
 
 

 

 
 
 

CONTROL AND OPTIMIZATION OF A COMPACT 6-DEGREE-

OF-FREEDOM PRECISION POSITIONER USING COMBINED 

DIGITAL FILTERING TECHNIQUES 

  
 

 
 

A Thesis 

by 

JOSE CHRISTIAN SILVA RIVAS 

 

 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 
 
 
 
 

 
December 2011 

 
 
 
 

 

Major Subject: Mechanical Engineering 
  



 
 

 

 
 

CONTROL AND OPTIMIZATION OF A COMPACT 6-DEGREE-

OF-FREEDOM PRECISION POSITIONER USING COMBINED 

DIGITAL FILTERING TECHNIQUES 

 
 

 
A Thesis 

 
by 
 

JOSE CHRISTIAN SILVA RIVAS 
 
 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 
 
 

 
Approved by: 

 
Chair of Committee,  Won-jong Kim 
Committee Members,  Alexander Parlos 
    Hamid Toliyat 
Head of Department,  Jerald Caton 
 
 
 

December 2011 
 
 
 

Major Subject: Mechanical Engineering



iii 
 

 

ABSTRACT 

 

Control and Optimization of a Compact 6-Degree-of-Freedom Precision Positioner Using 

Combined Digital Filtering Techniques.   

(December 2011) 

Jose Christian Silva Rivas, B.S., The University of Texas at Austin 

Chair of Advisory Committee:  Dr. Won-jong Kim 

 

This thesis presents the multivariable controller design and implementation for a 

high-precision 6-degree-of-freedom (6-DOF) magnetically levitated (maglev) positioner. 

The positioner is a triangular single-moving part that carries three 3-phase permanent-

magnet linear-levitation-motor armatures. The three planar levitation motors not only 

generate the vertical force to levitate the triangular platen but control the platen’s position 

in the horizontal plane. All 6-DOF motions are controlled by magnetic forces only. 

The positioner moves over a Halbach magnet matrix using three sets of two-axis 

Hall-effect sensors to measure the planar motion and three Nanogage laser distance 

sensors for the vertical motion. However, the Hall-effect sensors and the Nanogage laser 

distance sensors can only provide measurements of the displacement of all 6-axis. Since 

we do not have full-state feedback, I designed two Linear Quadratic Gaussian (LQG) 

multivariable controllers using a recursive discrete-time observer. A discrete hybrid 

H2/H∞ filter is implemented to obtain optimal estimates of position and orientation, as 

well as additional estimates of velocity and angular velocity for all 6 axes. In addition, an 

analysis was done on the signals measured by the Hall-effect sensors, and from there 

several digital filters were tested to optimize the readings of the sensors and obtain the 

best estimates possible. One of the multivariable controllers was designed to close the 

control loop for the three-planar-DOF motion, and the other to close the loop for the 

vertical motion, all at a sampling frequency of 800 Hz. Experimental results show a 

position resolution of 1.5 μm with position noise of 0.545 μm rms in the x-and y-

directions and a resolution of less than 110 nm with position noise of 49.3 nm rms in z.  
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CHAPTER I 

INTRODUCTION 

 
1.1 High Precision Motion Control 

 In modern nanoscale or microscale engineering, wafer steppers, surface 

profilometers, and scanned probe microscopes require high-precision motion control. 

Especially the wafer stepper stage in semiconductor manufacturing is the main 

application of the work presented in this thesis. The wafer stepper stage is very 

important equipment for photolithography such as generating step-and-repeat motions. 

An optical source sheds a deep-ultraviolet (DUV) beam through the mask onto each die 

site on the wafer. The wafer stage is required to move the wafer in all 6 directions with 

minimum errors, it should have high resolution and accuracy. In this thesis, 

multivariable LQG controllers are presented for a compact 6-DOF maglev positioner 

with high precision.  

 

1.2 Prior Art of the Single-platen Maglev Multi-axis Positioners 

1.2.1 The First 6-DOF Planar Levitation Stage 

 The world’s first one-moving-part 6-DOF precise planar magnetic-levitation 

stage was developed by Kim [1]. Figure 1-1 below describes the structure of the 

positioning system. In this design, the winding is stationary and the permanent magnet 

arrays are attached to the moving platen. There are totally 4 motors; each has 3 phases 

with 11 windings per phase. Each motor is to generate two force components, one in the 

z-direction and the other one in the x- or the y-direction. 

 
 
 
________________  

 This thesis follows the style of Journal of Dynamic Systems, Measurement and Control. 
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Figure 1-1: Structure of the design with four motors [1] 
 

 
 DQ decomposition was performed to obtain the electric current-force relation 

and to eliminate the nonlinearity due to trigonometric functions. Two orthogonal force 

components are decoupled to control the two degrees of freedom independently. As in 

Figure 1-2, the D-axis is defined as the z'-axis in the platen frame; the Q-axis leads the 

D-axis by [1]. Here, l is a spatial pitch of the Halbach magnet array.     

This system has many advantages, such as, the linearity in force-current relation, 

no mechanical contact during moving, being symmetric in the x- and y-directions. There 

is no wire or cable connected with the moving platen except a thin ground wire for the 

capacitance gauges. Finally there is no heat stored and dissipated through the moving 

platen. Therefore, the thermal expansion error is minimized [1].     

4

l
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Figure 1-2: Suspension of the platen in dynamic equilibrium [1] 
 

   

The maglev positioning system has a sampling rate of 5 kHz, a control 

bandwidth of 100 Hz and a maximum acceleration of 2 g. The overall mass of the 

moving platen is 5.6 kg, and its travel ranges are 50 mm in x, 50 mm in y and 400 µm in 

z [1]. 

 

1.2.2  Advanced Technology Program (ATP) Stage 

 The ATP stage was developed by Tiejun Hu, a former Ph.D. student of Dr. Won-

jong Kim [2]. The moving platen works over a superimposed Halbach magnet matrix, 

which is the superimposition of two orthogonal single-axis Halbach magnet arrays. 

Figure 1-3 shows the moving platen with its components. The design uses the same 

linear force-current relation as in [1] by DQ decomposition. There are 3 motors with 3 

phases per motor and 4 windings per phase. Totally 6 force components distributed as in 

Figure 1-4 are sufficient for the moving platen to move in 6 DOFs.   
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Figure 1-3: Top and bottom views of the moving platen [2] 
 

 

 
Figure 1-4: Forces generated by three sets of coils of the moving platen [2] 

 

 Three Agilent laser interferometers are used to sense the exact position of the 

moving platen in planar motions. There are two stick mirrors reflecting the laser beams. 

Three Nanogage 100 laser distance sensors are to measure the distances from the laser 

heads to the flat aluminum surface on top of the magnet matrix. With these 

measurements, the roll, pitch, and yaw angles of the moving platen can be determined. 

 The moving platen, which weighs 5.91 kg, can travel a range of 160 mm in x 

and y. The positioner demonstrated a position resolution of 20 nm and position noise of 

10 nm rms in x and y and 15 nm rms in z. Maximum velocity achieved is 0.5 m/s at a 5 

m/s2 acceleration [2].  

 
terminal blocks 
3-phase winding C 

aerostatic 
bearing pad 

3-phase winding B 
      3-phase winding A  

laser distance sensor 

pockets for 
mass reduction  

stick mirrors  
air-supply 
distributor  
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1.2.3 Long-stroke Magnetically Levitated Linear Actuator   

 A moving-coil electrodynamic planar motor was developed by Compter [3]. The 

stationary part is a two-dimensional Halbach magnet array. The moving part has four 

forcers with three phases per forcer. Figure 1-5 shows the structure of the planar motor 

with the stationary magnet plate and four forcers fixed to the moving part. 

 

 
Figure 1-5: The electrodynamic planar motor with four forcers in the moving part [3] 

 
 
 

 
Figure 1-6: Cross-section of a forcer with the Halbach magnet array [3] 

 
 

Figure 1-6 shows a cross-sectional view of a forcer with the Halbach magnet 

array. The horizontal distance between two adjacent coils is 4τ/3 where τ is one spatial 

pitch of the magnet array. Each forcer is a symmetrical three-phase motor. In Figure 1-7, 

the magnet orientation is illustrated. The angle between the longer sides of the coils and 

the edges of the magnet blocks is 45°. 
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Figure 1-7: Magnet orientation [3] 

 
 Each forcer can generate two force components in the vertical direction and in a 

horizontal direction. The force-current relation for a forcer was derived with the 

introduction of the current amplitude and the current phase. In which, the current 

amplitude determines the force amplitude and the force angle is controlled by the 

current phase angle [3]. The positioning resolution, the maximum velocity, acceleration 

and travel ranges of this electrodynamic planar motor are not shown in [3]. In this 

system, the sensing accuracy of 1% of a spatial pitch of the magnet array is low if the 

spatial pitch is on the order of 10 mm.   

 

1.2.4 Compact Positioner Moving over a Superimposed Halbach Magnet Matrix 

The multi-axis compact positioner shown in Figure 1-8 was designed and 

implemented by Nguyen [4]. The single-moving-part positioner is designed to move in 

the magnetic field generated by a superimposed concentrated-field permanent magnet 

matrix. The travel ranges in two orthogonal directions are on the order of 100 mm. The 

moving platen, which has the size of 185.4 mm × 157.9 mm and weighs 0.64 kg, mainly 

consists of a plastic frame and six copper coils. It is actuated in the horizontal plane by 

flowing six independent electric currents into the coils. The platen is supported against 

gravity by three air bearings.  
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Figure 1-8: Top view of the platen with all components assembled [4] 
   

The force calculation is based on the Lorentz force law, with a current-carrying 

rectangular coil placed in the magnetic field of the superimposed Halbach magnet 

matrix, the force acting on the coil is calculated by volume integration. The distances 

between the longer sides and between the shorter sides of the rectangular coil are 

designed to fit a half pitch and one pitch of the Halbach magnet array and the force-

current relation for the entire platen with six coils is derived.    

 Three Hall-effect sensors are attached to the moving platen to measure the 

magnetic flux densities. The position of the moving platen is determined by the field 

solution of the magnet matrix and the magnetic flux densities sensed by the Hall-effect 

sensors. For the step responses with step sizes within 1-mm, the overshoots and the 

steady state errors are negligible. The achieved travel ranges are 15.24 cm in x, 20.32 

cm in y, and 0.21 rad in the rotational motions about the vertical axis. The positioning 
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resolution in x and y is 8 µm with the rms positioning error of 6 µm. The positioning 

resolution in rotation about the vertical axis is 130 µrad [4].  

 

1.3 Overview of Compact 6-DOF Precision Positioner  

 The compact 6-DOF precision positioner was developed by Ho Yu, a former 

Ph.D. student of Dr. Won-jong Kim [5]. There are 3 motors as in [2] and the force 

allocations of the two designs are the same. In Figure 1-9, the motors are noted as 3-

phase windings A, B, and C. In this design, the number of coils per motor is only 3, 

compared to 12 in [2]. Therefore, the total number of coils, the mass and volume of the 

moving platen, and the energy consumed are reduced considerably. 

The most significant feature is that the only one levitated moving part, namely 

the platen, can generate all 6-DOF fine and coarse motions. Any 6-DOF motions can be 

generated by a combination of the 6 force components of the platen. In addition, there 

are several additional advantages such as: 

1. A mechanically non-contact machine structure does not need lubricants, nor 

produce wear particles. Therefore, it is suited for clean-room environment.  

2. Superimposing multiple linear motors as one actuator reduces the footprint. 

3. Compared to traditional positioners, the single moving frame can have high 

natural frequencies. 

4. The simple design eliminates complicated components and reduces 

manufacturing cost with high reliability [1–2]. 

 

The frame of the platen was made of Delrin with a mass density of 1.54 g/cm² in 

order to reduce its total mass. The triangular design was chosen for the design 

simplicity. The magnet matrix, a superimposed concentrated-field double-axis magnet 

matrix serves as a stator. The dimension of the magnet matrix is 304.8 mm × 304.8 mm 

× 12.7 mm.  

 



 

 

9

 

 

Figure 1-9: Structure and components of the moving platen [5] 

 

There are 3 Hall-effect sensors attached to the moving platen to measure the 

magnetic flux densities at the center points of the sensors. The position of the moving 

platen is determined by the field solution of the magnet matrix and the magnetic flux 

densities sensed by the Hall-effect sensors, the collaboration of two Hall-effect sensors 

is needed to locate the position of the moving platen in a horizontal direction, and 

another Hall-effect sensor is needed to locate the position in the vertical direction. A 

Hall-effect sensor is only used for locating the position of the moving platen and 

checking if it is in a sensitive interval. 

The total mass of the moving platen is 1.52 kg. The travel ranges are 220 mm in 

the x-direction and 200 mm in the y-direction. The rotation angle of 12° was achieved in 

rotation around the z-axis [5], which is perpendicular to the top flat surface of the 

magnet matrix. The positioning resolution in x and y is 15 µm with the rms positioning 

noise of 10 µm.    
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1.4 Thesis Overview  

 This thesis consists of seven chapters: introduction, electromagnetic structure, 

sensors, multivariable controller design, optimization of the Hall-effect sensor signals, 

6-DOF closed-loop experimental results, and conclusions and future work.  

 Chapter I introduces the reviews of precision engineering and its applications. 

The introduction of levitation theory is given, and the overview of the proposed 6-DOF 

multivariable controller with high precision is provided. 

Chapter II presents the electromagnetic structure and concepts for the 6-DOF 

precision positioner. It includes the magnet matrix theory, overview of the planar 

motors, the sensing system, and an overview of the instrumentation to create the 

interface between the control PC and the positioner.  

Chapter III describes several parameters and specifications required to control 

the precision positioner. Dynamic models of the levitator based on the Newton’s second 

law are derived. In addition, DQ decomposition to remove nonlinearity in dynamics is 

applied, and linearized state-space models in vertical and lateral modes are developed.   

Chapter IV presents the design methodology, procedures and implementation of 

the multivariable LQG controllers for the maglev system, which includes the LQR 

control laws and the discrete hybrid filter acting as the state estimator.  

Chapter V presents the analysis of the Hall-effect sensor signals, from which 

several digital filters are designed and tested in order to optimize the response of the 

signal for the planar motion. 

Chapter VI provides the 6-DOF closed-loop experimental results including 

micro- and nano-scale stepping motions, long-range travel motions in precision motion 

control such as semiconductor manufacturing, as well as comparisons between my 

results and the results of the designer of the positioner.  

Chapter VII gives the conclusions of this thesis and suggestions for future work. 

The reference section is followed and the Matlab and C-program codes are included in 

the Appendices.  
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1.5 Thesis Contributions  

 This thesis presents a multivariable controller design, implementation, and 

experimental results, as well as the combination of digital filtering techniques for the 

planar motion. Two LQG-controllers were designed and implemented to achieve the 6-

DOF magnetic levitation, one controller for planar motion and another one for the 

levitation motion, using a discrete hybrid filter as the observer. The discrete hybrid filter 

is necessary as the sensors only provide displacement data and full state feedback is 

needed for the LQG controller to work. The hybrid filter provides optimal estimates of 

the displacement data as well as additional estimates of the velocities for all 6 axes. 

Also an analysis was conducted for the Hall-effect sensors. From this analysis several 

digital filters were designed and tested for the planar motion in order to filter out the 

static noise and obtain a better resolution. Several experimental results of nanometer- 

and sub-micrometer-level positioning in all 6 DOFs are presented in this thesis, as well 

as long range motions in the x-y directions.  
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CHAPTER II 

ELECTROMECHANICAL DESIGN 

 

This chapter introduces the electromagnetic structures and the electromechanical 

design for the compact positioner. The positioner is operating above the concentrated-

field magnet matrix that is the superimposition of two Halbach magnet arrays. The 

magnetic field generated from a Halbach array is analyzed by Fourier series. Since the 

magnetic field is periodic, the positioner can generate driving and levitation forces. 

 

2.1 Halbach Magnet Matrix 

2.1.1 Halbach Magnet Array 

The magnet array in the base plate is employed as a stator. For the planar motor, 

the magnet array has a form of a plane. Magnetic arrays for the conventional 

permanent-magnet linear motors have both sides of the magnetic fields if there is no 

iron backing. Since the planar motor works only one side of the magnet array and the 

other side is wasted, an anti-symmetric magnetic field pattern was desired. The Halbach 

magnet array is the representative anti-symmetric single-side field magnetic array [6]. 

Figure 2-1 shows the single axis Halbach array. Four blocks of magnets with the 

magnetization rotated 90° in each other construct a single spatial pitch. Each adjacent 

magnet segment is rotated around an axis perpendicular to the direction, in which the 

array extends by a predetermined angle of 90° or 45°. The Halbach magnet array 

produces a 2 times stronger magnetic field than that of a conventional magnet array 

with the same volume.  
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Figure 2-1: Halbach magnet array in y [1] 

 

Halbach magnet array has a periodic geometry and the magnetic field so that 

Fourier series representation is suitable for analyzing the magnetic field. In our 

positioning stage, the strong fundamental field is generated on the side faced with 

windings on platen. The Halbach magnet array magnetization using Fourier series is 

first performed to model the magnetic flux on the magnet matrix.  

The vertical and the lateral magnetization components of the Halbach magnet 

array are represented by the complex Fourier coefficients [1,6]. 
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where kn  is the spatial wave number as follows, 
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The spatial wavelength of the magnet array is represented by l which is 

identified with the pitch of 50.97 mm. The Halbach magnet array whose magnet has a 

square cross-section is presented as 
4

l  . 

