

A BRANCH-DIRECTED DATA CACHE PREFETCHING

TECHNIQUE FOR INORDER PROCESSORS

A Thesis

by

REENA PANDA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2011

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4315378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A BRANCH-DIRECTED DATA CACHE PREFETCHING

TECHNIQUE FOR INORDER PROCESSORS

A Thesis

by

REENA PANDA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Co-Chairs of Committee, Paul V. Gratz
 Jiang Hu
Committee Members, Eun Jung Kim
 Deepa Kundur
Head of Department, Costas N. Georghiades

December 2011

Major Subject: Computer Engineering

 iii

ABSTRACT

A Branch-directed Data Cache Prefetching Technique for Inorder Processors.

(December 2011)

Reena Panda, B.Tech, NIT Rourkela, India

Co-Chairs of Advisory Committee: Dr. Paul V. Gratz
 Dr. Jiang Hu

The increasing gap between processor and main memory speeds has become a serious

bottleneck towards further improvement in system performance. Data prefetching

techniques have been proposed to hide the performance impact of such long memory

latencies, but most of the currently proposed data prefetchers predict future memory

accesses based on current memory misses. This limits the opportunity that can be

exploited to guide prefetching.

In this thesis, I propose a branch-directed data prefetcher that uses the high prediction

accuracies of current-generation branch predictors to predict a future basic block trace

that the program will execute, and issues prefetches for all the identified memory

instructions contained therein. I also propose a novel technique to generate prefetch

addresses by exploiting the correlation between the addresses generated by memory

instructions and the values of the corresponding source registers at prior branch

instances. I evaluate the impact of the prefetcher by using a cycle-accurate simulation of

an inorder processor on the M5 simulator. The results of the evaluation show that the

branch-directed prefetcher improves the performance on a set of 18 SPEC CPU2006

benchmarks by an average of 38.789% over a no-prefetching implementation and

2.148% over a system that employs a Spatial Memory Streaming prefetcher.

 iv

To my family

 v

ACKNOWLEDGEMENTS

I am extremely thankful to my advisor, Dr. Paul V. Gratz, for giving me an opportunity

to work under him. His constant guidance and support always helped me move in the

right direction in my research. I am grateful to him for making my research experience a

memorable one, and my respect goes to him.

I would like to express my gratitude to my committee members Dr. Deepa Kundur, Dr.

Eun Jung Kim and Dr. Jiang Hu for agreeing to be on my thesis committee and

providing me valuable feedback.

I would also like to express my sincere thanks to Dr. Daniel Jimenez, for taking keen

interest and giving his invaluable advice and suggestions during the course of this work.

Special thanks to Ehsan Fatehi for his help with the M5 simulator and other members of

my research community for their support, advice and suggestions over the past one year.

My time at Texas A&M was made enjoyable in large part due to many friends that

became a part of my life. I am grateful for the time spent with roommates and friends.

I would also like to thank my family for their love, support and encouragement all

through my life. Lastly, I would like to thank god for blessing me with this opportunity

and giving me the strength to reach this point.

 vi

TABLE OF CONTENTS

 Page

ABSTRACT ... iii

DEDICATION .. iv

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS .. vi

LIST OF FIGURES ... viii

LIST OF TABLES... ... x

CHAPTER

 I INTRODUCTION .. 1

 I.1 Thesis Statement .. 2
 I.2 Thesis Contributions .. 3
 I.3 Thesis Organization ... 5

 II BACKGROUND AND MOTIVATION ... 6

 II.1 Background .. 6
 II.2 Motivation ... 11

 III PRIOR WORK ... 13

 III.1 Data Prefetching Techniques .. 13
 III.1.1 Sequential Prefetching ... 13
 III.1.2 Stride Prefetching .. 14
 III.1.3 Pointer-based Prefetching Techniques 14
 III.1.4 Runahead Mechanisms .. 15
 III.1.5 Region Based Prefetching Techniques 16
 III.1.6 Branch-directed Data Prefetching 17
 III.2 Confidence Estimation Techniques ... 21

 IV DESIGN AND IMPLEMENTATION ... 24

 vii

CHAPTER Page

 IV.1 Overall System Architecture .. 24
 IV.2 System Components ... 28
 IV.2.1 Branch Trace Cache .. 28
 IV.2.2 Path Confidence Estimator .. 32
 IV.2.3 Branch-Register Table .. 36
 IV.2.4 Prefetch-filtering Mechanisms 48
 IV.2 Working Example .. 53

V EVALUATION .. 61

 V.1 Methodology .. 61
 V.2 Results and Analysis .. 63
 V.2.1 Impact on IPC ... 63
 V.2.2 Prefetch Effectiveness .. 65
 V.2.3 Bus Traffic .. 67
 V.2.4 Impact of Predictor Table Size 68
 V.2.5 Hybrid SMS and Branch-directed Prefetcher 69
 V.2.6 Inorder versus Out-of-Order: Impact on IPC 70
 V.3 Hardware Cost ... 72

 VI LESSONS LEARNED ... 74

 VI.1 Hybrid Prefetcher Implementation ... 74
 VI.2 Modified Branch-register Table Implementation
 (The Min-Max Scheme) ... 75
 VI.3 Indirect Branch Handling ... 78
 VI.4 LRU Insertion Policy for Prefetched Blocks 80

VII CONCLUSION AND FUTURE WORK .. 82

REFERENCES .. 84

VITA ... 88

 viii

LIST OF FIGURES

FIGURE Page

 II.1 An example illustrating dependence between branch instructions and
 data access patterns ... 6

 II.2 Flow chart showing the Branch-Directed Prefetching Algorithm........... 8

 II.3 Graphs showing the degree of correlation between generated data
 addresses & corresponding source register values at a prior branch 9

 II.4 Code fragment from Leslie3D benchmark (SPEC CPU2006) 11

 IV.1 Overall system architecture ... 25

 IV.2 Single Branch Trace Cache entry .. 30

 IV.3 Figure showing: (a) A program sequence; (b) Control Flow Graph of
 the program sequence in (a); (c) Branch Trace Cache filled state 31

 IV.4 Composite Branch Confidence estimator .. 33

 IV.5 Graphs showing the variability in branch misprediction rates across the
 37 confidence buckets for a set of SPEC CPU2006 benchmarks 34

 IV.6 Single Branch-Register Table entry (Basic implementation).................. 36

 IV.7 Snapshot of the trained Branch-Register Table 37

 IV.8 Single Branch-Register Table entry (Offset implementation) 40

 IV.9 Flow Chart depicting (a) Process to use offset-field for prefetching;
 (b) Process to update the offset-field ... 41

 IV.10 Single Branch-Register Table entry (Loop implementation) 42

 IV.11 Flowchart describing the process to generate prefetch addresses in
 the loop-mode ... 45

 IV.12 Modified Prefetch-Queue .. 52

 ix

FIGURE Page

 IV.13 Example of the working of Prefetch-Queue based filtering.................... 53

 IV.14 Working example showing update of Branch Trace Cache and
 creation of Branch-Register links .. 54

 IV.15 Trained State of prediction tables, corresponding to the program
 sequence given in Figure IV.3 (a) ... 55

 IV.16 Working example showing the prefetch address generation process 56

 IV.17 Snapshot of the predictor tables at the end of a lookahead phase 57

 IV.18 Working example showing Branch-Register Table learning process 58

 IV.19 Working example showing steps followed when prefetch is issued
 for an already-prefetched block ... 59

 V.1 IPC improvement over Baseline (No-prefetching) 63

 V.2 IPC improvement over SMS prefetcher .. 64

 V.3 Effectiveness of issued prefetches ... 66

 V.4 Increase in number of L2 Cache accesses ... 68

 V.5 Performance impact of hybrid SMS and Branch-Directed
 prefetcher ... 70

 V.6 Performance comparision of Inorder (with prefetching support) and
 out-of-order implementations .. 71

 VI.1 Single Branch-Register table entry (Min-Max Implementation) 76

 VI.2 Modified Branch Trace Cache entry to handle the indirect branches 79

 x

LIST OF TABLES

TABLE Page

 III.1 Hardware overhead and performance benefits of prior branch-directed
 prefetchers .. 19

 V.1 Target microarchitecture parameters .. 62

 1

CHAPTER I

INTRODUCTION

Owing to significant micro-architectural advancements as well as technology scaling, the

performance of microprocessors has improved at a tremendous pace over the past couple

of decades. However while the processing speed has increased significantly, the memory

access speed has not scaled accordingly. So, the memory access latency is becoming a

serious bottleneck towards further increase in system performance.

Many memory latency hiding techniques have been proposed in the literature so far in

order to reduce this growing gap between memory and processor speeds. One such

technique is the use of “caches” [1]. A cache is a smaller and faster memory that resides

between the CPU and the main memory and thereby, allows faster access to data that

resides in it. It basically exploits two important characteristics of programs, namely,

spatial and temporal locality. It does so by storing, the recently used/demanded data

(thereby, exploiting the temporal locality) and the data that resides closer to other

demand-fetched data in the memory (thereby exploiting spatial locality). The idea is that

such data have a greater chance to be accessed by the CPU than others. As long as these

characteristics hold true, complete memory accesses can mostly be avoided, thereby

providing performance benefits. Several enhancements have also been proposed to the

cache implementation and handling, like lock-up free caches [2], better insertion and

replacement algorithms etc. However, even with all these advancements, a single cache

miss through all levels still causes a loss of more than hundreds of processor cycles and

is thus, detrimental to system performance.

This thesis follows the style of IEEE Transactions on Automatic Control.

 2

Another technique that has been widely adopted to hide long memory latencies and also

to exploit instruction level parallelism is out-of-order execution. Among its other

benefits, out of order execution allows instructions, following a long latency missing

instruction, to execute, being constrained only by the true data dependences or the size

of the instruction window. Thus with out-of-order support, it becomes possible to

overlap memory accesses with actual execution, thus hiding some of the penalties of a

complete memory access. But as the technology is gradually moving into the submicron

realm, superscalar processors (which are capable of supporting out of order execution)

are becoming increasingly expensive to implement. This is because such processors

employ several complex hardware units like the Reorder buffers, issue and wake up

logic, multi-entry buffers etc., which are very power hungry and also have higher area

requirements. These concerns have therefore, started diverting the attention back to the

simple inorder processors, which have lesser power and area requirements.

A third technique that allows hiding memory access latency is prefetching. Prefetching

predicts the data that will be used by the processor in future and generates requests to

bring them closer to the processor before an actual request is sent out for them. So, if the

prediction turns out to be correct, the demand request gets satisfied in the cache and the

need to fetch the data from main memory is eliminated. But, like any other speculative

technique, prefetching is not perfect and hence, it is likely that many prefetched blocks

may be either useless or ineffective. However, such prefetched data may still evict more

useful data from the cache and hence, can cause cache pollution. Additionally, a large

number of prefetch requests sent to the main memory may impact the limited available

bandwidth and hence, can cause delay in servicing other demand requests.

I.1 Thesis Statement

This thesis proposes a data prefetching mechanism as a means to reduce the impact of

long memory latencies on system performance. This proposed scheme takes advantage

 3

of the high prediction accuracies of current-generation branch predictors to accurately

generate a future basic-block trace of the program and then, issues prefetches for all the

identified memory instructions in these basic blocks. In addition, this thesis describes a

novel technique to capture the data access behavior by observing the runtime

modifications to the register values that used for memory address computation. The goal

of this thesis is thus, to demonstrate that: a) the behavior of control instructions can be

efficiently exploited to enable timely and effective prefetching and b) data addresses can

be accurately predicted by monitoring the runtime updates to the address-generating

register values.

I.2 Thesis Contributions

In this thesis, we propose a data prefetching technique so as to bridge the growing gap

between processor and memory speeds and thereby, leading to performance benefits.

While most of the existing prefetchers predict future accesses based on current memory

misses, our prefetcher leverages the high prediction accuracies of current-generation

branch predictors to accurately generate the future basic block trace that the program

will follow and initiates data prefetching much before the actual execution of the

instructions in the corresponding basic blocks begins. Our proposal is based on the idea

that branch instructions determine the execution path of any program, i.e., which basic

block of instructions gets executed and in what sequence is determined by the direction

of the branch instructions contained in the path. Different basic blocks tend to operate on

same/different data and contain instructions to operate on data in a particular pattern. So,

given that branch instructions determine which basic blocks would get executed in any

instance of the program run, the access pattern of data that is manipulated in those basic

blocks can also be linked to the prior branch instructions.

We build our system based on the observation that the address values generated by the

memory instructions in a basic block are quite predictable even at an earlier branch

 4

instruction. We establish this correlation in hardware, by associating the source register

indices being used for address computation by the memory instructions in any basic

block to their preceding branch instruction (the entry point of the block). By making use

of the actual register values at that execution instance and not data access history, we can

prefetch even those instructions that do not exhibit regular strided access patterns, but

still generate predictable address values starting from the dynamic register values.

In this thesis, we propose a practical hardware design of our data prefetcher for an

inorder processor implementation. Due to their lower power and area requirements as

compared to their superscalar counterparts, inorder processors have been receiving a lot

of attention lately. They are thus making their way into mainstream multiprocessor and

multi-core based designs. Many modern processors like Intel's Atom processor [3], Sun’s

UltraSPARC T1 “Niagara” [4] have preferred to incorporate a number of smaller inorder

cores over larger superscalar cores, thereby saving power and area. However, inorder

processors have reduced single-threaded performance. The reason is partly because they

allow very limited execution around the data cache misses. So, techniques like

prefetching become more important for such architectures, as a means to bridge the

growing gap between processor and memory speed. It is however important to note that,

this prefetcher design is not architecture-specific and can be implemented with any

processor architecture.

Finally in this thesis,

• We demonstrate that data addresses generated by memory instructions are

predictable at prior branch locations by exploiting the runtime values of those

registers that are used for memory address computation.

• We propose a practical hardware implementation of a prefetcher for the L1 Data

Cache that allows look ahead across basic blocks and exploits the above-

mentioned correlation to initiate prefetching.

 5

• Branch directed prefetcher provides a mean speedup of 38.789% over a baseline

system with no prefetching. While the Spatial Memory Streaming (SMS) [5], [6],

one of the best performing practical prefetcher, provides a mean speedup of

35.87% over the baseline. Our final implementation also provides an IPC

improvement of 2.14 % over SMS.

• We also discuss several enhancements to the base prefetcher design to improve

the performance and accuracy of the prefetcher.

I.3 Thesis Organization

This document is organized as follows. Chapter II gives an overview of the proposed

approach and discusses the motivation behind the same. In Chapter III, we provide an

overview of the prior work in the areas important to this thesis. Chapter IV presents a

detailed description of the system architecture. In chapter V, we discuss our simulation

methodology and evaluate the results. In Chapter VI, we discuss few observations that

were made, while implementing the different design alternatives. Finally, Chapter VII

concludes this thesis and discusses future work.

 6

CHAPTER II

BACKGROUND AND MOTIVATION

This chapter provides a general overview of the branch-directed prefetching system and

also discusses the motivation behind the proposed approach.

