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ABSTRACT

Variable Selection and Function Estimation

Using Penalized Methods. (December 2011)

Ganggang Xu, B.S., Zhejiang University;

M.S., Texas A&M University

Co–Chairs of Advisory Committee: Dr. Suojin Wang
Dr. Jianhua Huang

Penalized methods are becoming more and more popular in statistical research.

This dissertation research covers two major aspects of applications of penalized meth-

ods: variable selection and nonparametric function estimation. The following two

paragraphs give brief introductions to each of the two topics.

Infinite variance autoregressive models are important for modeling heavy-tailed

time series. We use a penalty method to conduct model selection for autoregressive

models with innovations in the domain of attraction of a stable law indexed by α ∈

(0, 2). We show that by combining the least absolute deviation loss function and

the adaptive lasso penalty, we can consistently identify the true model. At the same

time, the resulting coefficient estimator converges at a rate of n−1/α. The proposed

approach gives a unified variable selection procedure for both the finite and infinite

variance autoregressive models.

While automatic smoothing parameter selection for nonparametric function es-

timation has been extensively researched for independent data, it is much less so for

clustered and longitudinal data. Although leave-subject-out cross-validation (CV)

has been widely used, its theoretical property is unknown and its minimization is

computationally expensive, especially when there are multiple smoothing parameters.

By focusing on penalized modeling methods, we show that leave-subject-out CV is
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optimal in that its minimization is asymptotically equivalent to the minimization of

the true loss function. We develop an efficient Newton-type algorithm to compute

the smoothing parameters that minimize the CV criterion. Furthermore, we derive

one simplification of the leave-subject-out CV, which leads to a more efficient algo-

rithm for selecting the smoothing parameters. We show that the simplified version

of CV criteria is asymptotically equivalent to the unsimplified one and thus enjoys

the same optimality property. This CV criterion also provides a completely data

driven approach to select working covariance structure using generalized estimating

equations in longitudinal data analysis. Our results are applicable to additive, linear

varying-coefficient, nonlinear models with data from exponential families.
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CHAPTER I

INTRODUCTION

1.1. Variable selection using penalized methods

Heavy-tailed time series data is often encountered in a variety of fields, such as hy-

drology (Castillo, 1988), economics and finance (Koedijk et al., 1990) and teletraffic

engineering (Duffy et al., 1994). In this situation, the infinite variance autoregressive

model is often preferred to the finite variance one, and its statistical theory has been

widely studied in the literature. See Resnick (1997) for a comprehensive review and

further references.

Model selection is an important aspect of modeling with time series data. An

unnecessarily complex model can degrade the efficiency of the resulting parameter

estimators and lead to less accurate predictions. For a time series model with finite

variance, traditional model selection criteria aic (Akaike, 1973) and bic (Schwarz,

1978) can be employed to choose the order of the autoregressive model (McQuarrie

and Tsai, 1998). Compared to the case of finite variance autoregressive models, few

papers have investigated the model selection for autoregressive models with infinite

variance. Bhansali (1988) considered the order determination of the infinite variance

autoregressive processes with innovations in the domain of attraction of a stable

law, and gave a consistent estimator of the order. Knight (1989) studied the same

model and showed that the order selection with aic is weakly consistent. While most

of the literature focuses on the order determination of the time series, Ling (2005)

proposed a self-weighted least absolute deviation estimator for the infinite variance

autoregressive model under which the coefficient estimates are asymptotically normal

1The journal model is Journal of the American Statistical Association.
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and thus can be used for statistical inference. He also proposed a variable selection

procedure with a series of hypothesis tests based on the self-weighted least absolute

deviation estimator. However, his method can be unstable and its implementation is

complicated.

Using the shrinkage method for variable selection is relatively new in time series

literature. Wang et al. (2007a) applied adaptive lasso (Zou, 2006) to the regression

model with finite autoregressive errors. They showed that the resulting estimator via

adaptive lasso not only has a sparse presentation, but also has the oracle property

(Fan and Li, 2001), which means that it can simultaneously select variables and

estimate parameters in time series modeling.

One difficulty often encountered in data analysis is that it is generally impossible

to know whether a time series of finite length has infinite variance (Granger and Orr,

1972). Many methods have been developed to test for infinite variance of a real time

series data; see, for example, Hill (1975). While Wang et al. (2007a)’s method does

not apply to infinite variance autoregressive models, using Ling (2005)’s method can

cause loss of important information by weighing down large observations, especially

in the case of a time series with heavy tails but finite variance.

In Chapter III, we first use the self-weighted least absolute deviation proposed

by Ling (2005) as the loss function and the adaptive lasso as the penalty method to

do the model selection. Under appropriate conditions, we show that our penalized

method can identify the true model consistently and the estimator of the coefficients

corresponding to the true model is asymptotically normal, which is important for

the statistical inference of infinite variance autoregressive models. After that, we

propose a unified variable selection approach that can efficiently deal with heavy-

tailed autoregressive models with either finite or infinite variance. By combining the

least absolute deviation as the loss function and the adaptive lasso as the penalty
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function, we show that under regularity conditions we can identify the true model

consistently and obtain a point estimator of the coefficients corresponding to the true

model with a convergence rate of n−1/α, where α ∈ (0, 2) is the index of the stable

distribution. This convergence rate is faster than that of finite variance time series.

1.2. Nonparametric function estimation using longitudinal data

Longitudinal data analysis has been a subject of intense research in statistics for the

past 30 years. Various parametric models (e.g. Vonesh and Chinchilli, 1997; Diggle

et al., 2002) and nonparametric or semi-parametric models (e.g. Hart and Wehrly,

1986; Rice and Silverman, 1991; Zeger and Diggle, 1994; Fan and Zhang, 2000; Lin

and Carroll, 2000; Wang et al., 2005) have been proposed and studied. In a typical

set of longitudinal data, we have observations (yij,xij), for j = 1, . . . , ni, i = 1, . . . , n,

where yij is the response variable of jth measurement of the ith subject and the

xij is the corresponding p × 1 vector of covariates. It is reasonable to assume that

observations from different subjects are independent and observations within a subject

are correlated. For the longitudinal data analysis, there are three main modeling

families: marginal models, mixed-effect models, and transition models (Diggle et al.,

2002). In Chapter IV, we focus on the marginal approach using generalized estimating

equations (GEE, Liang and Zeger, 1986).

By introducing a parameterized working correlation, GEE method has the poten-

tial to increase the efficiency of the regression estimates when the marginal distribu-

tion of response are from exponential family. More specifically, yij is from exponential

family with mean µij and variance vij,

f(yij) = exp

{

yijθij − b(θij)

φ
+ c(yij, φ)

}



4

where µij = b′(θij), vij = φb′′(θij) and with the link function g(µij) = xT
ijβ.

One limitation of the work of Liang and Zeger (1986) is its inflexibility because

it assumes fully parametric relationship between the response and covariates. Non-

parametric and semi-parametric models are developed to model more complicated

relationships in the longitudinal data setup. These work include generalized additive

models (GAM, Wild and Yee, 1996; Berhane and Tibshirani, 1998; Lin and Zhang,

1999), varying coefficient models (Hoover et al., 1998; Chiang et al., 2001; Huang

et al., 2002), partially linear models (Zeger and Diggle, 1994; He et al., 2002; Wang

et al., 2005; Huang et al., 2007), and partial linear varying coefficient model (Ahmad

et al., 2005). All above mentioned models can be viewed as special cases with link

function defined as:

g(µij) = xij0β0 +
m
∑

k=1

fk(xijk),

where xij0β0 is the strictly parametric part of the model and fk, (k = 1, . . . ,m) are

unknown smooth functions (xijk can either be a scaler or a vector).

The flexibility of the GAM is also accompanied by the potential risk of over-fitting

the data. Broadly speaking, the estimation of nonparametric terms in (4.2) can be

classified into kernel methods (Wand and Jones, 1995) and spline methods (Green

and Silverman, 1994). The kernel method avoids over-fitting by selecting appropriate

bandwidth for each nonparametric component using cross validation. However, the

estimation of kernel coefficient itself can be computationally challenging, the selection

of bandwidths can be computationally prohibitive for generalized additive models, if

not impossible. In addition, Welsh et al. (2002) pointed out that, by taking into

account of the within subject correlation, the spline methods appear to be more

efficient than the kernel methods in nonparametric marginal regression model. In

Chapter IV, we using spline methods to estimate the nonparametric function. To
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avoid over-fitting, Berhane and Tibshirani (1998) proposed to use the ”Penalized

Quansi-Likelihood” criterion:

P (f1, · · · , fk) = Q(η; y) − 1

2

m
∑

k=1

λkJ(fk)

where η = g(µ), Q(η; y) is some quasi-likelihood score function based on data, J(·)

is some penalty functional and λ1, · · · , λk are smoothing parameters controlling the

tradeoff between model fit and model complexity.

(Example 1: Partial linear additive model) The response Y is related to the

covariates X = (X1, · · · , Xm)T ∈ Rm and Z = (Z1, · · · , Zd)
T ∈ Rd in the way:

µ = E(Y |X = x, Z = z) = g−1(zTβ +
m
∑

k=1

fk(xk))

where xk is the kth component of x, β is a d-dimensional vector and fk’s are unknown

and smooth functions. Then in this case, we can take Q(η; y) as the log-likelihood

function of y and the penalty functional defined as J(fk) =
∫

[f ′′(xk)]
2 dxk.

(Example 2: Varying coefficient model) Hoover et al. (1998) considered the model

yij = XT
ijβ(tij) + ǫi(tij),

where β(t) = (β0(t), · · · , βm(t))T (m ≥ 0) are unknown smooth functions of t, ǫi(t)

is a realization of a zero-mean stochastic process ǫ(t), (t ∈ R), and Xij and ǫi are

independent. In this case, fk(·)’s are bivariate functions except for k = 0. More

specifically, for k = 0, · · · ,m, we would have fk(xk,ij) = Xk,ijβk(tij) where Xk,ij is the

kth component of Xij and X0,ij = 1. Here, we take Q(η; y) = −∑i,j(yij −XT
ijβ(tij))

2

and the penalty term as J(fk) =
∫

[β′′
k(t)]2 dt for k = 0, · · · ,m.

The choice of λk’s is critical for getting a good function estimator. If there is

no intra-subject correlation and treat all observations as independent data points,

the asymptotic optimality of generalized cross validation (GCV, Craven and Wahba,
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1979) in selecting smoothing parameters has been showed by Li (1986) in ridge regres-

sion and by Gu and Ma (2005) in the case of mix effect model. However, when there

is intra-subject correlation as in longitudinal or cluster data, smoothing parameters

selection is still an open problem. One of the popular procedure in this area is called

“leave-subject-out cross-validation” (LsoCV), see Rice and Silverman (1991); Hoover

et al. (1998); Huang et al. (2002). As popular as it is, there are several issues with this

procedure. First of all, the computational cost of doing cross-validation is expensive.

Furthermore, in the current practice in longitudinal study, researchers still rely on

the grid search to find the optimal λ’s using leave one subject out cross-validation.

Because of this, current research can only deal with one or two smoothing parame-

ters, searching in a higher dimension is not feasible. This is especially not desirable in

varying coefficient model where each nonparametric component is supposed to receive

different amount of penalty. The other issue with the LsoCV method is that even

though it is widely used, no theoretical properties nor a systematic algorithm for it

have yet been developed.

In Chapter IV, we first derive a short cut formulae for the LsoCV score and show

that it is asymptotically optimal in selecting smoothing parameters in the sense that

under certain conditions, minimizing LsoCV score is equivalent to minimizing the

MSE of the function estimator when number of subjects goes to infinity. We then

propose a new computationally more efficient criterion for choosing optimal smoothing

parameters while maintain the asymptotical optimality. Based on the new criterion,

a Newton-Raphson type algorithm is developed for automatically selecting multiple

smoothing parameters. In the end, a completely data driven approach of selecting

the best working covariance structure is proposed based on the LsoCV method.



7

CHAPTER II

LITERATURE REVIEW FOR CHAPTER III

2.1. Stable distribution: modeling heavy tailed distribution

Heavy-tailed time series data is often encountered in a variety of fields, such as hy-

drology (Castillo, 1988), economics and finance (Koedijk et al., 1990) and teletraffic

engineering (Duffy et al., 1994). But what is a heavy tail? We use the definition

proposed in Resnick (1997). A random variable X is said to have a light tailed dis-

tribution if it decay exponentially fast as x→ ∞,

P [|X| > x] ∼ 1√
2π

exp(−x2/2)

x
→ 0.

The most famous example in this class is the Normal distribution. A random variable

X is said to have a heavy tailed distribution F (x) with index α > 0 if, for x > 0,

P (|X| > x) = x−αK(x), (2.1)

where K(x) is some slowly varying function, that is, for x > 0

lim
t→∞

K(tx)

K(t)
= 1.

This definition implies that















E(|X|β) <∞, β < α,

E(|X|β) = ∞, β > α.

(2.2)
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As mentioned in Resnick (1997), typical examples of K(x) include:

K(x) =















































c, Pareto distribution;

c+ o(1), Stable distribution;

log(x), x > 1;

1/ log(x), x > 1;

The difference term o(1) between the tail behavior of the pareto distribution and the

stable distribution may look negligible, but it can cause big differences in detecting

two types of tails.

One thing worth mentioning is that, when the tail index of F (x) is less than 2,

that is α < 2, the random variable X would have infinite variance. One consequence

is that when a time series or other stochastic processes have error terms of infinite

variance, many of the classical methods of analysis based on second moments, for

example, regression, autoregressive models and spectral analysis, may not be used

properly for such series (Granger and Orr, 1972).

To model distributions with infinite variance, one of the popular choices is the

stable distribution law, which can be defined in several different ways. Granger and

Orr (1972) gives a detailed summary of stable distribution and we cite some of their

results here.

Definition: A distribution function F (x) is called stable if for every a1 > 0, b1

and a2 > 0, b2, there exists corresponding a and b such that the equation

F (a1x+ b1) ∗ F (a2x+ b2) = F (ax+ b)

holds, where ∗ denotes the convolution operator.

This definition guarantees the additive property in that if X and Y are indepen-
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dent random variables having the same stable distribution function F (·), then the

sum X + Y also has the same stable distribution function F (·). This additive defini-

tion of stable distribution results in a generalized version of central limit theorem as

the following (Granger and Orr, 1972).

Generalized Central Limit Theorem Let {Xn} be a sequence of iid random vari-

ables and {an} and {bn} be two sequence of numbers, define the sums

Sn =
1

an

n
∑

i=1

Xi − bn.

If weighted sum sequence Sn converges in distribution as n → ∞, then it must

converge to a random variable with a stable distribution.

This theorem provides a heuristic justification for the use of stable distribution

to model the error terms in time series. For example, if a variable in an economic time

series can be considered as sums of a large number of independent terms (like the stock

price, which can be viewed as a consequence of numerous independent transactions),

the distribution of the series might have infinite variance, when the infinite invariance

stable distribution may be a reasonable tool to model this types of data.

A necessary and sufficient condition for the distribution function F (·) to be stable

is that its characteristic function φ(t) admits the following representation:

φ(t) = exp{iγt− δ|t|α[1 + iβsgn(t)w(t, α)]},

where i =
√
−1, 0 < α ≤ 2, −1 ≤ β ≤ 1, δ ≥ 0, γ is any real number and functions

w(t, α) and sgn(·) are defined as

w(t, α) =















tan πα
2
, α 6= 1;

2
π

log |t|, α = 1;

, sgn(t) =































1, t > 0;

0, t = 0;

−1, t < 0.
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This characterization completely describes all members of stable distribution family.

Unfortunately, for most values of parameters α, β, γ and δ, F (·) does not have a

analytical form. Two special cases are, if α = 2, F (·) is the cumulative distribution

function of Normal distribution and α = 1, β = 0 case corresponds to the Cauchy

distribution.

Definition For a sequence of iid random variables {Xn} with distribution function

F (·), F (·) is said to belong to the domain of attraction of a stable distribution if for

some sequence of numbers {an} and {bn},

Sn =
1

an

n
∑

i=1

Xi − bn → F (·) in distribution, as n→ ∞.

A sufficient and necessary condition for the distribution function F (·) to be in

the domain of attraction of the stable law with index α ∈ (0, 2) is that

lim
x→∞

P (X1 > x)

P (|X| > x)
≡ q ∈ [0, 1]

exists and

P (|X1| > x) = x−αK(x),

where K(x) is a slowly varying function defined in equation (2.1). This condition

together with equation (2.2) implies that distribution functions belong to the domain

of attraction of the stable law have heavy tails. Furthermore, since α ∈ (0, 2], except

the Normal case (α = 2), all members of stable distributions have infinite variance

and even infinite first moment for those α < 1.

In Chapter III, we shall use the assumption that the innovations of the autore-

gressive models with infinite variance belong to the domain of attraction of the stable

law with index α ∈ (0, 2].
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2.2. Test for infinite variance: the Hill estimator

As stated in Granger and Orr (1972), having observed a series {y1, · · · , yn} with a

finite length, it is usually impossible to distinguish whether it has infinite variance

or not. Among many others, one important reason why identifying heavy tail distri-

bution is necessary is due to the efficiency of estimation. For a parametric model,

the most efficient estimator for parameters in the model is the maximum likelihood

estimate. Misspecification of distributions of the observations would lead to loss in

efficiency of estimators. For example, it is shown in Davis et al. (1992) that, for au-

toregressive models with innovations belong to the domain of attraction of the stable

law with index α ∈ [1, 2), the least absolute deviation (LAD) estimator is asymp-

totically much more efficient than the least square (LS) estimator. However, if the

innovations are from Gaussian process, then the LS estimator is the most efficient

estimator that outperforms the LAD estimator. So in this sense, it is important to

identify whether the heavy tail exists in a observed process in order to choose most

efficient estimation tools.

Many numerical and graphical testing procedures have been proposed for testing

the existence of heavy tail distributions. One of the widely used procedure is the Hill

estimator (Hill, 1975). Suppose X1, · · · , Xn are iid from a distribution F (·). The

left-hand and right-hand Hill index are defined as:

HL,k =

{

1

k

k
∑

i=1

log
X(i)

X(k+1)

}−1

, HR,k =

{

1

k

k
∑

i=1

log
X(n−i+1)

X(n−k)

}−1

(2.3)

where X(1) < X(2) < · · · < X(n) are order statistics and k < n. It has been shown

that if {Xn} is a stationary MA(∞) process and the marginal distribution satisfies

P (|X1| > x) = x−αK(x), as x→ ∞,
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then if k/n→ 0 as k → ∞ and n→ ∞, we have

HL,k
p−→ α, and HR,k

p−→ α,

where the notation
p−→ stands for converge in probability. More details about the Hill

estimator can be found in, for example, Resnick (1997). Applying to our setting of

stable distribution, this result asserts that the Hill estimator is an consistent estimator

of the index α if the marginal distribution of a process is from the domain of attraction

of the stable law. If the estimated α̂ < 2, then we will have strong evidence to believe

that this process has an infinite variance.

We are interested in the autoregressive model with innovation having infinite

variance, Resnick (1997) proposed following two ways to estimate α. Suppose now

we have observations y1, · · · , yn from an autoregressive model

yt = φ1yt−1 + · · · + φpyt−p + ǫt,

where P (|ǫ1| > x) = x−αK(x). Then

1. we can apply the Hill estimator defined in (2.3) directly to observed y1, · · · , yn.

The reason is that, by a result of Cline (1983), one has

P (|y1| > x) ∼ (const)P (|ǫ1| > x),

which implies that the tail of y1 contains the same information as the tail of ǫ1.

2. Find consistent estimates for parameters φ1, · · · , φp first and then apply the

Hill estimator to the estimated residuals as in (2.3).

Based on the existing empirical results in literature, the second one is usually consid-

ered to be a better procedure.

One drawback of the Hill estimator is that the choice of k is very subjective. So
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in practice, the Hill estimator is used by plotting graphs {(k,HL,k), 1 ≤ k ≤ n} and

{(k,HR,k), 1 ≤ k ≤ n}, hoping both graphs look stable so that we can pick out a

value of α. These graphs are useful even when a good value of α cannot be observed

but a rough range of α is observable from these graphs, which is sufficient for us to

determine whether the distribution has a heavy tail.

