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ABSTRACT

Analytic Study of Performance of Error Estimators for Linear Discriminant

Analysis with Applications in Genomics. (December 2010)

Amin Zollanvari, B.S., Shiraz University, Iran;

M.S., Shiraz University, Iran

Co–Chairs of Advisory Committee: Ulisses M. Braga-Neto
Edward R. Dougherty

Error estimation must be used to find the accuracy of a designed classifier, an

issue that is critical in biomarker discovery for disease diagnosis and prognosis in ge-

nomics and proteomics. This dissertation is concerned with the analytical formulation

of the joint distribution of the true error of misclassification and two of its commonly

used estimators, resubstitution and leave-one-out, as well as their marginal and mixed

moments, in the context of the Linear Discriminant Analysis (LDA) classification rule.

In the first part of this dissertation, we obtain the joint sampling distribution

of the actual and estimated errors under a general parametric Gaussian assumption.

Exact results are provided in the univariate case and an accurate approximation is

obtained in the multivariate case. We show how these results can be applied in the

computation of conditional bounds and the regression of the actual error, given the

observed error estimate. In practice the unknown parameters of the Gaussian distribu-

tions, which figure in the expressions, are not known and need to be estimated. Using

the usual maximum-likelihood estimates for such parameters and plugging them into

the theoretical exact expressions provides a sample-based approximation to the joint

distribution, and also sample-based methods to estimate upper conditional bounds.

In the second part of this dissertation, exact analytical expressions for the bias,
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variance, and Root Mean Square (RMS) for the resubstitution and leave-one-out error

estimators in the univariate Gaussian model are derived. All probabilistic character-

istics of an error estimator are given by the knowledge of its joint distribution with

the true error. Partial information is contained in their mixed moments, in particular,

their second mixed moment. Marginal information regarding an error estimator is

contained in its marginal moments, in particular, its mean and variance. Since we are

interested in estimator accuracy and wish to use the RMS to measure that accuracy,

we desire knowledge of the second-order moments, marginal and mixed, with the

true error. In the multivariate case, using the double asymptotic approach with the

assumption of knowing the common covariance matrix of the Gaussian model, analyt-

ical expressions for the first moments, second moments, and mixed moment with the

actual error for the resubstitution and leave-one-out error estimators are derived. The

results provide accurate small sample approximations and this is demonstrated in the

present situation via numerical comparisons. Application of the results is discussed

in the context of genomics.
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CHAPTER I

ESTIMATION OF THE MISCLASSIFICATION ERROR RATE

Supervised learning is about predicting an output variable using some input variables.

A continuous output variable results in a regression problem while a categorial output

variable constructs a classification problem. A Regression estimator and a classifier

are the two predictors used to accomplish these tasks, respectively. The performance

of the designed predictor is assessed by how accurate it can predict the future samples.

However, the accuracy of the predictor mostly depends on the underlying distribu-

tion of samples, which is usually unknown. This is where error estimation plays a

significant role.

A. Classification Problem

Let x ∈ Rp be a sample of p dimensions coming from one of the the t ≥ 2 subgroups or

classes Π0, Π1, . . . Πt of population Π. Further, assume that we have a set of train-

ing samples; that is a set of samples that their classes are known. The problem of

classification is to design a classifier, ψ(x) ∶ Rp → {0,1} based on the training sample

set to classify x into one of these subgroups. This problem is known as classifica-

tion, discrimination or allocation [1]. In the case where there are two subgroups Π0,

Π1, the problem is known as binary classification; we will refer to that case simply

as classification throughout this dissertation. In this scenario, we will assume that

{X1,X2, . . . ,Xn0} and {Xn0+1,Xn0+2, . . . ,Xn0+n1} are training random samples from

Π0 and Π1, respectively. We will assume that Π0, Π1 are described by probability

density functions, namely the class-conditional densities f(X = x∣X ∈ Πi), i = 0,1.

The journal model is IEEE Transactions on Automatic Control.
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Depending on prior knowledge of the class-conditional densities, we may consider

different problems of classification, as described next.

1. Complete Knowledge of Underlying Distributions

In this case, it is assumed that complete knowledge about f(X ∣X ∈ Πi), i = 0,1 and

the prior probabilities, P (X ∈ Πi) = αi, i = 0,1, is available. The prior probabilities

give the probability that a sample X taken from population Π belongs to Πi (before

seeing the specific value of X). For simplicity, we assume that prior probabilities are

known. However, one may want to estimate it from the data in hand in which case

they can be estimated by the frequency of the data in each class. Using the strong

law of large numbers this estimator of prior probability converge to its true value with

probability 1. Using Bayes theorem we can assign x to the class with higher posterior

probability. Letting α1
α0

= c, this is equivalent to the following likelihood-ratio rule:

ψ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 , if
f(Π0∣X = x)
f(Π1∣X = x) < c

0 , if
f(Π0∣X = x)
f(Π1∣X = x) > c

(1.1)