II.1 Background

The direction taken by the control instructions determines the execution path of any

program. In other words, which basic block of instructions gets executed and in what

sequence is determined by the direction of execution of the control instructions

encountered along the path. In this thesis, it is claimed that since branch instructions

control the execution path, the data access patterns of subsequent basic blocks could also

be dependent on/linked to the previous branch behavior. For example, consider a “C”

code fragment comprised of an if-else code block (see Figure II.1).

Figure II.1 An example illustrating dependence between branch instructions and data access patterns

 7

The block of code (if-block or else-block) which gets executed following the control

instruction depends on the direction taken by it. So, the data that is going to get

requested in the future execution phase and its access pattern is also dependent on the

branch instructions encountered along the path and their direction of execution. Given

that such correlation can be established, it implies that data prefetching can be initiated

at the decode time of the branches, without waiting for the corresponding memory

instructions to start executing. Additonally, data prefetching can be initiated even earlier

by employing a reasonably accurate fast forwarding scheme that can predict the future

execution path following a branch instruction. This implies that while one branch

instruction is being executed, the future path of execution can be predicted therefrom

and then, prefetches can be issued for those memory references that are linked to the

future branch instructions contained in the path. Also, if the path prediction accuracy is

not very high, then a confidence estimator can be employed to prevent speculating too

deep along a wrong path (if at all) instead of allowing the lookahead to continue as long

as possible. The process adopted to enable branch-directed prefetching is shown

schematically in Figure II.2.

This thesis proposes a data prefetcher that establishes correlation between the memory

instructions used in a basic block and their prior branch instructions. Later, it employs a

lookahead scheme to predict the future path of execution and exposes the memory

instructions identified along the path. Unlike prior works in this area, which mostly find

correlation among the actual data addresses used by the instructions at consecutive

execution instances, we propose to associate register indices being operated by the

memory instructions (as source registers to generate data address) to their preceding

branch instructions (the entry points of the basic block) and use this correlation to guide

prefetching. This idea is based on the premise that register values at the time of data

address generation would not be very different from their corresponding values at a time

when the preceding branch instruction was executed. By exploiting such register-based

correlation, the branch-directed prefetcher can not only predict data addresses which

 8

display a regular strided-access pattern, but also can take advantage of the dynamic

values of the registers at run-time to predict irregular and isolated data accesses.

Figure II.2 Flow chart showing the Branch-Directed Prefetching Algorithm

In order to determine if such correspondence exists, we conducted an experiment to

demonstrate the degree of correlation between the data addresses generated by memory

references and the corresponding register values at prior branch instructions. Before

describing the details of the experiment, the meaning of certain terms are clarified first,

which have been used throughout this thesis. A “spatial region” is defined as a coarser

unit of memory, consisting of multiple consecutive cache blocks [5], [7]. Based on the

above definition of the spatial region, two address values are said to be “correlated” if

they fall into the same spatial region.

 9

The experiment was conducted using application traces (corresponding to first 300

million committed instructions) collected from a subset of SPEC CPU2006 benchmarks.

The traces consisted of: a) a dump of the architectural register file at each branch

location, b) the effective addresses generated by each subsequent memory instruction, c)

the corresponding source register indices used for address computation by the memory

instructions. An offline analysis was then, performed on these traces to find out the

degree by which the register values at prior branch instructions are correlated to the

actual effective addresses generated by the instructions in those basic blocks. Finally, the

percentage of memory instructions which demonstrated this correlation (where

correlation implies falling into the same spatial region) with their preceding branch

instructions was recorded. Also, the impact of the assumed region size on the degree of

correlation was monitored. Results of this experiment for two different region sizes (512

Bytes and 256 Bytes) are shown in Figure II.3.

Figure II.3 Graphs showing the degree of correlation between generated data addresses &
corresponding source register values at a prior branch

 10

Corresponding to the figure, Prev 0 implies the case when the memory instructions were

compared with their immediately preceding branch instruction, Prev 1 corresponds to the

case where memory instructions were compared with the branch preceding their

immediately preceding branch instruction and so on.

From the figure, we can observe that most of the benchmarks exhibit significant degree

of correlation between the data addresses generated by memory instructions and

corresponding register values at previous branch instructions. Also, as expected, the

correspondence is stronger with respect to the immediately preceding branch instruction

and it gradually reduces as the correlation is tested with older branches in program order.

This is because greater is the distance between a memory instruction and the branch

instruction in question, higher is the chance that other register-defining instructions

would modify the value of the register in between. Also, another important point to note

is that percentage of correlation reduces with the size of the recorded spatial region.

Results of this experiment motivate the idea of prefetching all the cache blocks

contained in the spatial region that holds the address given by the register value at a

previous instance. Also, a region size of 512 bytes is chosen for use in all our

experiments (applicable only in non-loop mode of operation, refer Subsection IV.1) in

this thesis. The evaluation and analysis of the impact of varying region sizes on the

performance of the prefetcher is left for future work.

It is obvious that greater is the correlation of memory addresses to prior branch

instructions, better is the opportunity to look ahead across deeper basic blocks and be

able to issue useful prefetches. But on the whole, this experiment demonstrates that

prefetches can be issued with a certain degree of accuracy, for memory instructions at

prior branch instructions by only using the values of the corresponding source registers

at that instance. It is however to note that more correlation can be exploited, than

 11

demonstrated in this experiment if the difference (offset) between the two compared

values can be estimated or predicted.

II.2 Motivation

In this section, we will summarize the motivation behind the adopted approach (as also

discussed in the previous section) with a theoretical example. Figure II.4 is a code

snippet from the leslie3D benchmark from the SPEC CPU 2006 benchmark suite. The

dynamic program sequence consists of 3 basic blocks. In the first basic block, there are 2

memory instructions, sequence number (SeqNum) 2 and 3. Since no other register-

defining instructions exist between SeqNum 2,3 and the branch instruction at SeqNum 1,

that can change the values of registers R30 and R3, the address going to be generated at

SeqNum 2 and 3 is predictable at instruction 1, if the register values R3 and R30 are

known.

Figure II.4 Code fragment from Leslie3D benchmark (SPEC CPU2006)

Similarly, in the second basic block, there are 4 memory instructions: SeqNum 10, 11,

12 and 13. SeqNums 10 and 12 use R30, SeqNum 11 uses R3 and SeqNum 13 uses R2

 12

as their source registers for address generation respectively. It can be seen that none of

the instructions contained in Basic Block 1 define the value of R30, which implies that

the data addresses generated at SeqNum 10 and 12 in basic block 2 are quite predictable

at SeqNum 1. However, the two memory reference instructions, SeqNum 2 and 3 define

R2 and R3 respectively in basic block 1. Hence, the value of R2 and R3 at SeqNum 1 is

more likely to be different from the addresses generated at SeqNum 11 and 13

respectively. But it is note that the address values are still predictable at the branch

instruction corresponding to SeqNum 9. Note that, in our scheme a significant fraction of

this variability can be captured by prefetching the entire spatial region around the

runtime register values.

Another factor that motivates exploiting branch-directed correlation to guide prefetching

is that any typical program will have less number of control instructions as compared to

the number of memory instructions. So, this approach should theoretically, need much

smaller predictor table sizes than most of the prior prefetchers that establish memory

instruction-based correlation to capture the same information.

 13

CHAPTER III

PRIOR WORK

This chapter reviews some related concepts before embarking on the specifics of the

thesis. Subsection III.1 discusses the different data prefetching techniques that have been

proposed in literature and compares our proposed solution against a few. As discussed in

the previous chapter, our prefetcher employs a confidence estimator that estimates the

likelihood that our execution path prediction is correct in order to limit prefetches along

a wrong path of execution. Subsection III.2 reviews the importance of such confidence

estimation techniques in general and also, discusses few branch confidence estimation

techniques that have been previously proposed in literature.

III.1 Data Prefetching Techniques

Data Prefetching techniques have been explored extensively as a means to tolerate the

growing gap between processor and memory access speeds. Broadly, the proposed

solutions in this area can be classified as hardware-driven or software-directed

techniques. Software prefetching [8], [9], [10] schemes perform static compile-time

analysis of the likely memory accesses to learn patterns and predict future prefetch

candidates. Hardware prefetching schemes, on the other hand use dynamic runtime

information and thereby, issue prefetches far in advance so as to mask the off-chip

latencies. This section illustrates few hardware-directed prefetching schemes that have

been proposed in literature so far.

III.1.1 Sequential Prefetching

Sequential Prefetching [11] is one of the simplest hardware prefetching schemes. It

proposes prefetching the successive cache blocks that follow a currently

 14

accessed/demanded block. Several variations have been proposed to this basic scheme,

which includes what type of accesses to a block initiate a prefetch (giving rise to the

Prefetch-on-hit or Prefetch-on-miss schemes) and the number of blocks that are

prefetched per access to a cache block (basically, the degree of prefetching). Tagged

prefetching is another variation of this approach, where prefetching is initiated both on a

cache miss as well as on a prefetch hit.

III.1.2 Stride Prefetching

Stride Prefetching [12] involves monitoring the patterns of memory accesses generated

successively by memory instructions, with an objective of identifying constant-stride

references which are typical of loop-based behavior. In order to achieve this, the stride

prefetchers maintain a table structure that gets indexed with the memory instruction PC

and contains the last address referenced by that instruction, the established stride, and a

finite state machine that guides the prefetching scheme. This scheme is very effective for

applications which are loop-based and demonstrate a very regular access pattern.

However, for the general class of applications, which do not always exhibit regular

strided memory access patterns, this scheme cannot provide much performance benefit.

II.1.3 Pointer-based Prefetching Techniques

Content-directed prefetching (CDP) technique was proposed by Cooksey et al. as an

effective prefetcher for the pointer-intensive applications [13]. It basically examines each

address-sized word of the fetched or subsequently prefetched data in order to find likely

pointer addresses and then, it initiates prefetch requests for those data that are identified

as potential addresses. As a result of its aggressive policy, CDP has the potential to run

many instances ahead of the current execution sequence and prefetch data, pointed by

likely pointer addresses, into the cache. Its other advantages are that it does not require

any state information and also does not require any training. However, because of its

 15

aggressive nature, it tends to generate a lot of useless prefetches.

In an attempt to minimize such useless prefetches, Mutlu et al. proposed an enhancement

to the basic CDP implementation, by adopting a combined hardware/software approach

[14]. In this modified scheme, the compiler provides hints to inform the hardware about

which pointer addresses would be useful over others. They also proposed a hybrid

prefetcher implementation where the CDP is used in conjunction with a stream

prefetcher and then, runtime feedback information is used to manage the interference

between these two classes of prefetchers.

III.1.4 Runahead Mechanisms

Runahead-based prefetching schemes are based on the idea of pre-executing a set of

instructions speculatively following a long latency operation, like an L2 cache miss and

then, using the results obtained during that process to initiate prefetching. In the

subsequent paragraphs, few such techniques are reviewed.

One of the earliest works on runahead prefetching was proposed by Dundas and Mudge

[15]. In the paper, the authors proposed a data prefetching mechanism that generates

addresses based on the results of pre-executing future instructions under a cache miss.

Two approaches are proposed to realize the prefetcher: - a) a conservative approach in

which instructions are not executed speculatively beyond branch instructions while in

the runahead mode and b) an aggressive approach, in which branches and jumps are

assumed to be correctly resolved during runahead. This scheme requires an extra check-

pointing register file to save the architectural state before entering the runahead mode

and makes use of the idle execution unit to facilitate runahead during the long latency

data miss. But this method adds to the miss latency overhead by requiring to checkpoint

the main register file during every data miss and restoring the checkpoint on the

completion of the miss.

 16

Mutlu et al. proposed an implementation to support runahead execution in out-of-order

processors [16]. Their system is also based on entering a runahead mode post a long

latency memory miss, when the future instructions get speculatively pre-executed and

the corresponding results are used to initiate prefetching. Though this system is quite

effective in the event of L2 misses, it suffers from a few drawbacks. Firstly, there is a

large overhead in restarting normal execution after restoring the checkpoint, when the

miss returns. Also, because of this overhead, the effectiveness of this mechanism to

handle shorter latencies like the L1 cache miss latencies is reduced. Additionally, since

the same hardware is used for runahead mode execution, computation cannot be

overlapped with an L2 miss.

Finally in most of the runahead proposals, in an attempt to minimize hardware overhead,

the prefetching opportunity gets confined to finding idle execution slots or idle context

in a multithreaded environment.

In our current proposal, we also attempt to prefetch ahead of the currently executing

basic blocks. But instead of relying on pre-executing the instructions following a long

latency event, we make use of modest hardware to establish and exploit the dependence

between memory references and their prior branch instructions. Additionally, the

runahead mechanism relies on misses to initiate prefetching, but our approach tries to

avoid the first misses as well. Moreover, unlike runahead mechanism, our approach is

completely transparent (non - intrusive) to the execution in the main pipeline and does

not add any additional overhead to the miss-handling latency.

III.1.5 Region Based Prefetching Techniques

Another technique that has been explored to improve prefetching performance is

exploiting spatial locality over larger areas in memory, bigger than a single cache line.

These approaches see a coarser view of memory, generally made of a few contiguous

 17

cache blocks (called a spatial region) and try to find correlation or access patterns with

respect to this coarser view. Few such techniques that exploit region-based correlation to

enable prefetching are described in the following paragraphs.

Spatial Memory Streaming (SMS) is a spatial-region based prefetching proposition by

Somyogi et al. [5]. It is one of the best-performing prefetchers proposed in literature

currently. SMS makes use of code-based correlation to take advantage of spatial locality

over larger regions of memory (called spatial regions) in the applications. As an

application runs, SMS records access patterns over spatial regions in the form of bit

vectors, over a period of time called the spatial region generation (defined as the time

from when the first block of this region was brought into the cache till when an accessed

block gets evicted). At the end of a spatial generation, these recorded bit patterns are

transferred to a pattern history table (PHT). In their work, the authors show that an

indexing mechanism that combines the PC and the initial missing offset into the region

gives better results over other indexing schemes. But one potential issue with SMS is

that it cannot predict the first misses into a region. To overcome this disadvantage,

Somyogi et al. proposed an extension to SMS called Spatio-Temporal Memory

Streaming (STEMS) [17]. STEMS exploits temporal access characteristics over the

larger spatial regions and finer access patterns within each spatial region to re-create a

temporally ordered sequence of misses and prefetches for the same. By employing both

temporal and spatial characteristics, it improves the performance by 3% over the SMS

scheme. However, this performance benefit is achieved at the expense of a huge

hardware overhead (in the order of several megabytes), which makes this design slightly

impractical to implement currently.

III.1.6 Branch-directed Data Prefetching

This is another class of prefetching that exploits the relationship between branch

instructions and subsequently following memory instructions to identify prefetch

 18

candidates. Although branch-based correlation has mostly been explored in the

instruction-prefetching domain, there has been some work [18], [19] that applies the

same to solve data prefetching issues. The branch-directed data prefetchers are based on

the idea that since branch instructions control the execution path through a program, data

accesses in the subsequently following instructions are also dependent on their behavior

and hence, can be linked to them. However, in most of the proposed approaches,

memory reference instructions are directly correlated with prior branch instructions and

then, some variant of stride-directed scheme is used to guide prefetching. This section

discusses some major work in this area.