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

k

Hi
ll e

sti
m

at
or

Figure 1. Hill estimators of the left-handed tail index HL,k (dashed line) and

right-handed tail index HR,k (solid line) using iid sample

To illustrate the use of the Hill estimator, we simulate n = 400 independent

random numbers from standard Cauchy distribution (α = 1, β = 0). Figure 1 graphs

{(k,HL,k) : 1 ≤ k ≤ 100} and {(k,HR,k) : 1 ≤ k ≤ 100}, where we can clearly see that

both curves stabilize around true value α = 1 when k increases. From Figure 1, we
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can easily conclude that this distribution has a very heavy tail. To further illustrate

the application of the Hill estimator to the autoregressive model, we simulate the

process y1, · · · , y400 from the model

yt = 0.5yt−1 + ǫt,

where ǫt is generated independently from standard cauchy distribution. Figure 2

graphs {(k,HL,k) : 1 ≤ k ≤ 100} and {(k,HR,k) : 1 ≤ k ≤ 100} using the observed

data y1, · · · , y400 and the estimated residuals by plugging in the least square estimator

of φ whose true value is 0.5, repectively. As proposed in Resnick (1997), applying

the Hill estimator to the estimated residuals appears to be much better in turns of

producing a stable value of α in the graph. However, the Hill estimator applying

to the observed AR(1) process also provides sufficient evidence to reveal the heavy

tailed nature of the innovation process {ǫt}.

2.3. Estimation of infinite variance autoregressive model

Consider a stationary autoregressive time series {yt} which is generated by

yt = φ1yt−1 + · · · + φpyt−p + ǫt, (2.4)

where φ = (φ1, . . . , φp)
T is an unknown parameter vector with its true value φ0 =

(φ0
1, . . . , φ

0
p)

T and {ǫt} is a sequence of independent and identically distributed errors

whose common distribution belongs to the domain of attraction of a stable distribu-

tion with index 0 < α < 2. In other words,

P (|ǫt|) = x−αK(x){1 + o(1)}, (2.5)
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Figure 2. Hill estimators of the left-handed tail index HL,k (dashed line) and

right-handed tail index HR,k (solid line) using AR(1) sample (above) and

estimated residuals (below)

where K(x) is a slowly varying function at ∞ and

lim
x→∞

P (ǫt > x)/p(|ǫt| > x) = q, 0 ≤ q ≤ 1. (2.6)

This assumption on the innovation process is wildly used in the literatures (Knight,

1989; Davis et al., 1992) and it appears that many financial data series are heavy tailed

in this sense. Notice that if K(x) is a constant, then the corresponding distribution is

a Pareto-like distribution, which contains the Cauchy distribution and general stable

distributions as its special cases.
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Furthermore, we assume that the characteristic polynomial φ(z) = 1−φ0
1z−· · ·−

φ0
pz

p of model (2.4) has all roots outside the unit circle, which makes {yt} strictly

stationary and ergodic. Thus we can represent the infinite variance autoregressive

model (2.4) as a linear process

yt =
∞
∑

j=0

ψ0
j ǫt−j, (2.7)

where ψ0
j ’s are the coefficients of zj in the power series expansion of 1/φ(z).

2.3.1. Least square and least absolute deviation estimator

The least square (LS) estimator φ̂LS of φ is defined as the minimizer of

VLS(φ) =
n
∑

t=p+1

(yt − φ1yt−1 + · · · + φpyt−p)
2, (2.8)

and the least absolute deviation (LAD) estimator φ̂LAD is obtained by minimizing

VLAD(φ) =
n
∑

t=p+1

|yt − φ1yt−1 + · · · + φpyt−p|. (2.9)

Although intuitively, φ̂LS and φ̂LAD may not work since under assumptions (2.5)

and (2.6), the autoregressive model (2.4) has infinite variance when α < 2, and even

infinite mean when α < 1. However, both of them perform surprisingly well in

practice. Davis et al. (1992) provides a heuristic explanation of this phenomenon.

They argued that it is true that large positive or negative values of ǫt produce points

appearing to be outliers. However, each one of these outliers will produce a sequence

of leverage points, which would compensate for the negative effect of the outliers and

lead to faster convergence rates of both φ̂LS and φ̂LAD than in the finite variance

setting. Furthermore, since VLAD(φ) gives less weight to the outliers while giving

similar weight to the leverage points, φ̂LAD is reasonably expected to be more efficient
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than φ̂LS, which is later confirmed by their theoretical results.

For the LS estimator φ̂LS, Davis and Resnick (1985) and Davis and Resnick

(1986) show that, under assumptions (2.5) and (2.6), there exists a slowly varying

function K0(n) such that:

n1/αK0(n)(φ̂LS − φ0) → ξ0 in distribution, as n→ ∞, (2.10)

where ξ0 is the ratio of two stable random variables. If {ǫt} is generated from a stable

distribution, then K0(n) = (log n)−1/α.

Theorem 4.1 in Davis et al. (1992) establishes the asymptotic property of φ̂LAD,

which asserts that under conditions of section 2.3 together with several mild technical

conditions, one has

n1/αK1(n)(φ̂LAD − φ0) → ξ in distribution, as n→ ∞, (2.11)

where K1(x) is some slowly varying function such that n1/αK1(n) = bn with bn =

{inf x : P (|ǫ1| > x) ≤ n−1} and ξ is some unknown random vector. For more details,

please refer to Davis et al. (1992).

Now compare equations (2.10) and (2.11), since for Pareto-like and stable dis-

tributions, K1(x) is constant and K0(n) = (log n)−1/α (Davis et al., 1992), one can

immediately get that, as n→ ∞

||φ̂LAD − φ0||
||φ̂LS − φ0||

p−→ 0,

which proves the conjecture that φ̂LAD is more efficient than φ̂LS, at least for Pareto-

like and stable distributions.
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2.3.2. Self-weighted least absolute deviation estimator

One of the major problem with the LS and LAD estimators is that their limiting

distributions do not have closed forms. This can be seen from the fact that ξ0 and ξ

in equations (2.10) and (2.11) generally do not have closed form distributions. The

immediate consequence is that we cannot perform statistical inference based on φ̂LS

and φ̂LAD. To overcome this difficulty, Ling (2005) proposed a new estimation method

named self-weighted least absolute deviation (SLAD) estimation for infinite variance

autoregressive models, where the estimator φ̂SLAD is obtained by minimizing

VSLAD(φ) =
n
∑

t=p+1

wt|yt − φ1yt−1 + · · · + φpyt−p|, (2.12)

with wt as a pre-given function of {yt−1, · · · , yt−p}. By imposing some conditions on

the choice of wt and the distribution of ǫt, Ling (2005) shows that the limiting dis-

tribution of φ̂SLAD is normal distribution. Denote Xt = (yt−1, · · · , yt−p)
T . Following

are two additional conditions to those in section 2.3 used in Ling (2005):

Condition 1 : E{(wt + w2
t )(||Xt||2 + ||Xt||3)} <∞.

Condition 2 : The error process {ǫt} has a marginal distribution with 0 median

and a differentiable density f(·) such that f(0) > 0 and supx∈R |f ′(x)| <∞.

The choice of the weight function is the critical step to ensure the asymptotic

normality of φ̂SLAD. Ling (2005) proposed to use the following weight function

wt =















1 if ct = 0,

C3/c3t , if ct 6= 0,

where ct =
∑p

k=1 |yt−k|(|yt−k| ≥ C), and C can be chosen as the 90% or 95% quantile

of data points {y1, · · · , yn}. Under conditions of section 2.3 and conditions 1-2, Ling
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(2005) shows that

n1/2(φ̂SLAD − φ0) → N

(

0,
1

4f 2(0)Σ−1ΓΣ−1

)

in distribution, as n→ ∞,

where Γ = E(w2
tXtX

T
t ) and Σ = E(wtXtX

T
t ).

The normality of the estimator φ̂SLAD enable us to do statistical inferences such

as hypothesis tests as in the finite variance case, which is a break through in the

research of infinite variance autoregressive models. By conducting a series of Wald

tests, one should be able to do the forward, backward or stepwise model selection.

However, as in the linear regression case, these model selection methods can be un-

stable and it is difficult to control the overall type I error of conducting multiple

hypothesis tests. To overcome this difficulty, we propose to conduct the model selec-

tion of infinite variance autoregressive model using penalized methods as will been

shown later.

2.4. Order determination

Order determination is an important aspect of using an autoregressive model. Given

a time series {yt}, if the true underlying structure of this process is autoregressive,

what is the true value of p in model (2.4)? If the true underlying structure is not

autoregressive, for example, the moving average process, what is the smallest p that

will give a reasonable fit to the observed series? These problems have been studied

extensively for finite variance autoregressive models, but much less for the case when

the error process {ǫt} has infinite variance.

Bhansali (1988) considered the order determination for autoregressive processes

under the same assumptions as in section 2.3, and gave a consistent estimator of the
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order p. Suppose we have observed a series y1, · · · , yn, define quantities

γ(k, n) =
n−k
∑

t=1

ytyt+k, and ρ(k, n) = γ(k, n)/γ(0, n),

where k = 0,±1, · · · ,±n− 1. And the estimated normalized variance is given by

σ̂2(p) =

p
∑

j=0

φ̂jρ(j, n), p = 0, · · · , P, (2.13)

where φ̂ is some estimator of φ and P is some given integer. To obtain the optimal

order p̂opt, Bhansali (1988) proposed to choose the best p from 0, · · · , P by minimizing

following two criterions

FPEYα(p) = σ̂2
Y (p)(1 + αp/n),

FPELα(p) = σ̂2
L(p)(1 + αp/n),

where α ∈ (0, 2] is the index of the stable law distribution of {ǫt} and σ̂2
Y (p) and

σ̂2
L(p) are obtained by plugging Yule-Walker and least square estimates of φ into

equation (2.13), respectively. Bhansali (1988) later proved that under conditions of

section 2.3, minimizing either FPEYα(p) or FPEYα(p) would consistently choose the

true value of p with probability 1, as n→ ∞.

Knight (1989) also studied the order determination of the autoregressive models

under the same conditions as in Bhansali (1988). Knight (1989) proposed to mini-

mizing the following aic type criterion

aic(p) = n log σ̂2
Y (p) + 2p, p = 0, · · · , P,

where σ̂2
Y (p) is the same as in FPEYα(p). The conclusion of Knight (1989) is that,

under conditions of section 2.3, if p̂ = argmin0≤p≤P aic(p), then we have

p̂
p−→ ptrue,
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as n → ∞, where
p−→ stands for convegence in probability. There have been a few

of works studying the order determination of time series other than autoregressive

models, for example, GARCH model with infinite variance, but our focus here is on

the stationary autoregressive models with infinite variance.

2.5. Variable selection using penalized methods

2.5.1. Variable selection of linear regression model

The consistent order estimators in section 2.4 can significantly reduce the model

complexity of the autoregressive model and thus lead to more efficient estimation of

the model coefficients. However, even when the order of a time series is correctly

identified, there is still a possibility that some of the coefficients φ0
j ’s are zeros and

including those zero coefficients will also result in an unnecessarily complex model

which degrade the efficiency of the coefficient estimators and leads to less accurate

predictions. This is especially true for long-memory autoregressive models whose

order can increase as n increases. In addition, a model with a sparse representation

reveals the underlying structure of the observed process. Therefore, variable selection

can be a very important aspect of autoregressive models.

The idea of using penalized methods to do variable selection is pioneered by the

revolutionary paper Tibshirani (1996) in the linear regression setting. Consider the

linear regression model:

yi = xT
i β + ǫi, i = 1, · · · , n, (2.14)

where β is a p× 1 coefficient vector and ǫi’s are iid random errors with variance σ2.
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To obtain the estimate of β, the Lasso method aims at minimizing

Lasso(β) =
n
∑

i=1

(yi − xT
i β)2 + λn

p
∑

j=1

|βj|, (2.15)

where λn > 0 is a tuning parameter used to obtain a balance between model fit and

model complexity. By shrinking the value of λ towards 0, some components of β will

be shrunk to exact 0, which means those corresponding covariates are excluded from

the model. The primary advantage of the Lasso method is that it can simultaneously

do variable selection and model estimation, which is more stable than subsets selection

in the sense that small changes in the data will not result in big change of the model

selection result. Another advantage is that, as in ridge regression, the shrinkage in

coefficients will help improve the prediction accuracy of the fitted model.

As appealing as the Lasso method is, Zou (2006) along with several other re-

searchers pointed out that the Lasso variable selection result is not consistent under

certain conditions. Denote β0 = {β0
1 , · · · , β0

p} as the true value of β and S = {j :

β0
j 6= 0, j = 1, . . . , p} and S lasso

n = {j : β̂lasso
j 6= 0, j = 1, . . . , p} as the nonzero

coefficients estimated via the Lasso method. By inconsistency, we mean that

lim
n→∞

P (S lasso
n = S) < 1.

In other words, under certain conditions, no matter how large your sample sizes is,

there is a positive possibility that we will end up with an incorrect model using the

Lasso method. To solve this problem, Zou (2006) proposed to use a modification

of the Lasso method, named as the Adaptive Lasso method, which estimates β by

minimizing

aLasso(β) =
n
∑

i=1

(yi − xT
i β)2 + λn

p
∑

j=1

wj|βj|, (2.16)

where w is a known weights vector. Zou (2006) suggested using wj = 1/|β̃j|γ with
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γ > 0 and β̂ being a
√
n-consistent estimator to β0. Again, define Salasso

n = {j :

β̂alasso
j 6= 0, j = 1, . . . , p} as the nonzero coefficients estimated via the Adaptive Lasso

method, Zou (2006) showed that if λn/
√
n → 0 and λnn

(γ−1)/2 → ∞, then the

Adaptive Lasso estimator enjoys a so-called “Oracle property” (Fan and Li, 2001),

which includes:

1. Consistency in variable selection: limn→∞ P (Salasso
n = S) = 1,

2. Asymptotic normality:
√
n(β̂alasso

S − β0S)
d−→ N(0, σ2C−1

S ),

where CS = limn→∞
1
n
XT

S XS with XS being the design matrix only using covariates

with nonzero estimated coefficients. “Oracle property” means that we can simulta-

neously do variable selection and model estimation as if the true model is known.

The Adaptive Lasso method is not the only penalized method that enjoys this

“Oracle property”. Another famous example would be the smoothly clipped absolute

deviation (SCAD) penalty function proposed in Fan and Li (2001). Zou and Li

(2008) further proposed to modify the penalty term in (2.16) by replacing each λnwj

term with p′λn
(|φ̃1j|) for some general penalty function pλ(·), for example, the SCAD

penalty function, which maintains the “Oracle property”.

Wang et al. (2007b) considered the model (2.14) with the error term ǫi from some

heavy tailed distribution, where they proposed to do model estimation and variable

selection using the Lad-Lasso method by minimizing

LadLasso(β) =
n
∑

i=1

|yi − xT
i β| +

p
∑

j=1

λj|βj|, (2.17)

where the tuning parameters can be chosen as

λj = λn
log n

n|β̃j|
, j = 1, · · · , p,

with β̃ being the unpenalized least square estimator or other
√
n−consistent estima-
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tors of β. The use of least absolute deviation loss function in (2.17) instead of the

least square loss function handles the problem of having residuals from heavy tailed

distributions including those with infinite variances by assigning smaller weights to

large values of deviations. Assuming that the error ǫi has a continuous density func-

tion f(·) such that f(0) > 0, then under certain conditions, Wang et al. (2007b)

showed that as n→ ∞,

P (β̂Sc = 0) → 1, and
√
n(β̂S − β0S)

d−→ N(0,
1

4f 2(0)
C−1

S ),

which implies that the Lad-Lasso method also enjoys the “Oracle property”. This ac-

tually motivates us to consider apply the Lad-Lasso method to model infinite variance

autoregressive model.

2.5.2. Variable selection of autoregressive model

Using the shrinkage method for variable selection is relatively new in time series

literature. Wang et al. (2007a) applied adaptive lasso (Zou, 2006) to the regression

model with finite autoregressive errors. They considered the model

yt = xT
t β + ǫt, t = 1, · · · , n

with the error term ǫt having a finite fourth moment and following a AR(q) process

ǫt = φ1ǫt−1 + φ2ǫt−2 + · · · + φqǫt−q + et

where φ = (φ1, · · · , φq)
T is the coefficient vector. The estimation of this model

involves the regression parameter β and the autoregressive parameter φ, which is

achieved by minimizing

n
∑

t=q+1

[

yt − xT
t β −

q
∑

l=1

φl(yt−l − xT
t−lβ)

]2

+

p
∑

j=1

λj|βj| +
q
∑

l=1

γl|φl|,
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where the tuning parameters can be chosen in the following manner

λj = λn
log n

n|β̃j|
and γl = γn

log n

n|φ̃l|
,

with β̃ and φ̃ being the unpenalized least square estimator or other
√
n−consistent

estimators of β and φ. Define the index sets S1 = {1 ≤ j ≤ p : βj 6= 0} and

S2 = {1 ≤ l ≤ q : φl 6= 0}, Wang et al. (2007a) showed that under certain conditions,

as n→ ∞, the resulting estimators β̂ and φ̂ have the following property

P (β̂Sc
1

= 0) → 1 and P (φ̂Sc
2

= 0) → 1,

which means that all those insignificant components of regression and autoregressive

coefficients can be consistently excluded from the estimated model. This is an ap-

pealing property that for the autoregressive part, one would not only be able to do

the order determination but also variable selection. We would apply a similar idea to

the infinite variance autoregressive model.

2.6. Autoregressive approximation for a stationary process

Let (Ω, FY , P ) be a probability space. A zero mean stochastic process {yt} is said to

be strictly stationary if the finite dimension joint cumulative distribution function of

{yt} at times t1 + s, · · · , tk + s satisfies

FY (yt1+s, · · · , ytk+s) = FY (yt1 , · · · , ytk)

for all k and s > 0. A simple example would be the white noise process with identical

distribution. Following similar notations of Cheng et al. (2000), for each process {yt}
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with yt ∈ Lp(Ω), that is,
∫

Ω
|y|pdFY (y) <∞, we define the following subspaces:

Ht(Y ) = s̄p{ys, s ≤ t}, and H−∞(Y ) =
⋂

t≤0

Ht(Y )

where s̄p{· · · } represents the closed linear space spanned by the elements in the

bracket under the Lp norm.

The process {yt} is said to be deterministic if

Ht−1(Y ) = Ht(Y )

for all t, and is called nondeterministic otherwise.

If a nondeterministic process satisfies

H−∞ = {0},

then it is said to be a pure nondeterministic process.

2.6.1. Weakly stationary process

In most situations, strict stationarity is too strong of an assumption in prediction

theory of stationary process. A zero mean stochastic process {yt} is called a weakly

stationary process if

E|yt|2 <∞, and cov(ys, yt) = γ(s− t),

for all s, t, where γ(·) is referred to as the covariance function.

The weakly stationary process has been extensively studied and it can be shown

that, any weakly stationary process with a continuous spectral density can be approx-

imated by a weakly stationary autoregressive model with a large order (Brockwell and

Davis, 1991). In fact, it is shown in Pourahmadi (1988) that for a purely nondeter-

ministic weakly stationary process {yt}, there exists a unique series {ak} such that
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for all t, one has

yt =
∞
∑

k=1

akyt−k + ǫt,

provided that
∑∞

k=1 akyt−k is convergent in the L2 norm. A sufficient condition for

the convergence of
∑∞

k=1 akyt−k is that
∑∞

k=1 |ak| <∞.

Another nice property of this decomposition is that variables in the innovation

process {ǫt} are orthogonal under the inner product induced by the L2 norm, i.e.,

they are uncorrelated. This is a very useful result which indicates that, for a general

weakly stationary process, we can use an autoregressive model with a sufficiently large

order to do one-step or multi-step predictions, without knowing the true probability

structure of the process.

2.6.2. p-stationary process

The popularity of the autoregressive model in time series studies is largely due to

the fact that any second order stationary process with symmetric continuous spectral

density can be approximated by an autoregressive process (Brockwell and Davis,

1991). It would be very appealing if this type of approximation still holds for the

infinite variance process, which can justify the use of autoregressive model to do

predictions. However, even for the strictly stationary process with infinite variance,

this is difficult to show.