In the boundary region where
f(Π0∣X = x)
f(Π1∣X = x) = c, we can either do randomization

or break the tie in favor of one region. The above solution constructs a complete class

of admissible rules [2–4]. If c in the above formulation is known, then ψ(x) minimizes

the expected risk defined as the expectation of the probability of misallocating a

member of Πi. For the cases where c is not known, then other criteria should be

chosen instead of the likelihood-ratio rule given in (1.1); for example, choosing c

such that the probability of misallocating a member of Π0 equals the probability of

misallocating a member of Π1. For other examples of criteria see [5].
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2. Parametric Models

Parametric models are the result of partial knowledge about the class-conditional

densities; they exist in different forms. One source of knowledge can be the general

form of the distributions governing the problem, for example, Gaussian distributions

[6, 7], t-distributions [8], inverse normal distributions [9, 10], elliptically contoured

distributions [11], and skew normal distributions [12].

The knowledge can also be about the ratio of class-conditional densities. De-

pending on different assumptions made on the ratio of class-conditional densities,

different family of discriminants have been proposed; for example, the linear logistic

model [13], the quadratic logistic model [13], and the probit model [14].

Another source of knowledge commonly used appears in discrete data classifica-

tion, in which the constraint on probabilities that states that their sum must be one

results in the samples coming from a multinomial distribution; thus, we have made

no assumption on the form of the distribution, and hence we cannot call multinomial

model a parametric one. However, there have been various attempts to smooth the

non-parametric estimates of the multinomial distribution; for example, by making

the assumption of having independent features [15] or assuming a log-linear model

[16]. These attempts of smoothing are categorized as parametric models for discrete

data classification.

3. Non-parametric Models

There are many popular non-parametric methods of classification. These methods can

be commonly categorized into three main types. One is based on density estimation

of the class-conditional densities; another is based on optimization schemes, and the

last one is based on tree classification approaches.
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The first and the simplest rule based on density estimation is the multinomial

discrimination rule [1, 17]. In this case, the continuous data is handled by discretizing

it; however, at the expense of loss of discriminatory power [18]. Another widely used

classification rule of this type is based on kernel density estimation of class-conditional

densities. Depending on the nature of the data, different kernel based rules have been

proposed. For the continuous data classification problem, normal and Cauchy kernels

have been proposed in [19] and [20], respectively. For dealing with discrete data and

for a mixture of discrete and continuous data see [21], and for handling missing data,

see [22]. Two of the most popular classification rules, support vector machines and

neural networks, are based on optimization schemes. There are many variants of

these methods, which can be found in [23] and [24]. Two commonly used types of

tree based rules are CART and binary space partition trees. The reader is referred

to [23] for more information on these rules.

B. Linear Discriminant Analysis

Among all the classifiers mentioned in previous section, we are particularly concerned

with Linear Discriminant Analysis (LDA), which was originally based on an idea

from R. A. Fisher using the linear regression procedure [6, 7], and has a long history

in statistics and pattern recognition. LDA was further developed by Wald [25] in the

context of decision theory and then formulated by Anderson [26] in terms of what is

known today as Anderson’s statistic.

From the first use on taxonomic classification by R. A. Fisher [6], LDA-Fisher

based classification and recognition systems have been applied in many disciplines

such as speech recognition [27, 28], face recognition [29, 30] and recently in cancer

classification [31, 32].
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Here, population Πi is assumed to follow a multivariate Gaussian distribution

N(µi,Σ), for i = 0,1. LDA employs Anderson’s W statistic,

W (µ̂0, µ̂1,X) = (X − µ̂0 + µ̂1

2
)
T

Σ−1 (µ̂0 − µ̂1) (1.2)

where µ̂0 = 1
n0
∑n0
i=1Xi and µ̂1 = 1

n1
∑n0+n1
i=n0+1Xi are the sample means for each class.

The designed LDA classifier is given by

ψ(X) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 , if W (µ̂0, µ̂1,X) ≤ 0

0 , if W (µ̂0, µ̂1,X) > 0

(1.3)

that is, the sign of W determines the classification of the sample point X. Throughout

this dissertation, following for example [33–35], we are assuming that the covariance

matrix Σ is known and fixed; in particular, the W statistic is not a function of the

sample covariance matrix Σ̂. In practice, however, if Σ is not known, then Σ̂ may be

used as an estimator of Σ. Given the training data (and thus the sample means µ̂0

and µ̂1), the classification error is given by

ε = P (W (µ̂0, µ̂1,X) ≤ 0,X ∈ Π0 ∣ µ̂0, µ̂1) + P (W (µ̂0, µ̂1,X) > 0,X ∈ Π1 ∣ µ̂0, µ̂1)

