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ABSTRACT 

 

Analysis and Design of a Fluidic-Reconfigurable Substrate Integrated Waveguide 

Resonator. (December 2011) 

Joel Daniel Barrera, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Gregory H. Huff 

 

Microwave filters play key roles in controlling the frequency response at specific 

locations of any communications, radar, or test system. Microwave resonators provide 

the frequency selective building blocks necessary for filter design. Reconfigurable/ 

tunable microwave resonators have facilitated the design of tunable filters. Recently, 

MEMS based tuning mechanisms developed widely tunable resonators maintaining high 

Q; however, limit in the number of reconfiguration states. 

 This thesis proposes a fluidic-reconfigurable X-band SIW resonator capable of 

continuous tunability across the reconfiguration range. A dielectric post of fluidic 

dispersions with variable material properties embedded in a two inductive post static 

SIW resonator defines the tuning mechanism. The development of an analytical closed-

form expression for the resonant frequency and Q across reconfiguration, a circuit 

model, and full-wave simulation predicts the tunable performance with estimated 

material properties of the fluidic dispersion. Measured data on an initial tunable SIW 

resonator design showed good reconfiguration performance but more losses than 

expected which could potentially be explained from the discovery of a major design 
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error not associated with the resonator itself. A second tunable SIW resonator designed 

and fabricated proves the material properties of the fluidic dispersions contain more 

losses than estimated and hinder the resonators performance. By comparing simulated 

and measured data new estimates for the material properties of the fluidic dispersion are 

proposed which agree with trends in recent literature. Low-loss fluidic dispersions will 

enable a significant performance increase in the current tunable SIW resonator. Two 

low-cost material measurement systems are designed to expedite research efforts in 

finding low-loss microwave fluidics. Both systems accurately compute dielectric 

constant but not loss tangents. The initial systems provide necessary first steps in the 

design of future highly accurate material measurement systems. 
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NOMENCLATURE 

 

CF-MMS Coaxial fixture material measurement system 

DRA Dielectric resonator antenna 

FS-MMS Free-space material measurement system 

MG Maxwell-Garnett 

MMS Material measurement system 

MUT Material under test 

PNA Programmable network analyzer 

SIW Substrate integrated waveguide 

SGH Standard gain horn 

RWG Rectangular waveguide 

TE Transverse electric 

TL Transmission line 

TEM Transvers electric and magnetic 

TM Transverse magnetic 
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CHAPTER I 

INTRODUCTION 

 

 Microwave filters characterize the frequency response at specified locations in a 

microwave system. Typical responses include lowpass, highpass, bandpass, and 

bandstop. Communication, radar, and test and measurement systems utilized microwave 

filters as essential building blocks providing proper system functionality. Coupled-

resonators are [provide] excellent circuit components for narrowband bandpass filter 

design. A general technique for designing coupled-resonator filters regardless of 

resonator topology has been developed and presented well in [1]. Waveguide resonators 

capable of achieving very high quality factors (Q > 1000) offer exceptional performance 

for such applications [2]. Due to bulk and weight, regular waveguides become 

cumbersome in system integration for reduction in design space and system weight.  

In the past decade, substrate integrated waveguides (SIWs) have adapted 

traditional waveguide designs into planar form providing a low-cost, low-profile 

alternative to regular waveguides [3, 4]. The lateral walls of the regular waveguide guide 

are replaced by rows of periodic vias within a substrate. The dielectric filling the SIW 

decreases the Q of an SIW resonator compared to an air filled regular waveguide 

resonator from 1000s to 100s. However, coupled-resonator SIW filters exhibiting 

exceptional performance have been designed in [5-7]. 

____________ 

This thesis follows the style of IEEE Transactions on Microwave Theory and 

Techniques. 
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 The interest in frequency agile and wideband systems such as software defined 

radios [8], flexible transceivers, and multiband communications systems leads to a direct 

interest in reconfigurable/tunable microwave filters. Channel separation realized through 

tunable narrowband filters increases the feasibility of future multiband communications 

systems [9]. Tunable filters replace complex filter-banks consisting of numerous 

switches and fixed filters, reducing the front end cost, footprint, and insertion loss for 

software defined radios and flexible transceivers [10]. At the heart of most 

reconfigurable filters are tunable resonators. When coupled together, tunable resonators 

create filters capable of manipulating performance across the frequency spectrum.  

 Microstrip resonators loaded with integrated microelectromechanical system 

(MEMS) capacitive switches for tunable filters have been studied in [10-12]. Recently, 

packaged MEMS switches have successfully created tunable SIW resonators in [13]. 

Tuning ranges from 14 % in [11] to 32% in [10] have been achieved while maintaining 

high resonator quality factors (100s). RF MEMS clearly offer attractive solutions for 

tunable microwave resonators and filters; however, are limited to a fixed number for 

reconfiguration states across the tunable range. Including more reconfigurations states 

increases the number of MEMS switches increasing the cost, complexity of integration, 

and insertion losses. Applications requiring true continuous tunability encourage 

exploration of new reconfiguration mechanisms for microwave resonators and filters. 

 Recently, a materials-based approach capable of continuous reconfiguration for 

microwave and RF devices has been studied [14-16]. This thesis proposes a fluidic-

reconfigurable X-band SIW resonator capable of continuous tunability across the 
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reconfiguration range. Two inductive posts embedded in an SIW form a fixed resonator. 

A fluidic dielectric post between the inductive posts serves as the tuning mechanism. 

The volume fraction ϑ of high dielectric particles dispersed in low-loss oil defines 

material properties of the fluidic dielectric post. By changing ϑ the resonator 

characteristics can be manipulated. The variation of ϑ can be continuous, thus, the 

resonator can be continuously tuned. 

 Conceptual and advanced circuit modeling and field theory incorporating cavity 

material perturbations will be provided in the analysis of the tunable SIW resonator. 

Full-wave simulation will be used to verify analytical models and predict the physical 

resonator performance with estimated material properties of the fluidic dispersion. 

Measured data will be taken on the fabricated resonator using a network analyzer for a 

sampling of fluidic dispersion ϑ’s as proof of concept. A discrepancy between simulated 

and fabricated models leads to a second design iteration. The estimations used for the 

fluid/particle material properties are found to be inaccurate. New estimations, containing 

much higher loss are proposed by comparing simulated and measured data. A free-space 

and coaxial fixture material measurement system are fabricated in order to expand 

research efforts in finding low-loss microwave fluidic dispersions. A thorough analysis 

of the electromagnetic theory behind the data processing technique provides confidence 

in the measurements. Initial measurements on known permittivity samples reveal the 

accuracy of the measurement systems. 
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CHAPTER II 

BACKGROUND 

 

2.1 Network Analysis 

In this work basic two-port network analysis techniques and concepts are applied 

to a microwave resonator. A two-port network and network variables are shown in Fig. 

1. The analysis of the two-port network follows [2]. Voltmeters and ammeters for 

directly measuring the voltages and currents in Fig. 1 at microwave frequencies do not 

exist. Network analyzers measuring the reflected and transmitted waves across a 

microwave network are used instead. However, describing a network in terms of circuit 

components, voltages, and currents aid electrical engineers in the design process of 

microwave resonator, filters, and other such devices.  

 

Fig. 1. Two-port network showing network variables. 

 

 

 The ABCD parameters of a two-port network are very useful when analyzing 

cascaded complex two-port sub-networks and are defined as 

 
2 2

2 2

1 1

2 20 0

1 1

2 20 0

I V

I V

V V
A B

V I

I I
C D

V I

= =

= =

= =
−

= =
−

 (2.1) 
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The ABCD parameters can be defined in a set of linear equation in matrix notation as 

 
1 2

1 2

,
V VA B

I IC D

    
=     −    

 (2.2) 

where the matrix of the ABCD parameters is known as the ABCD matrix of the network. 

The negative sign in front of I2 signifies opposite current direction in Fig. 1. The two-

port networks used in this work and their ABCD parameters are shown in Fig. 2. 

 

 

Fig. 2. Useful two-port networks and their ABCD parameters. 

 

 

 The S parameters of a two-port network relate the incident and reflected wave at 

the ports and are directly measureable by a network analyzer. The S parameters defined 

in terms of the wave variables of the two-port network in Fig. 1 are  

 
2 1

2 1

1 1
11 12

1 20 0

2 2
21 22

1 20 0

,

a a

a a

b b
S S

a a

b b
S S

a a

= =

= =

= =

= =

 (2.3) 



 6

where an = 0 implies a perfectly impedance match at port n. The S parameters of a two-

port network can also be written as a set of linear equations in matrix notation as 

 
1 11 12 1

2 21 22 2

.
b S S a

b S S a

     
=     

     
 (2.4) 

The general parameter Smn is read as the S parameter from port “n” to port “m”. Thus, the 

S11 and S22 parameters are the reflection coefficients, whereas S12 and S21 are the 

transmission coefficients. The magnitude of the S parameters are often expressed in 

decibels (dB) defined as  

 20log .mn mndB
S S=  (2.5) 

The limits and physical interpretations of S parameters are defined in Table 1. 

 

 
Table 1. Limits and physical interpretations of two-port S parameters. 

Parameter 

Value S11 S12 S21 S22 

0 ( −∞ dB) 

Total 

transmission 

through port 1 

Zero 

transmission 

from port 2 to 1 

Zero 

transmission 

from port 1 to 2 

Total 

transmission 

through port 2 

1 (0 dB) 
Total reflection 

at port 1 

Total 

transmission 

from port 2 to 1 

Total 

transmission 

from port 1 to 2 

Total reflection 

at port 2 

 

 

 The ABCD parameters analyze the circuit modeling of the resonator in this work 

and S parameters are physically measured from the fabricated device. Conversion 

between the two parameter types allows for comparison between the measured results 

and model. The network S parameters in terms of ABCD parameters are 
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( )

0 0
11 21

0 0 0 0

0 0
12 22

0 0 0 0

2

2
.

A B Z CZ D
S S

A B Z CZ D A B Z CZ D

AD BC A B Z CZ D
S S

A B Z CZ D A B Z CZ D

+ − −
= =

+ + + + + +

− − + − +
= =

+ + + + + +

 (2.6) 

2.2 Substrate Integrated Waveguides 

Rectangular waveguides (RWGs) are early forms of microwave transmissions 

lines still used in many applications today [2].  Fig. 3 shows the geometry of a RWG 

structure. The guide is assumed to be filled with a material of permittivity ε and 

permeability µ. The conductor walls of the waveguide from one solid piece of metal 

capable of supporting TE and TM mode propagation. TEM modes will not propagate 

due to the lack of a second conductor. By convention, a > b such that the shortest side of 

the waveguide always resided along the y-axis. 

 

 

Fig. 3. Geometry of a conventional rectangular waveguide (RWG). 

 

 

Substrate integrated waveguide (SIW) structures have recently provided a low-

cost, low-profile alternative to conventional RWG by conforming the waveguide to 

planar form [3, 4]. Fig. 4 shows the geometry of an SIW structure. Rows of periodic vias 



 8

replace the lateral walls of the RWG in Fig. 3. The diameter of the vias d and center-to-

center spacing s ensure very low leakage in the guide based on the criteria [17] 

 

2.5

1 .
8siw

s
d

d
W

<

<
 (2.7) 

 

 

Fig. 4. Geometry of a substrate integrated waveguide (SIW). 