Miamee and Pourahmadi (1988) established such a relationship for the p-stationary

process. A discrete time stochastic process {yt} is said to be a p-stationary process if

E|yt|p <∞, and E

∣

∣

∣

∣

∣

n
∑

k=1

ckytk+h

∣

∣

∣

∣

∣

p

= E

∣

∣

∣

∣

∣

n
∑

k=1

ckytk

∣

∣

∣

∣

∣

p

,

(1 < p ≤ 2) for all integers n ≥ 1, t1, . . . , tn, h, and scalars c1, . . . , cn. Note that, when

p = 2, it is a weakly stationary process and it is the only case in this class with finite
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variance. This class of processes includes the harmonizable stable processes of order α

with α ∈ (1, 2] and strictly stationary processes with finite p-th moment. Miamee and

Pourahmadi (1988) showed that for a purely nondeterministic p-stationary process

{yt} with innovation {ǫt}, there exists a unique series {ak} such that for all t, one has

yt =
∞
∑

k=1

akyt−k + ǫt,

provided that
∑∞

k=1 akyt−k is convergent in the mean of order p. A sufficient condition

for the convergence of
∑∞

k=1 akyt−k is that
∑∞

k=1 |ak| < ∞. For regularity conditions

and more recent advances in this area, see Cheng et al. (2000).

Compare to the weakly stationary process, the autoregressive representation

above does not have the property that variables in the innovation process {ǫt} are

not uncorrelated for the case of 0 < p < 2. So the above representation does provide

some insights for using an autoregressive model for predicting a general stationary

infinite variance time series in that even though the underlying structure of the time

series is not autoregressive, it can be approximated by an autoregressive model under

certain conditions. However things are not as nicely done as in p = 2 case.
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CHAPTER III

VARIABLE SELECTION FOR INFINITE VARIANCE AUTOREGRESSIVE

MODELS

3.1. Introduction

Heavy-tailed time series data is often encountered in a variety of fields, such as hy-

drology (Castillo, 1988), economics and finance (Koedijk et al., 1990) and teletraffic

engineering (Duffy et al., 1994). In this situation, the infinite variance autoregressive

model is often preferred to the finite variance one, and its statistical theory has been

widely studied in the literature. See Resnick (1997) for a comprehensive review and

further references.

Model selection is an important aspect of modeling with time series data. An

unnecessarily complex model can degrade the efficiency of the resulting parameter

estimators and lead to less accurate predictions. For a time series model with finite

variance, traditional model selection criteria aic (Akaike, 1973) and bic (Schwarz,

1978) can be employed to choose the order of the autoregressive model (McQuarrie

and Tsai, 1998). Compared to the case of finite variance autoregressive models, few

papers have investigated the model selection for autoregressive models with infinite

variance. Bhansali (1988) considered the order determination of the infinite variance

autoregressive processes with innovations in the domain of attraction of a stable

law, and gave a consistent estimator of the order. Knight (1989) studied the same

model and showed that the order selection with aic is weakly consistent. While most

of the literature focuses on the order determination of the time series, Ling (2005)

proposed a self-weighted least absolute deviation estimator for the infinite variance

autoregressive model under which the coefficient estimates are asymptotically normal
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and thus can be used for statistical inference. He also proposed a variable selection

procedure with a series of hypothesis tests based on the self-weighted least absolute

deviation estimator. However, his method can be unstable and its implementation is

complicated.

Using the shrinkage method for variable selection is relatively new in time series

literature. Wang et al. (2007a) applied adaptive lasso (Zou, 2006) to the regression

model with finite autoregressive errors. They showed that the resulting estimator via

adaptive lasso not only has a sparse presentation, but also has the oracle property

(Fan and Li, 2001), which means that it can simultaneously select variables and

estimate parameters in time series modeling.

One difficulty often encountered in data analysis is that it is generally impossible

to know whether a time series of finite length has infinite variance (Granger and Orr,

1972). Many methods have been developed to test for infinite variance of a real time

series data; see, for example, Hill (1975). While Wang et al. (2007a)’s method does

not apply to infinite variance autoregressive models, using Ling (2005)’s method can

cause loss of important information by weighing down large observations, especially

in the case of a time series with heavy tails but finite variance.

In this chapter, we first use the self-weighted least absolute deviation proposed

by Ling (2005) as the loss function and the adaptive lasso as the penalty method to

do the model selection. Under appropriate conditions, we show that our penalized

method can identify the true model consistently and the estimator of the coefficients

corresponding to the true model is asymptotically normal, which is important for

the statistical inference of infinite variance autoregressive models. After that, we

propose a unified variable selection approach that can efficiently deal with heavy-

tailed autoregressive models with either finite or infinite variance. By combining the

least absolute deviation as the loss function and the adaptive lasso as the penalty
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function, we show that under regularity conditions we can identify the true model

consistently and obtain a point estimator of the coefficients corresponding to the true

model with a convergence rate of n−1/α, where α ∈ (0, 2) is the index of the stable

distribution. This convergence rate is faster than that of finite variance time series.

Computationally, the algorithm of our methods can be formulated as an esti-

mation problem of ordinary least absolute deviation, and consequently, any standard

unpenalized least absolute deviation program can be used to find the final estimator

without much programming effort. A simulation study is carried out that confirms

our theoretical findings. Finally, We apply the proposed penalty method to the Hang

Seng Index data set, which has been examined by Ling (2005) using a series of hy-

pothesis tests.

3.2. Adaptive lasso for infinite variance autoregressive models

3.2.1. Notations and Preliminaries

Consider a stationary autoregressive time series {yt} which is generated by

yt = φ1yt−1 + · · · + φpyt−p + ǫt, (3.1)

where φ = (φ1, . . . , φp)
T is an unknown parameter vector with true value φ0 =

(φ0
1, . . . , φ

0
p)

T . We assume that there are a total of p0 ≤ p non-zero coefficients within

φ0. Denote S = {j : φ0
j 6= 0, j = 1, . . . , p} and Sc = {j : φ0

j = 0, j = 1, . . . , p}.

Assume that {ǫt}’s are independent and identically distributed in the domain of

attraction of a stable law with index α ∈ (0, 2). More specifically,

P (|ǫt| > x) = x−αK(x)(1 + o(1)), (3.2)
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where K(x) is a slowly varying function such that limx→∞
K(tx)
K(x)

= 1 for any t > 0 and

lim
x→∞

P (ǫt > x)

P (|ǫt| > x)
= q, 0 ≤ q ≤ 1. (3.3)

This type of innovation is popular in modeling infinite variance autoregressive

models; see Knight (1989) and Davis et al. (1992). It appears appears that some

financial data are heavy tailed in this sense. Here K(x) is a constant for the class

of Pareto-like distributions, which includes the Cauchy and stable distributions. We

also assume that

φ(z) = 1 − φ0
1z − · · · − φ0

pz
p 6= 0

for all complex z with |z| ≤ 1, which makes {yt} strictly stationary and ergodic. Thus

Model (3.1) can be represented as

yt =
∞
∑

j=0

ψ0
j ǫt−j,

where ψ0
j ’s are the coefficients of zj in the power series expansion of 1/φ(z).

3.2.2. Adaptive lasso with self-weighted least absolute deviation

In practice, even when the order of a time series is correctly identified, an unnecessarily

complex model can still degrade the efficiency of the coefficient estimators and lead

to less accurate predictions. In addition, a model with a sparse representation reveals

the underlying structure of the observed process. We propose the following procedure

for simultaneous order determination and variable selection of a time series.

We first choose the self-weighted least absolute deviation (SLAD)proposed by

Ling (2005) as the loss function, which is defined as

L1n(φ) =
n
∑

t=p+1

ht|yt −XT
t φ|, (3.4)
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where Xt = (yt−1, . . . , yt−p)
T and ht is a given function of {yt−1, . . . , yt−p}. Then

the SLAD estimator is defined as φ̃1n = arg minφ{L1n(φ)}. Ling (2005) showed that,

unlike other estimators of model (3.1), the SLAD estimator has an asymptotic normal

distribution under the following two conditions:

Condition 1 A appropriate weight function in (3.4), ht, is chosen such that

E{(ht + h2
t )(‖ Xt ‖2 + ‖ Xt ‖3)} <∞;

Condition 2 The errors ǫt have zero median and a differentiable density f(x)

everywhere in R such that f(0) > 0 and supx∈R | f ′

(x) |<∞.

The following Lemma 3.2.1 is the Theorem 1 of Ling (2005). It states that the

SLAD estimator is root-n consistent and asymptotically normally distributed.

Lemma 3.2.1. If Conditions 1 − 2 hold, then it follows that

n
1

2 (φ̃1n − φ0) → N

{

0,
1

4f 2(0)
Σ−1ΩΣ−1

}

(3.5)

in distribution, where Σ = E(htXtX
T
t ) and Ω = E(h2

tXtX
T
t ).

Abbreviating the adaptive lasso method with SLAD function as SLAD-alasso.

The SLAD-alasso estimator φ̂1n is obtained by minimizing the following objective

function

V1n(φ) = L1n(φ) + λnΣp
j=1r1j | φj |, (3.6)

where the weight r1j = |φ̃1j|−γ with γ > 0 and φ̃1j is the jth element of φ̃1n. By

Lemma 3.2.1, as the sample size grows, the weights for zero coefficients go to infinity,

whereas the weights for nonzero coefficients converge to finite constants which en-

ables us to use SLAD-alasso as a tool to simultaneously select variables and estimate

coefficients.
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Now we give the following main theorem about the property of the SLAD-alasso

estimator.

Theorem 3.2.1. Denote S∗
1 = {1 ≤ j ≤ p : φ̂1j 6= 0}, where φ̂1j is the jth element of

φ̂1n. Under Conditions 1 and 2, suppose that λnn
− 1

2 → 0 and λnn
( γ

2
−1) → ∞. Then

the minimizer of (3.6) φ̂1n satisfies the following properties:

(1) Consistency in variable selection:

lim
n→∞

P (S∗
1 = S) = 1;

(2) Asymptotic normality: as n→ ∞,

n
1

2 (φ̂1S − φ0
S) → N

{

0,
1

4f 2(0)
Σ−1

S ΩSΣ−1
S

}

in distribution,

where φ0
S and φ̂1S are the subvector of φ0 and φ̂1n corresponding to the nonzero coeffi-

cients, and ΣS and ΩS are the submatrix of Σ and Ω corresponding to φ0
S , respectively.

The proof of Theorem 3.2.1 is given in the Appendix.

Remark 3.2.2. At the beginning of this chapter, we assume that the distribution of

{ǫt} belongs to the domain of attraction of a stable distribution with index α ∈ (0, 2).

In fact, this assumption is only necessary for proving the asymptotic property of LAD-

alasso in the next section. For SLAD-alasso here, E(|ǫ|δ) <∞ for some 0 < δ < 2 is

sufficient to prove Theorem 3.2.1.

Remark 3.2.3. The choice of weights r1j’s can incorporate prior information in

practice. For example, if previous experience suggests that some variables must be

selected, we can simply set r1j = 0 for these variables. The choice of penalty term can

be made more general by replacing each λnrj term in (3.6) with p′λn
(|φ̃1j|) for some

penalty function pλ(·); see Zou and Li (2008). A special choice would be the famous

smoothly clipped absolute deviation (Fan and Li, 2001) penalty function.
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Theorem 3.2.1 states that by choosing a suitable pair of (λn, γ), the SLAD-alasso

method can consistently select the true model and the estimator of the coefficients

corresponding to the true model is asymptotically normal. As an example of the

choice of (λn, γ), one can take γ = 2 and λn = log n. Because of its asymptotical

normality, we can use the SLAD-alasso estimator to make statistical inferences, which

is the main reason why we choose self-weighted least absolute deviation as the loss

function.

In practice, we need to select a suitable weight ht for the loss function part. Ling

(2005) suggested using the following weight function:

ht =















1 (ct = 0),

C3/c3t (ct 6= 0),

(3.7)

where ct =
∑p

j=1 |yt−j|{I(|yt−j| ≥ C)} and C > 0 is a constant. It is easy to see that

this weight function satisfies Condition 1. Similar to Ling (2005), we take C as the

ρth quantile of data {y1, . . . , yn}.

As stated in Ling (2005), with random errors from distributions satisfying (3.2)

and (3.3), it can be shown theoretically that larger C would result in smaller asymp-

totic variance of the SLAD estimator. However, a overly large C would make the dis-

tribution of the SLAD estimator asymptotically non-normal even with a large sample

size. Our simulation results show that with Cauchy errors, the empirical standard

errors matched well with the asymptotical standard errors in the case of ρ = 90%

but matched much worse in the case of ρ = 95%. However, when ǫi’s are from the

S(1·5,0;1) distribution, both ρ = 90% and ρ = 95% matched well. This indicates that

the optimal choice of C varies for different models and error distributions to ensure

that the conclusion of Theorem 3.2.1 still holds for the SLAD-alasso estimator.

A realistic question is, if the limiting distribution of SLAD-alasso estimator is
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not normal because of a poor choice of C, is it still possible for us to do the model

selection using adaptive lasso? Fortunately, the answer is yes. Our simulation results

indicate that the model selection result of slad-alasso becomes better as C increases.

Particularly, if we take C to be the 100% quantile of yi’s, in which case we have ht = 1,

the model selection results are the best. It motivates us to consider the ordinary

least absolute deviation (LAD) as the loss function combining with the adaptive loss

penalty function, which we name LAD-alasso. In the following subsection, we study

the asymptotic property of LAD-alasso and explain why LAD-alasso performs better

than SLAD-alasso in model selection in spite of the fact that the limiting distribution

of the LAD-alasso estimator does not have a closed form.

3.2.3. Adaptive lasso with least absolute deviation

Denote L2n(φ) =
∑n

t=p+1 |yt −XT
t φ|, where Xt = (yt−1, . . . , yt−p)

T . Define the LAD

estimator of Model (3.1) as φ̃2n = arg minφ{L2n(φ)}. And then the LAD-alasso

estimator φ̂1n is defined as the minimizer of

V2n(φ) = L2n(φ) + λnΣp
j=1r2j|φj|, (3.8)

where the weight r2j = |φ̃2j|−γ with γ > 1 and φ̃2j being the jth element of φ̃2n. Note

that φ̃1n can be obtained by setting λn = 0 when minimizing (3.8). As stated in Davis

et al. (1992), although Model (3.1) has an infinite variance and even infinite mean if

α < 1, the LAD estimator performs surprisingly well. In fact, φ̃2n usually converges

in a rate faster than n−1/2. In this sense, we obtain a better choice of weights rj’s, and

hence for a given sample size n, minimizing (3.8) would yield better variable selection

results than that in the finite variance case.
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The asymptotic theory for φ̃2n was established by Davis et al. (1992). Denote

Wn(u) =
n
∑

t=p+1

(

|ǫt − b−1
n XT

t u| − |ǫt|
)

, (3.9)

where bn = inf{x : P (|ǫt| > x) ≤ n−1}. As stated in Davis et al. (1992), for Pareto-

like distributions we may take bn = n1/α, and in general bn = n1/αK1(x) for some

slowly varying function K1(·). Recall that yt =
∑∞

j=0 ψ
0
j ǫt−j, and define quantity

W (u) =
∞
∑

i=1

∞
∑

k=1

{|ǫk,i − (ψ0
i−1u1 + · · · + ψ0

i−pup)̺kΘ
−1/α
k | − |ǫk,i|}, (3.10)

where {ǫk,i}, {̺k}, and {Θk} are three independent sequences defined as:

1. {ǫk,i} is independent and identically distributed as ǫt;

2. {̺k} is independent and identically distributed with P (̺k = 1) = q and P (̺k =

−1) = 1 − q, with q given in (3.3);

3. Θk =
∑k

j=1 Γj, where {Γj} is a sequence of independent and identically dis-

tributed unit exponential random variables.

The following lemma is Theorem 4.1 in Davis et al. (1992), which establishes the

asymptotic property of φ̃2n.

Lemma 3.2.2. Suppose that {ǫt} satisfies (3.2) and (3.3) with α ∈ (0, 2), and has

median 0 if α ≥ 1. If either (a) α < 1, or (b) α > 1 and E(|ǫt|β) < ∞ for some

β < 1 − α, or (c) α = 1 and E(log |ǫt|) > −∞, then Wn(·) → W (·) in distribution.

Moreover, if W (·) has a unique minimum almost surely, then

bn(φ̃1n − φ0) → ξ in distribution, as n→ ∞, (3.11)

where bn = n1/αK1(x) for some slowly varying function K1(x) and ξ is the minimum

of W (·).
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Remark 3.2.4. The conditions in Lemma 3.2.2 guarantee that W (·) is well-defined.

To guarantee that W (·) has a unique minimum almost surely, Davis et al. (1992)

showed that the following condition is sufficient: for all ε > 0 there exists a constant

d > 0 such that

P (x < ǫt < y) ≥















d(y − x)1/α, α < 1,

d(y − x), α ≥ 1,

whenever −ε < x < y < ε. For the Cauchy distribution and most stable distributions

with index α ∈ (0, 2), this condition is obviously satisfied.

Let φ̂2n be the minimizer of (3.8) and denote S∗ = {j : φ̂2j 6= 0, j = 1, . . . , p},

where φ̂2j is the jth element of φ̂2n. As our main theoretical result, the next theorem

states the variable selection consistency of adaptive lasso method as well as the weak

convergence of coefficient estimators to their true values.

Theorem 3.2.5. Suppose that {ǫt} satisfies the conditions stated in Lemma 3.2.1 and

Remark 3.2.4. If λnb
−1
n → 0 and λnb

γ−2
n → ∞, with bn = n1/αK1(x) for some slowly

varying function K1(x), then we have limn→∞ P (S∗ = S) = 1 and bn(φ̂1S − φ0
S) =

Op(1), where φ0
S and φ̂1S are the subvectors of φ0 and φ̂1n corresponding to the non-

zero coefficients, respectively.

The proof of Theorem 3.2.5 is given in the Appendix. We would like to point out

that it is generally not possible to obtain an explicit representation of the limiting

distribution of bn(φ̂1S − φ0
S).

Remark 3.2.6. When {ǫt}’s in Model (3.1) have finite variance, the result in The-

orem 3.2.5 still holds, see Wang et al. (2007b). In this case, we have bn = n1/2 and

φ̂1S is asymptotically normal.
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Remark 3.2.7. The conditions on λn seem to be complicated. However, simply taking

λn = log n would satisfy all conditions for any γ > 1 and α ∈ (0, 2). In addition, this

choice of λn and γ also works when {ǫt} has finite variance, see Wang et al. (2007b).

Theorem 3.2.5 states that adaptive lasso method is an estimation and variable

selection procedure that takes genuine advantage of the LAD estimators in the infinite

variance autoregressive model. It can perform variable selection consistently with the

resulting estimator corresponding to the nonzero coefficient part weakly converges

more quickly than that of SLAD-alasso. However, compared to SLAD-alasso, the

limiting distribution of LAD-alasso estimator does not have a closed form.

Remarks 3.2.6 and 3.2.7 state that the LAD loss function combined with the

adaptive lasso penalty function works for both finite and infinite variance situations.

There is no need to distinguish between these two cases when the primary concern is

to obtain a sparse model. When inference is needed, one can apply tools such as the

self-weighted least absolute deviation method proposed by Ling (2005) to the selected

model.

3.2.4. Comparison with self-weighted least absolute deviation method

We have seen that each method, SLAD-alasso and LAD-alasso, has its own merit. The

LAD-alasso method gives a better variable selection results while the SLAD-alasso

estimator is asymptotically normally distributed and hence can be used to perform

statistical inference.

Since φ̃1n is asymptotically normal, Ling (2005) proposed an variable selection

procedure based on a series of hypothesis tests using Chi-square test statistics. How-

ever, there are a few drawbacks of this approach:

1. When using this method, if the data do not have infinite variance, weighing
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down large observations would lead to unnecessary loss of important informa-

tion;

2. The choice of C is subjective. There is no theoretical justification for a best

choice of C. Our simulation results show that different choices of C would lead

to different model selection results. In addition, there is not a universal choice

of C that can guarantee the asymptotical normality of SLAD-alasso estimator

for all distributions;

3. It is difficult to manage the overall type I error when conducting a series of

hypothesis tests;

4. The unknown term f(0) in (3.5) needs to be estimated. The most commonly

used kernel density estimator is effective but would also make the conclusions

of the hypothesis tests less reliable.