= α0ε
0 + α1ε

1

(1.4)

where αi = P (X ∈ Πi) is the a-priori mixing probability for population Πi, and εi is

the error rate specific to population Πi, with

ε0 = P (W (µ̂0, µ̂1,X)≤0∣X ∈ Π0, µ̂0, µ̂1) , ε1 = P (W (µ̂0, µ̂1,X)>0∣X ∈ Π1, µ̂0, µ̂1)

(1.5)
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and therefore,

ε = α0Φ
⎛
⎝
−
(µ0 − 1

2(µ̂0 + µ̂1))
T

Σ−1(µ̂0 − µ̂1)√
(µ̂0 − µ̂1)TΣ−1(µ̂0 − µ̂1)

⎞
⎠

+ α1Φ
⎛
⎝
(µ1 − 1

2(µ̂0 + µ̂1))
T

Σ−1(µ̂0 − µ̂1)√
(µ̂0 − µ̂1)TΣ−1(µ̂0 − µ̂1)

⎞
⎠

(1.6)

In order to evaluate the overall performance of the classification rule (here LDA) over

all sample spaces given the parent distributions of classes, one uses:

E[ε] = α0E[ε0]+α1E[ε1]

= α0P (W (µ̂0, µ̂1,X) ≤ 0∣X ∈Π0)+α1P (W (µ̂0, µ̂1,X) > 0∣X ∈Π1)
(1.7)

C. Error Estimation in Biomarker Discovery

Classifiers have the role of diagnostic and prognostic tools for cancer stratification;

hence, it is of main concern to assess their predictive power. The successful applica-

bility of a designed classifier relies on its predictive power, namely, the actual or true

error [1, 35]. However, in practice it is almost always the case that one cannot evaluate

exactly the true error of a designed classifier due to the lack of knowledge about the

underlying distribution of the data. Therefore, one needs methods of error estimation

to assess the performance of a classifier based on the given data. However, with the

emergence of high-throughput measurement technologies, these biological data are

now often characterized by an extremely large number of measurements made on a

small number of samples, which creates significant challenges in the statistical analy-

sis and interpretation of such data, in particular, difficult challenges in the application

of error estimation methods.

Different error estimation techniques have been proposed through the years. For

a comprehensive list of these error estimators the reader is referred to [36, 37]. Re-

searchers have tried to characterize the performance of different error estimators in
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terms of their moments [38–42]. By comparing these results with those for the true

error, obtained for example in [43–48], many suggestions have been made on appli-

cability of these error estimators in practice [38, 49–51]. Most of this work has used

asymptotic expansions based on the theory of infinitely large samples that do not ap-

ply to small-sample situations that are prevalent in medical applications. We would

like to highlight a quote from R. A. Fisher [52], which appears in [53]:

The traditional machinery of statistical processes is wholly unsuited to the

needs of practical research ... the elaborate mechanism built on the theory

of infinitely large samples is not accurate enough for simple laboratory

data. Only by systematically tackling small sample problems on their

metrics does it seem possible to apply accurate tests to practical data.

As another comment on this subject that has been made particularly in the

context of error estimation, consider the comment by D. Hand [54] on asymptotic

results by Kittler and Devijver [41] on the variance of so-called average conditional

error rate estimators:

Unfortunately, as Kittler and Devijver point out, small-sample perfor-

mance of these average conditional error rate estimators often does not

live up to asymptotic promise.

Yet, one may not see the serious implications of misusing asymptotic performance-

guarantee tools in small-sample situations. There have been already some work re-

porting seriously flawed results in medical applications where large number of vari-

ables, e.g. genes, but small number of samples, e.g. patients, are available (a typical

small-sample situation). For example, according to [55], “Five of the seven largest

published studies addressing cancer prognosis did not classify patients better than
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chance.” In another study [56], the authors have mentioned 21 studies that have

flawed results mostly published in journals with impact factor larger than 6. It is

interesting to mention that the lack of reproducibility of some of these studies is

partially due to misuse of error estimators in small-sample situations [56–58].

The resubstitution error estimator [59] and the leave-one-out cross-validation

error estimator (variously credited to [60–63]) are the main focus of the present dis-

sertation and have been used extensively in the literature dealing with small-sample

biological high-throughput data – for instance, see [64–69], to cite just a few. It is

noteworthy that some of these cited works have been subsequently criticized for lack

of reproducible results due to the improper use of resubstitution and leave-one-out

error estimation [56, 57], which only highlights further the critical need to study the

performance of these error estimators in small-sample settings.