 

 

With (2.7) satisfied, the SIW can be modeled by the RWG in Fig. 3 with b = t and  

 
2 2

1.08 0.1 ,siw siw

siw

d d
a a W

s W
= = − +  (2.8) 

due to the non-uniform fields along the rows of periodic vias [17]. The choice of 

substrate defines the (ε, µ) of the guide material. Neither TMmn (for all m and n) nor 

TEmn (with n ≠ 0) modes propagate in an SIW due to large amounts of radiation between 

the vias caused by the discontinuous surface currents along the lateral walls [17]. Thus, 

the propagation constant of an SIW modeled as the RWG is 
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 ( )
2 2

22 2 2 2 .c

siw siw

m m
k k k f

a a

π π
β π µε

   
= − = − = −   

   
 (2.9) 

The term k defines the wave number for TEM propagation in the substrate material. 

When k > kc the wave propagates in the SIW and attenuates when k < kc. The cutoff 

frequency for the SIW TEm0 mode is 

 ,

1
.

2
c m

siw

m
f

a

π
π µε

=  (2.10) 

For a given mode, all frequencies lower than fc,m attenuate and all frequencies greater the 

fc,m propagate in the SIW. The lowest order (dominate) mode in the SIW is the TE10 

mode with cutoff frequency 

 ,1

1
.

2
c c

siw

f f
a µε

= =  (2.11) 

The guide wavelength in the SIW can then be compute by  

 
2

.g

π
λ

β
=  (2.12) 

A 50 Ω characteristic impedance often defines the input and output ports of a 

system or test equipment. Typically, the characteristic impedance of an SIW does not 

equal 50 Ω and is smaller than the characteristic impedance of a conventional RWG 

(where b = a/2 in Fig. 3) due to the small t/asiw for SIWs [18]. An approximation to the 

SIW characteristic impedance is 

 0, ,siw

siw

t k
Z

a

η
β

=  (2.13) 
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where η µ ε= for the substrate material. Common 50 Ω input/output ports for planar 

topology are microstrip lines. The width a microstrip line W for a desired characteristic 

impedance Z0 on a substrate of thickness t and permittivity ε = ε0εr can be estimated 

from the first-order approximation [2] 

 

( )

2

8
for 12

12 0.61
for 11 ln 2 1 ln 1 0.39

2

A

A

r

r r

e W
eW t

Wt
B B B

t

ε
π ε ε


 <−

=     −   >− − − + − + −         

 (2.14) 

where 

 

0

0

1 1 0.11
0.23

60 2 1

377
.

2

r r

r r

r

Z
A

B
Z

ε ε
ε ε

π
ε

 + −
= + + +  

=

 

A tapered microstrip transmission line section (Fig. 5) can be used as a transition 

between a 50 Ω microstrip line and SIW [19]. The width of the 50 Ω microstrip line W50 

and tapered microstrip section at the SIW opening Wtap can be estimated by substituting 

Z0 = 50 and (2.13) into (2.14), respectively. The length of the tapered microstrip section 

Ltap should be long enough to provide a smooth transition between the quasi-TEM 

microstrip line mode to the TE10 SIW mode and can be approximated by kπ . Once W50, 

Wtap, and Ltap have been predicted, full-wave simulation refines these values for optimal 

performance. 
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Fig. 5. Tapered transition between a 50 Ω microstrip line and SIW. 

 

 

2.3 Microwave Resonators 

Microwave resonators are key components of most filter designs [2]. The 

resonant frequency f0 and quality factor Q describe the fundamental operation and 

performance of a resonator. Fig. 6 shows a conventional microwave resonator. The 

conductive walls of the rectangular cavity enclose a material with properties (ε, µ). 

 

 

Fig. 6. Geometry of a conventional rectangular resonant cavity. 

 

 



 12

The analysis of the resonator follows [2]. The dimensions of the cavity and material 

properties determine the resonant frequency of the cavity, 

 

22 2
1

.
2

mnl

m n l
f

a b p

π π π
π µε

    = + +     
     

 (2.15) 

 The indices m, n, and l are integers determining the number of half-wave variations 

along the x, y, and z directions, respectively. The dominate mode for the rectangular 

cavity is the TE101 mode with resonate frequency, 

 0 2 2

1 1 1
.

2
f

a pµε
= +  (2.16) 

The fields in the cavity for the TE101 mode are, 

 0 sin sin ,x

x z
E E

a p

π π  =   
   

 (2.17) 

 0

2 2
sin cos ,x

jaE x z
H

a pa p

π π

η

 −  =   
 +  

 (2.18) 

 0

2 2
cos sin .z

jpE x z
H

a pa p

π π

η

  =   
 +  

 (2.19) 

The Q of the cavity resonator is a dimensionless parameter signifying loss defined as, 

 
( )

0
0

e m

l

average energy stored W W
Q

power loss P

ω
ω

× +
= =  (2.20) 

 where We and Wm denote the stored electric and magnetic energies, respectively. A very 

low-loss resonator implies a very high Q. The stored electric energy is,  

 
2 2

0

0 0 0

.
4 4 16

p b a

e y

V

W dv E dx dy dz E abp
ε ε ε∗= ⋅ = =∫ ∫ ∫ ∫E E  (2.21) 
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From the conservation of complex power Wm = We. The power lost from the conductive 

walls of the resonator is, 

 ( ) ( )( ) ( )

( )

2

2 2 2

0 0 0 0

2

0 0

2

2 0 0 2 0
2

2 0

s
c

cavity
walls

p a b a

s
x z x

p b

z

R
P ds

R
H y H y dx dz H z dx dy

H x dy dz

=


= = + = + =




+ = 



∫

∫ ∫ ∫ ∫

∫ ∫

H

 

 
( ) ( ) ( )

2

0 2 2 3 3

2 2 2
2 .

4

sE R
ap a p b a p

a pη
 = + + + +

 (2.22) 

The surface resistivity is defined as 0 2sR ωµ σ= where µ0 and σ denote the 

permeability of free-space and the conductivity of the conductive walls, respectively. 

The quality factor from the conductive losses in the cavity is then, 

 
( )

( ) ( )

3
2 2 2

2 2 3 3

2
.

2 2

e
c

c

b a pwW
Q

P Rs ap a p b a p

πη +
= =

+ + +
 (2.23) 

If losses are present in the dielectric material of the cavity such that jε ε ε′ ′′= − =  

( ) ( )1 1 tanε ε ε ε δ′ ′′ ′ ′− = − then the power lost due to the dielectric is, 

 

2
22 0

0 0 0

.
2 2 8

p b a

d y

V

E abp
P dv E dx dy dz

ωεωε ωε ′′′′ ′′
= = =∫ ∫ ∫ ∫E  (2.24) 

The quality factor from the dielectric becomes, 

 
2 1

.
tan

e
d

d

W
Q

P

ω
δ

= =  (2.25) 
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The quality factor when both conductive and dielectric losses are present is, 

 
1 1 1

.
c dQ Q Q

= +  (2.26) 

2.4 Cavity Material Perturbations 

Consider the general cavity material perturbation scenario depicted in Fig. 7. Let 

E0, H0, and ω0 represent the vector fields and resonant frequency in the original cavity of 

material properties (ε, µ). When perturbation of the cavity by (∆ε, ∆µ) occurs, the vector 

fields and resonant frequency become E, H, and ω, respectively. By manipulating the 

field equations of the original and perturbed cavities it can be shown that the change in 

resonant frequency of the perturbed cavity is [20], 

 

( )

( )
0 ,V

V

dv

dv

ε µ
ω ω

ω ε µ

∆ ⋅ + ∆ ⋅
−

= −
⋅ + ⋅

∫

∫

* *

0 0

* *

0 0

E E H H

E E H H
 (2.27) 

where V is the volume of the cavity enclosed by S. The formulation of (2.27) assumes ε, 

µ, ∆ε, and ∆µ are real.  

 

 

Fig. 7. Cavity material perturbation theory (a) original cavity and (b) perturbed cavity. 
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2.5 Maxwell-Garnett Mixing Rule 

The Maxwell-Garnett (MG) mixing rule models the effective dielectric property 

of a fluidic dispersion [21]. Consider a fluidic medium (ε1) in which inclusion particles 

(ε2) of an arbitrary shape have been dispersed. The combined volumes of medium and 

particles create the dispersion (εeff). The ratio of the volume of particles to volume of the 

fluidic dispersion denotes the volume fraction of the inclusion particles ϑ. Along with ϑ, 

the geometry of the inclusion particles characterize εeff. Fig. 8 plots the MG mixing rule 

for a fluidic dispersion with spherical, needle, and disc shaped particle geometries. 

 

 

Fig. 8. Maxwell-Garnett mixing rule for fluidic dispersions utilizing spherical (red), needle (blue), 

and disc (green) particles. 

 

 

The permittivity of the fluidic medium dominates the dispersion permittivity for 

spherical inclusion particles until very high ϑ’s are achieved utilizing polydispersivity, 

multiple sized spherical particles. High aspect-ratio inclusion particles, such as, needle 
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or disc geometries, create a more linear relationship between ϑ and εeff. The exact 

definition of the spherical inclusion particle MG mixing rule plotted in Fig. 8 is  

 ( )
( )

2 1
1 1

2 1 2 1

3 ,
2

eff

ε ε
ε ϑ ε ϑε

ε ε ϑ ε ε
−

= +
+ − −

 (2.28) 

where ε1, ε2, and εeff can be complex to account for lossy materials. Similar MG mixing 

rule definitions for needle and disc particle geometries were used in Fig. 8. 

2.6 Coupled Resonator Filters 

Although this work focuses on the design and analysis of an SIW resonator, basic 

principles of coupled-resonator filters are summarized (from [1]) to demonstrate the 

resonator’s potential in filter design. Fig. 9 depicts an n-pole coupled-resonator circuit 

for the narrowband bandpass filter Chebyshev response in Fig. 10. An inductor L in 

parallel with a capacitor C models each resonator with resonant frequency f0. The quality 

factor of each resonator delineates the insertion loss IL of the filter. The coefficients ki,i+1 

define the coupling between each resonator and k01 and kn,n+1 define the external 

coupling from the source to first resonator and load to last resonator, respectively. 

 

 

Fig. 9. n-pole coupled-resonator filter circuit. 
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Fig. 10. Narrowband bandpass filter Chebyshev response. 

 

 

The lowpass filter prototype values and fractional bandwidth FBW =  

( )0 2 1 0BW f f f f= −  determine the coupling coefficient values. The desired return loss 

(RL) and out-of-band rejection (Rej) govern the necessary lowpass filter prototype 

values and order n of the filter. Tunable resonators implemented in Fig. 9 would allow f0 

to vary enabling manipulation of the passband characteristics in Fig. 10 for frequency 

selective applications. 
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CHAPTER III 

ANALYSIS 

 

3.1 The Static SIW Resonator 

Two inductive posts embedded within an SIW structure form a static SIW 

resonator shown in Fig. 11. The diameter of the inductive post d matches the diameter of 

the SIW lateral wall vias for ease of fabrication. A very crude yet easily conceptual 

circuit model in Fig. 12 describes the resonator. 

 

 

Fig. 11. The static SIW resonator. 

 

 

 

 

Fig. 12. Conceptual circuit model for the static SIW resonator. 
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The inductive posts are modeled by inductors LIP because they allow current to transfer 

between the top and bottom layer of the SIW. The capacitor Csiw models the fields of the 

SIW section of length L between the two inductive posts. This forms a parallel resonant 

circuit which resonates when the stored electric energy from Csiw equals the stored 

magnetic energy from IP IPL L�  at the frequency [2], 

 0

2
.

