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ABSTRACT

Efficient Parallel Text Compression on GPUs. (December 2011)

Xiaoxi Zhang, B.E., National University of Defense Technology

Chair of Advisory Committee: Dr. Dmitri Loguinov

This paper demonstrates an efficient text compressor with parallel Lempel-Ziv-

Markov chain algorithm (LZMA) on graphics processing units (GPUs). We divide

LZMA into two parts, match finder and range encoder. We parallel both parts and

achieve competitive performance with freeArc on AMD 6-core 2.81 GHz CPU. We

measure match finder time, range encoder compression time and demonstrate real-

time performance on a large dataset: 10 GB web pages crawled by IRLbot. Our

parallel range encoder is 15 times faster than sequential algorithm (FastAC) with

static model.
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CHAPTER I

INTRODUCTION

The textual content of the Web is growing at a such stunning rate that compressing it

has become mandatory. In fact, although modern technology provides ever increasing

storage capacities, the reduction of storage usage can still bring rich dividends because

of its impact on the number of machines/disks required for a given computation.

Parallel processing is a widely used technique for speeding up many algorithms.

Recent advances in Graphics Processing Units (GPUs) open a new era of parallel

computing. Commercial GPUs like NVIDIA GTX 480 has 480 processing cores and

can achieve more than a teraflop of peak processing power. Traditionally, GPUs are

mainly used for graphical applications. The release of the NVIDIA CUDA program-

ming model makes it easier to develop non-graphical applications on GPUs. CUDA

treats the GPU as a dedicated coprocessor of the host CPU, and allows the same

code to be simultaneously running on different GPU cores as threads.

As we know, compression speed and ratio is a trade-off. We can improve compres-

sion ratio by searching more repeated substrings at a larger distance, which depends

on faster compression speed. Therefore, we propose parallel compression algorithm

on GPUs to speedup compression speed and then compression ratio.

However, three problems make the development of efficient parallel compression

implementations on GPUs nontrivial. The first problem is that parallel compression

algorithm is hard to achieve same compression ratio with corresponding sequential

algorithm. The first reason is that typical parallel compression algorithm is to split

data to blocks and assign a thread to each block which definitely sacrifices compres-

The journal model is IEEE Transactions on Automatic Control.



2

sion ratio because it cannot find the repeated substrings between different blocks.

For example, Intel IPP compression library [1] implements its parallel algorithm in

this way, which leads to IPP gzip compression ratio decrement from 5.7 to 4.6 (un-

compressed size/compressed size). The second reason is that it is difficult to merge

parallel matching results effectively and efficiently, which depends on merge strat-

egy and parallel scan algorithm. The second problem is that efficient compression

algorithm like LZMA is not inherently parallel. Two reasons cause this problem.

One reason is that the data dependencies in LZMA algorithm require the result of

step i before step i+ 1 can start. The other reason is that data matching algorithm

based on hash table search cannot be translated to the highly parallel environment

of the GPUs. The third problem is that we need new design on GPUs to resolve non-

natural parallel compression algorithm, memory conflict and barrier synchronization

since GPU architecture is different with CPU.

A. Our Contribution

In this paper, we propose novel design and algorithm to resolve the above problems.

To improve compression ratio, we search redundant data in larger hash table for better

compression ratio. Also, we design parallel match finder to match longer substring

and merger to solve shorter match problem of parallel match finder.

To achieve fast compression speed, we split LZMA to two phases and parallel

them separately: one is parallel matching and merging, the other is parallel range

coding. In phase one, we find duplicate substrings by parallel building and searching

hash table [2], and then merge matching results to keep same compression ratio with

sequential algorithm. In phase two, we encode unmatched substrings, matched offset

and length with parallel range encoding.
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We implement our parallel algorithm and achieve high performance on GPUs.

To achieve high performance on GPUs, our parallel algorithm design is based on

classical parallel algorithms such as prefix sum, parallel reduction and compaction

which are optimized and perform with high performance on GPUs. Also we involve

other optimization techniques in our algorithm, e.g., avoiding memory conflict by

padding data, minimizing the need for barrier synchronization by using warp-wise

and block-wise execution.
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CHAPTER II

RELATED WORK

Numerous sequential algorithms have been invented to improve compression ratio

and compression speed. For text compression, basically there are two kinds of algo-

rithm family. One is dictionary methods (e.g., LZ77, LZ78 and LZP) and the other is

statistical methods (e.g., Huffman coding, arithmetic coding [3] and PPM). Modern

compressors usually combine them together, e.g., Gzip combines LZ77 and Huff-

man coding, LZMA combines LZ77 and arithmetic coding. Other algorithms include

various compression techniques. For example, Burrows-Wheeler Transformation [4]

(BWT, also called block-sorting) is based on a permutation of the input sequence, and

Bzip2 is an implementation of BWT. The performance of these algorithms on textual

web are tested with various switches on state-of-the-art compressors and compared

in paper [5], where LZMA is proved to be the best one.

Preprocessors/filters are involved to eliminate large distance duplicate data using

hash table search. BMI [6] works well with gzip since BMI can find long distance

redundant substrings which cannot be found by gzip since it only searches repeated

substrings in 32KB blocks. However, BMI is pretty slow becuase it uses a naive hash

function.

Novel techniques keep coming up. FreeArc [7] is the best contemporary compres-

sor, which involves more than 11 algorithms and filters, and LZMA is one of them.

Srep is used as the preprocessor in FreeArc to match large chunk (default 512 bytes),

which is like BMI but uses strong hash function: SHA-1 and MD5. And grzip is used

as text compressor which integrates 4 algorithms: LZP, BWT, WFC and EC.