 

 

Figure 2-2: Fourier coefficients of the Halbach magnet array flux density [1] 

 

The Fourier coefficients of the Halbach magnet array flux density on the strong 

side are shown in Figure 2-2. The total magnetization is represented in (2.4-2.5), 
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where Mxn , Myn  and Mzn are the Fourier coefficient with peak magnetization of M0. 

After we define the magnetization components, the magnetic flux density with air gap 

Z0 can be obtained. The following equations present the magnetic flux density using 

magnetoquasistatic (MQS) approximation, 
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00 ( ) (1 )
2

n nZ
xn xn znB M jM e e            (2.7) 

 

where γn is the absolute value of the spatial wave number. 

The field solutions for the magnet array at a plane Z0 are shown in equations 

(2.6-2.7). From this one can derive the Fourier coefficients of the magnetic flux density 

from the magnet array illustrated in Figure 2-1. In the ideal case Halbach magnet array, 

the strong side of the magnet array generates the magnetic field of the fundamental, 5th, 

9th ,…, orders. The magnetic field is a superimposition of those harmonics. The 3rd, 7th, 

11th,…, order fields cancel out. A more purely sinusoidal field on the strong side of the 

Halbach magnet array can be generated from the explanations above. That means the 

planar motor may have little effect from the force ripple and obtain better power 

efficiency. 

 

2.1.2  Concentrated-field Magnet Matrix 

However to generate both planar and vertical motions, another Halbach magnet 

array is required. The superimposition of two orthogonal Halbach magnet array 

produces a concentrated-field magnet matrix [1]. The constant magnetic field is 

measured by Hall-effect sensors [6].  The result of the superimposition is shown in 

Figure 2-3 as a plane view, in addition, the magnet blocks are represented with an arrow, 

they have 1 / 2  remanence of the magnets noted with North (N) and South (S) poles, 

which are strong magnets. Shaded magnet blocks surrounding the North pole tip up 45° 

as shown in Figure 2-4(a) and shaded blocks surrounding the South pole tip down 45° 

as shown in Figure 2-4(b), blank spaces mean that the magnet field is canceled out. As 

mentioned in the previous section, the Halbach magnet array has a stronger fundamental 

field, by a factor of 2 , than the other side. Since the concentrated-field magnet matrix 

follows the linear superposition between two orthogonal magnet arrays, the basic 

principle of the Halbach magnet array is applicable to the two-dimensional magnet 

matrices.  
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Figure 2-3: Concentrated-field magnet matrix [1] 

 

 

 

Figure 2-4: 3D views of the concentrated-field magnet matrix [2]  

 

The magnet matrix designed and manufactured by Dr. Won-jong Kim’s former 

students Nikhil Bhat and Dr. Tiejun Hu consists of a total of 6 pitches in the x- and y-

directions, by adding the number of pitches in each direction, the travel range of the 

positioner can be increased. The magnet matrix is composed of neodymium-iron-boron 

(NdFeB) magnetic blocks, this rare-earth magnetic material has a high remanence, 

coercive force and maximum energy. The total magnet array includes 432 weak magnet 

block, 72 strong magnet blocks, and 72 aluminum spacers. Figure 2-5 presents the 

picture of the finished magnet array.  
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Figure 2-5: Assembled magnetic matrix with aluminum spacers [2] 

 

From the definition of the Fourier series in the previous section, the total 

magnetic flux densities of the Halbach magnet array on the fundamental strong side are 

presented as follows, 
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Figure 2-6 (a), (b) and (c) present the total magnetic flux density in x, y and z 

respectively. According to the previous equations, the magnetic flux density decays 

exponentially with respect to the air gap.   
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Figure 2-6: Flux density representation (a) in x, (b) in y, and (c) in z [7] 

 

2.2 Motor Windings 

The positioner carries three planar motors on the bottom face of the body. Each 

planar motor consists of three phases, with which the positioner totally include nine 

winding sets. A single winding has three hundred and five turns with AWG#24 heat 

bondable wire (diameter of 0.0213”). To achieve optimal motion performances with a 

planar motor, the flatness process of the bottom surface is crucial. Design work of the 

winding set performed by Hu took care of several parameters such as, the thickness of 

wire, the number of layers, the number of turns, the peak phase current, and the terminal 

voltage [2]. 
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2.3 Power Amplifiers 

As mentioned in the previous section, the positioner includes total 9 three-phase 

winding sets. Nine independent channels control the winding actuator for the 

positioner’s motion generation. The source components that control winding set are the 

currents from the amplifiers. In this system, total nine-channel power amplifiers are 

required to supply individual phase currents. The programming code and RTAI and 

Comedi deal with the voltage signals from the analog-to-digital converters. It also 

generates the voltage commands to the digital-to-analog converters (DACs). In the 

middle of the winding set and the converters, the power amplifiers supply the exact 

amount of current flowing to the winding set from the voltage sources. The power 

amplifier’s dynamics is a critical issue for the current signal control. 

2.4 Power Supplies 

Two linear power supplies of LZS-250-3 manufactured by LAMBDA 

Electronics1 are used. It is manufactured as rugged mechanical and superior thermal 

design. Besides, wide range adjustment of output and protecting transient input voltage 

are the feature of this power supply. The linear power supplies have 5 mV ripple errors. 

On the other hand, the switching-type power supplies have the ripple errors of 150 mV. 

Figure 2-7 shows the picture of the linear power supply in the front, and the back, 

respectively. The specifications of the LZS-250-3 are presented below: 

 

 Output voltage range:    18.0~29.4 V.  

 Nominal Voltage:    24 V. 

 Maximum output current at 40°C: 12.5 A 

 Maximum output current at 60°C: 10 A 

 Ripple and noise:    100 mV (peak to peak)/10 mV (RMS). 

 

____________________    
1 LAMBDA Americas, 3055 Del Sol Blvd, San Diego, CA 92154 
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The power OP Amp ratings and the maximum output current to the planar 

motors determine the current and voltage ratings of the power supply. The maximum 

current in winding that we measured was 1.29 A. Since the positioner carries total nine 

phases in planar motors, the maximum input current should be more than nine times of 

the maximum current of a single phase winding that is 11.61 A.  

 

 

Figure 2-7: LZS-250-3 power supply 

 

Nine linear power OP Amp PA12A manufactured by Apex2 are used. The 

specifications of the power OP Amp satisfy the current and the voltage swing for the 

power amplifier circuits. Some of PA12A's specifications [3] are listed below:  

 Supply range:      ±10 V to ±50 V.  

 Output current:     Up to ±15 A peak. 

 Settling time to 0.1% in a 2V step at 25°C:  2 µs.  

 Slew rate at 25°C:     4 V / µs. 

 Maximum power dissipation:   125 W. 

 

This power OP Amp is commonly used in motor, power transducers, 

temperature controls, programmable power supplies, and audio amplifiers [8]. 

 

____________________    
2 Apex Microtechnology Corp., 5980 N. Shannon Road, Tucson, Arizona 85741 
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2.4.1 Power Amplifier Circuit 

The power amplifier circuit illustrated in Figure 2-8 was designed by Hu [2]. 

The differential amplifier, feedback amplifier, and power booster form a circuit. 

Resistors R1, R2, R3, and R4 serve on the differential amplifier which blocks common-

mode input signals and works as a low pass. A feedback amplifier serves on to stabilize 

the current control loop. The current-sensing resistor R10 measures the current flowing 

through the winding in real time. The amplifier closed-loop bandwidth of 1.3 kHz was 

obtained. Parameters of the resistance are presented below. 

 

 

Figure 2-8: Power amplifier circuit [2] 

 

 R1 = R2 = R3= R4 = R5 =R8=R9:  10±0.001 kΩ 

 R6:  82 kΩ  

 R7:  1.3 kΩ  

 R10:  1 Ω  

 C1 = C2 = C3: 0.01μF 

 Ra:  19.44 Ω  

 La:  15.26 mH  
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After the power amplifiers were connected to the planar motors, voltage and 

current tests were performed. Each single winding was connected to the power 

amplifiers individually. Then the capabilities of supplying appropriate amount of 

current were checked by digital multimeter. A single winding has a resistance of 4.98 

Ω. The power amplifier receives the voltage signal sources from the DAC converter. 

Feedback control is performed as voltage signals on RTAI and Comedi. The maximum 

voltage sensing of the DACs is ±10 V. The maximum output current from the power 

amplifier is 1.29 A when the DAC output voltage reaches the maximum value of 10 V. 

 

2.5 Data Acquisition 

As mentioned in the previous section, feedback signals from sensors are 

controlled as voltage signals on programs. Digitized signals with sampling frequency of 

800 Hz circulate the feedback control loops through the power amplifiers, planar 

motors, Hall-effect sensors, and laser distance sensors. As an analog-to-digital converter 

(ADC), NI PCI-6221 board manufactured by National Instrument (NI) is used. The NI 

PCI-6221 ADC supports 16 16-bit, 250-kS/s analog output channels, 24 digital I/Os, 

two 16-bit analog outputs and 32-bit counters. All analog voltage signals from three 2-

axis Hall-effect sensors and three laser distance sensors come through this board and are 

converted to digital signals. As a DAC, NI-6703 board manufactured by NI is used. 

This DAC board supports sixteen 16-bit analog output voltage channels with ±10V and 

8 digital I/O lines. These two data acquisition boards are supported by Comedi drivers 

of “ni_pci.mio” and “ni_670x” for the real-time control. Although commonly used data 

acquisition board such as NI-6221 has both of analog input and output channels, the 

dual data acquisition boards were adopted. 

For the convenience of signal cable connection, a CB-68LP connector 

manufactured by NI is used. Each data acquisition board has their own connectors. The 

numbers represented on the board correspond with data channels on data acquisition 

board to distinguish channels. In addition, screws placed on the pins give convenience 

to connect and disconnect data signal cables just using a screw driver. Figure 2-9 
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presents two connectors for two data acquisition boards. The left side is the DAC 

connection of NI-6703 and output data signal cables connected to the power amplifiers. 

The right side is the ADC connection of NI-6221 and input data signal cables from laser 

distance sensors and 2-axis Hall-effect sensors. Shielded signal cables that have 68 pins 

are used between the data acquisition boards and the connector blocks. It consists of 

individually shielded twisted pairs for the analog inputs and outputs as well as the 

twisted pairs for critical digital I/O. 

 

 

Figure 2-9: Connector for the data acquisition boards [5] 

 

2.6 Instrumentation 

2.6.1 Maglev Stage 

The maglev stage used in the experimental setup as shown in Figure 2-10 is 

capable of positioning in 6 DOFs with a travel range of 200 × 220 mm [5]. Beneath the 

platen, the single moving part, is the double-axis Halbach magnet matrix mentioned 
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before, which is covered with a mirror-finished thin aluminum plate. The platen is 

currently suspended using three aerostatic bearings, and generates force to move in 6 

DOFs using three planar motors, which are attached to the bottom of the platen. Three 

Hall-effect sensors and three laser distance sensors are used for the 6-DOF position 

sensing. 

 

 

Figure 2-10: Magnetic levitation stage 

 

2.6.2  Hall-effect Sensors 

The Hall-effect sensor used in this research is a two-axis Hall-effect sensor 2D-

VH-11SO manufactured by Sentron AG3 [9]. It is an 8-pin, surface mount, small outline 

integrated circuit. It can measure the magnetic flux density of two orthogonal axes 

about the chip’s surface. A photograph of the 2D-VH-11SO mounted on an IC board is 

shown in Figure 2-11. The 2D-VH-11SO requires either a constant current source of 2 

mA or a constant voltage source of 5 V, these power sources were tested by Kawato [7]. 

The current power source showed a smaller sensor output fluctuation. Following are the 

specifications of the sensor for a constant 2 mA current [10]: 

 Input resistance: 2.2 kΩ 

 Output resistance: 8.5 kΩ 
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 Sensitivity: 400 mV/T 

 Magnetic sensitive volume: 0.25 × 0.25 × 0.20 mm 

 

Figure 2-11: 2D-VH-11SO mounted on an IC board 

 

The Hall-effect sensors operate with the power supply circuit, an amplifier, and 

a low-pass filter to prevent aliasing. The setup includes three sets of power supply 

circuits for each Hall-effect sensor. To regulate the current source, the current regulator 

diodes CR200 manufactured by Vishay Siliconix4 were used. The power supply circuit 

with the diodes provides the 2-mA constant current and it guarantees ±10% tolerance 

with good temperature stability.  

The position of the moving platen in the base coordinate system fixed to the 

magnet matrix is determined by the field solution of the magnet matrix and the 

magnetic flux densities sensed by the Hall-effect sensors. Beyond the sensitive intervals 

as noted in Figure 2-12, the sensing noise is relatively large and the magnetic flux 

density may exceed the sensing range of the sensors. A collaboration working approach 

was used in [5] to take advantages of linearity and low sensing noise in the sensitive 

intervals. 

____________________    
3 Sentron AG, Baarerstrasse 73 CH – 6300 Zug, Switzerland 
4 Vishay Intertechnology, Inc. 63 Lincoln Highway, Malvern, PA 19355-2120 



 

 

26

 

 

Figure 2-12: Collaboration of two Hall-effect sensors [5] 

 

2.6.3  Amplifier and Analog Filter 

The OP Amp TL072ACP manufactured by Texas Instruments5
 is used. To 

reduce the common-mode noise, the differential amplifier is used. The amplifier 

requires a ±15-V power source, which is supported by the power supply E3646A 

manufactured by Agilent. An anti-aliasing filter that is the low-pass filter with the 

frequency of 200 Hz is placed after an amplifier circuit. This hinders not only aliasing 

signals, but also the high frequency noise going into the ADC. Sensor noise of 1 mV is 

measured after the low-pass filter. All Hall-effect sensor outputs after amplifiers and 

analog filters are connected directly to the NI-6221 ADC board. The specifications of 

the amplifier and the analog filter circuit are presented in the figure below. 
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Figure 2-13: Amplifier and filter circuit [7] 

 

2.6.4  Nanogage Laser Distance Sensors 

 Vertical mode position feedback is performed by three laser distance sensors 

(Nanogage 100). The vertical mode includes a translation in z, pitch, and roll. 

Nonmagnetic body parts of the sensors do not affect anything on the magnetic field and 

the planar motors performance [11]. The entire signal-capture range of the laser 

distance sensor is ±400 μm. However, the area in which the laser sensor can measure 

linearly is 100 μm in the middle of the signal-capture range. A three-colored LED light 

indicates the sensor position, red indicates the sensor position loses signals, yellow turns 

on when the signal is within the capture range and green shows that it’s placed at the 

proper zero-position. By experimental calibrations, the laser distance sensors transmit a 

voltage signal of ±5 V to the ADC.  

A large bandwidth of 100 kHz makes the Nanogage sensor suitable for vibration 

measurements. The large 3-mm laser head stand-off has benefits in several applications 

such as handling equipment that requires additional clearance like semiconductor 

___________________ 
5 Texas Instruments Inc. 13532 N. Central Expressway, Dallas, TX 75243-1108 
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wafers. In addition, the sensors are insensitive to temperature and its small size (2.31-in 

length and 0.623-in diameter) gives the convenience of installation and equipment 

development. Figure 2-14 illustrates the working principle of the laser distance sensor.  

 

 

Figure 2-14: Basic working principle of the laser distance sensor [12] 

 

The laser distance sensor is a folded optical triangulation sensor composed of a 

bi-cell detector and has precisely controlled focal spot size. The automatic gain 

controlled (AGC) laser diode source and the bi-cell detector have a 10-μm gap. The 

laser beam from the diode is reflected by the target area and then goes into the detector. 

The output voltage that is proportional to the vertical displacement is generated by the 

laser signals from the bi-cell detector. The linearity with respect to the voltage output is 

finally defined by the numerical calibration and corrections [12]. 

 Three laser distance sensors are mounted on the platen. The vertical mode in θ, 

ψ and z is controlled by feedback from the nanogage laser distance sensors. The planar 
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motion control in the x-y plane is achieved with similar methodology because each axis 

of the magnetic field is independently placed in an orthogonal direction. The Hall-effect 

sensor and laser distance sensor are shown mounted on the platen in Figure 2-15. 

Sensor equations are derived from the three nanogage laser distance sensors’ geometric 

parameters. The laser distance sensors produce the displacement information for the 

position sensing and a relationship matrix between the sensor readings and vertical 

motions is derived, the equations for the 3 DOFs can be derived by taking the inverse 

coefficient matrix transformation, as shown in [5]. 

 

 

Figure 2-15: Photograph of the laser distance sensor and the Hall-effect sensor

  



 

 

30

CHAPTER III 

DYNAMIC MODELING 

 

With the mass and inertia tensor of the platen and the resistance and inductance 

of the phase winding, the dynamic model of the platen has been derived by Yu [5] and 

is described in this chapter. The specifications of the levitation system are also given, 

and the derivation of the linearized state-space models for vertical and lateral motions. 

   

3.1 Mass and Inertia Tensor of the Platen 

The total mass of the platen is M = 1.54 kg, so its weight is 14.91 N, which 

includes the Delrin triangular frame, three planar-motor coils, three Hall-effect sensors, 

three air-bearing assemblies, the air distributor and three vertical sensors. The 

maximum vertical force generated by the 3 levitation motors is 17.15 N, so it can be 

fully levitated. The moments of inertia are calculated about the platen center of mass  
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  (3.1) 

in the unit of kg-m². The products of inertia, xyI , xzI , yxI , yzI , zxI , and zyI are neglected in 

the derivation of the dynamic model because any of them is less than 10 times the value 

of the principal moments of inertia, xxI , yyI  and zzI ,. 

