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ABSTRACT 

 

A Branch-directed Data Cache Prefetching Technique for Inorder Processors. 

(December 2011) 

Reena Panda, B.Tech, NIT Rourkela, India 

Co-Chairs of Advisory Committee: Dr. Paul V. Gratz 
          Dr. Jiang Hu 

 

The increasing gap between processor and main memory speeds has become a serious 

bottleneck towards further improvement in system performance. Data prefetching 

techniques have been proposed to hide the performance impact of such long memory 

latencies, but most of the currently proposed data prefetchers predict future memory 

accesses based on current memory misses. This limits the opportunity that can be 

exploited to guide prefetching.  

 

In this thesis, I propose a branch-directed data prefetcher that uses the high prediction 

accuracies of current-generation branch predictors to predict a future basic block trace 

that the program will execute, and issues prefetches for all the identified memory 

instructions contained therein. I also propose a novel technique to generate prefetch 

addresses by exploiting the correlation between the addresses generated by memory 

instructions and the values of the corresponding source registers at prior branch 

instances. I evaluate the impact of the prefetcher by using a cycle-accurate simulation of 

an inorder processor on the M5 simulator. The results of the evaluation show that the 

branch-directed prefetcher improves the performance on a set of 18 SPEC CPU2006 

benchmarks by an average of 38.789% over a no-prefetching implementation and 

2.148% over a system that employs a Spatial Memory Streaming prefetcher.  
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CHAPTER I 

INTRODUCTION 

 

Owing to significant micro-architectural advancements as well as technology scaling, the 

performance of microprocessors has improved at a tremendous pace over the past couple 

of decades. However while the processing speed has increased significantly, the memory 

access speed has not scaled accordingly. So, the memory access latency is becoming a 

serious bottleneck towards further increase in system performance. 

  

Many memory latency hiding techniques have been proposed in the literature so far in 

order to reduce this growing gap between memory and processor speeds. One such 

technique is the use of “caches” [1]. A cache is a smaller and faster memory that resides 

between the CPU and the main memory and thereby, allows faster access to data that 

resides in it. It basically exploits two important characteristics of programs, namely, 

spatial and temporal locality. It does so by storing, the recently used/demanded data 

(thereby, exploiting the temporal locality) and the data that resides closer to other 

demand-fetched data in the memory (thereby exploiting spatial locality). The idea is that 

such data have a greater chance to be accessed by the CPU than others. As long as these 

characteristics hold true, complete memory accesses can mostly be avoided, thereby 

providing performance benefits. Several enhancements have also been proposed to the 

cache implementation and handling, like lock-up free caches [2], better insertion and 

replacement algorithms etc. However, even with all these advancements, a single cache 

miss through all levels still causes a loss of more than hundreds of processor cycles and 

is thus, detrimental to system performance. 

 

____________ 
This thesis follows the style of IEEE Transactions on Automatic Control. 
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Another technique that has been widely adopted to hide long memory latencies and also 

to exploit instruction level parallelism is out-of-order execution. Among its other 

benefits, out of order execution allows instructions, following a long latency missing 

instruction, to execute, being constrained only by the true data dependences or the size 

of the instruction window. Thus with out-of-order support, it becomes possible to 

overlap memory accesses with actual execution, thus hiding some of the penalties of a 

complete memory access. But as the technology is gradually moving into the submicron 

realm, superscalar processors (which are capable of supporting out of order execution) 

are becoming increasingly expensive to implement. This is because such processors 

employ several complex hardware units like the Reorder buffers, issue and wake up 

logic, multi-entry buffers etc., which are very power hungry and also have higher area 

requirements. These concerns have therefore, started diverting the attention back to the 

simple inorder processors, which have lesser power and area requirements. 

 

A third technique that allows hiding memory access latency is prefetching. Prefetching 

predicts the data that will be used by the processor in future and generates requests to 

bring them closer to the processor before an actual request is sent out for them. So, if the 

prediction turns out to be correct, the demand request gets satisfied in the cache and the 

need to fetch the data from main memory is eliminated. But, like any other speculative 

technique, prefetching is not perfect and hence, it is likely that many prefetched blocks 

may be either useless or ineffective. However, such prefetched data may still evict more 

useful data from the cache and hence, can cause cache pollution. Additionally, a large 

number of prefetch requests sent to the main memory may impact the limited available 

bandwidth and hence, can cause delay in servicing other demand requests.  

 

I.1 Thesis Statement 

 

This thesis proposes a data prefetching mechanism as a means to reduce the impact of 

long memory latencies on system performance. This proposed scheme takes advantage 
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of the high prediction accuracies of current-generation branch predictors to accurately 

generate a future basic-block trace of the program and then, issues prefetches for all the 

identified memory instructions in these basic blocks. In addition, this thesis describes a 

novel technique to capture the data access behavior by observing the runtime 

modifications to the register values that used for memory address computation. The goal 

of this thesis is thus, to demonstrate that: a) the behavior of control instructions can be 

efficiently exploited to enable timely and effective prefetching and b) data addresses can 

be accurately predicted by monitoring the runtime updates to the address-generating 

register values. 

 

I.2 Thesis Contributions 

 

In this thesis, we propose a data prefetching technique so as to bridge the growing gap 

between processor and memory speeds and thereby, leading to performance benefits. 

While most of the existing prefetchers predict future accesses based on current memory 

misses, our prefetcher leverages the high prediction accuracies of current-generation 

branch predictors to accurately generate the future basic block trace that the program 

will follow and initiates data prefetching much before the actual execution of the 

instructions in the corresponding basic blocks begins. Our proposal is based on the idea 

that branch instructions determine the execution path of any program, i.e., which basic 

block of instructions gets executed and in what sequence is determined by the direction 

of the branch instructions contained in the path. Different basic blocks tend to operate on 

same/different data and contain instructions to operate on data in a particular pattern. So, 

given that branch instructions determine which basic blocks would get executed in any 

instance of the program run, the access pattern of data that is manipulated in those basic 

blocks can also be linked to the prior branch instructions.   

 

We build our system based on the observation that the address values generated by the 

memory instructions in a basic block are quite predictable even at an earlier branch 
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instruction. We establish this correlation in hardware, by associating the source register 

indices being used for address computation by the memory instructions in any basic 

block to their preceding branch instruction (the entry point of the block). By making use 

of the actual register values at that execution instance and not data access history, we can 

prefetch even those instructions that do not exhibit regular strided access patterns, but 

still generate predictable address values starting from the dynamic register values.  

 

In this thesis, we propose a practical hardware design of our data prefetcher for an 

inorder processor implementation. Due to their lower power and area requirements as 

compared to their superscalar counterparts, inorder processors have been receiving a lot 

of attention lately. They are thus making their way into mainstream multiprocessor and 

multi-core based designs. Many modern processors like Intel's Atom processor [3], Sun’s 

UltraSPARC T1 “Niagara” [4] have preferred to incorporate a number of smaller inorder 

cores over larger superscalar cores, thereby saving power and area. However, inorder 

processors have reduced single-threaded performance. The reason is partly because they 

allow very limited execution around the data cache misses. So, techniques like 

prefetching become more important for such architectures, as a means to bridge the 

growing gap between processor and memory speed. It is however important to note that, 

this prefetcher design is not architecture-specific and can be implemented with any 

processor architecture. 

 

Finally in this thesis,  

 

• We demonstrate that data addresses generated by memory instructions are 

predictable at prior branch locations by exploiting the runtime values of those 

registers that are used for memory address computation. 

• We propose a practical hardware implementation of a prefetcher for the L1 Data 

Cache that allows look ahead across basic blocks and exploits the above-

mentioned correlation to initiate prefetching. 
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• Branch directed prefetcher provides a mean speedup of 38.789% over a baseline 

system with no prefetching. While the Spatial Memory Streaming (SMS) [5], [6], 

one of the best performing practical prefetcher, provides a mean speedup of 

35.87% over the baseline. Our final implementation also provides an IPC 

improvement of 2.14 % over SMS. 

• We also discuss several enhancements to the base prefetcher design to improve 

the performance and accuracy of the prefetcher. 

 

I.3 Thesis Organization 

 

This document is organized as follows. Chapter II gives an overview of the proposed 

approach and discusses the motivation behind the same. In Chapter III, we provide an 

overview of the prior work in the areas important to this thesis. Chapter IV presents a 

detailed description of the system architecture. In chapter V, we discuss our simulation 

methodology and evaluate the results. In Chapter VI, we discuss few observations that 

were made, while implementing the different design alternatives. Finally, Chapter VII 

concludes this thesis and discusses future work. 



 6 

CHAPTER II 

BACKGROUND AND MOTIVATION 

 

This chapter provides a general overview of the branch-directed prefetching system and 

also discusses the motivation behind the proposed approach.  

 

II.1 Background 

 

The direction taken by the control instructions determines the execution path of any 

program. In other words, which basic block of instructions gets executed and in what 

sequence is determined by the direction of execution of the control instructions 

encountered along the path. In this thesis, it is claimed that since branch instructions 

control the execution path, the data access patterns of subsequent basic blocks could also 

be dependent on/linked to the previous branch behavior. For example, consider a “C” 

code fragment comprised of an if-else code block (see Figure II.1).  

 

 

 

 

 

 

 

 

 
 

 

Figure II.1 An example illustrating dependence between branch instructions and data access patterns  
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The block of code (if-block or else-block) which gets executed following the control 

instruction depends on the direction taken by it. So, the data that is going to get 

requested in the future execution phase and its access pattern is also dependent on the 

branch instructions encountered along the path and their direction of execution. Given 

that such correlation can be established, it implies that data prefetching can be initiated 

at the decode time of the branches, without waiting for the corresponding memory 

instructions to start executing. Additonally, data prefetching can be initiated even earlier 

by employing a reasonably accurate fast forwarding scheme that can predict the future 

execution path following a branch instruction. This implies that while one branch 

instruction is being executed, the future path of execution can be predicted therefrom 

and then, prefetches can be issued for those memory references that are linked to the 

future branch instructions contained in the path. Also, if the path prediction accuracy is 

not very high, then a confidence estimator can be employed to prevent speculating too 

deep along a wrong path (if at all) instead of allowing the lookahead to continue as long 

as possible. The process adopted to enable branch-directed prefetching is shown 

schematically in Figure II.2. 

 

This thesis proposes a data prefetcher that establishes correlation between the memory 

instructions used in a basic block and their prior branch instructions. Later, it employs a 

lookahead scheme to predict the future path of execution and exposes the memory 

instructions identified along the path. Unlike prior works in this area, which mostly find 

correlation among the actual data addresses used by the instructions at consecutive 

execution instances, we propose to associate register indices being operated by the 

memory instructions (as source registers to generate data address) to their preceding 

branch instructions (the entry points of the basic block) and use this correlation to guide 

prefetching. This idea is based on the premise that register values at the time of data 

address generation would not be very different from their corresponding values at a time 

when the preceding branch instruction was executed. By exploiting such register-based 

correlation, the branch-directed prefetcher can not only predict data addresses which 
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display a regular strided-access pattern, but also can take advantage of the dynamic 

values of the registers at run-time to predict irregular and isolated data accesses. 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure II.2 Flow chart showing the Branch-Directed Prefetching Algorithm 

In order to determine if such correspondence exists, we conducted an experiment to 

demonstrate the degree of correlation between the data addresses generated by memory 

references and the corresponding register values at prior branch instructions. Before 

describing the details of the experiment, the meaning of certain terms are clarified first, 

which have been used throughout this thesis. A “spatial region” is defined as a coarser 

unit of memory, consisting of multiple consecutive cache blocks [5], [7]. Based on the 

above definition of the spatial region, two address values are said to be “correlated” if 

they fall into the same spatial region.  
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The experiment was conducted using application traces (corresponding to first 300 

million committed instructions) collected from a subset of SPEC CPU2006 benchmarks. 

The traces consisted of: a) a dump of the architectural register file at each branch 

location, b) the effective addresses generated by each subsequent memory instruction, c) 

the corresponding source register indices used for address computation by the memory 

instructions. An offline analysis was then, performed on these traces to find out the 

degree by which the register values at prior branch instructions are correlated to the 

actual effective addresses generated by the instructions in those basic blocks. Finally, the 

percentage of memory instructions which demonstrated this correlation (where 

correlation implies falling into the same spatial region) with their preceding branch 

instructions was recorded. Also, the impact of the assumed region size on the degree of 

correlation was monitored. Results of this experiment for two different region sizes (512 

Bytes and 256 Bytes) are shown in Figure II.3.   

Figure II.3 Graphs showing the degree of correlation between generated data addresses & 
corresponding source register values at a prior branch 
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Corresponding to the figure, Prev 0 implies the case when the memory instructions were 

compared with their immediately preceding branch instruction, Prev 1 corresponds to the 

case where memory instructions were compared with the branch preceding their 

immediately preceding branch instruction and so on.  

 

From the figure, we can observe that most of the benchmarks exhibit significant degree 

of correlation between the data addresses generated by memory instructions and 

corresponding register values at previous branch instructions. Also, as expected, the 

correspondence is stronger with respect to the immediately preceding branch instruction 

and it gradually reduces as the correlation is tested with older branches in program order. 

This is because greater is the distance between a memory instruction and the branch 

instruction in question, higher is the chance that other register-defining instructions 

would modify the value of the register in between. Also, another important point to note 

is that percentage of correlation reduces with the size of the recorded spatial region. 

 

Results of this experiment motivate the idea of prefetching all the cache blocks 

contained in the spatial region that holds the address given by the register value at a 

previous instance. Also, a region size of 512 bytes is chosen for use in all our 

experiments (applicable only in non-loop mode of operation, refer Subsection IV.1) in 

this thesis. The evaluation and analysis of the impact of varying region sizes on the 

performance of the prefetcher is left for future work. 

 

It is obvious that greater is the correlation of memory addresses to prior branch 

instructions, better is the opportunity to look ahead across deeper basic blocks and be 

able to issue useful prefetches. But on the whole, this experiment demonstrates that 

prefetches can be issued with a certain degree of accuracy, for memory instructions at 

prior branch instructions by only using the values of the corresponding source registers 

at that instance. It is however to note that more correlation can be exploited, than 
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demonstrated in this experiment if the difference (offset) between the two compared 

values can be estimated or predicted.  