All algorithms and techniques mentioned above are essentially sequential. FreeArc

can parallel run on multi-core CPU while their approach is splitting a big file to blocks
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and then assigning them to different cores, therefore the algorithm is in fact sequen-

tial. PBZIP2 [8] is a parallel Bzip implementation which is inherently feasible since

bzip is based on block split and sorting. However, the performance is not good enough

because of the natural limitation of bzip. Bzip compression speed is much slower com-

pared with optimized LZMA. Parallel arithmetic encoding algorithm was proposed in

paper [9]. But no experiment result was showed in this paper. The method they pre-

sented is not feasible in practice because of limited machine precision, and the most

important issue is that their mathematical derivation actually has a fatal defect.

Variety of optimization techniques of fundamental parallel algorithm on GPUs

are proposed. Parallel compaction, prefix sum, sorting and parallel reduction al-

gorithm on GPUs are proposed in paper [10, 11, 12, 13], and most of their imple-

mentations are provided in related library. These algorithms show very impressive

performance on GTX 480, e.g., parallel reduction can finish adding 16 millions ele-

ments in 0.77 ms. Two efficient histogram algorithms designed for CUDA have been

presented in paper [14]. The first algorithm is based on simulating a mutex by tag-

ging the memory location and continuing to update the memory until the data is

successfully written and the tag is preserved. It is designed for NVIDIA GPUs of

‘compute capability’ 1.0 and atomic memory updates has been provided for GPUs of

‘compute capability’ 2.0. The second method maintains a histogram matrix of B ×

N size, where B is the number of bins and N is the number of threads. This provides

a collision free structure for memory updates by each thread.

Real-time parallel hashing on GPUs [2] is implemented with hybrid approach

combining classical perfect hashing and cuckoo hashing. This efficient data-parallel

algorithm combines the advantages of fast on-chip memory and large global memory,

it takes 107 ms building and 59.1 ms retrieving time for large hash table of 32 millions

elements.
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CHAPTER III

BACKGROUND AND OUR APPROACH

The modern GPUs’ massive parallelism architecture offers very high throughput

on certain problems, and General-purpose computing on graphics processing units

(GPGPU) gives its near universal use, which means that GPU is a cheap and ubiq-

uitous source of processing power. Therefore we leverage GPU powerful computing

capability and choose GPU as our parallel architecture. To achieve faster duplicate

data matching speed, we introduce parallel match finder to search redundant data

and implement the parallel match finder based on parallel hash table on GPUs. After

finding out the duplicate substrings, we parallel merge the result to minimize the

merging time, and design optimal merging method to keep compression ratio same

with corresponding sequential algorithm. In last phase, we use our parallel range

encoder to speedup the encoding of unmatched substrings, match offset and match

length.

A. Basics

LZ77 algorithms achieve compression by replacing repeated occurrences of data with

references to a single copy of that data existing earlier in the input (uncompressed)

data stream. It searches repeated substrings in a sliding window, and then a match

is encoded by a pair of numbers called a length-distance pair.

Arithmetic coding stores frequently used characters with fewer bits and not-so-

frequently occurring characters with more bits, resulting in fewer bits used in total.

Arithmetic coding differs from other forms of entropy encoding such as Huffman

coding in that rather than separating the input into component symbols and replacing

each with a code, arithmetic coding encodes the entire message into a single number.
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Arithmetic coding has better compression ratio than Huffman coding since it is able

to compress data at rates much better than 1 bit per byte when the symbol probability

are right.

Range coding [15] is a variation of arithmetic coding, it performs renormalization

in bytes instead of bits thus running twice faster, and with 0.01% worse compression

than a standard implementation of arithmetic coding.

LZMA is the combination of LZ77 and arithmetic coding. The dictionary com-

pressor produces a stream of literal symbols and phrase references, which encodes

one symbol at a time by the range encoder, using a model to make a probability

prediction of each bit.

The GPU has a multi-core processor containing an array of Streaming Multipro-

cessors (SMs). A SM is an array of SPs, which consists of 8 Streaming Processors

(SPs), along with two more processors called Special Function Units (SFUs). CUDA,

Compute Unified Device Architecture, is a general-purpose hardware interface de-

signed to let programmers use NVIDIA graphics hardware for purposes other than

graphics in a more familiar way. At the hardware level, the GTX 480 processor is a

collection of 15 multiprocessors, with 8 processors each. Each multiprocessor has its

own shared memory which is common to all the 32 processors inside it. At any given

cycle, each processor in the multiprocessor executes the same instruction on different

data, which makes each a SIMD processor. Communication between multiprocessors

is through the device memory, which is available to all the processors of the mul-

tiprocessors. Access to global memory has a high latency (in the order of 400-600

clock cycles), which makes reading from and writing to the global memory particu-

larly expensive. The performance of global memory accesses can be severely reduced

unless access to adjacent memory locations is coalesced. A warp is a collection of

threads that can run simultaneously on a multiprocessor. The warp size is fixed for
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a specific GPU. The programmer decides the number of threads to be executed. If

the number of threads is more than the warp size, they are time-shared internally on

the multiprocessor. A collection of threads (called a block) runs on a multiprocessor

at a given time. Multiple blocks can be assigned to a single multiprocessor and their

execution is time-shared.

CUDA can be used to offload data-parallel and compute intensive tasks to the

GPU. The computation is distributed in a grid of thread blocks. All blocks contain

the same number of threads that execute a program on the device 2, known as the

kernel. Each block is identified by a two-dimensional block ID and each thread within

a block can be identified by an up to three-dimensional ID for easy indexing of the

data being processed. The block and grid dimensions, which are collectively known

as the execution configuration, can be set at run-time and are typically based on the

size and dimensions of the data to be processed.

Each GPU thread only reads 4 bytes data in our implementation to achieve

coalesced global memory access. Let tid denote thread id, bid denote the block id,

N denote the maximum thread number of a block (i.e., block size), p denote data

address, the mapping between thread id and data position is p = s +N × bid + tid,

where tid is incremental number from 0 to N−1 by 1, s is data start address. Assume

N = 128, when thread 1 finished read data from the first slot, it will move to position

s+128, and then s+256, and so on. Based on this GPU thread access model, we can

find the match result is only 4 bytes, so we need to merge them with parallel merger.