IP siwL C
ω =  (3.1) 

The fields of the SIW section between the inductive posts are not constant making Csiw 

very difficult to determine analytically, however the model in Fig. 12 clearly proves the 

structure in Fig. 11 operates as a resonator. Fig. 13 shows an advanced circuit model 

created from the T-network of an inductive post embedded in a RWG [22]. 

 

 

Fig. 13. Advanced circuit model for the static SIW resonator. 

 

 

The Z0 and β of the SIW transmission line section are determined from (2.13) and (2.9), 

respectively. The circuit parameters of the inductive post embedded in an SIW are [22] 
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 (3.2) 
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where 

 

1
2 2

2

0

3,5,..

2 2 2 2

2

2

3,5,..

4 2 1
ln 2 2 ,

4 25 11 2
ln .

2 3 2

siw siw

n

siw siw siw

nsiw siw

a a
S n

d n

a a a
S n n

d a a n

π λ

λ λ
π λ λ

−
∞

=

∞

=
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∑

∑

 

The wavelength 
2 1

k f

π
λ

µε
= = denotes the wavelength in the substrate material. The 

individual ABCD parameters of the inductive post (AIP, BIP, CIP, DIP) and SIW (Asiw, Bsiw, 

Csiw, Dsiw) can be found using the relations in Fig. 2. The cascaded individual networks 

form the complete ABCD matrix of the static SIW resonator given by (3.4). The ABCD 

parameters can be converted to S parameter using (2.6) to find the complete frequency 

response of the static SIW resonator. 

 
sr sr siw siwIP IP IP IP

sr sr siw siwIP IP IP IP

A B A BA B A B

C D C DC D C D

      
=      

      
 (3.4) 

The circuit model analysis supports an intuitive understanding of the static SIW 

resonator and ability to compute the frequency response. However, the complexities of 

the advanced circuit model in Fig. 13 hinder the development of an analytical solution 
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for the resonant frequency f0 and unloaded quality factor Qu, the Q when not loaded by 

the SIW structure. An equivalent cavity model for the static resonator (Fig. 14) enables 

the possibility to solve for f0 and Qu. The edges of the equivalent cavity in the SIW are 

depicted in blue dashed lines. 

 

 

Fig. 14. Equivalent cavity for the static SIW resonator. 

 

 

The cavity can be directly analyzed as the rectangular cavity in Fig. 6 with a = asiw, b = t, 

and p = L + d. From (2.16) and (2.26), 

 
( )0 22

1 1 1
,

2 siw

f
a L dµε

= +
+

 (3.5) 

 
( ) ( ) ( )

( )

33

3
2 2 2 2

2 221 1
.

tan 2

siw siws

u
siw

a L d t L d a tR

Q t a L d dLδ πη

+ + + + +
= +

+ + +
 (3.6) 

The dimension p extends to the outer edge of the inductive post to account for the field 

extensions from energy coupling around the inductive posts.   
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3.2 Reconfiguration Mechanism 

In this work, a dielectric post of variable material properties (Fig. 15) centered in 

the static SIW resonator facilitates resonant frequency reconfiguration. A fluidic 

dispersion of high dielectric particles ε2 in a low-loss low dielectric fluid ε1 at a volume 

fraction ϑ constructs the dielectric post. The MG mixing rule estimates the fluidic 

dispersion’s effective dielectric property ( ) ( )d effε ϑ ε ϑ= for spherical particles using 

(2.28). In this work the permeability of the dielectric post µd = µ0. Fig. 16 shows the 

conceptual dynamics of adding the variable permittivity dielectric post. 

 

 

Fig. 15. The tunable SIW resonator with the fluidic dispersion (red). 

 

 

 

Fig. 16. Conceptual circuit model for the tunable SIW resonator. 
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The variable dielectric post in the resonator can be model as an additional variable 

capacitor CDP(ϑ). The resonant frequency becomes a function of ϑ given by 

 ( )
( )( )

( )0

2
.

DP siw

IP siw DP

C C

L C C

ϑ
ω ϑ

ϑ

+
=  (3.7) 

The difficulty in computing Csiw makes (3.7) challenging to solve; however, the 

conceptual model unveils the reconfiguration potential by controlling ϑ in the fluidic 

dispersion. Fig. 17 illustrations an advanced circuit model created from the T-network of 

a dielectric post in a RWG [22]. 

 

 

Fig. 17. Advanced circuit model for the tunable SIW resonator. 

 

 

The circuit parameters of the dielectric post for real εd are [22] 
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( )( )( )
( )
( )

2

02

0 0

32 1

2 4 11

a b nsiw

g nn

X X a
S

Z Z d

ϑ ϑ ε ϑλ
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g siw
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 (3.9) 

where 
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 ( ) ( ) ( ) ( )0

0

,
d rd rd

n

r r

ε ϑ ε ϑ ε ε ϑ
ε ϑ

ε ε ε ε
= = =  

and S0 is given in (3.2) and (3.3). When the fluidic dispersion contains losses, such that 

( ) ( ) ( )d d djε ϑ ε ϑ ε ϑ′ ′′= −  the formulas in (3.8) and (3.9) are still valid provided 

( ) 0aX Zϑ  and ( ) 0bX Zϑ  are replaced with ( )( )0aj Z Zϑ  and ( )( )0 ,bj Z Zϑ−  

respectively. The ABCD parameters of the dielectric post (ADP(ϑ), BDP(ϑ), CDP(ϑ), 

DDP(ϑ)) and half the SIW section (Ahsw, Bhsw, Chsw, Dhsw) can be found using the relations 

in Fig. 2. The complete ABCD matrix for the tunable SIW resonator is given by (3.10). 

The ABCD parameters can be converted to S parameter using (2.6) to find the complete 

frequency response of the tunable SIW resonator. 
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ϑ ϑ ϑ ϑ

     
=     

      

   
   

  

i

 (3.10) 

As with the static resonator, the complexities of the tunable resonator’s advanced 

circuit model hinder the development of closed-form solutions for f0(ϑ) and Qu(ϑ). The 

equivalent cavity model (Fig. 13) along with material perturbation theory (Section 2.4) 

provide the necessary tools for such formulations. Consider the equivalent cavity of the 

SIW resonator with a cylindrical volume of fluidic dispersion (dielectric post) placed in 

the center (Fig. 18). The fluidic dispersion can be viewed as a material perturbation of 

the original cavity. 



 25

 

Fig. 18. Cavity material perturbation model for the tunable SIW resonator. 

 

 

Eqn. (2.27) governs the shift in resonant frequency caused by the perturbation. The 

angular frequencies ω0 and ω signify the resonant frequencies of the unperturbed and 

perturbed cavities, respectively. The change in permittivity ∆ε = εd − ε  exists only 

within the volume of the fluidic dispersion. The permittivity εd and ε are assumed real. 

The notation εd and ( )dε ϑ  are interchangeable for the remainder of this thesis. In this 

work the change in permeability ∆µ = 0. Thus, (2.27) can be rewritten as 
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∆ ⋅
−

= −
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∫∫∫

∫∫∫

*
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* *

0 0

E E

E E H H
 (3.11) 

The unperturbed vector fields of the original cavity E0 and H0 are defined in (2.17) - 

(2.19) where a = asiw and p = L + d. However, the perturbed vector fields E and H are 

unknown. For small dispersion volumes the perturbed vector fields across the volume of 

the cavity will not vary significantly. Thus, the approximations E = E0 and H = H0 in the 

denominator of (3.11) are valid. Consequently, the ω term in the denominator on the 
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right hand side (RHS) of (3.11) becomes ω0 since only original fields are integrated in 

the denominator on the left hand side (LHS). Then (3.11) becomes 
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The two integration terms in the denominator are recognized as proportions to the stored 

electric and magnetic energies of the unperturbed cavity which are equal from 

conservation of complex power [2]. Thus, 
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A quasi-static approximation to E in the numerator for a cylindrical perturbation aligned 

with the electric field is E = E0 [20]. Therefore, 
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 (3.14) 

where A signifies the cross-section of the perturbation along the xz plane. The integrand 

of (3.14) can be approximated as unity for a thin centered post. The final closed-from 

solution becomes, 
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ω ε
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 (3.15) 

 When a lossy fluidic dispersion perturbs the cavity such that d d djε ε ε′ ′′= − , the 

angular frequencies in (3.15) must be replaced with a complex effective resonant 

frequency [2] given by, 
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where Q signifies the quality factor of the resonator. Substituting (3.16) into (3.15) for 

both ω and ω0 yields 
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where Q0 and Q represents the unloaded quality factors of the unperturbed and perturbed 

resonator, respectively. The left hand side of (3.17) can be rearranged to  

 

2

0 0 02

0 0 0

2 2

0 02 2

0 0

1 1 1 1
1 1

4 4 2 2
.

1 1
1 1

4 4

QQ Q Q Q
j

Q Q

ωω ω ωω

ω ω

     
+ − + −     

     +
   

+ +   
   

 (3.18) 

Because 
0

1
1 ,

Q
>> (3.17) becomes 

 
( )

( )
0

0 0 0

21 1
.

2

d d

siw

jj
A

Q Q a L d

ε ε εω ω ω
ω ω ε

′ ′′− + −
+ − = 

+ 
 (3.19) 



 28

Equating the real and imaginary parts of (3.19) and solving the set of equations renders 

the relationship, 

 
( )
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 (3.20) 

The material properties of the dispersion and shift in resonance caused by the dispersion 

contribute to the Q.  Small dε ′′  (low-loss fluidic dispersion) achieve a high Q throughout 

reconfiguration whereas, large dε ′′  (high-loss fluidic dispersion) decrease the Q. 
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CHAPTER IV 

DESIGN ITERATION 1 

 

4.1 Initial Dispersions 

Silicone fluid (SF) (polydimethylsiloxane), ( )1 0 1 1 0jε ε ε ε ε′ ′′= − =  

( )1 11 tanr jε δ−  ~ ( )2.8 1 0.001j− , and Barium Strontium Titanate (BSTO) 

(Ba0.5Sr0.5TiO3), ( ) ( )2 0 2 2 0 2 21 tanrj jε ε ε ε ε ε δ′ ′′= − = − ~ ( )500 1 0.05j− , powder 

compose the initial fluidic dispersions. The spherical polydispersed BSTO particles have 

diameters < 100 nm. The SF is readily available over a wide range of viscosities. Higher 

viscosity SF stabilizes the mixed fluidic dispersion for an extend time period (hours). 

Lower viscosities facilitate the mixture of high ϑ fluidic dispersions. Fig. 19 shows the 

BSTO container and SEM image of the BSTO. 

 

 

Fig. 19. BSTO used for initial dispersions with an SEM image. 
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A sampling of ϑ = 0, 0.25, 0.4, and 0.5 were mixed using 95-105, 350-550, and 950-

1050 cst SF for the ϑ = 0.5, 0.4, and0.25, respectively. The MG mixing rule predicts the 

fluidic dispersions effective material properties summarized in Table 2 with the same 

material property ε1 used for all SF viscosities. 

 

Table 2. Estimated εεεεd for initial fluidic dispersions using the MG mixing rule 

ϑϑϑϑ    εεεεd/εεεε0 = εεεεrd(1-jtanδδδδd) 

0 ( )2.8 1 0.001j−  

0.25 ( )5.54 1 0.0015j−  

0.4 ( )8.25 1 0.0019j−  

0.5 ( )10.93 1 0.0022j−  

 

 

Although the fluidic dispersions for spherical particles are dominate by ε1 over 0 < ϑ < 

0.5, the large difference in 2ε ′  and 1ε ′ allows wide variance in .dε ′  The loss of the fluidic 

dispersion tan dδ  remains low because the low-loss assumed for the SF. 