 

II.2 Motivation 

 

In this section, we will summarize the motivation behind the adopted approach (as also 

discussed in the previous section) with a theoretical example. Figure II.4 is a code 

snippet from the leslie3D benchmark from the SPEC CPU 2006 benchmark suite. The 

dynamic program sequence consists of 3 basic blocks. In the first basic block, there are 2 

memory instructions, sequence number (SeqNum) 2 and 3. Since no other register-

defining instructions exist between SeqNum 2,3 and the branch instruction at SeqNum 1, 

that can change the values of registers R30 and R3, the address going to be generated at 

SeqNum 2 and 3 is predictable at instruction 1, if the register values R3 and R30 are 

known. 

 

 

 

 

 
 

 

 

 

Figure II.4 Code fragment from Leslie3D benchmark (SPEC CPU2006) 

 

Similarly, in the second basic block, there are 4 memory instructions: SeqNum 10, 11, 

12 and 13. SeqNums 10 and 12 use R30, SeqNum 11 uses R3 and SeqNum 13 uses R2 
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as their source registers for address generation respectively. It can be seen that none of 

the instructions contained in Basic Block 1 define the value of R30, which implies that 

the data addresses generated at SeqNum 10 and 12 in basic block 2 are quite predictable 

at SeqNum 1. However, the two memory reference instructions, SeqNum 2 and 3 define 

R2 and R3 respectively in basic block 1. Hence, the value of R2 and R3 at SeqNum 1 is 

more likely to be different from the addresses generated at SeqNum 11 and 13 

respectively. But it is note that the address values are still predictable at the branch 

instruction corresponding to SeqNum 9. Note that, in our scheme a significant fraction of 

this variability can be captured by prefetching the entire spatial region around the 

runtime register values.  

 

Another factor that motivates exploiting branch-directed correlation to guide prefetching 

is that any typical program will have less number of control instructions as compared to 

the number of memory instructions. So, this approach should theoretically, need much 

smaller predictor table sizes than most of the prior prefetchers that establish memory 

instruction-based correlation to capture the same information. 
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CHAPTER III 

PRIOR WORK 

 

This chapter reviews some related concepts before embarking on the specifics of the 

thesis. Subsection III.1 discusses the different data prefetching techniques that have been 

proposed in literature and compares our proposed solution against a few. As discussed in 

the previous chapter, our prefetcher employs a confidence estimator that estimates the 

likelihood that our execution path prediction is correct in order to limit prefetches along 

a wrong path of execution. Subsection III.2 reviews the importance of such confidence 

estimation techniques in general and also, discusses few branch confidence estimation 

techniques that have been previously proposed in literature. 

 

III.1 Data Prefetching Techniques 

 

Data Prefetching techniques have been explored extensively as a means to tolerate the 

growing gap between processor and memory access speeds. Broadly, the proposed 

solutions in this area can be classified as hardware-driven or software-directed 

techniques. Software prefetching [8], [9], [10] schemes perform static compile-time 

analysis of the likely memory accesses to learn patterns and predict future prefetch 

candidates.  Hardware prefetching schemes, on the other hand use dynamic runtime 

information and thereby, issue prefetches far in advance so as to mask the off-chip 

latencies. This section illustrates few hardware-directed prefetching schemes that have 

been proposed in literature so far. 

 

III.1.1 Sequential Prefetching 

 

Sequential Prefetching [11] is one of the simplest hardware prefetching schemes. It 

proposes prefetching the successive cache blocks that follow a currently 



 14 

accessed/demanded block. Several variations have been proposed to this basic scheme, 

which includes what type of accesses to a block initiate a prefetch (giving rise to the 

Prefetch-on-hit or Prefetch-on-miss schemes) and the number of blocks that are 

prefetched per access to a cache block (basically, the degree of prefetching).  Tagged 

prefetching is another variation of this approach, where prefetching is initiated both on a 

cache miss as well as on a prefetch hit. 

 

III.1.2 Stride Prefetching 

 

Stride Prefetching [12] involves monitoring the patterns of memory accesses generated 

successively by memory instructions, with an objective of identifying constant-stride 

references which are typical of loop-based behavior. In order to achieve this, the stride 

prefetchers maintain a table structure that gets indexed with the memory instruction PC 

and contains the last address referenced by that instruction, the established stride, and a 

finite state machine that guides the prefetching scheme. This scheme is very effective for 

applications which are loop-based and demonstrate a very regular access pattern. 

However, for the general class of applications, which do not always exhibit regular 

strided memory access patterns, this scheme cannot provide much performance benefit. 

 

II.1.3 Pointer-based Prefetching Techniques 

 

Content-directed prefetching (CDP) technique was proposed by Cooksey et al. as an 

effective prefetcher for the pointer-intensive applications [13]. It basically examines each 

address-sized word of the fetched or subsequently prefetched data in order to find likely 

pointer addresses and then, it initiates prefetch requests for those data that are identified 

as potential addresses. As a result of its aggressive policy, CDP has the potential to run 

many instances ahead of the current execution sequence and prefetch data, pointed by 

likely pointer addresses, into the cache. Its other advantages are that it does not require 

any state information and also does not require any training. However, because of its 
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aggressive nature, it tends to generate a lot of useless prefetches.  

 

In an attempt to minimize such useless prefetches, Mutlu et al. proposed an enhancement 

to the basic CDP implementation, by adopting a combined hardware/software approach 

[14]. In this modified scheme, the compiler provides hints to inform the hardware about 

which pointer addresses would be useful over others. They also proposed a hybrid 

prefetcher implementation where the CDP is used in conjunction with a stream 

prefetcher and then, runtime feedback information is used to manage the interference 

between these two classes of prefetchers. 

 

III.1.4 Runahead Mechanisms 

 

Runahead-based prefetching schemes are based on the idea of pre-executing a set of 

instructions speculatively following a long latency operation, like an L2 cache miss and 

then, using the results obtained during that process to initiate prefetching. In the 

subsequent paragraphs, few such techniques are reviewed. 

 

One of the earliest works on runahead prefetching was proposed by Dundas and Mudge 

[15]. In the paper, the authors proposed a data prefetching mechanism that generates 

addresses based on the results of pre-executing future instructions under a cache miss. 

Two approaches are proposed to realize the prefetcher: - a) a conservative approach in 

which instructions are not executed speculatively beyond branch instructions while in 

the runahead mode and b) an aggressive approach, in which branches and jumps are 

assumed to be correctly resolved during runahead. This scheme requires an extra check-

pointing register file to save the architectural state before entering the runahead mode 

and makes use of the idle execution unit to facilitate runahead during the long latency 

data miss. But this method adds to the miss latency overhead by requiring to checkpoint 

the main register file during every data miss and restoring the checkpoint on the 

completion of the miss.   
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Mutlu et al. proposed an implementation to support runahead execution in out-of-order 

processors [16]. Their system is also based on entering a runahead mode post a long 

latency memory miss, when the future instructions get speculatively pre-executed and 

the corresponding results are used to initiate prefetching. Though this system is quite 

effective in the event of L2 misses, it suffers from a few drawbacks. Firstly, there is a 

large overhead in restarting normal execution after restoring the checkpoint, when the 

miss returns. Also, because of this overhead, the effectiveness of this mechanism to 

handle shorter latencies like the L1 cache miss latencies is reduced. Additionally, since 

the same hardware is used for runahead mode execution, computation cannot be 

overlapped with an L2 miss.  

 

Finally in most of the runahead proposals, in an attempt to minimize hardware overhead, 

the prefetching opportunity gets confined to finding idle execution slots or idle context 

in a multithreaded environment.  

 

In our current proposal, we also attempt to prefetch ahead of the currently executing 

basic blocks. But instead of relying on pre-executing the instructions following a long 

latency event, we make use of modest hardware to establish and exploit the dependence 

between memory references and their prior branch instructions. Additionally, the 

runahead mechanism relies on misses to initiate prefetching, but our approach tries to 

avoid the first misses as well. Moreover, unlike runahead mechanism, our approach is 

completely transparent (non - intrusive) to the execution in the main pipeline and does 

not add any additional overhead to the miss-handling latency. 

 

III.1.5 Region Based Prefetching Techniques 

 

Another technique that has been explored to improve prefetching performance is 

exploiting spatial locality over larger areas in memory, bigger than a single cache line. 

These approaches see a coarser view of memory, generally made of a few contiguous 
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cache blocks (called a spatial region) and try to find correlation or access patterns with 

respect to this coarser view. Few such techniques that exploit region-based correlation to 

enable prefetching are described in the following paragraphs. 

 

Spatial Memory Streaming (SMS) is a spatial-region based prefetching proposition by 

Somyogi et al. [5]. It is one of the best-performing prefetchers proposed in literature 

currently. SMS makes use of code-based correlation to take advantage of spatial locality 

over larger regions of memory (called spatial regions) in the applications. As an 

application runs, SMS records access patterns over spatial regions in the form of bit 

vectors, over a period of time called the spatial region generation (defined as the time 

from when the first block of this region was brought into the cache till when an accessed 

block gets evicted). At the end of a spatial generation, these recorded bit patterns are 

transferred to a pattern history table (PHT). In their work, the authors show that an 

indexing mechanism that combines the PC and the initial missing offset into the region 

gives better results over other indexing schemes. But one potential issue with SMS is 

that it cannot predict the first misses into a region. To overcome this disadvantage, 

Somyogi et al. proposed an extension to SMS called Spatio-Temporal Memory 

Streaming (STEMS) [17]. STEMS exploits temporal access characteristics over the 

larger spatial regions and finer access patterns within each spatial region to re-create a 

temporally ordered sequence of misses and prefetches for the same. By employing both 

temporal and spatial characteristics, it improves the performance by 3% over the SMS 

scheme. However, this performance benefit is achieved at the expense of a huge 

hardware overhead (in the order of several megabytes), which makes this design slightly 

impractical to implement currently.  

 

III.1.6 Branch-directed Data Prefetching 

 

This is another class of prefetching that exploits the relationship between branch 

instructions and subsequently following memory instructions to identify prefetch 
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candidates. Although branch-based correlation has mostly been explored in the 

instruction-prefetching domain, there has been some work [18], [19] that applies the 

same to solve data prefetching issues. The branch-directed data prefetchers are based on 

the idea that since branch instructions control the execution path through a program, data 

accesses in the subsequently following instructions are also dependent on their behavior 

and hence, can be linked to them. However, in most of the proposed approaches, 

memory reference instructions are directly correlated with prior branch instructions and 

then, some variant of stride-directed scheme is used to guide prefetching. This section 

discusses some major work in this area.  

 

The earliest work on branch-based data prefetching [18] associated the history of data 

references to the previous branch instructions in the Branch Target Buffer (BTB). Each 

BTB entry is extended to contain the last accessed data address field, a stride field and a 

2-bit counter to handle the finite state machine to enable stride prefetching, 

corresponding to each memory instruction. Equipped with all this state, the BTB is then 

used to issue prefetches for load instructions following the branch instruction in the 

program flow. Thus, when a branch instruction gets decoded, the corresponding BTB 

entry is looked up to find the possibility of a potential prefetch. In case such an 

opportunity exists, a prefetch address is generated by adding the currently accessed data 

address to the estimated stride, in advance of the actual issuing of the loads.   

 

Pinter and Yoaz proposed another branch-directed prefetching data scheme called the 

Tango prefetcher for superscalar implementations [19]. The authors propose their 

solution again, as an enhancement over the stride-based reference prediction table 

approach suggested by Chen and Baer [20]. To issue prefetches fast enough to benefit a 

superscalar implementation, a lookahead scheme is employed that allows jumping from 

one branch instruction to another in a single clock cycle. Prefetches are then, issued for 

the memory instructions linked to the looked-ahead branch instruction using a modified 

version of the stride prediction table.  In order to limit the impact of prefetching on 
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demand cache access behavior, Tango issues prefetch requests only during idle time slots 

and hence, it does not overload the cache ports. However, this system has certain 

limitations. Firstly, Tango is based on a modified stride prediction algorithm. Hence, the 

opportunity to prefetch is confined to those data structures that have uniform strided 

access patterns and hence, the general class of applications cannot be benefited from the 

same. Secondly, in Tango, once the lookahead process starts, it is allowed to proceed till 

a misprediction is detected in the main execution pipeline. Hence, owing to the imperfect 

branch prediction accuracies, the lookahead scheme is very likely to go deeper along a 

wrong path of execution and thereby, issue many useless prefetches.  

 

Table III.1 shows the hardware overhead and performance benefits of previous branch-

directed prefetcher implementations. 

 
Table III.1 Hardware overhead and performance benefits of prior branch-directed prefetchers 

 

Prefetcher Architecture Hardware Overhead Speedup over Baseline 

Branch-Directed and 
Stride Based 

Prefetcher[18] 

Inorder 
processor 

1024 entries in BTB, 
unlimited linked data entries 

per BTB entry 

Approximately 4% 
improvement in data 

cache hit rate 

Tango Prefetcher[19] 
4-wide 

superscalar 
processor 

Approximately 4.5KBytes Average speedup = 1.36 

 

 

In this thesis, we also employ a lookahead scheme to generate timely prefetches similar 

to that adopted in Tango. However, our system has certain advantages over the 

previously proposed branch-directed schemes including Tango. Our scheme enables 

prefetching by exploiting the correlation between the values of the source registers (that 

are used for memory address computation in basic blocks) at prior branch instructions 

and actual addresses generated by the corresponding memory instructions. This approach 

has many benefits over exploiting only memory instruction-based correlation. One such 
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benefit can be realized by examining the following code fragment.  

 

 

 

 

 

 

This program sequence is taken from the Leslie3d benchmark from the SPEC CPU 2k6 

benchmark suite. Since this is a loop-based code fragment, both the stride-based 

techniques (like Tango) and our current implementation can accurately prefetch for the 

same. But it is interesting to note that both instructions 1 and 2 manipulate the same 

register (r2) for their address computation, even if they are different instructions. In such 

a case, a stride-based prefetching scheme needs to save two separate entries for these 

two instructions (1 & 2) to accurately prefetch for them. But our register-index based 

prefetching scheme can save the same amount of information using a single entry 

corresponding to register index r2 (linked to the branch instruction, 5). Another 

advantage of our technique is that by exploiting branch-register correlating links, the 

dynamic runtime values of the registers can be used to enable prefetching for even those 

data that show irregular memory access patterns. But the previous methods can only take 

advantage of strided memory access patterns. 