 

3.2 Specifications of the Positioner 

The specifications of the positioner are shown below.  

 Number of phases, q = 3  

 Phase inductance = 15.264 mH 

 Phase resistance = 19.44   

 Nominal phase current = 0.56 A 
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 Maximum phase current = 1.26 A 

 Nominal phase voltage = 11.6 V 

 Maximum phase voltage = 26.1 V 

 

The motion capabilities of the maglev positioner are: 

 Planar travel range = 120 mm × 120 mm 

 Vertical range = 100 µm 

 Maximum velocity = 17.5 mm/s 

 

3.3 Decoupled Equations of Motion 

The linearized force equations and vertical and lateral linear equations of 

motions are derived in this section.  

 

3.3.1 DQ-decomposition 

The DQ decomposition is generally used in the rotary machinery to generate 

torque. In this case both the direct-axis (D-axis) and the quadrature-axis (Q-axis) are 

attached to the mover so that these two axes move together with the platen. Therefore 

there is no dependence in the force equations with respect to the stator which is the 

magnetic matrix in the DQ frame, which means that the nonlinear term can be 

eliminated. The D-axis is parallel to the stator magnetic axis and the Q-axis is 

perpendicular with D-axis as shown in Figure 3-1. The vertical motion is affected by the 

D-component current, and the horizontal driving forces are affected by the Q-

component current. In order to control the two-DOF suspension and the driving force, 

the planar motor requires the two decoupled orthogonal force components.   
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Figure 3-1: DQ coordinates attached to the platen [1] 

  

3.3.2 Linearized Force Equations 

The following equation shows the relationship between the phase currents and 

the magnetic force generated by one pitch of the levitation motor [1]. 
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  (3.2) 

where the total lateral force is represented as ,yf  and zf  is the z-directed force, 

respectively, ai and bi  are the peak current components and the constant G is following.   
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where 0y  is the horizontal relative displacement of the motors A and B from the initial 

position. If the variable 0y  changes to 0x , the same force equation is applied in motor C. 

The parameters of the positioner’s geometry are shown below in Table 3-1. 
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Table 3-1 Geometric Parameters [5] 

Variable Value 

Motor Geometric constant, G 1.072  10-5 m3 

Magnet remanence, 0 0M  0.71 T 

Width of one magnet array, w 0.5 in 

Magnet thickness,   12.7 mm 

Winding thickness,   10.16 mm 

Pitch length, l 50.98 mm 

Absolute value of the fundamental wave number, 1 2 / l   123.25 m-1 

Nominal motor air gap, z0 2.3 mm 

Turn density, 0   3.5246  106 turns/m²

Number of magnet pitches, mN  2 

 

 

3.3.3 Vertical Equations of Motion 

The vertical equation of motion is represented as follows, 
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The factor of three is multiplied because there are 3 planar motors. Equation (3.5) 

is showed with replacing the weight Mg to 
D

z
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3   , where the platen 

achieves a dynamic equilibrium. As a result, the force equation is,  
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and the incremental equation of motion is,  
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3.3.4 Lateral Equations of Motion 

The equilibrium condition for the lateral direction comes from (3.2). The force 

equation in the x-axis is, 
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The force equation in the y-axis is, 
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Since there are two planar motors generating the y-directional force, the factor 

of two is multiplied. The incremental equation of motion is showed as followed,  
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3.4 Dynamic Model of the System 

As preceding procedures, the linearized equations of motions are derived. We 

regard the model of the platen as a pure mass without any friction, which means that 

there is no spring or damper attached to the system.   

 

3.4.1 Linearized equations of Motion in the Horizontal and Vertical Modes 

Several commanded forces and the moments of the platen are related to the 

force allocation of each motor. Figure 3-2 illustrates the free-body diagrams for force 

allocation. The coordinates for the moving frame and that of the inertial frame coincide 

at the origin. The magnetic force generated by each motor is considered as the 

concentrated force applied at the center of each motor. The origin is the center of mass 

of the platen and the distances are denoted by L.   
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Figure 3-2: Free-body diagram for the force allocation [5] 

 

Since the platen is modeled as a pure mass without friction in full levitation. The 

following equations represent the dynamics of the pure mass model. 

xf
dt

xd
M 

2

2

      (3.10) 

Cxx ff  ,      (3.11) 

The mass of platen is M = 1.54 kg, and 
xf  is the magnetic modal force 

generated by motor C. The x-directional force is generated by one motor.  

yf
dt

yd
M 2

2

             (3.12) 

ByAyy fff        (3.13) 
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where yf  is the y-directional magnetic modal force generated by motors A and B.  

In order to control the rotational motion around the z-axis, the following 

differential equations are used.  

zzz dt

d
I 


2

2

,      (3.14) 

CyCxBxByAyAx lflflf  ,     (3.15) 

where the principle moment of inertia for rotation about the z-axis is zzI = 0.003375 

kg-m², and z  is a torque generated by the interaction  between motors A, B, and C 

from the magnetic origin about the z-axis. Since the three equations of motion in 

the planar motion have been derived, these are put into the state-space model 

representation as follows. 
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          (3.17) 

The equations of motion for the vertical mode are represented as follows, the 

vertical direction is designed as a spring-mass system in z because the platen is levitated 

by all three levitation motors.  
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zKf
dt

zd
M zz 

2

2

    (3.18) 

CzBzAzz ffff      (3.19) 

 

where, zK  is the effective spring constant of the levitation motor derived by 

experiments based on Hooke’s law, its value was derived experimentally, and zf  is the 

vertical directional force generated by all three motors at the same time in order to lift 

the platen up. 

Because of the three magnetic springs in the three levitation motors, the 

dynamics in the rotation around the x- and y-axes are regarded as a spring-mass system 

as follows,  


 K

dt

d
Ixx 2

2

    (3.20) 

CyCzByBzAyAz lflflf     (3.21) 

2

2yy

d
I K

dt  
        (3.22) 

Az Ax Bz Bx Cz Cxf l f l f l        (3.23) 

 

where   and   are the rotations around the x- and y-axes, respectively.   and   are 

the torque around the x- and y-axes, respectively. K  and K  are the effective torsional 

spring constants about the x- and y-axes determined by experiments. The principle 

moments of inertia are xxI = 0.001898 kg-m² and yyI = 0.002153 kg-m² in the x- and y-

axes, respectively. The state-space model of the vertical mode is as follows.  
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CHAPTER IV                                                                        

MULTIVARIABLE CONTROLLER DESIGNS  

 

Essentially this multi-dimensional positioner is a multi-input, multi-output 

(MIMO) system. Due to the DQ decomposition, there are 3 current inputs from the D-

current of the DQ decomposition, which is the current for the planar motion and the 

outputs which is the planar position and angles, x, y, and φ. Then we have the 3 inputs 

from the Q-current and the 3 outputs which is the levitation position and angles, z, θ and 

ψ. The MIMO control system design focuses on the dynamic of the whole system 

instead of the dynamic on each individual axis as with a single-input, single-output 

(SISO) design [13].  

The Linear Quadratic Gaussian (LQG) control methodology is a combined 

optimal state estimation and optimal state feedback control.  The LQG controller is 

normally comprised of a Kalman filter acting as the state estimator, and the Linear 

Quadratic Regulator (LQR) controller performs state feedback. Since the Kalman filter 

and the model-based compensator have a similar structure, the Discrete Kalman Filter 

(DKF) can be used in the LQG control system design. However it was observed that the 

outputs from the Hall-effect sensors, are very noisy and fluctuated a lot. A regular 

Discrete Kalman filter helped in obtaining better estimates and reducing the fluctuation 

and noise by a certain degree, but there was certainly more that could be done in order 

to get a cleaner signal from the sensor.  

First a digital filter was designed for the Hall-effect sensors, this filter 

essentially acts as a “pre-filter” and dissipates the static noise with a frequency of 50 Hz 

or higher. This reduced significantly the biased noise, the next step is to modify the 

observer of the both the planar and the vertical LQG controllers to further reduce the 

noise of the sensors and obtain the velocity estimates for the positions. The analysis of 

the signal and design of the digital filter is discussed in the next chapter. 
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4.1 Linear Quadratic Regulator for Translational Mode 

By plugging the corresponding values into the Eqs. (3.16) and (3.17), the state-

space model of the system for the planar motion can be represented as in Eqs. (4.1) and 

(4.2). 
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    (4.2) 

The above horizontal dynamic system can be presented as Eq. (4.3), where x is 

the state vector and u is input vector. 

 

( ) ( ) ( )x t Ax t Bu t      (4.3) 

 

The LQR problem, where all the states were known, was the deterministic initial 

value problem: with non-zero initial state x(0), find the input signal u(t) which took the 

system to the zero state (x = 0) in an optimal manner, i.e. by minimizing the 

deterministic cost [14]. 

 

0

( ( ) ( ) ( ) ( ))  T T
rJ x t Qx t u t Ru t dt



      (4.4) 
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The optimal solution (for any initial state) is u(t) = -Kr x(t), where 

1 ,T
rK R B P     (4.5) 

 

and P = PT ≥ 0 was the unique positive semi-definite solution of the algebraic Riccati 

equation 

1 0 ,T TA P PA PBR B P Q       (4.6) 

 

where Q and R are constant weighting matrices needed to be designed to penalize some 

state variables (or inputs) more than others to meet dynamic requirements. It is 

necessary that Q be positive semidefinite, and R be positive definite [15]. However 

LQR is an optimal full-state feedback pole placement approach. It provides an optimal 

way to place the eigenvalues of the multivariable system by designing appropriate Q 

and R matrices in Eqs. (4.5) and (4.6).  

Since the LQ controller is a regulator, it will regulate the output of the system to 

be zero. In order to make the positioner track non-zero commands, the error dynamical 

model of the system is needed for the LQ servo design. The error can be defines as 

following. 

*x x x        (4.7) 

*y y y        (4.8) 

*r r r        (4.9) 

 
* ,u u u        (4.10) 

 

where the variable with an asterisk are the final values of the corresponding state. Since 

the final values of the state are constant values, the derivatives of those values will be 

zero. As a result, we can get the following equations. 

 

( ) ( ) ( ) ,x t A x t B u t         (4.11) 
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( ) ( ) ,y t Cx t      (4.12) 

 

where the A, B, and C matrices are the same as the ones in the original system. As a 

result, if the LQR controller is designed based on the error dynamics in Eqs. (4.11) and 

(4.12), the positioning system can track the input reference. So the control law will be 

 

( ) ( ),ru t K x t        (4.13) 

 

where Kr is the optimal solution for the Riccati eqn by designing the Q and R matrices. 

Since the input to the system is u not u , from Eq. (4.10) it can be known that the input 

to the system should be 

*.u u u        (4.14) 

 

Once the system is in steady state, the steady-state input *u will be zero, which 

can be seen from Eq. (4.1) by letting the left hand side of the equation be zero. 

Therefore, Eq. (4.14) can be simplified as 

 

( ).ru K x t        (4.15) 

 

Usually the purpose of a precision positioning system is to achieve high 

resolution. The precision mainly depends on the position sensors, but the optimized 

control algorithm can improve the precision positioning performances. Since the 

original plant and the controller do not include the integrators, steady-state errors in the 

closed-loop position control may exist. In order to reduce the steady-state errors in 

position, it is necessary to add three pure integrators in the position outputs. As a result, 

the augmented system should have nine states altogether. The elements of the A, B and 

C matrix are calculated as follows: 
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    (4.17) 

 
4.2 Linear Quadratic Gaussian Control for Translational Mode 

 LQG control methodology is a combined optimal state estimation and optimal 

state-feedback control.  The LQG controller is comprised of a Kalman filter acting as 

the state estimator, and the LQR controller performs state feedback. Since the discrete 

hybrid filter and the Model-Based Compensator (MBC) have a similar structure, the 

hybrid filter designed in the next section can be used in the LQG control system design, 

the control structure of the MBC is shown in Figure 4-1. That way in this the LQG 

control design only one Riccati equation have to be solved, as opposed of two using a 

model-based observer. Due to its optimization in control effort, LQG control is widely 

used in the multivariable control industry.  
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Figure 4-1: Control Structure of LQG controller [18] 

 

 There are two assumptions in LQG control design. First is that the plant 

dynamics is linear and known. Second is that the measurement noise and disturbance 

signals (process noise) are stochastic with known statistical properties [16]. That is, the 

plant model can be presented as follows. 

 

( ) ( ) ( ) ( ) ,x t Ax t Bu t L t       (4.18) 

( ) ( ) ( ) ,y t Cx t t       (4.19) 

 

where, the A, B, L, and C are constant matrices. And ( )t  is assumed to be the 

stationary, white Gaussian disturbance (process noise), which has the following 

properties 

 ( ) =0 ,E t      (4.20) 

 Cov ( ), ( ) = ( ) ,t t t         (4.21) 

>0 ,T        (4.22) 

 

Similarly, θ(t) is also assumed to be stationary, white Gaussian noise coming 

from the measurement inputs (sensor noise). So its expectation and covariance has the 

following properties. 

 ( ) =0 ,E t      (4.23) 
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 Cov ( ), ( ) = ( ) ,t t t         (4.24) 

>0 ,T        (4.25) 

where E  is the expectation operator and ( ) t  is a delta function [17]. 

As it was shown in the previous section the optimal control law of the regulator 

is ( ),ru K x t   which is to minimize the cost function J. The matrix Kr is determined 

by the control algebraic Ricatti equation (CARE). P is the unique positive-semidefinite 

solution of the CARE in (4.6). Those equations further verified that the LQG control 

methodology is the combination of a Kalman filter and a LQR control law. 

LQG is introduced into the control system design in the planar direction for the 

expectation that the LQG algorithm can optimize the pole location for the controller to 

get a better dynamic performance in that direction. To eliminate the steady-state error, 

three integrators are also needed to be implemented in the original plant whose 

dynamics are shown in Eqs. (4.16) and (4.17).  

There are three inputs iAQ, iBQ and iCQ as well as there are three outputs x, y, and 

r. The Q and R matrices can be designed by the LQR state feedback method previously 

mentioned, because the (A, B) is stabilizable. The matrices Q and R are 

 

 diag [1 4 1 4 1 4 1 8 1 8 1 8 1 1 1 1 1 1]Q e e e e e e e e e   (4.26) 

 

1 0 0

0 1 0

0 0 1

R

 
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    (4.27) 

 

The design of Q matrix was achieved by much iteration. To emphasize the effect 

of the integrators, much heavier weight values were given to the integrator states (z1, z2 

and z3) than those of the position and velocity states, this was done in order to remove 

the steady state errors [18-19]. The gain matrix Kr can be calculated by the LQR 

methodology in Matlab as follows, 
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160.2 253.9 92 3523 6372 3183 3.46 4.74 1.18

158.3 264.7 88.2 3464 6629 3045 3.44 4.95 1.13

359.3 1.88 71.7 7949 59.5 2595 7.73 0.02 0.84
rK

      
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         

(4.28) 

 

The implementation results are presented in Chapter VI and all programming 

codes are attached. 

 

4.3 Linear Quadratic Gaussian Control for the Vertical Mode 

By plugging the corresponding values into Eqs. (3.24) and (3.25), the state-

space model of the system for the levitating motion can be represented as in Eqs. (4.29) 

and (4.30). 
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(4.29) 
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    (4.30) 

Once again in order to emphasize the position of the system in the upwards 

motion, three integrators are added to the state-space model. The original plant and the 

controller do not include any integrators and steady-state errors in the closed-loop 
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position control may exist. In order to reduce the steady-state errors, three pure 

integrators are employed in the original system as follows. 
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i
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  

   
       
     

  
  

   
   

(4.31) 

 

 

4

51

6
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   
       
    

 
 
 
 
 

    (4.32) 

  

Just like in the previous section, the LQG control methodology is applied to the 

system.  As stated before the LQG controller is comprised of a Kalman filter acting as 

the state estimator, and the LQR controller performs state feedback, however the hybrid 

filter will act as the model-based compensator as stated before. The LQR control law is 

designed just like in Section 4.1, and the 6-axis discrete hybrid filter designed in the 

next section will provide optimal position estimates and velocity estimates. That way, 

this LQG controller design also has one Riccati equation to solve. 
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 The two assumptions in LQG control design are also satisfied for the vertical 

mode, since the plant dynamics is linear and known, and the measurement noise and 

disturbance signals (process noise) are stochastic with known statistical properties. 

Therefore, the plant model can be presented as follows. 

 

( ) ( ) ( ) ( ) x t Ax t Bu t L t       (4.33) 

 

( ) ( ) ( ) ,y t Cx t t      (4.34) 

 

where the A, B, L, and C are constant matrices, and ( )t  is assumed to be the stationary, 

white Gaussian disturbance (process noise), which has properties shown in Eqs (4.20-

4.22). 

Similarly, θ(t) is also assumed to be stationary, white Gaussian noise coming 

from the measurement inputs (sensor noise). Its expectation and covariance has the 

properties shown in Eqs (4.23-4.25), where E  is the expectation operator and 

( ) t  is a delta function [17]. 

  As it was shown in Section 4.1 the optimal control law of the regulator is 

( ),ru K x t   which is considered to minimize the cost function J. The matrix Kr is 

determined by the control algebraic Ricatti equation (CARE). P is the unique positive-

semidefinite solution of the CARE in (4.6). 