B. Design Overview

The main stages of our parallel text compressor is described in Fig. 1. Firstly CPU

loads file data to host memory, and then we copy the data from host (CPU) to



9

Parallel match finder

Parallel range 

encoding

CPU GPU

Load data from 

file

memory copy from host to device

Output 

compressed

data to file memory copy from device to host

Parallel merge

Fig. 1. Parallel text compressor design on GPUs.

device (GPU). Secondly we parallel find repeated data with our match finder and

encode the match with LZ77 method. We parallel match finder by paralleling hash

table building and search on GPUs. Thirdly we merge the parallel matching result

of previous phase to achieve same compression ratio with sequential algorithm. The

reason is parallel match finder can only find out multiple short match simultaneously,

in fact lots of matches are contiguous and we can expand the match length by merging

them. Fourthly, after merging, we have unmatched literal, matched distance and

match length, and then we encode them with range coding. To speedup, we design

and implement parallel range encoding on GPUs. Finally we copy the compressed

data from device to host and output them to the compressed file.
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CHAPTER IV

PARALLEL FINDER AND MERGER

A. Parallel Match Finder

We design parallel match finder based on parallel hash table [2] and we use their source

code. The parallel hash table input are integer keys and integer values. Basically

they use cuckoo hashing, the hash function is ((constants.x XOR key) + constants.y)

mod kPrimeDivisor, where constants.x and constants.y respectively represent two

different constants which are generated by random number function. They have 3

hash functions with 6 constant, parallel build 3 hash tables in shared memory and

them write to global memory. And retrieval need to search the 3 tables. The parallel

multi-value construction produces a hash table in which a key k is associated with

a count ck of the number of values with key k, and an index ik into a data table

in which the values are stored in locations ik...ik + ck − 1. The multiple hash table

building process has three phases. Firstly they sort keys and values. Secondly they

find first key-value pair for each key and assign a unique index for each of the keys,

and then do compaction to find out ik and ck. Thirdly they find out all unique keys

and their associated values to build unique key-value hash table, and then we search

from this hash table, unique keys location ik and the number ck can be retrieved.

For our match finder, firstly we construct keys and values for the hash table. We

convert every 4 chars from input stream to an integer key, and put start address of

the 4 chars to a value. Using LZ77, we need to output match length and the offset

of key address and closest match address of the key. Since we hash every 4 chars to

a key, so our match length is 4. The problem is we do not have the offset since the

result of multi-value hash table search is the key first occurrence position Lx in sorted
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abcd 1234 8 efgh

abcd 1234 abcd efgh abcd 1234

abcd 1234 8 efgh 16 16

Initial string

Default match

Optimal match

8 16

Fig. 2. Find longer match.

value array and the number of values with this key Ly. The solution is we combine

sorted value array with Lx and Ly. After hash table construction, we have sorted key

array and sorted value array. In searching hash table phase, we have Lx and Ly, so

we can fetch the value from sorted value array (i.e., first occurrence address of the

key) based on Lx, the index of all the addresses of key k in sorted value array is from

Lx to Lx + Ly. We use a flag to indicate if the key can be matched or not. For our

match finder, if the key only occurs once, we directly write the key to output array,

and set the flag as 0; if the key occurs multiple times, we do binary search from the

sorted value array and get the closest match key, computer the offset of current key

and the closest match key and write the offset to output array, and set the flag value

as 1.

1. Find Longer Match

An example is depicted in Fig. 2. In this case, the third ”abcd” has two matched

elements. We default choose the closest one, as the second line. However, it causes

shorter match substring. If we choose the first ”abcd”, we can merge last two elements

and the match length can be expanded from 4 to 8, which is the optimal case.

To match longer string, our approach is that we iterate more previous matched
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positions for contiguous substrings and try to find longer sequence with same match

position if their current match substring are not consecutive. Firstly we compute 32

closest matching offset and load to shared memory. After building hash table, we have

a sorted hash value array, and another location array which holds start address of all

unique elements and numbers of their duplicate elements. We calculate the distances

of current element with previous 32 duplicate substrings and save to shared memory

for comparing. Secondly, we iterate twice to find longer contiguous elements with

common matching offset. In first iteration, we assign thread i to access data[2i+ 1],

thread i compare data[i] with two adjacent elements data[2i − 1] and data[2i + 1],

we compare previous 32 match position for the three elements in order since the 32

matching offset is ascending ordered, if all three match offset is same, we update

this position with new position, otherwise choose position matching 2 elements and

update current position. In the second iteration, we assign threads i to data[2i] to

compare with two adjacent elements, repeat the same process with first iteration.

The number of previous matching elements we can compare is limited by shared

memory size. Assume we have 256 threads to parallel run, each thread loads 16

previous match positions for three elements, each match positions is 4 bytes, so shared

memory usage is 256 × 32 × 4 = 32K bytes. GTX 480 has 48 KB shared memory,

and shared memory is also used for registers, so 32 is close to the maximum value.

B. Merge Contiguous Codewords

After parallel hash construction and retrieval, we get lots of matched and unmatched

substrings. Since each thread only matches one substring, so compared with sequen-

tial algorithm, our match length is shorter. Therefore, we need to merge contiguous

matched substrings to achieve better compression ratio. Normally matched substring
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abcd defg ghij 1234 (12, 16) ... ...

abcd defg ghij 1234 abcd defg ghij 1234 ... ...

abcd defg ghij 1234 (12, 4) (12, 4) (12, 4) (12, 4) ... ...

Initial string

Sequential match

Parallel match

Fig. 3. Merge case 1.

length is 4 bytes since it is easy to convert 4 chars to an integer to search duplicate

keys in hash table. Based on the hash table design, we have two cases need to merge.