 

Having discussed the previously proposed data prefetching strategies, we next provide 

some background about confidence estimation mechanisms. Such techniques help to 

estimate the confidence of a certain prediction and hence, are used to limit the degree of 

speculation. We also employ a similar technique in our current scheme to enhance the 

accuracy of our prefetcher by limiting prefetches along an incorrectly predicted path of 

execution. 
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III.2 Confidence Estimation Techniques 

 

Confidence estimation is a micro-architectural technique that allows control over 

speculation by predicting whether the speculation will be correct or not, before the actual 

outcome is established / known. Such techniques can be applied in areas like branch 

prediction, prefetching etc. For example, in the context of branch predictions, a 

confidence estimator can be used to classify the dynamic predictions made by a branch 

predictor into high confidence or low confidence categories.  

 

In our current work, we are more concerned about estimating the “execution path 

confidence”. Unlike branch confidence, a path confidence estimate measures the 

confidence that a predicted execution path will be actually followed. Such a path may 

span multiple basic blocks and hence, can be used to limit lookahead from proceeding 

deeper along a wrong path of execution. Many path confidence estimators have been 

proposed in the past. But mostly all such approaches are based on the idea that since the 

control flow instructions determine the execution path, branch confidence estimators can 

themselves, be used to derive the path confidence estimate fairly accurately. In this 

subsection, a few branch-based and path-based confidence estimators are reviewed, that 

have been proposed in literature.  

 

Jacobsen et al. proposed an accurate confidence estimation mechanism (called the JRS 

confidence estimator), aimed at controlling the branch-prediction based speculation 

[21]. It is based on the idea that a very small subset of static branches causes a majority 

of dynamic mis-predictions and that most mis-predictions occur in clusters. Hence, in 

their approach, it is attempted to identify those branches that were mis-predicted in the 

recent past and hence are likely to mis-predict again. To identify such branches, a table 

of 4-bit saturating counters called the miss distance calculating (MDC) table is used, 

whose index is derived by xoring the branch PC with the global branch history. Each 

time, a branch is correctly predicted the corresponding MDC entry gets incremented and 
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the counter is reset to zero in the event of a misprediction. So, the table entry essentially 

stores the number of times a particular branch was correctly predicted consecutively in 

the past. Higher this counter value, greater is the probability that the prediction would be 

correct another time. Grunwald et al. proposed an enhancement over the JRS predictor, 

wherein the global history that is used to index into the MDC table also includes the 

prediction for the current branch in question [22]. This predictor was also shown to be 

better than the original JRS proposal. 

 

Jimenez proposed a composite scheme to make better confidence estimates in relation to 

branch predictions [23].  For a tournament-based predictor, the author proposed to use a 

combination of the outputs of different confidence estimators, like the JRS, up/down and 

the branch predictor’s self-counters to estimate a composite confidence output. Finally, 

whether a prediction is deemed to be of high confidence or not depends on whether the 

aggregate confidence estimate is above a pre-determined threshold. A variation of this 

technique is used for branch confidence estimation in this thesis work. 

 

Among the efforts towards path confidence estimation, the approach adopted in many 

proposals is based on the idea that the higher the number of low-confidence branches 

along a path, higher is the likelihood of the path being incorrect. Along the same lines, 

the path confidence estimator records the count of the number of high-confidence and 

low-confidence branches encountered in a path and when the total number of low 

confidence branches increases beyond a certain threshold, the path is considered to be 

low-confident. However, this technique assumes that all low-confidence branches have 

the same misprediction rate and that all low confidence branches have lesser likelihood 

of being correct than all high-confidence ones, which may not be always true. 

 

In contrary to the above assumption, we observed that because the branch confidence 

estimators are themselves imperfect, the misprediction rates observed over the different 

confidence categories does not correlate with the confidence value exactly. This 
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observation is in line with the observation made by Malik et al. in [24]. In [24], the 

authors do not use the value of each branch confidence category as an estimate of its 

correctness. Instead, they estimate the confidence value of each category based on the 

dynamically observed misprediction rates of the branches that fall into the same. The 

path confidence estimate is then, calculated by multiplying the confidence estimates of 

all the branches included in that path. In the same work, the authors have also presented 

a hardware implementation that measures path confidence using only integer addition 

and subtraction. 
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CHAPTER IV 

DESIGN AND IMPLEMENTATION 

 

This chapter presents the complete design and implementation of our branch directed 

prefetcher. First, a general overview of the overall system architecture is provided in 

Subsection IV.1, which is followed by a detailed description of the individual system 

components in Subsection IV.2. Finally, the chapter concludes with a working example 

(in Subsection IV.3) explaining how the different components work together.  

 

IV.1 Overall System Architecture 

 

This subsection presents an overview of the modified system architecture and discusses 

how the different components are tied to each other.  

 

Figure IV.1 depicts the detailed architecture of a modified inorder core, showing the 

main execution pipeline as well as the additional hardware entities to realize the branch-

directed data prefetcher. The additional components are as follows:  

 

• Branch Trace Cache (BrTc) Table: It captures the dynamic control flow 

sequence of a program. It caches pairs of branch instruction PCs, where the 

second branch follows the first branch along a specific direction of execution of 

the first branch. This structure allows jumping from one basic block (defined by 

the entry branch instruction and its direction of execution) to the next in a single 

clock cycle. It thus, is used to implement the lookahead mechanism which plays 

a key role in making this prefetcher effective and timely.  
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Figure IV.1 Overall system architecture 

 

• Path Confidence Estimator: This component allows controlling the degree of 

lookahead across basic blocks, by keeping track of the confidence of the 

predicted execution path. As the prefetcher tries to lookahead across multiple 

basic blocks so as to issue prefetches for them, this unit runs in parallel and 

estimates the confidence that the predicted execution path will be actually 

followed in the main execution pipeline. Whenever the computed confidence 

falls below a certain threshold value, indicating greater likelihood of lookahead 

being along a wrong path, the lookahead process is terminated. Thus, this helps 

to avoid prefetching useless data, by preventing lookahead along a wrong path of 

execution. It is to note that this kind of control mechanism has not been explored 
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in any similar prior work. Note also that most of the latest branch predictors 

come with a built-in confidence prediction mechanism and hence, it makes the 

use of an additional confidence estimator unnecessary. 

 

• Branch-Register Table (BrReg Table): This is one of the most important 

structures towards the realization of this prefetcher. It captures the information 

that is used to generate prefetch addresses for future basic blocks. It links the 

memory instructions in any basic block to its immediately preceding branch 

instruction, by linking the source register indices of the memory instructions to 

their preceding branch instruction. 

 

• Prefetch-Filtering Mechanism: Given its aggressive nature, this prefetcher 

tends to issue a large number of prefetches, which may not all be useful to the 

processor, thereby causing cache pollution. Additionally, this might also lead to 

increased demand on the limited bandwidth, thereby affecting performance. 

Hence, certain filtering techniques are in place to control the number of useless 

prefetches issued by the prefetcher. 

 

As can be seen from the figure, the prefetching component is implemented as a separate 

pipeline referred to as the Auxiliary pipeline (A.P), parallel to the main execution 

pipeline. It monitors certain events of interest in the main pipeline for its functioning, but 

otherwise is completely non-intrusive to the actual program execution. Currently, A.P is 

implemented as a 3-stage pipeline where: a) the first stage is the “Basic-Block Look-

Ahead” stage that allows to jump from one basic block to the next and to achieve the 

lookahead component of the prefetching algorithm b) the second stage is the “Branch-

Register Table Lookup” stage that allows to expose memory instructions in each 

looked-ahead basic block & generates prefetch candidate addresses and c) the third stage 

is the “Prefetch Issue” stage that issues identified prefetch addresses to the prefetch 

queue.  
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As shown in the figure, the A.P is connected to the main pipeline through a 3-entry 

Decoded Branch Buffer (DBB). As branches get decoded in the main execution 

pipeline, they get inserted into the DBB (which operates in a FIFO fashion). A.P then, 

fetches these branch instruction PCs from the DBB and runs its lookahead algorithm to 

construct the future basic block trace, starting from the currently decoded branch. This is 

done by invoking the branch predictor and the BrTc structure repeatedly in the Basic-

Block Look-ahead stage. Additionally, the path confidence estimator ensures that 

prefetching is allowed only along a path that can be confidently predicted starting from 

the current branch instruction. As the lookahead process continues, the BrReg Table 

structure is then invoked to identify addresses for prefetch in each looked-ahead basic 

block by making use of the established branch-register links. This is done in the Branch-

Register Table Lookup stage of the auxiliary pipeline. The predicted addresses are 

passed then, through a prefetch filter to differentiate between the useful and the useless 

prefetches. Finally, the addresses, which are predicted to be useful, are queued up in the 

prefetch queue, so that they can be issued to the cache whenever there is available 

bandwidth and no demand requests are pending. In the current implementation, we 

support two modes of operation: 

 

a. Non-Loop Mode: In this mode, when a prefetch address is generated, all the 

blocks in the spatial region containing the predicted address are issued to the 

prefetch queue. This is done to ensure that the variability in the address values 

from the past architectural register values, as a result of prefetching significantly 

ahead of actual execution, is taken care of. This technique also allows exploiting 

spatial locality in the code, if any. 

b. Loop Mode: This mode is entered upon determination that a loop-based code is 

being executed in the main pipeline. In this mode, while being at one dynamic 

instance/iteration of a basic block, prefetches are issued for data that would be 

needed in a future iteration of the loop. In this mode, an entire spatial region 

around the predicted data is not prefetched. 
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By employing the lookahead mechanism, branch-directed prefetching aims to identify 

and eliminate as many misses as possible. But even after incorporating this prefetcher, if 

cache misses are encountered, then it implies that a prefetch was either not issued in a 

timely manner or was not accurate enough (owing to the chance of variability) or no 

prefetch was issued in the first place due to insufficient training of the structures. So, in 

such a case, the next cache line (the next-line prefetching approach [11]) following the 

miss block address is prefetched. The main benefit of using this combined approach is 

that the two techniques are complementary to each other and hence each scheme can 

compensate for the other's weakness, while taking advantage of the other's strengths. 

Next-line prefetching takes advantage of spatial locality in the application in the event of 

a miss. The branch-directed method can take advantage of spatial locality as long as it 

can predict the region of operation accurately. Additionally, branch-directed prefetching 

can take advantage of loop-based behavior and irregular accesses as well. So, 

theoretically, these two categories of prefetchers should work well together.  

 

Finally, it is important to note that the branch-directed prefetching approach does not 

require any extra ports on the cache. It also gives greater preference to demand requests 

over prefetch requests. Details about the operation of each individual component are 

discussed in next section. 

 

IV.2 System Components 

 

This subsection describes in detail, the implementation and working of each system 

component, that were touched upon in the previous section. 

 

IV.2.1 Branch Trace Cache 

 

The first hardware component to realize this prefetcher is the Branch Trace-Cache 

(BrTc). As discussed before, this structure helps to capture a trace of the control flow 
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sequence between basic blocks by capturing the dynamic sequence of execution of 

branch instructions and their direction of execution. This structure allows us to look 

ahead across multiple basic blocks, starting from one branch instruction. It is called 

Branch Trace Cache because its each entry stores a trace of the executed control flow 

sequence.  

 

The BrTc is implemented as a table that caches pairs of branch instructions, where the 

second branch follows the first branch along a particular direction of execution. The idea 

is that since a branch instruction and its direction of execution determines which basic 

block will get executed next in the program sequence, by exploiting the branch-trace 

cache hit information and the corresponding branch predictions, it becomes possible to 

jump from one basic block to another by skipping all the non-control-flow changing 

instructions in between. Branch Trace-Cache based lookahead approach relies on two 

typical program characteristics. Firstly, most instructions exhibit temporal locality. It 

implies that the dynamic sequences of instructions are very likely to repeat in future and 

hence, if they are cached, they can be used later to realize the lookahead mechanism. 

Secondly, branches are mostly biased towards one direction or the other. So, it is very 

likely that certain execution paths will be followed more frequently than others. Hence, 

maintaining a limited number of such paths should enable re-creation of entire program 

sequence (given by the combination of basic blocks) at a later point in time.  

 

The BrTc is indexed using the current branch PC together with its predicted direction of 

execution, and its entries cache the next branch tag field (corresponding to the branch 

instruction that would be encountered if the predicted path is followed, starting from the 

current branch PC) and a 1-bit field to indicate if the next branch is conditional or not. A 

typical entry of the BrTc is shown in Figure IV.2. A branch trace cache hit requires that 

(1) the current branch PC matches the saved PC tag and (2) the corresponding branch 

prediction matches the stored direction. In case of a hit, the next basic block of execution 

gets exposed, which can now be used to further the lookahead process. 
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Figure IV.2 Single Branch Trace Cache entry 

 

To enable filling the BrTc entries, two extra entities are needed, called the 

LastCommittedBranchInstruction (LCBI) register, which holds onto the last committed 

branch instruction in the main execution pipeline and the 

LastCommittedBranchDirection (LCBD) register, which holds onto the direction taken 

by the last committed branch instruction. As branch instructions commit in program 

order, they get linked to the branch tag saved in the LCBI register (along with the 

direction given by the LCBD register). To give an example of how the BrTc entries are 

filled and what they correspond to, consider the program sequence given in Figure IV.3 

(a). The corresponding control flow graph is depicted in Figure IV.3 (b). In this directed 

graph, each bubble corresponds to one basic-block of instructions (that have exactly one 

entry point and one exit point) and the diamonds correspond to the branch instructions 

which lead into the basic blocks. The relevant filled entries of the branch trace cache for 

this program sequence is shown in Figure IV.3 (c).   

