli-

hood principle where a likelihood function is chosen and must be maximized to obtain

the best estimates of the model parameters. Simplification of this process is made

by assuming that the joint probability density function of all the experimental data

is Gaussian in form and, that there is no dependence or coupling between different

experimental measurements.

- Data separation based on accuracies: The PARROT module allows the user to

input experimental data that are significantly inaccurate compared with their true

values in addition to the data which are free from such inaccuracies. Dependent

and independent variables: Both types of variables can be used in the optimization

process of the PARROT module. Dependent variables are those that describe the

responses of the system to prescribed conditions whereas, independent variables de-

fine the equilibrium conditions. The calculation of the Gibbs energies for different

phases and the determination of equilibria are then performed by the Poly-3 module

of the Thermo-Calc software that is coupled with PARROT. State variables such as

temperature, pressure and chemical potentials, are treated as independent variables

and are preselected to define the equilibrium conditions. Dependent variables, or re-
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sponses of the system, are then written as functions of the independent variables and

the model parameters. This makes it possible to use almost any type of experimental

information in the evaluation of the model parameters. A significant advantage of

using the CALPHAD method is that various other properties can be automatically

obtained after the calculation procedure and can also be plotted as functions of the

state variables.

In the present work on the Np-Zr system, as the experimental information avail-

able sometimes contradict one another, particularly while defining the nature of the

bcc phase, the optimization process was started with a small number of iterations

and very low statistical weights assigned to the experimental data. The bcc phase

was optimized in such a way that no preference was given whatsoever to any infor-

mation determining its character, miscible or immiscible. The weights were increased

appropriately during the optimization process to be within an acceptable range of

experimental data. To aid in the calculation of a global equilibrium, another con-

straint that was used was the driving force for the formation of a particular phase.

Driving force is defined as the affinity between reacting chemical species, and its mag-

nitude gives the equilibrium of a phase at particular composition and temperature.

At particular temperature and composition it is negative for the stable phase, and

positive for the phases that are not at equilibrium under those conditions. Also, the

optimization was carried out until a balance was achieved between different sets of

input data, which in the present work are the solidus, liquidus equilibrium lines and

the formation enthalpies of the bcc phase.
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CHAPTER IV

ELECTRONIC STRUCTURE CALCULATIONS

A. Introduction

Density Functional Theory (DFT) has been a popular method for the quantum me-

chanical solution of periodic systems, and to compute the electronic structure of

matter. It was proven to be a very successful approach for the description of ground-

state properties of metals, semiconductors, and insulators. In this section, a brief

formulation of this method is described.

Consider a solid of atomic number Z, and composed of N number of nuclei.

These nuclei are positively charged particles and heavier than the negatively charged

electrons. The total number of interacting particles in such a solid becomes (N +

ZN), thus making this a many-body problem. The Hamiltonian for a solid is given

by,

Ĥ = − h̄
2

∑
i

∇2−→
R i

Mi

− h̄

2

∑
i

∇2−→r i

me

− 1

4πε0

∑
i,j

e2Zi

| −→R i − −→r j |
+

1

8πε0

∑
i 6= j

e2

| −→r i − −→r j |

+
1

8πε0

∑
i 6= j

e2ZiZj

| −→R i −
−→
R j |

(4.1)

where, the nuclei are of mass Mi and at
−→
Ri, and the electrons are of mass me and

at positions −→ri . The first two terms are the kinetic energy operators of the nuclei

and electrons, respectively. The last three terms describe the Coulombic interactions

between a nucleus and an electron, between two electrons, and between two nuclei,

respectively.
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Even for the modern-day computers, it is extremely challenging to solve (4.1)

exactly for elements with more than a few electrons. Thus, several approximations are

made to ease the calculations. These are briefly described in the following subsections.

1. The Born-Oppenheimer Approximation

This approximation assumes the nuclei to be “frozen” due to their heavier masses.

Thus, the kinetic energy term of the nuclei is eliminated, and the potential term

now becomes a constant. Thus, only electrons are left as interacting particles in this

many-body problem, and (4.1) reduces to,

Ĥ = T̂ + V̂ + V̂ext (4.2)

where the first term (T̂ ) is the kinetic energy operator for the electrons, the second

term (V̂ ) describes the potential energy between the electrons, and the last term

(V̂ext) is the potential energy of the electrons in the external potential of nuclei.

2. Density Functional Theory

After the first level of approximations, the problem becomes simpler, but still re-

mains difficult to solve. Thus, the so-called Density Functional Theory (DFT) is used

to simplify the problem further and this method relies on two important theorems

by Hohenberg and Kohn [58]. The first theorem states that there is a one-to-one

relationship between the external potential Vext and the ground-state density ρ(−→r )

of a many-electron system. The second theorem gives the ground-state total energy

functional H[ρ] ≡ EVext [ρ] as,
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EVext [ρ] = < ψ|T̂ + V̂ |ψ >︸ ︷︷ ︸
FHK [ρ]

+ < ψ|V̂ext|ψ > (4.3)

where the Hohenberg-Kohn density functional FHK [ρ] is universal for many-electron

systems as it contains information regarding only electrons and not protons. It is

postulated in this theorem that at the ground-state density Vext, the ground-state

energy functional EVext [ρ] reaches its minimum value.

3. Kohn-Sham equations

The Kohn-Sham equations helped turn DFT into a usable and practical tool. The

first formulation is defined for the correlation energy which is the part of the total

energy present in the exact solution, but absent in the Hartree-Fock solution, and is

given by,

Vc = T − T0 (4.4)

where T is the exact kinetic energy functional for the electrons, and T0 is the kinetic

energy functional for a non-interacting electron gas.