1. Resubstitution Error Estimator

The apparent classification error, or resubstitution error estimator [59], is given by

ε̂r =
1

n
[
n0

∑
i=1

I{W (µ̂0,µ̂1,Xi)≤0} +
n0+n1

∑
i=n0+1

I{W (µ̂0,µ̂1,Xi)>0}] = α̂0ε̂
0
r + α̂1ε̂

1
r (1.8)

where IA is the indicator variable for event A, α̂i = ni/n is the empirical mixing

frequency for population Πi, and ε̂ ri is the apparent error rate specific to population

Πi, with

ε̂ r0 = 1

n0

n0

∑
i=1

I{W (X̄0,X̄1,Xi)≤0}

ε̂ r1 = 1

n1

n0+n1

∑
i=n0+1

I{W (X̄0,X̄1,Xi)>0}

(1.9)
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2. Leave-one-out Estimator

The leave-one-out error estimator [60] for the LDA classification rule is given by

ε̂l=
1

n
[
n0

∑
i=1

I{W (i)(µ̂0,µ̂1,Xi)≤0} +
n0+n1

∑
i=n0+1

I{W (i)(µ̂0,µ̂1,Xi)>0}]= α̂0ε̂
0
l + α̂1ε̂

1
l (1.10)

where W (i) is the discriminant obtained when observation Xi is left out of training,

α̂i is defined as before, and ε̂il is the leave-one-out error rate specific to population

Πi, with

ε̂0
l =

1

n0

n0

∑
i=1

I{W (i)(µ̂0,µ̂1,Xi)≤0}

ε̂1
l =

1

n1

n0+n1

∑
i=n0+1

I{W (i)(µ̂0,µ̂1,Xi)>0}

(1.11)

However, from the definition of this estimator, it is clear that we have E(ε̂l) =

α̂0E(ε0
n0−1) + α̂1E(ε1

n1−1) where ε0
n0−1 and ε1

n1−1 are the true errors defined in (1.4)

for a problem of n0 − 1 and n1 − 1 observations, respectively. Therefore, studying the

expectation of true error of misclassification suffices to determine that of leave-one-

out. However, the variance of leave-one-out and its cross-moment with true error still

need to be investigated separately.

3. Plug-in Error Estimator

The plug-in error estimator, originally proposed in [6], is obtained by replacing µ0,

α0 and α1 by µ̂0, α̂0 and α̂1 in (1.6). If we denote this estimator by ε̂p, then after sim-

plification we have ε̂p = Φ(−δ̂/2) as given in [35], where δ̂ =
√

(µ̂0 − µ̂1)TΣ−1(µ̂0 − µ̂1).

Based on simulation experiments, it has been stated in [35] and [60] that this estima-

tor has a similar behavior as resubstitution.
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D. Bibliography on the True Error and Its Estimators for Linear Discriminant

In this section, we survey the main results on the development of LDA and its variants

and the rigorous analytical results regarding the distributional knowledge of estima-

tors of true error for LDA; however, it is out of scope of this dissertation to survey

results on error estimators for all classification rules. Interested readers are encour-

aged to combine the papers mentioned here with those of [36] for results until 1974,

[54] for results from 1974 to 1986, and [37] for results until 2000, to get a complete

bibliography of the papers on error estimation.

1. From 1936 to 1966

There was a large body of work in these years on development of linear discriminant

function and its variants. Interested readers are encouraged to see [7, 70–74].

Fisher in his seminal paper in 1936 [6], proposed a linear function that maxi-

mizes the ratio of between to within scatter of classes. It is noteworthy to mention

that to find this linear function, Fisher did not assume any parametric assumption

on the class-conditional densities; in fact he used a linear regression procedure. In

addition, the Fisher linear function is not a discriminant itself; however, we can build

a discriminant using it.

The ratio he considered for maximization purpose was:

F̂ (a) = (aT µ̂0 − aT µ̂1)2

aSa
(1.12)

where a is the weight vector and is a column vector of dimension p, µ̂0 = 1
n0
∑n0
i=1Xi

and µ̂1 = 1
n1
∑n0+n1
i=n0+1Xi and S is the pooled sample covariance matrix:

S = (n0 − 1)S0 + (n1 − 1)S1

n0 + n1 − 2
, Sj =

1

nj − 1
∑
i∶Yi=j

(Xi − µ̂j)(Xi − µ̂j)T (1.13)
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A reasonable question to ask is why maximization of F̂ (a) is a proper criterion for

classification purposes. A simple justification is given by Theorem 4.4 in [24], which

states that for any linear discrimination rule with weight vector a, the probability of

error ε is upper bounded as follows:

ε ≤ inf
a∈Rp

1

1 + F (a) (1.14)

where

F (a) = (aTµ0 − aTµ1)2

aTΣ0a + aTΣ1a
(1.15)

and µi = E[Xi] and Σ0 = E[(Xi − µi)(Xi − µi)T ]. Here no parametric assumptions

about the distributions are made. If these parameters were known, then maximizing

F (a) leads to tightest upper bound on true error; however, in practice we can replace

these unknown parameters by their estimates that leads to F̂ (a).

In 1944, Wald constructed the most powerful test for testing the class of a sam-

ple, using the Neyman-Pearson lemma [25]. Further, he suggested replacing the true

distributional parameters appearing in the critical region by their sample estimates,

thereby providing the first instance of linear discriminant analysis. It is very closely

related to Fisher discriminant function, being in fact a linear function of measure-

ments that best discriminate the populations (i.e., maximizes the Fisher ratio). He

also suggested the problem of finding the distribution of the discriminant itself, which

is required to determine the probability of misclassification. In this regard, he repre-

sented the distribution of his statistic (called Wald’s statistic later) in terms of three

statistics that he called them m1, m2, and m3 and were used later in literature [26, 75].