The least absolute deviation adaptive lasso method suffers from none of the above

problems. One limitation is that there is no closed form for the limit distribution of

the resulting estimator. Recall that the motivation for our method is to develop a

better variable selection strategy and to produce a faster convergent point estimator

in the infinite variance case. To make inference, we can apply existing methods such

as Ling (2005)’s to the model selected by our method.

3.2.5. p-Stationary process

The popularity of the autoregressive model in time series studies is largely due to

the fact that any second order stationary process with symmetric continuous spectral

density can be approximated by an autoregressive process (Brockwell and Davis,

1991). However, when it comes to stationary process with infinite variance, this type



41

of relationship is difficult to establish.

Miamee and Pourahmadi (1988) established such a relationship for the p-stationary

process. A discrete time stochastic process {yt} is said to be a p-stationary process

if E|yt|p < ∞, and E |∑n
k=1 ckytk+h|p = E |∑n

k=1 ckytk |
p
, (1 < p ≤ 2) for all integers

n ≥ 1, t1, . . . , tn, h, and scalars c1, . . . , cn. Note that, when p = 2, it is a second order

weakly stationary process and it is the only case in this class with finite variance.

This class of processes includes the harmonizable stable processes of order α with

α ∈ (1, 2] and strictly stationary processes with finite p-th moment. Miamee and

Pourahmadi (1988) showed that for a purely nondeterministic p-stationary process

{yt} with innovation {ǫt}, there exists a unique series {ak} such that for all t, one has

yt =
∞
∑

k=1

akyt−k + ǫt,

provided that
∑∞

k=1 akyt−k is convergent in the mean of order p. Note that a sufficient

condition for the convergence of
∑∞

k=1 akyt−k is that
∑∞

k=1 |ak| < ∞. For regularity

conditions and more recent advances in this area, see Cheng et al. (2000). The autore-

gressive representation of {yt} above provides justifications for using an autoregressive

model for some stationary infinite variance time series in that even though the un-

derlying structure of a time series is not autoregressive, it can be approximated by

an autoregressive model under certain conditions.

3.3. A simulation study

3.3.1. Computational formulation

In this section we run a simulation study to support our theoretical results. First

of all, we discuss the computational issues of SLAD-alasso. Computationally, LAD-

alasso is a special case of SLAD-alasso with ht ≡ 1. The algorithm of SLAD-alasso
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can be converted to an estimation problem of least absolute deviation. Consider a

data set {(y∗t , X∗T
t )} (t = 1, . . . , n), where (y∗t , X

∗T
t ) = (htyt, htX

T
t ) (t = p+1, . . . , n),

(y∗t , X
∗T
t ) = (0, λnr1te

T
t ) (t = 1, . . . , p) and ej is a p-dimensional vector with the jth

component equal to 1 and all others equal to 0. Then (3.6) is equal to

V1n(φ) = Σn
t=1|y∗t −X∗T

t φ|.

Consequently, any standard unpenalized least absolute deviation program can be

used to find the SLAD-alasso estimator without much programming effort. In our

simulation study, we used the existing function rq in the r package quantreg to

solve the LAD problem.

3.3.2. Tuning parameter selection

Tuning parameter selection is another key issue in implementing our penalty methods.

First, we chose the weight ht presented in (3.7) for SLAD-alasso. In order to support

our theoretical findings, we took C to be the 90%, 95% and 100% quantile of data

{y1, . . . , yn}, where the third choice of C is the ordinary LAD-alasso method. To

select the optimal pair of (λn, γ) that meets the conditions in Theorem 3.2.1 and

3.2.5, we perform a two dimensional grid search. The tuning parameter γ is selected

from the set {2, 3, 4, 5, 6}. As stated in Remark 3.2.7, for any γ > 1 and α ∈ (0, 2),

taking λn = log n would always satisfy conditions of Theorem 3.2.1 and 3.2.5. Based

on this observation, we took λn = λ∗ log n, where λ∗ is selected from 10 equally spaced

grid points from 0 to 1. Finally, to select the optimal (γ, λ∗), one possibility is to

do cross-validation. We conduct 5-fold cross-validation where the optimal (γ, λ∗) is

selected by minimizing the least absolute prediction error of the validation data. We
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also consider the following Schwartz-type information criterion.

sicγ,λ∗ = log

(

1

n

n
∑

t=p+1

|yt −XT
t φ̂γ,λ∗|

)

+ d̂fγ,λ∗ × log n

2n
, (3.12)

where d̂fγ,λ∗ is the number of non-zero coefficients of φ̂γ,λ∗ . This criterion is first sug-

gested by Koenker et al. (1994) and He and Ng (1999) for choosing the regularization

parameter in quantile smoothing splines and has been widely used in quantile regres-

sion literature. Since least absolute deviation regression is a special case of quantile

regression, we can expect sic to yield reasonably good results. A similar bic type

criterion has also been used in Wang et al. (2007a), where they showed that such

a bic type criterion performs much better than cross-validation in model selection.

Our simulation results also support this conclusion.

3.3.3. Simulation results

We generated the data from the autoregressive model yt = 0.5yt−1−0.7yt−3+ǫt, which

was also used by Wang et al. (2007a) as the autoregressive errors for the regression

model. Three error distributions, Cauchy, S(1.5, 0; 1) and N(0, 1), were considered,

where S(1.5, 0; 1) is the symmetric α-stable distribution with unit scale factor and

α = 1.5. For the LAD-alasso and SLAD-alasso methods, we start with a full model

of order p = 5. Other choices may also be used. Our observation is that as long as p

is not overly large, the model selection results will not change much when p changes.

In each case, we used (3.7) as the weights for SLAD-alasso, and took C to be

the ρ quantile of data {y1, . . . , yn}. Specifically, we took ρ = 90%, ρ = 95% and

ρ = 100% , where the third choice led to LAD-alasso. For comparison, we also used

the hypothesis test method proposed by Ling (2005) to do the variable selection. A

series of hypothesis were conducted in the following way: start from p = 5 and run
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a Chi-square test for each coefficient at significant level 0.05. If any test statistic is

insignificant, we delete the coefficient with the smallest p-value and run the procedure

again until all remaining coefficients are significant. The sample sizes were chosen as

50, 100, 200 and 400, and the summary statistics were based on 500 replications.

To measure variable selection performance, we summarized the average number of

correctly identified zero coefficients (CT) and the percent of times when the true model

is correctly identified (PCM) using each method. We also present the average number

of coefficients erroneously set to zero (ICT). To measure the estimation accuracy of

each method, we calculated the empirical means and standard errors (SE) of the

resulting estimator over 500 replications. We also gave the asymptotic standard errors

(AE) of the SLAD-alasso estimator as in Lemma 3.2.1 for ρ = 90% and ρ = 95% cases.

All simulation results are presented in Tables 1–9.

1. In all three cases, we can see that the model selection results get better when ρ

grows from 90% to 100% with the LAD-alasso be the best, which is consistent

with our theoretical findings.

2. On the other hand, in the Cauchy error case, the discrepancy between SE and

AE becomes larger when ρmove from 90% to 95%, which might be an indication

of the asymptotical distribution of the SLAD estimator becomes nonnormal even

when the sample size is as large as n = 400.

3. In most cases, our method appears to outperform the hypothesis testing method

of Ling (2005) on both model selection consistency and the accuracy of coeffi-

cient estimators, given sufficiently large sample size.

4. For SLAD-alasso, we can see that ρ = 95% is a good choice and the model

selection results are pretty good, even competitive to the lad-alasso method.
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5. From Table 9, we can see that the results by LAD-alasso with sic are also

acceptable and competitive to those by the hypothesis test method with normal

error terms. This suggests that LAD-alasso can do well even when the variance

of error is finite.

6. For the hypothesis testing method of Ling (2005), choosing ρ = 95% has better

performance than using ρ = 90% in the case of Cauchy innovations, which

supports our point that the choice of C in the method of Ling (2005) has an

impact on the model selection results.

7. From the three tables we can see that the simulation results by sic outperform

that of cross-validation in almost every case. Although the statistical property

of the SIC criterion has not been established in our scenario, but the good

empirical performance suggests studying the limiting behavior of the SIC might

be a promising future research direction.

To summarize, both of two proposed automatic variable selection procedures, SLAD-

alasso and LAD-alasso methods, can simultaneously perform consistent variable se-

lection and model estimation. SLAD-alasso methods enjoys the the advantage that

the resulting estimator has asymptotically normal distribution, which make the post-

model selection statistical inference possible. LAD-alasso method can serve as a

unified variable selection approach for heavy-tailed autoregressive models with either

finite or infinite variance. In the infinite variance case, LAD-alasso method tends

to provide better variable selection results than both SLAD-alasso method and Ling

(2005)’s hypothesis testing procedure.
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Table 1. Simulation results with Cauchy errors using SLAD-alasso with ρ = 90%

Variable Selection Estimation accuracy

φ̂1 φ̂3

n Method ICT CT PCM Mean SE AE Mean SE AE

50 CV 0.01 2.48 73.2 0.499 2.5 1.4 -0.697 3.5 1.3

SIC 0.01 2.85 91.9 0.498 2.7 1.4 -0.697 3.7 1.3

HTM 0.01 2.27 58.5 0.501 2.9 1.4 -0.698 3.9 1.3

100 CV 0 2.63 84.0 0.495 2.3 1.0 -0.699 2.0 0.9

SIC 0 2.93 96.1 0.495 2.3 1.0 -0.701 2.2 0.9

HTM 0 2.32 56.0 0.496 2.6 1.0 -0.700 2.4 0.9

200 CV 0 2.58 84.7 0.499 0.7 0.7 -0.700 0.7 0.6

SIC 0 3.00 100.0 0.500 0.8 0.7 -0.700 0.9 0.6

HTM 0 2.55 70.1 0.499 0.8 0.7 -0.700 0.8 0.6

400 CV 0 2.58 86.9 0.500 0.6 0.5 -0.700 0.6 0.4

SIC 0 3.00 100.0 0.501 0.6 0.5 -0.700 0.6 0.4

HTM 0 2.77 83.4 0.500 0.6 0.5 -0.701 0.6 0.4

ICT, the average number of coefficients erroneously set to zero; CT, the average

number of zero coefficients corresponding to true zero coefficients; PCM (%), the

percentage of times correct model selected; SE(×10−2), the empirical standard de-

viation; AE(×10−2), the asymptotic standard deviation; CV, cross-validation; SIC,

Schwartz-type information criterion; HTM, the hypothesis test method; The true

value of nonzero coefficients φ0
1 = 0.500 and φ0

3 = −0.700.
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Table 2. Simulation results with Cauchy errors using SLAD-alasso with ρ = 95%

Variable Selection Estimation accuracy

φ̂1 φ̂3

n Method ICT CT PCM Mean SE AE Mean SE AE

50 CV 0 2.64 83.5 0.498 2.2 0.6 -0.697 1.9 0.6

SIC 0.01 2.91 91.7 0.499 2.1 0.6 -0.698 2.1 0.6

HTM 0 2.34 58.3 0.499 2.5 0.6 -0.700 2.4 0.6

100 CV 0 2.62 85.7 0.499 1.3 0.5 -0.699 0.9 0.4

SIC 0 2.99 99.9 0.500 1.2 0.5 -0.699 1.0 0.4

HTM 0 2.41 64.3 0.499 1.3 0.5 -0.699 1.1 0.4

200 CV 0 2.59 85.2 0.500 0.8 0.3 -0.700 0.6 0.3

SIC 0 3.00 100.0 0.500 0.7 0.3 -0.700 0.6 0.3

HTM 0 2.62 76.8 0.501 0.8 0.3 -0.700 0.7 0.3

400 CV 0 2.60 86.1 0.501 0.5 0.2 -0.700 0.5 0.2

SIC 0 3.00 100.0 0.501 0.5 0.2 -0.700 0.5 0.2

HTM 0 2.61 73.3 0.501 0.5 0.2 -0.700 0.5 0.2

ICT, the average number of coefficients erroneously set to zero; CT, the average

number of zero coefficients corresponding to true zero coefficients; PCM (%), the

percentage of times correct model selected; SE(×10−2), the empirical standard de-

viation; AE(×10−2), the asymptotic standard deviation; CV, cross-validation; SIC,

Schwartz-type information criterion; HTM, the hypothesis test method; The true

value of nonzero coefficients φ0
1 = 0.500 and φ0

3 = −0.700.
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Table 3. Simulation results with Cauchy errors using LAD-alasso

Variable Selection Estimation accuracy

φ̂1 φ̂3

n Method ICT CT PCM Mean SE Mean SE

50 CV 0 2.69 85.0 0.497 1.4 -0.696 1.7

SIC 0 2.93 95.6 0.499 1.3 -0.695 1.9

100 CV 0 2.67 86.3 0.499 1.0 -0.698 0.9

SIC 0 2.99 99.9 0.499 0.9 -0.699 0.8

200 CV 0 2.69 89.1 0.500 0.5 -0.700 0.4

SIC 0 3.00 100.0 0.500 0.5 -0.700 0.4

400 CV 0 2.68 89.6 0.500 0.2 -0.700 0.2

SIC 0 3.00 100.0 0.500 0.2 -0.700 0.2

ICT, the average number of coefficients erroneously set to zero; CT, the average

number of zero coefficients corresponding to true zero coefficients; PCM (%), the

percentage of times correct model selected; SE(×10−2), the empirical standard de-

viation; AE(×10−2), the asymptotic standard deviation; CV, cross-validation; SIC,

Schwartz-type information criterion; The true value of nonzero coefficients φ0
1 = 0.500

and φ0
3 = −0.700.
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Table 4. Simulation results with S(1.5, 0; 1) errors using SLAD-alasso with ρ = 90%

Variable Selection Estimation accuracy

φ̂1 φ̂3

n Method ICT CT PCM Mean SE AE Mean SE AE

50 CV 0.07 2.06 50.3 0.472 10.4 6.2 -0.691 9.4 5.7

SIC 0.12 2.50 62.7 0.488 9.1 6.2 -0.702 8.2 5.7

HTM 0.16 2.61 71.9 0.502 8.2 6.2 -0.702 8.3 5.7

100 CV 0 2.50 74.3 0.489 6.0 4.4 -0.699 5.5 4.1

SIC 0.01 2.84 86.1 0.496 6.0 4.4 -0.702 5.1 4.1

HTM 0 2.75 83.5 0.498 5.6 4.4 -0.703 5.2 4.1

200 CV 0 2.61 80.7 0.492 4.0 3.1 -0.699 3.6 2.9

SIC 0 2.89 92.2 0.497 3.9 3.1 -0.702 3.5 2.9

HTM 0 2.83 86.8 0.498 4.0 3.1 -0.702 3.5 2.9

400 CV 0 2.57 82.6 0.494 2.6 2.2 -0.699 2.4 2.0

SIC 0 2.97 97.3 0.497 2.5 2.2 -0.700 2.3 2.0

HTM 0 2.85 86.1 0.497 2.6 2.2 -0.700 2.3 2.0

ICT, the average number of coefficients erroneously set to zero; CT, the average

number of zero coefficients corresponding to true zero coefficients; PCM (%), the

percentage of times correct model selected; SE(×10−2), the empirical standard de-

viation; AE(×10−2), the asymptotic standard deviation; CV, cross-validation; SIC,

Schwartz-type information criterion; HTM, the hypothesis test method; The true

value of nonzero coefficients φ0
1 = 0.500 and φ0

3 = −0.700.
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Table 5. Simulation results with S(1.5, 0; 1) errors using SLAD-alasso with ρ = 95%

Variable Selection Estimation accuracy

φ̂1 φ̂3

n Method ICT CT PCM Mean SE AE Mean SE AE

50 CV 0.22 1.89 35.8 0.404 13.4 13.6 -0.617 16.6 12.7

SIC 0.23 2.19 39.2 0.436 13.7 13.6 -0.635 12.8 12.7

HTM 0.30 2.75 65.1 0.542 13.1 13.6 -0.739 10.5 12.7

100 CV 0.03 2.24 57.6 0.459 13.1 9.6 -0.670 9.6 9.0

SIC 0.03 2.56 65.6 0.482 10.4 9.6 -0.683 8.3 9.0

HTM 0.05 2.86 87.1 0.487 8.8 9.6 -0.694 7.6 9.0

200 CV 0 2.35 69.3 0.491 6.8 6.8 -0.688 5.8 6.3

SIC 0 2.67 74.2 0.506 6.3 6.8 -0.692 5.7 6.3

HTM 0.01 2.84 86.8 0.505 6.2 6.8 -0.706 5.7 6.3

400 CV 0 2.51 78.6 0.494 5.3 4.8 -0.698 4.3 4.5

SIC 0 2.80 83.5 0.501 4.6 4.8 -0.702 3.9 4.5

HTM 0 2.84 88.4 0.498 4.5 4.8 -0.699 3.9 4.5

ICT, the average number of coefficients erroneously set to zero; CT, the average

number of zero coefficients corresponding to true zero coefficients; PCM (%), the

percentage of times correct model selected; SE(×10−2), the empirical standard de-

viation; AE(×10−2), the asymptotic standard deviation; CV, cross-validation; SIC,

Schwartz-type information criterion; HTM, the hypothesis test method; The true

value of nonzero coefficients φ0
1 = 0.500 and φ0

3 = −0.700.
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Table 6. Simulation results with S(1.5, 0; 1) errors using LAD-alasso

Variable Selection Estimation accuracy

φ̂1 φ̂3

n Method ICT CT PCM Mean SE Mean SE

50 CV 0 2.43 72.5 0.488 6.1 -0.691 5.9

SIC 0 2.82 85.5 0.493 5.6 -0.694 5.8

100 CV 0 2.46 75.3 0.496 3.3 -0.691 3.5

SIC 0 2.92 93.7 0.498 3.2 -0.693 3.4

200 CV 0 2.55 83.1 0.497 2.0 -0.697 2.0

SIC 0 2.98 98.8 0.499 1.9 -0.698 2.0

400 CV 0 2.62 85.1 0.499 1.2 -0.698 1.2

SIC 0 2.99 99.9 0.499 1.2 -0.698 1.3

ICT, the average number of coefficients erroneously set to zero; CT, the average

number of zero coefficients corresponding to true zero coefficients; PCM (%), the

percentage of times correct model selected; SE(×10−2), the empirical standard de-

viation; AE(×10−2), the asymptotic standard deviation; CV, cross-validation; SIC,

Schwartz-type information criterion; The true value of nonzero coefficients φ0
1 = 0.500

and φ0
3 = −0.700.
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Table 7. Simulation results with N(0, 1) errors using SLAD-alasso with ρ = 90%

Variable Selection Estimation accuracy

φ̂1 φ̂3

n Method ICT CT PCM Mean SE AE Mean SE AE

50 CV 0.22 1.89 35.8 0.404 13.4 13.6 -0.617 16.6 12.7

SIC 0.23 2.19 39.2 0.436 13.7 13.6 -0.635 12.8 12.7

HTM 0.30 2.75 65.1 0.542 13.1 13.6 -0.739 10.5 12.7

100 CV 0.03 2.24 57.6 0.459 13.1 9.6 -0.670 9.6 9.0

SIC 0.03 2.56 65.6 0.482 10.4 9.6 -0.683 8.3 9.0

HTM 0.05 2.86 87.1 0.487 8.8 9.6 -0.694 7.6 9.0

200 CV 0 2.35 69.3 0.491 6.8 6.8 -0.688 5.8 6.3

SIC 0 2.67 74.2 0.506 6.3 6.8 -0.692 5.7 6.3

HTM 0.01 2.84 86.8 0.505 6.2 6.8 -0.706 5.7 6.3

400 CV 0 2.51 78.6 0.494 5.3 4.8 -0.698 4.3 4.5

SIC 0 2.80 83.5 0.501 4.6 4.8 -0.702 3.9 4.5

HTM 0 2.84 88.4 0.498 4.5 4.8 -0.699 3.9 4.5

ICT, the average number of coefficients erroneously set to zero; CT, the average

number of zero coefficients corresponding to true zero coefficients; PCM (%), the

percentage of times correct model selected; SE(×10−2), the empirical standard de-

viation; AE(×10−2), the asymptotic standard deviation; CV, cross-validation; SIC,

Schwartz-type information criterion; HTM, the hypothesis test method; The true

value of nonzero coefficients φ0
1 = 0.500 and φ0

3 = −0.700.
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Table 8. Simulation results with N(0, 1) errors using SLAD-alasso with ρ = 95%

Variable Selection Estimation accuracy

φ̂1 φ̂3

n Method ICT CT PCM Mean SE AE Mean SE AE

50 CV 0.11 1.93 45.1 0.427 10.9 9.0 -0.641 13.0 8.5

SIC 0.11 2.42 55.7 0.453 9.6 9.0 -0.664 9.7 8.5

HTM 0.20 2.72 73.0 0.494 8.8 9.0 -0.704 9.9 8.5

100 CV 0 2.30 63.7 0.470 8.2 6.3 -0.671 8.4 6.0

SIC 0 2.64 71.3 0.486 7.9 6.3 -0.681 7.7 6.0

HTM 0.04 2.84 88.9 0.491 8.4 6.3 -0.688 7.3 6.0

200 CV 0 2.42 71.5 0.487 4.9 4.5 -0.690 4.4 4.3

SIC 0 2.74 76.6 0.496 4.8 4.5 -0.696 4.1 4.3

HTM 0 2.81 85.4 0.488 5.0 4.5 -0.700 4.2 4.3

400 CV 0 2.60 80.6 0.493 3.9 3.2 -0.693 3.4 3.0

SIC 0 2.90 91.1 0.498 3.6 3.2 -0.695 3.2 3.0

HTM 0 2.87 88.8 0.509 3.5 3.2 -0.695 3.2 3.0

ICT, the average number of coefficients erroneously set to zero; CT, the average

number of zero coefficients corresponding to true zero coefficients; PCM (%), the

percentage of times correct model selected; SE(×10−2), the empirical standard de-

viation; AE(×10−2), the asymptotic standard deviation; CV, cross-validation; SIC,

Schwartz-type information criterion; HTM, the hypothesis test method; The true

value of nonzero coefficients φ0
1 = 0.500 and φ0

3 = −0.700.