4.2 Predicted Performance 

The complete full-wave simulation model completed in Ansoft HFSS [23] for the 

tunable SIW resonator is shown in Fig. 20 (dimensions in Table 3). Not shown in Fig. 20 

is the completely metalized ground plane. The substrate is Duriod 5870 ( 0ε ε = 2.33) 

and the vias are composed of copper. Small openings on the top and bottom of the 

dielectric post allowing fluid flow are assumed negligible and not modeled. The values 

of W50, Wtap, and Ltap provide S11 < -10 dB across X-band for the SIW structure. The MG 
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mixing rule was built into HFSS such that εd could be easily varied according to ϑ. The 

frequency response predicted from HFSS compared to the response predicted from the 

circuit model for the fluidic-reconfigurable resonator is shown in Fig. 21 and Fig. 22. 

 

 

Fig. 20. Complete HFSS simulation model for the initial tunable SIW resonator. 

 

 

Table 3. Dimensions of the initial tunable SIW resonator 

Parameter Dimension (mm) 

d 1.5113 

dd 3.175 

L 8.3 

Ltap 10 

s 3.0226 

t 1.5748 

W50 4.7 

Wsiw 16.9113 

Wtap 7 
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Fig. 21. Circuit model (dotted) and HFSS simulation (solid) predicted S11 response for the initial 

tunable SIW resonator. 

 

 

 

Fig. 22. Circuit model (dotted) and HFSS simulation (solid) predicted S21 response for the initial 

tunable SIW resonator. 

 



 33

The minimum and maximum of S11 and S21, respectively, correspond to the resonant 

frequency for the specified reconfiguration state f0,ϑ. The static resonator response is 

shown as a reference. In a realistic closed-loop system, only dispersions characterized by 

ϑ would flow into and out of the dielectric post. However, the response from an air 

dielectric post easily analyzes the resonators performance without dispersions. Because 

air has a lower dielectric constant that the substrate, the air dielectric post produces a 

low-loss material perturbation of the static resonator causing an increase in resonant 

frequency. As high ϑ (high dielectric) fluidic dispersions enter the dielectric post, f0,ϑ 

shifts towards the lower portion of X-band. The resonance points for both circuit model 

and HFSS simulations are in strong agreement (< 4% difference), validating the circuit 

model. Across reconfiguration, the predicted insertions loss (IL) ( )21 dB
S− remains < 1.1 

dB and return loss (RL) ( )11 dB
S−  remains > 19 dB for the HFSS simulation. The higher 

IL in the HFSS simulation occurs from losses in the microstrip line, tapered transition, 

and SIW sections transitioning to the resonator. HFSS predicts reconfiguration up to 

22.4% at ϑ = 0.5, with the percentage frequency shift from the ϑ = 0 state defined 

as 0, 0,0 0, 0,0f f f fϑ ϑ∆ = − .  

The resonant frequency across reconfiguration states can also be predicted using 

(3.15) and the result can be used in (3.20) to estimate the unloaded Q of the resonator. A 

summary of results for the f0,ϑ and Q are shown in Table 4. 
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Table 4. Summary of f0,ϑϑϑϑ and Q for the initial tunable SIW resonator design. 

 Resonant Frequency f0 [GHz] Quality Factor Q 

Dielectric 

Post State 
HFSS 

Circuit 

Model 

Closed-form 

Approximation 

(3.15) 

HFSS 

Closed-form 

Approximation 

(3.20) 

Air 12.05 12.15 12.39 580 589 

ϑϑϑϑ = 0 11.44 11.37 11.48 570 515 

ϑϑϑϑ = 0.25 10.43 10.24 10.1 524 393 

ϑϑϑϑ = 0.4 9.57 9.29 8.74 465 286 

ϑϑϑϑ = 0.5 8.88 8.53 7.39 412 201 

 

The closed-form formulas predict f0,ϑ within 9% of the HFSS simulations up to ϑ = 0.4 

and air and 16.7% for ϑ = 0.5. The closed-form Q differs up to 51.2% from HFSS at ϑ = 

0.5. The large differences arise because the closed-form formulas assume a much 

stronger perturbation from the integral approximation in (3.14) and the fact that the 

quasi-static approximation assumes identical fields in the numerator of (3.13). The most 

accurate approximations are from HFSS simulations because the physical features of the 

actual SIW resonator are accounted for.  

4.3 Fabrication and Measured Results 

The SIW resonator was fabricated using standard printed circuit board 

techniques. Thru holes were drilled (d = 1.5113 mm), plugged with small sections of 

copper AWG 14 (1.6mm diameter) wire, and soldered to the ground plane and SIW top 

metallization to create the lateral wall vias and inductive posts. A single thru hole was 

drilled and thin circuit board wiring was soldered across the openings to create the 

dielectric post. The thin wire allows fluid to flow into and out of the dielectric post while 
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maintaining the perturbation within the cavity. SMA connectors were attached at the 

microstrip line edges providing connectivity to the test equipment. The measured 

response vs. the HFSS response for the initial SIW resonator along with a picture of the 

fabricated device is shown in Fig. 23 and Fig. 24. The physical tunable resonator 

achieves a 0,f ϑ∆  of 20.8% from 11.54 to 9.14 GHz utilizing 0 < ϑ < 0.5 fluidic 

dispersions. The resonance points predicted from HFSS differ by less than 4% for all 

reconfiguration states. The IL and RL (excluding ϑ = 0.25) performance of the resonator 

become significantly worse across reconfiguration (RL < 10 dB and IL > 3 dB), 

revealing the possibility that the dispersions contain more losses than expected. 

However, the air dielectric post (a very low-loss perturbation) produces a ~ 2dB higher 

IL than the HFSS prediction. The possibility that the dielectric post behaves as a 

dielectric resonator antenna (DRA), producing radiation from the post openings, is 

unlikely. The dimensions of the dielectric post indicate DRA cut-off frequencies of 20 – 

70 GHz between the air and ϑ = 0.5 reconfiguration cases.  

After physically examining the device it was discovered that the SMA connectors 

were causing significant capacitive loading (Fig. 25). The width of the 50 Ω microstrip 

line W50 exceeds the outer diameter of the SMA connector causing metal-air-metal 

interfaces at the SMA connector-microstrip transition. Although the initial fluidic 

dispersions appear lossy, this capacitive loading effect invalidates possible conclusions 

that can be drawn from the measured data.  
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Fig. 23. Measured (solid) and HFSS simulation (dotted) S11 response for the initial tunable SIW 

resonator. 

 

 

 

Fig. 24. Measured (solid) and HFSS simulation (dotted) S21 response for the initial tunable SIW 

resonator. 
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Fig. 25. Capacitive loading effected from the SMA connectors indicated by red arrows. 
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CHAPTER V 

DESIGN ITERATION 2 

 

5.1 Design Changes 

Many issues and improvement areas with the initial design were addressed in the 

2
nd

 design iteration. To decrease W50 below the outer diameter of the SMA connector, a 

thinner Rogers 5870 board of thickness 0.7874 mm replaces the 5870 board in the initial 

design of thickness 1.5748 mm (refer to (2.14) for the effect on the line impedance with 

changing the substrate thickness). The SMA connectors and dielectric post openings are 

included in the HFSS model to increase the simulation accuracy. The exact dimensions 

of the SMA connector can be found from the data sheet for the specific supplier. In this 

work, the dimensions were directly measured off the connectors utilized. A crossed wire 

structure replaces the single wire structure across the top and bottom of the dielectric 

post lessening the possibility of radiation.  The via diameters used in simulation match 

the AWG 14 wire (1.6 mm diameter) as opposed to the 1.5113 mm drilled thru holes. 

The values of Wtap and Ltap are optimized to provided S11 < -16 dB (opposed to -10 dB in 

the initial design) across X-band for the SIW structure. The optimization utilized a 

Quasi-Newton routine built in HFSS. The complete simulation model for the 2
nd

 SIW 

resonator is shown in Fig. 26. The new dimensions for the 2
nd

 SIW resonator are given 

in Table 5.  
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Fig. 26. Complete HFSS simulation model for the 2
nd

 SIW tunable resonator. 

 

 
Table 5. Dimensions of the 2nd tunable SIW resonator. 

Parameter Dimension (mm) 

d 1.6 

dd 3.175 

L 8.7 

Ltap 15.49 

s 2.75 

t 0.7874 

W50 2.34 

Wsiw 17 

Wtap 7.11 

tw 0.65 
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5.2 New Dispersions 

A new batch of dispersions were created replacing the BSTO particles with 

Barium Titanate (BTO) particles, same estimated permittivity of 2 0ε ε ~ 

( )500 1 0.05j− . The spherical BTO particles have diameters < 400 nm. A 1000 cst SF 

(providing very stable dispersion across 0 < ϑ < 0.5) from a different manufacture 

replaces the 50 – 1050 cst SF used in the initial dispersions. A finer sampling of ϑ = 0, 

0.1, 0.2, 0.3, 0.4, and 0.5 dispersions were mixed. The new dispersions allow 

comparison against the possibly bad batch of initial dispersions. The MG mixing rule 

predicts the effective material properties summarized in Table 6. 

 

Table 6. Estimated εεεεd for 2nd batch of fluidic dispersions using the MG mixing rule. 

ϑϑϑϑ    εεεεd/εεεε0 = εεεε′d(1-jtanδδδδd) 

0 ( )2.8 1 0.001j−  

0.1 ( )3.72 1 0.0012j−  

0.2 ( )4.86 1 0.0014j−  

0.3 ( )6.32 1 0.0016j−  

0.4 ( )8.25 1 0.0019j−  

0.5 ( )10.93 1 0.0022j−  

 

 

5.3 Predicted Performance 

The simulated frequency response from HFSS compared to the response from the 

circuit model is shown in Fig. 27 and Fig. 28. 
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Fig. 27. Circuit model (dotted) and HFSS simulation (solid) predicted S11 response for the 2
nd

 

tunable SIW resonator. 

 

 

 

Fig. 28. Circuit model (dotted) and HFSS simulation (solid) predicted S21 response for the 2
nd

 

tunable SIW resonator. 
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The openings in the dielectric post accounted for in HFSS (not accounted for in 

the circuit model) weaken the perturbation effect causing a slightly larger difference in 

the resonance points (< 6.2%) compared to the initial design (< 4%). Across 

reconfiguration, the predicted HFSS IL remains < 1.7 dB an RL remains > 20 dB despite 

the addition of the SMA connector and dielectric post openings. Again, the higher IL 

and lower RL in the HFSS simulation occur from the microstrip line, tapered transition, 

and SIW sections loading the resonator. HFSS predicts 0,f ϑ∆  = 20% reconfiguration at ϑ 

= 0.5, slightly lower than the HFSS prediction for the initial design due to the addition of 

the dielectric post openings.  

Taking the cross-sectional area A of the perturbation in (3.15) as the area of the 

crossed wires at the dielectric post openings accurately accounts for the weakening of 

the perturbation effect caused by the dielectric post openings (difficult to account for in 

the circuit model). With A = 4.7504 mm
2
 (slightly larger than the actual area of the 

crossed wires to account for fringing fields along the wires) the predicted f0,ϑ and 

unloaded Q (along with predictions from HFSS and the circuit model) are shown in 

Table 7. The Q’s predicted from HFSS are lower than the Q’s from the initial design 

because the thinner substrate material. The differences between HFSS and the closed-

form solutions for the resonant frequency and Q are < 1.16% and < 10.4%, respectively. 