 

The different design choices available for the BrTc's implementation are as follows: 

 

a. Table Update Policy - BrTc entries can be trained as branch instructions get 

decoded speculatively or they can be filled as branch instructions retire in program 

order. Although the table learning time will be shorter in the first case, we choose the 

commit-time update mechanism in our current implementation to avoid pollution of 

the table by mispredicted and wrong path branches.  

b. Organization – BrTc can be organized as a direct-mapped or a set-associative 

structure. Support can also be included for path associativity, which would allow 

simultaneous caching of multiple paths emanating from the same branch PC. 

Enabling support for path associativity would reduce thrashing between those 
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branch-pairs that start at the same address, but proceed in different directions. In our 

current proposal, we have implemented a direct-mapped BrTc structure, with support 

included for path associativity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.3. Figure showing: (a) A program sequence; (b) Control Flow Graph of the  program 

sequence in (a); (c) Branch Trace Cache filled state 

 

Finally, it is to note that even if BrTc was discussed as a standalone table so far, but 

given its similarity to a Branch Target Buffer (BTB) structure, BrTc can be implemented 
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as an extension to the BTB. This will save the extra tag space to save the indexing 

branch instruction PC, used by the current implementation. Also, instead of saving the 

next branch instruction tag completely, a pointer to the next branch's position in the table 

[19] can be saved. These optimizations could be attempted to reduce the hardware 

overhead of the BrTc Table. 

 

IV.2.2 Path Confidence Estimator 

 

As discussed before, our lookahead logic combines the branch prediction information 

together with the hit information from the Branch Trace-Cache to determine a likely path 

of execution. But after a lookahead is initiated, some mechanism is needed to ensure that 

lookahead keeps proceeding along the correct path. Such a terminating condition for the 

lookahead process can be realized in two ways: a) the first scheme allows lookahead to 

proceed as deep as possible and terminates it only when a misprediction is detected in 

the main execution pipeline. However if the branch prediction accuracy is not very high, 

then it is quite likely that lookahead would proceed deeper along a wrong path fairly 

often. If this is not limited, a lot of data may be prefetched along a wrong path, which 

may lead to cache pollution and unnecessary bus bandwidth consumption. b) The second 

scheme employs a confidence estimation technique that limits looking ahead along low-

confidence paths. This approach is conservative in nature and hence may limit 

prefetching opportunity in some cases, but it would control the cache pollution resulting 

from wrong path prefetching. Hence in this thesis work, the second approach is adopted 

i.e., prefetching is allowed only along those paths that can be confidently predicted 

starting from the current execution instance.  

 

To estimate the confidence in the prediction of the execution path, we make use of the 

fact that any program contains some non-control-flow changing (ALU or memory or IO 

etc.) instructions and some control-flow changing instructions and that, the path 

followed by the program at any time depends on the direction of execution of the 



 33 

constituent control-flow instructions. Therefore, to estimate the confidence of any path, 

it is reasonable enough to consider the confidence estimates of the constituent branch 

predictions alone.  

 

Figure IV.4  Composite Branch Confidence Estimator 

 

To estimate branch confidence, a composite confidence estimator is employed (as 

suggested in [23]) that combines the JRS, up-down and self-counter based confidence 

estimators. This is shown schematically in Figure IV.4. The JRS and up-down estimators 

are arranged as a table of saturating counters that get indexed with the hash of the branch 

PC and the global branch history buffer. The corresponding saturating counters are 

incremented when a branch prediction turns out to be correct and decremented in the 

event of a misprediction. Therefore, to estimate the confidence of a branch prediction at 

any point in time, these tables is looked up using a hash of the branch PC and the global 

branch history buffer and the counter values are recorded. The total raw confidence 

value is calculated as the sum of the JRS counter value, the up-down counter and the 

self-counter value. We term each such raw confidence output as a “confidence bucket”, 

because these values help to segregate different branch instructions into different buckets 

according to their predictability. In order to convert this raw confidence output into a 

confidence estimate, there are two possible options: 
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One possibility is to use a static pre-determined value for each confidence bucket. This is 

based on the assumption that all low-confidence branches (having low bucket values) 

have the same misprediction rates while, all the high-confidence ones (those having 

higher bucket values) are more likely to be correct. However, during our experiments, 

we observed that the misprediction rate of each confidence bucket does not  

Figure IV.5. Graphs showing the variability in branch misprediction rates across the 37 confidence 

buckets for a set of SPEC CPU2006 benchmarks 
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correlate to its bucket value directly and that this trend varies with program phase as well 

as the application. The situation is depicted more clearly in Figure IV.5. These graphs 

show the misprediction rates observed across the 37 confidence buckets (JRS + 

Up/Down + Saturating) over a 300-million instruction run for a set of SPEC2k6 

benchmarks. Misprediction rate of each bucket is calculated as the number of 

mispredicted branches that were predicted with that confidence value divided by the 

total number of branches predicted with that confidence value. We can see from the 

graph that many confidence buckets, which have a lower bucket number, have a better 

misprediction rate than many others with a higher bucket number. Similar observation 

was also recorded in [24].  

 

This observation essentially, rules out the possibility of selecting a common threshold 

for each bucket that will hold well across all the applications and during each program 

phase. Hence, to take into account the variability observed across the confidence 

buckets, the associated confidence values are determined dynamically in our work, by 

monitoring the misprediction rate of each bucket. This approach is similar to that 

suggested in [24] except that a more fine-grained stratifier is used to filter out greater 

number of mispredicting branches. In this approach, counters are maintained per bucket 

to count the number of committed and squashed branches belonging to that category. 

Again, unlike [24], the confidence value of each bucket is maintained using a running 

estimate. Basically, the program run is divided into phases, where each phase consists of 

about 1/2 million branch predictions. In any program phase, the misprediction rate of 

each bucket is computed as the number of mispredictions falling into that category over 

the total number of predictions from that category. Finally, at the end of the program 

phase, the confidence value of each bucket is re-calculated as:  

 
ConfidenceValue = ½ * (ConfidenceValAtTheBeginningOfInterval + ConfidenceValDuringInterval) 

 

This running estimate (calculated as described above) gives more weightage to the 

misprediction rates in the latest interval, but allows for gradual changes by taking into 
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account the older estimates as well. Finally, the path confidence estimate is calculated as 

the gross product of the component branch confidence estimates. 

 
Path Confidence = Π (Individual Branch Confidence values) 

 

It is to note that the impact of incorporating more simplified confidence estimators has 

not been explored in this work. Given the other pollution controlling measures adopted 

in this thesis (like prefetch filtering), we think that more simplifying assumptions may be 

taken here without impacting performance much. Additionally, modern branch 

predictors come with their own self-confidence estimators and hence, do not require this 

separate entity to realize the branch-directed data prefetcher.  

 

IV.2.3 Branch-Register Table 

 

The third hardware component to realize this prefetcher is the Branch-Register (BrReg) 

table. This table is used to establish the links between the register indices that are used 

for memory address computation (source registers of memory instructions) in a basic 

block and their preceding branch instruction. This helps to generate data addresses for 

prefetching. 

The BrReg Table is indexed using the Branch PC tag and the individual entries contain 

the registers that are linked to the corresponding branch PC and certain other fields, 

which are used for generating prefetch addresses. In its simplest form, a typical BrReg 

Entry looks as shown in Figure IV.6: 

Figure IV.6 Single Branch-Register Table entry (Basic implementation) 
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where, 

• Branch Tag field contains the Branch PC tag. 

• RegIdx – This multi entry field holds the register indices, which appear as 

source registers for address generation in the basic block following the 

branch PC (given by Branch Tag field). 

• RegVal – It holds the most recent value of the register, based on which a 

prefetch was generated during the last lookahead cycle. 

• PF Bit - This is a 1-bit field and is used to distinguish between the prefetched 

and the non-prefetched entries. This field also helps to prevent prefetching 

for those basic blocks, which have already been prefetched for. 

 

The link between memory and branch instructions gets created as the different control 

and memory instructions commit in program order. To establish such a link, a register 

called the LastCommittedBranchInstruction (LCBI) is used, which holds the last 

committed branch instruction in the main execution pipeline. As control instructions 

commit, they overwrite the existing content of the LCBI with their own PC. Hence, 

when memory instructions commit, they get associated with the Branch, whose PC is 

indicated by the LCBI register. Such links are cached in the BrReg Table. For example, 

for the code fragment given in Figure IV.3 (a), the corresponding learned state of the 

BrReg Table is given in Figure IV.7. 

 

 

 

 

 

Figure IV.7 Snapshot of the trained Branch-Register Table 
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After getting trained, the BrReg table can be used to guide prefetching. This is realized 

as follows: To issue prefetches during the lookahead process, the BrReg table is looked 

up using the predicted branch PC. In case the entry is found in the table, the most recent 

value of the linked registers is checked in the separate register file and a prefetch is 

issued for an entire region (512 Byte region size) around this predicted register value. 

This register value is then stored in the RegVal field of the entry and the corresponding 

PF bit is set to 1. One important thing to note is that since this approach tries to 

aggressively lookahead from every decoded branch and issue prefetches for all the basic 

blocks that can be looked-ahead from the same, a situation may arise when 

consecutively decoded branches try to prefetch for the same basic blocks. While this 

situation is desirable in case more accurate prefetch predictions are available, but it is 

unnecessary when the prefetch estimate still falls into the same spatial region as the last 

prefetch. To avoid this situation of prefetching the same region multiple times, the 

following strategy is used:  

 

When a prefetch is to be issued for a basic block, the corresponding BrReg entry 

(essentially the basic block) can be in two possible states: 

 

1. The block is not prefetched yet (PF bit = 0), in which case it becomes a potential 

prefetch candidate immediately. 

2. The block has been prefetched earlier (PF bit = 1), potentially because of a look 

ahead operation starting from an older branch instruction. In this case, the 

decision of whether to issue a prefetch or not depends on the availability of a 

better prediction (a different spatial region prediction). This case will arise when 

certain register defining instructions would have modified the value of the 

registers from the time the last prefetch was issued for this basic block.  

 

Note that the above discussion described the most basic implementation of the BrReg 

Table. The BrReg Table can be extended to contain other information (apart from the 
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branch-register links) that will enable more accurate prefetching by taking advantage of 

different program characteristics. We discuss two such variations in this subsection, 

while we leave the rest for Chapter VI. Note that in all the proposed variations, the 

branch-register link-creation process remains the same as described previously in this 

subsection.  

 

1. Offset-Based Technique 

 

The first optimization is the result of our observation that even though, in many 

instances, the value of the linked register (which is assumed to be the prefetch 

address) at a previous branch location does not fall into the same region as the 

actual memory address (the static experiment also suggested an imperfect 

correlation), it still falls within more or less a fixed offset from it. Moreover, this 

offset value tends to be stable over the different dynamic run time instances of 

the same basic blocks. This kind of behavior may be observed because of the 

different addressing modes supported by the ISA (like the displacement-based 

addressing mode) or predictable updates taking place to the register's value 

within the lookahead window. For example, let us consider the code fragment as 

shown below: 

 

 

 

In this code example, both the values of registers R2 and R1 at Br 1 (SeqNum 1) 

would not exactly match with the memory addresses generated at SeqNum 3 and 

4 respectively. This is because SeqNum 3 is preceded by an instruction that re-

defines the value of R2. Similarly, SeqNum 4 uses the displacement addressing 

mode and hence, the value of R1 at Br 1 would be different from the address 
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generated at SeqNum 4. But, it is interesting to observe that in almost all 

dynamic instances of this basic block, the value of R2 at the branch position will 

be offset by 628 as compared to the address generated by SeqNum 3. And the 

value of R1 will similarly be offset by a value equal to 512. To take advantage of 

such cases, we add another field to the Branch-Register table called the “Offset” 

field. So, the modified BrReg table looks as shown in Figure IV.8: 

 

 

Figure IV.8 Single Branch-Register Table entry (Offset implementation) 

In this new implementation, each entry gets extended to include two additional 

fields: - Offset - This field holds the difference between the register value at the 

preceding branch instruction and the actual address generated at the memory 

instruction, using this register as the source index.  

• SeqNum field - This field holds the last few bits of the sequence number 

of the branch instruction which had initiated the look-ahead process. This 

field ensures that the offsets are set by only those instructions which have 

a greater sequence number than the branch in question, i.e., it occurs later 

in program order.  

The flow chart explaining the procedure to generate prefetch addresses by using 

the modified arrangement is shown in Figure IV.9 (a). To generate data addresses 

for prefetch, the look-ahead Branch PC is used as a tag to look-up into the BrReg 

table. Prefetching can only be initiated if the entry is found and is in an 

unprefetched state or if a better prediction is available for an entry that is already 

in the prefetched state. The address for prefetching is calculated as the sum of the 

actual register values and the offset field (if any). Note that a prefetch is issued to 
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an entire region around the address computed above. The entry's corresponding 

PF bit is also set to 1 to avoid future prefetches to the same basic block and the 

generated address value is saved in the RegVal field.  

 

 

Figure IV.9. Flow Chart depicting (a) Process to use offset-field for prefetching; (b) Process to 

update the offset-field 

 

The flow chart depicting the process followed to learn the offset values is shown in   

Figure IV.9 (b). As discussed before, the offset holds the difference between the 

actual address generated by memory instructions and the values of the corresponding 
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registers (used for those address computation) at a prior branch instruction. Thus, the 

key to learn offsets is to calculate them as instructions in the basic block get 

executed. Whenever a memory instruction executes in the main execution pipeline, it 

sends its generated address and its previous branch PC to the BrReg Table. The table 

gets looked up using the branch PC and in case the corresponding block is found in a 

prefetched state, it updates the corresponding offset values by computing the 

difference between the currently generated data address and the stored value in the 

RegVal field. After all the instructions in a basic block get executed, the PF bit is 

reset to 0, indicating that the required offset values were recorded for that entry and 

that the entry is ready to issue a fresh round of prefetch.  

 

2. Loop-based Technique 

 

This optimization was adopted to take advantage of loop-based behavior of 

applications. Many applications spend significant portion of their execution time 

executing loop-based codes. To efficiently and accurately prefetch for loops, our 

prefetching algorithm was modified to be able to identify loops using a hardware-

only approach and generate prefetch addresses for the future iterations. The required 

modifications to the BrReg table entry are as shown in Figure IV.10:  

 

 

          Figure IV.10 Single Branch-Register Table entry (Loop implementation) 

 

Each entry has been extended to contain 4 additional fields: 

 

• Delta – This field holds the difference between the generated memory 

address values over consecutive execution instances of the same 
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instruction. It is analogous to the concept of stride, as used in traditional 

stride-based prefetching mechanisms [12], [20].  