54

Table 9. Simulation results with N(0, 1) errors using LAD-alasso

Variable Selection Estimation accuracy

φ̂1 φ̂3

n Method ICT CT PCM Mean SE Mean SE

50 CV 0.05 1.93 47.4 0.449 8.8 -0.625 8.7

SIC 0.07 2.46 59.3 0.452 8.4 -0.631 9.0

100 CV 0 2.41 69.8 0.477 6.7 -0.680 6.6

SIC 0 2.74 79.2 0.482 6.4 -0.685 6.5

200 CV 0 2.56 78.0 0.490 4.6 -0.686 3.8

SIC 0 2.86 89.8 0.500 4.5 -0.690 3.6

400 CV 0 2.61 81.7 0.494 2.9 -0.694 2.9

SIC 0 2.93 93.3 0.497 2.8 -0.696 2.8

ICT, the average number of coefficients erroneously set to zero; CT, the average

number of zero coefficients corresponding to true zero coefficients; PCM (%), the

percentage of times correct model selected; SE(×10−2), the empirical standard de-

viation; AE(×10−2), the asymptotic standard deviation; CV, cross-validation; SIC,

Schwartz-type information criterion; The true value of nonzero coefficients φ0
1 = 0.500

and φ0
3 = −0.700.
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3.4. A real data example

In this section, we employ our new method to analyze the Hang Seng Index data,

which has been examined by Ling (2005). The data consists of 497 Hang Seng Index

daily closing indices from June 3rd, 1996 to May 31st, 1998. Let xt be the original

data and yt = log(xt/xt−1). The original data and transformed data are displayed in

Figure 3, where we can clearly see some outliers in the {yt} sequence, which indicates

that this process may have infinite variance. Ling (2005) adopted the Hill estimator

to test the tail index of yt and showed that the data {yt} has an infinite variance.
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Figure 3. Original HSI data xt (above) and the transformed data yt(below).

To fit the data {yt} with an appropriate infinite variance autoregressive model,
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Ling (2005) selected the best model by a series of hypothesis tests based on the self-

weighted least absolute deviation estimator. The final model used by Ling (2005) is

yt = φ3yt−3 + ǫt, where the estimator φ̃3 = 0.123.

Table 10. The final model for the Hang Seng Index data

Method yt−1 yt−2 yt−3 yt−4 yt−5 yt−6 yt−7

LAD-alasso 0 0 0.117 0 0 0 0

Lin-95% 0 0 0.123 0 0 0 0

We employed the least absolute deviation adaptive lasso method to fit the data

{yt}. We used criterion (3.12) to select the optimal pair (γ, λ∗) in the same way

as described in Section 3.3.1. The maximum autoregressive order was taken to be

7, which was the same as in Ling (2005). The estimation results are presented in

Table 10. The least absolute deviation adaptive lasso method chose the model with

yt−3 as the only relevant variable. This result coincides with the variable selection

result of Ling (2005), but with a slightly different estimate φ̂3 = 0.117.
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CHAPTER IV

NONPARAMETRIC FUNCTION ESTIMATION USING LONGITUDINAL DATA

4.1. Introduction

Recent years have seen growing interests in developing flexible statistical models for

analyzing longitudinal data or the more general cluster data. Various semiparametric

(Zeger and Diggle, 1994; Zhang et al., 1998; Lin and Ying, 2001; Wang et al., 2005)

and nonparametric (Rice and Silverman, 1991; Wang, 1998; Fan and Zhang, 2000;

Lin and Carroll, 2000; Welsh et al., 2002; Wang, 2003; Zhu et al., 2008) models have

been proposed and studied in the literature. All of these flexible, semiparametric

or nonparametric, methods require specification of tuning parameters, such as the

bandwidth for the local polynomial kernel method, the number of knots for regression

splines, and the penalty parameter for penalized splines and smoothing splines.

The “leave-subject-out cross-validation” (LsoCV) or more generally called “leave-

cluster-out cross-validation”, introduced by Rice and Silverman (1991), has been

widely used as the method for selecting tuning parameters in analyzing longitudinal

data and clustered data. See, for example, Hoover et al. (1998); Huang et al. (2002);

Wu and Zhang (2006); Wang et al. (2008). The LsoCV is intuitively appealing since

the within-subject dependence is preserved by leaving out all observations from the

same subject together in the cross-validation. In spite of its broad acceptance in

practice, the use of LsoCV still lacks a theoretical justification to date. Moreover, the

existing literature has focused on the grid search method for finding the minimizer of

the LsoCV score (Chiang et al., 2001; Huang et al., 2002; Wang et al., 2008), which

is computationally rather inefficient and is computationally prohibitive when there

are multiple smoothing parameters. The goal of this project is twofold: First, we
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develop a theoretical justification of the LsoCV by showing that the LsoCV score is

asymptotically equivalent to an appropriately defined loss function; second, we de-

velop a computationally efficient algorithm to optimize the LsoCV score for selecting

multiple smoothing parameters.

Now we introduce the modeling framework to facilitate our discussion. Although

all discussions in this project apply to cluster data analysis, we shall focus our presen-

tation on longitudinal data. For a typical longitudinal data set, we have observations

(yij,xij), for j = 1, . . . , ni, i = 1, . . . , n, with yij being the jth response from the

ith subject and xij being the corresponding vector of covariates. It is assumed that

observations within a subject are correlated while observations between subjects are

independent. We further assume that yij is from an exponential family with mean

µij, variance vij, the density function

f(yij) = exp

{

yijθij − b(θij)

φ
+ c(yij, φ)

}

, (4.1)

and the mean is related to the covariates xijk, k = 0, 1, . . . ,m, through

g(µij) = xij0β0 +
m
∑

k=1

fk(xijk), (4.2)

where g is a known monotone increasing link function, β0 is a vector of linear re-

gression coefficients, and fk, (k = 1, . . . ,m) are unknown smooth functions (possibly

multidimensional). This is a very general framework including as special cases the

generalized additive models (Berhane and Tibshirani, 1998; Lin and Zhang, 1999),

the varying coefficient models (Hoover et al., 1998; Chiang et al., 2001; Huang et al.,

2002), the partially linear models (He et al., 2002; Wang et al., 2005; Huang et al.,

2007), and the partial linear varying coefficient models (Ahmad et al., 2005). As in

the generalized linear models, the exponential distribution assumption can be relaxed;

it is sufficient to specify the mean-variance relationship.
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Consider first the identity link function in (4.2). Denote yi = (yi1, · · · , yini
)T and

µi = (µi1, · · · , µini
)T . By using a polynomial spline basis expansion to approximate

each fk, the mean vector µi can be approximated by µi ≈ Xiβ for some matrix

Xi and unknown parameter vector β. By extending of the generalized estimating

equations (GEE) of Liang and Zeger (1986), we estimate β by minimizing

pl(β) =
n
∑

i=1

(yi − Xiβ)TW−1
i (yi − Xiβ) +

m
∑

k=1

λkβ
TSkβ, (4.3)

where Wi = J
1/2
i R(α)J

1/2
i with Ji = diag{vi1, . . . , vini

}, R(α) is the possibly mis-

specified working correlation parameterized with α, Sk is a quadratic penalty matrix

such that βTSkβ is a roughness penalty for fk, and λ = (λ1, · · · , λm) is a vector of

penalty parameters controlling the tradeoff between the model fitting and the model

complexity.

For a general link function in (4.2), we estimate the parameters using an iterative

reweighted penalized least square algorithm. Following the theory of Fisher’s scoring

method, define z
[l]
i = Xiβ

[l] + (∆
[l]
i )−1(yi −µ

[l]
i ), where β[l] is the estimate at the lth

step, ∆
[l]
i is a diagonal matrix with diagonal elements as the first derivative of g−1(·)

evaluated at µ̂
[l]
ij , (W

[l]
i )−1 = ∆

[l]
i (W

[l−1]
i )−1∆

[l]
i , then at the (l + 1)th step, β[l+1] can

be obtained by minimizing

pl[l](β) =
n
∑

i=1

(z
[l]
i − Xiβ)T (W

[l]
i )−1(z

[l]
i − Xiβ) +

m
∑

k=1

λkβ
TSkβ,

which has the same form as (4.3). Thus we will focus on (4.3) for our discussion.

Let µ̂(·) denote the estimate of the mean function obtained by using basis expan-

sion of unknown functions and solving the minimization problem (4.3) for estimating

the coefficients of the basis expansion. Let µ̂[−i](·) be the estimate of the mean func-

tion µ(·) by the same method but using all the data except observations from subject
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i, 1 ≤ i ≤ n. The LsoCV criterion is defined as

LsoCV(W,λ) =
1

n

n
∑

i=1

{yi − µ̂[−i](Xi)}T{yi − µ̂[−i](Xi)}. (4.4)

The main theoretical contribution of this project is that we show, under reasonable

regularity conditions, minimization of LsoCV is equivalent to minimization of the

squared error loss function. In the case of penalized regression for independent data,

Li (1986) established the asymptotic optimality of the generalized cross validation

(GCV) (Craven and Wahba, 1979) in choosing penalty parameters by showing that

the GCV score is asymptotically equivalent to the squared error loss. Our result can

be viewed as an extension of the result by Li (1986) to the longitudinal data setting.

Gu and Ma (2005) and Gu and Han (2008) have extended the GCV to handle

dependent data and established its asymptotic optimality by showing that their modi-

fied GCV scores are asymptotically equivalent to some tailor-made loss functions. The

dependence of their GCV scores and the corresponding loss functions on the assumed

correlation structure is a shortcoming, as commented in Gu and Ma (2005): “ While

many correlated errors can be cast as variance components with low-rank random

effects, some others do not conform, which spells the limitation of the techniques de-

veloped here.” Contrasting to these work, our LsoCV and the asymptotic equivalent

loss function are not attached to any specific correlation structure. As an important

by-product of this observation, the LsoCV can be used to select not only the penalty

parameters but also the correlation structure.

Another contribution of this project is development of a fast algorithm for opti-

mizing the LsoCV score. To avoid computation of a large number of matrix inversions,

we first derive an asymptotically equivalent approximation of the LsoCV score and

then derive a Newton–Raphson type algorithm. Such an algorithm is very useful

when we need to select multiple penalty parameters.
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4.2. Leave-subject-out cross validation

4.2.1. Heuristic justification

The initial, heuristic justification of LsoCV by Rice and Silverman (1991) is that it

mimics the mean squared prediction error (MSPE). Consider some new observations

(Xi,y
∗
i ), i = 1, . . . , n, taken at the same design points as the observed data. For a

given estimator of the mean function µ(·), denoted as µ̂(·), the MSPE is defined as

MSPE =
1

n

n
∑

i=1

E‖y∗
i − µ̂(Xi)‖2 =

1

n
tr(Σ) +

1

n

n
∑

i=1

E‖µ(Xi) − µ̂(Xi)‖2.

The independence between µ̂[−i](·) and yi implies that

E{LsoCV(W,λ)} =
1

n
tr(Σ) +

1

n

n
∑

i=1

E‖µ(Xi) − µ̂[−i](Xi)‖2.

When n is large, µ̂[−i](·) should be close to µ̂(·), the estimate that uses observations

from all subjects. Thus, we would expect that E{LsoCV(W,λ)} would be close

to the MSPE. By leaving out together all observations from the same subject, the

within-subject correlation is preserved in LsoCV and without having to model and

estimate this correlation.

4.2.2. Loss function

We shall provide a formal justification of LsoCV by showing that the LsoCV is asymp-

totically equivalent to an appropriately defined loss function. To define the loss func-

tion, we need some notations. Denote Y = (yT
1 , · · · ,yT

n )T , X = (XT
1 , · · · ,XT

n )T , and

W = diag{W1, · · · ,Wn}. Then, for fixed λ and W, the minimizer of (4.3) has the

closed-form expression

β̂ =
(

XTW−1X +
m
∑

k=1

λkSk

)−1
XTW−1Y . (4.5)
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The fitted mean function evaluated at the design points of the data is given by

µ̂(X|Y ,W,λ) = Xβ̂ = A(W,λ)Y , (4.6)

where A(W,λ) is the hat matrix defined as

A(W,λ) = X
(

XTW−1X +
m
∑

k=1

λkSk

)−1
XTW−1. (4.7)

From now on, we use A to represent A(W,λ) without causing any confusion.

For a given estimator µ̂(·) of µ(·), define the mean square error (MSE) loss as

the true loss function

L(µ̂) =
1

n

n
∑

i=1

{µ̂(Xi) − µ(Xi)}T{µ̂(Xi) − µ(Xi)}. (4.8)

Using (4.6), we obtain that, for the estimator obtained by minimizing (4.3), the true

loss function (4.8) is

L(W,λ) =
1

n
(AY − µ)T (AY − µ)

=
1

n
µT (I − A)T (I − A)µ +

1

n
ǫTATAǫ − 2

n
µT (I − AT )Aǫ,

(4.9)

where µ = (µ(X1)
T , · · · , µ(Xn)T )T , ǫ = Y − µ. Since E(ǫ) = 0 and Σ = V ar(ǫ) =

diag{Σ1, · · · ,Σn}, the risk function is

R(W,λ) = E{L(W,λ)} =
1

n
µT (I − A)T (I − A)µ +

1

n
tr(AΣAT ). (4.10)

4.2.3. Regularity conditions

This section states some necessary regularity conditions needed for our theoretical

results. Notice that unless W = I, A is not symmetric. Define a symmetric version

of A as Ã = W−1/2AW1/2. Let Cii be the diagonal block of Ã2 corresponding to the

ith subject. Now we state the regularity conditions. With a slight abuse of notations,
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denote by λmax(·) and λmin(·) the largest and the smallest eigenvalues of a matrix,

respectively. Let ξ(Σ,W) = λmax(ΣW−1)λmax(W), ei = Σ
−1/2
i ǫi and ui, vi be ni×1

vectors such that uT
i ui = vT

i vi = 1, and i = 1, · · · , n.

Condition 1. For some K > 0, E{(uT
i eie

T
i vi)

2} ≤ K, i = 1, . . . , n.

Condition 2.

(i) max1≤i≤n{tr(Aii)} = O(tr(A)/n);

(ii) max1≤i≤n{tr(Cii)} = o(1).

Condition 3. ξ(Σ,W)/n = o(R(W,λ)).

Condition 4. ξ(Σ,W){n−1tr(A)}2/{n−1tr(ATAΣ)} = o(1).

Condition 5. λmax(W)λmax(W
−1)O(n−2tr(A)2) = o(1).

Condition 1 is a mild moment condition that requires that each component of

the standardized residual ei = Σ
−1/2
i ǫi has uniformly bounded fourth moment. In

particular, when ǫi’s are from the Gaussian distribution, the condition holds with

K = 3.

Condition 2 extends the usually condition on leverage points used in theoretical

analysis of the standard linear regression. It says that the number of dominant or

extremely influential subjects is negligible compared to the total number of subjects.

In the special case that all subjects have the same design points, the condition holds

since tr(Aii) = tr(A)/n for all i = 1, · · · , n.

In this paper we assume that ni’s are bounded. Then any reasonable choice

of W would generally yield a finite value of the quantity λmax(ΣW−1)λmax(W),

and thus Condition 3 becomes a very mild condition, because one would not expect
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nonparametric estimation to deliver a parametric convergence rate of O(n−1) (Gu

and Ma, 2005).

Condition 4 is also a mild condition that extends similar conditions in the smooth-

ing spline literature. In fact, it typically holds that, at least for univariate smoothing

splines and W = I, tr(A(λ)) ∼ O((λ/n)−1/r) and tr(A2(λ)) ∼ O((λ/n)−1/r) for

some r > 1, see Gu and Ma (2005), and thus in this case, Condition 4 follows if

n(λ/n)1/rλmin(Σ)/λmax(Σ) → ∞ as λ→ 0.

Conditions 3–5 all indicate that a bad choice of the working covariance matrix W

may also deteriorate the performance of the LsoCV method. For example, Condition

3–5 may be violated when Σ−1W or W is nearly singular.

4.2.4. Optimality of leave-subject-out CV

Now we provide a theoretical justification of using the minimizer of LosCV(W,λ) to

select the optimal value of the penalty parameters λ for a fixed working covariance

matrix W. Naturally, it is reasonable to consider the value of λ that minimizes the

true loss function L(W,λ) as the optimal value of the penalty parameters for a fixed

W. However, L(W,λ) can not be evaluated using data alone since the true mean

function in the definition of L(W,λ) is unknown. One idea is to use an unbiased

estimate of the risk function R(W,λ) as a proxy of L(W,λ). Define

U(W,λ) =
1

n
YT (I − A)T (I − A)Y +

2

n
tr(AΣ). (4.11)

It is easy to show that

U(W,λ) − L(W,λ) − 1

n
ǫT ǫ =

2

n
µT (I − A)T ǫ − 2

n
{ǫTAǫ − tr(AΣ)}, (4.12)

which has expectation zero. Thus, if Σ is known, U(W,λ) − ǫT ǫ/n is an unbiased

estimate of the risk R(W,λ).
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Theorem 4.2.1. Under Conditions 1–4, for fixed W and λ, as n→ ∞,

L(W,λ) −R(W,λ) = op(R(W,λ)) (4.13)

and

U(W,λ) − L(W,λ) − 1

n
ǫT ǫ = op(L(W,λ)).

This theorem shows that, the function U(W,λ) − ǫT ǫ/n, the loss function

L(W,λ), and the risk function R(W,λ) are asymptotically equivalent. Thus, if

Σ is known, U(W,λ)−ǫT ǫ/n is a consistent estimator of the risk function and more-

over, U(W,λ) can be used as a reasonable surrogate of L(W,λ) for selecting the

penalty parameters, since the ǫT ǫ/n term does not depend on λ.

However, U(W,λ) depends on knowledge of the true covariance matrix Σ, which

is usually not available. The following result states that the LsoCV score provides a

good approximation of U(W,λ).

Theorem 4.2.2. Under Conditions 1–5, for fixed W and λ, as n→ ∞,

LsoCV(W,λ) − U(W,λ) = op(L(W,λ)),

and therefore

LsoCV(W,λ) − L(W,λ) − 1

n
ǫT ǫ = op(L(W,λ)). (4.14)

This theorem suggests that minimizing LsoCV(W,λ) with respect to λ is asymp-

totically equivalent to minimizing U(W,λ) and is also equivalent to minimizing the

true loss function L(W,λ). Unlike U(W,λ), LsoCV(W,λ) can be evaluated simply

using the data. The theorem provides the justification of using LsoCV, as a consistent

estimator of the loss or risk function, for selecting the penalty parameters.