In 1947, Smith [59] proposed for the first time the use of the apparent error,

also called resubstitution, in connection with the sample quadratic discriminant. In

1951, Harter obtained the exact distribution of Wald’s statistic in the univariate case
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and approximated the multivariate case with the assumption that at least one of the

populations has zero mean [76].

The LDA discriminant, also known as Anderson’s statistic, was proposed by An-

derson in 1951 [26]. He also proposed multi-class classification using various discrim-

inants. Additional work on the distribution of Anderson’s, Wald’s, W ⋆, Rao’s, and Z

statistics, which are all variants of linear discriminants, can be found in [34, 43, 46–

48, 75, 77–95]. These results can be used to find the expectation of the true error.

One can replace the true parameters of the class-conditional densities that appear in

these expressions by their ML estimators to build plug-in types of estimators of the

expected true error; however, it should be noted that when a classifier is designed, it

is of more interest to estimate its true error, not the expected true error.

In 1964, the first use of the leave-one-out error estimator, known in the Soviet

Union as sliding egzam, was proposed in [96]. This Russian paper precedes that

of [60], to which this estimator is usually credited.

2. From 1966 to 2000

Hereafter, unless otherwise stated explicitly, the statistic under study is Anderson’s

statistic. Our attempt here is to briefly mention rigorous analytical results on the

distributional knowledge of error estimators in the literature.

In 1966, Hills attempted to unify the notation commonly used in the litera-

ture. In addition, he considered different scenarios, such as multinomial, multivariate

Bernoulli distribution, and normal distribution in univariate and multivariate cases.

For the univariate normal model, he derived the exact expectation of the resubsti-

tution and plug-in error estimators, with the assumption of knowing the common

variance of classes [1]. In this scenario, he also established some inequalities between

the expectation of resubstitution, expectation of true error, and bayes error when the
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class sample sizes are equal.

In 1972, Foley represented the expectation of resubstitution by an infinite series

of certain gamma functions. He made the assumption that the common covariance

matrix of classes is known [51].

In 1973, Sorum [97] obtained the exact expressions for the expectation and vari-

ance of of resubstitution, leave-one-out, and different parametric estimators in the

univariate case. She also expanded these exact results in an asymptotic sense to

simplify the comparison of these estimators in the univariate case. She made the

assumption that the common variance of the classes is known.

In the same year, McLachlan gave an asymptotic expression for expectation of

the plug-in error estimator [44]. McLachlan derived his results under the multivariate

normal model with unknown common covariance matrix.

In 1974, McLachlan obtained asymptotic expressions for the expectation and

variance of of several parametric error estimators, such as the usual plug-in error

estimator [45]. Here again he considered a multivariate normal model with unknown

common covariance matrix.

In 1975, Moran gave exact expressions for the expectation of the resubstitution

and plug-in error estimators under a multivariate normal model with known common

covariance matrix [35].

In 1992, Davison and Hall demonstrated the smaller variance but larger bias

of bootstrap compared to leave-one-out. They showed this fact analytically in the

univariate case with unknown and possibly different class variances [98].

There have been numerous Monte Carlo studies [38, 60, 99–113], unquantified

approximations [38, 42, 114], and unproven statements [115] on error estimation for

LDA.

In addition to the results we have mentioned above, there has been a tremendous
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effort in the eastern hemisphere mostly associated with properties of true error for

discriminant analysis. Interested readers can consult [116] for more information.

3. A History Chart of the Distributional Knowledge of Error Estimation for LDA

Below we provide a chart summarizing the rigorous analytical work on the distribu-

tional knowledge of error estimators in the context of LDA.

● 1966 Hills: Univariate with Known Common Variance; Exact Expectation; Re-

substitution; Plug-in Estimator; Optimistic Bias of Resubstitution for Equal

Class Sample Sizes [1].

● 1972 Foley: Multivariate with Known Covariance; Exact Expectation; Resub-

stitution [51].

● 1973 Sorum: Univariate with Known Common Variance; Exact and Asymptotic

Expectation and Variance; Resubstitution; Leave-one-out; Several Parametric

Estimators [97].

● 1973 McLachlan: Multivariate with Unknown Covariance; Asymptotic Expec-

tation; Plug-in Estimator [44].

● 1974 McLachlan: Multivariate with Unknown Covariance; Asymptotic Expec-

tation and Variance; Several Parametric Estimators [45].

● 1975 Moran: Multivariate with Known Covariance; Exact Expectation; Resub-

stitution; Plug-in Estimator [35].