The second formulation defines the exchange contribution to the total energy that

is present in the Hartree-Fock solution, and absent in the Hartree solution. Thus, it

is given by,

Vx = V − VH (4.5)

where V is the exact electron-electron potential energy functional, and VH is the

Hartree contribution.
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Thus, the Hohenberg-Kohn functional, from (4.3) is written in the following way,

FHK = T + V + T0 − T0

= T0 + V + (T − T0)

= T0 + V + Vc from (4.4)

= T0 + VH + Vc + (V − VH)

= T0 + VH + Vc + Vx from (4.5)

where Vxc is the exchange-correlation energy functional. The energy functional is thus

written as,

EVext [ρ] = T0[ρ] + VH [ρ] + Vxc[ρ] + Vext[ρ] (4.6)

The corresponding Kohn-Sham Hamiltonian is given by,

ĤKS = T̂0 + V̂H + V̂xc + V̂ext (4.7)

The eigenstates are then determined by solving a Schrödinger-like non-interacting

single-particle equations given by,

ĤKSφi = εiφi (4.8)

Since both VH and Vxc depend on the electron density ρ(−→r ), which in turn de-

pends on the wavefunctions φi being calculated, this problem becomes self-consistent.

In the first step, an initial guess of the electron density density ρ0 is made. With this

value, the Hartree operator VH and exchange-correlation operator Vxc, both of which
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depend on ρ0, are calculated. Thus, the Hamiltonian HKS is constructed, and the

eigenvalue problem is solved to obtain φi which in turns leads to the calculation of a

new density ρ1. This new density is then compared with the starting guess ρ0, and

the procedure is repeated again until both become equal.

B. Local Spin Density Approximation

The exchange-correlation functional Vxc can be approximated within the Local Spin

Density Approximation (L(S)DA) [59]. In this approximation, the material is di-

vided infinitesimally into small volumes, with each volume contributing to the total

exchange correlation energy by an amount equal to that of an identical volume filled

with a homogeneous electron gas that has the the same density. The exchange-

correlation energy functional by this method is given by,

ELSDA
xc =

∫
ρ(−→r )εxc(ρ(−→r ))d−→r (4.9)

C. Generalized Gradient Approximation

In this method, the exchange-correlation contribution of every infinitesimal volume

not only depends on that volume, but also on the density in neighboring volumes [60].

Thus, the gradient in density between different volumes is also taken into account,

and thus it is termed as Generalized Gradient Approximation (GGA).

D. Solving the Kohn-Sham equations

The single-electron equations to solve are infinite and similar to eqn.(4.8) irrespective

of the method of approximation chosen for the exchange-correlation functional. The

wave functions are expressed as,
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φm =
P∑
p=1

cmp φ
b
p (4.10)

where cmp are the coefficients to be calculated, and φbp is a basis set. The dimensions

of the function space in which the wave functions φm are being searched, are infinite,

thus making P infinite. However, it is impossible to work with an infinite basis set,

and thus, its selection is made in such a way that the resulting functions are close to

φm. Larger the value of P , the more accurate are the wave functions, but more time

consuming are the calculations. Once the selection of a basis set is made, solving

eqn.(4.8) becomes an eigenvalue problem. The choice of a basis set is made in such a

way that it is both efficient, i.e. it represents the wave functions as closely as possible

thus requiring lower values of P , and unbiased, i.e. its properties are not influenced by

the wave functions. One such basis set that satisfies both of these requirements quite

well is the plane wave basis set which is briefly described in the following section.

E. Pseudo-potential method

Bloch’s theorem defines an eigenfunction as,

ψn−→
k

(−→r ) =
∑
−→
K

cn,
−→
k−→

K
ei
−→
k .
−→r (4.11)

where cn,
−→
k−→

K
are coefficients to be determined, ei

−→
k .
−→r is a plane wave that contains

the periodicity of the lattice, and
−→
k is a vector in the first Brillouin zone. Comparing

equations (4.10) and (4.11), we thus obtain that m represents (n,
−→
k ), and p represents

(
−→
k +

−→
K ).

However, such a basis set is also almost impossible to calculate accurately. Thus,
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the potential in regions close to the nuclei, which is its most fluctuating part, is

replaced by a pseudo-potential that yields smooth wavefunctions near the atomic

nucleus as this part of the solid behaves similarly to free atom electrons. This makes

the basis set manageable to calculate for a system.

F. L(S)DA+U method

The Local Spin Density Approximation (L(S)DA) method often fails to describe the

energetics and ground-state properties of strongly correlated and highly localized d

and f electron systems, such as in the case of Np in the present work. Such systems

usually contain transition metal or rare-earth metal ions with partially filled d (or f)

shells. When applying a one-electron method with an orbital-independent potential,

like in the LDA, to transition metal compounds, the result is a partially filled d-band

with metallic type electronic structure and itinerant d-electrons. This is an incorrect

result for late-transition-metal oxides and rare-earth metal compounds where d(f)

electrons are well localized and there is a sizeable energy separation between empty

and filled bands [61].

Thus, within the L(S)DA method, electrons are separated into two subsystems:

one with delocalized s,p electrons which could be described by using an orbital-

independent one-electron potential (LDA), and the other with localized d or f electrons

for which Coulomb d-d interaction should be taken into account by a term 1
2
U(ninj)

(i6=j) as in a mean-field (Hartree-Fock) approximation. Thus, the L(S)DA energy

function is modified by introducing a term that includes strong intra-atomic interac-

tion in a (screened) Hartree-Fock like manner. This defines the Dudarev formulation

[62] of the L(S)DA + U method in which case the functional is written as,
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EL(S)DA+U = EL(S)DA[εi] +
(U − J)

2

∑
l,j,σ

ρσljρ
σ
jl (4.12)

where U and J are model parameters which must be carefully chosen when comparing

with experimental data, εi are the Kohn-Sham eigenvalues, ρσlj is the density matrix

of electrons occupying a partially filled electron shell, and σ gives the spin direction.

In this approach, only the difference Ueff = (U − J) is meaningful rather than the

individual parameters U and J .