The closer agreement as compared to the initial design can be attributed to the effective 

lowering of the perturbation effect with A in (3.15).   
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Table 7. Summary of f0,ϑϑϑϑ and Q for the 2nd tunable SIW resonator design 

 Resonant Frequency f0 [GHz] Quality Factor Q 

Dielectric 

Post 
HFSS 

Circuit 

Model 

Closed-form 

Approximation 

(3.15) 

HFSS 

Closed-form 

Approximation 

(3.20) 

Air 11.77 11.96 11.72 469 477 

ϑϑϑϑ = 0 11.26 11.21 11.21 457 447 

ϑϑϑϑ = 0.1 11.03 10.83 10.96 445 429 

ϑϑϑϑ = 0.2 10.72 10.37 10.64 425 406 

ϑϑϑϑ = 0.3 10.35 9.83 10.23 396 375 

ϑϑϑϑ = 0.4 9.74 9.19 9.69 356 333 

ϑϑϑϑ = 0.5 9.0 8.45 8.94 310 278 

 

5.4 Fabrication and Measured Results 

The 2
nd

 tunable SIW resonator was fabricated in the same manner as the initial 

design (Section 4.3). The measured response (tested with the new BTO dispersions) 

compared to the HFSS response along with a picture of the fabricated device is shown in 

Fig. 29 and Fig. 30. 
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Fig. 29. Measured (solid) and HFSS simulated (dotted) S11 response for the 2nd tunable SIW 

resonator. 

 

 

 

Fig. 30. Measured (solid) and HFSS simulated (dotted) S21 response for the 2nd tunable SIW 

resonator. 
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The 2
nd

 SIW tunable resonator was also tested with the initial ϑ = 0.4 BSTO dispersion, 

signified by the orange dashed line in Fig. 29 and Fig. 30. The physical tunable resonator 

achieves a ∆f0,ϑ of 20.42% from 11.22 GHz to 8.93 GHz utilizing 0 < ϑ < 0.5 

dispersions. The resonance points predicted from HFSS differ by less than 2% for all 

reconfiguration states. The RL decreases (RL > 5 dB) and IL increases (IL < 10dB) as 

high ϑ fluidic BTO dispersions (including the ϑ = 0.4 BSTO dispersion) are introduced 

into the dielectric post, as seen in the initial design. However, the air reconfiguration 

case (a known low-loss perturbation) agrees very well with the HFSS prediction 

reinforcing the conclusion that the dispersions (both BSTO and BTO batches) may be 

intrinsically high-loss. 

5.5 Material Property Study 

The loss of the SF dominates the loss of the dispersion over 0 < ϑ < 0.5. A 

parametric study analyzing 0.01 < tanδ1 < 0.06 in 0.01 increments was completed in 

HFSS (Fig. 31 and Fig. 32). The same estimate for the BTO (and BSTO) particles was 

used in the study. 
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Fig. 31. HFSS simulated S11 response for the SF loss tangent parametric study. 

 

 

 

Fig. 32. HFSS simulated S21 response for the SF loss tangent parametric study. 
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A new SF complex permittivity estimate is found to be 1 0ε ε  ~ ( )2.8 1 0.04j− by 

comparing the IL and RL of the measured and parametric study for the ϑ = 0 case. The 

BTO (and BSTO) particles must possess higher losses than expected because high ϑ 

cases (with the new SF permittivity estimate) still do not compare to measurement. In 

order for the losses of the spherical particles to play a role in the fluidic dispersion loss, 

the value of 2ε ′  must decrease according to the MG mixing rule in (2.28). With a new 

permittivity estimate of 2 0ε ε  ~ ( )100 1 0.5j−  for the BTO (BSTO) particles and the 

aforementioned new permittivity estimate for the SF, the HFSS response compares to the 

measured response as shown in Fig. 33 and Fig. 34. Table 8 indicates the new dispersion 

permittivity estimates. 

 

Table 8. New predicted εεεεd for new estimated εεεε1 and εεεε2 using the MG mixing rule. 

ϑϑϑϑ    εεεεd/εεεε0 = εεεε′d(1-jtanδδδδd) 

0 ( )2.8 1 0.04j−  

0.1 ( )3.66 1 0.0479j−  

0.2 ( )4.73 1 0.0552j−  

0.3 ( )6.06 1 0.0627j−  

0.4 ( )7.8 1 0.0711j−  

0.5 ( )10.13 1 0.0813j−  

 



 48

 

Fig. 33. Measured (solid) and HFSS simulated (dotted) S11 response for the 2
nd

 tunable SIW 

resonator with new estimated fluidic dispersion permittivity. 

 

 

 

Fig. 34. Measured (solid) and HFSS simulated (dotted) S21 response for the 2
nd

 tunable SIW 

resonator with new estimated fluidic dispersion permittivity. 
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The resonance points differ by less than 4% despite the significant drop in the new 2ε ′  

estimate because the dominate SF properties in the fluidic dispersions. The strong 

correlation between simulated and measured RL and IL validates the new estimated SF 

and BTO (BSTO) complex permittivity.  

The predicted response from the circuit model with the new fluidic dispersion 

permittivity estimate vs. the measure response is shown in Fig. 35 and Fig. 36. The 

circuit model predicts stronger frequency shifts since the dielectric post openings are not 

considered. The difference in resonance points between the measured and circuit model 

response remains low (< 6%). The circuit model reflects the increase in IL and decrease 

in RL for higher ϑ cases from the measured device. The higher measured IL for all 

reconfiguration cases can be attributed to the conduction losses from the copper vias and 

metallization layers, and loading from the microstrip line, tapered transition, and SIW 

sections. The strong correlations between the circuit model (no openings in the dielectric 

post accounted for) compared to the measured response proves little radiation occurs 

from the openings in the dielectric post. 
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Fig. 35. Measured (solid) and circuit model (dotted) S11 response for the 2
nd

 tunable SIW resonator 

with new estimated fluidic dispersion permittivity. 

 

 

 

Fig. 36. Measured (solid) and circuit model (dotted) S21 response for the 2
nd

 tunable SIW resonator 

with new estimated fluidic dispersion permittivity. 
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The predicted unloaded Q’s for the resonator using the new permittivity estimates are 

given in Table 9. The closed-form estimates strongly agree with full-wave simulation. 

The high-loss dispersions significantly decrease the Q of the tunable SIW resonator 

(100s to 10s).   

 
Table 9. Predicted tunable SIW resonator Q with new estimated fluidic dispersion permittivity. 

ϑϑϑϑ    HFSS (3.20) 

0 134 130 

0.1 89 90 

0.2 60 63 

0.3 41 44 

0.4 28 30 

0.5 20 19 

 

5.6 Discussion and Conclusion 

  The low RL occurring as high ϑ dispersions enter the dielectric post manifests as 

the circuit components (Fig. 17) become both reactive and resistive. The resistive 

elements alter the input impedance of the resonator creating an impedance mismatch. 

The high IL is partially due to the lower RL, but mainly occurs from dissipation caused 

by the high-loss dispersions in the resonator. The percentage of dissipated energy in the 

resonator can be computed as 

 
2 2

11 211 .S Sα = − −  (5.1) 
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 The energy lost from high-loss dispersions at resonance across reconfiguration from the 

circuit model, HFSS, and measurement are shown in Table 10. Significantly more 

dissipation occurs (lowering the Q of the resonator) for high ϑ dispersion.  

 

Table 10. Tunable SIW resonator dissipation αααα with the new estimated fluidic dispersion 

permittivity. 

ϑϑϑϑ    Circuit Model HFSS Measured 

0 17.1 % 34.52 % 34.64 % 

0.1 26.37 % 42.36 % 37.36 % 

0.2 36.49 % 49.56 % 43.07 % 

0.3 45.36 % 53.08 % 48.81 % 

0.4 49.89 % 53.37 % 53.09 % 

0.5 47.44 % 59.76 % 56.62 % 

 

 After an exhaustive literature search, the dielectric properties of SF were found to 

be 1 0ε ε ~ ( )2.7 1 0.02j−  at X-band frequencies in [24] and 1 0ε ε ~ ( )2.68 1 0.039j−  

between 72 and 82 GHz in [25]. The prediction of 1 0ε ε ~ ( )2.8 1 0.04j− from the SIW 

resonator follows the general measurements in literature. No significant measurements 

for BSTO or BTO above 1 MHz were found by the author.  

 Through extensive testing and analysis completed over two design iterations, the 

performance of the tunable SIW resonator suffers from sensitivity to high fluidic 

dispersion losses. For applications requiring RL > 8 dB and IL < 6 dB, the current 

tunable SIW resonator (with current fluidic dispersions) can achieve up to 0,f ϑ∆  = 12.1 

% (for ϑ ≤ 0.3). Utilizing low-loss dispersions will offer exceptional reconfiguration 

performance, prompting research for low-loss fluidic microwave material. A new 



 53

estimate for the material properties of SF, BSTO, and BTO at X-band frequencies was 

found by comparing simulated and measured data. A more accurate form of material 

measurements capable of dynamically measuring the permittivity of a fluidic dispersion 

in a closed-loop system would accelerate research efforts in finding low-loss variable 

fluidic dispersions.  
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CHAPTER VI 

MATERIAL MEASUREMENTS 

 

6.1 Overview 

 In the previous chapter it was found that the fluidic dispersions utilized in this 

work possessed higher losses than originally expected deteriorating the tunable SIW 

resonator performance across reconfiguration. Although new estimates for the materials 

composing the fluidic dispersions were discovered by comparing simulated and 

measured data, a system tailored to material property characterization expands research 

efforts to finding low-loss fluidic dispersions. Two initial measurement systems were 

fabricated to test both solid and liquid samples. Data processing techniques are 

developed to extract the permittivity of the sample from measured data.  

A variety of material measurement systems (MMSs) exist possessing advantages 

and disadvantages over one another. A measurement technique, either 

reflection/transmission or resonant, describes a specific MMS. Many factors associated 

with the material under test (MUT) such as, form and shape, low-loss or high-loss, and 

dielectric or magnetic determine the type of MMS used. Most materials are dispersive, 

material properties vary with frequency, making the measurement frequency range of 

interest. Fig. 37 shows commercially available MMS taken from [26]. 
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Fig. 37. Commercially available MMSs. 

 

The capacitance MMS typically measures the material properties at low frequencies ( < 

1 GHz) with an impedance analyzer. The coaxial probe (open-ended) and transmission 

line (TL) MMS illustrate examples of reflection/transmission measurement techniques. 

The open-ended coaxial probe (OCP) can measure liquid samples over a large frequency 

range, however suffers from low accuracy. The TL MMS provides higher accuracy than 

the OCP; however, the MUT must often be shaped to fit in the fixture. The resonant 

cavity MMS, a resonant technique, provides the most accuracy but the measurement 

bandwidth is narrow and the sample size must be tailored to fit in the fixture. The high 

cost of the commercially available MMSs along with their data processing software 

limits their uses in academia. 
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6.2 Initial Low Cost Test Fixtures 

Two low cost transmission technique MMS were fabricated to develop data 

processing methods. A coaxial fixture MMS (CF-MMS) capable of statically measuring 

liquids is shown in Fig. 38. The thru hole diameter matches the outer diameter of the 

SMA connector. Tapped holes securely connected the SMA connector to the Aluminum 

(Al) block. A brass tube links the SMA inner conductors. Fig. 39 demonstrates the 

assembly of the CF-MMS. The liquid sample can be added to the thru hole cavity in step 

2. Thus, the sample becomes the dielectric material of the coaxial line in the Al block. 

The coaxial structure supports TEM propagation through the sample material. The SMA 

connectors link to a network analyzer to measure the reflected and transmitted waves 

from and through the sample, respectively. 