The earliest work on branch-based data prefetching [18] associated the history of data

references to the previous branch instructions in the Branch Target Buffer (BTB). Each

BTB entry is extended to contain the last accessed data address field, a stride field and a

2-bit counter to handle the finite state machine to enable stride prefetching,

corresponding to each memory instruction. Equipped with all this state, the BTB is then

used to issue prefetches for load instructions following the branch instruction in the

program flow. Thus, when a branch instruction gets decoded, the corresponding BTB

entry is looked up to find the possibility of a potential prefetch. In case such an

opportunity exists, a prefetch address is generated by adding the currently accessed data

address to the estimated stride, in advance of the actual issuing of the loads.

Pinter and Yoaz proposed another branch-directed prefetching data scheme called the

Tango prefetcher for superscalar implementations [19]. The authors propose their

solution again, as an enhancement over the stride-based reference prediction table

approach suggested by Chen and Baer [20]. To issue prefetches fast enough to benefit a

superscalar implementation, a lookahead scheme is employed that allows jumping from

one branch instruction to another in a single clock cycle. Prefetches are then, issued for

the memory instructions linked to the looked-ahead branch instruction using a modified

version of the stride prediction table. In order to limit the impact of prefetching on

 19

demand cache access behavior, Tango issues prefetch requests only during idle time slots

and hence, it does not overload the cache ports. However, this system has certain

limitations. Firstly, Tango is based on a modified stride prediction algorithm. Hence, the

opportunity to prefetch is confined to those data structures that have uniform strided

access patterns and hence, the general class of applications cannot be benefited from the

same. Secondly, in Tango, once the lookahead process starts, it is allowed to proceed till

a misprediction is detected in the main execution pipeline. Hence, owing to the imperfect

branch prediction accuracies, the lookahead scheme is very likely to go deeper along a

wrong path of execution and thereby, issue many useless prefetches.

Table III.1 shows the hardware overhead and performance benefits of previous branch-

directed prefetcher implementations.

Table III.1 Hardware overhead and performance benefits of prior branch-directed prefetchers

Prefetcher Architecture Hardware Overhead Speedup over Baseline

Branch-Directed and
Stride Based

Prefetcher[18]

Inorder
processor

1024 entries in BTB,
unlimited linked data entries

per BTB entry

Approximately 4%
improvement in data

cache hit rate

Tango Prefetcher[19]
4-wide

superscalar
processor

Approximately 4.5KBytes Average speedup = 1.36

In this thesis, we also employ a lookahead scheme to generate timely prefetches similar

to that adopted in Tango. However, our system has certain advantages over the

previously proposed branch-directed schemes including Tango. Our scheme enables

prefetching by exploiting the correlation between the values of the source registers (that

are used for memory address computation in basic blocks) at prior branch instructions

and actual addresses generated by the corresponding memory instructions. This approach

has many benefits over exploiting only memory instruction-based correlation. One such

 20

benefit can be realized by examining the following code fragment.

This program sequence is taken from the Leslie3d benchmark from the SPEC CPU 2k6

benchmark suite. Since this is a loop-based code fragment, both the stride-based

techniques (like Tango) and our current implementation can accurately prefetch for the

same. But it is interesting to note that both instructions 1 and 2 manipulate the same

register (r2) for their address computation, even if they are different instructions. In such

a case, a stride-based prefetching scheme needs to save two separate entries for these

two instructions (1 & 2) to accurately prefetch for them. But our register-index based

prefetching scheme can save the same amount of information using a single entry

corresponding to register index r2 (linked to the branch instruction, 5). Another

advantage of our technique is that by exploiting branch-register correlating links, the

dynamic runtime values of the registers can be used to enable prefetching for even those

data that show irregular memory access patterns. But the previous methods can only take

advantage of strided memory access patterns.

Having discussed the previously proposed data prefetching strategies, we next provide

some background about confidence estimation mechanisms. Such techniques help to

estimate the confidence of a certain prediction and hence, are used to limit the degree of

speculation. We also employ a similar technique in our current scheme to enhance the

accuracy of our prefetcher by limiting prefetches along an incorrectly predicted path of

execution.

 21

III.2 Confidence Estimation Techniques

Confidence estimation is a micro-architectural technique that allows control over

speculation by predicting whether the speculation will be correct or not, before the actual

outcome is established / known. Such techniques can be applied in areas like branch

prediction, prefetching etc. For example, in the context of branch predictions, a

confidence estimator can be used to classify the dynamic predictions made by a branch

predictor into high confidence or low confidence categories.

In our current work, we are more concerned about estimating the “execution path

confidence”. Unlike branch confidence, a path confidence estimate measures the

confidence that a predicted execution path will be actually followed. Such a path may

span multiple basic blocks and hence, can be used to limit lookahead from proceeding

deeper along a wrong path of execution. Many path confidence estimators have been

proposed in the past. But mostly all such approaches are based on the idea that since the

control flow instructions determine the execution path, branch confidence estimators can

themselves, be used to derive the path confidence estimate fairly accurately. In this

subsection, a few branch-based and path-based confidence estimators are reviewed, that

have been proposed in literature.

Jacobsen et al. proposed an accurate confidence estimation mechanism (called the JRS

confidence estimator), aimed at controlling the branch-prediction based speculation

[21]. It is based on the idea that a very small subset of static branches causes a majority

of dynamic mis-predictions and that most mis-predictions occur in clusters. Hence, in

their approach, it is attempted to identify those branches that were mis-predicted in the

recent past and hence are likely to mis-predict again. To identify such branches, a table

of 4-bit saturating counters called the miss distance calculating (MDC) table is used,

whose index is derived by xoring the branch PC with the global branch history. Each

time, a branch is correctly predicted the corresponding MDC entry gets incremented and

 22

the counter is reset to zero in the event of a misprediction. So, the table entry essentially

stores the number of times a particular branch was correctly predicted consecutively in

the past. Higher this counter value, greater is the probability that the prediction would be

correct another time. Grunwald et al. proposed an enhancement over the JRS predictor,

wherein the global history that is used to index into the MDC table also includes the

prediction for the current branch in question [22]. This predictor was also shown to be

better than the original JRS proposal.

Jimenez proposed a composite scheme to make better confidence estimates in relation to

branch predictions [23]. For a tournament-based predictor, the author proposed to use a

combination of the outputs of different confidence estimators, like the JRS, up/down and

the branch predictor’s self-counters to estimate a composite confidence output. Finally,

whether a prediction is deemed to be of high confidence or not depends on whether the

aggregate confidence estimate is above a pre-determined threshold. A variation of this

technique is used for branch confidence estimation in this thesis work.

Among the efforts towards path confidence estimation, the approach adopted in many

proposals is based on the idea that the higher the number of low-confidence branches

along a path, higher is the likelihood of the path being incorrect. Along the same lines,

the path confidence estimator records the count of the number of high-confidence and

low-confidence branches encountered in a path and when the total number of low

confidence branches increases beyond a certain threshold, the path is considered to be

low-confident. However, this technique assumes that all low-confidence branches have

the same misprediction rate and that all low confidence branches have lesser likelihood

of being correct than all high-confidence ones, which may not be always true.

In contrary to the above assumption, we observed that because the branch confidence

estimators are themselves imperfect, the misprediction rates observed over the different

confidence categories does not correlate with the confidence value exactly. This

 23

observation is in line with the observation made by Malik et al. in [24]. In [24], the

authors do not use the value of each branch confidence category as an estimate of its

correctness. Instead, they estimate the confidence value of each category based on the

dynamically observed misprediction rates of the branches that fall into the same. The

path confidence estimate is then, calculated by multiplying the confidence estimates of

all the branches included in that path. In the same work, the authors have also presented

a hardware implementation that measures path confidence using only integer addition

and subtraction.

 24

CHAPTER IV

DESIGN AND IMPLEMENTATION

This chapter presents the complete design and implementation of our branch directed

prefetcher. First, a general overview of the overall system architecture is provided in

Subsection IV.1, which is followed by a detailed description of the individual system

components in Subsection IV.2. Finally, the chapter concludes with a working example

(in Subsection IV.3) explaining how the different components work together.

IV.1 Overall System Architecture

This subsection presents an overview of the modified system architecture and discusses

how the different components are tied to each other.

Figure IV.1 depicts the detailed architecture of a modified inorder core, showing the

main execution pipeline as well as the additional hardware entities to realize the branch-

directed data prefetcher. The additional components are as follows:

• Branch Trace Cache (BrTc) Table: It captures the dynamic control flow

sequence of a program. It caches pairs of branch instruction PCs, where the

second branch follows the first branch along a specific direction of execution of

the first branch. This structure allows jumping from one basic block (defined by

the entry branch instruction and its direction of execution) to the next in a single

clock cycle. It thus, is used to implement the lookahead mechanism which plays

a key role in making this prefetcher effective and timely.

 25

Figure IV.1 Overall system architecture

• Path Confidence Estimator: This component allows controlling the degree of

lookahead across basic blocks, by keeping track of the confidence of the

predicted execution path. As the prefetcher tries to lookahead across multiple

basic blocks so as to issue prefetches for them, this unit runs in parallel and

estimates the confidence that the predicted execution path will be actually

followed in the main execution pipeline. Whenever the computed confidence

falls below a certain threshold value, indicating greater likelihood of lookahead

being along a wrong path, the lookahead process is terminated. Thus, this helps

to avoid prefetching useless data, by preventing lookahead along a wrong path of

execution. It is to note that this kind of control mechanism has not been explored

 26

in any similar prior work. Note also that most of the latest branch predictors

come with a built-in confidence prediction mechanism and hence, it makes the

use of an additional confidence estimator unnecessary.

• Branch-Register Table (BrReg Table): This is one of the most important

structures towards the realization of this prefetcher. It captures the information

that is used to generate prefetch addresses for future basic blocks. It links the

memory instructions in any basic block to its immediately preceding branch

instruction, by linking the source register indices of the memory instructions to

their preceding branch instruction.

• Prefetch-Filtering Mechanism: Given its aggressive nature, this prefetcher

tends to issue a large number of prefetches, which may not all be useful to the

processor, thereby causing cache pollution. Additionally, this might also lead to

increased demand on the limited bandwidth, thereby affecting performance.

Hence, certain filtering techniques are in place to control the number of useless

prefetches issued by the prefetcher.

As can be seen from the figure, the prefetching component is implemented as a separate

pipeline referred to as the Auxiliary pipeline (A.P), parallel to the main execution

pipeline. It monitors certain events of interest in the main pipeline for its functioning, but

otherwise is completely non-intrusive to the actual program execution. Currently, A.P is

implemented as a 3-stage pipeline where: a) the first stage is the “Basic-Block Look-

Ahead” stage that allows to jump from one basic block to the next and to achieve the

lookahead component of the prefetching algorithm b) the second stage is the “Branch-

Register Table Lookup” stage that allows to expose memory instructions in each

looked-ahead basic block & generates prefetch candidate addresses and c) the third stage

is the “Prefetch Issue” stage that issues identified prefetch addresses to the prefetch

queue.

 27

As shown in the figure, the A.P is connected to the main pipeline through a 3-entry

Decoded Branch Buffer (DBB). As branches get decoded in the main execution

pipeline, they get inserted into the DBB (which operates in a FIFO fashion). A.P then,

fetches these branch instruction PCs from the DBB and runs its lookahead algorithm to

construct the future basic block trace, starting from the currently decoded branch. This is

done by invoking the branch predictor and the BrTc structure repeatedly in the Basic-

Block Look-ahead stage. Additionally, the path confidence estimator ensures that

prefetching is allowed only along a path that can be confidently predicted starting from

the current branch instruction. As the lookahead process continues, the BrReg Table

structure is then invoked to identify addresses for prefetch in each looked-ahead basic

block by making use of the established branch-register links. This is done in the Branch-

Register Table Lookup stage of the auxiliary pipeline. The predicted addresses are

passed then, through a prefetch filter to differentiate between the useful and the useless

prefetches. Finally, the addresses, which are predicted to be useful, are queued up in the

prefetch queue, so that they can be issued to the cache whenever there is available

bandwidth and no demand requests are pending. In the current implementation, we

support two modes of operation:

a. Non-Loop Mode: In this mode, when a prefetch address is generated, all the

blocks in the spatial region containing the predicted address are issued to the

prefetch queue. This is done to ensure that the variability in the address values

from the past architectural register values, as a result of prefetching significantly

ahead of actual execution, is taken care of. This technique also allows exploiting

spatial locality in the code, if any.

b. Loop Mode: This mode is entered upon determination that a loop-based code is

being executed in the main pipeline. In this mode, while being at one dynamic

instance/iteration of a basic block, prefetches are issued for data that would be

needed in a future iteration of the loop. In this mode, an entire spatial region

around the predicted data is not prefetched.

 28

By employing the lookahead mechanism, branch-directed prefetching aims to identify

and eliminate as many misses as possible. But even after incorporating this prefetcher, if

cache misses are encountered, then it implies that a prefetch was either not issued in a

timely manner or was not accurate enough (owing to the chance of variability) or no

prefetch was issued in the first place due to insufficient training of the structures. So, in

such a case, the next cache line (the next-line prefetching approach [11]) following the

miss block address is prefetched. The main benefit of using this combined approach is

that the two techniques are complementary to each other and hence each scheme can

compensate for the other's weakness, while taking advantage of the other's strengths.

Next-line prefetching takes advantage of spatial locality in the application in the event of

a miss. The branch-directed method can take advantage of spatial locality as long as it

can predict the region of operation accurately. Additionally, branch-directed prefetching

can take advantage of loop-based behavior and irregular accesses as well. So,

theoretically, these two categories of prefetchers should work well together.

Finally, it is important to note that the branch-directed prefetching approach does not

require any extra ports on the cache. It also gives greater preference to demand requests

over prefetch requests. Details about the operation of each individual component are

discussed in next section.

IV.2 System Components

This subsection describes in detail, the implementation and working of each system

component, that were touched upon in the previous section.

IV.2.1 Branch Trace Cache

The first hardware component to realize this prefetcher is the Branch Trace-Cache

(BrTc). As discussed before, this structure helps to capture a trace of the control flow

 29

sequence between basic blocks by capturing the dynamic sequence of execution of

branch instructions and their direction of execution. This structure allows us to look

ahead across multiple basic blocks, starting from one branch instruction. It is called

Branch Trace Cache because its each entry stores a trace of the executed control flow

sequence.

The BrTc is implemented as a table that caches pairs of branch instructions, where the

second branch follows the first branch along a particular direction of execution. The idea

is that since a branch instruction and its direction of execution determines which basic

block will get executed next in the program sequence, by exploiting the branch-trace

cache hit information and the corresponding branch predictions, it becomes possible to

jump from one basic block to another by skipping all the non-control-flow changing

instructions in between. Branch Trace-Cache based lookahead approach relies on two

typical program characteristics. Firstly, most instructions exhibit temporal locality. It

implies that the dynamic sequences of instructions are very likely to repeat in future and

hence, if they are cached, they can be used later to realize the lookahead mechanism.

Secondly, branches are mostly biased towards one direction or the other. So, it is very

likely that certain execution paths will be followed more frequently than others. Hence,

maintaining a limited number of such paths should enable re-creation of entire program

sequence (given by the combination of basic blocks) at a later point in time.