G. KKR-ASA-CPA method

Formation enthalpies of bcc alloys at various compositions were computed using a

scalar-relativistic Green function technique based on the Korringa-Kohn-Rostoker

(KKR) method within the atomic sphere approximation (ASA) [63–65], which is im-

proved by addition of higher multipoles of the charge density [65], and the so called

muffin-tin correction [66] to the electrostatic energy. The Generalized Gradient Ap-

proximation (GGA) is adopted to approximate the electron exchange and correlation

energy functional. To treat compositional disorder the KKR-ASA method is com-

bined with the Coherent Potential Approximation (CPA) [67] . More details of this

approximation can be found in Ref. [12].
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CHAPTER V

RESULTS AND DISCUSSION

A. Lattice stabilities

Thermodynamic models for the Np-Zr system have been developed in a way that they

can be validated with any sets of thermodynamic data that is either already available

or, can be calculated using first-principles techniques. And one such data set that is

calculated in the present work is lattice stabilities.

One of the main requirements of the CALPHAD method is the calculation of the

Gibbs energy versus composition for all the phases exhibited by the elements and the

alloy system. This condition is met only when the Gibbs energies of phases can be

calculated in the unstable or metastable regions of those phases in the temperature-

composition space. Thus, the Gibbs energy of the elements in all their potential

crystal structures must be calculated and the relative differences in the energies be-

tween these phases are refered to as lattice stabilities.

In the present work, the lattice stabilities are calculated, using the VASP code, by

subtracting total energies of the pure elements in their reference states (Np:orthorhombic,

Zr:hcp), from the energies of both elements in their corresponding unstable crystal

structures (Np in hcp phase, Zr in orthorhombic and tetragonal phases). The cal-

culations are performed within both LDA and GGA methods, and the the values

obtained are found to lie within these limits. In Table II, they are compared with

those obtained from our thermodynamic model, and with the ones evaluated in the

case of U-Zr alloy system [18].
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Table II. Lattice stabilities obtained from ab initio calculations within the LDA and

GGA methods, compared with values from the thermodynamic model devel-

oped in the present work and with case of the U-Zr alloy system [18].

Element Phase Space Group LDA GGA Model U-Zr [18]

(J/mole) (J/mole) (J/mole) (J/mole)

Np Hcp P63/mmc 74860.61 49106.39 70000 –

U Hcp P63/mmc – – – 50000

Zr Orthorhombic Pnma 1613.97 5680.87 5837.36 38000

Zr Tetragonal P4/nmm 1688.53 5630.14 4056.09 35000

B. Phase diagram

The parameters, that are used to construct the Gibbs energy expressions of all the

phases in the system, are optimized using the minimization procedure implemented

within the PARROT program, until the deviations from the experimental input are

reduced to a minimum. The final values of these parameters are listed in Table III,

and the Gibbs energy expressions used for all the phases of both elements along with

their standard element reference state (SER) are given in detail in Appendix A. The

phase diagram calculated from these optimized parameters (Model 1) is shown in

Fig. 15, where it is compared with the postulated phase diagram published by Gib-

son et al. [8], along with DTA peaks obtained for various alloys from Ref. [7].

It is clear that the calculated phase diagram is in agreement with most of the

phase equilibria predicted by Gibson et al. [8]. The discrepancies are limited to the

positions of the liquidus, solidus, and, bcc/hcp equilibrium lines. These disagree-

ments can be explained as follows. A stage was reached during the optimization

process where a compromise had to be made between the calculated formation en-
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Table III. Model description and optimized parameters for all the different phases in

the Np-Zr system (Va=Vacancy).
Phase Model Evaluated parameters (J/mole)
Liquid Random Solution (Np,Zr)1

0LLiqNp,Zr = 126720.48− 122.25 ∗ T
1LLiqNp,Zr = 27741.16− 48.36 ∗ T

bcc Sublattice model (Np,Zr)1(Va)3
0LbccNp,Zr:V a = 95381.69− 84.08 ∗ T
1LbccNp,Zr:V a = 83326.26− 87.96 ∗ T
2LbccNp,Zr:V a = −1133.70− 12.25 ∗ T

hcp Sublattice model (Np,Zr)1(Va)0.5
0Ghcp

Np:V a − 0Gort
Np = 70000

0LhcpNp,Zr:V a = −48071.49− 6.75 ∗ T
ortho Random Solution (Np,Zr)1

0Gort
Zr − 0Ghcp

Zr = 5837.36− 2.64 ∗ T
0LortNp,Zr = −2528.41 + 35.95 ∗ T

tetra Random Solution (Np,Zr)1
0Gtet

Zr − 0Ghcp
Zr = 4056.09 + 1.36 ∗ T

0LtetNp,Zr = −3356.11 + 30.50 ∗ T
θ Sublattice model (Np)4(Zr)1

0Gθ
Np:Zr−4*0Gort

Np−0Ghcp
Zr =−2250.09+0.09∗T

δ (Model 1) Sublattice model (Np,Zr)2(Zr)1
0Gδ

Np:Zr−2*0Gort
Np−0Ghcp

Zr =2438.4+0.7∗T
0Gδ

Zr:Zr − 3*0Gω
Zr = 1800

0LδNp,Zr:Zr = −9836.28 + 28.54 ∗ T
1LδNp,Zr:Zr = 3135− 4.88 ∗ T

δ (Model 2)Sublattice model (Np,Zr)2(Zr)1
0Gδ

Np:Zr−20Gort
Np−0Ghcp

Zr =28330.9−28.1∗T
0Gδ

Zr:Zr − 3*0Gω
Zr = 0

0LδNp,Zr:Zr = −69268.56 + 101.48 ∗ T
1LδNp,Zr:Zr = −44401.87 + 48.11 ∗ T

thalpies of the bcc phase (explained later on), which was one of the thermodynamic

constraints applied to the system, and, these equilibrium lines. In addition, no peaks

were observed above 913 K from DTA experiments [7].