1. Merge Case 1

We can merge two consecutive match substrings when their match offsets are equal.

The first case example is described in Fig. 3. The first line in the figure is the original

text need to compress. The second line is sequential compressed result, we call (12, 12)

a codeword. The first number of codeword is backwards relative position, the second

one is the matched length. The third line is our parallel intermediate compressed

result. We need to convert parallel intermediate result to sequential match result to

keep compression ratio same.

The basic idea is we can parallel merge contiguous codewords if the two relative

positions/offsets are equal. We assign each thread to compare two codewords and

perform it recursively, if contiguous matching occurs in the two substrings, i.e., two

consecutive offsets is equal, that means we can expand the first matching data length

by adding the second match length. However, the shortage of this algorithm is obvi-

ous: It can only merge even numbers codewords, and we need to scan twice to catch
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abcd 1234 8 8 8 24 24 efgh

1 1 0 0 1 0 1 1Output Flag

Size 0 1 2 0 0 2 0 1

abcd 1234 8 3 24 2 efghResult

Position 0 1 3 3 3 5 5 6

Counter 1 1 1 2 3 1 2 1

Counter Flag 0 1 1 0 0 1 0 1

abcd 1234 8 8 8 24 24 efgh

Fig. 4. Our merge process (compute element counters with prefix reduction and output

corresponding positions with prefix scan).

the merge when the first codewords index is odd; Another problem is that we need

to compact the sequence. Thus we propose another merging algorithm described in

Fig. 4 which can keep result same with sequential. The main steps are shown below:

• Find out valid elements which should be output.

• Compute duplicate number and offsets for valid elements.

• Move to proper position.

We denote common notations here for all the followings algorithms. k is the

GPU thread id, n is thread number in a GPU block, and N is the number of all input

elements. B is GPU block number, and B = N/n.

In algorithms 1, pos is to indicate positions for elements in compacted sequence.

counter is to save duplicated codewords number. flag is for calculating counter
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in segment scan process. flag values are changed after segment scan, thus we use

outputF lag to indicate which elements should be output. As depicted in the algo-

rithm, we have 4 steps and we omit the details of step 2 and 3. After this process,

duplicated codewords are compacted by extending match length.

In practice, we generate a one-byte flag for each element to indicate current value

is unmatched literal or matched offset in parallel match finder. After merging, we set

0 as flag value to indicate an element is unmatched literal, 1 as flag value to indicate

it is a 4 byte matched length, 2 as flag value to indicate it is matched length, and

3 as flag value to indicate it is a match offset. We need to read next element as

match length when flag value is 3. When performing arithmetic encoding, we need

to compute the frequency of each symbol including match distance and length.

Multi-block segment scan is also involved in parallel merging. Algorithm 1 is

performed in GPU thread block level, which is called intra-block merge. After this,

we also need to merge inter-block duplicate matching. Firstly we need another ar-

ray on global memory to save the compacted length of each block after intra-block

merging, and then we assign one thread for each block to read the compacted length

to locate the last element. Next step is to check the flag. If the flag is one or two,

then we check if it is equal to next one and merge; otherwise we move back one step

to compare or just skip when the flag value is three. There is another option is that

we do not perform compaction for the matched sequence which could be faster. The

problem is we can not merge inter-block redundancy, and it causes higher cost to

know the exact valid elements number and calculate frequency for these symbols to

do arithmetic encoding with static model.
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abcd 1234 (8,8) 12gf

abcd 1234 abcd 12gf

Initial string

Sequential match

abcd 1234 (8,4) 12gf

Parallel match

cd12 34ab (8,4) gf..

Shift every 2 bytes

Fig. 5. Merge case 2.

2. Merge Case 2

The second case example is described in Fig. 5. For converting the parallel match

result to sequential result, we generate a hash value when shifting every 2 bytes. The

merging pattern is basically same with case 1, we compare the offset and update the

length with number of matching elements multiply 4. In this case, the difference is

that we update the match length to a multiple of 2 and add 2. Let N denote the

number of matching substrings, and the expression of merged match length is 2N+2.

This case can be extended to hash interval 1 to exactly match every repeated

substring and make sure the result is same with sequential match. The potential issue

is that twice increment of the hash table size would cause slower hash table building

and searching. Moreover, we can change the hash size to 3 and generate small chunk

matching, which is another way to increase matching substrings. The implementation

of this case is a little different with first case. Since GPUs can only access every 4

bytes or a multiple of 4 bytes, we can not directly move 2 bytes to read them. We

need to combine low 16 bits of previous hash key with high 16 bits of next hash key

to produce a hash value whose offset is a multiple of 2.
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Algorithm 1 Parallel merging algorithm.

1: /* 1. Initial pos, flag, outputFlag */

2: for k = 1 to n− 1 in parallel do

3: if input[k] = input[k − 1] then

4: pos[k] = 0

5: else

6: if input[k] = input[k + 1] then

7: pos[k] = 2

8: else

9: pos[k] = 1

10: end if

11: end if

12: end for

13: for k = 0 to n− 1 in parallel do

14: if input[k] ̸= input[k + 1] or k = n− 1 then

15: outputF lag[k] = 1

16: else

17: outputF lag[k] = 0

18: end if

19: end for

20: /* 2. Compute pos[k] with prefix sum */

21: /* 3. Compute counter[k] with segmented scan */

22: /* 4. Output elements and match length to proper position */
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CHAPTER V

PARALLEL RANGE ENCODING ON GPUS

A. Sequential Arithmetic Coding

Fundamentally, the arithmetic encoding process consists of creating a sequence of

nested intervals, for a simpler way to describe we represent intervals in the form [b, l),

where b is called base or starting point of the interval, and l the length of the interval

[16].