• Delta-Valid – This 1-bit field is used to find out if the instruction (to 

which the register value corresponds in the basic block) has been assigned 

a valid delta value or not. This bit will be set for those instructions which 

have been identified to be looping in some previous execution instances.  

• Delta-is-Changing – This 1-bit field allows hardware identification of 

loops, as will be explained later in this chapter and aids in setting of the 

appropriate delta value. 

•  Loop-Counter – This field is used to monitor the iteration count of the 

loop in the lookahead mode. This allows accurate prefetching for data, to 

be used in a future iteration of the loop.  

 

The basic operation remains the same as described with the previous 

implementations; however certain special measures are taken to ensure that the 

loop-based behavior is essentially captured and exploited in hardware. As our 

look-ahead scheme is capable of jumping across basic blocks in a single clock 

cycle, loop identification up to a certain nesting depth becomes fairly simple. For 

example, if there is a loop in the code given as follows: 

 

 

 

 

 

Given that the path confidence is high, the look ahead procedure should yield the 

following sequence of branch addresses: - br1(Taken) → br1(Taken) → 

br1(Taken), the depth being determined by either when the confidence falls 

below a threshold or the maximum look ahead degree is reached. The loop-

detection algorithm capitalizes on this idea that if during one complete look 
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ahead process, the same branch is visited more than once, it implies that a loop is 

most likely going to get witnessed. However, this technique implies that 

identification of loops with nesting depth greater than the maximum allowed look 

ahead degree is infeasible. Keeping this in mind, we describe the algorithm to 

deal with loop-based codes in the following paragraphs.  

 

To be able to issue prefetches for a future iteration of any loop, three pieces of 

information are required: a) One is the Offset value, which captures the 

difference between the register values at a prior branch instruction and the actual 

generated address value. b) Second is the Delta value, which captures the 

difference between the register values over two consecutive iterations of the 

loop. c) Third is the loop-iteration count. If the above information is available, 

prefetch addresses for future iterations of the currently executing loop can be 

calculated at a branch-instruction as follows: 

 
Prefetch Address = [Register Value] + Offset + (Loop-Counter * Delta) 

 

Offset value calculation is relatively straightforward. It gets computed as 

memory instructions in a block get executed by computing the absolute 

difference between the generated address value and the value of the register, as 

saved in the RegVal field. Delta value calculation is slightly more involved. 

Delta value corresponds to the difference in the generated address values over 

consecutive iterations, and so, to estimate Delta, the values of the corresponding 

registers need to be monitored over consecutive iterations. This requires some 

changes to the algorithm used in previous implementations. In the only-offset 

case, as a basic block of instructions finished execution, the corresponding PF bit 

in the BrReg Table was reset to 0 to allow new prefetches to be issued for the 

basic block, at a future execution instance of the same. In this case, as a basic 

block ends, in addition to resetting the PF bit, the Loop_Counter value is also 

monitored. A value greater than 0 implies that this entry was visited more than 
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once during the current look ahead process and is hence, likely to be a part of a 

looping sequence. In this case, the Delta-is-changing field is set to 1 and the most 

recent value of the linked-registers is saved in the RegVal field. This step is done 

to allow setting of the delta value, the next time another dynamic instance of this 

basic block ends.   

 

The flow chart depicting the process followed to generate prefetch addresses in 

the loop-mode is shown in Figure IV.11.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.11 Flowchart describing the process to generate prefetch addresses in the loop-mode 
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When a prefetch is going to be initiated for a particular basic block (identified by the 

entry branch instruction), two different situations can arise depending upon the 

prefetched state of that block: 

 

 The block is in a prefetched state (PF bit = 1). This situation may arise in the 

following two cases: a) if this block was looked ahead starting from an older 

branch instruction, b) if this block was visited sometime before during the 

current look ahead process itself (Note that this condition is pertinent to loop-

handling).  

 

To distinguish between the above two cases, we make use of the seqNum 

field. As mentioned before, this field contains the sequence number of the 

branch instruction that had initiated the lookahead process and hence had led 

to the prefetch of the block in question. If a BrReg Table lookup request is 

generated for a branch instruction, whose corresponding entry is in a 

“Prefetched State”, we compare the seqNum field saved in the entry with the 

SeqNum of the current look-ahead process.  

 

• In case they are equal, it implies that this basic block is being visited 

again during the same look-ahead cycle. This satisfies our condition 

for identification of loops. In this case, we do not update the value in 

the RegVal field to allow proper updates of the offset and delta fields 

(when this basic block instance ends). But so as not to lose 

opportunity for prefetch, we allow prefetches to be generated for this 

basic-block if a better prediction is available. We also increment the 

Loop Counter so that the next look-ahead into the same entry can 

prefetch for a different iteration. Note that in this mode, we do not 

prefetch an entire spatial region, but only the requested address.  
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• If the SeqNum fields do not match, it implies that this basic block was 

mostly looked ahead from an older branch instruction. Here, we allow 

prefetches to be issued in the event of availability of a different region 

prediction and we update the RegVal field and the SeqNum field to 

the latest values. Note that, in this case prefetches are issued for the 

entire spatial region as loop-behavior could not be established. 

 

 The block is not prefetched (PF bit = 0). This state may arise if the block was 

never prefetched before or was prefetched and thereafter, cleared upon the 

completion of execution of the basic block. As we discussed before, if a loop 

was identified at the end of execution of some basic block, its PF bit would 

be reset to 0, but its Delta-is-Changing bit would be set to 1 (to ensure that 

upon completion of the basic block again, the delta values of the entry can be 

recorded). So, the required operation depends on the value of the Delta-is-

Changing bit as follows: 

 

• Delta-is-Changing = 0: This implies that if at all the block was 

prefetched some time back, still no loop behavior was observed for it. 

This is the normal execution case. Hence, we can issue a prefetch for 

a spatial region, given by the register value plus the recorded offset (if 

any). 

• Delta-is-Changing = 1: In this case, to avoid prefetching opportunity, 

we issue prefetches only if we have some better prediction at hand. 

But we do not update the RegValue field as we need to record the 

Delta value with respect to the last iteration, when the basic block 

finishes execution this time.  
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IV.2.4 Prefetch-filtering Mechanisms 

 

Aggressive prefetching mechanisms tend to bring in a lot of data into the cache, with an 

objective of reducing the number of cache misses. But if the prefetcher's accuracy is not 

high, the prefetcher might bring into the cache a lot of data that will not be needed by the 

processor before being evicted. Such data would still evict other potentially useful data 

from the cache and may deteriorate performance. Such a phenomenon is termed as cache 

pollution. Ineffective prefetches will also impact the bus bandwidth utilization, leading 

to further degradation in performance. So, it becomes important to control the number of 

useless prefetches and bring in only those data that have a higher likelihood of being 

used by the processor. This becomes even more important for systems which prefetch 

directly into the L1 cache, as its size is typically small and hence, it is not much tolerant 

of pollution.  

 

As discussed before, our prefetcher tries to aggressively look ahead across basic blocks 

and exposes memory instructions in the same. But even after using the offset and loop-

based enhancements discussed before, the prefetches issued for many basic blocks ahead 

may not be highly accurate. To not to lose opportunity, we therefore allow prefetches to 

be issued for already-prefetched basic blocks if better and more accurate predictions are 

available as program execution moves ahead. But the inaccurate prefetches that were 

identified in the Auxiliary pipeline (A.P) earlier may be detrimental to performance. To 

reduce the impact of such inaccurate and useless prefetches, we employ a few prefetch 

filtering techniques that scan the stream of prefetch requests sent out by the A.P and 

filter out the potentially useless prefetch requests. This section discusses in detail the 

filtering strategies that have been implemented in our current work. It is to note that not 

all of these techniques are a part of the final implementation, but are discussed here for 

completeness sake. 
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1. Region-filtering FIFO Buffer: As has been discussed, in the normal mode of 

execution, we prefetch an entire spatial region around a predicted candidate 

address. So, as a basic filtering strategy, we attempt to avoid prefetching for the 

same spatial regions in close succession. In order to achieve this, we employ a 3-

entry FIFO buffer that sits in between the A.P and the prefetch queue and caches 

the 3 most recently prefetched spatial region addresses. When a request is issued 

in the A.P to prefetch a region of data, this structure is queried to check if that 

region has already been prefetched recently. In case the corresponding region is 

found in this buffer, the prefetch request gets discarded. Otherwise, the addresses 

are allowed to be queued up for prefetching. This filter is a part of our final 

implementation. 

 

2. Region Based Filter: This filter determines the usefulness of predicting an entire 

region around a predicted data address. This is important because if a spatial 

region is such that only a few blocks in that region tend to get used, then 

prefetching the whole region upon a request would generate a lot of useless 

prefetches. Hence, to avoid this, we maintain a table of 3-bit saturating counters 

that gets indexed using a strong hash of the region address.  The entry counters 

are incremented whenever a prefetch to a block in the corresponding region turns 

out to be useful or there is a demand miss to a block in that region and gets 

decremented in the event of a useless prefetch. Hence, at any time, a high counter 

value implies that the region incurs a lot of demand misses or most of the 

prefetches issued to this region tend to be useful and vice versa. Whenever a 

prefetch request for a region of data is issued, this table is queried using the 

hashed region address. If the corresponding counter value is higher than a pre-set 

threshold, then a region prefetch is initiated. Else the prefetch request gets 

discarded.  
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By employing this technique, the total number of useless prefetches that are 

issued gets significantly reduced and performance gets improved due to reduced 

pollution. However, this technique filters out prefetch requests for even those 

regions, which have sparse but very predictable access patterns. This is because 

this approach cannot distinguish between the different execution phase and also, 

the different instructions accessing that region.  

 

3. Path-trace Based Prefetch Filter: To overcome the issues associated with the 

above approach, we propose another filtering technique that takes into account 

the program phase and the context of the prefetch to differentiate between the 

useful and the useless prefetches. Our look-ahead mechanism allows us to look-

ahead from a branch instruction to as many basic blocks ahead as possible, till 

the path confidence falls below a certain threshold. But the addresses generated 

so many basic blocks ahead many not always be accurate. So, we employ a path-

based index to assess the likelihood of correctness of the generated prefetches. 

But, again the basic blocks may contain a varied set of memory instructions 

which operate on different data structures and generate different access patterns 

and hence, it would be incorrect to assume that all such instructions would 

exhibit similar behavior in the lookahead process. While many of these 

instructions may not be predictable at very old branches, many others might be. 

So, it is accurate to assume that none of the instructions in a basic block would 

have a predictable pattern from many basic blocks before. Hence, in addition to a 

path-based trace, we also take into account the individual instruction (captured in 

the source register index) behavior in order to categorize prefetches into useful or 

useless categories. 

 

This filter is arranged as a prediction table, where the index is obtained by 

hashing the path-based trace and the register index (used as a source register in 

the corresponding memory instruction. Our prediction table consists of rows of 
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3-bit counters where, each counter corresponds to a block in the spatial region. 

Considering a 512 Byte spatial region and a 64 byte cache block size, in the 

current implementation, each row consists of eight 3-bit saturating counters. A 

high counter value implies that, when this sequence of branches had made a 

prefetch prediction last time for this memory instruction (represented by the 

hashed register index), the corresponding prefetches had turned out to be useful 

or vice versa. Thus, lower the counter value, higher is the probability that the 

block would not be useful to the processor. We define a “critical block offset” as 

the offset of the cache block (in the spatial region) that was predicted in the A.P 

using the register and the offset values. Patterns of useful or useless prefetches 

are learned with respect to the critical block offset. We also employ rotation 

about the critical block offset because it will take into the consideration the 

variable alignment of the data structures in a spatial region.  

 

This scheme requires keeping the hash of the path and the register index that 

initiated the prefetch, together with each block in the cache tag array. So, 

whenever there is a demand request for a prefetched line, this index can be used 

to lookup the filter table and increment the saturating counter corresponding to 

that cache block. Similarly, in the event of a useless prefetch, the corresponding 

counter value of the entry can be decremented.  

 

Finally, these learned patterns are used to guide prefetching as follows: - 

Whenever a prefetch request is issued from the A.P, the filter table is looked up 

using the hash of the path trace and the register index. Then, the selected row of 

counters gets translated into a useful prefetch-vector (a string of 1’s and 0’s to 

differentiate the useful and useless blocks in a spatial region), by comparing the 

individual counter values against a pre-determined threshold. This vector is then 

rotated about the critical block offset and is used to generate the addresses of the 

blocks that should be prefetched in that spatial region.  
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4. Prefetch Queue Based Filter: As our prefetcher tries to lookahead and prefetch 

for future basic blocks, a situation may arise when the prefetch candidates remain 

queued in the prefetch queue while the main pipeline starts executing the 

corresponding basic blocks. This may happen fairly often as in the current 

system, demand requests are given higher preference over prefetched requests 

and hence, prefetched requests get issued to the cache only when the cache tag 

ports are unused and the bus is idle. In such cases, if these prefetch requests are 

allowed to remain queued and are issued later when the opportunity arises, it may 

lead to issuing of significant number of unnecessary prefetches. It might also 

delay the issue of prefetches that are predicted for more recent basic blocks. To 

avoid such a situation, we employ a prefetch-queue cleanup mechanism in which 

we maintain certain state information per prefetch request entry to help remove 

those prefetch requests that are queued for older basic blocks and make room for 

new ones.  We maintain the following information per prefetch request in the 

queue: - a) a 5-bit field to hold the last five bits of the program counter (PC) of 

the immediately preceding branch instruction, as an indicator of the basic block 

for which that prefetch was issued; b) a 1-bit field to indicate if the prefetch 

address was generated as a result of the branch-lookahead process. The modified 

prefetch queue is shown in Figure IV.12. 