Remark. Since our definition of the true loss function does not depend on a



66

specific model of the true covariance structure, we can use the loss function as a

benchmark for selecting the working covariance structure. Thus the result in The-

orem 4.2.2 suggests and provides a justification to use the LsoCV for selecting the

working covariance matrix. This suggestion is evaluated using a simulation study in

Section 4.4.3. When using the LsoCV to select the working covariance matrix, we

recommend to use λ = 0 so that no shrinkage bias is introduced to the parameter

estimation. When the number of knots is relatively large, the bias of parameter es-

timation is negligible compared with the variance, and consequently minimization of

the risk is equivalent to minimization of the variance.

4.2.5. Selection of working covariance structure

The major purpose of the introduction of GEE method is to improve the efficiency

of resulting estimator, which makes the choice of W in (4.3) rather important. For

a special case where all ni’s are equal and λ = 0 with appropriate chosen knots, Zhu

et al. (2008) shows that the function estimator using GEE based regression splines

is most efficient when the true covariance structure is specified. In our setting, if we

ignore the estimation bias using splines approximation, when λ = 0, the variance of

estimator β̂(W) minimizing (4.3) is minimized when W = Σ in the sense that

E{β̂(W) − β(W)}{β̂(W) − β(W)}T − E{β̂(Σ) − β(Σ)}{β̂(Σ) − β(Σ)}T

is positive semi-definite for any W. Denote Ωn = 1
n

∑n
i=1 XT

i Xi, we can rewrite the

risk function (4.10) as

R(W,0) =
1

n
E

n
∑

i=1

||Xi{β̂(W) − β(W)}||2

= tr[ΩE{β̂(W) − β(W)}{β̂(W) − β(W)}T ],
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which implies that R(W,0) is minimized when W = Σ, given that Ωn is positive

definite. Under certain conditions, Zhu et al. (2008) shows that the estimation bias

using regression spline does not depend on W, but it remains unclear whether this

property holds in a more general case.

Nevertheless, in practice R(W,0) can still serve as a good criterion for selection

of W if it can be consistently estimated. Equations (4.13), (4.14) and (4.16) indicate

that LsoCV(W,0) and LsoCV*(W,0) can be used to select the best W that will

yield efficient estimator.

4.3. Efficient computation

In this section, we develop a computationally efficient Newton–Raphson-type algo-

rithm to minimize the LsoCV score.

4.3.1. Shortcut formula

The definition of LsoCV would indicate that it is necessary to solve n separate min-

imization problems in order to find the LsoCV score. However, a computational

shortcut is available that requires solving only one minimization problem that in-

volves all data. Recall that A is the hat matrix. Let Aii denote the diagonal block

of A corresponding to the observations of subject i.

Theorem 4.3.1. (Shortcut Formula) The LsoCV score satisfies

LsoCV (W,λ) =
1

n

n
∑

i=1

(yi − ŷi)
T (Iii − Aii)

−T (Iii − Aii)
−1(yi − ŷi) (4.15)

where Iii is a ni × ni identity matrix, and ŷi = µ̂(Xi).

This result, whose proof is given in the Appendix, extends a similar result for

independent data (Green and Silverman, 1994, page 31). Indeed, if each subject has
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only one observation and W is the identity matrix, then (4.15) reduces to LsoCV =

(1/n)
∑n

i=1(yi − ŷi)
2/(1−aii)

2, which is exactly the shortcut formula for the ordinary

cross-validation score.

4.3.2. An approximation of leave-subject-out CV

A close inspection of the short-cut formula of LsoCV(W,λ) given in (4.15) suggests

that, the evaluation of LsoCV(W,λ) can still be computationally expensive because

of the requirement of matrix inversion and formulation of the hat matrix A. To further

reduce the computational cost, using the Taylor’s expansion (Iii −Aii)
−1 ≈ Iii + Aii,

we obtain the following approximation of LsoCV(W,λ):

LsoCV∗(W,λ) =
1

n
YT (I − A)T (I − A)Y +

2

n

n
∑

i=1

êT
i Aiiêi,

where ê = (I−A)Y. The next theorem shows that this approximation is a good one in

the sense that its minimization is also asymptotically equivalent to the minimization

of the true loss function.

Theorem 4.3.2. Under Conditions 1–5, for fixed λ, as n→ ∞, we have

LsoCV∗(W,λ) − L(W,λ) − 1

n
ǫT ǫ = op(L(W,λ)). (4.16)

This result and Theorem 4.2.2 imply that LsoCV∗(W,λ) and LsoCV(W,λ)

are asymptotically equivalent, that is, for nonrandom W and λ, LsoCV(W,λ) −

LsoCV∗(W,λ) = op(L(W,λ)). The proof Theorem 4.3.2 is given in the Appendix.

4.3.3. Algorithm

We develop an efficient algorithm based on the works of Gu and Wahba (1991) and

Wood (2004). The idea is to optimize the log transform of λ using the Newton–
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Raphson method. Our algorithm can be viewed as an extension of the stable and fast

algorithm of minimizing the GCV score in Wood (2004) to the longitudinal data case.

Define the transformed data using the working covariance structure as Ỹ = W−1/2Y ,

X̃ = W−1/2X, and the corresponding hat matrix as

Ã = X̃
(

X̃T X̃ + S
)−1

X̃T ,

where S =
∑m

k=1 λkSk. Since S is positive semi-definite, we can find a matrix B with

full column rank such that S = BTB using, for example, the Cholesky decomposition.

Then, form the QR decomposition X̃ = QTR, where Q is a N×p column orthonormal

matrix and R is a p×p upper triangular matrix, N is the total number of observations

in all subjects and p is the number of columns in the design matrix X. The identity

X̃T X̃ + S = RTR + BTB motivates us to form the singular value decomposition







R

B






= UDVT ≈ U∗D∗V∗T , (4.17)

where D is the diagonal matrix of singular values, U and V are orthogonal matrices.

Some of the diagonal elements of D can be very small and thus can be removed

without causing appreciable errors. The matrices U∗,D∗,V∗ in (4.17) are obtained

by removing small singular values from D along with the corresponding columns of

U and V. Define the sub matrix U∗
1 of U∗ such that R = U∗

1D
∗V∗T . Then we can

rewrite the matrix Ã as

Ã = QTR(RTR + BTB)−1R−1Q = QU∗
1U

∗T
1 QT .

Note that Q is a N×p matrix, U∗
1 is a p×p matrix. The fast algorithm for GCV

optimization in Wood (2004) takes advantage of the fact that tr(Ã) = tr(U∗
1U

∗T
1 ),

which only takes O(p3) floating operations to evaluate. However, this appealing
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property does not hold for the evaluation of LsoCV∗(W,λ). Define

α =
1

n
Ỹ T (I − Ã)W(I − Ã)Ỹ ,

β =
2

n
Ỹ T (I − Ã)W

( n
∑

i=1

LT
i LiÃLT

i Li

)

(I − Ã)Ỹ ,

where Li = [0, · · · , Iii, · · · ,0]ni×N . It is easy to see that LsoCV∗(W,λ) = α + β.

To make good use of the QR decomposition given above, we define the p× 1 vectors

ỸQ = QT Ỹ and ỸW = QTWỸ , the p × p matrix QW = QTWQ and the ni × p

matrices Qi = LiQ, (i = 1, · · · , n). Then, α and β can be computed using

α =
1

n
(Ỹ TWỸ − 2Ỹ T

Q U∗
1U

∗T
1 ỸW + Ỹ T

Q U∗
1U

∗T
1 QWU∗

1U
∗T
1 ỸQ),

β =
2

n

n
∑

i=1

(ỹi − QiU
∗
1U

∗T
1 ỸQ)TWiQiU

∗
1U

∗T
1 QT

i (ỹi − QiU
∗
1U

∗T
1 ỸQ).

Following Gu and Wahba (1991), we define ηj = log(λj), j = 1, · · · ,m, and

compute the gradients and Hessian matrix of LsoCV∗(W,λ) with respect to ηj’s.

Define Mk = D∗−1V∗TSkV
∗D∗−1, M∗

k = U∗
1MkU

∗T
1 and Kk = MkU

∗T
1 QWU∗

1, then

∂α

∂ηk

=
2λk

n
(Ỹ T

Q M∗
kỸW − Ỹ T

Q U∗
1KkU

∗T
1 ỸQ),

∂β

∂ηk

=
2λk

n
Ỹ T

Q M∗
k

n
∑

i=1

QT
i (QiU

∗
1U

∗T
1 QT

i Wi)
†(ỹi − QiU

∗
1U

∗T
1 ỸQ)

− 2λk

n

n
∑

i=1

(ỹi − QiU
∗
1U

∗T
1 ỸQ)TWiQiM

∗
kQ

T
i (ỹi − QiU

∗
1U

∗T
1 ỸQ),

where (QiU
∗
1U

∗T
1 QT

i Wi)
† = QiU

∗
1U

∗T
1 QT

i Wi+WiQiU
∗
1U

∗T
1 QT

i . To derive the second

derivatives of LsoCV∗(W,λ), define Hjk = U∗
1(MkMj + MjMk)U

∗T
1 , and Gjk =

MkKj + MjKk + MkQWMj. Then

∂2α

∂ηk∂ηj

=
2λkλj

n
{Ỹ T

Q U∗
1GjkU

∗T
1 ỸQ − Ỹ T

Q HjkỸW} + δj
k

∂α

∂ηk

,
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∂2β

∂ηk∂ηj

= T1,kj + T2,kj + (T3,kj + T3,jk) + T4,kj + δj
k

∂β

∂ηk

,

where δj
k = 1 if k = j and 0 otherwise, and

T1,kj = −2λkλj

n
Ỹ T

Q Hkj

n
∑

i=1

QT
i (QiU

∗
1U

∗T
1 QT

i Wi)
†(ỹi − QiU

∗
1U

∗T
1 ỸQ),

T2,kj =
2λkλj

n

n
∑

i=1

(ỹi − QiU
∗
1U

∗T
1 ỸQ)TWiQiHkjQ

T
i (ỹi − QiU

∗
1U

∗T
1 ỸQ),

T3,kj = −2λkλj

n
Ỹ T

Q M∗
k

n
∑

i=1

QT
i (WiQiM

∗
jQ

T
i )†(ỹi − QiU

∗
1U

∗T
1 ỸQ),

T4,kj =
2λkλj

n
Ỹ T

Q M∗
k

n
∑

i=1

QT
i (QiU

∗
1U

∗T
1 QT

i Wi)
†QiM

∗
j ỸQ.

Using the formulas of the gradients and the Hessian matrix, the minimization of

LsoCV∗(W,λ) with respect to λ can be done using the iterative Newton–Raphson

method. The key of the algorithm is the QR decomposition of X̃ used in (4.17),

which is the computationally most expensive step of the algorithm with the cost of

Np2 floating point operations. However, this QR decomposition needs only to be

carried out once for all iterations of the Newton–Raphson algorithm since X̃ does not

depend on λ. After the ỸQ and Qi’s are obtained, the evaluations of α and β cost

O(p2) and O(p2 + Np) floating point operations, respectively. The computation of

gradients and the Hessian matrix of LsoCV∗(W,λ) can be efficiently computed in a

similar manner as α and β by using the formulas given above. As a comparison, using

the Newton–Raphson method to find the minimizer of LsoCV(λ) given in (4.15) is

much more expensive. For each iteration, it involves formation of the hat matrix A

(O(Np2) operations), the inversion of Aii’s (O(
∑n

i=1 n
3
i ) operations), and the sum-

mation (O(
∑n

i=1 n
2
i ) operations). The overall computational cost for each iteration

is O(Np2), which is much more than the cost of minimizing LsoCV∗(W,λ) (O(Np)

operations), especially when p is large.
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In our implementation of the Newton–Raphson algorithm, we followed sugges-

tions of Wood (2004) on convergence criteria and choosing searching directions in

each iteration.

4.4. Simulation studies

4.4.1. Function estimation

In this section, we illustrate the finite-sample performance of LsoCV∗ in selecting the

penalty parameters for function estimation. In each simulation run, we set n = 100

and ni = 5, (i = 1, · · · , n). A random sample is generated from the model

yij = f1(x1,i) + f2(x2,ij) + ǫij, j = 1, · · · , 5, i = 1, · · · , 100, (4.18)

where x1 is a subject level covariate and x2 is an observational level covariate, both

of which are drawn from Uniform(−2, 2). Functions used here are from Welsh et al.

(2002) with slight modifications:

f1(x) = 2
√

z(1 − z) sin(2π
1 + 2−3/5

1 + z−3/5
),

f2(x) = sin(8z − 4) + 2 exp(−256(z − 0.5)2),

where z = (x + 2)/4. The error term ǫij’s are generated from a Gaussian distribu-

tion with zero mean, variance σ2, and the compound symmetry correlation structure

within a subject, that is

Cov(ǫij, ǫkl) =































σ2, if i = j = k = l;

ρσ2, if i = k, j 6= l,

0, otherwise;

(4.19)
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j, l = 1, · · · , 5, i, k = 1, · · · , 100. In this subsection, we take σ = 1 and ρ = 0.8. A

cubic splines with 10 equally spaced knots in (−2, 2) was used for estimating each

function components. Functions were estimated by minimizing (4.3) with two working

correlations: the working independence (denoted as W1 = I) and the compound

symmetry with ρ = 0.8 (denoted as W2). Penalty parameters were selected by

minimizing LsoCV*. Figure 4 shows the bias and the variance of estimating each

component function based on 200 Monte Carlo runs, calculated over 100 equally

spaced grid points in [-2,2]. The top two panels of Figure 4 show that the biases

using W1 and W2 are almost the same, which is consistent with the conclusion

in Zhu et al. (2008) that the bias of function estimation using regression splines does

not depend on the choice of the working correlation. The bottom two panels indicate

that using the true correlation structure W2 yields more efficient function estimation;

the message is more clear in the estimation of f2(x).

4.4.2. Comparison with GCV

In this section, we compare the penalty parameter selection using the LsoCV∗ and the

GCV (Craven and Wahba, 1979). Since the GCV is designed for independent data, we

use working independence when applying LsoCV*. This means that we do not take

into account the dependence in the fitting procedure for a fair comparison. Thus the

difference of the results by two methods are mainly caused by the ability to take into

account of dependence in the delete-subject-out CV. The data were generated using

(4.18) and (4.19) in the same way as in the previous subsection. For each simulation

run, to compare efficiencies of the estimated mean functions using different penalty

parameter selection approaches, we calculated the ratio of true losses at different

choices of penalty parameters: L(I,λLsoCV*)/L(I,λGCV) and L(I,λLsoCV*)/L(I,λOpt),

where λGCV and λLsoCV* are penalty parameters selected by using GCV and LsoCV*,
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Figure 4. Simulation results for function estimation. Top panels: bias of estimated

functions. Bottom panels: variance of estimated functions. In all panels,

solid curves correspond to W1, and dashed curves W2.

respectively, and λOpt is obtained by minimizing the true loss function defined in

(4.8) as if the mean function µ(·) is known with W = I. A cubic spline with 10

equally spaced knots was used for estimating each function component. For the first

experiment, we fixed ρ = 0.8 and increased the noise standard deviation σ from 0.5 to

1. For the second experiment, we fixed σ = 1 and varied ρ from −0.2 to 0.9. Results

are presented in Figure 5. We see that, when σ or ρ increases, LsoCV* becomes

more efficient than GCV in terms of minimizing the true loss of the estimated mean

function µ̂(·). In addition, from the right two panels of Figure 5, we see that the

minimizers of LsoCV* and the true loss function using the information of the true

function are reasonably close, which supports the conclusion of Theorem 4.3.2.
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Figure 5. Relative efficiency of LsoCV* to GCV and the true loss using working inde-

pendence.

4.4.3. Covariance structure selection

In this subsection, we study the performance of LsoCV* in selecting the covariance

structure. The data was generated using the model (4.18) with σ = 1, ni = 5

for all i = 1, · · · , n. The only difference of the setup from that in Section 4.4.1 is

that in this experiment, both x1 and x2 are set to be observational level covariates

drawn from Uniform(−2, 2). Four types of within-subject correlation structures were

considered: independence (IND), compound symmetry with correlation coefficient ρ

(CS), AR(1) with lag-one correlation ρ (AR), and unstructured correlation matrix

with ρ12 = ρ23 = 0.8, ρ13 = 0.3 and 0 otherwise (UN). Data were generated using

each one of these correlation structures as the true structure and then the LsoCV*

was used to select the best working correlation from the four possible candidates.
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Table 11. Simulation results for working covariance structure selection.

Selected Structure

n ρ True Structure IND CS AR UN

50 0.3 IND 89.5 4.0 6.5 0

CS 8.0 64.5 27.5 0

AR 11.5 11.7 77 0

UN 0.5 0.5 12.5 86.5

0.5 IND 98.5 0.5 1.0 0

CS 6.0 71 23 0

AR 3.5 13.5 83 0

UN 3.0 3.0 11.5 82.5

0.8 IND 99.5 0.5 0 0

CS 3.5 69 27.5 0

AR 2.5 21 73 3.5

UN 6.0 3.0 5.0 86

A cubic spline with the 10 equally spaced knots in (−2, 2) was used to model each

unknown function and we set the penalty parameter vector λ = 0. Simulation results

based on 200 runs were summarized in Tables 11–13, which show very good selection

results, that is, the true correlation structure was selected in majority of times.

4.5. A real data example

As a subset from the Multi-center AIDS Cohort Study, the data include the repeated

measurements of CD4 cell counts and percentages on 283 homosexual men who be-

came HIV-positive between 1984 and 1991. All subjects were scheduled to take their

measurements at semi-annual visits. However, since many subjects missed some of
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Table 12. Simulation results for working covariance structure selection.

Selected Structure

n ρ True Structure IND CS AR UN

100 0.3 IND 97.5 1.5 1.0 0

CS 1.0 82.5 16.5 0

AR 5.5 6.0 88.5 0

UN 0.0 1.5 11 87.5

0.5 IND 99.5 0.5 0 0

CS 3.0 81.5 15 0.5

AR 2.5 7.5 90 0

UN 1.5 1.5 13.5 83.5

0.8 IND 100 0 0 0

CS 1.0 77.5 20 1.5

AR 0.5 16 81 2.5

UN 3.5 3.5 8.5 84.5
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Table 13. Simulation results for working covariance structure selection.

Selected Structure

n ρ True Structure IND CS AR UN

150 0.3 IND 99 1.0 0 0

CS 1.5 87 11.5 0

AR 2.0 4.5 93.5 0

UN 0 0 16 84

0.5 IND 100 0 0 0

CS 2.0 89 9.0 0

AR 1.0 11.0 87 1.0

UN 0.5 1.0 11.5 87

0.8 IND 100 0 0 0

CS 3.0 76 21 0

AR 2.5 17 77 3.0

UN 2.0 4.0 6.5 87.5
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their scheduled visits, there are unequal numbers of repeated measurements and dif-

ferent measurement times per subject. Further details of the study can be found in

Kaslow et al. (1987).

Our goal is to do statistical analysis of the trend of mean CD4 percentage de-

pletion over time. Denote by tij the time in years of the jth measurement of the

ith individual after HIV infection, by yij the ith individual’s CD4 percentage at time

tij and by X
(1)
i the ith individual’s smoking status with values 1 or 0 for the ith

individual ever or never smoked cigarettes, respectively, after the HIV infection. To

obtain a clear biological interpretation, we define X
(2)
i to be the ith individual’s cen-

tered age at HIV infection, which is obtained by the ith individual’s age at infection

subtract the sample average age at infection. Similarly, the ith individual’s centered

pre-infection CD4 percentage, denoted by X
(3)
i , is computed by subtracting the av-

erage pre-infection CD4 percentage of the sample from the ith individual’s actual

pre-infection CD4 percentage. These covariates, except the time, are time-invariant.