There are three inputs iAD, iBD and iCD as well as three outputs z, θ, and ψ. The Q 

and R matrices can be designed by the LQR state feedback method previously 

mentioned, because the (A, B) is stabilizable. The matrices Q and R are  

 

 diag [1 4 1 4 1 4 1 9 1 9 1 9 1 1 1 1 1 1]Q e e e e e e e e e   (4.35) 
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1 0 0

0 1 0

0 0 1

R

 
   
  

    (4.36) 

 

The design of Q matrix was achieved by much iteration. Heavier weight values 

to the displacement states (z, θ, and ψ) and the integrator states (z4, z5, and z6) were 

given than those of the velocity states. In order to remove the steady state errors, the 

integrator states weights are much higher than other values [18-19]. The gain matrix Kr 

can be calculated by the LQR methodology in Matlab as follows, 

 

405.5 40.9 53.2 13869 2672 4109 6.1 0.9 1.4

442.5 40.5 49.1 15130 2633 3954 6.7 0.9 1.3

480 69.1 2.4 16407 4837 89.8 7.3 1.63 0.03
rK

   
        
  

(4.37) 

 

The implementation results are presented in Chapter VIII, and all programming 

codes are attached in Appendix C. 

 

4.4 State Estimator for Feedback Control  

A method of combining discrete-Kalman (H2) filtering and minimax (H∞) has 

been proposed in [20]. Kalman filtering is an optimal estimation method which 

minimizes the variance of the estimation error and assumes that the noise inputs have 

known statistical properties, which makes this filter lack robustness from the errors of 

the assumed noise statistics [20]. Unfortunately, the assumption that the statistical 

properties of the noise are known limits the application of the Kalman filter. 

The minimax filter aims to minimize the magnitude of the maximum singular 

value of the transfer function from the noise to the estimation error. In other words, it 

tries to minimize the worst possible estimated values. If the Kalman filter assumes too 

much, the minimax filter approach assumes too little, which motivates the interest in 
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combining these two filters into a hybrid H 2/H ∞ filter and see if it can provide the best 

of both worlds. In order to design the hybrid filter that will provide optimal 

displacement measurements and also estimates of the velocity and angular velocity. The 

states of the hybrid filter are defined as 

 

0

0

0

0

0

0

,  for .
k

k k k

k

X

Y
z

x z z
Z

z



 
 
           

   
   

 
  




    (4.38) 

 
For continuous time, the dynamic model and measurement (estimated) model 

are, 
 

  

 

6 6

6 6

6 6

6 6

( ) 0 0 ( ) 0

( ) ( ) 0 0 ( ) 0 ( )

( ) 0 0 0 ( )

ˆ( ) ( ) ( ) 0 0 ( ) ( )

z t I z t

x t z t I z t w t

z t z t I

y t z t v t I x t v t









       
              
             

   


  

 

   

(4.39) 

 
The inputs to the hybrid filter are the displacement data calculated from the 

Hall-effect sensors’ outputs, v is a 6×1 vector and is the noise from the system.  

 

 ( )
T

y t x y z      (4.40) 

 

The relationships between position, velocity, and acceleration are modeled 

exactly without any modeling error. Note that the process noise w is a 6×1 vector which 

has the same unit as the jerk and does not depend on the errors due to system. The 

constant-acceleration assumption is merely for a simple modeling purpose. Although 
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this may not be a valid assumption, the output shows that the noise is reduced and the 

accuracy is improved. In discrete time, the model becomes the following, 

 

2 31 1
2 66 6 1 6 6 1 6 6 1 6 6

21
21 6 6 1 6 6 1 6 6

6 6 1 6 6

( ) ( ) ( )

0 ( ) ( )

0 0 ( )

      

k k k k k k

k k k k k k k

k k

k k

I t t I t t I t t I

x I t t I x t t I w

I t t I

x w

      

     

  

     
         
      
 

  (4.41) 

 

 6 6 0 0 ,k k k k ky I x v Hx v        (4.42) 

 

where, 1( )k kt t   is the integration step size, which is constant for simulation and real-

time control.
 

The estimator structure for the hybrid filter in [20] is of the form,  

 

ˆ ˆ ˆ[ ],x x K y Hx          (4.43) 

 

where K is the hybrid filter gain. This hybrid filter uses a weighted combination of the 

steady-state Kalman and the steady-state minimax filter gains in the estimator, so the 

hybrid filter gain is defined as 

 

 (1 ) ,k

ss ssK d K d K          (4.44) 

 

where d is the relative weight given to k

ssK which is the steady-state Kalman filter gain, 

and ssK   is the steady-state minimax filter gain. This weight ranges from 0 to 1 and must 

be chosen so as to ensure stability since a convex combination of two stable estimators 

is not necessarily stable. The DKF formulation is presented in Table 4-1, as given in 

[21]. 
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Table 4-1 Recursive Discrete-time Kalman Filter 

MODEL 
1 ,   (0, )k k k k kx x w w N Q     

,    (0, )k k k k ky Hx v v N R    

INITIALIZE  0 0 0 0 0
ˆ ˆ ˆ ˆ( ) ,    ( ) ( )Tx t x P E x t x t   

GAIN 1
 T T

k k k kK P H HP H R
     

UPDATE ˆ ˆ ˆ  k k k k kx x K y Hx        

 k k kP I K H P    

PROPAGATION 
1

ˆ ˆ
k kx x 
   

1  +T T

k k k k k k kP P Q 
      

 

The vector v, is the noise from the system, it is assumed to be zero-mean 

Gaussian noise, ( ) (0, ),kv t N R  where Rk is the error covariance matrix of the system 

noise v, which is defined in [21] as 

 

 1( ) diag [1 6 1 6 1 6 1 6 1 6 1 6]T

k k kR H WH e e e e e e         (4.45) 

 

Further, w is assumed to be a zero-mean Gaussian process, ( ) (0, ),kw t N Q

where Qk is the error covariance matrix of the process noise w, which acts on the 

acceleration. Qk is chosen to be a positive constant diagonal matrix, 

 

 
 

diag [ ]

     =diag [1 3 1 3 1 5 1 2 1 2 1 2] ,

k x y zQ q q q q q q

e e e e e e

  
   (4.46) 

 

where an assumption is made that v and w are uncorrelated, and the values of Rk and Qk 

were chosen by the designer. Selecting the bounds of the process and system noises 

became the parameters to tune the DKF. The values of the matrices Rk  and Qk were 
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chosen through an ad-hoc approach, where we iterate the design until the best 

performance is achieved. The initial estimates are set to 

 

  0

0 0

12 1

ˆ
ˆ ˆ,   0 0 0 0 0 0

0
Tz

x z


 
  
 

   (4.47) 

where 0ẑ  is the same as the initial guess used for the initial conditions. The initial 

estimation error covariance matrix is specified by 

 

0 18 18.P pI       (4.48) 

The initial value of p is set by the designer to obtain a good convergence 

behavior of the filter. The DKF updates the P matrix at each time step, and hence the P 

matrix will converge if good initial values are chosen. For the parameters of Qk and Rk 

described previously, the steady-state Kalman filter gain matrix, k

ssK , turned out to be, 

 

0.0531 0 0 0 0 0

0 0.0531 0 0 0 0

0 0 0.1566 0 0 0

0 0 0 0.0364 0 0

0 0 0 0 0.0364 0

0 0 0 0 0 0.0364

1.390 0 0 0 0 0

0 1.390 0 0 0 0

0 0 9.47 0 0 0

0 0 0 0.752 0 0

0 0 0 0 0.752 0

0 0 0 0 0 0.752

37.42 0 0 0 0 0

0 37.42 0 0 0 0

0 0 351.3 0 0 0

0 0 0 12.05 0 0

0 0 0 0 12.05 0

0 0 0 0 0 12.05

k

ssK















.











 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



     (4.49) 
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Using the same linear dynamic system as described above, the minimax filtering 

problem aims to minimize the maximum singular value of the transfer function from the 

noise to the estimation error [22]. 

ˆ
,

k k Q

k kW V

avg x x
J

avg w avg v




     
(4.50) 

where J is a measure of how good our estimator is. We want to find a state estimate that 

will minimize the worst possible effect that w and v have on our estimation error, where 

the averages are taken over all time samples k. Several minimax filtering formulations 

have been proposed in [23 24], the one considered here is the following: Find a filter 

gain K∞ such that the maximum singular value is less than  , or 1  .J   

This is a way of minimizing the worst-case estimation error, where   is the 

constant which becomes the design parameter to tune this filter. We can find a state 

estimate so that the maximum value of J is always less than x̂ , regardless of the values 

of the noise terms w and v. This problem will have a solution for some values of   but 

not for the values which are too small because the P matrix will become singular, as 

seen in the minimax gain equation below. The minimax filtering solution that forces 

1/J   is given in Table 4-2 below. 

 

Table 4-2 Recursive Discrete-time Minimax Filter [20, 22] 

MODEL 
1k k kx x w    

k k ky Hx v   

INITIALIZE  0 0 0 0 0
ˆ ˆ ˆ ˆ( ) ,    ( ) ( )Tx t x P E x t x t   

GAIN 12/  TK I P P H
 

       

UPDATE ˆ ˆ ˆ  k k k kx x K y Hx        

  1 1 2/  TP M I H H
 

     

PROPAGATION  +T TM P I
     
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Notice that we do not have to worry about defining the matrices for w and v 

noises using the minimax filter, which makes this the main advantage of such filter. For 

10,   the steady-state minimax filter gain matrix, ssK  , turned out to be, 

 

0.637 0 0 0 0 0

0 0.637 0 0 0 0

0 0 0.637 0 0 0

0 0 0 0.637 0 0

0 0 0 0 0.637 0

0 0 0 0 0 0.637

0.0135 0 0 0 0 0

0 0.0135 0 0 0 0

0 0 0.0135 0 0 0

0 0 0 0.0135 0 0

0 0 0 0 0.0135 0

0 0 0 0 0 0.0135

0.8 4 0 0 0 0 0

0 0.8 4 0 0 0 0

0 0 0.8 4 0 0 0

0 0 0 0.8 4 0 0

0 0 0 0 0.8 4 0

0 0 0 0 0 0.8
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e

e

e

e

e
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 
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   (4.51) 
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CHAPTER V 

ANALYSIS AND OPTIMIZATION OF SIGNALS 

 

This chapter consists on the analysis of the signals coming from the Hall-effect 

sensors and the design of digital filters to attenuate the noise and optimize the signal 

response. It was discovered that much of the noise was static noise, so second-order 

digital filters were designed in addition to the observer described in the previous 

chapter, all of this in order to remove the static noise and optimize the signal response.  

 

5.1 Hall-effect Sensor Signal Analysis  

In order to analyze the noise of the Hall-effect sensors a Fast Fourier transform 

(FFT) is conducted for the planar MIMO system under the control law described above. 

For these experiments, the controller makes the platen move to a specified coordinate in 

the x-direction with the controller doing its best to stay put.  For the first test the LQ 

control law is applied without the hybrid filter being active. The results are displayed in 

Figure 5-1. From the FFT one can see that there is a peak at 50 Hz of about -30 dB in 

magnitude. The response of the signal for one second is also included, and the 

resolution is about 150 μm peak to peak. 

The next test applies the hybrid filter, which would make this the LQG 

controller. The results are displayed in Figure 5-2. The resolution of the signal has been 

reduced to 20 μm peak to peak. From the FFT, the 50 Hz peak has been reduced to -60 

dB in magnitude. For the experiments involving the hybrid filter being active, the 

relative weight of the hybrid filter, d, is one so the hybrid filter acts as a DKF. 

The nature of the systematic 50-Hz noise was found to be purely electric, 

coming from the Hall-effect sensors. The Hall-effect sensors are manufactured by a 

company that’s situated in Europe, where the standard frequency of the electricity 

coming from the electrical outlet is 50 Hz [10]. Oscilloscope measurements confirmed 

that the 50-Hz peak noise comes from the Hall-effect sensors. 
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(a) (b) 

 
Figure 5-1: (a) FFT of the Hall-effect sensor signal and (b) time response 

 
 

 
     (a)       (b) 

 
Figure 5-2: (a) FFT of the signal with Hybrid filtering and (b) time response 
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From this analysis, it can be concluded that the peak noise at 50 Hz, coming 

from the Hall-effect sensors, is a biased non-random noise because the FFT of the 

signal after the implementation of the DKF shows a noise attenuation of barely 30 dB 

from the signal without any filtering. This is because one of the main conditions for the 

implementation of the DKF is that the noise has to have a white Gaussian distribution.  

Even though the DKF yields acceptable results, there is certainly more than can 

be done to attenuate the noise even further. A second-order digital low-pass filter will 

start attenuating all of the noise after the cut-off frequency, regardless of whether the 

noise is biased or random. This will lead to more precise readings from the Hall-effect 

sensors. The design of the implemented second-order digital filters is described below. 

 

5.2 Second-order Digital Low-pass Filter Design 

The digital filter will essentially act as a ‘pre-filter,’ because the data being read 

from the sensor will be filtered first by the digital second-order low-pass filter, and then 

will be further filtered by the observer of the LQG controller. The results from the 

analysis done in the previous section shows that the biased noise has a frequency of 

about 50 Hz, the digital filter is designed with a cut-off frequency of 8 Hz, since the cut-

off frequency has to be at least half the frequency to attenuate . The digital second-order 

low pass filter is of the form as in [25]: 

 

1

1 2 2

1
( ) ,

1 2 cos( )

z
H z

k r z r z



 

 
         (5.1)

 

 

where   and r are defined as, 

2 ,   1 2 ,c

s

f
r

f
    

    (5.2) 

 
where cf is the cut-off frequency, sf  is the sampling frequency, ζ is the damping 

coefficient of the filter and k is the constant to normalize the data. The last step in the 
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filter design is to normalize the signal, according to the cut-off frequency. The way we 

find it is that we set the values of z to be one and then we just solve for k, such that the 

equation becomes 

2

1
,

1 2 cos( )
k

r r


       (5.3) 
where k, is the gain that the input signal needs to be multiplied by in order to normalize 

the output signal. The final form of the second-order filter is, 

 
1

1 2

1
( ) .

205.22 1 1.8735 0.8783

z
H z

z z



 

 
         (5.4) 

 
 The Bode plot for this digital filter is displayed in Figure 5-3, as well as the 

continuous form of the filter. The continuous form of the filter was designed using the 

‘d2c’ command in matlab, which transforms a digital transfer function into a continuous 

transfer function. 

 
Figure 5-3: Bode plot of the digital and the continuous low-pass filter 
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Now the aforementioned digital low-pass filter is implemented, without the 

hybrid filter making this an LQ controller, because the low-pass filter does not estimate 

the velocities of the states. An FFT is performed on the signal response and the signal 

response is plotted for a second, and the results are displayed in Figure 5-4. The 

resolution of the signal has been enhanced to less than 7 μm peak to peak, and the peak 

at 50 Hz has been reduced to about -90 dB in magnitude from the FFT. 

 

 
     (a)       (b) 

 
Figure 5-4: (a) FFT of the signal with low-pass filtering without hybrid filtering 

and (b) time response 
 

Finally both filters are applied together, the digital low-pass filter acting as a 

“pre-filter” while the DKF acts as the observer for the LQG controller. The results are 

displayed below in Figure 5-5, it can be seen that the resolution has been enhanced to 

almost 2 μm peak to peak and from the FFT, the peak at 50 Hz has been reduced to 

almost 0-dB in magnitude, thus proving the effectiveness of having the digital second-

order low-pass filter act as a “pre-filter” on the incoming signal and then have the DKF 

further reduce the noise of the signal. 
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(a)      (b) 
 

Figure 5-5: (a) FFT of the signal with low-pass filtering combined with hybrid filtering 
and (b) time response 

 

 

5.3 Second-order Digital Notch Filter Design 
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low because instability becomes an issue for the system; in fact the low-pass digital 

filter design from the previous section is done at the lowest possible cut-off frequency. 