The BrTc is indexed using the current branch PC together with its predicted direction of

execution, and its entries cache the next branch tag field (corresponding to the branch

instruction that would be encountered if the predicted path is followed, starting from the

current branch PC) and a 1-bit field to indicate if the next branch is conditional or not. A

typical entry of the BrTc is shown in Figure IV.2. A branch trace cache hit requires that

(1) the current branch PC matches the saved PC tag and (2) the corresponding branch

prediction matches the stored direction. In case of a hit, the next basic block of execution

gets exposed, which can now be used to further the lookahead process.

 30

Figure IV.2 Single Branch Trace Cache entry

To enable filling the BrTc entries, two extra entities are needed, called the

LastCommittedBranchInstruction (LCBI) register, which holds onto the last committed

branch instruction in the main execution pipeline and the

LastCommittedBranchDirection (LCBD) register, which holds onto the direction taken

by the last committed branch instruction. As branch instructions commit in program

order, they get linked to the branch tag saved in the LCBI register (along with the

direction given by the LCBD register). To give an example of how the BrTc entries are

filled and what they correspond to, consider the program sequence given in Figure IV.3

(a). The corresponding control flow graph is depicted in Figure IV.3 (b). In this directed

graph, each bubble corresponds to one basic-block of instructions (that have exactly one

entry point and one exit point) and the diamonds correspond to the branch instructions

which lead into the basic blocks. The relevant filled entries of the branch trace cache for

this program sequence is shown in Figure IV.3 (c).

The different design choices available for the BrTc's implementation are as follows:

a. Table Update Policy - BrTc entries can be trained as branch instructions get

decoded speculatively or they can be filled as branch instructions retire in program

order. Although the table learning time will be shorter in the first case, we choose the

commit-time update mechanism in our current implementation to avoid pollution of

the table by mispredicted and wrong path branches.

b. Organization – BrTc can be organized as a direct-mapped or a set-associative

structure. Support can also be included for path associativity, which would allow

simultaneous caching of multiple paths emanating from the same branch PC.

Enabling support for path associativity would reduce thrashing between those

 31

branch-pairs that start at the same address, but proceed in different directions. In our

current proposal, we have implemented a direct-mapped BrTc structure, with support

included for path associativity.

Figure IV.3. Figure showing: (a) A program sequence; (b) Control Flow Graph of the program

sequence in (a); (c) Branch Trace Cache filled state

Finally, it is to note that even if BrTc was discussed as a standalone table so far, but

given its similarity to a Branch Target Buffer (BTB) structure, BrTc can be implemented

 32

as an extension to the BTB. This will save the extra tag space to save the indexing

branch instruction PC, used by the current implementation. Also, instead of saving the

next branch instruction tag completely, a pointer to the next branch's position in the table

[19] can be saved. These optimizations could be attempted to reduce the hardware

overhead of the BrTc Table.

IV.2.2 Path Confidence Estimator

As discussed before, our lookahead logic combines the branch prediction information

together with the hit information from the Branch Trace-Cache to determine a likely path

of execution. But after a lookahead is initiated, some mechanism is needed to ensure that

lookahead keeps proceeding along the correct path. Such a terminating condition for the

lookahead process can be realized in two ways: a) the first scheme allows lookahead to

proceed as deep as possible and terminates it only when a misprediction is detected in

the main execution pipeline. However if the branch prediction accuracy is not very high,

then it is quite likely that lookahead would proceed deeper along a wrong path fairly

often. If this is not limited, a lot of data may be prefetched along a wrong path, which

may lead to cache pollution and unnecessary bus bandwidth consumption. b) The second

scheme employs a confidence estimation technique that limits looking ahead along low-

confidence paths. This approach is conservative in nature and hence may limit

prefetching opportunity in some cases, but it would control the cache pollution resulting

from wrong path prefetching. Hence in this thesis work, the second approach is adopted

i.e., prefetching is allowed only along those paths that can be confidently predicted

starting from the current execution instance.

To estimate the confidence in the prediction of the execution path, we make use of the

fact that any program contains some non-control-flow changing (ALU or memory or IO

etc.) instructions and some control-flow changing instructions and that, the path

followed by the program at any time depends on the direction of execution of the

 33

constituent control-flow instructions. Therefore, to estimate the confidence of any path,

it is reasonable enough to consider the confidence estimates of the constituent branch

predictions alone.

Figure IV.4 Composite Branch Confidence Estimator

To estimate branch confidence, a composite confidence estimator is employed (as

suggested in [23]) that combines the JRS, up-down and self-counter based confidence

estimators. This is shown schematically in Figure IV.4. The JRS and up-down estimators

are arranged as a table of saturating counters that get indexed with the hash of the branch

PC and the global branch history buffer. The corresponding saturating counters are

incremented when a branch prediction turns out to be correct and decremented in the

event of a misprediction. Therefore, to estimate the confidence of a branch prediction at

any point in time, these tables is looked up using a hash of the branch PC and the global

branch history buffer and the counter values are recorded. The total raw confidence

value is calculated as the sum of the JRS counter value, the up-down counter and the

self-counter value. We term each such raw confidence output as a “confidence bucket”,

because these values help to segregate different branch instructions into different buckets

according to their predictability. In order to convert this raw confidence output into a

confidence estimate, there are two possible options:

 34

One possibility is to use a static pre-determined value for each confidence bucket. This is

based on the assumption that all low-confidence branches (having low bucket values)

have the same misprediction rates while, all the high-confidence ones (those having

higher bucket values) are more likely to be correct. However, during our experiments,

we observed that the misprediction rate of each confidence bucket does not

Figure IV.5. Graphs showing the variability in branch misprediction rates across the 37 confidence

buckets for a set of SPEC CPU2006 benchmarks

 35

correlate to its bucket value directly and that this trend varies with program phase as well

as the application. The situation is depicted more clearly in Figure IV.5. These graphs

show the misprediction rates observed across the 37 confidence buckets (JRS +

Up/Down + Saturating) over a 300-million instruction run for a set of SPEC2k6

benchmarks. Misprediction rate of each bucket is calculated as the number of

mispredicted branches that were predicted with that confidence value divided by the

total number of branches predicted with that confidence value. We can see from the

graph that many confidence buckets, which have a lower bucket number, have a better

misprediction rate than many others with a higher bucket number. Similar observation

was also recorded in [24].

This observation essentially, rules out the possibility of selecting a common threshold

for each bucket that will hold well across all the applications and during each program

phase. Hence, to take into account the variability observed across the confidence

buckets, the associated confidence values are determined dynamically in our work, by

monitoring the misprediction rate of each bucket. This approach is similar to that

suggested in [24] except that a more fine-grained stratifier is used to filter out greater

number of mispredicting branches. In this approach, counters are maintained per bucket

to count the number of committed and squashed branches belonging to that category.

Again, unlike [24], the confidence value of each bucket is maintained using a running

estimate. Basically, the program run is divided into phases, where each phase consists of

about 1/2 million branch predictions. In any program phase, the misprediction rate of

each bucket is computed as the number of mispredictions falling into that category over

the total number of predictions from that category. Finally, at the end of the program

phase, the confidence value of each bucket is re-calculated as:

ConfidenceValue = ½ * (ConfidenceValAtTheBeginningOfInterval + ConfidenceValDuringInterval)

This running estimate (calculated as described above) gives more weightage to the

misprediction rates in the latest interval, but allows for gradual changes by taking into

 36

account the older estimates as well. Finally, the path confidence estimate is calculated as

the gross product of the component branch confidence estimates.

Path Confidence = Π (Individual Branch Confidence values)

It is to note that the impact of incorporating more simplified confidence estimators has

not been explored in this work. Given the other pollution controlling measures adopted

in this thesis (like prefetch filtering), we think that more simplifying assumptions may be

taken here without impacting performance much. Additionally, modern branch

predictors come with their own self-confidence estimators and hence, do not require this

separate entity to realize the branch-directed data prefetcher.

IV.2.3 Branch-Register Table

The third hardware component to realize this prefetcher is the Branch-Register (BrReg)

table. This table is used to establish the links between the register indices that are used

for memory address computation (source registers of memory instructions) in a basic

block and their preceding branch instruction. This helps to generate data addresses for

prefetching.

The BrReg Table is indexed using the Branch PC tag and the individual entries contain

the registers that are linked to the corresponding branch PC and certain other fields,

which are used for generating prefetch addresses. In its simplest form, a typical BrReg

Entry looks as shown in Figure IV.6:

Figure IV.6 Single Branch-Register Table entry (Basic implementation)

 37

where,

• Branch Tag field contains the Branch PC tag.

• RegIdx – This multi entry field holds the register indices, which appear as

source registers for address generation in the basic block following the

branch PC (given by Branch Tag field).

• RegVal – It holds the most recent value of the register, based on which a

prefetch was generated during the last lookahead cycle.

• PF Bit - This is a 1-bit field and is used to distinguish between the prefetched

and the non-prefetched entries. This field also helps to prevent prefetching

for those basic blocks, which have already been prefetched for.

The link between memory and branch instructions gets created as the different control

and memory instructions commit in program order. To establish such a link, a register

called the LastCommittedBranchInstruction (LCBI) is used, which holds the last

committed branch instruction in the main execution pipeline. As control instructions

commit, they overwrite the existing content of the LCBI with their own PC. Hence,

when memory instructions commit, they get associated with the Branch, whose PC is

indicated by the LCBI register. Such links are cached in the BrReg Table. For example,

for the code fragment given in Figure IV.3 (a), the corresponding learned state of the

BrReg Table is given in Figure IV.7.

Figure IV.7 Snapshot of the trained Branch-Register Table

 38

After getting trained, the BrReg table can be used to guide prefetching. This is realized

as follows: To issue prefetches during the lookahead process, the BrReg table is looked

up using the predicted branch PC. In case the entry is found in the table, the most recent

value of the linked registers is checked in the separate register file and a prefetch is

issued for an entire region (512 Byte region size) around this predicted register value.

This register value is then stored in the RegVal field of the entry and the corresponding

PF bit is set to 1. One important thing to note is that since this approach tries to

aggressively lookahead from every decoded branch and issue prefetches for all the basic

blocks that can be looked-ahead from the same, a situation may arise when

consecutively decoded branches try to prefetch for the same basic blocks. While this

situation is desirable in case more accurate prefetch predictions are available, but it is

unnecessary when the prefetch estimate still falls into the same spatial region as the last

prefetch. To avoid this situation of prefetching the same region multiple times, the

following strategy is used:

When a prefetch is to be issued for a basic block, the corresponding BrReg entry

(essentially the basic block) can be in two possible states:

1. The block is not prefetched yet (PF bit = 0), in which case it becomes a potential

prefetch candidate immediately.

2. The block has been prefetched earlier (PF bit = 1), potentially because of a look

ahead operation starting from an older branch instruction. In this case, the

decision of whether to issue a prefetch or not depends on the availability of a

better prediction (a different spatial region prediction). This case will arise when

certain register defining instructions would have modified the value of the

registers from the time the last prefetch was issued for this basic block.

Note that the above discussion described the most basic implementation of the BrReg

Table. The BrReg Table can be extended to contain other information (apart from the

 39

branch-register links) that will enable more accurate prefetching by taking advantage of

different program characteristics. We discuss two such variations in this subsection,

while we leave the rest for Chapter VI. Note that in all the proposed variations, the

branch-register link-creation process remains the same as described previously in this

subsection.

1. Offset-Based Technique

The first optimization is the result of our observation that even though, in many

instances, the value of the linked register (which is assumed to be the prefetch

address) at a previous branch location does not fall into the same region as the

actual memory address (the static experiment also suggested an imperfect

correlation), it still falls within more or less a fixed offset from it. Moreover, this

offset value tends to be stable over the different dynamic run time instances of

the same basic blocks. This kind of behavior may be observed because of the

different addressing modes supported by the ISA (like the displacement-based

addressing mode) or predictable updates taking place to the register's value

within the lookahead window. For example, let us consider the code fragment as

shown below:

In this code example, both the values of registers R2 and R1 at Br 1 (SeqNum 1)

would not exactly match with the memory addresses generated at SeqNum 3 and

4 respectively. This is because SeqNum 3 is preceded by an instruction that re-

defines the value of R2. Similarly, SeqNum 4 uses the displacement addressing

mode and hence, the value of R1 at Br 1 would be different from the address

 40

generated at SeqNum 4. But, it is interesting to observe that in almost all

dynamic instances of this basic block, the value of R2 at the branch position will

be offset by 628 as compared to the address generated by SeqNum 3. And the

value of R1 will similarly be offset by a value equal to 512. To take advantage of

such cases, we add another field to the Branch-Register table called the “Offset”

field. So, the modified BrReg table looks as shown in Figure IV.8:

Figure IV.8 Single Branch-Register Table entry (Offset implementation)

In this new implementation, each entry gets extended to include two additional

fields: - Offset - This field holds the difference between the register value at the

preceding branch instruction and the actual address generated at the memory

instruction, using this register as the source index.

• SeqNum field - This field holds the last few bits of the sequence number

of the branch instruction which had initiated the look-ahead process. This

field ensures that the offsets are set by only those instructions which have

a greater sequence number than the branch in question, i.e., it occurs later

in program order.

The flow chart explaining the procedure to generate prefetch addresses by using

the modified arrangement is shown in Figure IV.9 (a). To generate data addresses

for prefetch, the look-ahead Branch PC is used as a tag to look-up into the BrReg

table. Prefetching can only be initiated if the entry is found and is in an

unprefetched state or if a better prediction is available for an entry that is already

in the prefetched state. The address for prefetching is calculated as the sum of the

actual register values and the offset field (if any). Note that a prefetch is issued to

 41

an entire region around the address computed above. The entry's corresponding

PF bit is also set to 1 to avoid future prefetches to the same basic block and the

generated address value is saved in the RegVal field.

Figure IV.9. Flow Chart depicting (a) Process to use offset-field for prefetching; (b) Process to

update the offset-field

The flow chart depicting the process followed to learn the offset values is shown in

Figure IV.9 (b). As discussed before, the offset holds the difference between the

actual address generated by memory instructions and the values of the corresponding

 42

registers (used for those address computation) at a prior branch instruction. Thus, the

key to learn offsets is to calculate them as instructions in the basic block get

executed. Whenever a memory instruction executes in the main execution pipeline, it

sends its generated address and its previous branch PC to the BrReg Table. The table

gets looked up using the branch PC and in case the corresponding block is found in a

prefetched state, it updates the corresponding offset values by computing the

difference between the currently generated data address and the stored value in the

RegVal field. After all the instructions in a basic block get executed, the PF bit is

reset to 0, indicating that the required offset values were recorded for that entry and

that the entry is ready to issue a fresh round of prefetch.

2. Loop-based Technique

This optimization was adopted to take advantage of loop-based behavior of

applications. Many applications spend significant portion of their execution time

executing loop-based codes. To efficiently and accurately prefetch for loops, our

prefetching algorithm was modified to be able to identify loops using a hardware-

only approach and generate prefetch addresses for the future iterations. The required

modifications to the BrReg table entry are as shown in Figure IV.10:

 Figure IV.10 Single Branch-Register Table entry (Loop implementation)

Each entry has been extended to contain 4 additional fields:

• Delta – This field holds the difference between the generated memory

address values over consecutive execution instances of the same

 43

instruction. It is analogous to the concept of stride, as used in traditional

stride-based prefetching mechanisms [12], [20].