Consider the varying-coefficient model

yij = β0(tij) +X
(1)
i β1(tij) +X

(2)
i β2(tij) +X

(2)
i β2(tij) + ǫij, (4.20)

where β0(t) represents the trend of mean CD4 percentage changing over time after

the infection for a non-smoker with average pre-infection CD4 percentage and average

age at HIV infection, and β1(t), β2(t) and β3(t) describe the time-varying effects for

cigarette smoking, age at HIV infection, and pre-infection CD4 percentage, respec-

tively, on the post-infection CD4 percentage. Since the number observations are very

uneven among subjects, we only used subjects with at least 4 observations. A cubic

spline with k = 10 equally spaced knots was used for modeling each function. We first

used the working independence W1 = I covariance structure to fit the data and then
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use the residuals form this model to estimate parameters in the correlation function

γ(u, α, θ) = α+ (1 − α) exp(−θu),

where u is the lag in time and 0 < α < 1, θ > 0. This correlation function was

considered previously in Zeger and Diggle (1994). The estimated parameter val-

ues are (α̂, θ̂) = (0.40, 0.75). The second working correlation matrix W2 consid-

ered was formed using γ(u, α̂, θ̂). We computed that LsoCV(W1,0) = 881.88 and

LsoCV(W2,0) = 880.33, which implies that using W2 may be more desirable. This

conclusion remains unchanged when the number of knots varies. To visualize the gain

in estimation efficiency by using W2 instead of the working independence, we calcu-

lated the width of the 95% pointwise bootstrap confidence intervals based on 1000

bootstrap samples, which is displayed in Figure 6. We see that the bootstrap inter-

vals using W2 is almost uniformly narrower than those using working independence,

indicating more estimation efficiency.

In Figure 7, we present the fitted coefficient functions using W2 with the penalty

parameters λ selected by minimizing LsoCV*(W2,λ). The findings are consistent

with previous studies conducted on the same data set; see for example, Wu and

Chiang (2000), Fan and Zhang (2000), and Huang et al. (2002).
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Figure 6. Width of the 95% pointwise bootstrap confidence intervals based on 1000

bootstrap samples, using the working independence (solid line) and the co-

variance matrix W2 (dashed line).
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Figure 7. Fitted varying coefficient model of the CD4 data using the working covari-

ance matrix W2. Solid curves are fitted coefficient functions; dotted curves

show the 95% bootstrap pointwise confidence intervals.
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APPENDIX A

TECHNICAL PROOFS OF CHAPTER III

Before proving Theorem 3.2.1, we first give a Lemma that will be used in the proof

of that theorem.

Lemma 4.5.1. Denote L̃n(u) =
∑n

t=p+1 ht(|ǫt − n− 1

2XT
t u| − |ǫt|). Then under Con-

ditions 1 and 2, for any fixed u, we have

L̃n(u) = −uTTn+f(0)uT

(

1

n

n
∑

t=p+1

htXtX
T
t

)

u+op(1) → −uT Φ+f(0)uT Σu (A.1)

in distribution, where Tn = n− 1

2

∑n
t=p+1 htXt{I(ǫt > 0) − I(ǫt < 0)}, Φ ∼ N(0,Ω),

and Σ and Ω are presented in Lemma 3.2.1.

Lemma 4.5.1 can be obtained from the proof of Theorem 1 in Ling (2005).

Proof of Theorem 3.2.1 We adopt an approach similar to a proof in Zou

(2006). At first, we prove the asymptotic normality part. Denote

Ṽn(u) = L1n(φ0 + n− 1

2 u) − L1n(φ0) + λnΣp
j=1r1j(|φ0

j + n− 1

2uj| − |φ0
j |)

= L̃n(u) + n− 1

2λnΣp
j=1r1jn

1

2 (|φ0
j + n− 1

2uj| − |φ0
j |), (A.2)

where L̃n(u) has been defined in Lemma 4.5.1. Then we have n
1

2 (φ̂1n − φ0) =

arg min{Ṽn(u)}. By Lemma 4.5.1 for each u, we have the asymptotic property (A.1)

for L̃n(u). Now consider the second part of (A.2). If φ0
j 6= 0, then by the definition

of r1j, we have r1j → |φ0
j |−γ in probability. Furthermore, we have n

1

2 (|φ0
j + n− 1

2uj| −

|φ0
j |) → ujsgn(φ0

j). Thus, by Slutsky’s theorem and the condition that λnn
− 1

2 → 0,

we have

λnr1j(|φ0
j + n− 1

2uj| − |φ0
j |) → 0 (A.3)
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in probability. If φ0
j = 0, then n

1

2 (|φ0
j + n− 1

2uj| − |φ0
j |) = |uj| and n

1

2 φ̃1j = Op(1),

where φ̃1j is the jth element of φ̃1n. Thus, we have

λnr1j(|φ0
j + n− 1

2uj| − |φ0
j |) = n− 1

2λnr1j|uj|

= λnn
γ−1

2 (|n 1

2 φ̃1j|−γ)|uj|

→















0 (uj = 0),

∞ (uj 6= 0)

(A.4)

in probability, where (A.4) follows because λnn
γ−1

2 → ∞.

Finally, by (A.1)–(A.4), using Slutsky’s theorem, we have Ṽn(u) → Ṽ (u) in

distribution, where

Ṽ (u) =















−uT
SΦS + f(0)uT

SΣSuS (uj = 0, j ∈ Sc),

∞ (otherwise),

where, as before, uS denotes the subvector of u corresponding to the non-zero co-

efficients. Since Ṽn(u) is convex and has the unique minimum, following the epi-

convergence results of Geyer (1994) and Knight and Fu (2000), we have

n
1

2 (φ̂1S − φ0
S) → 1

2f(0)
Σ−1

S ΦS (A.5)

in distribution and n
1

2 φ̂1Sc → 0 in distribution, where φ̂1Sc is the subvector of φ̂1n

corresponding to the zero coefficients. Since ΦS ∼ N(0,ΩS), by (A.5), the asymptotic

normality part is obtained.

Now we prove the consistent variable selection part. For all j ∈ S, by the

asymptotic normality (A.5), we have pr (j ∈ S∗
1 ) → 1 immediately. Then it suffices

to show that for all j ∈ Sc, pr (j ∈ S∗
1 ) → 0. For any j ∈ Sc, if j ∈ S∗

1 , then we must

have λnr1j ≤ ∑n
t=p+1 ht|Xtj|, where Xtj is the jth element of Xt. Thus, it follows
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immediately that

pr (j ∈ S∗
1 ) ≤ pr

(

λn|φ̃1j|−γ ≤
n
∑

t=p+1

ht|Xtj|
)

. (A.6)

However,

1

n− p

n
∑

t=p+1

ht|Xtj| ≤
( 1

n− p

n
∑

t=p+1

h2
t |Xtj|2

) 1

2 → Ω
1

2

jj (A.7)

almost surely as n→ ∞, where Ωjj is the jth diagonal element of Ω. Moreover,

λn

(n− p)|φ̃1j|γ
=

n

n− p
× λn

n1− γ

2 |n 1

2 φ̃1j|γ
→ ∞, (A.8)

where we have use the condition λnn
( γ

2
−1) → ∞ and the property n

1

2 φ̃1j = Op(1).

Combining (A.6)–(A.8), we have pr (j ∈ S∗
1 ) → 0. Thus, the variable selection

consistency is obtained, which completes the proof of Theorem 3.2.1.

Proof of Theorem 3.2.5 The proof is similar to that of Theorem 3.2.1. Recall

the definition of Wn(u) in (3.9) and denote

Ṽ1n(u) = Wn(u) + λnΣp
j=1r2j(|φ0

j + b−1
n uj| − |φ0

j |). (A.9)

Then we have bn(φ̂2n − φ0) = arg min{Ṽ1n(u)}. By Lemma 3.2.2, we have, for each

u,

Wn(u) → W (u) (A.10)

in distribution, where W (u) is defined in (3.10). For the second part of (A.9), by a

discussion similar to that in the proof of Theorem 3.2.1, we have

λnr2j(|φ0
j + b−1

n uj| − |φ0
j |) →































0 (φ0
j 6= 0),

0 (φ0
j = 0, uj = 0),

∞ (φ0
j = 0, uj 6= 0)

(A.11)

in probability. Thus, combining (A.10) and (A.11) and using Slutsky’s theorem, we
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have Ṽ1n(u) → Ṽ1(u) in distribution, where

Ṽ1(u) =















W (u|uSc=0) (uj = 0, j ∈ Sc),

∞ (otherwise).

Following a discussion similar to that in Davis et al. (1992), it is readily seen that

the conditions in Theorem 3.2.5 guarantee W (u|uSc=0) to have a unique minimum ξ1

almost surely, thus the unique minimum of Ṽ1(u) is (ξT
1 , 0

T )T . Since Ṽ1n(u) is convex,

following the epi-convergence results of Geyer (1994) and Knight and Fu (2000) again,

we finally have

bn(φ̂2S − φ0
S) → ξ1 (A.12)

in distribution and bnφ̂2Sc →D 0, where φ̂2Sc is the subvector of φ̂2n corresponding to

the zero coefficients. Therefore, bn(φ̂2S − φ0
S) = Op(1).

Next we prove the variable selection consistency. For all j ∈ S, by the asymptotic

property (A.12), we have pr (j ∈ S∗
2 ) → 1 immediately. Then it suffices to show

that for all j ∈ Sc, pr (j ∈ S∗
2 ) → 0. For any j ∈ Sc, if j ∈ S∗

2 , then we must

have λnr2j ≤ ∑n
t=p+1 |Xtj|, where Xtj is the jth element of Xt. Thus, it follows

immediately that

pr (j ∈ S∗
2 ) ≤ pr

(

λn|φ̃2j|−γ ≤
n
∑

t=p+1

|Xtj|
)

. (A.13)

Using the inequality |x+ y|δ ≤ |x|δ + |y|δ for 0 < δ < 1, we have

1

n− p

(

n
∑

t=p+1

|Xtj|
)α/2 ≤ 1

n− p

(

n
∑

t=p+1

|Xtj|α/2
)

→ E(|yt|
α
2 ) <∞ (A.14)

almost surely as n→ ∞, where the convergence make sense by the ergodic theorem.

However,

1

n− p

(

λn

|φ̃2j|γ

)α/2

=
n

n− p
× n−1

(

λnb
γ
n

|bnφ̃2j|γ

)α/2

→ ∞, (A.15)
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where we have use the condition n−1(λnb
γ−1
n )

α
2 → ∞ and the property bnφ̃2j = Op(1).

Combining (A.13)–(A.15), we have pr (j ∈ S∗
2 ) → 0. Thus, We have shown the

variable selection consistency, completing the proof of Theorem 3.2.5.
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APPENDIX B

TECHNICAL PROOFS OF CHAPTER IV

Proof of Theorem 4.3.1. For fixed λ, let β̂[−i] be the minimizer of (4.3) using

data without observations from the subject i. Consider the data set {(y∗
l , Xl)}, 1 ≤

l ≤ n, where y∗
i = Xiβ̂

[−i] and y∗
l = yl if l 6= i, l = 1, · · · , n. Then, for any β,

pl(β) =
n
∑

l=1

(y∗
l − Xlβ)TW−1

l (y∗
l − Xlβ) +

m
∑

k=1

λkβ
TSkβ

≥
∑

l 6=i

(y∗
l − Xlβ)TW−1

l (y∗
l − Xlβ) +

m
∑

k=1

λkβ
TSkβ

≥
∑

l 6=i

(y∗
l − Xlβ̂

[−i])TW−1
l (y∗

l − Xlβ̂
[−i]) +

m
∑

k=1

λkβ̂
[−i]TSkβ̂

[−i]

=
n
∑

l=1

(y∗
l − Xlβ̂

[−i])TW−1
l (y∗

l − Xlβ̂
[−i]) +

m
∑

k=1

λkβ̂
[−i]TSkβ̂

[−i].

Hence, β̂[−i] is the minimizer of pl(β) given data {(y∗
l ,Xl)}, which implies

Xiβ̂
[−i] = LiA(λ)Y ∗,

where Y ∗ = (y∗T
1 , · · · ,y∗T

n )T , and Li = [0, · · · , Iii, · · · ,0]ni×N with Iii being the

ni × ni identity matrix. By the definition of Y ∗ and using Aii = LiALT
i , we have

that

Xiβ̂
[−i] = LiA

{

Y − LT
i

(

yi − Xiβ̂
[−i]
)}

= ŷi − Aii(yi − Xiβ̂
[−i]).

By some straightforward algebra, we have that

(

yi − Xiβ̂
[−i]
)

= (Iii − Aii)
−1(yi − ŷi),
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Plugging this identity into the definition of LsoCV(W,λ), we obtain

LsoCV(W,λ) =
1

n

n
∑

i=1

(yi − ŷi)
T (Iii − Aii)

−T (Iii − Aii)
−1(yi − ŷi),

which is the desired formula.

Let λmax(M) ≥ λ2(M) ≥ · · · ≥ λmin(M) denote the eigenvalues of the p × p

symmetric matrix M. We present several useful lemmas.

Lemma 4.5.2. For any positive semi-definite matrices M1 and M2,

λi(M1)λp(M2) ≤ λi(M1M2) ≤ λi(M1)λ1(M2), i = 1, · · · , p . (B.1)

Proof. See Lemma 2.2.1 of Anderson and Gupta (1963) and Benasseni (2002).

Lemma 4.5.3. For any positive semi-definite matrices M1 and M2,

tr(M1M2) ≤ λmax(M1)tr(M2), (B.2)

Proof. The proof is trivial, using the eigen decomposition of M1.

Lemma 4.5.4. Eigenvalues of AΣAT and (I − A)Σ(I − A)T are bounded above by

ξ(Σ,W) = λmax(ΣW−1)λmax(W).

Proof. Recall that Ã = W−1/2AW1/2. For AΣAT , by Lemma 4.5.2, we have that

λi(AΣAT ) = λi(W
1/2ÃW−1/2ΣW−1/2ÃW1/2) ≤ λi(ÃWÃ)λmax(ΣW−1)

≤ λi(Ã
2)λmax(W)λmax(ΣW−1) ≤ ξ(Σ,W).

The last inequality follows from the fact that maxi{λi(Ã
2)} ≤ 1. Similarly,

λi((I − A)Σ(I − A)T ) = λi(W
1/2(I − Ã)W−1/2ΣW−1/2(I − Ã)TW1/2)

≤ λi((I − Ã)2)λmax(W)λmax(ΣW−1)

≤ ξ(Σ,W),
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where we have used maxi{λi((I − Ã)2)} ≤ 1.

Denote e = (eT
1 , · · · ,eT

n )T , where ei’s are independent random vectors with

length ni, E(ei) = 0 and V ar(e) = Ii for i = 1, · · · , n. For each i, define zij =

uT
ijeie

T
i vij where uij and vij are vectors with the property uT

ijuik = vT
ijvik = 1 if

j = k and 0 otherwise, j, k = 1, · · · , ni.

Lemma 4.5.5. If there exists a constant K such that E(z2
ij) ≤ K holds for all

j = 1, · · · , ni, i = 1, · · · , n, then

V ar(eTBe) ≤ 2tr(BBT ) +K

{ ni
∑

j=1

dij(Bii)

}2

, (B.3)

where B is any N × N matrix (not necessarily symmetric), Bii is the ith (ni × ni)

diagonal block of B, and dij(Bii) is the jth singular value of Bii.

Proof. Since E(eTBe) = tr(B), we have that

V ar(eTBe) = E

( n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

eT
i Bije

T
j eT

k BT
lkel

)

− {tr(B)}2.

Using the fact that ei’s are independent and E(ei) = 0, we obtain

V ar(eTBe) =
n
∑

i=1

E(eT
i Biiei)

2 +
n
∑

i6=j=1

E(eT
i Biieie

T
j BT

jjej)

+ 2
n
∑

i6=j=1

E(eT
i Bijeje

T
j BT

ijei) − {tr(B)}2

=
n
∑

i=1

E(eT
i Biiei)

2 +
n
∑

i6=j=1

tr(Bii)tr(B
T
jj)

+ 2
n
∑

i6=j=1

tr(BijB
T
ij) − {tr(B)}2.

Notice that

tr(BBT ) =
n
∑

i=1

tr(BiiB
T
ii) +

n
∑

i6=j=1

tr(BijB
T
ij),
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{tr(B)}2 =
n
∑

i=1

{tr(Bii)}2 +
n
∑

i6=j=1

tr(Bii)tr(B
T
jj),

{E(eT
i Biiei)}2 = {tr(Bii)}2.

Some straightforward algebra yield

V ar(eTBe) = 2tr(BBT ) +
n
∑

i=1

V ar(eT
i Biiei) − 2

n
∑

i=1

tr(BiiB
T
ii).

Consider the singular value decomposition Bii = UiDiV
T
i . Let dij(Bii) be the

jth singular value, and uij,vij be the jth column of Ui and Vi, respectively, j =

1, · · · , ni. Define zij = uT
ijeie

T
i vij, then by the condition of this lemma, we have that

Cov(zij, zik) ≤ {V ar(zij)V ar(zik)}1/2 ≤ K. By some algebra, we have

V ar(eT
i Biiei) = V ar

{ ni
∑

j=1

dij(Bii)zij

}

=

ni
∑

j=1

ni
∑

k=1

dij(Bii)dik(Bii)Cov(zij, zik)

≤ K
{

ni
∑

j=1

dij(Bii)
}2
.

Therefore, we get

V ar(eTBe) ≤ 2tr(BBT ) +K
{

ni
∑

j=1

dij(Bii)
}2 − 2

n
∑

i=1

tr(BiiB
T
ii).

Since tr(BiiB
T
ii) ≥ 0, (B.3) holds.

Proof of Theorem 4.2.1. In light of (4.10) and (4.12), it suffices to show that

L(W,λ) −R(W,λ) = op(R(W,λ)), (B.4)

1

n
µT (I − A)T ǫ = op(R(W,λ)), (B.5)
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and

2

n

{

ǫTAǫ − tr(AΣ)
}

= op(R(W,λ)) (B.6)

because, combining (B.4)–(B.6), we have

U(W,λ) − L(W,λ) − 1

n
ǫT ǫ = op(L(W,λ)).

We first prove (B.4). By (4.9), we have

V ar(L(W,λ)) =
1

n2
V ar

{

ǫTATAǫ − 2µT (I − A)TAǫ
}

. (B.7)

Define B = Σ1/2ATAΣ1/2. Then ǫTATAǫ = (Σ−1/2ǫ)TB(Σ−1/2ǫ). Since B is

positive semi-definite,
∑ni

j=1 dij(Bii) = tr(Bii). Under Condition 1, applying Lemma

4.5.5 with e = Σ−1/2ǫ and B = Σ1/2ATAΣ1/2, we obtain

1

n2
V ar(ǫTATAǫ) ≤ 2

n2
tr(B2) +

K

n2

n
∑

i=1

{tr(Bii)}2, (B.8)

for some K > 0 as defined in lemma 4.5.5. By Lemma 4.5.3 and Lemma 4.5.4, under

Condition 3, we have

2

n2
tr(B2) ≤ 2λmax(AΣAT )

n2
tr(AΣAT )

≤ 2ξ(Σ,W))

n

1

n
tr(AΣAT )

= o(R2(W,λ)).

(B.9)

Define Cii as the ith diagonal block of Ã2. Then, under Condition 2(ii), tr(Cii) ∼
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o(1). Thus,

tr(Bii) = tr(LiΣ
1/2W−1/2ÃWÃW−1/2Σ1/2LT

i )

≤ λmax(W)tr(ÃW−1/2Σ1/2LT
i LiΣ

1/2W−1/2Ã)

= λmax(W)tr(CiiW
−1/2
i ΣiW

−1/2
i )

≤ λmax(W)λmax(ΣiW
−1
i )tr(Cii)

= o(1)ξ(Σ,W).

(B.10)

Since
∑n

i=1{tr(Bii)} = tr(B) = tr(AΣAT ), under Condition 3,

K

n2

n
∑

i=1

{tr(Bii)}2 = o(1)
Kξ(Σ,W)tr(B)

n2

= o(1)
Kξ(Σ,W)

n

1

n
tr(AΣAT )

= o(R2(W,λ)).

(B.11)

Combining (B.8)–(B.11), we obtain

1

n2
V ar(ǫTATAǫ) ∼ o(R2(W,λ)).

Since λmax(AΣAT ) ≤ ξ(Σ,W), by Lemma 4.5.4, under Condition 3, we have

1

n2
V ar

{

µT (I − A)TAǫ
}

=
1

n2
µT (I − A)TAΣAT (I − A)µ

≤ 1ξ(Σ,W)

n

1

n
µT (I − A)T (I − A)µ

= o(R2(W,λ)).

(B.12)

Combining (B.7)-(B.12) and using the Cauchy–Schwarz inequality, we obtain that

V ar(L(W,λ)) = o(R2(W,λ)), which proves (B.4).
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To show (B.5), by Lemma (4.5.4) and Condition 3, we have

1

n2
V ar

{

µT (I − A)T ǫ
}

=
1

n2
µT (I − A)TΣ(I − A)µ

≤ λmax(Σ)

n

1

n
µT (I − A)T (I − A)µ

≤ ξ(Σ,W)

n

1

n
µT (I − A)T (I − A)µ

= o(R2(W,λ)).