Let Ω be a data source that puts out symbols sk coded as integer numbers in the

set 0, 1, ...,M − 1, and let S = s1, s2, ..., sN be a sequence of N random symbols. For

now, we assume that the source symbols are independent and identically distributed,

with probability

p(m) = Prob {sk = m} ,m = 0, 1, 2, ...,M − 1, k = 1, 2, ..., N. (5.1)

We also assume that for all symbols we have p(m) ̸= 0, define c(m) to be the

cumulative distribution,

c(m) =
m−1∑
s=0

p(s),m = 0, 1, ...,M. (5.2)

Note that c(0) ≡ 0, c(M) ≡ 1, and

p(m) = c(m+ 1)− c(m). (5.3)

Basic arithmetic encoding algorithm can be described with the following two

equations,

bk = bk−1 + lk−1c(sk), (5.4)
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Table I. Arithmetic encoding example

Iteration Input Symbol Interval base Interval length

0 — 1 —

1 2 0.7 0.2

2 1 0.74 0.1

3 0 0.74 0.02

4 0 0.74 0.004

5 1 0.7408 0.002

6 3 0.7426 0.0002

lk = lk−1p(sk), k = 1, 2, ..., N. (5.5)

Let us give an example from paper [16] to demonstrate the iterative process.

Assume that source Ω has four symbols (M = 4), the probabilities and distribution

of the symbols are P = [ 0.2 0.5 0.2 0.1 ] and C = [ 0 0.2 0.7 0.9 1 ], and the sequence

of (N = 6) symbols to be encoded is S = {2, 1, 0, 0, 1, 3}, the whole input sequence

is {2, 1, 0, 0, 1, 3, 1, 1, 1, 2}. The encoding example is demonstrated in Table I.

b0 = 0, l0 = 1,

Φ0(S) = [0, 1),

b1 = b0 + c(s1)l0 = 0 + 1× 0.7 = 0.7,

l1 = p(s1)l0 = 1× 0.2 = 0.2,

Φ1(S) = [0.7, 0.9),

b2 = b1 + c(s2)l1 = 0.7 + 0.2× 0.2 = 0.74,

l2 = p(s2)l1 = 0.5× 0.2 = 0.1,
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Table II. Arithmetic decoding example

Iteration Decoder updated value Output symbol

0 0.74267578125 2

1 0.21337890625 1

2 0.0267578125 0

3 0.1337890625 0

4 0.6689453125 1

5 0.937890625 3

Φ2(S) = [0.74, 0.84),

...

b6 = b5 + c(s6)l4 = 0.7426,

l6 = p(s6)l5 = 0.0002

Φ6(S) = [0.7426, 0.7428),

The final task in arithmetic encoding is to define a code value v(S) that will

represent data sequence S. We can choose any value in the final interval.

The decoding process start from v(S), the recursion formulas are

v′1 = v(S), (5.6)

s′k = {s : c(s) ≤ v′k < c(s+ 1)}, k = 1, 2, ..., N, (5.7)

v′k+1 =
v′k − c(s′k)

p(s′k)
, k = 1, 2, ..., N − 1. (5.8)

In equation (5.7), the colon means ”s that satisfies the inequalities”. The decod-
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ing example is demonstrated in Table II.

This process can make sure different sequence produce different code value. We

can compare with the idea that we represent ASCII symbol sequence ’abc’ = 97 ×

2562 + 98× 256 + 99, we obviously know this value is unique.

To implement arithmetic coding with fixed-precision, we need to solve two prob-

lems. One is multiplication precision issue: the number of digits required to represent

the interval length exactly grows when a symbol is coded. We solve this problem using

the fact we do not need exact multiplications by the interval length. Practical imple-

mentations use P-bit registers to store approximations of the mantissa of the interval

length and the results of the multiplications. All bits with significance smaller than

those in the register are assumed to be zero. We do not have to worry about the exact

distribution values as long as the decoder is synchronized with the encoder, i.e., if the

decoder is making exactly the same approximations as the encoder, then the encoder

and decoder distributions must be identical. The price to pay for inexact arithmetic is

degraded compression performance. Arithmetic coding is optimal only as long as the

source model probabilities are equal to the true data symbol probabilities; any differ-

ence reduces the compression ratios. In fact, if we can make multiplication accurately

to 4 digits, the loss in compression performance can be reasonably small.

The other problem is addition precision problem when there is a large difference

between the magnitudes of the interval base and interval length. This problem can be

solved by interval rescaling. One important property of arithmetic coding is that the

actual intervals used during coding depend on the initial interval and the previously

coded data, but the proportions within subdivided intervals do not. For example, if

we change the initial interval to 2 in arithmetic example, not 1, the coding process

remains the same, expect all intervals are scaled by a factor of two, and shifted by

one.
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We also can apply rescaling in the middle of the coding process. Suppose that

at a certain stage m we change the interval according to

b′m = γ(bm − δ), l′m = γlm, (5.9)

We can use the following equations to recover the interval and code value that we

would have obtained without rescaling:

bN =
b′N
γ

+ δ, lN =
l′N
γ
. (5.10)

Sequential arithmetic encoding algorithm is depicted in algorithm 2 [16], which is

the implementation of FastAC, one of the fast arithmetic encoder. In this algorithm,

let Lmax denote the initial value is l, Lmin denote minimum value of l. For 4 bytes

unsigned integer arithmetic coding implementation, Lmax = 232 − 1, Lmin = 224,

D = 65536. D is 65536 since FastAC split large file to 64 KB blocks, thus all

denominators of p(sk) is 65536, i.e., right shift 16 bits. We can change D value

depending on the block size. If we set block size 32768, then D = 32768. We also

can change Lmax and Lmin. If we implement with 8 bytes unsigned integer, then

Lmax = 264 − 1, Lmin = 256, and this implementation would improve the compression

ratio a little bit [17]. We calculate each input char based on the two equations (4)

and (5) and produce new base and new length, finally the base is a big number. Since

our computer has limited precision, we need to perform interval rescale and output

the highest byte to output buffer to keep the precision of new base and length. We

call the interval rescale and highest byte output process renormalization. For simple

explanation, we use 256 symbols to explain our algorithm in following section.