• Delta-Valid – This 1-bit field is used to find out if the instruction (to

which the register value corresponds in the basic block) has been assigned

a valid delta value or not. This bit will be set for those instructions which

have been identified to be looping in some previous execution instances.

• Delta-is-Changing – This 1-bit field allows hardware identification of

loops, as will be explained later in this chapter and aids in setting of the

appropriate delta value.

• Loop-Counter – This field is used to monitor the iteration count of the

loop in the lookahead mode. This allows accurate prefetching for data, to

be used in a future iteration of the loop.

The basic operation remains the same as described with the previous

implementations; however certain special measures are taken to ensure that the

loop-based behavior is essentially captured and exploited in hardware. As our

look-ahead scheme is capable of jumping across basic blocks in a single clock

cycle, loop identification up to a certain nesting depth becomes fairly simple. For

example, if there is a loop in the code given as follows:

Given that the path confidence is high, the look ahead procedure should yield the

following sequence of branch addresses: - br1(Taken) → br1(Taken) →

br1(Taken), the depth being determined by either when the confidence falls

below a threshold or the maximum look ahead degree is reached. The loop-

detection algorithm capitalizes on this idea that if during one complete look

 44

ahead process, the same branch is visited more than once, it implies that a loop is

most likely going to get witnessed. However, this technique implies that

identification of loops with nesting depth greater than the maximum allowed look

ahead degree is infeasible. Keeping this in mind, we describe the algorithm to

deal with loop-based codes in the following paragraphs.

To be able to issue prefetches for a future iteration of any loop, three pieces of

information are required: a) One is the Offset value, which captures the

difference between the register values at a prior branch instruction and the actual

generated address value. b) Second is the Delta value, which captures the

difference between the register values over two consecutive iterations of the

loop. c) Third is the loop-iteration count. If the above information is available,

prefetch addresses for future iterations of the currently executing loop can be

calculated at a branch-instruction as follows:

Prefetch Address = [Register Value] + Offset + (Loop-Counter * Delta)

Offset value calculation is relatively straightforward. It gets computed as

memory instructions in a block get executed by computing the absolute

difference between the generated address value and the value of the register, as

saved in the RegVal field. Delta value calculation is slightly more involved.

Delta value corresponds to the difference in the generated address values over

consecutive iterations, and so, to estimate Delta, the values of the corresponding

registers need to be monitored over consecutive iterations. This requires some

changes to the algorithm used in previous implementations. In the only-offset

case, as a basic block of instructions finished execution, the corresponding PF bit

in the BrReg Table was reset to 0 to allow new prefetches to be issued for the

basic block, at a future execution instance of the same. In this case, as a basic

block ends, in addition to resetting the PF bit, the Loop_Counter value is also

monitored. A value greater than 0 implies that this entry was visited more than

 45

once during the current look ahead process and is hence, likely to be a part of a

looping sequence. In this case, the Delta-is-changing field is set to 1 and the most

recent value of the linked-registers is saved in the RegVal field. This step is done

to allow setting of the delta value, the next time another dynamic instance of this

basic block ends.

The flow chart depicting the process followed to generate prefetch addresses in

the loop-mode is shown in Figure IV.11.

Figure IV.11 Flowchart describing the process to generate prefetch addresses in the loop-mode

 46

When a prefetch is going to be initiated for a particular basic block (identified by the

entry branch instruction), two different situations can arise depending upon the

prefetched state of that block:

 The block is in a prefetched state (PF bit = 1). This situation may arise in the

following two cases: a) if this block was looked ahead starting from an older

branch instruction, b) if this block was visited sometime before during the

current look ahead process itself (Note that this condition is pertinent to loop-

handling).

To distinguish between the above two cases, we make use of the seqNum

field. As mentioned before, this field contains the sequence number of the

branch instruction that had initiated the lookahead process and hence had led

to the prefetch of the block in question. If a BrReg Table lookup request is

generated for a branch instruction, whose corresponding entry is in a

“Prefetched State”, we compare the seqNum field saved in the entry with the

SeqNum of the current look-ahead process.

• In case they are equal, it implies that this basic block is being visited

again during the same look-ahead cycle. This satisfies our condition

for identification of loops. In this case, we do not update the value in

the RegVal field to allow proper updates of the offset and delta fields

(when this basic block instance ends). But so as not to lose

opportunity for prefetch, we allow prefetches to be generated for this

basic-block if a better prediction is available. We also increment the

Loop Counter so that the next look-ahead into the same entry can

prefetch for a different iteration. Note that in this mode, we do not

prefetch an entire spatial region, but only the requested address.

 47

• If the SeqNum fields do not match, it implies that this basic block was

mostly looked ahead from an older branch instruction. Here, we allow

prefetches to be issued in the event of availability of a different region

prediction and we update the RegVal field and the SeqNum field to

the latest values. Note that, in this case prefetches are issued for the

entire spatial region as loop-behavior could not be established.

 The block is not prefetched (PF bit = 0). This state may arise if the block was

never prefetched before or was prefetched and thereafter, cleared upon the

completion of execution of the basic block. As we discussed before, if a loop

was identified at the end of execution of some basic block, its PF bit would

be reset to 0, but its Delta-is-Changing bit would be set to 1 (to ensure that

upon completion of the basic block again, the delta values of the entry can be

recorded). So, the required operation depends on the value of the Delta-is-

Changing bit as follows:

• Delta-is-Changing = 0: This implies that if at all the block was

prefetched some time back, still no loop behavior was observed for it.

This is the normal execution case. Hence, we can issue a prefetch for

a spatial region, given by the register value plus the recorded offset (if

any).

• Delta-is-Changing = 1: In this case, to avoid prefetching opportunity,

we issue prefetches only if we have some better prediction at hand.

But we do not update the RegValue field as we need to record the

Delta value with respect to the last iteration, when the basic block

finishes execution this time.

 48

IV.2.4 Prefetch-filtering Mechanisms

Aggressive prefetching mechanisms tend to bring in a lot of data into the cache, with an

objective of reducing the number of cache misses. But if the prefetcher's accuracy is not

high, the prefetcher might bring into the cache a lot of data that will not be needed by the

processor before being evicted. Such data would still evict other potentially useful data

from the cache and may deteriorate performance. Such a phenomenon is termed as cache

pollution. Ineffective prefetches will also impact the bus bandwidth utilization, leading

to further degradation in performance. So, it becomes important to control the number of

useless prefetches and bring in only those data that have a higher likelihood of being

used by the processor. This becomes even more important for systems which prefetch

directly into the L1 cache, as its size is typically small and hence, it is not much tolerant

of pollution.

As discussed before, our prefetcher tries to aggressively look ahead across basic blocks

and exposes memory instructions in the same. But even after using the offset and loop-

based enhancements discussed before, the prefetches issued for many basic blocks ahead

may not be highly accurate. To not to lose opportunity, we therefore allow prefetches to

be issued for already-prefetched basic blocks if better and more accurate predictions are

available as program execution moves ahead. But the inaccurate prefetches that were

identified in the Auxiliary pipeline (A.P) earlier may be detrimental to performance. To

reduce the impact of such inaccurate and useless prefetches, we employ a few prefetch

filtering techniques that scan the stream of prefetch requests sent out by the A.P and

filter out the potentially useless prefetch requests. This section discusses in detail the

filtering strategies that have been implemented in our current work. It is to note that not

all of these techniques are a part of the final implementation, but are discussed here for

completeness sake.

 49

1. Region-filtering FIFO Buffer: As has been discussed, in the normal mode of

execution, we prefetch an entire spatial region around a predicted candidate

address. So, as a basic filtering strategy, we attempt to avoid prefetching for the

same spatial regions in close succession. In order to achieve this, we employ a 3-

entry FIFO buffer that sits in between the A.P and the prefetch queue and caches

the 3 most recently prefetched spatial region addresses. When a request is issued

in the A.P to prefetch a region of data, this structure is queried to check if that

region has already been prefetched recently. In case the corresponding region is

found in this buffer, the prefetch request gets discarded. Otherwise, the addresses

are allowed to be queued up for prefetching. This filter is a part of our final

implementation.

2. Region Based Filter: This filter determines the usefulness of predicting an entire

region around a predicted data address. This is important because if a spatial

region is such that only a few blocks in that region tend to get used, then

prefetching the whole region upon a request would generate a lot of useless

prefetches. Hence, to avoid this, we maintain a table of 3-bit saturating counters

that gets indexed using a strong hash of the region address. The entry counters

are incremented whenever a prefetch to a block in the corresponding region turns

out to be useful or there is a demand miss to a block in that region and gets

decremented in the event of a useless prefetch. Hence, at any time, a high counter

value implies that the region incurs a lot of demand misses or most of the

prefetches issued to this region tend to be useful and vice versa. Whenever a

prefetch request for a region of data is issued, this table is queried using the

hashed region address. If the corresponding counter value is higher than a pre-set

threshold, then a region prefetch is initiated. Else the prefetch request gets

discarded.

 50

By employing this technique, the total number of useless prefetches that are

issued gets significantly reduced and performance gets improved due to reduced

pollution. However, this technique filters out prefetch requests for even those

regions, which have sparse but very predictable access patterns. This is because

this approach cannot distinguish between the different execution phase and also,

the different instructions accessing that region.

3. Path-trace Based Prefetch Filter: To overcome the issues associated with the

above approach, we propose another filtering technique that takes into account

the program phase and the context of the prefetch to differentiate between the

useful and the useless prefetches. Our look-ahead mechanism allows us to look-

ahead from a branch instruction to as many basic blocks ahead as possible, till

the path confidence falls below a certain threshold. But the addresses generated

so many basic blocks ahead many not always be accurate. So, we employ a path-

based index to assess the likelihood of correctness of the generated prefetches.

But, again the basic blocks may contain a varied set of memory instructions

which operate on different data structures and generate different access patterns

and hence, it would be incorrect to assume that all such instructions would

exhibit similar behavior in the lookahead process. While many of these

instructions may not be predictable at very old branches, many others might be.

So, it is accurate to assume that none of the instructions in a basic block would

have a predictable pattern from many basic blocks before. Hence, in addition to a

path-based trace, we also take into account the individual instruction (captured in

the source register index) behavior in order to categorize prefetches into useful or

useless categories.

This filter is arranged as a prediction table, where the index is obtained by

hashing the path-based trace and the register index (used as a source register in

the corresponding memory instruction. Our prediction table consists of rows of

 51

3-bit counters where, each counter corresponds to a block in the spatial region.

Considering a 512 Byte spatial region and a 64 byte cache block size, in the

current implementation, each row consists of eight 3-bit saturating counters. A

high counter value implies that, when this sequence of branches had made a

prefetch prediction last time for this memory instruction (represented by the

hashed register index), the corresponding prefetches had turned out to be useful

or vice versa. Thus, lower the counter value, higher is the probability that the

block would not be useful to the processor. We define a “critical block offset” as

the offset of the cache block (in the spatial region) that was predicted in the A.P

using the register and the offset values. Patterns of useful or useless prefetches

are learned with respect to the critical block offset. We also employ rotation

about the critical block offset because it will take into the consideration the

variable alignment of the data structures in a spatial region.

This scheme requires keeping the hash of the path and the register index that

initiated the prefetch, together with each block in the cache tag array. So,

whenever there is a demand request for a prefetched line, this index can be used

to lookup the filter table and increment the saturating counter corresponding to

that cache block. Similarly, in the event of a useless prefetch, the corresponding

counter value of the entry can be decremented.

Finally, these learned patterns are used to guide prefetching as follows: -

Whenever a prefetch request is issued from the A.P, the filter table is looked up

using the hash of the path trace and the register index. Then, the selected row of

counters gets translated into a useful prefetch-vector (a string of 1’s and 0’s to

differentiate the useful and useless blocks in a spatial region), by comparing the

individual counter values against a pre-determined threshold. This vector is then

rotated about the critical block offset and is used to generate the addresses of the

blocks that should be prefetched in that spatial region.

 52

4. Prefetch Queue Based Filter: As our prefetcher tries to lookahead and prefetch

for future basic blocks, a situation may arise when the prefetch candidates remain

queued in the prefetch queue while the main pipeline starts executing the

corresponding basic blocks. This may happen fairly often as in the current

system, demand requests are given higher preference over prefetched requests

and hence, prefetched requests get issued to the cache only when the cache tag

ports are unused and the bus is idle. In such cases, if these prefetch requests are

allowed to remain queued and are issued later when the opportunity arises, it may

lead to issuing of significant number of unnecessary prefetches. It might also

delay the issue of prefetches that are predicted for more recent basic blocks. To

avoid such a situation, we employ a prefetch-queue cleanup mechanism in which

we maintain certain state information per prefetch request entry to help remove

those prefetch requests that are queued for older basic blocks and make room for

new ones. We maintain the following information per prefetch request in the

queue: - a) a 5-bit field to hold the last five bits of the program counter (PC) of

the immediately preceding branch instruction, as an indicator of the basic block

for which that prefetch was issued; b) a 1-bit field to indicate if the prefetch

address was generated as a result of the branch-lookahead process. The modified

prefetch queue is shown in Figure IV.12.

Figure IV.12 Modified Prefetch-Queue

The filtering process is explained in Figure IV.12. It is assumed in this example

that each spatial region consists of two cache blocks. Figure IV.13 (a) depicts the

process followed when Br 1 gets decoded: - A lookahead process is initiated that

 53

issues prefetches for the immediately following basic block BB1 (see A1 and A2

addresses are queued up) and BB2, the basic block following Br 2 (see B1 and

B2 addresses are queued up). The corresponding PC field gets filled with last few

bits of Br 1 and Br 2 respectively. As execution continues and basic block BB1

retires, the address blocks that were identified for prefetch for BB 1, but are still

queued in the prefetch queue get filtered out. This process is depicted in part (b)

of the figure. This filter is a part of our final implementation.

Figure IV.13 Example of the working of Prefetch-Queue based filtering

IV.3 Working Example

This section describes a detailed example of how the different structures described in the

previous sections, work together to realize accurate and timely data prefetching. The

working will be explained with the respect to program sequence given in Figure IV.3 (a).

This program sequence consists of 4 basic-blocks of instructions (numbered 1 through

4). We shall start by discussing the procedure adopted to train the predictor structures.

Thereafter, we shall discuss the procedure to make use of the trained state to issue data

prefetches.

The learning phase, in which the table entries get filled works as described below:

Assume that predictor tables are not trained at the start of execution of this program

 54

sequence. This state is depicted in Figure IV.14 (a). The process is explained with

respect to the first basic block of the program sequence. Note that in this state, no

branch-directed prefetching can be initiated. We employ commit-time updates of the

predictor tables to avoid pollution due to speculative entries.