In Fig. 16 the calculated phase diagram (Model 1) is compared with dilatometry

and EPMA results obtained by Rodŕıguez et al. [11]. In Ref. [68], it is explained

that the probability of melting points of (γ-Np,β-Zr) measured by Rodŕıguez et al.

[11] corresponding to the Liquid + β-Zr liquidus in the non-ideal phase diagram, is

highly probable. This reasoning is compatible with the phase diagram in Fig. 16.
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Fig. 15. Calculated Np-Zr phase diagram - Model 1, compared with the postulated

phase diagram displayed in Ref. [8], and the DTA results from Ref. [7].

As it has been asserted several times [8, 16] that the Np-Zr phase diagrams pre-

viously published are speculative and, given the scarcity of experimental data points

available, the inconsistencies between the calculated phase diagram and those pub-

lished earlier can be ignored to some extent. The temperatures and compositions of

the calculated and reported invariant reactions are shown in Table IV, and are in

good agreement with each other.
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Fig. 16. Calculated Np-Zr phase diagram- Model 1, compared with dilatometry and

EPMA data from Ref. [11].

The resulting Np-Zr phase diagram was obtained with a miscibility gap in the

bcc phase, thus conforming the postulations made in Refs. [6–10, 16]. To study the

effect of atomic structure and bonding properties on the nature of bcc solid solution

in the U-Zr, Np-Zr, and Pu-Zr systems, a comparison between metallic radii, elec-

tronegativities and cohesive energies was made in Ref. [7]. Since, the metallic radii

and electronegativities of Np and Zr are very similar, it would be anticipated that

the bcc solid solution would exhibit continuous miscibility, like in the U-Zr and Pu-Zr
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Table IV. Invariant reactions in the Np-Zr system
Reaction H. Okamoto [69] Present work Reaction type

x (Zr) Temp (K) x(Zr) Temp (K)

L → γ-Np + β-Zr 0.15 903 0.08 882 Eutectic
β-Zr → γ-Np + α-Zr 0.83 883 0.86 852.3 Eutectoid
γ-Np + α-Zr → δ-NpZr2 (Model 1) 0.70 823 0.73 852.2 Peritectoid
γ-Np + α-Zr → δ-NpZr2 (Model 2) 0.70 823 0.79 843.5 Peritectoid
γ-Np → β-Np + δ-NpZr2 0.03 803 0.03 838.5 Eutectoid
β-Np + δ-NpZr2 → θ-Np4Zr 0.20 588 0.20 585.5 Peritectoid
β-Np → α-Np + θ-Np4Zr 0.015 553 0.015 551 Eutectoid

systems. However, it was noticed that the contribution of 5f orbital bonding to the

cohesive energy was maximum in case of Np (about 3 times of U and 1.5 times of Pu)

[7, 8]. The implications of this result is that when a non-5f bonded element such as

Zr is alloyed with a f-electron element such as Np, it results in a larger disruption in

5f bonding which explains the resistance to mixing and the resulting immiscibility.

Recently, Kurata [70] calculated the Np-Zr phase diagram with complete solid

solubility of the bcc phase, similar to the characteristic of the bcc phase in the U-

Zr and Pu-Zr systems. This result was based on the assumption that interaction

parameters of the bcc phase in both Np-Zr and Pu-Zr, should almost be the same.

This assumption may not necessarily be true and, it is unlikely that the nature of

chemical reaction in both systems will be similar or that the bcc phase will from

complete miscible solid solutions.

C. The bcc phase

Another set of thermodynamic data that is used to optimize and validate the calcu-

lation of the Np-Zr phase diagram is the set of formation enthalpies of the bcc phase.

These values are obtained as functions of composition from electronic structure cal-
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culations using the KKR-ASA-CPA method, and are compared with those obtained

from the calculated thermodynamic model in Fig. 17. High positive values are a proof

of the tendency towards phase separation in these alloys, thus confirming our results.
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Fig. 17. Calculated formation enthalpies of the bcc-based Np-Zr alloys obtained from

the thermodynamic model compared with results from first-principles elec-

tronic structure KKR-ASA-CPA calculations within the GGA approximation.

The KKR-ASA-CPA code is also used to calculate atomic volumes and bulk

moduli of bcc-based Np-Zr alloys as functions of composition which are plotted in

Fig. 18. This plot also shows the linear variation between values obtained for pure

bcc-Np and bcc-Zr, that would be expected based on Zen’s Law [71]. Positive de-

viation in volumes and negative deviation in bulk moduli confirms the resistance in
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bonding between Np and Zr and thus, resulting in a miscibility gap in the bcc phase.

Fig. 18. Atomic volume and bulk modulus of bcc-based Np-Zr alloys calculated as

functions of composition using the KKR-ASA-CPA method. Dotted lines

denote the expected linear relationship based on Zen’s Law [71].

D. The δ-NpZr2 phase

In Chapter II it was explained that as the d-band occupation of Zr increases when

alloying with actinides, the stability of the C32 structure increases, which is the case

in alloys of U and Np [12]. A similar behavior is expected to be responsible for the

stability of the δ-phase in the Np-Zr system. In the present work, this phase is mod-

eled as a two-sublattice phase. One of the sublattices contains two sites, namely the

(2
3
, 1
3
, 1
2
) and (1

3
, 2
3
, 1
2
) positions, that are occupied by a random mixture of Np and Zr
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atoms. The second sublattice contains just one site, the (0, 0, 0) position, which is oc-

cupied by Zr atom. This configuration results in a (Np,Zr)2(Zr)1 configuration, which

is similar to the one proposed for the δ-UZr2 phase. From first-principles calculations

[12], it was found that this configuration has the lowest energy out of all possible

configurations resulting from the distribution of atoms on the sites of this structure.