Let us discuss two extreme cases here to have an intuitive impression how algo-

rithm 2 works. Assume we compress a data source with 256 symbols, and we take

64 KB as block size. One case is all symbols have same frequency in the block, that
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means all 256 symbols have same probability p(si) = 1/256. After code line 5, the

length is changed to less than Lmin, so interval rescale once for each input char, and

each interval rescale output one byte, thus we can simply say the output byte is same

with input, and no compression is produced here. The other case is the input data

source only has two symbols. The probability of symbol ’0’ is 65535/65536, and the

probability of symbol EOF is 1/65536. Since the probability of symbol ’0’ is close

to 1, we can simply say that the length is always greater than Lmin, and no interval

rescale causes no output till the last symbol is encoded. We can estimate the whole

block is compressed to couple of bytes. These two examples simply reflect how com-

pression occurs and the relation between symbol frequency and compression ratio. In

normal case, we output 2 bytes for 3 symbols.

In sequential arithmetic encoding, for N bytes, we need to calculate N steps,

and in each step we do at least two multiplications and one addition, hence the time

complexity is O(N).

We propose novel parallel algorithm which time complexity can be O(logN). The

general idea is to separate the arithmetic encoding to big number multiplication and

big number addition. Both can be parallel using variant algorithm of prefix sum.

Based on equation (4) and (5), we can derive the following equation without

iterative process,

bN = b0 + l0c(1), N = 1 (5.11)

bN = b1 +
N∑
i=2

(
l0

i−1∏
j=1

p(sj)c(si)

)
, N > 1. (5.12)

B. Character Frequency Statistics

Firstly we need to calculate the frequency of each symbol to figure out p(sk) and c(sk).

Our parallel character frequency statistic algorithm employs source code of CUDA
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histogram algorithm of Ramtin Shams and R. A. Kennedy [14]. We use the second

collision free method of this paper. They maintain a histogram matrix of B×N size,

where B is the number of bins and N is the number of threads. This method provides

a collision free structure for memory update by each thread. A parallel reduction is

ultimately performed on the matrix to combine data counters along the rows and

produce the final histogram. Two problems need to be addressed for this method.

One is slow zero initialization on global memory. They implemented a method for

initializing floating point arrays in the kernel with a throughput of around 35 Gb/s on

GTX 8800 and solved this problem. The other is non-coalesced read/writes per input

data on global memory is inefficient. They pack multiple bins in a double work in the

shared memory and only update the corresponding bin in the global memory when

the packed bin overflows. This method greatly reduced the global memory update

and our test result showed 6.6 GB/s high performance on GTX 480.

C. Parallel Big Number Multiplication

Our parallel arithmetic coding is based on this 4 bytes integer implementation. Firstly

we can parallel calculate
∏N−1

j=1 p(sj) in equation (12) based on prefix sum algorithm,

described in Figure 6.

The key problem is to resolve limited precision problem. Our solution is to

represent
∏N−1

j=1 p(sj) with two parts, one is a float number, the other is right shift

number based on the denominator of p(sj). We represent numerator of p(sj) with

4 bytes float, and the denominator depends on block size. In FastAC, they choose

65536 as block size to perform arithmetic coding, thus the denominator is 65536. In

algorithm 3, the input are numerators of p(sj), k is thread id, n is thread number in

a block.
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P8 P7 P6 P5 P4 P3 P2 P1

P4P8 P3P7 P2P6 P5P1 P4 P3 P2 P1

P2468 P1357 P246 P135 P24 P13 P1P2

P1-8 P1-7 P1-6 P1-5 P1-4 P1-3 P1P12

Fig. 6. Big number multiplication.

In algorithm 3, there is no precision loss introduced since in fact we are repeating

the same process with sequential algorithm 2. The only difference is we firstly multiply

numerator till it is larger than 215−1, then divide the denominator. We use float type

so actually no precision loss is introduced in this process. The purpose of dividing

denominator is to prevent multiplication overflow for 32 bits float type, and 215− 1 is

set as overflow threshold here since it is half of maximum value of 32 bits float type.

In phase 1, we assign an initial right offset for each symbol, where base number is 256.

Phase 2 basically is a prefix sum process. We also need to change offset in this stage

when the product is larger than the overflow threshold. At the end of algorithm 3,

we multiply l0, c(si), and amend the product by multiplying 256 and changing right

offset value if it is less than 224 to keep the value same with sequential.

In Fig. 7, we give an example with base number 16. When multiplying 7 with

4, we can not directly multiply them since the result 28 would cause an overflow. We

firstly check if each multiplicator is large than log2 16. Since 7 > 4, 7 is divided by 16,

and the result is 0.4375. After this, we update its exponent by adding 1, then multiply

by 4, and the result is 1.75. We apply same operation on 5 and 11. Finally the result

is 6.015625, the exponent is 2. We can see 6.015625× 162 = 1540 = 5× 11× 4× 7.
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7 4 11 5

1.75 3.4375

2

0 0 0 0

1 1

6.015625

Exponent

Significant digits

Result

Fig. 7. Example of big number multiplication.

Large data is split to multiple blocks, thus we need to perform intra-block scan

in shared memory and inter-block scan in global memory. In our implementation,

algorithm 3 actually performs in GPU thread block which is intra-block operation.