Figure IV.14 Working example showing update of Branch Trace Cache and creation of Branch-

Register links

As the program execution starts and control reaches a stage when the instruction

corresponding to SeqNum 1 is ready to retire, the LCBI register is loaded with the PC of

 55

Br 1 and the LCBD register is loaded with Br 1’s direction of execution (Not Taken

here). This procedure is adopted to allow subsequent memory instructions to be linked to

their preceding branch instruction and is shown in Figure IV.14 (b). As program

execution proceeds further and SeqNum 2 (a memory instruction) retires, it gets linked

to the branch Br 1, which led to the execution of this basic block and is held in the LCBI

register. This link is shown in the BrReg Table in Figure IV.14 (c), where Br1 now gets

associated with register R2 (the source register used for address computation in SeqNum

2). Similarly, when SeqNum 4 commits, it also gets linked to Br 1 in a similar manner

and the BrReg table is updated to contain a link between Br 1 and register R4 (Figure

IV.14 (c)). The above description explains how the branch-register links are created in

the BrReg Table. Proceeding likewise, as SeqNum 6 (the next branch instruction in the

program flow) commits, it finds that currently, the LCBI register holds the PC of Br 1

and LCBD register holds the last direction of execution of Br 1. At this stage, it can be

inferred that if Br 1 executes in the direction given by the LCBD register, Br 2 would be

the next branch to be encountered along that path (this argument is not applicable for

branches with multiple target sites). This information is sufficient to re-create the

execution path starting from Br 1, if it is encountered again in the future. This

information is saved in the BrTc, as a link between Br 1 and Br 2 along the not-taken

path of execution. This is shown in Figure IV.14 (d). Similarly, as the basic blocks 2, 3

and 4 complete execution, the rest of the entries of BrReg Table and the BrTc get

updated. The final state of the predictor tables after the program sequence gets executed

is shown in Figure IV.15.

Figure IV.15 Trained State of prediction tables, corresponding to the program sequence given in Figure

IV.3 (a)

 56

Next, we shall discuss how the trained state is used to generate prefetch candidates. But

before moving on, it is important to note that the learning of the structures and the usage

of the learned state to issue prefetches happens continuously over the program run,

though to initiate prefetching, at least some part of the structures must have been

learned.

Assume that the program execution continues and at a later cycle, instruction Br 1 is

encountered again. As Br 1 gets decoded, it gets fed into the Decoded Branch Buffer,

from where it is fetched by the Auxiliary Pipeline (A.P). Thereafter, the A.P initiates the

lookahead procedure, starting from Br 1. Figure IV.16 describes the different steps

involved in the lookahead process in a typical case and the following paragraph explains

the steps involved as well.

Cycle BrReg Table
Lookup Index

Branch Trace
Cache

Lookup
Index

Branch Trace Cache
Lookup Result

BrReg Table
Lookup Result

Prefetch Address
Generation Stage

Result

C - Br 1 – NT
Direction = NT,

High Confidence,
Next Branch = Br 2

- -

C+1 Br 1 Br 2 – NT
Direction = NT,

 High Confidence,
 Next Branch = Br 3

Reg Val[R2]
Reg Val[R4] -

C+2 Br 2 Br 3 – NT
Direction = NT,

High Confidence,
 Next Branch = Br 4

Reg Val[R1]
Region Addresses

[R2] and [R4]
queued

C+3 Br 3 Br 4 – T Direction = T,
 Low Confidence Reg Val[R29] Region Address

[R1] queued

C+4 Region Address
[R29] queued

Figure IV.16 Working example showing the prefetch address generation process

At cycle C, the BrTc is looked up using the Branch Br1 and its predicted direction of

execution. In case the gross path confidence is above a threshold, the lookahead is

allowed to proceed. Thus at the end of the cycle C, the BrTc yields us the next branch

likely to occur along the path, i.e., Br 2. In cycle C+1, the BrReg Table is looked up

 57

using the tag Br 1, in order to expose the memory instructions in basic block following

Br 1. A lookup of the BrRegTable using Br 1 tag returns that R1 & R4 are linked to it

and that this block has not been prefetched yet (given by the PF Bit being 0). At this

stage, the basic block (BB 1) is marked as prefetched and the values of R1 and R4

(obtained by looking up the separate register file) are stored in the RegVal field of the

entry and the corresponding PF bit is set to 1. In the meantime, Br 2 continues the look-

ahead process by invoking the Branch predictor and the BrTc and Branch Br3 along the

Not-taken path is identified with high confidence. In the next cycle, the data addresses

generated for basic block BB1 are sent to the prefetcher to be queued after passing

through the prefetch filter. At the same time, a lookup of the BrRegTable using Br 2 tag

is initiated, that exposes the Register Index R1 and also yields that BB2 block has not

been prefetched yet (given by the PF Bit being 0). At this stage, the basic block (BB 2) is

marked as prefetched and the value of Register R1 (obtained by looking up the separate

register file) is stored in the RegVal field of the entry. In the meantime, in the first

pipeline stage, Br 3 looks ahead and predicts that Br 4 will be the next branch along its

predicted direction of execution. This process keeps continuing till the predicted path's

gross confidence falls below a certain pre-set threshold or else, the maximum allowable

degree of look-ahead is reached. Like in this example, in cycle C + 4, Br 4 is predicted

with a confidence value that makes the path confidence fall below the threshold. This

terminates the look-ahead process. The final state of the tables after the lookahead

process and prefetching is complete for this program sequence is shown in Figure IV.17.

Figure IV.17 Snapshot of the predictor tables at the end of a lookahead phase

 58

As the instructions in the basic block start executing, they update the offset and delta

fields of the prefetched entries in the BrReg table. A typical example is shown

schematically in Figure IV.18.

Figure IV.18 Working example showing Branch-Register Table learning process

After Br 1 gets decoded (which invokes the lookahead mechanism in the Auxiliary

pipeline), execution continues normally in the main execution pipeline. The results of

the actual execution are used to update the values of “Offset” and “Delta”. When

SeqNum 2 decodes, it would again get linked to its prior branch instruction (Br 1). This

process is achieved by maintaining another single Register Entry called the

LastDecodedBranchInstruction (LDBI) which caches the latest decoded branch

instruction PC. Moving on, when SeqNum 2 gets into its execution stage and generates

 59

its data address, the BrReg Table is looked up using Br 1 index and the Offset field of

the corresponding entry (R2) gets updated to the difference between the currently

generated address and the value stored in the RegVal field. This is depicted in Figure

IV.18 (a). As execution continues, and the SeqNum 4 calculates its effective address, it

also looks up the BrReg Table to update the offset with respect to its source register,

Register R4 (see Figure IV.18 (b)). Finally, as the basic block ends, i.e., all the

instructions in the basic block (BB1) finish execution, the entry in BrRegTable is

marked un-prefetched (i.e., PF bit is reset to 0). This state is shown in Figure IV.18 (c).

At this stage, the offset values with respect to the basic block BB1 are learned.

Cycle BrReg Table
Lookup Index

Branch Trace
Cache

Lookup Index

Branch Trace Cache
Lookup Result

BrReg Table
Lookup Result

Prefetch
Address

Generation
Stage Result

C + 5 - Br 2 – NT
Direction = NT,

High Confidence,
Next Branch = Br 3

- -

C+6 Br 2 Br 3 – NT
Direction = NT,

 High Confidence,
Next Branch = Br 4

Prefetch only if a
better prediction is
available. Reg Val

[R1]

-

C+7 Br 3 Br 4 – T
Direction = T,

High Confidence,
Next Branch = Br 6

Prefetch only if a
better prediction is

available.
No Prefetch

C+8 Br 4 Br 4 – T
Direction = T,

 Low Confidence.
Look-ahead Terminates

Reg Val[R5] No Prefetch

C+9 Region Address
[R5] queued

Figure IV.19 Working example showing steps followed when prefetch is issued for an already-

prefetched block

In our approach, lookahead process is initiated at every possible branch instruction at

their decode stage. This means that a situation can arise when the lookahead process

starting from one branch instruction would prefetch for a certain number of subsequently

following basic blocks during its lookahead process and the next decoded branch

instruction also attempts to prefetch for the same basic blocks in its next lookahead

 60

process. Certain steps are taken in our technique to avoid prefetching for the same basic

blocks in close succession. We will now discuss the steps taken when prefetching is

attempted for a block that is already in the “prefetched” state. This process is shown in

Figure IV.19.

Assume that all the instructions in basic block 1 have been decoded and now, Br 2

instruction (corresponding to SeqNum 6) enters its decoding stage. Note that since the

Basic Blocks 2, 3 and 4 were prefetched because of the look ahead initiated by Br 1 and

have not been executed yet since then. This state is marked by the corresponding PF bits

being set at 1. As Br 2 gets decoded, it also gets pushed into the DBB, from where it is

taken up by the Auxiliary pipeline and a fresh lookahead cycle is initiated. Referring to

the table, in cycle C+5, Br 2 looks up the BrTc and the branch predictor and at the end of

this cycle, we get the next branch (Br 3) along the predicted direction (if the predicted

confidence is high). In the next cycle, the BrReg Table is looked up using the branch Br

2. But unlike the previous case, since the corresponding entry is already in its prefetched

state, new set of prefetches are allowed to be issued only if a better prediction is

available (i.e., if the value of Reg 1 falls into a different region than the previous

prediction). However in the absence of a better prediction, the look-ahead process is

allowed to continue, but no prefetches are generated for this basic block. In the same

cycle, Br 3 invokes the branch predictor and looks up the Trace cache structure to

determine that Br 4 is most likely, the next branch to be encountered along the path. In

the next cycle, again a prefetch would get issued for the basic block following Br 2 only

if a better prediction is available. It is however note that owing to better confidence

estimates, if lookahead process can extend beyond branch Br 4, then prefetches are

allowed to be issued for the corresponding basic blocks, as described earlier.

 61

CHAPTER V

EVALUATION

In this chapter, we first discuss our simulation methodology in Subsection V.1. Then, we

evaluate the effectiveness of the branch-directed prefetcher by comparing its

performance benefits and effectiveness against other state-of-the-art prefetchers in

Subsection V.2. Finally, we provide an estimate of the hardware cost of the proposed

prefetcher in Subsection V.3.

V.1 Methodology

We evaluate our prefetcher in a simulation environment based on the M5 Simulator [25].

M5 is an open-source simulator platform developed by researchers at the University of

Michigan. The simulator is used to model a 1-wide, 5-stage inorder pipeline. It is to note

that this reference configuration is quite conservative in the light of the performance

benefits that can be gained by using any prefetching technique and a more aggressively

pipelined configuration is likely to demonstrate greater benefits. All non-memory

instructions are assumed to be executed in one-cycle. The assumed memory model

consists of a 2-level cache hierarchy with a 64KB 4-way set-associative L1 ICache &

DCache and a 2MB 16-way set-associative L2 Cache. Under our assumed model, L2

cache hits are serviced in 16 ns and memory accesses are serviced in 60 ns. Table V.1

shows the important baseline architecture parameters.

We run 18 benchmarks from the SPEC CPU2006 benchmark suite, compiled for the

ALPHA ISA. The reference input set is used for each benchmark. The results presented

in this thesis were generated by running each benchmark for the first 1.5 billion

committed instructions. We classified the benchmarks into two categories (Prefetch-

sensitive and otherwise) based on if they showed at least 2% performance benefit with a

 62

perfect cache.

We modified the simulator to include the branch-directed prefetcher-specific structures.

The simulator was then used for detailed cycle-level processor simulation.

Table V.1 Target microarchitecture parameters

Simulator M5 Simulator, ALPHA ISA, System Emulation Mode

Architecture 5-stage Inorder Pipeline, 1-wide, 2 GHz Frequency

Branch Predictor Tournament Predictor

BTB 4096 entries

Register File 32 Integer Registers, 32 Floating-point Registers

ICache / DCache 64KB, 4-way set-associative cache, 64 Byte Line size, 1 ns access
latency, 10 MSHRs, 3 Cache Ports

L2Cache 2MB, 16-way set associative, 64 byte line size, 16 ns access latency,
20 MSHRs, 1 port

Memory 60 ns access Latency

In our current work, we compare the performance implications of employing several

state-of-the-art prefetchers. We evaluate the benefits of employing a Next Line 1 (NL1)

prefetcher (one that prefetches the successively following cache block following a cache

miss). We also analyze the performance impact of a stride-based prefetcher. However,

we have omitted its results in the discussion because the results were generally worse,

except in a few benchmarks that exhibit regular-strided access patterns. We also test a

system incorporating the Spatial Memory Streaming (SMS) – based prefetcher. As

implemented in the most recent proposal of SMS for SPEC CPU2006 benchmarks [6],

we consider SMS with 512 Byte spatial region size, a 64-entry accumulation table and a

2K-entry Pattern history table. Finally we estimate the performance impact of the

proposed branch-directed prefetcher, when used alone (called Branch-Directed) and in

conjunction with the NL1 scheme (called Branch-Directed+NL1, and as described in

Subsection IV.1). The results of our evaluation are presented in the next subsection.

 63

V.2 Results and Analysis

V.2.1 Impact on IPC

The first set of experiments demonstrates the impact of incorporating the proposed

prefetcher (both the branch-directed and the branch-directed+NL1 configurations) on the

system performance (IPC) as compared to a baseline (no-prefetching) system. In this

experiment, we also compare the performance improvements gained by employing a

next-line prefetcher, a Spatial Memory Streaming (SMS) – based prefetcher over the

baseline (no-prefetching) system. The branch-directed system considered in this

experiment, is based on the loop-based BrReg Table implementation (discussed in

Subsection IV.3.3) and employs the Region-Filtering FIFO Buffer, the Region-Based

Filter and the Prefetch-Queue Based filter (as discussed in Subsection IV.4) for filtering

purposes. The results of our evaluation are presented in Figure V.1.

Figure V.1 IPC improvement over Baseline (No-prefetching)

As shown in the figure, there are four bars for each benchmark. The leftmost bar

corresponds to the performance improvement when the Next-Line 1 (NL1) prefetcher is

 64

employed alone over the baseline implementation. The second bar from the left

corresponds to the performance gain by employing the SMS prefetcher. The third bar

from the left corresponds to the performance of our branch-directed prefetcher alone, as

compared to the baseline no-prefetching system. The rightmost bar corresponds to our

prefetcher in conjunction with the NL1 scheme. The results show that the NL1 and the

SMS prefetcher alone provide a performance benefit of 19.1% and 35.87% over the

baseline system respectively. While, the branch-directed prefetcher, without and with the

next-line improvisation provides a mean speedup of 33.63% and 38.789% over the

baseline system respectively.

Figure V.2 IPC improvement over SMS prefetcher

Figure V.2 shows the performance impact of the branch-directed configurations as

compared to the SMS-based one. From the figure, it can be observed that while the

branch directed prefetcher degrades the performance by 1.645% (2%) when used alone,

in conjunction with NL-1 prefetcher the performance improves by 2.148% (2.82%), over

the SMS prefetcher, averaged across all 18 SPEC2006 benchmarks (only across the

prefetch-sensitive benchmarks).