The limitation of the cut-off frequency in the low-pass digital filter design also limits 

the level of attenuation for the 50 Hz peak noise.  
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design and might lead to more precise results than those in the previous section. Again 

this digital notch filter will essentially act as a pre-filter, since the data being read from 

the sensor will be filtered first by the digital second-order notch filter and then it will be 

further filtered by the observer of the LQG control. The second-order notch filter is of 

the form [25]: 

2 2

0

2 2

0 0

( ) ,
2

ks
H s

s s


 



 

    (5.5) 

 

where ζ is the damping ratio of the filter, k is a constant related to the attenuation at high 

frequencies and 0  is the constant for which we are solving for. Now we plug in the 

fact that s j , to get, 
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( ) .
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k
H j
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 
   

 

  

    (5.6) 

In order to get a notch, the numerator of the transfer function has to be zero at a 

fixed frequency, ωnotch, which would make the magnitude of the transfer function go to 

zero at such frequency. The equation for the numerator of the transfer function is, 
 

 
2 2

0 0,notchk         (5.7) 

 

where we solve for ω0 since ωnotch becomes the frequency in which we want the notch 

to occur, solving for ω0 we get the equation,
     

 

  

0 .notch k        (5.8) 

 

 As it was shown in the previous sections, the biased peak noise has a frequency 

of 50 Hz, so the notch frequency will be set at 50 Hz. However we still have not solved 

for k, which relates to the attenuation of the signal at the frequencies after the notch 
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occurs. Due to the harmonics from the 50-Hz biased noise at higher frequencies, some 

attenuation is necessary at the higher frequencies. A 20 dB attenuation is desired at 

high frequencies, which means that  

 

20dB 20log( ),k       (5.9) 

 

therefore k = 0.1.  The attenuation cannot be set too low because the stability of the 

system becomes an issue, however the signal at high frequencies could even be 

amplified if desired, but in this case noise attenuation is needed. Substituting k = 0.1 and 

the notch frequency into Eq. (5.8) gets, 

 

0 2 50 0.1        (5.10) 

 
Notice that the notch frequency needs to be multiplied by 2π in order to get the 

frequency in radians per second, not Hertz. Substituting the value of 0  into Eq. (5.5) 

gives us the final form of the second-order analog notch filter, 
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 The Bode plot for this digital filter is displayed in Figure 5-6, as well as the 

continuous form of the filter.  The digital form of the filter was designed using the ‘c2d’ 

command in Matlab, which transforms a continuous transfer function into a digital 

transfer function. However one needs to use an advanced transformation such as the 

‘pre-warp’ command, which instructs matlab to transform the continuous transfer 

function using the pre-warping technique around the critical frequency of 50 Hz.
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Figure 5-6: Bode plot of the digital and the continuous notch filter 
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     (a)       (b) 

 
Figure 5-7: (a) FFT of the signal with notch filtering without hybrid filtering and (b) 

time response 

 
 

Finally both filters are applied together, the digital notch filter acting as a pre-

filter while the hybrid filter acts as the observer for the LQG controller. The results are 

displayed below in Figure 5-8, it can be seen that the resolution has been enhanced to 

1.5 μm peak to peak and from the FFT, the peak at 50 Hz has been eliminated, thus 

proving the efficiency of having the digital second-order notch filter act as a pre-filter 

on the incoming signal and then have the hybrid filter further reduce the noise of the 

signal. 

 The digital notch filter combined with the hybrid filter not only eliminates the 

50 Hz noise but it also provides the best results with optimal position resolution for the 

planar motion. That is why for Chapter VI, all of the experimental results are done with 

the digital notch filter being active unless otherwise noted. 
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     (a)       (b) 

 
Figure 5-8: (a) FFT of the signal with notch filtering combined with hybrid filtering and 

(b) time response. 
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CHAPTER VI
 

EXPERIMENTAL RESULTS 

 

This chapter illustrates the experimental results for all 6 DOFs of the 

multidimensional positioner. With the LQG controllers designed in the previous 

chapters, the dynamics performances of the positioner were tested. Many comparisons 

for different parameters of the hybrid filter and for the digital filter are shown to 

demonstrate the effect that each different parameter has on the signal response. For the 

purpose of demonstrating its precision-positioning capabilities, microscale positioning 

step responses were performed on all 6 axes. The results in this chapter present that the 

multidimensional positioner has the potential to generate the appropriate stepping 

motions required in precision positioning industries. 

 

6.1 Step Responses 

The LQG controller for the vertical mode was designed in Chapter IV. The 

control gain matrix was found in Eq. (4.37), Figures 6-1 through 6-3 present the step 

responses of the vertical mode with the LQG controller. Several step responses were 

taken in the z-direction and the rotations θ and   with step sizes of 5 μm and 30 μrad, 

respectively. The step response in z employs all three planar motors. Since the dynamic 

coupling was well compensated, there are no steady-state errors in each axis.  

Step responses in the experimental results show that the rise time for the z-

direction is less than 200 ms, the overshoot is about 16%, and the settling time is about 

500 ms without steady-state errors.  The position noise is 49.3 nm rms in z. The position 

noise is mainly caused by the Nanogage sensors. Besides it might be generated by the 

umbilical cables, three aerostatic bearing that blow air flow and the modeling error from 

dynamic analysis.  

The step responses for the rotations in   and θ based on the LQG controller are 

presented in Figures 6-2 and 6-3, respectively.   
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Figure 6-1: 5-μm step response in z 

 

 
Figure 6-2: 30-μrad step response in   
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Figure 6-3: 30-μrad step response in θ 
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is around 10%, and the settling time is less than 220 ms without any steady-state errors 

in the x and y directions.  

These figures illustrate that the positioner can demonstrate the capability of 

microscale positioning. The position resolution is 1.5 noise is µm  with a position error 

of 0.545 µm rms in x and y.  

Step responses of 0.1-mrad and 6-mrad rotations around z based on the LQG 

controller are presented in Figures 6-10 and 6-11, respectively. The position noise is 

mainly caused by the Hall-effect sensors. Also the response of the system might be 

affected by the noise from the sensors, outside disturbances such as the umbilical cables 

and modeling errors from the dynamic analysis.   

 

 

 
Figure 6-4: 10-µm step response in x 
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Figure 6-5: 20-µm step response in x 

 

 
Figure 6-6: 50-µm step response in x 
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Figure 6-7: 10-µm step response in y 

 

 
Figure 6-8: 20-µm step response in y 
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Figure 6-9: 50-µm step response in y 

 

 
Figure 6-10: 0.1-mrad step response in ϕ 
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Figure 6-11: 6-mrad step response in ϕ 

 
 

6.2 Comparisons with Previous Work 

This section presents the comparisons between my results and the results from 

Yu, the designer of the positioner. The step responses used in the comparisons are taken 

from [5], his Ph.D. dissertation, in which he used lead-lag controllers to control each 

individual axis and a DKF to obtain better estimates in the planar mode. My results 

have the combined digital filtering in the planar mode and the DKF for the vertical 

mode, both of them use the LQG MIMO controllers. Figure 6-12 shows a comparison 

for a 20-μm step in x, while Figures 6-13 and 6-14 show a comparison for a 10-μm step 

in y and a 5-μm step in z, respectively.  

Yu’s step responses demonstrated a 14-μm resolution with an 8-μm rms position 

noise in the planar mode while for the vertical mode, a 0.8-μm resolution with a 0.5-μm 

rms position noise. My results show a position noise 0.545-µm rms in x and y with a 

resolution of 1.5-µm, and for the vertical mode a position noise of 49.3-nm rms with a 

resolution of 110-nm.  
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It is clear that a better position resolution is obtained in my results for both the 

planar and the vertical modes. However it seems that my results have a slower rise time 

and settling time, but at the same time they have smaller overshoot magnitudes. The 

slower response time might be an effect from the combined filtering in the planar mode 

and the hybrid filter in the vertical mode, while the small overshoots is both an effect of 

the filtering and the LQG controllers. 

 

 
     (a)      (b) 

 
Figure 6-12: 20-μm step response in x comparing (a) my results and (b) Yu’s [5] 

 
 
 

 
     (a)      (b) 

 
Figure 6-13: 10-μm step response in y comparing (a) my results and (b) Yu’s [5] 
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     (a)      (b) 

 
Figure 6-14: 5-μm step response in z comparing (a) my results and (b) Yu’s [5] 
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resolution was achieved, however when the notch digital filter is implemented along 

with the hybrid filter, the DKF provides the best optimal estimates for the position in 

the planar motion with a 1.5-μm peak to peak resolution.  

Figure 6-17 show that the DKF provides better estimates when the digital notch 

filter is implemented because the notch filter eliminates the main source of the biased 

noise at 50 Hz and on top of that, it attenuates the harmonics of such noise at high 

frequencies. By eliminating the main source of the non-random noise, the DKF can 

provide optimal estimates because the main assumption for the DKF implementation is 

that the noise has to be random with a Gaussian distribution. Therefore whenever the 

digital notch filter is not implemented, the 50 Hz biased noise and its harmonics have a 

significant magnitude, this stops the DKF from being an optimal state estimator, which 

is the reason why the hybrid filter with a relative weight of 0.8 gives better estimates. 

 

 
     (a)      (b) 

 
     (c)      (d) 

 
Figure 6-15: 20-μm step responses for low-pass filter with cut-off frequencies of 

(a) 20 Hz, (b) 14 Hz, (c) 10 Hz, and (d) 7 Hz without hybrid filtering 
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(a) (b) 
 

 
     (c)       (d) 

 
Figure 6-16: 20-μm step responses for hybrid filter weights of (a) d = 0, (b) d = 

0.3, (c) d = 0.8, and (d) d = 1 without digital notch filtering 
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     (a)       (b) 

 
     (c)       (d) 

 
Figure 6-17: 10-μm step responses for hybrid filter weights of (a) d = 0, (b) d = 

0.3, (c) d = 0.8, and (d) d = 1 with digital notch filtering 
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value of the Q-matrix is achieved by placing more weight on the integrator states but 

the values should not be too high or too low.  

For the R matrix, one trend found was that smaller values lead to a response with 

a fast rise time and settling time, and a reasonable overshoot, however choosing a value 

close to zero for the z-input may lead to instability. Also since the step-responses were 

taken in z, the (1, 1) element of the diagonal matrix was the one that had the biggest 

effect on the response as seen in Figure 6-20. The other values correspond to the 

rotation about the x- and y-axes.  It seems that smaller values for the z-input of the R 

matrix get the system the best response in z, as seen in Figure 6-18; however one has to 

make sure that it still maintains stability. 

 

 

 
Figure 6-18: 5-μm step response in z with an R matrix of [2, 5, 5] 
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Figure 6-19: 5-μm step response in z with an R matrix of [5, 10, 10] 

 
 

 
Figure 6-20: 5-μm step response in z with an R matrix of [30, 5, 5] 
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Figure 6-21: 5-μm step response in z with a Q matrix of [1e4, 1e4, 1e4, 1e9, 1e9, 1e9, 

1e2, 1e2, 1e2] 
 

 
Figure 6-22: 5-μm step response in z with a Q matrix of [1e3, 1e3, 1e3, 1e9, 1e9, 1e9, 

1e1, 1e1, 1e1] 

4 4.5 5 5.5 6 6.5 7
7.5

7.6

7.7

7.8

7.9

8

8.1
x 10

-5

time (s)

z 
(m

)

3 3.5 4 4.5 5 5.5 6

7.6

7.7

7.8

7.9

8

8.1

8.2

x 10
-5

time (s)

z 
(m

)



 

 

83

 
Figure 6-23: 5-μm step response in z with a Q matrix of [1e4, 1e4, 1e4, 1e10, 1e10, 

1e10, 1e1, 1e1, 1e1] 
 

 
Figure 6-24: 5-μm step response in z with a Q matrix of [1e4, 1e4, 1e4, 1e7, 1e7, 1e7, 

1e2, 1e2, 1e2] 
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6.3 Long-range Planar Motions 

Planar motions in a long-range are commonly used in precision-positioning 

application, such as scanning, microlithography, and microscopy. Long-range planar 

motion generation is performed and several experimental results are presented in this 

section. These experimental results demonstrate the long-range scanning motion 

capabilities of the positioner. 

First, one of the key advantages of this positioning stage is that the angular 

measurement range with the Hall-effect sensors is much larger than that of the laser 

interferometers. The rotation motion range of the laser interferometer is just a few 

milliradians because it uses the reflected laser beam, where laser beams stray off in 

large angles of motion. However, rotation motion control with Hall-effect sensors does 

not have this limitation. Hence, it can generate larger rotating motions than the system 

with laser interferometers. Figure 6-25 presents the large angle of the rotation motion of 

12° with the Hall-effect sensors. The positioner started rotating to almost 6° and then 

the rotating motion switched to generate the 12° motion in the opposite direction. 

The maximum travel ranges that can be generated by this positioner are of 220 

mm in x and 200 mm in y are achieved in translation. The travel range of the positioner 

is only limited by the number of pitches in the magnet matrix, currently consisting of 6 

by 6 pitches. The platen’s geometric asymmetry accounts for the difference in the 

maximum travel ranges in x and y. Figure 6-26 shows a 160 mm travel range in x, and 

Figure 6-27 shows a 100 mm travel range in y. The scanning velocities are 6 mm/s in x 

and 4 mm/s in y. The two planar motors are employed for the y-directional motion, 

while a single planar motor is employed for the x direction motion. The maximum 

travel range in translation can be simply enlarged by increasing the number of pitches in 

the magnet matrix. Since the positioner with Hall-effect sensors does not need to carry 

the stick mirrors that reflect the laser beam in the laser interferometry, it can generate 

larger motions than the positioners using laser interferometers.  
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Figure 6-25: 12° long-range motion in ϕ 
 
 
 

 

Figure 6-26: 160-mm long-range motion in x 
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Figure 6-27: 100-mm long-range motion in y 
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Figure 6-28: Back-and-forth motion of 10 × 10 mm in x and y 
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(a) 
 
 

               
 

     (b)       (c) 
 

Figure 6-29: (a) 5-cm equilateral triangle motion, and position error (b) in x and (c) in y 
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Figure 6-30: Slow 5-mm step-and-repeat motion in x 
 
 

 

Figure 6-31: Fast 1-mm step-and-repeat motion in y 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

 

 This final chapter includes the conclusions of this research regarding the design 

and performance of the LQG multivariable controllers for the positioner, as well as the 

analysis of the Hall-effect sensor signals and the experimental achievements. Several 

suggestions for future work to improve the performance of the maglev platen are also 

given in this chapter. 

 

7.1 Conclusions 

This thesis presents two LQG controllers successfully implemented for a 6-DOF 

positioner with Linux-based real-time control.  In addition an analysis was done for the 

Hall-effect sensors signals and based on the results several digital second-order filters 

were tested and implemented in order to achieve better resolution in the planar motion. 

Its potential applications in the semiconductor industry were demonstrated.  

Hall-effect sensors are absolute position sensors and can be placed at any 

position atop a magnet array. Unrestricted translational and rotational moving ranges 

with respect to the size of magnet array are the advantage of the Hall-effect sensor. 

Since the Hall-effect sensors and the nanogage laser distance sensors only provide the 

position displacement data, a recursive hybrid filter was used to estimate the remaining 

states. In order to remove the steady-state error, the modified dynamic plant model was 

constructed with additional integrator terms. Good experimental results were achieved 

without steady-state errors. 

The experimental setup, which is more cost-effective than that of laser 

interferometer, requires the Hall-effect sensors, ADC and DAC boards, power supplies, 

and power amplifiers. The positioner was controlled by a Linux-based real-time system. 

The real-time feedback control includes Ubuntu as a Linux OS, RTAI, and Comedi. The 

sampling frequency of the control system is 800 Hz.  
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The microscale accuracy and position errors are based on many different factors. 

The manufacturing error of the magnet array and the inconsistent magnet flux density 

may exist. The misalignment of Hall-effect sensors and an external magnetic field can 

interfere the accurate position sensing.  The modeling error may affect the position 

output but the main reason is the sensitivity of the Hall-effect sensor and the noise 

coming from the wall outlet. The recursive discrete hybrid filter was used to achieve 

better position estimations from the noisy sensor signals. However, the position errors 

and noise from the Hall-effect sensors were significant even after the implementation of 

the recursive discrete hybrid filter. This is why an analysis was done on the Hall-effect 

sensor signals, based on the results from the analysis, a 50-Hz biased noise was found to 

have a significant effect in the sensor signals. A second-order digital low-pass and a 

second-order notch filters were tested and implemented in order to attenuate or 

eliminate such noise. The notch filter ended up being the filter that gave the best 

positioning resolution in the x-y plane. 

After the planar multivariable LQG controller and filters were designed and 

implemented, the positioner was able to achieve a position resolution of 1.5 µm with 

position noise of 0.545 µm rms in the x-y plane. Experimental results were presented to 

display the performance of the controller and filter designs. Step responses of 10-µm, 

20-µm, and 50-µm were implemented in the x-y plane, as well as step responses for the 

rotation around z. Several long range and step-and-repeat motions are also presented for 

the planar motion, for which the unrestricted moving range is a result of the periodic 

magnetic flux density in the x-y plane. 

For the vertical mode multivariable LQG controller, levitation, the rotation 

around x, and the rotation around y were presented. Experimental results for step 

responses of 5 µm in z and 30 mrad rotation motion around x, and y were implemented. 

The positioner achieved a position resolution of less than 110 nm with position noise of 

49.3 nm rms in z. 
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7.2 Suggestions for Future Work 

 This section suggests several possible ways to improve the precision positioner 

for further research. A positioner that has better dynamic performance and positioning 

resolutions can be designed with improving mechanical, electromagnetic, control and 

filter design.  

 Currently, the real-time control is performed by a PC with Linux operating 

system. Although Linux can provide stable real-time feedback control in a low capacity 

computer, the sampling speed to obtain high quality dynamic performance is limited. A 

Digital Signal Processor that can accommodate a high-speed sampling frequency, which 

may yield better dynamic performance.   

 A Hall-effect sensor exhibits the unlimited travel range with a microscale 

position resolution. Otherwise, a laser interferometer has nanoscale resolution in spite 

of its limited sensing range. Hence, a hybrid sensing methodology that has advantages 

both the two sensors can be proposed for a new positioning stage. The scanning motion 

that requires large moving range can be monitored by Hall-effect sensors, and the step-

and repeat motions that need to be controlled in nanoscale can be measured by laser 

interferometers.   