After this, we start inter-block scan. Let b denote GPU block id, and d denote

iteration times, 0 ≤ d < log2B, where B is the number of blocks, B = N/n. From

second block, we load elements of each block and multiply them with last element

of block (b − 2d), and then iterate this operation log2 B times for all blocks, finally

we output the final result to global memory. For example, assume we have 3 blocks,

and each block has 8 elements. After GPU intra-block multiplication, the first block

contains p1, p1−2, ..., p1−8, the second block contains p9, p9−10, ..., p9−16, and the third

block contains p17, p17−18, ..., p17−24. In first iteration, we multiply each element in

second block with last element p1−8 in block 0 (1 − 20 = 0); also we multiply each

element in third block with p9−16. After first iteration, elements in second block are

p1−9, p1−10, ..., p1−16, elements in third block are p9−17, p9−18, ..., p9−24. In second

iteration, we respectively multiply elements in third block with last element of block



27

4

M2
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M3

12

M4

16

M5

L1 L2+H1
L4+H3

+C3

L5+H4

+C4
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+C2
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0

M1

Exponent

Significant Digits

Result

Fig. 8. Big number parallel addition output phase.

M1 M2 M3 M4 M5 M6 M7 M8

0 0 0 1 0 0 0 1Output Flag

Segmented Scan

S1-4 S5-8 0 0 0 0 0 0

1 2 2 3 4 5 6 6

M1 M2 M3 M4 M5 M6 M7 M8

1 2 2 3 4 5 6 6

Exponent

Result

Significant Digits

Fig. 9. Big number parallel addition merging phase.

2 − 21, i.e., the first block. After second iteration, the third block contains p1−17,

p1−18, ..., p1−24 and the process is terminated. Let N represent element number we

need to multiply, B and T represent the block and thread number, N = B × T , the

step complexity is O(log2 T + log2B) = O(log2 N).

D. Parallel Big Number Addition

Secondly we can parallel compute the summation
∑N

i=1 Ii in equation (12), where

Ii denotes l0
∏i−1

j=1 p(sj)c(si). Based on the first step, let S denote left shift offset,

we obviously know S[i] is a sorted array and S[i + 1] − S[i] ≤ 1 (i.e, 1 or 0) since

the minimum multiplicand in the algorithm is 1/256. Let M denote the 4 byte float

number, we have Ii = Mi/(256
S[i]).
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In sequential arithmetic coding algorithm, when range < Lmin, we rescale the

range by left shift 8 bits and output highest byte of base to keep the precision of

addition, otherwise small range would cause precision loss problem. After rescaling

the length and left shift operation, we can represent Ii = Mi(256
S[N ]−S[i]), where S[i]

is left shift offset.

The key problem is how to hold the result in memory and how to parallel output

it to compressed file. We can not maintain the precision of the final result since it

could be a huge number which even can not fit in shared memory. Therefore our

approach is to output the huge number by bytes to shared memory and then to

global memory. We know the maximum left shift offset, thus we know the output

memory size. Considering the carry of highest position, we increase 4 bytes for the

total memory size. The process of parallel output results is depicted in Fig. 8. In

this figure, the top line is the left shift offset of all input number, the second line is

the 8 bytes number representing significant digits of Ii. Let Li denote the low 32 bits,

Hi denote the high 32 bits of the 8 bytes number and Ci denote the carry of sum

of Li + Hi−1. Firstly we shift 32 bits to get high and low 32 bits for each number.

Secondly we add low 4 bytes value of current offset with previous high 4 bytes value

and carry from previous offset, and output the sum which is the final result on this

offset to global memory.

Another problem is our shift offsets are not a multiple of 4. They are monotoni-

cally increasing, can be repeated and the biggest gap is one. There are two extreme

cases: one is all shift numbers are same, the other is all is different and monotonically

increase one. In real situation, after match finding phase, arithmetic coding produce

around 2 bytes for every 3 symbols. We know a new base is generated for each symbol,

therefore two base numbers could have same offsets.

Our solution is firstly computing summation of all Ii whose shift offset from 4i to
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4(i+1)−1, 0 ≤ i ≤ (S[N ]/4), and then save the sum to 8 bytes long variable. Fig. 9

demonstrates the process. Output flag is to indicate which number should be output,

the first line of input data is the left shift number, and the second line is 4 byte

integer numbers. Furthermore, we generate a flag which is described in algorithm 4

for segmented scan. After segmented scan, all left shift number is a multiple of 4,

so we can parallel arrange 4 bytes output for each thread and output them to global

memory.

The whole parallel big number addition process is described in algorithm 4, it

is performed in GPU thread blocks. After intra-block operation, multi-block merge

process starts. We use another array to save the shift offset of last valid byte in each

block. If the shift offset of last valid byte in block k is s, and the shift offset of start

valid byte in block k + 1 is s+ 1, then we do not merge them; if they are same, then

we need to merge by adding the two; if a carry is propagated, then previous element

is updated by adding 1, also we update the start element in block k + 1 to zero. We

apply this merging manner to all adjacent blocks and compact them to remove zero.

The compacted result is the final arithmetic coding result, which is exactly same with

sequential algorithm.

In our implementation, we also do optimization on memory coalescing, divergent

branching, bank conflicts and latency hiding. In practice, we avoid shared memory

bank conflicts by replacing interleave addressing with sequential addressing. We un-

roll loops to remove instruction overhead since multiply operation has low arithmetic

intensity. We can unroll last 9 iterations of the inner loop using templates since we

know the block size on GTX480 is limited to 768 threads. Moreover, we can remove

CUDA function syncthreads which introduces 4 clock cycles because instructions are

SIMD synchronous within a warp.
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Algorithm 2 Sequential arithmetic coding: FastAC

1: Input: p(sk) and c(sk) respectively contain numerators of all symbols’ probabil-

ities and cumulative distribution in the input sequence, D is the denominator of

the probability and cumulative distribution, N is the number of characters in the

input sequence.

2: Output: output contains compressed data, a big number.

3: for k = 1 to N do

4: /* Compute new base and length according to equation (4) and (5) */

5: l = l/D

6: b+ = l ∗ c[sk]

7: l∗ = p[sk]

8: if propagate carry then

9: p = idx− 1

10: while output[p] = 255 do

11: output[p−−] = 0

12: end while

13: output[p] + +

14: end if

15: while l < 224 − 1 do

16: l <<= 8

17: output[idx++] = b >> 24

18: b <<= 8

19: end while

20: end for
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Algorithm 3 Parallel big number multiplication.