 65

These results show that the branch-directed scheme can alone deliver almost the same

performance benefits as a SMS-based prefetcher implementation. And, in conjunction

with the NL1 scheme, it performs better than the SMS implementation. This implies that

hybrid branch-directed+NL1 scheme is very effective at reducing cache misses. The

branch-directed scheme can take advantage of spatial locality in an application as long as

it can predict the region of operation accurately. It can also prefetch accurately for

irregular and isolated data accesses. Additionally, the NL1 scheme provides benefit by

exploiting spatial locality in the event of cache misses (which may occur if a branch-

directed prefetch was either not issued in a timely manner or was not accurate enough or

no prefetch was issued in the first place due to insufficient training of the structures).

Also, the SMS prefetcher predicts future memory accesses based on current memory

misses and hence, cannot predict the first misses in a spatial region. For those

applications that exhibit less dense spatial patterns, such misses also form a significant

fraction of all misses and hence, the performance improvements gained by incorporating

SMS is minimized in such cases. On the other hand, by decoupling prefetch decisions

from the cache miss events, our prefetcher can accurately anticipate future misses and

prefetch for them.

V.2.2 Prefetch Effectiveness

Another set of experiments is conducted to demonstrate the effectiveness of the

prefetches issued by the branch-directed prefetcher as compared to the SMS prefetcher.

The results of this experiment are shown in Figure V.3.

In this experiment, the effectiveness of the prefetcher is estimated by categorizing the

total prefetches issued into useful (demand request for these data is received before their

eviction from the cache), useless (the data gets evicted without receiving any demand

hits) and untimely (the demand request gets issued while the data is en-route from the

 66

lower levels of memory to the L1 cache) prefetches, normalized against the total number

of prefetches issued by the SMS configuration. It can be observed from the graphs that

for many benchmarks (like games, bzip2, mcf), the branch-directed prefetches are more

accurate than those issued by the SMS prefetcher. However on benchmarks like leslie3d,

SMS prefetcher is very accurate, and many prefetches issued by the branch-directed

prefetcher are either useless or untimely. Thus, the SMS prefetcher performs better over

the branch-directed prefetcher for such benchmarks. In others like milc, the branch-

directed prefetcher prefetches a lot of prefetches (mostly useless) and hence, degrades

performance. Interestingly, branch-directed scheme prefetches significant number of

useless prefetches for the bwaves benchmark. However, this benchmark is tolerant of

cache pollution and hence, it benefits from the increased number of prefetch hits.

Figure V.3 Effectiveness of issued prefetches

 67

Figure V.3 Continued.

V.2.3 Bus Traffic

A third set of experiments is conducted to estimate the effect of the generated prefetches

on the L1-L2 bus traffic. This effect can be approximated by monitoring the increase in

the number of L2 accesses normalized against the baseline (no-prefetching)

configuration. The result of this experiment is presented in Figure V.4. There are 4 bars

for each benchmark, each bar depicting the increase in number of L2 accesses by

employing the corresponding prefetcher over the baseline. It can be observed from the

graph that the increase in number of L2 accesses is approximately 29.26%, 67.674%,

79.591 and 84.544% after incorporating the NL1, SMS, branch-directed alone and in

conjunction with NL1 respectively.

It is interesting to note that for mcf which is a bandwidth constrained application, SMS

generates a large number of prefetches. Hence, it significantly worsens the performance

over the branch-directed prefetcher. It is however important to note that the branch-

 68

directed prefetcher is more aggressive in nature and hence, on an average generates 12%

more L2 accesses as compared to an SMS based implementation.

Figure V.4 Increase in number of L2 Cache accesses

From the figure, we can also observe that the branch-NL1 system generates

approximately the same number of L2 accesses as the branch-directed system alone.

This is because the total number of demand misses occurring in the branch-NL1 system

is much less than those occurring in either a NL1-based or a branch-based system alone.

This implies that the NL1 prefetcher is triggered less often in the combined branch-NL1

system, which ensures that the total number of requests (demand and prefetch) issued for

the L2 cache remains virtually the same.

V.2.4 Impact of Predictor Table Size

We also conducted a preliminary set of experiments to evaluate the impact of predictor

table sizes on the overall system performance. To evaluate the impact of the Branch-

Register table size, we varied the number of entries in the table and monitored its impact

on IPC. We observed that there is no significant change in IPC beyond a table size of

 69

128 entries. A similar experiment using the branch Trace Cache demonstrated that a

table size of around 128 to 256 entries is sufficient to deliver most of the performance

benefits. Even though these results are preliminary, they demonstrate that our prefetcher

can efficiently capture the variability in program behavior with smaller table sizes as

well. This can be explained by realizing that in our approach, we establish branch-based

correlation to enable prefetching. Any typical program has more number of memory

instructions than control instructions. So, given that a memory instruction-correlating

prefetcher (like, stride-prefetcher etc.) can capture the essential information, needed for

prefetching, in 256-512 entries, we should theoretically capture the same amount of

information at significantly reduced table sizes.

V.2.5 Hybrid SMS and Branch-directed Prefetcher

We conducted another set of experiments to analyze the performance impact of a hybrid

prefetcher combining the SMS and the branch-directed prefetcher (SMS+Branch). To

realize this, we made the following changes to our original implementation: - a) Instead

of the region-filter (discussed in Subsection IV.4.2), we employed the Path-Trace Based

Prefetch Filter discussed in Subsection IV.4 b) Also, given that the SMS prefetcher can

take advantage of spatial locality in loop-based codes, we employed the offset-based

variation instead of the loop-based one. The results of this experiment are shown in

Figure V.5. It can be seen that the hybrid prefetcher provides a benefit of 37.82%

(50.515%) over the baseline configuration across all the 18 SPEC benchmarks (over the

prefetch-sensitive benchmarks). It also achieves a 1.436% (1.814%) improvement over

the SMS prefetcher. These results imply that by exploiting branch-based correlation and

the basic-block fast-forwarding mechanism, the branch-directed prefetcher can prevent

even those misses which are not predicted by the SMS prefetcher.

 70

It is however, to note that this hybrid system performs worse than the hybrid branch-

directed+NL1 scheme (discussed before). This is because of the following reasons: a)

Firstly, the branch-directed prefetching configuration assumed in the two hybrid

schemes are different. The offset-based BrReg table configuration assumed in this case

is less effective in generating accurate prefetches than the loop-based scheme because it

fails to handle the loop-based applications. b) Secondly, both SMS and the branch-

directed prefetchers are aggressive in nature. Hence, the total number of prefetches

issued by the hybrid SMS-Branch implementation is significantly more than either

prefetcher alone. These additional prefetches cause cache pollution and also, impact the

demand on the limited bus bandwidth. This in turn, reduces the performance benefits

achieved by prefetching.

Figure V.5 Performance impact of hybrid SMS and Branch-Directed prefetcher

V.2.6 Inorder versus Out-of-Order: Impact on IPC

A final set of experiments was conducted to compare the performance impact of an

inorder implementation (with prefetching support) over an out-of-order implementation

(without prefetching support). As discussed previously, inorder cores are gaining more

attention because of their low power and area requirements as compared to their

superscalar counterparts. However, inorder processors have reduced single-threaded

 71

performance because of their inability to work around cache misses. The motivation

behind this experiment is to evaluate prefetching as a mechanism to improve the

performance of inorder processors as compared to out-of-order (OOO) processors. In

this experiment, the performance of an inorder processor equipped with a branch-

directed prefetcher is compared against a 4-wide OOO implementation. The result of this

experiment is presented in Figure V.6.

Figure V.6 Performance comparision of Inorder (with prefetching support)

and out-of-order implementations

From the figure, it can be observed that while the prefetching-enabled inorder system

provides a mean speedup of 39% over the baseline inorder system, the OOO system

provides a 94% benefit over it. Thus, the inorder implementation provides roughly 42%

of the benefit provided by the out-of-order implementation at a significantly reduced

hardware overhead.

From all the experiments discussed in this chapter, it can be concluded that the branch-

based prefetcher improves the performance of a system significantly. However, given its

aggressive nature, there is further room for improvement if better prefetch-filtering

 72

techniques are adopted. During the experiments, we also noticed that a number of

prefetches issued by the branch-directed prefetcher are already residing in the cache.

These additional prefetches consume power during the cache-tag lookup process and

hence, certain measures should be adopted to limit them. This aspect can be explored in

future work.

V.3 Hardware Cost

The additional hardware requirements of the branch-directed prefetcher can be

summarized as follows:

• Branch Trace Cache – The current implementation of Branch Trace Cache has

256 entries. Each entry requires 66 bits: two 32-bit fields for the branch

instruction PC, 1-bit for the direction of execution, 1-bit for the next-branch-is-

unconditional field. Thus, the Branch Trace Cache requires 2KB of space.

• Branch-register Table – The current implementation of Branch-Register Table

has 128 entries. Each entry requires 392 bits: 32 bits for the branch instruction

PC, 350 bits for a maximum of five fields allowed for the Register-specific fields

(5-bits of register index (RegIdx), 32-bits of register value (RegVal), 16-bits of

Offset, 16-bits of Delta, 1-bit of Delta-Valid field), 1-bit for Delta-is-changing

field, 1-bit for Prefetched (PF) field, 4-bits for the Loop Counter field and 4-bits

for the Sequence Number field. Thus, the Branch Register Table requires a total

storage of 6.125 KB.

• Alternate Register File – This unit has 32 8-byte entries. Thus, the Alternate

Register File requires 256 bytes of storage.

• Prefetch-region Filter – This filter has 1024 entries. Each entry requires 3-bits.

Thus, this structure requires an additional storage of 384 Bytes.

 73

• Path Confidence Estimator – The confidence estimator has 2048 entries. Each

entry has 8-bits (4-bits for the JRS Counter & 4-bits for the Up-Down Counter).

Thus, this unit requires a total storage of 2 KB.

• Modified Prefetch Queue – Apart from the candidate prefetch address, each

entry of the prefetch queue stores 5-bits from the previous branch instruction PC

and a 1-bit field to distinguish the branch-directed prefetches from others. A 100-

entry prefetch buffer is assumed in this implementation. So, the prefetch queue

requires an additional storage of 75 bytes.

• Others – This prefetcher requires counters to estimate the misprediction rate of

each confidence bucket dynamically. The current implementation requires a total

of 74 counters for the 37 confidence buckets. Also, to enable filling of the

Branch Trace cache entries, there is a need for a 32-bit LCBI register (to hold the

last committed branch PC) and a 1-bit LCBD register (to hold the direction of

execution of the last committed Branch PC). These structures together require

approximately 300 bytes of additional storage.

Thus, the overall hardware cost of the branch-directed prefetcher is approximately 11.11

KB of storage, which is approximately 35% of the hardware overhead required by the

SMS prefetcher.

 74

CHAPTER VI

LESSONS LEARNED

This chapter discusses several variations to the base branch-directed prefetcher

implementation that were attempted during this work. Subsection VI.1 describes an

attempt to implement an efficient hybrid prefetching solution by using the set-dueling

principles (as proposed in [26]). Subsection VI.2 discusses a modified Branch-Register

Table implementation called the “Min-Max scheme” that is aimed at reducing the

number of useless prefetches generated by the prefetcher. Subsection VI.3 discusses a

modification to the base prefetcher that is directed at handling indirect branches. Finally,

Subsection VI.4 discusses the impact of prefetching into the LRU position of a set so as

to reduce the degree of cache pollution.

VI.1 Hybrid Prefetcher Implementation

We borrowed the set-dueling approach proposed by Qureshi et al., in an attempt to

realize a hybrid prefetcher using the SMS and the branch-directed prefetcher [26]. The

basic idea behind the approach is - Given that most of cache sets get used in a similar

manner, a few sets could be dedicated to monitor the impact of different competing

mechanisms on the performance. And finally based on such an analysis, the better-

performance strategy could be used for the remaining cache sets. This idea was initially

proposed in conjunction with L2 cache, which has a large number of sets and hence, it is

plausible to dedicate a few sets to each strategy for monitoring purposes. This essentially

avoids the need to maintain separate tag directories. However, in this thesis, we employ

a prefetcher that prefetches directly into the L1 Data Cache. A typical L1 Cache has

comparatively lesser number of sets than a L2 Cache. So, to exploit set-dueling in our

case, we implemented separate tag arrays for each of the representative number of sets

allocated for each competing strategy.

 75

Essentially to realize a hybrid prefetcher using the Branch-Directed prefetcher and SMS,

three sets of representative tag arrays were created: one each for analyzing the impact of

spatial prefetching, only branch-based prefetching and the combined prefetching

approach. Each category was composed of a few duplicated sets of the cache. The

monitoring system is implemented in such a way, that the sets monitoring spatial-

prefetcher's effect do not get affected by branch-based prefetches and so on. The

program run was divided into fixed-length phases and the miss rate was observed in each

of the representative sets during this phase. At the end of each phase, the observed miss

rate of each representative set (as observed during the last program phase) was compared

and the policy that yielded minimum miss rate was chosen to be the de-facto policy of

all the actual sets of the cache.

Given that both SMS and branch-directed prefetchers are aggressive in nature, by

naively combining the two approaches, a marginal degradation in performance was

observed on a few benchmarks that are either bandwidth limited or not much tolerant of

cache pollution. Hence by incorporating this approach of selecting the prefetching

strategy depending on the observed miss rates in the representative categories, some

performance benefits was recorded even for those benchmarks which had earlier showed

degradation with the naïve-hybridization strategy. But the overall performance impact

after adopting this technique was marginal, as compared to the increase in hardware

overhead. So, this approach was not incorporated in our final implementation. However,

this experiment demonstrated that set-dueling concepts can be used for implementing

better and more accurate hybrid prefetching schemes.

VI.2 Modified Branch-Register Table Implementation (The Min-Max Scheme)

Min-max scheme was proposed as a modification to the Branch-register Table

implementation in order to reduce the number of useless prefetches generated by the

prefetcher. The previous proposal of Branch-Register Table required prefetching of an

 76

entire spatial region around a predicted data address. This method tried to avoid this

need by learning variable-sized regions around the predicted data address that are more

likely to be useful. This mechanism is implemented as an enhancement to Offset-Only

approach discussed in the Subsection IV.2.

In this strategy, instead of saving a single offset as suggested in Subsection IV.3, we

save a range of offsets that captures better, variability of generated address values with

respect to register values at prior branch locations. Because of saving such a range of

offsets, prefetches are issued only for the blocks contained in this range, instead of the

whole spatial region. The new BrReg Entry is given in Subsection VI.1:

Figure VI.1 Single Branch-register Table entry (Min-Max implementation)

The process adopted to link the branch instructions with memory instructions (more

specifically, their source register indices) in subsequent basic blocks, is the same as

discussed in Chapter IV.3. The difference lies in the mechanism adopted to learn the

offset values and also to generate prefetch addresses. The offset-range is decided by

observing the differences between the generated data addresses and the corresponding

source register values at prior branch locations. In the current implementation, we again

view memory as being composed of coarser spatial regions consisting of eight cache

blocks each. But unlike the previous assumptions, the start address of the spatial region

is assumed to be the block address containing the predicted data address. The minimum

and maximum offsets basically denote the range by which actual data addresses falling

into that spatial region, were different from prior register values in the past runs. For

example, if a block A was predicted as a prefetch candidate for a future basic block

during a lookahead process. When the basic block was actually executed, the generated

block address was observed as A+2. At this point, the minimum and maximum offsets

 77

both get set to a value of 2, corresponding to this basic block and register entry in the

BrReg Table. If during another run of this basic block, the generated block address

differed from the prefetched register value by 4, then only the maximum offset field gets

updated to 4. This implies that a register value-to-actual address variability of 2 to 4

cache blocks was observed for this entry in the past runs. This information therefore,

eliminates the need to prefetch a whole region around the predicted data address. Rather,

only the cache blocks falling into the “RegValue + MinimumOffset and RegValue +

MaximumOffset” range, get prefetched. Each register index in a branch-indexed entry is

allowed to cache three such address ranges.