The result follows from an application of the Chebyshev inequality.

To show (B.6), applying Lemma (4.5.4) with e = Σ−1/2ǫ and B = Σ1/2AΣ1/2,

we obtain

2

n2
V ar(ǫTAǫ) =

2

n2
V ar(eTBe)

≤ 2

n2
tr(BBT ) +K

n
∑

i=1

{

ni
∑

j=1

dij(Bii)
}2
,

(B.13)

where K is as in Lemma 4.5.5. By Lemma 4.5.3, under Condition 3, we have

2

n2
tr(BBT ) =

2

n2
tr(ATΣAΣ) ≤ 2λmax(Σ)

n

1

n
tr(ATAΣ)

≤ 2ξ(Σ,W)

n

1

n
tr(ATAΣ) = o(R2(W,λ)).

By the definition of dij(Bii), using Lemma 4.5.2 repeatedly, we have

d2
ij(Bii) = λij(B

T
iiBii) = λij(A

T
iiΣiAiiΣi)

= λij(W
−1/2
i ÃiiW

1/2
i ΣiW

1/2
i ÃiiW

−1/2
i Σi)

≤ λmax(ΣiW
−1
i )λmax(Wi)λmax(Σi)λij(Ã

2
ii)

≤ ξ2(Σ,W)λ2
ij(Ãii).
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Under Conditions 2(i), 3 and 4, we have

K

n2

n
∑

i=1

{

ni
∑

j=1

dij(Bii)
}2 ≤ ξ2(Σ,W)

K

n2

n
∑

i=1

{

tr(Ãii)
}2

=
K2ξ(Σ,W)

n
ξ(Σ,W)O(n−2tr(A)2)

= o(R2(W,λ)).

(B.14)

Therefore, combining (B.13)–(B.14) and noticing Conditions 1–4, we have

1

n2
V ar(ǫTAǫ) ∼ o(R2(W,λ)).

Apply the Chebyshev inequality to obtain (B.6).

To prove Theorem 4.2.2, it is easier to prove Theorem 4.3.2 first. To prove

Theorem 4.3.2, we need the following lemma.

Lemma 4.5.6. Let D = diag{D11, · · · ,Dnn} where Dii’s are ni × ni matrices and

max1≤i≤n{tr(DiiWiD
T
ii} ∼ λmax(W)O(n−2tr(A)2). Under Conditions 1–5, we have

1

n2
V ar

{

YT (I − A)TD(I − A)Y
}

= o(R2(W,λ)).

Proof. Using the decomposition Y = µ + ǫ, we obtain

1

n2
V ar

{

YT (I − A)TD(I − A)Y
}

)

=
1

n2
V ar

{

ǫT (I − A)TD(I − A)ǫ + 2µT (I − A)TD(I − A)ǫ
}

.

By a simple application of the Cauchy–Schwarz inequality, it suffices to show

1

n2
V ar

{

ǫT (I − A)D(I − A)ǫ)
}

= o(R2(W,λ)), (B.15)

and

1

n2
V ar

{

2µT (I − A)TD(I − A)ǫ
}

= o(R2(W,λ)). (B.16)

We shall show (B.15) first. Using Lemma 4.5.5 with e = Σ−1/2ǫ and B =
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Σ1/2(I − A)TD(I − A)Σ1/2 to yield

1

n2
V ar

{

ǫT (I − A)TD(I − A)ǫ
}

≤ 2

n2
tr(BBT ) +

K

n2

n
∑

i=1

{

ni
∑

j=1

dij(Bii)
}2
. (B.17)

Repeatedly using Lemma 4.5.3 and 4.5.4, and the fact that λmax((I − Ã)2) ≤ 1, we

have

tr(BBT ) = tr
{

Σ1/2(I − A)TD(I − A)Σ(I − A)TDT (I − A)Σ1/2
}

≤ λmax

{

(I − Ã)W−1/2ΣW−1/2(I − Ã)
}

× λmax

{

(I − A)Σ(I − A)T
}

tr(DWDT )

≤ λ2
max(ΣW−1)λmax(W)tr(DWDT ).

Noticing max1≤i≤n{tr(DiiWiD
T
ii)} = λmax(W)O(n−2tr(A)2) and using Conditions

3–4, we have

2

n2
tr(BBT ) =

2ξ2(Σ,W)

n
O(n−2tr(A)2) = o(R2(W,λ)). (B.18)

Note that Bii = LiΣ
1/2(I − A)TD(I − A)Σ1/2LT

i . Thus,

tr(BiiB
T
ii) = tr

{

LiΣ
1/2(I − A)TD(I − A)Σ1/2LT

i

LiΣ
1/2(I − A)TDT (I − A)Σ1/2LT

i

}

≤ λmax

{

(I − Ã)W−1/2Σ1/2LT
i LiΣ

1/2W−1/2(I − Ã)
}

× tr
{

LiΣ
1/2(I − A)TDWDT (I − A)Σ1/2LT

i

}

≤ λmax(ΣW−1)tr
{

LiΣ
1/2(I − A)TDWDT (I − A)Σ1/2LT

i

}

.

(B.19)

Let D∗ = W1/2DWDTW1/2 be the block diagonal matrix with diagonal blocks D∗
ii

and Cii be the the ith diagonal block of Ã2. We have

λmax(D
∗) ≤ max

1≤i≤n
{tr(D∗

ii)} ≤ λmax(W) max
1≤i≤n

{tr(DiiWiDii)}

= λ2
max(W)O(n−2tr(A)2).
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By Condition 2, we have tr(Cii) = o(1). Then

tr
{

LiΣ
1/2(I − A)TDWDT (I − A)Σ1/2LT

i

}

= tr
{

Σ
1/2
i W

−1/2
i (D∗

ii − ÃiiD
∗
ii − D∗

iiÃii + λmax(D
∗)Cii)W

−1/2
i Σ

1/2
i

}

≤ λmax(ΣiW
−1
i )
{

tr(D∗) + λmax(D
∗)tr(Cii)

}

− tr(Mii)

= λmax(ΣW−1)λ2
max(W)O(n−2tr(A)2) − tr(Mii),

(B.20)

where Mii = Σ
1/2
i W

−1/2
i (ÃiiD

∗
ii + D∗

iiÃii)W
−1/2
i Σ

1/2
i . Observe that

tr
{

Σ
1/2
i W

−1/2
i (Ãii − D∗

ii)
2W

−1/2
i Σ

1/2
i

}

≥ 0.

Under Condition 2,

tr(Mii) ≤ tr
{

Σ
1/2
i W

−1/2
i (Ã2

ii + D∗2
ii )W

−1/2
i Σ

1/2
i

}

≤ λmax(ΣW−1)tr(Ã2
ii + D∗2

ii )

= λmax(ΣW−1)O(n−2tr(A)2)
{

1 + λ4
max(W)O(n−2tr(A)2)

}

.

Since W is the working covariance matrix, λmax(W) = O(1) if ni’s are bounded. It

follows that, under Condition 5, λ2
max(W)O(n−2tr(A)2) = o(1), which leads to

tr(Mii) = λmax(ΣW−1)λ2
max(W)O(n−2tr(A)2). (B.21)

(B.19)–(B.21) together imply that tr(BiiB
T
ii) = ξ2(Σ,W)O(n−2tr(A)2). Under Con-

ditions 3–4, by the Jensen inequality, we have

K

n2

n
∑

i=1

{

ni
∑

j=1

dij(Bii)
}2 ≤ K

n2

n
∑

i=1

{

ni

ni
∑

j=1

d2
ij(Bii)

}

=
K

n2

n
∑

i=1

{

nitr(BiiB
T
ii)
}

=
ξ2(Σ,W)

n
O(n−2tr(A)2) = o(R2(W,λ)).

Using this result, (B.17), and (B.18), we obtain (B.15).
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To show (B.16), note that

λmax(DWDT ) ≤ max
1≤i≤n

{tr(DiiWiD
T
ii)} = λmax(W)O(n−2tr(A)2).

Use Lemma 4.5.4 and Conditions 3–4 to yield

1

n2
V ar

{

2µT (I − A)TD(I − A)ǫ
}

=
4

n2
µT (I − A)TD(I − A)Σ(I − A)TDT (I − A)µ

≤ 4λmax

{

(I − Ã)W−1/2ΣW−1/2(I − Ã)
}

n2
µT (I − A)TDWDT (I − A)µ

≤ 4λmax(ΣW−1)

n
λmax(DWDT )

1

n
µT (I − A)T (I − A)µ

=
ξ(Σ,W))O(n−2tr(A)2)

n

1

n
µT (I − A)T (I − A)µ

= o(R2(W,λ)),

which is the desired result.

Proof of Theorem 4.3.2. By Theorem 4.2.1, it suffices to show that

LsoCV*(W,λ) − U(W,λ) = op(R(W,λ)),

which can be obtained by showing

E
{

LsoCV*(W,λ) − U(W,λ)
}2

= op(R
2(W,λ)). (B.22)

Hence, it suffices to show that

E
{

LsoCV*(W,λ) − U(W,λ)
}

= o(R(W,λ)) (B.23)

and

V ar
{

LsoCV*(W,λ) − U(W,λ)
}

= o(R2(W,λ)). (B.24)

Denote Ad = diag{A11, · · · ,Ann} and Ãd = diag{Ã11, · · · , Ãnn}. It follows
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that Ãd = W−1/2AdW
1/2 and n−1tr(Ã2

d) = O(n−2tr(A)2) by Condition 2. Some

algebra yields that

LsoCV*(W,λ) − U(W,λ) =
2

n
YT (I − A)TAd(I − A)Y − 2

n
tr(AΣ).

First consider (B.23). We have that

E
{

LsoCV*(W,λ) − U(W,λ)
}

=
1

n
µT (I − A)T (Ad + AT

d )(I − A)µ +
1

n
tr
{

AT (Ad + AT
d )AΣ

}

− 2

n
tr(AT

d AdΣ) − 2

n
tr(A2

dΣ).

(B.25)

We shall show that each term in (B.25) is of the order o(R(W,λ)).

Condition 2 says that max1≤i≤n tr(Ãii) = O(n−1tr(A)) = o(1). Using Conditions

2 and 5, we have

tr(Aii + AT
ii)

2 = 2tr(A2
ii + AiiA

T
ii)

= 2tr(Ã2
ii + ÃiiWiÃiiW

−1
i )

≤ 2tr(Ã2
ii)
{

1 + λmax(W
−1
i )λmax(Wi)

}

= λmax(W)λmax(W
−1)O(n−2tr(A)2) = o(1),

which implies that all eigenvalues of (Ad + AT
d ) are of order o(1), and hence

1

n
µT (I − A)T (Ad + AT

d )(I − A)µ = o(1)
1

n
µT (I − A)T (I − A)µ = o(R(W,λ)),

1

n
tr
{

AT (Ad + AT
d )AΣ

}

= o(1)
1

n
tr(ATAΣ) = o(R(W,λ)).
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Under Condition 4, the third term in (B.25) can be bounded as

1

n
tr(AT

d AdΣ) ≤ λmax(ΣW−1)
1

n
tr(ÃdWÃd)

≤ ξ(Σ,W)
1

n
tr(Ã2

d)

= ξ(Σ,W)O(n−2tr(A)2)

= o(R(W,λ)).

(B.26)

For the last term in equation (B.25), observe that

2

n
tr(A2

dΣ) =
2

n
tr(Ã2

dW
−1/2ΣW1/2) =

1

n
tr
{

Ã2
d(Σ

∗ + Σ∗T )
}

,

where Σ∗ = W−1/2ΣW1/2. Let Σ∗
i be the ith diagonal block of Σ∗. We have

tr
{

(Σ∗
i + Σ∗T

i )2
}

= 2tr(Σ2
i + ΣiWiΣiW

−1
i )

≤ 2niλ
2
max(Σi) + 2λmax(Wi)tr(W

−1
i Σ2W−1

i Wi)

≤ 2niλ
2
max(Σi) + 2niλ

2
max(ΣiW

−1
i )λ2

max(Wi)

≤ 4niξ
2(Σ,W),

which implies that ±max1≤i≤n{2
√
ni}ξ(Σ,W) are upper and lower bounds of eigen-

values of Σ∗ + Σ∗T . Hence, under Condition 4, one has

2

n
tr(A2

dΣ) ≤ max
1≤i≤n

{2√ni}ξ(Σ,W)
1

n
tr(Ã2

d)

= ξ(Σ,W)O(n−2tr(A)2) = o(R(W,λ)).

Therefore, (B.23) has been proved.

To prove (B.24), since

tr(AiiWiA
T
ii) = tr(Ã2

iiWi) ≤ λmax(Wi)
{

tr(Aii)
}2
,

we have max1≤i≤n tr(AiiWiA
T
ii) = λmax(W)O(n−2tr(A)2) by Condition 2. Under

Conditions 3–4, (B.24) follows from Lemma 4.5.6 with D = Ad.
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Proof of Theorem 4.2.2. By Theorem 4.3.2, it suffices to show

LsoCV(W,λ) − LsoCV*(W,λ) = op(L(W,λ)),

which can be proved by showing that

E
{

LsoCV(W,λ) − LsoCV*(W,λ)
}2

= op(R
2(W,λ)).

It suffices to show

E
{

LsoCV(W,λ) − LsoCV*(W,λ)
}

= o(R(W,λ)) (B.27)

and

V ar
{

LsoCV(W,λ) − LsoCV*(W,λ)
}

= o(R2(W,λ)). (B.28)

For each i = 1, . . . , n, consider the eigen-decomposition Ãii = PiΛiP
T
i , where

Pi is a ni × ni orthogonal matrix and Λi = diag{λi1, · · · , λini
}, λij ≥ 0. Using this

decomposition, we have

(Iii − Aii)
−1 = W

1/2
i PiΛ

∗
i P

T
i W−1/2,

where Λ∗
i is a diagonal matrix with diagonal elements (1−λij)

−1, j = 1, · · · , ni. Since

under Condition 2, max1≤j≤ni
{λij} ∼ o(1), we have (1 − λij)

−1 =
∑∞

k=0 λ
k
ij, which

leads to

(Iii − Ãii)
−1 =

∞
∑

k=0

PiΛ
k
i P

T
i =

∞
∑

k=0

Ãk
ii.

Define D̃(m) = diag{D̃(m)
11 , · · · , D̃(m)

nn }, m = 1, 2, where D̃
(1)
ii =

∑∞

k=1 Ãk
ii, and D̃

(2)
ii =

∑∞

k=2 Ãk
ii, i = 1, · · · , n. It follows that, for each i and m = 1, 2,

tr(D̃
(m)
ii ) =

∞
∑

k=m

tr(Ãk
ii) ≤

∞
∑

k=m

{

tr(Ãii)
}k

=

{

tr(Ãii)
}m

1 − tr(Ãii)
.
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Since Condition 2(i) gives max1≤i≤n tr(Aii) ∼ O(n−1tr(A)), we obtain that

max
1≤i≤n

tr(D̃
(m)
ii ) = O(n−mtr(A)m), m = 1, 2. (B.29)

Some algebra yields

LsoCV(W,λ) − LsoCV*(W,λ) =
1

n
YT (I − A)T (D(1) + D(2))(I − A)Y

where D(1) = W−1/2D̃(1)WD̃(1)W−1/2 and D(2) = W1/2D̃(2)W−1/2.

To show (B.27), note that

E
{

LsoCV(W,λ) − LsoCV*(W,λ)
}

=
1

n
µT (I − A)TD(1)(I − A)µ +

1

n
tr
{

(I − A)TD(1)(I − A)Σ
}

+
1

n
µT (I − A)TD(2)(I − A)µ +

1

n
tr
{

(I − A)TD(2)(I − A)Σ
}

.

(B.30)

Using Lemma 4.5.2 and 4.5.3 repeatedly and noticing Condition 5, we have

λmax(D
(1)) ≤ λmax(W)λmax(W

−1)O(n−2tr(A)2) = o(1).

Thus, the first terms (B.30) can be bounded as

1

n
µT (I − A)TD(1)(I − A)µ = o(1)

1

n
µT (I − A)T (I − A)µ = o(R(W,λ)).

Using Condition 4 and (B.29), the second term of (B.30) can be bounded as

1

n
tr
{

(I − A)TD(1)(I − A)Σ
}

≤ ξ(Σ,W)
1

n
tr(D̃(1)2)

= ξ(Σ,W)O(n−2tr(A)2)

= o(R(W,λ)).
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Now consider the third term in (B.30). Under Condition 5 and (B.29),

tr
{

(D
(2)
ii + D

(2)T
ii )2

}

= 2tr(D̃
(2)2
ii ) + 2tr(D

(2)
ii D

(2)T
ii )

= 2tr(D̃
(2)2
ii ) + 2tr(D̃

(2)
ii W−1

i D̃
(2)
ii Wi)

≤ 2tr(D̃
(2)2
ii ) + 2λmax(W

−1
i )λmax(Wi)tr(D̃

(2)2
ii )

= o(n−2tr(A)2),

(B.31)

which implies that all eigenvalues of D
(2)
ii + D

(2)T
ii are of the order O(n−1tr(A)), and

thus o(1). Then, under Conditions 1–5, we have

1

n
µT (I − A)TD(2)(I − A)µ =

1

2n
µT (I − A)T (D(2) + D(2)T )(I − A)µ

= o(1)
1

n
µT (I − A)T (I − A)µ = o(R(W,λ)).

To study the the fourth term in (B.30), define Σ† = W−1/2(I−Ad)Σ(I−Ad)
TW1/2,

where Ad is as defined in the proof of Theorem 4.3.2. Then

1

n
tr
{

(I − A)TD(2)(I − A)Σ
}

=
1

2n
tr
{

D̃(2)(Σ† + Σ†T )
}

+
1

n
tr
{

D(2)(AΣAT − AdΣAT
d )
}

.

(B.32)

Let Σ
†
i be the ith diagonal block of Σ†. Using Lemma 4.5.4 to obtain

tr
{

(Σ†
i + Σ

†T
i )2

}

≤ 2niλ
2
max

{

(Iii − Aii)Σi(Iii − Aii)
T
}

+ 2niξ
2(Σ,W)

≤ 4niξ
2(Σ,W),

which means that ±max1≤i≤n{2
√
ni}ξ(Σ,W) are the lower and upper bounds of

eigenvalues of Σ† + Σ†T . Hence, application of Condition 4 and (B.29) gives

1

2n
tr
{

D̃(2)(Σ† + Σ†T )
}

≤ max{√ni}ξ(Σ,W)
1

n
tr(D̃(2))

= ξ(Σ,W)O(n−2tr(A)2) = o(R(W,λ)).

(B.33)

It has been shown in (B.26) that tr(AdΣAT
d ) = o(R(W,λ)). Using Lemma 4.5.3 and
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(A.1), we have

1

n
tr
{

D(2)(AΣAT − AdΣAT
d )
}

= o(1)tr(AΣAT + AdΣAT
d )

= o(R(W,λ)).

(B.34)

Using (B.32), (B.33) and (B.34), we have shown that the fourth term of (B.30) satisfies

1

n
tr[(I − A)TD(2)(I − A)Σ] = o(R(W,λ)).

Therefore, (B.27) has been proved.

Next, we proceed to prove (B.28). Since under Condition 5, we have

tr(D
(1)
ii WiD

(1)T
ii ) ≤ λ2

max(W)λmax(W
−1)λ2

max(D̃
(1)
ii )tr(D̃

(1)2
ii )

=
{

λmax(W)λmax(W
−1)O(n−2tr(A)2)

}

λmax(W)O(n−2tr(A)2)

= λmax(W)O(n−2tr(A)2)

and

tr(D
(2)
ii WiD

(2)T
ii ) ≤ λmax(W)tr(D̃

(2)2
ii ) = λmax(W)O(n−4tr(A)4)

= λmax(W)o(n−2tr(A)2).

By applying Lemma 4.5.6 with D = D(1) and D(2) respectively, we have

1

n2
V ar

{

YT (I − A)TD(m)(I − A)Y
}

= op(R
2(W,λ)), m = 1, 2,

and (B.28) follows by the Cauchy–Schwarz inequality.
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