The decomposition of this phase into a mixture of γ-Np and α-Zr is assumed to take

place at about 823 K, which is in accordance with the findings of Refs. [6, 7, 9]. The

composition range over which the δ-phase extends was found to be from 65.3 to 78.2

at.% Zr [11].

In Fig. 19 the molar Gibbs energy of formation of the δ-phase is plotted as a

function of composition at 840 K as calculated from the model. The minimum of this

curve occurs at a Gibbs energy of about -1 kJ/mole. From calorimetry measurements

[72, 73], formation enthalpy of the δ-UZr2 phase is found to be -4.0 kJ/mole and, from

first-principles calculations it is found to be -6.289 kJ/mole [12]. In comparison with

the Pu-Zr system, the δ-phase does not become stable, and thus does not take part

in the phase equilibria of the system [47, 48]. This decrease of stability, when going

from U to Np and then to Pu, is expected and conforms with the calculations in Ref.

[12] where it was shown that the critical d-band occupation change needed to form

the δ-phase was reached for a lower concentration of U than Np when alloying with

Zr, thus resulting in a relatively higher energy for formation in the Np-Zr system in

comparison with the U-Zr system. Whereas, in the case of Pu, the d-band occupation

change always remained lower than the critical value, thus explaining the absence of

the δ-phase in the Pu-Zr phase diagram.

The stabilities/instabilities of the hcp and ω-phases of pure Zr are compared in
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Fig. 19. Calculated molar Gibbs energy of formation of the δ-phase as a function

of composition at 840 K, with the orthorhombic and hexagonal phases as

reference states for Np and Zr, respectively.

Fig. 20, which shows the Gibbs energy of these two phases as a function of tempera-

ture as retrieved from the SGTE database. In this plot, it can be seen that the energy

curve of the ω-structure is lower than that of hcp up to about 230 K, beyond which it

crosses over, and thus becomes unstable above this temperature. However, the Gibbs

energy description (as obtained from the SGTE database) of the ω-phase is defined

above 298 K, whereas that for the hcp phase is defined above 130 K. Thus, below 298

K, the energy curve for the ω-phase in Fig. 20 is obtained by mere extrapolation, and

the question of the more stable phase for Zr remains unanswered.

Due to this, a value of 600*3 J/mole (3 for the total number of sites) was added to

the Gibbs energy description of the ω-structure in the δ-phase, i.e. 0Gδ
Zr:Zr− 3*0Gω

Zr,

in Model 1. And, in Model 2, no such modification was made and thus, the ω-phase

was more stable than the hcp phase at low temperatures. Thus, the phase diagram
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Fig. 20. Gibbs energy versus temperature for the hcp and ω-phases of pure Zr showing

a change of stability at about 232 K.

calculated in this case is shown in Fig. 21. As expected, a miscibility gap is formed

in the δ-phase. The second part of this phase forms nearly at x(Zr)=1 and represents

the ω-phase of pure Zr. Fig. 22 shows the low-temperature Zr-rich region of the phase

diagram.

Future experimental works that may be conducted to resolve important issues in

the Np-Zr phase diagram, such as the miscibility/immiscibility of the bcc phase, and

stability range of the δ-phase, can be guided by providing thermodynamic information

that would be expected to be seen in this system. Thus, the molar enthalpies of the

system at temperatures within the range of 700-1000 K, are calculated and plotted

for two alloy compositions, 73 and 86 at.% Zr in Fig. 23. Both compositions are Zr-

rich which would make the preparation of such samples slightly easier than Np-rich

samples, which poses limitations not only due to its radioactive nature, but also due

to the difficulty in obtaining access to it for conducting experiments. As expected, a

sudden increase in enthalpy (∼10-15 kJ/mole) is seen in Fig. 23 at around the phase
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Fig. 21. Calculated phase diagram- Model 2 showing the miscibility gap in the δ-NpZr2

phase, compared with phase diagram information from Ref. [8] and DTA

results from Ref. [7].

transition temperatures (∼850oK) for both alloys.

E. L(S)DA+U study of pure Np

All the calculations in this work were performed using the VASP package [74–77]. The

ion-electron interactions were described using the projector augmented-wave (PAW)

method [78–80] which helps in reducing the number of plane-wave basis functions

needed to describe the electronic wave functions accurately. The PAW potential was

generated considering the 6d, 7s, and 5f electrons as valence states for Np, and the
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2 showing the stability of the ω-phase (NpZr2#2) over the hcp phase below

237 K, and a miscibility gap between δ-NpZr2#1 and NpZr2#2.

4s, 4p, 4d, and 5s electrons for Zr. First, calculations were performed, for both

Np and Zr, using local (spin-) density approximation (L(S)DA) for the exchange-

correlation functional, to relax all ions in the structure by changing the cell shape

and volume. Then, due to the effects of high localization and strong correlations

among the f -electrons in Np, the L(S)DA+U formalism is used to approximate the

exchange-correlation energy. In the latter case, we adopted the simplified rotationaly

invariant method proposed by Dudarev et. al [62], in which the total energy only

depends on Ueff , which is the difference between the Coulomb, U , and exchange, J ,

parameters. In the present study, the value of U is varied, but J is fixed at J = 1 eV .

Neptunium metal exhibits three allotropic forms: the α-phase (orthorhombic),

the β-phase (tetragonal) and the γ-phase (body-centered cubic) [49]. Convergence

tests were performed for each of these phases to limit the total-energy convergence
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Fig. 23. Molar enthalpies of the system calculated at various temperatures for

Np1−xZrx at x=0.73 - composition corresponding to the formation of the

δ-NpZr2 phase, and at x=0.86, composition of the second invariant reaction

in Table IV.

to less than 5 meV. Plane-wave energy cutoffs of 600 eV, 550 eV and 450 eV were

determined for the α-, β- and γ- phases, respectively. Similarly, integrations over the

first Brillouin zone were made using k-point grid sets of 8 x 10 x 10 (for the α-phase),

8 x 8 x 10 (for the β-phase) and 10 x 10 x 10 (for the γ-phase) generated according

to the Γ-centered Monkhorst-Pack scheme [81].