To understand the relative advantage of the min-max scheme over the single-offset

scheme theoretically, consider the following code fragment:

Let us assume that corresponding to this code fragment, an entry exists in the Branch-

Register table that links Br 1 branch with Register R2. Then, as per the single-offset

method discussed previously, we would save a single offset with respect to Register R2

and to allow prefetching for all the instances in the basic block, we would prefetch the

region around the address given by the value of R2 at the branch-decoding instance. It

can be observed that this method also allows issuing prefetches for all the instances of

R2 in the basic block. But since in this case, a maximum of three different cache blocks

will be touched during the execution of this basic block (assuming our baseline memory

architecture), the remaining prefetches issued for that region tend to be useless.

However, following the min-max scheme, if a range of minimum and maximum offsets

is maintained for each register index, the variability between the generated addresses

 78

(using this source register) and the register value at a preceding lookahead instance can

be captured with lesser number of prefetches. Like in this example, the offset that would

be saved with respect to R2 would be 0(minimum) – 128(maximum). Thus, this

approach has the potential to reduce the number of useless prefetches.

However after incorporating this modified system, we did not record significant

performance benefit, except in some individual benchmarks. Hence, this mechanism

requires further exploration in future.

VI.3 Indirect Branch Handling

In our current implementation of the Branch Trace-Cache, it is assumed that all control-

instructions have a single possible target site along each direction of execution. But there

exists a special class of control instructions (to support dynamically linked libraries,

virtual function calls etc.), for which the direction of execution alone does not determine

the subsequent basic block to be executed. This implies that for such branches, even if

the branch predictor predicts the direction with high confidence, but because of the

possibility of multiple target sites that can be dynamically invoked, the lookahead may

move towards an incorrect path of execution. There are many possible alternatives to

handle such branches. One possibility is to store all possible target sites starting from

such branches in the Branch Trace Cache. Such optimization can be supported if the

major classes of applications being serviced involve significant use of such branches.

This alternative has not been explored in this thesis. Another alternative to identify and

handle such branches in hardware is to incorporate another bit (called the “Stable Bit”),

corresponding to each entry of the BrTc table. This bit indicates whether the “start

branch PC” has always led to the “next branch PC” along the recorded direction in the

past. The modified BrTc entry is shown in Figure VI.2:

 79

Figure V1.2 Modified Branch Trace Cache entry to handle the indirect branches

It requires a small modification to the previously discussed update-procedure to train this

modified scheme. This is discussed as follows: - As control instructions commit in

program order, the corresponding Branch Trace Cache entries get filled out. However,

during the update process, if a branch instruction is encountered that hits in the Branch

Trace Cache, but its next-Branch field contains an entry that is different from the current

“next-branch”, then it can be inferred that this branch instruction has more than one

possible target location along the same direction of execution. At this point, the stable-

bit of the entry can be set to 1. Note that for the normal class of control-instructions

which have a single target along each direction of execution, this bit remains at 0.

This modified scheme again introduces a minor modification to the lookahead process.

In this case, a lookahead is allowed to proceed only if the corresponding branch entry

hits in the trace cache (as before) and its stable bit is 0. This additional clause ensures

that lookahead terminates at indirect branch locations, assuming that the subsequent path

cannot be confidently established.

However, from the results of the preliminary experiments that we conducted using this

modified implementation, we observed that this optimization did not improve

performance much (although it is incorrect to generalize as the classes of applications

used in this thesis do not need significant use of such branches). In fact for one case, it

caused minor degradation in performance. The degradation was primarily observed

because in many cases, though the target sites from the same branch PC are not unique;

still these target sites have many memory reference instructions that use the same

register indices as the alternate basic block. So, by limiting the lookahead beyond such

 80

control instructions, some prefetching opportunity gets lost. Also, another possible cause

of degradation can be that many such indirect jumps represent some kind of function

calls. If this holds true, then even if the target site of the function call cannot be

confidently established, the return path after the function call ends may be extremely

predictable. Thus, even greater opportunity for prefetching would be lost by terminating

the lookahead process prematurely.

VI.4 LRU Insertion Policy for Prefetched Blocks

As is known, Least Recently used (LRU) Policy is the standard cache replacement

policy used in most of the modern microprocessors. Under this scheme, the victim

chosen for replacement in a cache set is the block located at the LRU position of the set's

LRU stack and the incoming block gets placed at the Most Recently used (MRU)

position of the stack. The objective behind placing an incoming block in the MRU

position is to give it an opportunity to be referenced by the CPU while it moves down

the LRU stack. If prefetched data are also dealt in a similar fashion, then it is likely that

more useful demand-hit data may be evicted out of the cache to make space for the

prefetched data, which may be completely useless due to low accuracies of prefetchers.

Since aggressive prefetchers tend to sacrifice accuracy for greater coverage, they bring

in a lot of data into the cache that will never be used. This implies that most of the

prefetched cache lines would simply go down from the MRU position to the LRU

position of the stack, without receiving any demand cache hits. This further leads to the

ineffective use of the caches. Hence, an attempt was made to assess the performance

impact of a scheme that places all the prefetched data into the LRU position of the stack

so as to reduce the cache pollution effects. In such a scheme, a prefetched block gets

promoted to the MRU position only after receiving a demand request for the same.

From the preliminary set of experiments conducted in this direction, it was observed that

this technique works well for those benchmarks, which suffered due to cache pollution

 81

effects. However this technique reduces the benefit margins on those applications which

showed significant benefits without this optimization. This behavior can be explained by

the fact that the current lookahead mechanism prefetches for future basic blocks much

ahead of their actual execution. In that case, if all the prefetched data gets placed into the

LRU position, then there is a higher chance that prefetched data will get evicted before

the appropriate demand request arrives. This will negate the advantages of prefetching.

To avoid such a situation, prefetched data can be inserted into a different position in the

LRU stack, other than the MRU and LRU. This aspect can be considered in future work.

 82

CHAPTER VII

CONCLUSION AND FUTURE WORK

In this thesis, we proposed a data prefetcher that leverages the high prediction accuracies

of current-generation branch predictors to accurately generate the future basic block

trace that the program will follow and initiates data prefetching for memory instructions

in those future basic blocks. We also demonstrate that there exists a strong correlation

between the addresses generated by memory instructions and the values of the

corresponding source registers at prior branch locations. In the proposed

implementation, we exploit this correlation by establishing links between the branch

instructions and register indices (that are used for address computation in following

basic blocks) in a table structure, which we later use for prefetch address generation. By

making use of the run-time values of the architectural registers and with the help of the

offset-based and loop-based enhancements, our prefetcher is capable of generating

accurate and timely prefetches for data exhibiting both regular and irregular access

patterns. It is to note that the branch-directed prefetcher does not need extra cache tag

ports and it uses them only when they are idle. It is also implemented as a separate

hardware entity and hence, it does not impact the main execution otherwise.

The current implementation of the branch-directed data prefetcher provides a mean

benefit of 38.789 % over a system with no prefetching and 2.14 % over a system that

implements the SMS prefetching for a set of 18 SPEC CPU2006 benchmarks. This

improvement comes at a minimal additional hardware cost of 11.11 KB.

However as discussed in detail in the previous chapters, it is apparent that there is still

significant scope of improvement with the Branch-Directed prefetching technique. We

have observed that even though the prefetches issued by the branch-directed prefetcher

are timely and accurate for most of the programs, the number of useless prefetches

 83

generated is still high for some others. During the experiments, we had recorded

significant performance improvements after incorporating the proposed prefetch-filtering

mechanisms. Hence it is likely that even better performance gains can be achieved by

exploring better filtering mechanisms. Techniques like dead-block prediction [27] can

also be incorporated here to limit the degree of cache pollution, by prefetching into the

predicted dead block positions only.

Also, branch-based correlation has been explored in the past mainly to realize

instruction-prefetching. It is interesting to note that the branch Trace Cache structure

used in our system can also be used to enable prefetching of instructions at branch target

sites. Thereby, at no extra hardware cost a hybrid instruction and data prefetching

solution can be realized, which may lead to further improvements in performance.

Though in the current thesis work, we have presented our solution for an inorder

architecture, we would try to assess this prefetcher’s impact on other architectures as

well like the superscalar or multithreaded ones in future.

 84

REFERENCES

[1] A. J. Smith, “Cache memories,” Computing Surveys, vol. 14, no. 3, pp. 473-530,

1982.

[2] D. Kroft, "Lockup-free instruction fetch/prefetch cache organization," in Proc. of the

8th Annual International Symposium on Computer Architecture, Minneapolis, MN, May

12-14, 1981, pp. 81-87.

[3] T. R. Halfhill, "Intel's tiny atom," Microprocessor Report, Apr. 7, 2008, Available:

www.mpronline.com.

[4] K. Krewell, "Sun’s Niagara pours on the cores," Microprocessor Report, Sep. 2004,

Available: www.mpronline.com.

[5] S. Somogyi, T. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, "Spatial

memory streaming," in Proc. of the 33rd Annual International Symposium on Computer

Architecture, Boston, MA, IEEE CS Press, Jun. 2006, pp. 252-263.

[6] M. Ferdman, S. Somogyi, and B. Falsafi, "Spatial memory streaming with rotated

patterns," in 1st JILP Data Prefetching Championship, Raleigh, NC, Feb. 2009.

[7] S. Kumar and C. Wilkerson, “Exploiting spatial locality in data caches using spatial

footprints,” in Proc. of the 25th Annual International Symposium on Computer

Architecture, Barcelona, Spain, Jun. 27–Jul. 1, 1998, pp. 357-368.

[8] D. Callahan, K. Kennedy, and A. Porterfield, “Software prefetching,” in Proc. of the

4th International Conference on Architectural Support for Programming Languages and

Operating Systems, Santa Clara, CA, Apr. 1991, pp. 40-52.

 85

[9] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and evaluation of a compiler

algorithm for prefetching,” in Proc. of the 5th International Conference on Architectural

Support for Programming Languages and Operating Systems, Boston, MA, Oct. 1992,

pp. 62-73.

[10] Y. Wu, “Efficient discovery of regular stride patterns in irregular programs and its

use in compiler prefetching,” in Proc. of the SIGPLAN 2002 Conference on

Programming Language Design and Implementation, Berlin, Germany, Jun. 2002, pp.

210-221.

[11] A. J. Smith, "Sequential program prefetching in memory hierarchies," IEEE Trans.

on Computers, vol. 11, no. 12, pp. 7-21, Dec. 1978.

[12] J. L. Baer and T. F. Chen, "An effective on-chip preloading scheme to reduce data

access penalty," in Proc. of the 1991 ACM/IEEE Conference on Supercomputing,

Albuquerque, NM, Nov. 1991, pp. 176-186.

[13] R. Cooksey, S. Jordan, and D. Grunwald, "A stateless, content-directed data

prefetching mechanism," in Proc. of the 10th Annual International Conference on

Architectural Support for Programming Languages and Operating Systems, San Jose,

CA, Oct. 2002, pp. 279-290.

[14] E. Ebrahimi, O. Mutlu, and Y. Patt, “Techniques for bandwidth-efficient

prefetching of linked data structures in hybrid prefetching systems,” in Proc. of the 15th

International Symposium on High-Performance Computer Architecture, Raleigh, NC,

Feb. 2009, pp. 7-17.

 86

[15] J. Dundas and T. Mudge, “Improving data cache performance by pre-executing

instructions under a cache miss,” in Proc. of the 11th International Conference on

Supercomputing, IEEE Press, Vienna, Austria, Jul. 1997, pp. 68-75.

[16] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execution: An

alternative to very large instruction windows for out-of-order processors,” in Proc. of the

9th International Symposium on High-Performance Computer Architecture, Anaheim,

CA, Feb. 2003, pp. 129-140.

[17] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-temporal memory

streaming,” in Proc. of the 36th Annual International Symposium on Computer

Architecture, Austin, TX, Jun. 2009, pp. 69-80.

[18] Y. Lui and D. R. Kaeli, "Branch-directed and stride-based data cache prefetching,"

in Proc. of the International Conference on Computer Design, IEEE Computer Society

Press, Los Alamitos, CA, 1996, pp. 255-230.

[19] S. Pinter and A. Yoaz, “Tango: A hardware-based data prefetching technique for

superscalar processors,” in Proc. of the 29th Annual International Symposium on

Microarchitecture, Paris, France, Dec. 1996, pp. 214–225.

[20] T. Chen and J. Baer, “Effective hardware based data prefetching for high-

performance processors,” IEEE Trans. on Computer Systems, vol. 44, no. 5, pp. 609-

623, May 1995.

[21] E. Jacobsen, E. Rotenberg, and J. E. Smith, “Assigning confidence to conditional

branch predictions,” in Proc. of the 29th Annual International Symposium on

Microarchitecture, Paris, France, Dec. 1996, pp. 142-152.

 87

[22] D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun, “Confidence estimation for

speculation control,” in Proc. of the 25th Annual International Symposium on Computer

Architecture, Barcelona, Spain, Jun. 1998, pp. 122–131.

[23] D. A. Jimenez, “Composite confidence estimators for enhanced speculation

control,” in Proc. of the 21st International Symposium on Computer Architecture and

High Performance Computing, Sao Paulo, Brazil, Oct. 2009, pp. 161-168.

[24] K. Malik, M. Agarwal, V. Dhar, and M. I. Frank, “PaCo: Probability-based path

confidence prediction,” in Proc. of the 14th International Symposium on High-

Performance Computer Architecture, Salt Lake City, UT, Feb. 2008, pp. 50-61.

[25] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.

Reinhardt, “The M5 simulator: Modeling networked systems,” Micro, IEEE, vol. 26, no.

4, pp. 52-60, 2006.

[26] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. S. Jr., and J. S. Emer, "Set-dueling-

controlled adaptive insertion for high-performance caching,” Micro, IEEE, vol. 28, no.

1, pp. 91-98, 2008.

[27] A. C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction and dead-block

correlating prefetchers,” in Proc. of the 28th Annual International Symposium on

Computer Architecture, Goteborg, Spain, Jul. 2001, pp. 144-154.

 88

VITA

Reena Panda received her B.Tech. degree in electrical engineering from the National

Institute of Technology (NIT) Rourkela, India in June 2008. After graduation, she

worked as a design engineer at Samsung Electronics, India until July 2009. She entered

Texas A&M University in August 2009 to pursue her master’s degree in computer

engineering and received her M.S in December 2011. Her research interests lie in the

area of computer architecture.

Reena Panda may be reached at:

Department of Electrical and Computer Engineering

322 WERC,

Texas A&M University,

College Station, TX 77843-3128

e-mail: reena.panda@gmail.com

	REFERENCES