● 1992 Davison and Hall: Univariate with Unknown Possibly Different Vari-

ances of Classes; Asymptotic Expectation and Variance; Bootstrap; Leave-one-

out [98].



15

CHAPTER II

JOINT SAMPLING DISTRIBUTION BETWEEN ACTUAL AND ESTIMATED

CLASSIFICATION ERRORS FOR LINEAR DISCRIMINANT ANALYSIS∗

The present chapter furthers the analytical study of error estimation by deriving,

for what is believed to be the first time, the analytical formulation for the joint

sampling distribution of the actual and estimated errors for a classification rule. We

consider here the LDA classification rule and the resubstitution and leave-one-out

error estimators, under a general parametric Gaussian assumption.

We will give in this chapter exact and approximate expressions that allow the

computation of the joint probability:

P (ε̂ = k

n0 + n1

, ε < z) , k = 0,1, . . . , n0 + n1 , 0 ≤ z ≤ 1 (2.1)

where ε is the actual classification error rate, and ε̂ is either the resubstitution esti-

mator ε̂r or the leave-one-out estimator ε̂l, in the case where the classes are Gaussian

distributed. By simple summation along the discrete variable, this allows one to

easily compute the associated joint (cumulative) distribution functions, if so desired.

More importantly, from the expressions for the joint probability in (2.1), one can

compute the exact bias, deviation variance, and RMS of estimation (in terms of the

mean, variance and second moment of ε̂ − ε), as well as exact conditional probability

P (ε < z ∣ ε̂), which leads to the computation of exact conditional bounds on the actual

error, as well as the exact regression E[ε ∣ ε̂] of the actual on the estimated error, as

will be detailed in Section C.

∗Reprinted with permission from “Joint Sampling Distribution Between Actual
and Estimated Classification Errors for Linear Discriminant Analysis” by A. Zol-
lanvari, U.M. Braga-Neto and E.R. Dougherty, IEEE Transactions on Information
Theory, vol. 56, no. 2, pp. 784-804, 2010. Copyright 2010 by IEEE.
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Likewise, we will give expressions, in the univariate case, that allow computation

of the joint probability density

p(ε̂ = k

n0 + n1

, ε = z) , k = 0,1, . . . , n0 + n1 , 0 ≤ z ≤ 1 (2.2)

where ε̂ is again either the resubstitution estimator ε̂r or the leave-one-out estimator

ε̂l, in the case where the classes are Gaussian distributed. Note that, even though we

are using the terminology “density,” the quantity in (2.2) is in fact a combination of

density in ε and probability mass function in ε̂.

A. Univariate Case

Consider a set of n = n0+n1 i.i.d. univariate samples, where n0 samples, represented by

{X1,X2, . . . Xn0}, come from population Π0 distributed as N(µ0, σ2
0), and n1 samples

{Xn0+1,Xn0+2, . . . Xn0+n1} come from population Π1 distributed as N(µ1, σ2
1). The

problem is to assign a new sample X = x from the mixture population pΠ0+(1−p)Π1,

0 < p < 1, to one of the classes. Without loss of generality, we will assume throughout

this Section that µ0 > µ1. We will assume, for simplicity, that p = 1
2 , but the approach

is easily generalizable to the case p ≠ 1
2 .

In the univariate case, the LDA classifier and discriminant reduces to the

ψ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if W (x) = (x − µ̂)(µ̂0 − µ̂1) > 0

1, otherwise

(2.3)

where µ̂0 and µ̂1 are the sample means for each class and µ̂ = 1
2(µ̂0 + µ̂1).
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1. Resubstitution

From (2.3), we see that ψ can be written simply as ψ(x) = I{x<µ̂}, if µ̂0 > µ̂1, i.e.,

sample means are on the same side of the cutpoint µ̂ as the corresponding actual

means, and ψ(x) = I{x>µ̂}, if µ̂0 < µ̂1, i.e., sample means are on the wrong side of the

cutpoint (the case µ̂0 = µ̂1 having probability 0). The first case may be called “direct”

classification, while the second case characterizes “reverse” classification.

Let us introduce the functions ε↑ ∶ R → [0,1] and ε↓ ∶ R → [0,1] as follows.

ε↑(w) = 1

2
[Φ(w − µ0

σ0

) +Φ(µ1 −w
σ1

)] (2.4)

and

ε↓(w) = 1 − ε↑(w) = 1

2
[Φ(µ0 −w

σ0

) +Φ(w − µ1

σ1

)] (2.5)

where Φ(x) is the Gaussian cumulative distribution function evaluated at x.