 

 

Fig. 38. CF-MMS for measuring liquid samples. 
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Fig. 39. Assembly procedure for the CF-MMS. 

 

 

 A free-space MMS (FS-MMS) capable of measuring solid and semi-sold 

materials is shown in Fig. 40. The integrate wheels under the FS-MSS provides 

effortless mobility. The adjustable MUT holder accommodates flat, planar samples of 

solid and semi-solid material. Standard gain horn (SGH) antennas connected to a 

programmable network analyzer (PNA) measure the reflected and transmitted TEM 

waves from and through the MUT. Fig. 41 shows the basic radiations characteristics of a 

SGH. The half power beam width θHPBW defines the area of maximum radiation normal 

to the SGH aperture. The far-field radiation zone supports TEM propagation. The MUT 

holder and top SGH can be vertically adjusted to control the distance between the MUT 

face and SGH aperture. This ensures the MUT lies in the far-field radiation zone and 

receives as much radiation as possible.  
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Fig. 40. FS-MMS capable of measuring solids and semi-solid materials. 

 

 

 

Fig. 41. Radiation characteristics of a SGH antenna. 
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6.3 Calculation of Complex Dielectric Constant 

The CF- and FS-MMS allow a PNA to measure the reflected and transmitted 

TEM waves from and through an MUT, respectively. The S parameters measured from 

the PNA pass through data processing software extracting the MUT’s complex material 

properties (µs, εs). The block diagram in Fig. 42 illustrates the entire system workings.  

 

 

Fig. 42. Block diagram for the MMSs. 

 

 

 In order to extract the (µs, εs) from the S parameters, consider a TEM wave 

incident wave on the MUT (thickness d) and the reflected and transmitted energy along 

with the TL equivalent circuit shown in Fig. 43. Following the techniques from [27], the 

reflection coefficient at first MUT boundary is, 

 1
s s

s s

Z Z z z

Z Z z z

− −
Γ = =

+ −
 (6.1) 

 where 0s sz Z Z=  and 0z Z Z= . 
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Fig. 43. Diagram of incidence, reflection, and transmission from the MUT and TL equivalent circuit. 

 

 

The normalized TL equivalent characteristic impedances are thus 

 

.

rs
s

rs

r

r

z

z

µ
ε

µ
ε

=

=

 (6.2) 

From symmetry, 2 1Γ = −Γ .  The transmission coefficient through the MUT can be 

defined as, 

 0 0

2

,
rs rs

rs rss

j d
jk djk d

T e e e

π
ε µ

ε µ λ
−

−−= = =  (6.3) 

where λ0 signifies the free-space wavelength. Fig. 44 outlines the signal flow graph 

formulation from the reflections and transmissions off the MUT boundaries. The right 

hand side of Fig. 44 depicts the equivalent fields bouncing off the MUT boundaries. The 

decomposed signal flow graph (Fig. 45) can be solved using the rules in [2]. 
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Fig. 44. Signal flow graph formulation for the reflections and transmissions off the MUT boundaries 

 

 

 

Fig. 45. Decomposed signal flow graph for the reflections and transmissions off the MUT 

boundaries. 
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Using the relationship between the nodes and branches of the signal flow graph [2], the S 

parameters can be solve as 

 
( )

( )

2

1

11 2

1

1
,

1

a

inc

TV
S

V T

− Γ
= =

− Γ
 (6.4) 

 
( )

( )

2

1

21 2

1

1
.

1

b

inc

TV
S

V T

− Γ
= =

− Γ
 (6.5) 

The formulation of (6.4) and (6.5) may appear to account for only one round trip of 

reflections and transmissions through the MUT. However, taking the Maclaurin series of 

the denominator in (6.4) and (6.5) yields 

 
( ) ( ) ( ) ( )

( ) ( )

2 4 62

11 1 1 1 1

2 2 2 3 4
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= − Γ + − Γ Γ + − Γ Γ
 (6.7) 

Fig. 46 shows the complete diagram of reflections and transmission through the MUT. 

The first terms in (6.6) and (6.7) correspond to the initial reflection and initial 

transmission of one trip through the sample, respectively. The following terms in (6.6) 

and (6.7) refer to the subsequent reflections and transmission on the MUT boundaries. 

Therefore, (6.6) and (6.7) are the superposition of all reflections and transmission due to 

bounces of the MUT boundaries. The physics of the problem become clear. 
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Fig. 46. Complete reflection and transmission diagram off and through the MUT. 

 

 

 If 1rsµ = , then only S11 or S21 needs to be measured to compute rsε . An accurate 

measurement of S11 requires sophisticated calibration techniques, a burdensome 

approach. S21 can be accurately measured using a THRU calibration, one of the simplest 

forms of calibration. Defining 21

cS  as the RHS of (6.5) and 21

mS  as the measured S21, an 

error function can be expressed as 

 ( ) 21 21

c m

rsE S Sε = −  (6.8) 

Muller’s method (rigorously formed in Appendix A) can be used to numerically 

compute the complex roots c

rsε  of the function ( )rsE ε  as in [28].  
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6.4 Data Processing 

 Fig. 47 displays a block diagram of the data processing code written in Matlab. 

The calibration for the FS-MMS places the reference plane directly in the center of the 

MUT. Thus, the FS-MMS reference plane data must be shifted by 

 0 0

21 21 .

d d
j j

m mS e S e

π π
λ λ

− −

′ =  (6.9) 

Multiple c

rsε  solutions exist when solving (6.8) due to the periodic nature of wave 

propagation through the MUT. In order to validate if the correct rsε  solutions is found, 

the average c

rsε  over the measurement frequency range is substituted into (6.5) to 

compute the expected response. If the measured response matches the expected response 

over the measured frequency range, then the correct c

rsε  solution was found. Appendix B 

gives the complete Matlab code used in data processing. 

 

 

Fig. 47. Block diagram of the data processing code. 
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6.5 Free-Space MMS Initial Testing 

An important feature on the PNA utilized during testing with the FS-MMS is 

time-domain gating. The PNA allows users to view the time-domain response by taking 

the Fourier Transform of the frequency response. The time-domain response can then be 

gated (windowing) to eliminate unwanted reflections/transmissions that occurred during 

testing. The gated time-domain response is then transformed back into the frequency 

domain. A sample of known permittivity fine tunes data processing techniques and tests 

the limitations of the fabricated FS-MMS at X-band frequencies. A large sheet (24” × 

20”) of Plexiglas, ( )2.59 1 0.0067r jε = −  [24], spanning the dimensions of the FS-MMS 

was tested (Fig. 48). The measured average dielectric constant differs from the literature 

value by < 1.5 %. The constant value across X-band for the measured dielectric constant 

indicates Plexiglas resembles a non-dispersive material at the frequency band, as 

expected. The average measured loss tangent across X-band differs by ± 0.0015. The 

wide variance in measured loss tangent indicates the FS-MMS cannot measure loss 

accurately, likely due to diffractions and reflections not eliminated from gating. The 

measured S21 response along with the expected response from the calculated dielectric 

show good agreement. The original phase shift, with no shift in reference plane, is also 

shown in Fig. 48. 
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Fig. 48. Large Plexiglas sample measurement results using the FS-MMS. 

 

 

A measurement taken on small Plexiglas sample (12” × 6”) reviles the 

inaccuracy of the FS-MMS for small sample testing (Fig. 49). Significant diffractions off 

the edges of the smaller sample severely degraded accuracy. The loss tangent accuracy 

suffers more heavily than the dielectric constant accuracy. 
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Fig. 49. Small Plexiglas sample measurement results using the FS-MMS. 

 

 

6.6 Free-Space MMS Small Sample Testing 

 A technique employed to increase the accuracy of small sample testing for the 

FS-MMS utilizes a small sample MUT holder. A metal sheet with a 5” × 5” slot cut in 

the center creates the holder. Calibration with the holder in place removes the holder 

from the measurement. The results from the initial test are shown in Fig. 50. The 

accuracy of the dielectric constant improves while the loss tangent accuracy remains 

low, although improved.  
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Fig. 50. Small Plexiglas sample measurement results using the FS-MMS with a small sample MUT 

holder. 

 

 

6.7 Coaxial Fixture MMS Initial Testing 

 An SMA barrel of similar length to the SMA probes calibrates the SMA probes 

out of the measurement. An air sample can be easily measured to test the accuracy of the 

CF-MMS. The SMA connectors limit the frequency range of the test to below 18 GHz. 

The testing results are shown in Fig. 51. For very-low frequencies, the accuracy of the 

dielectric constant heavily degrades. Consistent and expected dielectric constant 

measurements above 6 GHz indicate the accuracy range for CF-MMS. The crude 

fabrication of the CF-MMS caused the low accuracy of the loss tangent measurement. 
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One aspects of the CF-MSS impacting the loss tangent measurement is the connection of 

the inner conductor via brass tubing possibly causing significant reflections.   

 

Fig. 51. Air sample measurement results using the CF-MMS. 

 

 

A sample of SF was measured using the CF-MMS (Fig. 52). The measured dielectric 

constant agrees well with [24] and [25] between 6 and 18 GHz. Again, the crude 

fabrication of the CF-MMS invalidates the measured loss tangent data. 
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Fig. 52. SF sample measurement results using the CF-MMS. 

 

 

6.8 Conclusion 

The initial MMSs fabricated provided a low-cost approach to create and refine 

data processing routines. Accurate dielectric constants were computed for the FS-MSS at 

X-band and for the CF-MMS between 6 and 18 GHz. Crude fabrication employed in the 

CF-MSS systems severely affected the measurement of loss tangents. The FS-MMS 

calculated an acceptable average loss tangent for the large Plexiglas sample; however, 

material samples are often available in small coupons only. The accuracy of the 

measured complex permittivity depends on the accuracy employed by of the 

measurement technique. 
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CHAPTER VII 

FUTURE WORK AND CONCLUSION 

 

7.1 A Tunable Two-Pole Chebyshev SIW Filter 

 A tunable two-pole Chebyshev SIW filter design by coupling two tunable SIW 

resonators provides more desirable passband characteristics (Fig. 53). The width of the 

coupling window controls the coupling between the two tunable resonators.  

 

 

Fig. 53. A Two-pole tunable SIW Chebyshev filter. 

 

Early simulations show the achievement of a true Chebyshev response. Across 

reconfiguration, with the initial low-loss estimates for ε1 and ε2, the Chebyshev response 

falters. The external coupling to the tunable resonator may need to be modified to 

confine the fields in the resonator improving the filter performance across 

reconfiguration. When simulated with the new estimates for ε1 and ε2, the RL decreases 
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and IL increase more significantly since dissipations occurs from two resonators as 

opposes to only one. Low-loss dispersions are necessary for this filter design.  