Each of the structures were relaxed in terms of ion positions, cell shape and

volume. This process was repeated until an optimized value of Ueff was obtained

when compared with experimental lattice parameters. Fig. 24 shows a comparison

between calculated values, obtained from the L(S)DA and L(S)DA+U methods, and

experimental values of lattice parameters of the α-Np phase obtained from Ref. [49].
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Fig. 24. Lattice parameter as a function of U for the α-Np (orthorhombic) phase. Cal-

culated lattice parameter using L(S)DA method is also shown. Experimental

values are taken from Ref. [49].

From this comparison, the value of Ueff obtained was 2.2 eV (i.e. U = 3.2 eV,

J = 1 eV) for the orthorhombic, α-Np phase. A similar study was performed on

the β-Np (tetragonal), and the γ-Np (bcc) phases, both yielding the same value of

Ueff = 2.2 eV as shown in Figs. 25 and 26, respectively. In all the structures, it
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was observed that, an increase in the value of Ueff (or U) causes a dramatic increase

in the magnetization of the structures, as shown for all the phases in Fig. 27 . This

non-magnetic to magnetic transition was accompanied by a noticeable jump/fall in

lattice parameter, bulk modulus and internal forces within the structure. This un-

expected phenomena occur simultaneously in all three pure phases of Np. From

neutron powder diffraction measurements on α-Np [82], the value obtained for the

Gruneisen constant γG, which is the constant of proportionality between the rela-

tive change in phone frequencies and volumes, was unexpectedly outside the range

of quasi-harmonic effects. This points toward an unusual, anharmonic lattice be-

havior in α-Np that may explain the non-magnetic to magnetic transition seen here

in the L(S)DA+U study. The values of lattice parameter, magnetization calculated

for each U parameter associated with α-Np, β-Np, and γ-Np are given in Appendix B.
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Fig. 25. Lattice parameter as a function of U for the β-Np (tetragonal) phase. Cal-

culated lattice parameter using L(S)DA method is also shown. Experimental

values are taken from Ref. [49].
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Fig. 26. Lattice parameter as a function of U for the γ-Np (bcc) phase. Calculated

lattice parameter using L(S)DA method is also shown. Experimental values

are taken from Ref. [49].

To justify the selection of particular values of Ueff , we have compared the cal-

culated values of atomic volumes, bulk modulus, and cohesive energies displayed in

Fig. 28. Table V shows that the calculated enthalpies of transformations, using the

L(S)DA+U formalism with the same values of Ueff as chosen before for each struc-

ture, are more accurate when compared with experimental values than those obtained

from using the L(S)DA method.
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Table V. Calculated transformation enthalpies of Np compared with experimental val-

ues.

Ab initio calculations (eV/atom) Experimental values (eV/atom)

L(S)DA L(S)DA+U Ref. [4] Ref. [6]

∆Hα → β 0.09107 0.08434 0.05813 0.06839

∆Hβ → γ 0.36703 0.04791 0.05466 0.04041
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Fig. 27. Magnetization as a function of U for the α, β, and γ phases of Np.
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Fig. 28. Calculated values of atomic volume, bulk modulus, and cohesive volume of the

α-Np phase, compared with those obtained from experimental works (Ref. [83]

for atomic volume, Ref. [84] for bulk modulus, and Ref. [85] for cohesive

energy).



62

CHAPTER VI

SUMMARY

The phase diagram of the Np-Zr binary alloy system is calculated using the CAL-

PHAD method, and is in good agreement with the postulated phase diagram by

Gibson et al. [8], but not completely in agreement with dilatometry and microanal-

ysis data [11]. It is established that the Np-Zr system is non-ideal, unlike the U-Zr

and Pu-Zr systems. There exists a miscibility gap in the bcc phases of Np and Zr,

and the expected increase in melting points of Np-Zr alloys does not occur in this sys-

tem. Formation enthalpy of the bcc phase calculated from the thermodynamic model

proposed, is in close agreement with ab initio results obtained from KKR-ASA-CPA

calculations. Also, lattice stabilities obtained from the Np-Zr thermodynamic model

are comparable to those calculated using Density Functional Theory. This further

confirms the validity of the model developed in this work.

The intermediate δ-NpZr2 phase has a AlB2-type C32 structure, similar to the

structure of δ-phase in the U-Zr system. In this work, it is modeled as a non-

stoichiometric phase with two sublattices, one consisting of a random occupation

of Np and Zr atoms on the (2
3
, 1

3
, 1

2
) and (1

3
, 2

3
, 1

2
) sites, and the second consisting of

only Zr atoms occupying the (0, 0, 0) site. Based on the possibilities of the ground-

state phase of pure Zr, ω or hcp, two thermodynamic models and phase diagrams have

been proposed in this work. However, since both electronic structure calculations and

experimental studies (after extrapolation) point to the stability of ω-phase over the

stability of hcp phase below 232 K in pure Zr, it is more likely that the ground state

of Zr is the ω-phase, and that Model 2 is a better representation of the Np-Zr phase

diagram.
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An ab initio study is also performed to investigate the structural properties

and energetics of the Np-Zr system. Due to the inability of the Local Spin Density

Approximation (L(S)DA) for the exchange-correlation functional to handle strongly

correlated and localized systems such as Np, the L(S)DA+U formalism is implemented

in this work to obtain an optimum Ueff parameter. A Ueff of 2.2 was determined for

all the phases of Np. With this parameter, the structural parameters of all the three

phases were in better agreement with the experimental data than those predicted by

using just the L(S)DA method. A similar conclusion was arrived at for the calculated

enthalpies of phase transformations which were found to be within an acceptable

range of experimentally determined values. It is worth noting that at some critical

value of Ueff , a transition was found from a non-magnetic to a magnetic state in

the structures. This further confirms our selection of Ueff as Np is known to have a

tendency toward magnetism even though it is a not a superconductor.
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CHAPTER VII

SCOPE OF FUTURE WORK

This work was undertaken to partially fulfill the objective of determining phase equi-

libria in actinide alloy systems that form during the ”burn-up” process in fast reactors.