1: Input: data = numerators of p(sj), D = denominator

of p(sj).

2: Output: power contains right shift offset of each

symbol, data = respective significant digits of∏1
i=1 p(si),

∏2
i=1 p(si), ...,

∏N
i=1 p(si).

3: /* Initialize offset, k is thread id, n is total thread number in a GPU thread block.

*/

4: for all k = 0 to n− 1 in parallel do

5: power[k] = log256 D

6: end for

7: /* 2. Compute
∏N

i=1 p(si). */

8: for d = log2 n− 1 down to 0 do

9: for all k = 0 to n− 2d − 1 in parallel do

10: data[k]∗ = data[k + 2d]

11: power[k]+ = power[k + 2d]

12: while data[k] > 215 − 1 do

13: data[k] = data[k]/D

14: power[k]− = log256D

15: end while

16: end for

17: end for
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Algorithm 4 Parallel big number addition.

1: Input: input = (I1, I2, ..., IN), power contains

all left shift offsets of IN .

2: Output: output = (
∑N

i=1 Ii).

3: /* 1. Load input to 8 bytes data[k], initialize flag */

4: for all k = 1 to n− 1 in parallel do

5: data[i] = data[i] << ((power[i] mod 4) ∗ 8)

6: if power[k] mod 4 = 0 AND

power[k]! = power[k − 1] then

7: flag[k] = 1

8: outF lag[k − 1] = 1

9: end if

10: end for

11: /* 2. Compute partial sum with segmented scan */

12: /* 3. Compact the data array */

13: /* 4. Each thread output 4 bytes to global memory */

14: for all k = 0 to n− 1 in parallel do

15: outV alue+ = data[k] AND 232 − 1

16: outV alue+ = data[k − 1] >> 32

17: if propagate carry then

18: carry[k]+ = 1

19: end if

20: outV alue+ = carry[k − 1]

21: output[k] = outV alue

22: end for
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CHAPTER VI

RESULTS AND ANALYSIS

We test with 10 GB file which is crawled by IRLbot [18] crawler. We randomly

truncate 32 MB, 128 MB, 256 MB, 512 MB from the 10 GB file and then test the

compression ratio and time. We test the data with Hash 4 bytes, hash 2 bytes and

longer match three methods.

As for testing hardware, we use an AMD Phenom(tm) II 2.8 GHz six-core desktop

machine with 3MB L2 Cache for all our experiments. The machine runs Windows

Server 2008 R2 with 16 GB of RAM support and 5 TB of disk space available.

The GPU is GeForce GTX 480, CUDA driver version is 3.20 and CUDA capability

major/minor version number is 2.0. GeForce GTX 480 has 1576599552 bytes total

amount of global memory, 15 Multiprocessors, and each MP has 32 cores.

In Fig. 10(a), we can see compression time is close to linear increase. Our

implementation is splitting a big file to small blocks (128 MB, 192 MB), thus it is

linear increase. We can observe MatchLonger method is increase more sharply, the

reason is we use 192 MB block size for 512 MB files, and the larger hash table is

slower.

In Fig. 10(b), firstly we can find when file size is less than 32 MB, the compression

ratio is lower than file larger than 100 MB. The reason is fewer match substrings can

be found in files less than 128 MB. When file size is larger than 128 MB, the large file is

split to 128 MB, so compression ratio is similar. We also can observe compression ratio

of Hash4 method improve faster than Hash2, and Hash2 is faster than MatchLonger

method, which proves more hash values can produce more matching and really work

efficiently for both small and large file. In small file, method Hash4 is limited by hash

table size, so Hash2 and MatchLonger work better for small file.
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Fig. 10. Compression rate and ratio for parallel LZMA (pLZMA).
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Fig. 11. Compression rate and ratio for parallel arithmetic coding.

FastAc is one of the fastest arithmetic encoder [19], we take it as sequential

arithmetic encoder example and compare with our parallel arithmetic compressor

on GTX 480. Fig. 11(a) is our compression time test result, which shows that

the compression speed of FastAC on CPU is around 46 MB/s, while our parallel

algorithm speed is around 680 MB/s. However, we can only parallel static model.

The difference between compression ratio of static model and adaptive model on our

dataset is around 8% as showed in Fig. 11(b). We minimize the difference with

match finder pre-processing and produce good final compression results compared

with popular compressors.

We test FreeArc which is the fastest compressor in the environment. The com-
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Fig. 12. Compression rate and ratio comparison with FreeArc (0.66) on 6x2.8 GHz

core, FreeArc (0.66) on 1x2.8GHz core, winrar (4.01), winzip (15.5), gzip

(1.3.12) and 7zip (9.20).

pression speed is 177 MB/s with compression ratio 21.8%. In Fig. 12, we can observe

our algorithm (pLZMA) on GPUs can achieve competitive compression ratio with

FreeArc on 6-core CPU when compression ratio is around 20%. And our result is

3.5-10 times faster than popular compression software such as gzip, 7zip and win-

rar, whose compression speed is around 17-70 MB/s on the 6x2.8 GHz CPU with

compression ratio around 20%. Our compression ratio is around 4% larger than nor-

mal LZMA algorithm since we parallel static arithmetic encoding, while sequential

arithmetic encoding can use adaptive model and achieve better compression ratio.
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CHAPTER VII

CONCLUSION

In this paper, we proposed a novel parallel text compression design on GPUs, a novel

parallel matching and merging algorithm to keep the compression ratio approximate

with the sequential, improved parallel range coding design and implementation on

GPUs. We showed with our experiment that our compressor is 3.5-10 x faster than

sequential approaches on modern CPUs with around 20% ratio. Future work involves

exploring methods to design more efficient algorithms for building large hash table

and parallel adaptive arithmetic coding.
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