7.2 Possible 3
rd

 SIW Tunable Resonator Design Iterations 

 The current tunable SIW resonator achieves 0,f ϑ∆  = 12.1% reconfiguration with a 

RL > 8 dB and IL < 6 dB utilizing the current dispersions up to ϑ ≤ 0.3. Attempts at 

improving the RL and IL performance and maintain  0,f ϑ∆  = 12.1% utilizing the current 

high-loss dispersions up to ϑ ≤ 0.5 are shown in Fig. 54. The design in a) repositions the 

dielectric post in the SIW resonator to weaken the perturbation, possibly lowering the 

losses while maintaining 0,f ϑ∆ ≥ 12.1%. The design in b) redefines the cavity to provide 

a stronger resonance and decreases the volume of the dielectric post to weaken the 

perturbation. The combination of stronger resonance and weaker perturbation could 

possibly lower the losses while maintaining 0,f ϑ∆ ≥ 12.1%. The design in c) positions 

smaller dielectric post around the center of the SIW resonator where the fields are 

strongest. This weakens the perturbation (possibly lowering the losses) of each post; 

however, the increase in the number of posts may provide sufficient frequency shift. The 

design in d) sandwiches a smaller dielectric post between two copper plates. Physically 

the copper plates could be composed of metal tubing with a small inner diameter. The 

current developed on the copper plates strengthen the electric fields between them, 

increasing the perturbations effect. The overall volume of the fluidic dispersion 

decreases from the addition of the metal plates possibly decreasing the losses. 
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Fig. 54. Attempts at possible 3rd tunable SIW resonator design iterations. 

 

 

All the possible design iterations in Fig. 54 are currently unable to increase performance 

utilizing ϑ ≤ 0.5. The reason becomes evident by rearranging (3.20) to  

 
0

1
2 ,d

d

C
Q

ε ω
ε ε ω ω

   ′′
= =   ′ − −   

 (6.10) 

with Q0 = ∞.  Decreasing the Q of a given material perturbation requires the frequency 

shift to decrease in order for (6.10) to be satisfied. The designs in Fig. 54 all attempted to 

increase Q while maintaining 0ω ω− ; however, the physics of (6.10) are difficult to 

fight.  
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7.3 Advancements to MMS 

 The FS-MSS can be used to measure liquid samples by creating a liquid sample 

holder from the Plexiglas material [28]. The Plexiglas sections can be effectively 

removed from the measurement by finding the equivalent ABCD parameters of the 

measured S parameters (Am, Bm, Cm, Dm) and applying 

 

1 1

p p p pMUT MUT m m

p p p pMUT MUT m m

A B A BA B A B

C D C DC D C D

− −
      

=       
      

 (6.11) 

The ABCD matrix for the MUT can be converted back to S parameters and used to 

compute the complex dielectric constant using the processing techniques in Chapter IV. 

For large samples, an acceptable average loss tangent can be computed on the FS-MMS. 

Therefore, the liquid sample holder in place with the FS-MMS may accurate compute 

the loss tangent of SF and the fluidic dispersions. 

7.4 Final Conclusion 

 In this work a tunable SIW resonator was analyzed, designed, and tested. 

Reconfiguration was employed via a dielectric post containing a fluidic dispersion, 

variable dielectric material based on the volume fraction ϑ of the particle in the 

dispersions. Accurate circuit modeling and closed-form expression predict the 

performance of the resonator well without utilizing full-wave simulations. Over two 

design iterations, it was found that the fluidic dispersions intrinsically possessed much 

higher losses than expected deteriorating the tunable SIW resonator performance. New 

estimates for the fluidic dispersion were discovered by comparing simulated data from a 

parametric study to measured data. Although the high-loss fluidic dispersions currently 
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hinder the performance of the tunable SIW resonator, utilizing low-loss fluidic 

dispersions would greatly increase the resonator performance across reconfiguration.  

The development of systems tailored for material characterization would expand 

research efforts to finding low-loss fluidic dispersions. Two initial material measurement 

systems were developed to measure the complex permittivity of solid and liquid 

samples. Initial testing showed very large samples are necessary to accurately measure 

the dielectric constant and loss tangent of a solid sample on the FS-MMS. The CF-MMS 

can accurately measure the dielectric constant of a liquid sample but the accuracy suffers 

from crude fabrication techniques when measuring losses. The two MMS provided an 

initial step in the development of more advanced systems. 
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APPENDIX A 

MULLER’S METHOD 

 

 Muller’s method is an iterative root-finding method which fits three initial points 

to a second-degree polynomial (p2). The root of p2 is found from the quadratic formula 

and used as an improved estimate in the next iteration of initial points. Begin by 

considering some general function f(x) shown in Fig. A1. 

 

 

Fig. A1. General f(x) 

 

Three initial guess are required x2, x0, x1 (in increasing order) where the function is 

evaluated to be f(x2) = f2, f(x0) = f0, and f(x1) = f1, respectively. It is convenient to use the 

transformation v = x – x0 so that the vertical axis passes through x0. Then we can define 

h1 = x1 – x0 and h2 = x0 – x2. A second degree polynomial p2 can be constructed which 

passes through f2, f0, and f1 as seen in Fig. A2. 
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Fig. A2. General f(x) with fitted polynomial p2 

 

The polynomial p2 can be constructed as follows. 

 ( ) ( ) ( )2

00 0 0f v a b c f= = + + =  (A1.1) 

 ( ) ( ) ( )2

1 1 1 1f v h a h b h c f= = + + =  (A1.2) 

 ( ) ( ) ( )2

2 2 2 2f v h a h b h c f= − = − + =  (A1.3) 

From (A1.1), 

 0.c f=  (A1.4) 

Thus, 

 ( ) ( )2

1 1 0 1a h b h f f+ + =  (A1.5) 

 ( ) ( )2

2 2 0 2.a h b h f f− + =  (A1.6) 

From (A1.5), 
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Substituting (A1.7) into (A1.6) and defining 2

1

h

h
γ =  yields,  

 
( )
( )

1 0 2

2

1

1
.

1

f f f
a

h

γ γ

γ γ

− + +
=

+
 (A1.8) 

The root of the p2 can be computed from an alternative form of the quadratic formula, 

 
2 2

2 2

4 4 2

2 4 4

b b ac b b ac c
v

a b b ac b b ac

 − ± − − − −
= = 

 − − ± − 

∓

∓
 (A1.9) 

The alternative form of the quadratic formula in (A1.9) can reduce loss of precision in 

the numerical evaluation of the roots. The loss of precision in the conventional form 

occurs when b is very close the value of the square root term in the numerator. In the 

alternative form if b is very close to the square root term, the precision does not suffer 

since the denominator (and not the numerator) is affected. The root of the non-

transformed second-degree polynomial is then 

 0
2

2

4
r

c
x x

b b ac
= −

± −
 (A1.10) 

Equation (A1.10) produces two possible roots. The root which is closest to x0 is chosen. 

In the next iteration the root xr becomes one the three initial points. If xr is larger than x0, 

then the next iterations will use x0, xr, and x1 as the initial values (in increasing order, 

i.e., x2,i+1 = x0, x0,i+1 = xr, x1,i+1 = x1). If xr is smaller than x0, then the next iterations will 

use x2, xr, and x0 as the initial values (in increasing order, i.e., x2,i+1 = x1, x0,i+1 = xr, x1,i+1 

= x0). This is iterated until f(xr) < (tolerance value). The analysis is valid for complex 

roots so long as complex arithmetic is used. 
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APPENDIX B 

MATLAB MMS DATA PROCESSING CODE 

 

The main function is: 

clear all; close all; clc; 
%% User inputs 
% specify the data file location and name 
fid_base = 'some directory'; % input directory 
fid_output = 'some directory'; % output directory 
fname = 'filename.cti'; 
  
er_g = x(1-jy);      % complex dielectric constant guess 
d_in = d;            % sample thickness (inch) 
  
type = 0;            % measuremnt type (1 for freespace, 0 for coax) 
  
%% Constants 
e0 = (10^-9)/(36*pi);   % permittivity in a vac 
u0 = (4*pi)*10^-7;      % permeability in a vac 
inch2meter = 0.0254;    % inches to meters conversion 
  
%% Read in data (CTI file) 
file = [fid_base,fname];    % concatenate file 
data = read_cti(file);      % read cti file and store in data in 'data' 
  
%% Compute Complex Dielectric Constant 
for i=1:1:length(data.freq_Hz) 
    S21m = data.S21.re(i)+j*data.S21.im(i);  % measured S21 
    if type == 1 
        lam0=(1/sqrt(e0*u0))/data.freq_Hz(i); % free-space wavelength                                                   
        S21m_shift_ref(i) = exp(-j*pi*d_in*inch2meter/lam0)*... 
                  S21m*exp(-j*pi*d_in*inch2meter/lam0);...    
                         % shift the reference plane to MUT faces 
        temp = ... 
            Muller_Method(er_g,d_in,data.freq_Hz(i),S21m_shift_ref(i)); 
                         % compute the complex er using Muller's method 
    else 
        temp = Muller_Method(er_g,d_in,data.freq_Hz(i),S21m); 
                         % compute the complex er using Muller's method                             
    end 
    result.comp_er(i) = temp.comp_er;       % store complex er 
    result.iteration(i) = temp.iterations;  % store # of iterations 
end 
 
% average dielectric constant and loss tangent over freq range 
result.avg_er = mean(real(result.comp_er)); 
result.avg_tand = mean(-imag(result.comp_er)./real(result.comp_er));  
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%% Computed response from calculated material properties 
S21_calc =... 
         expected_S21(result.avg_er,result.avg_tand,d_in,data.freq_Hz); 
S21_calc_dB = 20*log10(abs(S21_calc)); 
S21_calc_phs_deg = atan2(imag(S21_calc),real(S21_calc))*180/pi; 
  
%% Plot It 
figure 
subplot(2,2,1) 
plot(data.freq_GHz,real(result.comp_er),'Linewidth',1.5); grid on; 
title('Computed Dielectric Constant','FontSize',12) 
xlabel('Frequency (GHz)') 
axis([data.freq_GHz(1) data.freq_GHz(length(data.freq_GHz)) 1 5]) 
set(gca,'xtick', 
[data.freq_GHz(1):3:data.freq_GHz(length(data.freq_GHz))]) 
set(gca,'ytick', [1:1:5]) 
text(1,4,['Average Dielectric Constant = ', 
num2str(result.avg_er),],'BackgroundColor','white','Edgecolor','black')  
  
subplot(2,2,2) 
plot(data.freq_GHz,-
imag(result.comp_er)./real(result.comp_er),'Linewidth',1.5); grid on 
title('Computed Loss Tangent','FontSize',12) 
xlabel('Frequency (GHz)') 
axis([data.freq_GHz(1) data.freq_GHz(length(data.freq_GHz)) -0.1 0.1]) 
set(gca,'xtick', 
[data.freq_GHz(1):3:data.freq_GHz(length(data.freq_GHz))]) 
set(gca,'ytick', [-0.1:0.02:0.1]) 
text(2,-0.06,['Average Loss Tangent = ', 
num2str(result.avg_tand),],'BackgroundColor','white','Edgecolor','black
')  
  
subplot(2,2,3) 
plot(data.freq_GHz,data.S21.mag_dB,data.freq_GHz,S21_calc_dB,'Linewidth
',1.5); grid on; 
legend('Measured','From calc mat. prop.','Location','SouthWest') 
title('Magnitude S21m [dB]','FontSize',12) 
xlabel('Frequency (GHz)') 
axis([data.freq_GHz(1) data.freq_GHz(length(data.freq_GHz)) -8 0]) 
set(gca,'xtick', 
[data.freq_GHz(1):3:data.freq_GHz(length(data.freq_GHz))]) 
set(gca,'ytick', [-8:1:0]) 
  