Major constituents of the fuel used in such reactors are U and Pu, which are usually

alloyed with Zr that can be a constituent in the fuel itself, or in the cladding ma-

terials. Higher ”burn-up” rates in these reactors will cause these long-lived fuels to

transmute to minor actinides such as Np, Am, and Cm, thus reducing their impact

on the environment [3]. More importantly, as these minor actinides can be further

fissioned, the spent fuel can be recycled, thus reducing the amount of waste produced,

and the risk of proliferation. The Np-Zr system is one of the many possible binary

alloy systems that could form in the fuel kernel during the fission process, and thus

might play an important role when facing the materials challenges associated with

the development of next-generation metallic fuels.

The results of this work are important in understanding phase equilibria in the

Np-Zr system, which provides phase stability information at a particular point in

the temperature-composition space. However, as mentioned above, the nuclear fu-

els being developed are multi-component metallic alloys, and under irradiation, they

transmute to minor actinide elements, which opens up a range of possibilities of alloy

formation during this process. Thus, it becomes important to integrate the thermo-

dynamic model developed in the current work, with those developed for other binary

models to obtain phase equilibria in ternary or multi-component systems, such as

U-Np-Zr, Np-Pu-Zr, Np-Am-Zr, etc.
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During fabrication and irradiation processes, the bcc phase of the fuels remains

stable (or metastable under cooling) [86], thus making its role an important one in

characterizing alloys. In particular, irradiation causes a re-distribution of Zr in the

fuel rod which is controlled by the rate of nucleation in the metastable bcc alloys [87].

Thus, it would be very useful to perform ab initio calculations to determine the ground

state properties of bcc alloys in various systems, such as Np-Zr, U-Ti, etc., using the

scalar-relativistic exact muffin-tin orbital method (EMTO) [88], and combine it with

the coherent potential approximation (CPA) [67] technique to treat chemical disorder.

Another important feature in the Np-Zr phase diagram is the δ-NpZr2 phase,

which is known to be detrimental as it is brittle and hard, and can initiate cracking.

Many actinide-based phases stabilize in the same C32 structure: U2Ti [89], UZr2

[14], UHg2 [90], β-USi2 [91], UGa2 [92], UB2 [93], UGe2 [94], the diborides of Al, Cr,

Nb, Ta, Ti, V, and Zr [95], CaGa2, LaGa2, and CeGa2 [96], PtZn2 and PdZn2 [97],

and PdHg2 [98]. The use of ab initio techniques such as EMTO-CPA to determine

if atomic size or electronic effects are responsible for the stability of this phase in

different stoichiometries and composition ranges in various systems, would be very

useful.
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APPENDIX A

DESCRIPTION OF THE THERMO-CHEMICAL DATABASE

In this appendix, the thermodynamics of the pure elements is described. This

data is extracted from the SGTE database that is compiled by Dinsdale [54]. The

Gibbs free energy expressions in this database are always interpreted as being ref-

ered to the enthalpy of formation from all relevant elements at 298.15 K and 1 bar,

i.e. H(298.15,1), and assuming S(0K,1bar)=0. This standard element reference state

(SER) is usually abbreviated as HSER. The notations used are similar to the ones

used in Chapter V. The units are J/mole for energy and Kelvin for temperature.

Neptunium:

The SER state for Np (M=237.05 a.u.) is the orthorhombic (or ORTHO AC) phase,

and is defined by the following values of enthalpy and entropy at 298.15 K and 105 Pa:

HSER
Np = 6, 606.54J/mol

SSERNp = 50.46J/mol.K

(A.1)

α-Np:

Gα
Np(T )−HSER

Np = 298.15 < T < 553 : 241.888− 57.531347 ∗ T
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+4.0543 ∗ T ∗ LN(T )− .04127725 ∗ T 2 − 402857 ∗ T−1

= 553 < T < 1799 : − 57015.112 + 664.27337 ∗ T

−102.523 ∗ T ∗ LN(T ) + .0284592 ∗ T 2

−2.483917E(−06) ∗ T 3 + 4796910 ∗ T−1

= 1799 < T < 4000 : − 12092.736 + 255.780866 ∗ T

−45.3964 ∗ T ∗ LN(T ) (A.2)

β-Np:

Gβ
Np(T )−HSER

Np = 298.15 < T < 555 : − 10157.32 + 183.829213 ∗ T

−34.11 ∗ T ∗ LN(T )− .0161186 ∗ T 2

+4.98465E(−06) ∗ T 3 + 532825 ∗ T−1

= 555 < T < 856 : − 7873.688 + 207.01896 ∗ T

−39.33 ∗ T ∗ LN(T )

= 856 < T < 1999 : + 19027.98− 46.64846 ∗ T

−3.4265 ∗ T ∗ LN(T )− .01921045 ∗ T 2

+1.52726E(−06) ∗ T 3 − 3564640 ∗ T−1

= 1999 < T < 4000 : − 16070.82 + 256.707037 ∗ T

−45.3964 ∗ T ∗ LN(T ) (A.3)

γ-Np:

Gγ
Np(T )−HSER

Np = 298.15 < T < 856 : − 3224.664 + 174.911817 ∗ T

−35.177 ∗ T ∗ LN(T )− .00251865 ∗ T 2
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+5.14743E(−07) ∗ T 3 + 302225 ∗ T−1

= 856 < T < 917 : − 2366.486 + 180.807719 ∗ T

−36.401 ∗ T ∗ LN(T )