 Finer tuning of the hybrid filter may yield better results, as well as looking into 

more elaborate techniques for the minimax filtering part of the hybrid filter. One can 

also look into further optimization of the Hall-Effect sensor signal, one way would be 

by modeling the sensors dynamics as a nonlinear system, not a linear system as I did, 

and doing this might lead to a better positioning resolution. Finally better positioning 

resolution in the x-y plane may be achieved by implementing a higher-order low-pass 

filter. 
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APPENDIX  A 

MATLAB CODE FOR LQR CONTROL LAWS 

clear all 
%  
% %LQR for lateral motion only 
% A=[zeros(3,6),eye(3);eye(3),zeros(3,6);zeros(3,9)]; 
% B=[zeros(6,3); 0,0,13.2547; 13.2547,13.2547,0; -235.91, 224.65, -206.78]; 
% C=[eye(3),zeros(3,6)]; D=[zeros(3,3)]; 
%  
%  
% Q=eye(9); 
% Q(1,1)=1e24; Q(2,2)=1e24; Q(3,3)=1e24; 
% Q(4,4)=1e24; Q(5,5)=1e24; Q(6,6)=1e24; 
% Q(7,7)=1e24; Q(8,8)=1e24; Q(9,9)=1e24; 
% R=[1e10,0,0;0,1e10,0;0,0,1e10]; 
%  
% [G,S,E] = lqr(A,B,Q,R); 
%  
% Gs=ss(A,B,C,D); 
% Ks=ss(A-B*G,B,G,D); 
% GKs=series(Ks,Gs); 
% figure(2) 
% sigma(GKs,{1e-1,1e1}); 
%  
% %Hfeed=feedback(GKs,eye(3),-1); 
% %sigma(Hfeed,{10^-2 10^3}); 
%  
% [Gd,Sd,Ed] = lqrd(A,B,Q,R,1/800); 
% Gd 
  
%LQR for upwards motion only 
A=[zeros(3,6),eye(3);eye(3),zeros(3,6);-407.9,zeros(1,8);0,-34246.6, 
zeros(1,7);0,0,-40408.7,zeros(1,6)];  
B=[zeros(6,3); 13.255,13.255,13.255; -209.86,-209.86,370.35; 371.87,-354.28, 
12.73]; 
C=[eye(3),zeros(3,6)]; D=[zeros(3,3)]; 
Q=eye(9); 
Q(1,1)=1e5; Q(2,2)=1e4; Q(3,3)=1e4; 
Q(4,4)=1e9; Q(5,5)=1e9; Q(6,6)=1e9; 
Q(7,7)=1e2; Q(8,8)=1e2; Q(9,9)=1e2; 
R=1*eye(3); 
  
[G,S,E] = lqr(A,B,Q,R); 
  
Gs=ss(A,B,C,D); 
Ks=ss(A-B*G,B,G,D); 
GKs=series(Ks,Gs); 
figure(2) 
sigma(GKs); 
  
%Hfeed=feedback(GKs,eye(3),-1); 
%sigma(Hfeed,{10^-2 10^3}); 
  
[Gd,Sd,Ed] = lqrd(A,B,Q,R,1/800); 
Gd 
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APPENDIX  B 

MATLAB CODE FOR HYBRID FILTER 

 function [ErrKarray, ErrHinfarray] = jojo(g, T, tf) 
  
% INPUTS 
%   g = gamma for minimax filter 
%   T = time step in seconds 
%   tf = final time in seconds 
% OUTPUTS 
%   ErrKarray = time varying array of error of Kalman state estimate 
%   ErrHinfarray = time varying array of error of Minimax state estimate 
  
if ~exist('g', 'var') 
    g = 10;end 
if ~exist('T', 'var') 
    T = 1/800;end 
if ~exist('tf', 'var') 
    tf = 200/800;end 
  
Q=zeros(6); Q(1,1)=1e3;Q(2,2)=1e3;Q(3,3)=1e5; 
Q(4,4)=1e2;Q(5,5)=1e2;Q(6,6)=1e2; % Process noise covariance  
R = 1e-6*[eye(6)]; % Measurement noise covariance (m, m, m) 
  
% Define the initial state x, initial Kalman filter estimate xhat 
x = [7;7;1;5;1;1; 0;0;0;0;0;0; 0;0;0;0;0;0;]; 
P = 1e-9*eye(18); % Initial estimation error covariance 
  
% System matrices 
dt=0.00125; %800Hz 
A = [eye(6) dt*eye(6) 1/2*dt^2*eye(6);  zeros(6) eye(6) dt*eye(6);  zeros(6) 
zeros(6) eye(6)]; 
% Input matrix. 
B = [dt^3/6*eye(6); dt^2/2*eye(6); dt*eye(6)]; 
% measurement matrix. 
C =[eye(6) zeros(6,12)]; 
% Initialize arrays for saving data for plotting. 
xhat = x; 
xarray = []; 
xhatarray = []; 
randn('state', sum(100*clock)); 
  
% Minimax initialization. & mixed 
Qbar = P;  
xhatinf = x; 
xhatinfarray = []; 
xhatmix = x; 
xhatmixarray = []; 
     
for t = T : T : tf     
    % Get the noise-corrupted measurement z. 
    z = C * x; 
    MeasErr = .0000005*randn(size(z)); 
    zi = z + MeasErr; 
    %step 
    if t==0.1 
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        x = [7.000005;7;1;5.0005;1;1; 0;0;0;0;0;0; 0;0;0;0;0;0;];end 
  
    % Run the unconstrained minimax filter. 
    Pinf = inv(eye(9) - (Qbar /g^2) + Qbar * C' * C) * Qbar; 
    Qbar = A * Pinf * A' + eye(9); 
    Kh = A * Pinf * C'; 
 
    xhatinf = A * xhatinf + Kh * (zi - C * xhatinf); 
    xhatinfarray = [xhatinfarray xhatinf]; 
     
    % Run the unconstrained Kalman filter. 
    K = P * C' * inv(C * P * C' + R); 
    % Update the state estimation error covariance. 
    Pup=(eye(18) - K*C)*P; 
    P=Pup; 
    % Estimate the heading on the basis of the state estimate. 
    xhat = xhat + K * (zi - C * xhat); 
    xhat = A*xhat; 
    P = (A * P * A') + B*Q*B';    
   xhatarray = [xhatarray xhat]; 
    
   %Mixed/Hybrid filtering 
    dd=.40;     %hybrid filter weight 
    MK=dd*K+(1-dd)*Kh; 
    xhatmix = A * xhatmix + MK * (zi - C * xhatmix); 
    xhatmixarray = [xhatmixarray xhatmix]; 
    % Simulate the system dynamics. 
    x = A * x + .0000001*randn(size(x)); 
     
    % Uncomment the following line to add unmodeled process noise. 
    %x = x + [3e-7; 0; 0; 0; 0; 0; 0; 0; 0]; 
    xarray = [xarray x];      
    end 
  
% % Compute average position estimation errors. 
EstError = xarray - xhatarray; 
EstError = sqrt(EstError(1,:).^2 + EstError(2,:).^2); EstError = 
mean(EstError); 
disp(['Average Kalman Unconstrained Position Estimation Error = ', 
num2str(EstError)]); 
  
EstError = xarray - xhatinfarray; 
EstError = sqrt(EstError(1,:).^2 + EstError(2,:).^2); EstError = 
mean(EstError); 
disp(['Average Minimax Unconstrained Position Estimation Error = ', 
num2str(EstError)]); 
  
EstError = xarray - xhatmixarray; 
EstError = sqrt(EstError(1,:).^2 + EstError(2,:).^2); EstError = 
mean(EstError); 
disp(['Average Hybrid Unconstrained Position Estimation Error = ', 
num2str(EstError)]); 
 
% % Compute average velocity estimation errors. 
% EstError = xarray - xhatarray; 
% EstError = sqrt(EstError(5,:).^2 + EstError(4,:).^2); EstError = 
mean(EstError); 
% disp(['Average Kalman Unconstrained Velocity Estimation Error = ', 
num2str(EstError)]); 
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%  
% EstError = xarray - xhatinfarray; 
% EstError = sqrt(EstError(5,:).^2 + EstError(4,:).^2); EstError = 
mean(EstError); 
% disp(['Average Minimax Unconstrained Velocity Estimation Error = ', 
num2str(EstError)]); 
 
%  
% EstError = xarray - xhatmixarray; 
% EstError = sqrt(EstError(5,:).^2 + EstError(4,:).^2); EstError = 
mean(EstError); 
% disp(['Average Hybrid Unconstrained Velocity Estimation Error = ', 
num2str(EstError)]); 
 
 t = 0 : T : tf-T; 
 
% Plot the position step responses. 
figure; 
plot(t, xarray(1, :), '-', t, xhatarray(1, :), 'm-',t, xhatinfarray(1, 
:),'r:',t, xhatmixarray(1, :), 'x'); 
set(gca,'FontSize',12); set(gcf,'Color','White'); 
legend('true state', 'Kalman estimate', 'H_{\infty} estimate', 'Hybrid'); 
title('True Position') ;xlabel('seconds'); ylabel('meters'); 
  
% % Plot the position errors. 
% figure; 
% plot(t, xarray(1, :) - xhatarray(1, :), ':', ... 
%     t, xarray(1, :) - xhatinfarray(1, :), '-',t, xarray(1, :) - 
xhatmixarray(1, :)); 
% set(gca,'FontSize',12); set(gcf,'Color','White'); 
% legend('Kalman estimate', 'H_{\infty} estimate', 'Hybrid'); 
% title('Position Estimation Errors'); xlabel('seconds'); ylabel('meters'); 
 
% % Plot the velocity errors. 
% figure; 
% plot(t, xarray(4, :) - xhatarray(4, :), ':', ... 
%     t, xarray(4, :) - xhatinfarray(4, :), '-',t, xarray(4, :) - 
xhatmixarray(4, :)); 
% legend('Kalman estimate', 'H_{\infty} estimate', 'Hybrid'); 
% set(gca,'FontSize',12); set(gcf,'Color','White'); 
% title('Velocity Estimation Errors'); xlabel('seconds'); ylabel('m/s'); 
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APPENDIX  C 

C-CODE FOR LQG CONTROLLERS 

 This appendix presents a sample of the C-code used to run the magnetic 

positioner.  This program includes the LQG controller for the horizontal motion and the 

hybrid filter. 

 

//* signal.c 
// 3-DOF Kalman FIlter - LQG all 3-axis (w integrators) 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <signal.h> 
#include <string.h> 
#include <asm/errno.h> 
#include <sys/types.h> 
#include <sys/user.h> 
#include <sys/mman.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
#include <math.h> 
#include "/home/comedilib-0.8.0/comedilib/include/comedilib.h" 
#include "hall1.h" 
 
#include <rtai_sem.h> 
#include <rtai_usi.h> 
#include <rtai_lxrt.h> 
 
#define MAX_BANDWIDTH 333000 
#define DFLT_FREQUENCY 1000 
 
//Functions 
void GLSDC_2(void); 
void GLSDC_3(void); 
void sensor_test(void); 
void EKF_2(void); 
void x_mov(void); 
void y_mov(void); 
 
comedi_t *it; 
comedi_t *it2; 
int in_subdev = 0; //0 is AIO 
int out_subdev = 0; 
int sigtest = 0; 
 
int in_chan_1 = 0; //Vertical senfor (NANOGAGE100) 
int in_chan_2 = 1; 
int in_chan_3 = 2; 
int in_chan_4 = 3; //A1 Hall-effect sensor 
int in_chan_5 = 5; //A2 
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int in_chan_6 = 6; //B1 
int in_chan_7 = 7; //B2 
int in_chan_8 = 8; //C1_x 
int in_chan_9 = 9; //C2_y 
 
int out_chan_1 = 9; //A 
int out_chan_2 = 10; 
int out_chan_3 = 11; 
int out_chan_4 = 6; //B 
int out_chan_5 = 7; 
int out_chan_6 = 8; 
int out_chan_7 = 3; //C 
int out_chan_8 = 4; 
int out_chan_9 = 5; 
 
// DIO test 
int out_chan_10 = 0; 
 
int in_range = 0; 
int out_range = 0; 
int aref = AREF_GROUND; 
 
int i=0; 
int j=0,p=0,k=0; 
float m1=0,m2=0,m3=0,m4=0,m5=0,m6=0,m7=0,m8=0,m9=0; 
char h=0,y=0; 
char q; 
 
//rtai declarations 
unsigned long mtsk_name; 
RT_TASK *mtsk; 
struct sched_param mysched; 
 
//comedi declarations 
lsampl_t in_data_1; 
lsampl_t in_data_2; 
lsampl_t in_data_3; 
lsampl_t in_data_4; //Hall-effect sensor inputs 
lsampl_t in_data_5; 
lsampl_t in_data_6; 
lsampl_t in_data_7; 
lsampl_t in_data_8; 
lsampl_t in_data_9; 
 
lsampl_t out_data_1; 
lsampl_t out_data_2; 
lsampl_t out_data_3; 
lsampl_t out_data_4; 
lsampl_t out_data_5; 
lsampl_t out_data_6; 
lsampl_t out_data_7; 
lsampl_t out_data_8; 
lsampl_t out_data_9; 
lsampl_t out_data_10; 
 
int t=0,zc_lev=0,sc_ang=0,tc_ang=0; 
float z_pos1=0, z_pos2=0, z_pos3=0,z1,z2,z3,z_pos10=0,z_pos20=0,z_pos30=0; 
float i_Aa,i_Ab,i_Ba,i_Bb,i_Ca,i_Cb,i_Aq,i_Bq,i_Cq,i_Ad,i_Bd,i_Cd;  
float xr=0,xr1=0,yr=0,xc=0,yc=0,rr=0,rc=0,f21h=0.04963; 
float x0_est=0,y0_est=0,r0_est=0; 
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float fA=0,fB=0,fC=0,fZA=0,fZB=0,fZC=0; 
float sr=0,tr=0,zc=0,sc=0,tc=0,zr=0,zr10=0,zr_vol=0, izc; 
float Ct,St,ho=0,yi,xi,XR,YR,cos_x,cos_y,sin_x,sin_y; 
float xA_pos,xB_pos,xB_pos_cal,yA_pos,yB_pos, xrpre=0, yrpre=0, 
xA_after,xB_after, delta_x,xC_pos,yC_pos; 
float delta_xA=0, delta_xB=0,delta_xC=0, xA_pre=0, xB_pre=0, xC_pre=0, 
xc1=0,yc1=0,xc2=0,yc2=0; 
float va1e=0,va2e=0, xr_pre, xd=0, xdpre=0, xa1_pre=0, xc1_pre=0, xe=0, 
error_x=0, error_y=0; 
float mj=0, mn=0, xa1_pre2=0, xc1_pre2=0, delta2_xA=0, delta2_xC=0, 
delta_xA2=0, delta_xC2=0;  
float delta_yA=0, delta_yB=0, ya1_pre=0, yb1_pre=0, delta_y=0, yd=0, ye=0; 
float u0rr=0,u0b=0,u1b=0,u2b=0,er0b=0,er1b=0,er2b=0,u0br=0,bc=0,br=0; 
float sea=0,sec=0,delta_sea=0,delta_sec=0,ya1_old=0, 
yc1_old=0,delta_sya=0,delta_syc=0; 
float rrr=0,brr=0,xa1_old=0,xb1_old=0,sxa=0,sxb=0,delta_sxa=0, 
delta_sxb=0,jul=0; 
float dm=0, spd=0,spdop=0;  
 
// CALIBRATION FACTORS 
float ya1,xa1,yb1,xb1; 
float kya= 1.0213; 
float yaoffset = -0.035; 
float kyb = 0.891; 
float yboffset = 0.13; 
float kxa = 1.19625; 
float xaoffset = 0.02; 
float kxb = 0.805; 
float xboffset = 0.095; 
float kyc=0.8824; 
float ycoffset=0.1; 
float kxc=0.6994; 
float xcoffset=-0.06; 
 
float z0er=0, z0cer=0, z1cer=0, z0r=0, z1r=0, z0cr=0, z1cr=0;  
float er0z=0,er0s=0,er0t=0,u0z=0, 
u0s=0,u1s=0,u2s=0,u0t=0,u1t=0,u2t=0,u1z=0,u2z=0,er1z=0,er2z=0; 
float er0x=0,er1x=0,er2x=0,er0y=0,er1y=0,er2y=0,er0r=0, 
er1r=0,er2r=0,er1t=0,er2t=0,er1s=0,er2s=0; 
float u0x=0,u1x=0,u2x=0,u0y=0,u1y=0,u2y=0,u0r=0,u1r=0,u2r=0; 
float vo00=0,vo01=0,vo02=0,vi00=0,vi01=0,vi02=0,vo10=0,vo11=0, 
vo12=0,vi10=0,vi11=0,vi12=0; 
float vo20=0,vo21=0,vo22=0,vi20=0,vi21=0,vi22=0,vi30=0, 
vi31=0,vi32=0,vo30=0,vo31=0,vo32=0; 
 
float ier0x=0,ier0y=0,ier0r=0,ier1x=0,ier1y=0,ier1r=0; 
float stepsize=0,step=0, ux,uy,ur;  
 
float current_A_1 = 0.0, current_A_2 = 0.0, current_A_3 = 0.0; 
float current_B_1 = 0.0, current_B_2 = 0.0, current_B_3 = 0.0; 
float current_C_1 = 0.0, current_C_2 = 0.0, current_C_3 = 0.0; 
 
int in_maxdata = 0, out_maxdata = 0; 
comedi_range *in_range_ptr, *out_range_ptr; 
 
void solve(void);       //* For calculation of control input 
void result(void);      //* For Book keeping 
void terminate_normally(int signo); 
 
int main(int argc, char* argv[]) 
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{ 
 FILE *fp1 = NULL; //DATA SAVE  
 FILE *fp2 = NULL; 
 FILE *fp3 = NULL; 
 FILE *fp4 = NULL; 
 FILE *fp5 = NULL; 
 FILE *fp6 = NULL; 
RTIME actual_period = 0; 
 