  
% subplot(2,2,4) 
% 
plot(data.freq_GHz,data.S21.phs_deg,data.freq_GHz,S21_calc_phs_deg,data
.freq_GHz,180/pi*angle(S21m_shift_ref),'Linewidth',1.5); grid on 
% legend('Measured','From calc mat. prop','Meas w/Shift in Ref 
Plane','Location','SouthEast') 
% title('Phase S21m [deg]','FontSize',12) 
% xlabel('Frequency (GHz)') 
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% axis([data.freq_GHz(1) data.freq_GHz(length(data.freq_GHz)) -180 
180]) 
% set(gca,'xtick', 
[data.freq_GHz(1):1:data.freq_GHz(length(data.freq_GHz))]) 
% set(gca,'ytick', [-180:30:180]) 
  
subplot(2,2,4) 
plot(data.freq_GHz,data.S21.phs_deg,data.freq_GHz,S21_calc_phs_deg,'Lin
ewidth',1.5); grid on 
legend('Measured','From calc mat. prop','Location','NorthEast') 
title('Phase S21m [deg]','FontSize',12) 
xlabel('Frequency (GHz)') 
axis([data.freq_GHz(1) data.freq_GHz(length(data.freq_GHz)) -180 180]) 
set(gca,'xtick', 
[data.freq_GHz(1):3:data.freq_GHz(length(data.freq_GHz))]) 
set(gca,'ytick', [-180:30:180]) 
  
 
%% Save data 
fout = [fid_output,fname(1:length(fname)-4)]; % concatenate output file 
saveas(gcf,[fout,'.png'],'png')               % save file as PNG 
 
The following code compute Muller’s Method on (6.8): 

function [data] = Muller_Method(er_g, d_in, freq_Hz, S21m) 
  
%% Constants 
inch2meter = 0.0254;    % inches to meters conversion 
e0 = (10^-9)/(36*pi);   % permittivity in a vac 
u0 = (4*pi)*10^-7;      % permeability in a vac 
eta0 = sqrt(u0/e0);     % free-space wave impedance 
  
%% ------ Muller's Method ------ 
x2(1) = er_g-er_g*0.5;     % second initial point (< than guess) 
x0(1) = er_g;              % guess point 
x1(1) = er_g+er_g*0.5;     % third initial point (> than guess) 
Er = 1;                    % initialize function to pass 1st iteration 
i=1;                       % initialize iteration 
  
while(abs(Er) > 1e-10) 
  
    % evalute E = S21c-S21m at three initial points 
    f2 = S21_E(x2(i),freq_Hz,d_in*inch2meter,S21m); 
    f0 = S21_E(x0(i),freq_Hz,d_in*inch2meter,S21m); 
    f1 = S21_E(x1(i),freq_Hz,d_in*inch2meter,S21m); 
  
    % transform the axes to pass through x0 (v = x-x0) 
    h1 = x1(i)-x0(i);     % x1 transformed 
    h2 = x0(i)-x2(i);     % x2 transformed 
    y = h2/h1;            % gamma 
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    % compute second-order polynomial coefficients 
    c = f0; 
    a = (y*f1 - f0*(1+y) + f2)/(y*h1^2*(1+y)); 
    b = (f1 - f0 - a*h1^2)/h1; 
  
    % compute roots from the quadratic formula and choose the root 
    % which is closer to x0 
    xr1(i) = x0(i) - 2*c/(b+sqrt(b^2-4*a*c)); 
    xr2(i) = x0(i) - 2*c/(b-sqrt(b^2-4*a*c)); 
     
    if abs(xr1(i)-x0(i)) < abs(xr2(i)-x0(i)) 
        xr(i) = xr1(i);  % if |xr1|-|x0| < |xr2|-|x0| 
    else 
        xr(i) = xr2(i);  % if |xr1|-|x0| > |xr2|-|x0| 
    end 
    
    % determine next initial points for the next iteration and store 
    % them in a temporary variable 
    if xr(i) > x0(i) 
        x2_t = x0(i); 
        x0_t = xr(i); 
        x1_t = x1(i); 
    else 
        x2_t = x2(i); 
        x0_t = xr(i); 
        x1_t = x0(i); 
    end 
     
    % evaluate E=S21c-S21m at the computed root 
    Er(i) = S21_E(xr(i),freq_Hz,d_in*inch2meter,S21m); 
     
    % set next iteration initial points 
    x2(i+1) = x2_t; x0(i+1) = x0_t; x1(i+1) = x1_t; 
     
    i=i+1; % increment iteration 
end 
  
data.iterations = i-1; 
data.comp_er = xr(i-1); 
 
The function E is defined as follows: 

function E = S21_E(er, freq_Hz, d_m, S21m) 
  
e0 = (10^-9)/(36*pi);   % permittivity in a vac 
u0 = (4*pi)*10^-7;      % permeability in a vac 
eta0 = sqrt(u0/e0);     % freespace wave impedance 
  
lam0=(1/sqrt(e0*u0))./freq_Hz;      % free-space wavelength 
  
gam = j*2*pi*sqrt(er)/lam0; 
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T = exp(-gam*d_m);             % transmission coeffiecient through MUT 
z = sqrt(1/er);                % normalized wave impedance 
R = (z-1)/(z+1);               % reflection coeffiencnt at air-MUT  
  
S21c = T*(1-R^2)/(1-R^2*T^2);  % calculated S21 
  
E = S21c-S21m; 
 
The expected S21 response is computed from: 

function S21 = expected_S21(er_p,tand,d_in,freq_Hz) 
  
%% Constants 
inch2meter = 0.0254;    % inches to meters conversion 
e0 = (10^-9)/(36*pi);   % permittivity in a vac 
u0 = (4*pi)*10^-7;      % permeability in a vac 
eta0 = sqrt(u0/e0);     % freespace wave impedance 
 
%% Transmission coefficient 
d_m = d_in*inch2meter; 
er=er_p*(1-j*tand); 
lam0=(1/sqrt(e0*u0))./freq_Hz; 
  
gam = j*2*pi*sqrt(er)./lam0; 
T = exp(-gam*d_m); 
z = sqrt(1/er); 
R = (z-1)/(z+1); 
  
S21 = T*(1-R^2)./(1-R^2*T.^2); 
 
The CTI S parameter file is read from: 

function [data] = read_cti(file) 
  
%% Read in data from citi file 
fo = fopen(file);   % open file     
line = fgetl(fo);       % get the 1st line 
grab_freq_data = 0;     % 0 means don't grab freq; 1 means grab freq 
grab_data = 0;          % 0 means don't grab data; 1 means grab data 
  
% First parse through top of file for number of data pts and which S 
% parameters were measured 
  
i=1;                    % start index for S parameters 
while strcmp(line,'VAR_LIST_BEGIN')==0 
    if strcmp(line(1:8),'VAR Freq')==1    % if line contains 'VAR Freq' 
        npts = sscanf(line,'%*s %*s %*s %u');   % find # of data points 
    end 
    if strcmp(line(1:4),'DATA')==1              % if line contains DATA 
        sp(i,:) = sscanf(line,'%*s %s %*s');    % collect S parameter 
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        i=i+1;                                  % increment index 
    end 
    line = fgetl(fo);                           % next line 
end 
  
sparms = cellstr(sp);   % create array of strings from character matrix 
line = fgetl(fo);       % move to next line 
  
% Next collect all freq pts 
  
for i=1:1:npts 
    data.freq_Hz(i) = sscanf(line,'%f'); 
    data.freq_GHz(i) = data.freq_Hz(i)*1e-9; 
    line = fgetl(fo); 
end 
  
% Next collect all S parameter data 
  
i=1;   % start with the first S parameter in the array "sparms" above 
while i<=length(sparms) 
     
  if strcmp(line,'BEGIN')==1;            % if line is BEGIN 
         
    line = fgetl(fo);                    % go to next line 
    if strcmp('S11',sparms(i))==1        % if S11 parameter 
        for k=1:1:npts    
        % collect real(S11) for all freq pts 
          data.S11.re(k) = sscanf(line, '%f');  
        % collect imag(S11) for all freq pts        
          data.S11.im(k) = sscanf(line, '%*f,%f');     
          data.S11.mag(k) = sqrt(data.S11.re(k)^2+data.S11.im(k)^2); 
          data.S11.mag_dB(k) = 20*log10(data.S11.mag(k)); 
          data.S11.phs_rad(k) = atan2(data.S11.im(k),data.S11.re(k)); 
          data.S11.phs_deg(k) = data.S11.phs_rad(k)*180/pi;            
          data.S11.phs_unwrap_rad = 
                              pi/180*unwrap(data.S11.phs_rad*180/pi); 
          data.S11.phs_unwrap_deg = unwrap(data.S11.phs_rad*180/pi); 
          line = fgetl(fo); 
        end 
    elseif strcmp('S12',sparms(i))==1    % if S12 parameter 
        for k=1:1:npts 
        % collect real(S12) for all freq pts 
          data.S12.re(k) = sscanf(line, '%f'); 
        % collect imag(S12) for all freq pts         
          data.S12.im(k) = sscanf(line, '%*f,%f');     
          data.S12.mag(k) = sqrt(data.S12.re(k)^2+data.S12.im(k)^2); 
          data.S12.mag_dB(k) = 20*log10(data.S12.mag(k));    
          data.S12.phs_rad(k) = atan2(data.S12.im(k),data.S12.re(k)); 
          data.S12.phs_deg(k) = data.S12.phs_rad(k)*180/pi;            
          data.S12.phs_unwrap_rad = 
                              pi/180*unwrap(data.S12.phs_rad*180/pi); 
          data.S12.phs_unwrap_deg = unwrap(data.S12.phs_rad*180/pi); 
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          line = fgetl(fo); 
        end 
    elseif strcmp('S21',sparms(i))==1       % if S21 parameter 
        for k=1:1:npts 
        % collect real(S21) for all freq pts 
          data.S21.re(k) = sscanf(line, '%f');   
        % collect imag(S21) for all freq pts       
          data.S21.im(k) = sscanf(line, '%*f,%f');     
          data.S21.mag(k) = sqrt(data.S21.re(k)^2+data.S21.im(k)^2); 
          data.S21.mag_dB(k) = 20*log10(data.S21.mag(k));              
          data.S21.phs_rad(k) = atan2(data.S21.im(k),data.S21.re(k)); 
          data.S21.phs_deg(k) = data.S21.phs_rad(k)*180/pi;            
          data.S21.phs_unwrap_rad = 
                              pi/180*unwrap(data.S21.phs_rad*180/pi); 
          data.S21.phs_unwrap_deg = unwrap(data.S21.phs_rad*180/pi);  
          line = fgetl(fo); 
        end 
   elseif strcmp('S22',sparms(i))==1        % if S22 parameter 
       for k=1:1:npts 
       % collect real(S22) for all freq pts 
         data.S22.re(k) = sscanf(line, '%f'); 
       % collect imag(S22) for all freq pts         
         data.S22.im(k) = sscanf(line, '%*f,%f');     
         data.S22.mag(k) = sqrt(data.S22.re(k)^2+data.S22.im(k)^2); 
         data.S22.mag_dB(k) = 20*log10(data.S22.mag(k));              
         data.S22.phs_rad(k) = atan2(data.S22.im(k),data.S22.re(k)); 
         data.S22.phs_deg(k) = data.S22.phs_rad(k)*180/pi;            
         data.S22.phs_unwrap_rad = 
                             pi/180*unwrap(data.S22.phs_rad*180/pi);  
         data.S22.phs_unwrap_deg = unwrap(data.S22.phs_rad*180/pi); 
         line = fgetl(fo); 
       end 
   end 
   i=i+1;               % go to next S parameter in "sparms" 
         
  else                  % if the line is not BEGIN 
    line = fgetl(fo);   % go to next line 
  end 
     
end 
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