 

 

 

Figure IV.12 Modified Prefetch-Queue 

 

The filtering process is explained in Figure IV.12. It is assumed in this example 

that each spatial region consists of two cache blocks. Figure IV.13 (a) depicts the 

process followed when Br 1 gets decoded: - A lookahead process is initiated that 
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issues prefetches for the immediately following basic block BB1 (see A1 and A2 

addresses are queued up) and BB2, the basic block following Br 2 (see B1 and 

B2 addresses are queued up). The corresponding PC field gets filled with last few 

bits of Br 1 and Br 2 respectively. As execution continues and basic block BB1 

retires, the address blocks that were identified for prefetch for BB 1, but are still 

queued in the prefetch queue get filtered out. This process is depicted in part (b) 

of the figure. This filter is a part of our final implementation. 
 

 

Figure IV.13 Example of the working of Prefetch-Queue based filtering 

 

IV.3 Working Example 

 
This section describes a detailed example of how the different structures described in the 

previous sections, work together to realize accurate and timely data prefetching. The 

working will be explained with the respect to program sequence given in Figure IV.3 (a). 

This program sequence consists of 4 basic-blocks of instructions (numbered 1 through 

4). We shall start by discussing the procedure adopted to train the predictor structures. 

Thereafter, we shall discuss the procedure to make use of the trained state to issue data 

prefetches. 

 

The learning phase, in which the table entries get filled works as described below: 

Assume that predictor tables are not trained at the start of execution of this program 
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sequence. This state is depicted in Figure IV.14 (a). The process is explained with 

respect to the first basic block of the program sequence. Note that in this state, no 

branch-directed prefetching can be initiated. We employ commit-time updates of the 

predictor tables to avoid pollution due to speculative entries. 
 

Figure IV.14 Working example showing update of Branch Trace Cache and creation of Branch-

Register links 

 

As the program execution starts and control reaches a stage when the instruction 

corresponding to SeqNum 1 is ready to retire, the LCBI register is loaded with the PC of 
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Br 1 and the LCBD register is loaded with Br 1’s direction of execution (Not Taken 

here). This procedure is adopted to allow subsequent memory instructions to be linked to 

their preceding branch instruction and is shown in Figure IV.14 (b). As program 

execution proceeds further and SeqNum 2 (a memory instruction) retires, it gets linked 

to the branch Br 1, which led to the execution of this basic block and is held in the LCBI 

register. This link is shown in the BrReg Table in Figure IV.14 (c), where Br1 now gets 

associated with register R2 (the source register used for address computation in SeqNum 

2). Similarly, when SeqNum 4 commits, it also gets linked to Br 1 in a similar manner 

and the BrReg table is updated to contain a link between Br 1 and register R4 (Figure 

IV.14 (c)). The above description explains how the branch-register links are created in 

the BrReg Table. Proceeding likewise, as SeqNum 6 (the next branch instruction in the 

program flow) commits, it finds that currently, the LCBI register holds the PC of Br 1 

and LCBD register holds the last direction of execution of Br 1. At this stage, it can be 

inferred that if Br 1 executes in the direction given by the LCBD register, Br 2 would be 

the next branch to be encountered along that path (this argument is not applicable for 

branches with multiple target sites). This information is sufficient to re-create the 

execution path starting from Br 1, if it is encountered again in the future. This 

information is saved in the BrTc, as a link between Br 1 and Br 2 along the not-taken 

path of execution. This is shown in Figure IV.14 (d). Similarly, as the basic blocks 2, 3 

and 4 complete execution, the rest of the entries of BrReg Table and the BrTc get 

updated. The final state of the predictor tables after the program sequence gets executed 

is shown in Figure IV.15. 
 

 

Figure IV.15 Trained State of prediction tables, corresponding to the program sequence given in Figure 

IV.3 (a) 
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Next, we shall discuss how the trained state is used to generate prefetch candidates. But 

before moving on, it is important to note that the learning of the structures and the usage 

of the learned state to issue prefetches happens continuously over the program run, 

though to initiate prefetching, at least some part of the structures must have been 

learned.  

 

Assume that the program execution continues and at a later cycle, instruction Br 1 is 

encountered again. As Br 1 gets decoded, it gets fed into the Decoded Branch Buffer, 

from where it is fetched by the Auxiliary Pipeline (A.P). Thereafter, the A.P initiates the 

lookahead procedure, starting from Br 1. Figure IV.16 describes the different steps 

involved in the lookahead process in a typical case and the following paragraph explains 

the steps involved as well.  

 

Cycle BrReg Table 
Lookup Index 

Branch Trace 
Cache 

Lookup 
Index 

Branch Trace Cache 
Lookup Result 

BrReg Table 
Lookup Result 

Prefetch Address 
Generation Stage 

Result 

C - Br 1 – NT 
Direction = NT,  

High Confidence,  
Next Branch = Br 2 

- - 

C+1 Br 1 Br 2 – NT 
Direction = NT, 

 High Confidence, 
 Next Branch = Br 3 

Reg Val[R2] 
Reg Val[R4] - 

C+2 Br 2 Br 3 – NT 
Direction = NT,  

High Confidence, 
 Next Branch = Br 4 

Reg Val[R1] 
Region Addresses 

[R2] and [R4] 
queued 

C+3 Br 3 Br 4 – T Direction = T, 
 Low Confidence Reg Val[R29] Region Address 

[R1] queued 

C+4     Region Address 
[R29] queued 

 

Figure IV.16 Working example showing the prefetch address generation process 

 

At cycle C, the BrTc is looked up using the Branch Br1 and its predicted direction of 

execution. In case the gross path confidence is above a threshold, the lookahead is 

allowed to proceed. Thus at the end of the cycle C, the BrTc yields us the next branch 

likely to occur along the path, i.e., Br 2. In cycle C+1, the BrReg Table is looked up 
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using the tag Br 1, in order to expose the memory instructions in basic block following 

Br 1. A lookup of the BrRegTable using Br 1 tag returns that R1 & R4 are linked to it 

and that this block has not been prefetched yet (given by the PF Bit being 0). At this 

stage, the basic block (BB 1) is marked as prefetched and the values of R1 and R4 

(obtained by looking up the separate register file) are stored in the RegVal field of the 

entry and the corresponding PF bit is set to 1. In the meantime, Br 2 continues the look-

ahead process by invoking the Branch predictor and the BrTc and Branch Br3 along the 

Not-taken path is identified with high confidence. In the next cycle, the data addresses 

generated for basic block BB1 are sent to the prefetcher to be queued after passing 

through the prefetch filter. At the same time, a lookup of the BrRegTable using Br 2 tag 

is initiated, that exposes the Register Index R1 and also yields that BB2 block has not 

been prefetched yet (given by the PF Bit being 0). At this stage, the basic block (BB 2) is 

marked as prefetched and the value of Register R1 (obtained by looking up the separate 

register file) is stored in the RegVal field of the entry. In the meantime, in the first 

pipeline stage, Br 3 looks ahead and predicts that Br 4 will be the next branch along its 

predicted direction of execution. This process keeps continuing till the predicted path's 

gross confidence falls below a certain pre-set threshold or else, the maximum allowable 

degree of look-ahead is reached. Like in this example, in cycle C + 4, Br 4 is predicted 

with a confidence value that makes the path confidence fall below the threshold. This 

terminates the look-ahead process. The final state of the tables after the lookahead 

process and prefetching is complete for this program sequence is shown in Figure IV.17. 

 

 

Figure IV.17 Snapshot of the predictor tables at the end of a lookahead phase 
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As the instructions in the basic block start executing, they update the offset and delta 

fields of the prefetched entries in the BrReg table. A typical example is shown 

schematically in Figure IV.18.  

Figure IV.18 Working example showing Branch-Register Table learning process 
 

 

After Br 1 gets decoded (which invokes the lookahead mechanism in the Auxiliary 

pipeline), execution continues normally in the main execution pipeline. The results of 

the actual execution are used to update the values of “Offset” and “Delta”. When 

SeqNum 2 decodes, it would again get linked to its prior branch instruction (Br 1). This 

process is achieved by maintaining another single Register Entry called the 

LastDecodedBranchInstruction (LDBI) which caches the latest decoded branch 

instruction PC. Moving on, when SeqNum 2 gets into its execution stage and generates 
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its data address, the BrReg Table is looked up using Br 1 index and the Offset field of 

the corresponding entry (R2) gets updated to the difference between the currently 

generated address and the value stored in the RegVal field. This is depicted in Figure 

IV.18 (a). As execution continues, and the SeqNum 4 calculates its effective address, it 

also looks up the BrReg Table to update the offset with respect to its source register, 

Register R4 (see Figure IV.18 (b)). Finally, as the basic block ends, i.e., all the 

instructions in the basic block (BB1) finish execution, the entry in BrRegTable is 

marked un-prefetched (i.e., PF bit is reset to 0). This state is shown in Figure IV.18 (c). 

At this stage, the offset values with respect to the basic block BB1 are learned. 

 

Cycle BrReg Table 
Lookup Index 

Branch Trace 
Cache 

Lookup Index 

Branch Trace Cache 
Lookup Result 

BrReg Table 
Lookup Result 

Prefetch 
Address 

Generation 
Stage Result 

C + 5 - Br 2 – NT 
Direction = NT,  

High Confidence,  
Next Branch = Br 3 

- - 

C+6 Br 2 Br 3 – NT 
Direction = NT, 

 High Confidence,  
Next Branch = Br 4 

Prefetch only if a 
better prediction is 
available. Reg Val 

[R1] 

- 

C+7 Br 3 Br 4 – T 
Direction = T,  

High Confidence,  
Next Branch = Br 6 

Prefetch only if a 
better prediction is 

available. 
No Prefetch 

C+8 Br 4 Br 4 – T 
Direction = T, 

 Low Confidence. 
Look-ahead Terminates 

Reg Val[R5] No Prefetch 

C+9     Region Address 
[R5] queued 

 

Figure IV.19 Working example showing steps followed when prefetch is issued for an already-

prefetched block 

 

In our approach, lookahead process is initiated at every possible branch instruction at 

their decode stage. This means that a situation can arise when the lookahead process 

starting from one branch instruction would prefetch for a certain number of subsequently 

following basic blocks during its lookahead process and the next decoded branch 

instruction also attempts to prefetch for the same basic blocks in its next lookahead 
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process. Certain steps are taken in our technique to avoid prefetching for the same basic 

blocks in close succession. We will now discuss the steps taken when prefetching is 

attempted for a block that is already in the “prefetched” state. This process is shown in 

Figure IV.19.  

 

Assume that all the instructions in basic block 1 have been decoded and now, Br 2 

instruction (corresponding to SeqNum 6) enters its decoding stage. Note that since the 

Basic Blocks 2, 3 and 4 were prefetched because of the look ahead initiated by Br 1 and 

have not been executed yet since then. This state is marked by the corresponding PF bits 

being set at 1. As Br 2 gets decoded, it also gets pushed into the DBB, from where it is 

taken up by the Auxiliary pipeline and a fresh lookahead cycle is initiated. Referring to 

the table, in cycle C+5, Br 2 looks up the BrTc and the branch predictor and at the end of 

this cycle, we get the next branch (Br 3) along the predicted direction (if the predicted 

confidence is high). In the next cycle, the BrReg Table is looked up using the branch Br 

2. But unlike the previous case, since the corresponding entry is already in its prefetched 

state, new set of prefetches are allowed to be issued only if a better prediction is 

available (i.e., if the value of Reg 1 falls into a different region than the previous 

prediction). However in the absence of a better prediction, the look-ahead process is 

allowed to continue, but no prefetches are generated for this basic block. In the same 

cycle, Br 3 invokes the branch predictor and looks up the Trace cache structure to 

determine that Br 4 is most likely, the next branch to be encountered along the path. In 

the next cycle, again a prefetch would get issued for the basic block following Br 2 only 

if a better prediction is available. It is however note that owing to better confidence 

estimates, if lookahead process can extend beyond branch Br 4, then prefetches are 

allowed to be issued for the corresponding basic blocks, as described earlier. 
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CHAPTER V 

EVALUATION 

 

In this chapter, we first discuss our simulation methodology in Subsection V.1. Then, we 

evaluate the effectiveness of the branch-directed prefetcher by comparing its 

performance benefits and effectiveness against other state-of-the-art prefetchers in 

Subsection V.2. Finally, we provide an estimate of the hardware cost of the proposed 

prefetcher in Subsection V.3. 

 

V.1 Methodology 

 

We evaluate our prefetcher in a simulation environment based on the M5 Simulator [25]. 

M5 is an open-source simulator platform developed by researchers at the University of 

Michigan. The simulator is used to model a 1-wide, 5-stage inorder pipeline. It is to note 

that this reference configuration is quite conservative in the light of the performance 

benefits that can be gained by using any prefetching technique and a more aggressively 

pipelined configuration is likely to demonstrate greater benefits. All non-memory 

instructions are assumed to be executed in one-cycle. The assumed memory model 

consists of a 2-level cache hierarchy with a 64KB 4-way set-associative L1 ICache & 

DCache and a 2MB 16-way set-associative L2 Cache. Under our assumed model, L2 

cache hits are serviced in 16 ns and memory accesses are serviced in 60 ns. Table V.1 

shows the important baseline architecture parameters.  

 

We run 18 benchmarks from the SPEC CPU2006 benchmark suite, compiled for the 

ALPHA ISA. The reference input set is used for each benchmark. The results presented 

in this thesis were generated by running each benchmark for the first 1.5 billion 

committed instructions. We classified the benchmarks into two categories (Prefetch-

sensitive and otherwise) based on if they showed at least 2% performance benefit with a 
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perfect cache. 

 

We modified the simulator to include the branch-directed prefetcher-specific structures. 

The simulator was then used for detailed cycle-level processor simulation. 
 