 //signal handling 
 struct sigaction sa; 
 mtsk_name = nam2num("MTSK"); 
 
 //Initialize the signal handling structure 
 sa.sa_handler = terminate_normally; 
 sa.sa_flags = 0; 
 sigemptyset(&sa.sa_mask); 
 
 if(sigaction(SIGINT, &sa, NULL)) 
 { perror("sigaction");} 
 if(sigaction(SIGTERM, &sa, NULL)) 
 {perror("sigaction");} 
 
 fp1 = fopen("result1.txt", "w"); //*xls -> txt 
 fp2 = fopen("result2.txt", "w"); 
 fp3 = fopen("result3.txt", "w"); 
 fp4 = fopen("result4.txt", "w"); 
 fp5 = fopen("result5.txt", "w"); 
 fp6 = fopen("result6.txt", "w"); 
 if(fp1 == NULL) 
 { 
  printf("Error opening result1.txt file\n"); 
  exit(1); 
 } 
 
 fp1 = fopen("result1.txt", "w"); 
 if(fp1 == NULL) 
 { 
  printf("Error opening result1.txt file\n"); 
  exit(1); 
 } 
        if(fp2 == NULL) 
        { 
                printf("Error opening result2.txt file\n"); 
                exit(1); 
        } 
 
        fp2 = fopen("result2.txt", "w"); 
        if(fp2 == NULL) 
        { 
                printf("Error opening result2.txt file\n"); 
                exit(1); 
        } 
        if(fp3 == NULL) 
        { 
                printf("Error opening result3.txt file\n"); 
                exit(1); 
        } 
 
        fp3 = fopen("result3.txt", "w"); 
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        if(fp3 == NULL) 
        { 
                printf("Error opening result3.txt file\n"); 
                exit(1); 
        } 
 if(fp4 == NULL) 
 { 
  printf("Error opening result4.txt file\n"); 
  exit(1); 
 } 
 fp4 = fopen("result4.txt", "w"); 
 if(fp4 == NULL) 
 { 
  printf("Error opening result4.txt file\n"); 
  exit(1); 
 } 
        if(fp5 == NULL) 
        { 
                printf("Error opening result5.txt file\n"); 
                exit(1); 
        } 
        fp5 = fopen("result5.txt", "w"); 
        if(fp5 == NULL) 
        { 
                printf("Error opening result5.txt file\n"); 
                exit(1); 
        } 
        if(fp6 == NULL) 
        { 
                printf("Error opening result6.txt file\n"); 
                exit(1); 
        } 
        fp6 = fopen("result6.txt", "w"); 
        if(fp6 == NULL) 
        { 
                printf("Error opening result6.txt file\n"); 
                exit(1);} 
 
 it = comedi_open("/dev/comedi0"); 
 it2 = comedi_open("/dev/comedi1"); 
 if(it == NULL) 
 { printf("Could not open comedi\n"); 
  exit(1);} 
 if(it2 == NULL) 
 { printf("Could not open comedi\n"); 
  exit(1);} 
 
 in_maxdata = comedi_get_maxdata(it, in_subdev, in_chan_1); 
 in_maxdata = comedi_get_maxdata(it, in_subdev, in_chan_2); 
 in_maxdata = comedi_get_maxdata(it, in_subdev, in_chan_3); 
 in_maxdata = comedi_get_maxdata(it, in_subdev, in_chan_4); 
 in_maxdata = comedi_get_maxdata(it, in_subdev, in_chan_5); 
 in_maxdata = comedi_get_maxdata(it, in_subdev, in_chan_6); 
 in_maxdata = comedi_get_maxdata(it, in_subdev, in_chan_7); 
 in_maxdata = comedi_get_maxdata(it, in_subdev, in_chan_8); 
 in_maxdata = comedi_get_maxdata(it, in_subdev, in_chan_9); 
 
 out_maxdata = comedi_get_maxdata(it2, out_subdev, out_chan_1); 
 out_maxdata = comedi_get_maxdata(it2, out_subdev, out_chan_2); 
 out_maxdata = comedi_get_maxdata(it2, out_subdev, out_chan_3); 
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 out_maxdata = comedi_get_maxdata(it2, out_subdev, out_chan_4); 
 out_maxdata = comedi_get_maxdata(it2, out_subdev, out_chan_5); 
 out_maxdata = comedi_get_maxdata(it2, out_subdev, out_chan_6); 
 out_maxdata = comedi_get_maxdata(it2, out_subdev, out_chan_7); 
 out_maxdata = comedi_get_maxdata(it2, out_subdev, out_chan_8); 
 out_maxdata = comedi_get_maxdata(it2, out_subdev, out_chan_9); 
 
 in_range_ptr = comedi_get_range(it, in_subdev, in_chan_1, in_range); 
 in_range_ptr = comedi_get_range(it, in_subdev, in_chan_2, in_range); 
 in_range_ptr = comedi_get_range(it, in_subdev, in_chan_3, in_range); 
 in_range_ptr = comedi_get_range(it, in_subdev, in_chan_4, in_range); 
 in_range_ptr = comedi_get_range(it, in_subdev, in_chan_5, in_range); 
 in_range_ptr = comedi_get_range(it, in_subdev, in_chan_6, in_range); 
 in_range_ptr = comedi_get_range(it, in_subdev, in_chan_7, in_range); 
 in_range_ptr = comedi_get_range(it, in_subdev, in_chan_8, in_range); 
 in_range_ptr = comedi_get_range(it, in_subdev, in_chan_9, in_range); 
 
out_range_ptr = comedi_get_range(it2, out_subdev, out_chan_1, out_range); 
out_range_ptr = comedi_get_range(it2, out_subdev, out_chan_2, out_range); 
out_range_ptr = comedi_get_range(it2, out_subdev, out_chan_3, out_range); 
out_range_ptr = comedi_get_range(it2, out_subdev, out_chan_4, out_range); 
out_range_ptr = comedi_get_range(it2, out_subdev, out_chan_5, out_range); 
out_range_ptr = comedi_get_range(it2, out_subdev, out_chan_6, out_range); 
out_range_ptr = comedi_get_range(it2, out_subdev, out_chan_7, out_range); 
out_range_ptr = comedi_get_range(it2, out_subdev, out_chan_8, out_range); 
out_range_ptr = comedi_get_range(it2, out_subdev, out_chan_9, out_range); 
begin:  
        printf("Choose a(controller),s(NanoGage),n(Exit))\n"); 
        scanf("%c",&h); 
 
 t=0.0; XR=0; YR=0; 
 yc=0; yr=0;yi=0; xi=0; ux=0; uy=0; ur=0; 
 u0z=0; u1z=0; u2z=0; er0z=0; er1z=0; er2z=0; 
 u0x=0; u1x=0; u2x=0; er0x=0; er1x=0; er2x=0; 
 u0y=0; u1y=0; u2y=0; er0y=0; er1y=0; er2y=0; 
 u0r=0; u1r=0; u2r=0; er0r=0; er1r=0; er2r=0; 
 u0s=0; u1s=0; u2s=0; er0s=0; er1s=0; er2s=0; 
 u0t=0; u1t=0; u2t=0; er0t=0; er1t=0; er2t=0; 
 cos_x=0; cos_y=0; sin_x=0; sin_y=0;  
  
 // GLSDC & EKF 
 deltay[0]=0;deltay[1]=0;deltay[2]=0;deltay[3]=0; 
 X0=0; Y0=0; theta=0; det=0; 
 X01=0; Y01=0; theta1=0; 
 X02=0; Y02=0; theta2=0; 
 X03=0; Y03=0; theta3=0; 
 X04=0; Y04=0; theta4=0; Ct=0; St=0; 
 matA[9][9]=0; matB[9][9]=0; matC[9][9]=0; 
 xk[9]=0; xknew[9]=0; Pknew[9][9]=0; ytildek[3]=0; 
 Kk[9][9]=0; invA[9][9]=0; deltax[3]=0; Jbefore=0; Jafter=0; 
 UpskQkUpskT[9][9]=0; Pk[9][9]=0;  
 
 printf("%f\n", deltay[3]); 
 
 mysched.sched_priority = 99; 
 
 if( sched_setscheduler(0, SCHED_FIFO, &mysched ) == -1){ 
 puts( "ERROR IN SETTING THE SCHEDULER UP"); 
 perror( "error" ); 
 exit( 0 ); } 
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 mlockall(MCL_CURRENT | MCL_FUTURE); 
 
 if (!(mtsk = rt_task_init(mtsk_name, 0, 0, 0))){ 
  printf("CANNOTINIT MASTER TASK\n"); 
  exit(1); } 
 
 printf("MASTER TASK STARTS THE ONESHOT TIMER\n"); 
 actual_period = start_rt_timer(nano2count(10000)); 
printf("actual_period = %lld\n", actual_period); 
rt_make_soft_real_time(); 
 printf("MASTER TASK MAKES ITSELF PERIODIC \n"); 
 rt_task_make_periodic(mtsk, rt_get_time()+ nano2count(3000), 
nano2count(1000000)); 
 
        if(h=='a') 
        { 
//==================================================== 
//==   DEMO(LQG)  
        while(1) 
        { 
                
m1=comedi_data_read(it,in_subdev,in_chan_1,in_range,aref,&in_data_1); 
m2=comedi_data_read(it,in_subdev,in_chan_2,in_range,aref,&in_data_2); 
m3=comedi_data_read(it,in_subdev,in_chan_3,in_range,aref,&in_data_3); 
        //Hall-effect sensors 
m4=comedi_data_read(it,in_subdev,in_chan_4,in_range,aref,&in_data_4); 
m5=comedi_data_read(it,in_subdev,in_chan_5,in_range,aref,&in_data_5); 
m6=comedi_data_read(it,in_subdev,in_chan_6,in_range,aref,&in_data_6); 
m7=comedi_data_read(it,in_subdev,in_chan_7,in_range,aref,&in_data_7); 
m8=comedi_data_read(it,in_subdev,in_chan_8,in_range,aref,&in_data_8); 
m9=comedi_data_read(it,in_subdev,in_chan_9,in_range,aref,&in_data_9); 
 
        //Hall-effect sensors data 
 va1 = comedi_to_phys(in_data_4, in_range_ptr, in_maxdata); // y-sensor a 
 vb1 = comedi_to_phys(in_data_5, in_range_ptr, in_maxdata); // x-sensor a 
 vc1 = comedi_to_phys(in_data_6, in_range_ptr, in_maxdata); // x-sensor b 
 vd2 = comedi_to_phys(in_data_7, in_range_ptr, in_maxdata); // y-sensor b  
 va2 = comedi_to_phys(in_data_9, in_range_ptr, in_maxdata); // y-sensor c 
 vb2 = comedi_to_phys(in_data_8, in_range_ptr, in_maxdata); // x-sensor c 
 
//vo00=vb2; vo10=vd2; vo20=vb1; vo30=va1; 
//digital filters 
vi00=vb2; vi10=vd2; vi20=vb1; vi30=va1; 
//vo00=2*0.9185*0.997*vo01-(0.9185*0.9185)*vo02+(vi01/82.2825); 
vo00=1.792*vo01-0.8047*vo02+(0.09318*vi00-0.1733*vi01+0.09318*vi02);  //notch 
//vo00=2*0.9995*0.9372*vo01-(0.9372*0.9372)*vo02+(vi11/205.22); 
 
//vo10=2*0.9185*0.997*vo11-(0.9185*0.9185)*vo12+(vi11/82.2825); 
vo10=1.792*vo11-0.8047*vo12+(0.09318*vi10-0.1733*vi11+0.09318*vi12);  //notch 
//vo10=2*0.90575*0.9989*vo11-(0.90575*0.90575)*vo12+(vi11/91.8); 
//vo10=2*0.9995*0.9372*vo11-(0.9372*0.9372)*vo12+(vi11/205.22); 
 
//vo30=2*0.9185*0.997*vo31-(0.9185*0.9185)*vo32+(vi31/82.2825); 
//vo30=2*0.9995*0.9372*vo31-(0.9372*0.9372)*vo32+(vi31/205.22); 
vo30=1.792*vo31-0.8047*vo32+(0.09318*vi30-0.1733*vi31+0.09318*vi32);  //notch 
                ya1 = kya*vo30 + yaoffset; 
                xa1 = kxa*vo20 + xaoffset; 
                xb1 = kxb*vc1 + xboffset; //changed 
                yb1 = kyb*vo10 + yboffset; //changed 
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                yc1 = kyc*va2 + ycoffset; 
                xc1 = kxc*vo00 + xcoffset; 
 
                z1 = comedi_to_phys(in_data_1, in_range_ptr, in_maxdata); 
                z_pos1 = 50e-3+z1*1.01833e-2; 
                z_pos10 = z_pos1; 
                z_pos1 = z_pos1-z_pos10; 
                z2 = comedi_to_phys(in_data_2, in_range_ptr, in_maxdata); 
                z_pos2 = 50e-3+z2*1.01833e-2; 
                z_pos20 = z_pos2; 
                z_pos2 = z_pos2-z_pos20; 
                z3 = comedi_to_phys(in_data_3, in_range_ptr, in_maxdata); 
                z_pos3 = 50e-3+z3*1.01833e-2; 
                z_pos30 = z_pos3; 
                z_pos3 = z_pos3-z_pos30; 
/*POSITIONS*/ 
              //xA_pos=(1/123.25)*(xa1); 
              //  xB_pos=(1/123.25)*asin((1/1)*xb1); 
               yA_pos=(1/123.25)*(ya1); 
                yB_pos=(1/123.25)*(yb1); 
                xC_pos=(1/123.25)*(xc1); 
              //  yC_pos=(1/123.25)*(yc1); 
                
  xr = xC_pos;  
  yr = yB_pos;  //YC good too 
  rr = atan((yB_pos - yA_pos)/0.06438); 
 // rr = ((xC_pos - xA_pos)/0.0635); 
 // rr = (yA_pos - yC_pos)/10; 
         t++; 
 
//GLSDC_3(); 
  EKF_2();  
  er0x = xc-xr; /*errors calc*/ 
                er0y = yc-yr; 
                er0r = rc-rr; 
                er0z = zc-zr10; 
                er0s = sc-sr; 
                er0t = tc-tr; 
 
  ier1x=ier0x+0.00125*er0x; //integrators 
  ier1y=ier0y+0.00125*er0y; 
  ier1r=ier0r+0.00125*er0r; 
 
/*Lead-lag controls*/ 
 u0x = 200;  // u0y=0;   
// u0x = 1.2423*u1x-0.2423*u2x+250000*(er0x-1.9773*er1x+0.977428*er2x); 
// u0y = 1.2423*u1y-0.2423*u2y+500000*(er0y-1.9773*er1y+0.977428*er2y);
   
// u0y = 1.3141*u1y-0.3141*u2y+100000*(er0y-1.9773*er1y+0.977428*er2y); 
//450<gain<1100 
// u0r = 1.2741*u1r-0.2741*u2r+1000*(er0r-1.8966*er1r+0.977428*er2r);  
         
 //Moment of inertia 
             fA = 0.5*u0y; 
             fB = 0.5*u0y; fC = u0x; 
 //        fA =-0.45*u0x+0.5*u0y+12.887*u0r; //-0.488*u0y;  
  //       fB = 0.45*u0x+0.5*u0y-12.887*u0r; fC = u0x;//0.512*u0y;  
 
//save data 
// if(t>8200 && t<16200){       fprintf(fp1, "%f \n",rr);} 
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        if(t>8200 && t<16200){       fprintf(fp1, "%f \n",yr*1000);} 
     if(t>8200 && t<16200){fprintf(fp2, "%f  %f  %f\n",yr*1000,yc*1000, rr);}   
 
//steps 
      if(t>10 && t<10000){yc=0.00080;  xr=xc; rr=rc;} 
    else if(t>=10000 && t<10060){ yc=0.00083;  xr=xc; rr=rc;} 
    else if(t>=10060 && t<16200){ yc=0.00081;  xr=xc; rr=rc;} 
 
  //    if(t>10 && t<10000){xc=-0.00100;  yr=yc; rr=rc;} 
   // else if(t>=10000 && t<16200){ xc=-0.001100;  yr=yc; rr=rc;} 
   //   if(t>10 && t<10000){rc=0.017; xr=xc; yr=yc;} 
   //  else if(t>=10000 && t<16200){ rc=0.018; xr=xc; yr=yc;} 
 
//vertical (DQ Decomposition)... 
 i_Ad = 0; i_Bd = 0;  i_Cd = 0;  
 
//horizontal 
 /*LQG*/ 
i_Aq =-160.2*er0x+254*er0y- 92*er0r-0*ier0x+6372*ier0y-0*ier0r-
3.46*x0_est+4.74*y0_est-1.18*r0_est; 
i_Bq 
=158.3*er0x+264.7*er0y+88.2*er0r+0*ier0x+6629*ier0y+0*ier0r+3.44*x0_est+5*y0_e
st+1.13*r0_est;  
i_Cq =359.3*er0x -1.9*er0y-71.7*er0r+7949*ier0x-59.5*ier0y-
2595*ier0r+7.7*x0_est-0.84*r0_est; 
 