The actual error for the classifier ψ in (2.3) is a function of µ̂ and of the “direc-

tion” of classification:

ε =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε↑(µ̂) , µ̂0 > µ̂1 (direct classification)

ε↓(µ̂) , µ̂0 < µ̂1 (reverse classification)
(2.6)

a. Equal-variance Case

In this section, it is assumes that σ0 = σ1 = σ (this assumption will be dropped in

the next Section). The restriction ε < z in (2.1) puts a corresponding restriction on

where µ̂ may lie on the real line, which in turn affects the derivation of the joint

probability in (2.1). For direct classification, ε is always under 0.5, while for reverse

classification, ε is always above 0.5. In addition, if ε∗ denotes the optimal (Bayes)

classification error, then
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● Direct classification ⇒ ε∗ = ε↑(w1) ≤ ε < 0.5

● Reverse classification ⇒ 0.5 < ε ≤ 1 − ε∗ = ε↓(w1),

where w1 = 1
2(µ0 + µ1) is the single point where the two densities N(µ0, σ2) and

N(µ1, σ2) are equal. See the example in Figure 1, where the actual error rate ε is

plotted as a function of µ̂, for the case µ0 = 1, µ1 = 0, and σ0 = σ1 = 1.

Fig. 1. Plots of actual error as a function of µ̂, for µ0 = 1, µ1 = 0, and σ0 = σ1 = 1.

Left: plot of ε↑(w), direct classification (µ̂0 > µ̂1). Right: plot of ε↓(w), reverse

classification (µ̂0 < µ̂1).

The event [ε < z] is characterized as follows (see Figure 1):

[ε < z] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ , for z < ε∗

[ µ̂ ∈ (w11,w10), µ̂0 > µ̂1] , for ε∗ ≤ z ≤ 0.5

[ µ̂0 > µ̂1] ∪ [ µ̂ /∈ (w11,w10), µ̂0 < µ̂1] , for 0.5 < z ≤ 1 − ε∗

Ω , for z > 1 − ε∗

(2.7)
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where Ω denotes the entire sample space, and the cutpoints w11 < w10 can be found

easily in each case by numerical inversion of the respective function ε↑ or ε↓. We have

thus established the following Lemma.

Lemma 1. For σ0 = σ1,

P (ε̂r=
k

n0 + n1

, ε < z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , for z < ε∗

P (ε̂r= k
n0+n1

, µ̂ ∈ (w11,w10), µ̂0 > µ̂1) , for ε∗ ≤ z ≤ 0.5

P (ε̂r= k
n0+n1

, µ̂0 > µ̂1)+

P (ε̂r= k
n0+n1

, µ̂ /∈ (w11,w10), µ̂0 < µ̂1) , for 0.5 < z ≤ 1 − ε∗

P (ε̂r= k
n0+n1

) , for z > 1 − ε∗

(2.8)

The following theorem specifies how to compute these probabilities in the case

k = 0 (no apparent error). This result is next extended to k > 0.

Theorem 1. Let Xi ∼ N(µ0, σ2) be i.i.d. observations for i = 1, . . . , n0, and Xi ∼

N(µ1, σ2) be i.i.d. observations for i = n0 + 1, . . . , n0 + n1 used to derive the classifier

in (2.3). Then

P (ε̂r=0, µ̂ ∈ (a, b), µ̂0 > µ̂1) = P (Z1 > 0)

P (ε̂r=0, µ̂ /∈ (a, b), µ̂0 < µ̂1) = P (Z2 < 0) + P (Z3 < 0)

P (ε̂r=0, µ̂0 > µ̂1) = P (Z4 > 0)

P (ε̂r=0) = P (Z4 > 0) + P (Z4 < 0)

(2.9)
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where Z1 is a Gaussian random vector of size n0+n1+3, with mean µZ1 given by:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(µ0 − µ1)1n0+n1+1

(µ0 + µ1) − 2a

−(µ0 + µ1) + 2b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.10)

and covariance matrix ΣZ1 = σ2H, where:

Hij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4n0−3
n0

+ 1
n1
, i, j = 1, . . . , n0, i = j

− 3
n0
+ 1
n1
, i, j = 1, . . . , n0, i ≠ j

1
n0
+ 4n1−3

n1
, i, j = n0 + 1, . . . , n0 + n1, i = j

1
n0
− 3
n1
, i, j = n0 + 1, . . . , n0 + n1, i ≠ j

1
n0
− 1
n1
,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i = n0 + n1 + 2, j = 1, . . . , n0 + n1 + 1

j = n0 + n1 + 2, i = 1, . . . , n0 + n1 + 1

,

1
n1
− 1
n0
,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i = n0 + n1 + 3, j = 1, . . . , n0 + n1 + 1

j = n0 + n1 + 3, i = 1, . . . , n0 + n1 + 1

,

− 1
n0
− 1
n1
,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i = n0 + n1 + 2, j = n0 + n1 + 3

i = n0 + n1 + 3, j = n0 + n1 + 2

,

1
n0
+ 1
n1
, otherwise

(2.11)

Furthermore, Z2 (resp. Z3) is a Gaussian random vector of size n0+n1+2, obtained

from Z1 by eliminating component n0 +n1 +3 (resp. n0 +n1 +2), while Z4 is Gaussian

random vector of size n0+n1+1, obtained from Z1 by eliminating both components

n0 + n1 + 2 and n0 + n1 + 3.