= 917 < T < 1999 : + 50882.281− 297.324358 ∗ T

+30.7734 ∗ T ∗ LN(T )− .0343483 ∗ T 2

+2.707217E(−06) ∗ T 3 − 7500100 ∗ T−1

= 1999 < T < 4000 : − 14879.686 + 254.773087 ∗ T

−45.3964 ∗ T ∗ LN(T ) (A.4)

Liquid-Np:

GLiq
Np (T )−HSER

Np = 298.15 < T < 917 : − 4627.18 + 160.024959 ∗ T

−31.229 ∗ T ∗ LN(T )− .0163885 ∗ T 2

+2.941883E(−06) ∗ T 3 + 439915 ∗ T−1

= 9170 < T < 4000 : − 7415.255 + 247.671446 ∗ T

−45.3964 ∗ T ∗ LN(T ) (A.5)

Zirconium:

The SER state for Zr (M=91.22 a.u.) is the hcp (or HCP A3) phase, and is de-

fined by the following values of enthalpy and entropy at 298.15 K and 105 Pa:
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HSER
Zr = 5, 566.27J/mol

SSERZr = 39.18J/mol.K

(A.6)

α-Zr:

Gα
Zr(T )−HSER

Zr = 130 < T < 2128 : − 7827.595 + 125.64905 ∗ T

−24.1618 ∗ T ∗ LN(T )− .00437791 ∗ T 2 + 34971 ∗ T−1

= 2128 < T < 6000 : − 26085.921 + 262.724183 ∗ T

−42.144 ∗ T ∗ LN(T )− 1.342896E(+31) ∗ T−9 (A.7)

β-Zr:

Gβ
Zr(T )−HSER

Zr = 298.15 < T < 2128 : − 525.539 + 124.9457 ∗ T

−25.607406 ∗ T ∗ LN(T )− 3.40084E(−04) ∗ T 2

−9.729E(−09) ∗ T 3 + 25233 ∗ T−1 − 7.6143E(−11) ∗ T 4

= 2128 < T < 6000 : − 30705.955 + 264.284163 ∗ T

−42.144 ∗ T ∗ LN(T ) + 1.276058E(+32) ∗ T−9 (A.8)

Liquid-Zr:

GLiq
Zr (T )−HSER

Zr = 298.15 < T < 2128 : + 10320.095 + 116.568238 ∗ T

−24.1618 ∗ T ∗ LN(T )− .00437791 ∗ T 2 + 34971 ∗ T−1
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+1.6275E(−22) ∗ T 7

= 2128 < T < 6000 : − 8281.26 + 253.812609 ∗ T

−42.144 ∗ T ∗ LN(T ) (A.9)
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APPENDIX B

RESULTS OF FIRST-PRINCIPLES CALCULATIONS

Following are the values of lattice parameter and magnetization calculated for all

the three phase of Np along with the method used, and compared with experimental

values.

α-Np:

Table VI. Lattice parameters and magnetization values of the α-Np (orthorhombic)

phase calculated with LDA, L(S)DA, and L(S)DA+U approximations, and

compared with experimental values [49] (J=1 eV).

Method Lattice parameters Magnetization

a (Å) b (Å) c (Å) (Tesla/Å)

Experiment [49] 6.663 4.723 4.887 -

LDA 6.465 4.576 4.694 -

L(S)DA 6.466 4.576 4.692 0.000

L(S)DA + (U=2.0) 6.488 4.609 4.717 0.000

L(S)DA + (U=2.5) 6.501 4.632 4.731 0.000

L(S)DA + (U=3.0) 6.513 4.659 4.739 0.000

L(S)DA + (U=3.1) 6.519 4.664 4.744 0.119

L(S)DA + (U=3.2) 6.522 4.676 4.748 0.403

L(S)DA + (U=3.3) 6.763 4.989 4.957 1.087

L(S)DA + (U=3.6) 6.348 5.567 5.566 32.143

L(S)DA + (U=4.0) 6.754 5.275 5.382 33.208
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β-Np:

Table VII. Lattice parameters and magnetization values of the β-Np (tetragonal)

phase calculated with LDA, L(S)DA, and L(S)DA+U approximations, and

compared with experimental values [49] (J=1 eV).

Method Lattice parameters Magnetization

a=b (Å) c (Å) (Tesla/(Å)

Experiment [49] 4.883 3.389 -

LDA 4.539 3.381 -

L(S)DA 4.539 3.381 0.000

L(S)DA + (U=2.0) 4.562 3.389 0.000

L(S)DA + (U=2.5) 4.578 3.399 0.005

L(S)DA + (U=3.0) 4.613 3.396 0.709

L(S)DA + (U=3.1) 4.639 3.389 0.956

L(S)DA + (U=3.2) 4.596 3.412 0.008

L(S)DA + (U=3.3) 5.186 3.051 0.366

L(S)DA + (U=3.6) 5.561 3.176 16.061

L(S)DA + (U=4.0) 4.482 4.517 12.014
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γ-Np:

Table VIII. Lattice parameters and magnetization values of the γ-Np (bcc) phase cal-

culated with LDA, L(S)DA, and L(S)DA+U approximations, and com-

pared with experimental values [49] (J=1 eV).

Method Lattice parameters Magnetization

a=b=c (Å) (Tesla/(Å)

Experiment [49] 3.520 -

LDA 3.209 -

L(S)DA 3.209 0.000

L(S)DA + (U=2.0) 3.232 0.533

L(S)DA + (U=2.5) 3.241 0.006

L(S)DA + (U=3.0) 3.399 2.881

L(S)DA + (U=3.1) 3.253 0.000

L(S)DA + (U=3.2) 3.513 3.622

L(S)DA + (U=3.3) 3.533 3.732

L(S)DA + (U=3.6) 3.725 4.318

L(S)DA + (U=4.0) 3.776 4.369
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