//         i_Aq =259.3*er0y+6501.8*ier0y+4.85*y0_est;                                   
//     i_Bq =259.3*er0y+6501.8*ier0y+4.85*y0_est;   i_Cq =8;  
//i_Aq =2;   i_Bq=2;   i_Cq =404*er0x+9312*ier0x+8.3*x0_est; 
//i_Aq =fA*f21h;   i_Bq=fB*f21h;   i_Cq =fC*f21h; 
                cos_x=cos(123.25*xr); 
                cos_y=cos(123.25*yr); 
                sin_x=sin(123.25*xr); 
                sin_y=sin(123.25*yr); 
 
                i_Aa = cos_y*i_Aq -sin_y*i_Ad;  //Current a & b 
                i_Ba = cos_y*i_Bq -sin_y*i_Bd; 
                i_Ca = cos_x*i_Cq -sin_x*i_Cd; 
                i_Ab = sin_y*i_Aq +cos_y*i_Ad; 
                i_Bb = sin_y*i_Bq +cos_y*i_Bd; 
                i_Cb = sin_x*i_Cq +cos_x*i_Cd; 
 
 if(t>16210) 
        {i_Aa=0; i_Ab=0; i_Ba=0; i_Bb=0; i_Ca=0; i_Cb=0;} 
 
                current_A_1 = i_Aa;                     //Final coil currents 
                current_A_2 = 0.5*i_Aa+0.8660254037844*i_Ab; 
                current_A_3 = -0.5*i_Aa+0.8660254037844*i_Ab; 
                current_B_1 = i_Ba; 
                current_B_2 = 0.5*i_Ba+0.8660254037844*i_Bb; 
                current_B_3 = -0.5*i_Ba+0.8660254037844*i_Bb; 
                current_C_1 = -i_Ca; 
                current_C_2 = -0.5*i_Ca-0.8660254037844*i_Cb; 
                current_C_3 = 0.5*i_Ca-0.8660254037844*i_Cb; 
 
     out_data_1 = comedi_from_phys(current_A_1, out_range_ptr, out_maxdata); 
     out_data_2 = comedi_from_phys(current_A_2, out_range_ptr, out_maxdata); 
     out_data_3 = comedi_from_phys(current_A_3, out_range_ptr, out_maxdata); 
     out_data_4 = comedi_from_phys(current_B_1, out_range_ptr, out_maxdata); 
     out_data_5 = comedi_from_phys(current_B_2, out_range_ptr, out_maxdata); 
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       out_data_6 = comedi_from_phys(current_B_3, out_range_ptr, out_maxdata); 
       out_data_7 = comedi_from_phys(current_C_1, out_range_ptr, out_maxdata); 
       out_data_8 = comedi_from_phys(current_C_2, out_range_ptr, out_maxdata); 
       out_data_9 = comedi_from_phys(current_C_3, out_range_ptr, out_maxdata); 
       out_data_10= comedi_from_phys(sigtest, out_range_ptr, out_maxdata); 
 
  comedi_data_write(it2, out_subdev, out_chan_1, out_range, aref, out_data_1); 
  comedi_data_write(it2, out_subdev, out_chan_2, out_range, aref, out_data_2); 
  comedi_data_write(it2, out_subdev, out_chan_3, out_range, aref, out_data_3); 
  comedi_data_write(it2, out_subdev, out_chan_4, out_range, aref, out_data_4); 
  comedi_data_write(it2, out_subdev, out_chan_5, out_range, aref, out_data_5); 
  comedi_data_write(it2, out_subdev, out_chan_6, out_range, aref, out_data_6); 
  comedi_data_write(it2, out_subdev, out_chan_7, out_range, aref, out_data_7); 
  comedi_data_write(it2, out_subdev, out_chan_8, out_range, aref, out_data_8); 
  comedi_data_write(it2, out_subdev, out_chan_9, out_range, aref, out_data_9); 
  comedi_dio_write(it, out_subdev, out_chan_10, sigtest); 
        rt_task_wait_period(); 
 
                if(t>16210) 
                       { break;} 
               xrpre = xr; 
  u2x=u1x; u1x=u0x; er2x=er1x; er1x=er0x; 
  u2y=u1y; u1y=u0y; er2y=er1y; er1y=er0y; 
                u2r=u1r; u1r=u0r; er2r=er1r; er1r=er0r; 
                vo02 = vo01; vo01 = vo00; vi02 = vi01; vi01 = vi00; 
                vo12 = vo11; vo11 = vo10; vi12 = vi11; vi11 = vi10;  
                vo22 = vo21; vo21 = vo20; vi22 = vi21; vi21 = vi20;   
                vo32 = vo31; vo31 = vo30; vi32 = vi31; vi31 = vi30;   
  ier0x=ier1x; ier0y=ier1y; ier0r=ier1r; 
        } //while loop close 
        } // if close 
 
 else if(h=='n') 
 { goto answer_no;} 
 goto begin; 
 
answer_no: 
 out_data_1 = (lsampl_t)2048; 
 out_data_2 = (lsampl_t)2048; 
 out_data_3 = (lsampl_t)2048; 
 out_data_4 = (lsampl_t)2048; 
 out_data_5 = (lsampl_t)2048; 
 out_data_6 = (lsampl_t)2048; 
 out_data_7 = (lsampl_t)2048; 
 out_data_8 = (lsampl_t)2048; 
 out_data_9 = (lsampl_t)2048; 
 out_data_10= (lsampl_t)2048; 
 
 rt_make_soft_real_time(); 
// printf("MASTER TASK YIELDS ITSELF\n"); 
 rt_task_yield(); 
// printf("MASTER TASK YIELD THE PERIODIC TIMER\n"); 
 stop_rt_timer(); 
// printf("MASTER TASK DELETES ITSELF\n"); 
 rt_task_delete(mtsk); 
 
 comedi_close(it); 
 comedi_close(it2); 
 fclose(fp1); fclose(fp2); fclose(fp3); 
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 printf("END MASTER TASK\n"); 
 printf("%d\n", out_data_1); 
 return 0; 
}//end of main 
 
void GLSDC_2(void) 
{ 
// Steady-state 6-axis Hybrid filter 
Kh[0][0]=1.001;   Kh[1][1]=1.001;    Kh[2][2]=1.001; 
Kh[3][3]=1.001;   Kh[4][4]=1.001;    Kh[5][5]=1.001; 
Kh[6][0]=-2.6e-12; Kh[7][1]=-2.6e-12;  Kh[8][2]=-2.6e-9; 
Kh[9][3]=-2.6e-13; Kh[10][4]=-2.6e-13; Kh[11][5]=-2.6e-13; 
Kh[12][0]=-4.11e-9;  Kh[13][1]=-4.11e-9;  Kh[14][2]=-4.11e-6; 
Kh[15][3]=-4.11e-10; Kh[16][4]=-4.11e-10; Kh[17][5]=-4.11e-10; 
 
Kk[0][0]=0.0158;  Kk[1][1]=0.0158;  Kk[2][2]=0.0225; 
Kk[3][3]=0.0113;  Kk[4][4]=0.0113;  Kk[5][5]=0.0113; 
Kk[6][0]=0.124162; Kk[7][1]=0.124162; Kk[8][2]=0.32431; 
Kk[9][3]=0.1062; Kk[10][4]=0.1062; Kk[11][5]=0.1062; 
Kk[12][0]=0.9842; Kk[13][1]=0.9842; Kk[14][2]=1.132; 
Kk[15][3]=0.8421; Kk[16][4]=0.8421; Kk[17][5]=0.8421; 
 
 ytildek[0]=xr; ytildek[1]=yr; ytildek[2]=rr;  
 ytildek[3]=xr; ytildek[4]=yr; ytildek[5]=rr;  
 
 //Kalman d=1, Hinf d=0.0 
 for(i=0;i<17;i++){ 
  xknew[i]=0; 
  for(j=0;j<5;j++){ 
   MK[i][j]=0.9*Kk[i][j]+(1-0.9)*Kh[i][j]; 
   xknew[i]+=MK[i][j]*(ytildek[j]-xk[j]); 
    } 
  xknew[i]=xknew[i]+xk[i]; 
  }   
  for(i=0;i<17;i++) 
   {xk[i]=xknew[i];} 
  
   xr=xk[0]; yr=xk[1]; rr=xk[2]; 
       zr10=xk[3]; sr=xk[4]; tr=xk[5];       
   x0_est=xk[6]; y0_est=xk[7]; r0_est=xk[8];  
   z0_est=xk[9]; s0_est=xk[10]; t0_est=xk[11];  
} 
 
void GLSDC_3(void) 
{ //Recursive planar hybrid filter 
Kh[0][0]=1.0101;   Kh[1][1]=1.0101;    Kh[2][2]=1.0101; 
Kh[3][0]=-2.6e-12; Kh[4][1]=-2.6e-12;  Kh[5][2]=-2.6e-11; 
Kh[6][0]=-4.11e-9;Kh[7][1]=-4.11e-9; Kh[8][2]=-4.11e-8; 
  
  ytildek[0]=xr; 
  ytildek[1]=yr; 
  ytildek[2]=rr;  
 //gain matriX 
  // Hk*Pk*Hk'+Rk=matA matA is symmetric 
  for(i=0;i<3;i++){ 
   for(j=i;j<3;j++){ 
    matA[i][j]=Pk[i][j]+Rkk[i][j]; 
    matA[j][i]=matA[i][j]; 
   } 
  } 
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  // solve for inverse 
 det=matA[0][0]*matA[1][1]*matA[2][2]+matA[1][0]*matA[2][1]*matA[0][2]+m
atA[2][0]*matA[0][1]*matA[1][2]-matA[0][0]*matA[2][1]*matA[1][2]-
matA[2][0]*matA[1][1]*matA[0][2]-matA[1][0]*matA[0][1]*matA[2][2]; 
 
  invA[0][0]=(matA[1][1]*matA[2][2]-matA[1][2]*matA[2][1])/det; 
  invA[0][1]=(matA[0][2]*matA[2][1]-matA[0][1]*matA[2][2])/det; 
  invA[0][2]=(matA[0][1]*matA[1][2]-matA[0][2]*matA[1][1])/det; 
  invA[1][1]=(matA[0][0]*matA[2][2]-matA[0][2]*matA[2][0])/det; 
  invA[1][2]=(matA[0][2]*matA[1][0]-matA[0][0]*matA[1][2])/det; 
  invA[2][2]=(matA[0][0]*matA[1][1]-matA[0][1]*matA[1][0])/det; 
   invA[1][0]=invA[0][1]; 
   invA[2][0]=invA[0][2]; 
   invA[2][1]=invA[1][2]; 
   // Pk*Hk' is the left 3 rows of Pk  
   // m_times_m(Pk, 9,3,invA,3,3,Kk); 
   for(i=0;i<9;i++){ 
    for(j=0;j<3;j++){ 
     Kk[i][j]=0; 
     for(k=0;k<3;k++){ 
      Kk[i][j]+=Pk[i][k]*invA[k][j]; 
     } 
    } 
   } 
  // update x 
  //Kalman d=1, Hinf d=0.0 
   for(i=0;i<9;i++){ 
    xknew[i]=0; 
    for(j=0;j<3;j++){ 
     MK[i][j]=1.0*Kk[i][j]+(1-1.0)*Kh[i][j]; 
     xknew[i]+=MK[i][j]*(ytildek[j]-xk[j]); 
    } 
     xknew[i]=xknew[i]+xk[i]; 
   }   
    for(i=0;i<9;i++) 
     xk[i]=xknew[i]; 
 
   // update Pk, Ck is symmetric matrix 
    for(i=0;i<9;i++){ 
     for(j=i;j<9;j++){ 
      matC[i][j]=0; 
      for(k=0;k<3;k++){ 
       matC[i][j]+=Kk[i][k]*Pk[k][j]; 
      } 
      matC[j][i]=matC[i][j]; 
     } 
    } 
    for(i=0;i<9;i++){ 
     for(j=i;j<9;j++){ 
      Pk[i][j]=Pk[i][j]-matC[i][j]; 
      Pk[j][i]=Pk[i][j]; 
     } 
    } 
   // propagation xk 
    // m_times_v(Phik,9,9,xk,9,xknew); 
    for(i=0;i<9;i++) 
     xknew[i]=0; 
 
    xknew[0]=xk[0]+dt*xk[3]+dt22*xk[6]; 
    xknew[1]=xk[1]+dt*xk[4]+dt22*xk[7]; 
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    xknew[2]=xk[2]+dt*xk[5]+dt22*xk[8]; 
    xknew[3]=xk[3]+dt*xk[6]; 
    xknew[4]=xk[4]+dt*xk[7]; 
    xknew[5]=xk[5]+dt*xk[8]; 
    xknew[6]=xk[6]; 
    xknew[7]=xk[7]; 
    xknew[8]=xk[8]; 
 
    for(i=0;i<9;i++) 
     xk[i]=xknew[i]; 
 
   //propagation PK 
    // Phik*PK*Phik'=Pknew 
  for(i=0;i<3;i++){ 

for(j=i;j<3;j++){ 
Pknew[i][j]=Pk[i][j]+2*dt*Pk[i][j+3]+dt2*Pk[i][j+6]+dt3*Pk[i+3][j
+6]+dt4/4*Pk[i+6][j+6]; 

     } 
    } 
  for(i=0;i<3;i++){ 
   for(j=i+3;j<6;j++){  
 Pknew[i][j]=Pk[i][j]+dt*Pk[i][j+3]+1.5*dt2*Pk[i+3][j+3]+dt*Pk[i][j+3]+d
t3/2*Pk[i+6][j+3]; 
     } 
    } 
    Pknew[1][3]=Pknew[0][4]; 
    Pknew[2][3]=Pknew[0][5]; 
    Pknew[2][4]=Pknew[1][5]; 
   for(i=0;i<3;i++){ 
    for(j=i+6;j<9;j++){ 
    
 Pknew[i][j]=Pk[i][j]+dt*Pk[i+3][j]+dt2*Pk[i+6][j]; 
     } 
    } 
    Pknew[1][6]=Pknew[0][7]; 
    Pknew[2][6]=Pknew[0][8]; 
    Pknew[2][7]=Pknew[1][8]; 
   for(i=3;i<6;i++){ 
    for(j=i;j<6;j++){ 
    
 Pknew[i][j]=Pk[i][j]+dt*Pk[i][j+3]+dt2*Pk[i+6][j]; 
     } 
    } 
    for(i=3;i<6;i++){ 
     for(j=i+3;j<9;j++){ 
      Pknew[i][j]=Pk[i][j]+dt*Pk[i+3][j]; 
     } 
    } 
    Pknew[4][6]=Pknew[3][7]; 
    Pknew[5][6]=Pknew[3][8]; 
    Pknew[5][7]=Pknew[4][8]; 
    for(i=6;i<9;i++){ 
     for(j=i;j<9;j++){ 
      Pknew[i][j]=Pk[i][j]; 
     } 
    } 
    for(i=0;i<9;i++){ 
     for(j=i;j<9;j++){ 
      Pknew[j][i]=Pknew[i][j]; 
     } 
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    } 
     
    for(i=0;i<9;i++){ 
     for(j=i;j<9;j++){ 
     
 Pk[i][j]=Pknew[i][j]+UpskQkUpskT[i][j]; 
      Pk[i][j]=Pk[i][j]; 
     } 
    } 
    xr=xk[0]; yr=xk[1]; rr=xk[2];    
    x0_est=xk[3]; y0_est=xk[4]; r0_est=xk[5]; 
} 
 
void sensor_test(void) 
{ } 
 
void terminate_normally(int signo) 
{ fflush(stdin); 
 
 if(signo==SIGINT ||signo==SIGTERM) 
 { printf("Terminating the program normally\n"); 
  out_data_1 = (lsampl_t)2048; 
  out_data_2 = (lsampl_t)2048; 
  out_data_3 = (lsampl_t)2048; 
  out_data_4 = (lsampl_t)2048; 
  out_data_5 = (lsampl_t)2048; 
  out_data_6 = (lsampl_t)2048; 
  out_data_7 = (lsampl_t)2048; 
  out_data_8 = (lsampl_t)2048; 
  out_data_9 = (lsampl_t)2048; 
  out_data_10= (lsampl_t)2048; 
 
  for(i=0;i<20;i++){ 
comedi_data_write(it2, out_subdev, out_chan_1, out_range, aref, out_data_1); 
comedi_data_write(it2, out_subdev, out_chan_2, out_range, aref, out_data_2); 
comedi_data_write(it2, out_subdev, out_chan_3, out_range, aref, out_data_3); 
comedi_data_write(it2, out_subdev, out_chan_4, out_range, aref, out_data_4); 
comedi_data_write(it2, out_subdev, out_chan_5, out_range, aref, out_data_5); 
comedi_data_write(it2, out_subdev, out_chan_6, out_range, aref, out_data_6); 
comedi_data_write(it2, out_subdev, out_chan_7, out_range, aref, out_data_7); 
comedi_data_write(it2, out_subdev, out_chan_8, out_range, aref, out_data_8); 
comedi_data_write(it2, out_subdev, out_chan_9, out_range, aref, out_data_9); 
comedi_dio_write(it2, out_subdev, out_chan_10,16); 
 rt_task_wait_period(); 
  } 
  rt_make_soft_real_time(); 
 
  printf("MASTER TASK YIELDS ITSELF\n"); 
  rt_task_yield(); 
  printf("MASTER TASK STOPS THE PERIODIC TIMER\n"); 
  stop_rt_timer(); 
  printf("MASTER TASK DELETES ITSELF\n"); 
  rt_task_delete(mtsk); 
  comedi_close(it); 
  comedi_close(it2); 
  printf("END MASTER TASK\n"); 
 } 
 exit(0);} 
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