Table V.1   Target microarchitecture parameters 
 

Simulator M5 Simulator, ALPHA ISA, System Emulation Mode 

Architecture 5-stage Inorder Pipeline, 1-wide, 2 GHz Frequency 

Branch Predictor Tournament Predictor 

BTB 4096 entries 

Register File 32 Integer Registers, 32 Floating-point Registers 

ICache / DCache 64KB, 4-way set-associative cache, 64 Byte Line size, 1 ns access 
latency, 10 MSHRs, 3 Cache Ports 

L2Cache 2MB, 16-way set associative, 64 byte line size, 16 ns access latency, 
20 MSHRs, 1 port 

Memory 60 ns access Latency 
 
 

In our current work, we compare the performance implications of employing several 

state-of-the-art prefetchers. We evaluate the benefits of employing a Next Line 1 (NL1) 

prefetcher (one that prefetches the successively following cache block following a cache 

miss). We also analyze the performance impact of a stride-based prefetcher. However, 

we have omitted its results in the discussion because the results were generally worse, 

except in a few benchmarks that exhibit regular-strided access patterns. We also test a 

system incorporating the Spatial Memory Streaming (SMS) – based prefetcher. As 

implemented in the most recent proposal of SMS for SPEC CPU2006 benchmarks [6], 

we consider SMS with 512 Byte spatial region size, a 64-entry accumulation table and a 

2K-entry Pattern history table. Finally we estimate the performance impact of the 

proposed branch-directed prefetcher, when used alone (called Branch-Directed) and in 

conjunction with the NL1 scheme (called Branch-Directed+NL1, and as described in 

Subsection IV.1).  The results of our evaluation are presented in the next subsection. 
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V.2 Results and Analysis 

 

V.2.1   Impact on IPC 

 

The first set of experiments demonstrates the impact of incorporating the proposed 

prefetcher (both the branch-directed and the branch-directed+NL1 configurations) on the 

system performance (IPC) as compared to a baseline (no-prefetching) system. In this 

experiment, we also compare the performance improvements gained by employing a 

next-line prefetcher, a Spatial Memory Streaming (SMS) – based prefetcher over the 

baseline (no-prefetching) system. The branch-directed system considered in this 

experiment, is based on the loop-based BrReg Table implementation (discussed in 

Subsection IV.3.3) and employs the Region-Filtering FIFO Buffer,  the Region-Based 

Filter and the Prefetch-Queue Based filter (as discussed in Subsection IV.4) for filtering 

purposes.  The results of our evaluation are presented in Figure V.1.  

 

Figure V.1 IPC improvement over Baseline (No-prefetching) 
 

As shown in the figure, there are four bars for each benchmark. The leftmost bar 

corresponds to the performance improvement when the Next-Line 1 (NL1) prefetcher is 
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employed alone over the baseline implementation. The second bar from the left 

corresponds to the performance gain by employing the SMS prefetcher. The third bar 

from the left corresponds to the performance of our branch-directed prefetcher alone, as 

compared to the baseline no-prefetching system. The rightmost bar corresponds to our 

prefetcher in conjunction with the NL1 scheme. The results show that the NL1 and the 

SMS prefetcher alone provide a performance benefit of 19.1% and 35.87% over the 

baseline system respectively. While, the branch-directed prefetcher, without and with the 

next-line improvisation provides a mean speedup of 33.63% and 38.789% over the 

baseline system respectively.  
 

 

Figure V.2 IPC improvement over SMS prefetcher 
 

Figure V.2 shows the performance impact of the branch-directed configurations as 

compared to the SMS-based one. From the figure, it can be observed that while the 

branch directed prefetcher degrades the performance by 1.645% (2%) when used alone, 

in conjunction with NL-1 prefetcher the performance improves by 2.148% (2.82%), over 

the SMS prefetcher, averaged across all 18 SPEC2006 benchmarks (only across the 

prefetch-sensitive benchmarks).  
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These results show that the branch-directed scheme can alone deliver almost the same 

performance benefits as a SMS-based prefetcher implementation. And, in conjunction 

with the NL1 scheme, it performs better than the SMS implementation. This implies that 

hybrid branch-directed+NL1 scheme is very effective at reducing cache misses. The 

branch-directed scheme can take advantage of spatial locality in an application as long as 

it can predict the region of operation accurately. It can also prefetch accurately for 

irregular and isolated data accesses. Additionally, the NL1 scheme provides benefit by 

exploiting spatial locality in the event of cache misses (which may occur if a branch-

directed prefetch was either not issued in a timely manner or was not accurate enough or 

no prefetch was issued in the first place due to insufficient training of the structures).  

 

Also, the SMS prefetcher predicts future memory accesses based on current memory 

misses and hence, cannot predict the first misses in a spatial region. For those 

applications that exhibit less dense spatial patterns, such misses also form a significant 

fraction of all misses and hence, the performance improvements gained by incorporating 

SMS is minimized in such cases. On the other hand, by decoupling prefetch decisions 

from the cache miss events, our prefetcher can accurately anticipate future misses and 

prefetch for them.  

 

V.2.2   Prefetch Effectiveness 

 

Another set of experiments is conducted to demonstrate the effectiveness of the 

prefetches issued by the branch-directed prefetcher as compared to the SMS prefetcher. 

The results of this experiment are shown in Figure V.3.  

 

In this experiment, the effectiveness of the prefetcher is estimated by categorizing the 

total prefetches issued into useful (demand request for these data is received before their 

eviction from the cache), useless (the data gets evicted without receiving any demand 

hits) and untimely (the demand request gets issued while the data is en-route from the 
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lower levels of memory to the L1 cache) prefetches, normalized against the total number 

of prefetches issued by the SMS configuration. It can be observed from the graphs that 

for many benchmarks (like games, bzip2, mcf), the branch-directed prefetches are more 

accurate than those issued by the SMS prefetcher. However on benchmarks like leslie3d, 

SMS prefetcher is very accurate, and many prefetches issued by the branch-directed 

prefetcher are either useless or untimely. Thus, the SMS prefetcher performs better over 

the branch-directed prefetcher for such benchmarks. In others like milc, the branch-

directed prefetcher prefetches a lot of prefetches (mostly useless) and hence, degrades 

performance. Interestingly, branch-directed scheme prefetches significant number of 

useless prefetches for the bwaves benchmark. However, this benchmark is tolerant of 

cache pollution and hence, it benefits from the increased number of prefetch hits.    

 

 

Figure V.3 Effectiveness of issued prefetches 
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Figure V.3 Continued. 

 
 
V.2.3   Bus Traffic 
 
 
A third set of experiments is conducted to estimate the effect of the generated prefetches 

on the L1-L2 bus traffic. This effect can be approximated by monitoring the increase in 

the number of L2 accesses normalized against the baseline (no-prefetching) 

configuration. The result of this experiment is presented in Figure V.4. There are 4 bars 

for each benchmark, each bar depicting the increase in number of L2 accesses by 

employing the corresponding prefetcher over the baseline. It can be observed from the 

graph that the increase in number of L2 accesses is approximately 29.26%, 67.674%, 

79.591 and 84.544% after incorporating the NL1, SMS, branch-directed alone and in 

conjunction with NL1 respectively.  

 

It is interesting to note that for mcf which is a bandwidth constrained application, SMS 

generates a large number of prefetches. Hence, it significantly worsens the performance 

over the branch-directed prefetcher. It is however important to note that the branch-
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directed prefetcher is more aggressive in nature and hence, on an average generates 12% 

more L2 accesses as compared to an SMS based implementation.  
 

 

Figure V.4 Increase in number of L2 Cache accesses 

 

From the figure, we can also observe that the branch-NL1 system generates 

approximately the same number of L2 accesses as the branch-directed system alone. 

This is because the total number of demand misses occurring in the branch-NL1 system 

is much less than those occurring in either a NL1-based or a branch-based system alone. 

This implies that the NL1 prefetcher is triggered less often in the combined branch-NL1 

system, which ensures that the total number of requests (demand and prefetch) issued for 

the L2 cache remains virtually the same. 

 

V.2.4   Impact of Predictor Table Size 

 

We also conducted a preliminary set of experiments to evaluate the impact of predictor 

table sizes on the overall system performance. To evaluate the impact of the Branch-

Register table size, we varied the number of entries in the table and monitored its impact 

on IPC. We observed that there is no significant change in IPC beyond a table size of 
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128 entries. A similar experiment using the branch Trace Cache demonstrated that a 

table size of around 128 to 256 entries is sufficient to deliver most of the performance 

benefits. Even though these results are preliminary, they demonstrate that our prefetcher 

can efficiently capture the variability in program behavior with smaller table sizes as 

well. This can be explained by realizing that in our approach, we establish branch-based 

correlation to enable prefetching. Any typical program has more number of memory 

instructions than control instructions. So, given that a memory instruction-correlating 

prefetcher (like, stride-prefetcher etc.) can capture the essential information, needed for 

prefetching, in 256-512 entries, we should theoretically capture the same amount of 

information at significantly reduced table sizes.  

 
 
V.2.5   Hybrid SMS and Branch-directed Prefetcher 
 
 
We conducted another set of experiments to analyze the performance impact of a hybrid 

prefetcher combining the SMS and the branch-directed prefetcher (SMS+Branch). To 

realize this, we made the following changes to our original implementation: - a) Instead 

of the region-filter (discussed in Subsection IV.4.2), we employed the Path-Trace Based 

Prefetch Filter discussed in Subsection IV.4 b) Also, given that the SMS prefetcher can 

take advantage of spatial locality in loop-based codes, we employed the offset-based 

variation instead of the loop-based one. The results of this experiment are shown in 

Figure V.5. It can be seen that the hybrid prefetcher provides a benefit of 37.82% 

(50.515%) over the baseline configuration across all the 18 SPEC benchmarks (over the 

prefetch-sensitive benchmarks). It also achieves a 1.436% (1.814%) improvement over 

the SMS prefetcher. These results imply that by exploiting branch-based correlation and 

the basic-block fast-forwarding mechanism, the branch-directed prefetcher can prevent 

even those misses which are not predicted by the SMS prefetcher.  
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It is however, to note that this hybrid system performs worse than the hybrid branch-

directed+NL1 scheme (discussed before).  This is because of the following reasons: a) 

Firstly, the branch-directed prefetching configuration assumed in the two hybrid 

schemes are different. The offset-based BrReg table configuration assumed in this case 

is less effective in generating accurate prefetches than the loop-based scheme because it 

fails to handle the loop-based applications. b) Secondly, both SMS and the branch-

directed prefetchers are aggressive in nature. Hence, the total number of prefetches 

issued by the hybrid SMS-Branch implementation is significantly more than either 

prefetcher alone. These additional prefetches cause cache pollution and also, impact the 

demand on the limited bus bandwidth. This in turn, reduces the performance benefits 

achieved by prefetching. 

Figure V.5 Performance impact of hybrid SMS and Branch-Directed prefetcher 

 

V.2.6   Inorder versus Out-of-Order: Impact on IPC 
 

A final set of experiments was conducted to compare the performance impact of an 

inorder implementation (with prefetching support) over an out-of-order implementation 

(without prefetching support). As discussed previously, inorder cores are gaining more 

attention because of their low power and area requirements as compared to their 

superscalar counterparts. However, inorder processors have reduced single-threaded 
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performance because of their inability to work around cache misses. The motivation 

behind this experiment is to evaluate prefetching as a mechanism to improve the 

performance of inorder processors as compared to out-of-order (OOO) processors. In 

this experiment, the performance of an inorder processor equipped with a branch-

directed prefetcher is compared against a 4-wide OOO implementation. The result of this 

experiment is presented in Figure V.6.  

 

Figure V.6 Performance comparision of Inorder (with prefetching support) 

and out-of-order implementations 

 

From the figure, it can be observed that while the prefetching-enabled inorder system 

provides a mean speedup of 39% over the baseline inorder system, the OOO system 

provides a 94% benefit over it. Thus, the inorder implementation provides roughly 42% 

of the benefit provided by the out-of-order implementation at a significantly reduced 

hardware overhead.  

 

From all the experiments discussed in this chapter, it can be concluded that the branch-

based prefetcher improves the performance of a system significantly. However, given its 

aggressive nature, there is further room for improvement if better prefetch-filtering 
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techniques are adopted. During the experiments, we also noticed that a number of 

prefetches issued by the branch-directed prefetcher are already residing in the cache. 

These additional prefetches consume power during the cache-tag lookup process and 

hence, certain measures should be adopted to limit them. This aspect can be explored in 

future work. 

 

V.3 Hardware Cost 

 

The additional hardware requirements of the branch-directed prefetcher can be 

summarized as follows: 

 

• Branch Trace Cache – The current implementation of Branch Trace Cache has 

256 entries. Each entry requires 66 bits: two 32-bit fields for the branch 

instruction PC, 1-bit for the direction of execution, 1-bit for the next-branch-is-

unconditional field. Thus, the Branch Trace Cache requires 2KB of space.  

• Branch-register Table – The current implementation of Branch-Register Table 

has 128 entries. Each entry requires 392 bits: 32 bits for the branch instruction 

PC, 350 bits for a maximum of five fields allowed for the Register-specific fields 

(5-bits of register index (RegIdx), 32-bits of register value (RegVal), 16-bits of 

Offset, 16-bits of Delta, 1-bit of Delta-Valid field), 1-bit for Delta-is-changing 

field, 1-bit for Prefetched (PF) field, 4-bits for the Loop Counter field and 4-bits 

for the Sequence Number field. Thus, the Branch Register Table requires a total 

storage of 6.125 KB.  

• Alternate Register File – This unit has 32 8-byte entries. Thus, the Alternate 

Register File requires 256 bytes of storage.  

• Prefetch-region Filter – This filter has 1024 entries. Each entry requires 3-bits. 

Thus, this structure requires an additional storage of 384 Bytes. 
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• Path Confidence Estimator – The confidence estimator has 2048 entries. Each 

entry has 8-bits (4-bits for the JRS Counter & 4-bits for the Up-Down Counter). 

Thus, this unit requires a total storage of 2 KB. 

• Modified Prefetch Queue – Apart from the candidate prefetch address, each 

entry of the prefetch queue stores 5-bits from the previous branch instruction PC 

and a 1-bit field to distinguish the branch-directed prefetches from others. A 100-

entry prefetch buffer is assumed in this implementation. So, the prefetch queue 

requires an additional storage of 75 bytes. 

• Others – This prefetcher requires counters to estimate the misprediction rate of 

each confidence bucket dynamically. The current implementation requires a total 

of 74 counters for the 37 confidence buckets. Also, to enable filling of the 

Branch Trace cache entries, there is a need for a 32-bit LCBI register (to hold the 

last committed branch PC) and a 1-bit LCBD register (to hold the direction of 

execution of the last committed Branch PC). These structures together require 

approximately 300 bytes of additional storage. 

 

Thus, the overall hardware cost of the branch-directed prefetcher is approximately 11.11 

KB of storage, which is approximately 35% of the hardware overhead required by the 

SMS prefetcher.  
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CHAPTER VI 

LESSONS LEARNED 

 

This chapter discusses several variations to the base branch-directed prefetcher 

implementation that were attempted during this work. Subsection VI.1 describes an 

attempt to implement an efficient hybrid prefetching solution by using the set-dueling 

principles (as proposed in [26]). Subsection VI.2 discusses a modified Branch-Register 

Table implementation called the “Min-Max scheme” that is aimed at reducing the 

number of useless prefetches generated by the prefetcher.  Subsection VI.3 discusses a 

modification to the base prefetcher that is directed at handling indirect branches. Finally, 

Subsection VI.4 discusses the impact of prefetching into the LRU position of a set so as 

to reduce the degree of cache pollution. 

 

VI.1 Hybrid Prefetcher Implementation  

 

We borrowed the set-dueling approach proposed by Qureshi et al., in an attempt to 

realize a hybrid prefetcher using the SMS and the branch-directed prefetcher [26]. The 

basic idea behind the approach is - Given that most of cache sets get used in a similar 

manner, a few sets could be dedicated to monitor the impact of different competing 

mechanisms on the performance. And finally based on such an analysis, the better-

performance strategy could be used for the remaining cache sets. This idea was initially 

proposed in conjunction with L2 cache, which has a large number of sets and hence, it is 

plausible to dedicate a few sets to each strategy for monitoring purposes. This essentially 

avoids the need to maintain separate tag directories. However, in this thesis, we employ 

a prefetcher that prefetches directly into the L1 Data Cache. A typical L1 Cache has 

comparatively lesser number of sets than a L2 Cache. So, to exploit set-dueling in our 

case, we implemented separate tag arrays for each of the representative number of sets 

allocated for each competing strategy.  
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Essentially to realize a hybrid prefetcher using the Branch-Directed prefetcher and SMS, 

three sets of representative tag arrays were created: one each for analyzing the impact of 

spatial prefetching, only branch-based prefetching and the combined prefetching 

approach. Each category was composed of a few duplicated sets of the cache. The 

monitoring system is implemented in such a way, that the sets monitoring spatial-

prefetcher's effect do not get affected by branch-based prefetches and so on. The 

program run was divided into fixed-length phases and the miss rate was observed in each 

of the representative sets during this phase. At the end of each phase, the observed miss 

rate of each representative set (as observed during the last program phase) was compared 

and the policy that yielded minimum miss rate was chosen to be the de-facto policy of 

all the actual sets of the cache.  

 

Given that both SMS and branch-directed prefetchers are aggressive in nature, by 

naively combining the two approaches, a marginal degradation in performance was 

observed on a few benchmarks that are either bandwidth limited or not much tolerant of 

cache pollution. Hence by incorporating this approach of selecting the prefetching 

strategy depending on the observed miss rates in the representative categories, some 

performance benefits was recorded even for those benchmarks which had earlier showed 

degradation with the naïve-hybridization strategy. But the overall performance impact 

after adopting this technique was marginal, as compared to the increase in hardware 

overhead. So, this approach was not incorporated in our final implementation. However, 

this experiment demonstrated that set-dueling concepts can be used for implementing 

better and more accurate hybrid prefetching schemes. 

 

VI.2 Modified Branch-Register Table Implementation (The Min-Max Scheme) 

 

Min-max scheme was proposed as a modification to the Branch-register Table 

implementation in order to reduce the number of useless prefetches generated by the 

prefetcher. The previous proposal of Branch-Register Table required prefetching of an 
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entire spatial region around a predicted data address. This method tried to avoid this 

need by learning variable-sized regions around the predicted data address that are more 

likely to be useful. This mechanism is implemented as an enhancement to Offset-Only 

approach discussed in the Subsection IV.2. 

In this strategy, instead of saving a single offset as suggested in Subsection IV.3, we 

save a range of offsets that captures better, variability of generated address values with 

respect to register values at prior branch locations. Because of saving such a range of 

offsets, prefetches are issued only for the blocks contained in this range, instead of the 

whole spatial region. The new BrReg Entry is given in Subsection VI.1: 

 

Figure VI.1 Single Branch-register Table entry (Min-Max implementation) 

 

The process adopted to link the branch instructions with memory instructions (more 

specifically, their source register indices) in subsequent basic blocks, is the same as 

discussed in Chapter IV.3. The difference lies in the mechanism adopted to learn the 

offset values and also to generate prefetch addresses. The offset-range is decided by 

observing the differences between the generated data addresses and the corresponding 

source register values at prior branch locations. In the current implementation, we again 

view memory as being composed of coarser spatial regions consisting of eight cache 

blocks each. But unlike the previous assumptions, the start address of the spatial region 

is assumed to be the block address containing the predicted data address. The minimum 

and maximum offsets basically denote the range by which actual data addresses falling 

into that spatial region, were different from prior register values in the past runs. For 

example, if a block A was predicted as a prefetch candidate for a future basic block 

during a lookahead process.  When the basic block was actually executed, the generated 

block address was observed as A+2. At this point, the minimum and maximum offsets 
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both get set to a value of 2, corresponding to this basic block and register entry in the 

BrReg Table. If during another run of this basic block, the generated block address 

differed from the prefetched register value by 4, then only the maximum offset field gets 

updated to 4. This implies that a register value-to-actual address variability of 2 to 4 

cache blocks was observed for this entry in the past runs. This information therefore, 

eliminates the need to prefetch a whole region around the predicted data address. Rather, 

only the cache blocks falling into the “RegValue + MinimumOffset and RegValue + 

MaximumOffset” range, get prefetched.  Each register index in a branch-indexed entry is 

allowed to cache three such address ranges.  

To understand the relative advantage of the min-max scheme over the single-offset 

scheme theoretically, consider the following code fragment:  

 

 

 

 

Let us assume that corresponding to this code fragment, an entry exists in the Branch-

Register table that links Br 1 branch with Register R2. Then, as per the single-offset 

method discussed previously, we would save a single offset with respect to Register R2 

and to allow prefetching for all the instances in the basic block, we would prefetch the 

region around the address given by the value of R2 at the branch-decoding instance. It 

can be observed that this method also allows issuing prefetches for all the instances of 

R2 in the basic block. But since in this case, a maximum of three different cache blocks 

will be touched during the execution of this basic block (assuming our baseline memory 

architecture), the remaining prefetches issued for that region tend to be useless.  

However, following the min-max scheme, if a range of minimum and maximum offsets 

is maintained for each register index, the variability between the generated addresses 
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(using this source register) and the register value at a preceding lookahead instance can 

be captured with lesser number of prefetches. Like in this example, the offset that would 

be saved with respect to R2 would be 0(minimum) – 128(maximum). Thus, this 

approach has the potential to reduce the number of useless prefetches.  

However after incorporating this modified system, we did not record significant 

performance benefit, except in some individual benchmarks. Hence, this mechanism 

requires further exploration in future.  

 

VI.3 Indirect Branch Handling 

 

In our current implementation of the Branch Trace-Cache, it is assumed that all control-

instructions have a single possible target site along each direction of execution. But there 

exists a special class of control instructions (to support dynamically linked libraries, 

virtual function calls etc.), for which the direction of execution alone does not determine 

the subsequent basic block to be executed. This implies that for such branches, even if 

the branch predictor predicts the direction with high confidence, but because of the 

possibility of multiple target sites that can be dynamically invoked, the lookahead may 

move towards an incorrect path of execution. There are many possible alternatives to 

handle such branches. One possibility is to store all possible target sites starting from 

such branches in the Branch Trace Cache. Such optimization can be supported if the 

major classes of applications being serviced involve significant use of such branches. 

This alternative has not been explored in this thesis. Another alternative to identify and 

handle such branches in hardware is to incorporate another bit (called the “Stable Bit”), 

corresponding to each entry of the BrTc table. This bit indicates whether the “start 

branch PC” has always led to the “next branch PC” along the recorded direction in the 

past. The modified BrTc entry is shown in Figure VI.2: 
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Figure V1.2 Modified Branch Trace Cache entry to handle the indirect branches 

 

It requires a small modification to the previously discussed update-procedure to train this 

modified scheme. This is discussed as follows: - As control instructions commit in 

program order, the corresponding Branch Trace Cache entries get filled out. However,  

during the update process, if a branch instruction is encountered that hits in the Branch 

Trace Cache, but its next-Branch field contains an entry that is different from the current 

“next-branch”, then it can be inferred that this branch instruction has more than one 

possible target location along the same direction of execution. At this point, the stable-

bit of the entry can be set to 1. Note that for the normal class of control-instructions 

which have a single target along each direction of execution, this bit remains at 0. 

 

This modified scheme again introduces a minor modification to the lookahead process. 

In this case, a lookahead is allowed to proceed only if the corresponding branch entry 

hits in the trace cache (as before) and its stable bit is 0. This additional clause ensures 

that lookahead terminates at indirect branch locations, assuming that the subsequent path 

cannot be confidently established.  

 

However, from the results of the preliminary experiments that we conducted using this 

modified implementation, we observed that this optimization did not improve 

performance much (although it is incorrect to generalize as the classes of applications 

used in this thesis do not need significant use of such branches). In fact for one case, it 

caused minor degradation in performance. The degradation was primarily observed 

because in many cases, though the target sites from the same branch PC are not unique; 

still these target sites have many memory reference instructions that use the same 

register indices as the alternate basic block. So, by limiting the lookahead beyond such 
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control instructions, some prefetching opportunity gets lost. Also, another possible cause 

of degradation can be that many such indirect jumps represent some kind of function 

calls. If this holds true, then even if the target site of the function call cannot be 

confidently established, the return path after the function call ends may be extremely 

predictable. Thus, even greater opportunity for prefetching would be lost by terminating 

the lookahead process prematurely.  

 

VI.4 LRU Insertion Policy for Prefetched Blocks 

 

As is known, Least Recently used (LRU) Policy is the standard cache replacement 

policy used in most of the modern microprocessors. Under this scheme, the victim 

chosen for replacement in a cache set is the block located at the LRU position of the set's 

LRU stack and the incoming block gets placed at the Most Recently used (MRU) 

position of the stack. The objective behind placing an incoming block in the MRU 

position is to give it an opportunity to be referenced by the CPU while it moves down 

the LRU stack. If prefetched data are also dealt in a similar fashion, then it is likely that 

more useful demand-hit data may be evicted out of the cache to make space for the 

prefetched data, which may be completely useless due to low accuracies of prefetchers. 

Since aggressive prefetchers tend to sacrifice accuracy for greater coverage, they bring 

in a lot of data into the cache that will never be used. This implies that most of the 

prefetched cache lines would simply go down from the MRU position to the LRU 

position of the stack, without receiving any demand cache hits. This further leads to the 

ineffective use of the caches. Hence, an attempt was made to assess the performance 

impact of a scheme that places all the prefetched data into the LRU position of the stack 

so as to reduce the cache pollution effects. In such a scheme, a prefetched block gets 

promoted to the MRU position only after receiving a demand request for the same.  

 

From the preliminary set of experiments conducted in this direction, it was observed that 

this technique works well for those benchmarks, which suffered due to cache pollution 
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effects. However this technique reduces the benefit margins on those applications which 

showed significant benefits without this optimization. This behavior can be explained by 

the fact that the current lookahead mechanism prefetches for future basic blocks much 

ahead of their actual execution. In that case, if all the prefetched data gets placed into the 

LRU position, then there is a higher chance that prefetched data will get evicted before 

the appropriate demand request arrives. This will negate the advantages of prefetching. 

To avoid such a situation, prefetched data can be inserted into a different position in the 

LRU stack, other than the MRU and LRU. This aspect can be considered in future work. 
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

 

In this thesis, we proposed a data prefetcher that leverages the high prediction accuracies 

of current-generation branch predictors to accurately generate the future basic block 

trace that the program will follow and initiates data prefetching for memory instructions 

in those future basic blocks. We also demonstrate that there exists a strong correlation 

between the addresses generated by memory instructions and the values of the 

corresponding source registers at prior branch locations. In the proposed 

implementation, we exploit this correlation by establishing links between the branch 

instructions and register indices (that are used for address computation in following 

basic blocks) in a table structure, which we later use for prefetch address generation. By 

making use of the run-time values of the architectural registers and with the help of the 

offset-based and loop-based enhancements, our prefetcher is capable of generating 

accurate and timely prefetches for data exhibiting both regular and irregular access 

patterns. It is to note that the branch-directed prefetcher does not need extra cache tag 

ports and it uses them only when they are idle. It is also implemented as a separate 

hardware entity and hence, it does not impact the main execution otherwise.  

 

The current implementation of the branch-directed data prefetcher provides a mean 

benefit of 38.789 % over a system with no prefetching and 2.14 % over a system that 

implements the SMS prefetching for a set of 18 SPEC CPU2006 benchmarks. This 

improvement comes at a minimal additional hardware cost of 11.11 KB. 

 

However as discussed in detail in the previous chapters, it is apparent that there is still 

significant scope of improvement with the Branch-Directed prefetching technique. We 

have observed that even though the prefetches issued by the branch-directed prefetcher 

are timely and accurate for most of the programs, the number of useless prefetches 
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generated is still high for some others. During the experiments, we had recorded 

significant performance improvements after incorporating the proposed prefetch-filtering 

mechanisms. Hence it is likely that even better performance gains can be achieved by 

exploring better filtering mechanisms. Techniques like dead-block prediction [27] can 

also be incorporated here to limit the degree of cache pollution, by prefetching into the 

predicted dead block positions only.  

 

Also, branch-based correlation has been explored in the past mainly to realize 

instruction-prefetching. It is interesting to note that the branch Trace Cache structure 

used in our system can also be used to enable prefetching of instructions at branch target 

sites. Thereby, at no extra hardware cost a hybrid instruction and data prefetching 

solution can be realized, which may lead to further improvements in performance.  

 

Though in the current thesis work, we have presented our solution for an inorder 

architecture, we would try to assess this prefetcher’s impact on other architectures as 

well like the superscalar or multithreaded ones in future. 
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