Proof. See Appendix.
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Now observe that the probability of committing k > 0 errors on the training data

can be written as

P ([k errors])=
k

∑
l=0

P ([l errors in class 0 and k − l errors in class 1])

=
k

∑
l=0

(n0

l
)( n1

k − l)P ([X1, . . . ,Xl in error and Xn0+1, . . . ,Xn0+l−k in error])

(2.12)

Furthermore, the random vectors Zi in Theorem 1 assume that no training point

in X1, . . . ,Xn0+n1 is misclassified; misclassification of Xj implies flipping the sign of

the j-th component of Zi, as can be easily checked in the proof of Theorem 1. This

establishes the following theorem.

Theorem 2. Under the same conditions as in Theorem 1,

P (ε̂r=
k

n0 + n1

, µ̂ ∈ (a, b), µ̂0 > µ̂1) =
k

∑
l=0

(n0

l
)( n1

k − l)P (E2
l,k−lZ1 > 0)

P (ε̂r=
k

n0 + n1

, µ̂ /∈ (a, b), µ̂0 < µ̂1) =
k

∑
l=0

(n0

l
)( n1

k − l) [P (E1
l,k−lZ2 < 0) + P (E1

l,k−lZ3 < 0)]

P (ε̂r=
k

n0 + n1

, µ̂0 > µ̂1) =
k

∑
l=0

(n0

l
)( n1

k − l)P (E0
l,k−lZ4 > 0)

P (ε̂r=
k

n0 + n1

) =
k

∑
l=0

(n0

l
)( n1

k − l) [P (E0
l,k−lZ4 > 0) + P (E0

l,k−lZ4 < 0)]

(2.13)

where the vectors Zi, i = 1, . . . ,4, are defined in Theorem 1, and Er
l,k−l is a diagonal

matrix of size n0 + n1 + 1 + r, for r = 0,1,2, with diagonal elements defined to be

(−1l,1n0−l,−1k−l,1n1−(k−l),1,1r).

Theorem 2, in conjunction with Lemma 1, allows the exact computation of the

joint probability in (2.1) for the resubstitution error estimator. The probabilities of

the kind P (Z > 0), where Z is a Gaussian vector, which are needed in the computa-

tions above, can be readily computed using an algorithm for integration of multivari-
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ate Gaussian densities over rectangular regions, due to Genz and Bretz [117]. This

provides an efficient and very accurate method for the exact computation of the joint

probability in (2.1).

b. Unequal-variance Case

In this section, we consider the case where σ0 ≠ σ1. As was seen in the previous

section, when the variances are equal, the class densities are equal at a single point

w1 = 1
2(µ0 + µ1), which also is an extremum point of the classification error functions

ε↑ and ε↓. In the present unequal-variance case, the class densities are equal at two

points w1 and w2,

w1 =
µ1σ2

0 − µ0σ2
1 + σ0σ1

√
(µ1 − µ0)2 + 2(σ2

1 − σ2
0) ln σ1

σ0

σ2
0 − σ2

1

w2 =
µ1σ2

0 − µ0σ2
1 − σ0σ1

√
(µ1 − µ0)2 + 2(σ2

1 − σ2
0) ln σ1

σ0

σ2
0 − σ2

1

(2.14)

where w1 > w2 for σ0 > σ1 and w1 < w2 for σ0 < σ1. These points are extrema of the

classification error, in the sense that

● Direct classification ⇒ ε∗ = ε↑(w1) ≤ ε ≤ ε↑(w2), with ε↑(w1) < 0.5 < ε↑(w2).

● Reverse classification ⇒ ε↓(w2) ≤ ε ≤ ε↓(w1) = 1−ε∗, with ε↓(w2) < 0.5 < ε↓(w1).

This is illustrated in Figure 2, where the actual error rate ε is plotted as a

function of µ̂, for the case µ0 = 1, µ1 = 0, σ0 = 3, and σ1 = 1.
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Fig. 2. Plots of actual error as a function of µ̂, for µ0 = 1, µ1 = 0, σ0 = 3, σ1 = 1 and

ε↓(w2) < z ≤ 0.5. Left: plot of ε↑(w), direct classification (µ̂0 > µ̂1). Right: plot

of ε↓(w), reverse classification (µ̂0 < µ̂1).

The event [ε < z] is characterized as follows (see Figure 2):

[ε < z] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ , for z < ε∗

[ µ̂ ∈ (w11,w10), µ̂0 > µ̂1] , for ε∗ ≤ z ≤ ε↓(w2)

[ µ̂ ∈ (w11,w10), µ̂0 > µ̂1] ∪ [ µ̂ ∈ (w21,w20), µ̂0 < µ̂1] , for ε↓(w2) < z ≤ 0.5

[ µ̂ /∈ (w11,w10), µ̂0 < µ̂1] ∪ [ µ̂ /∈ (w21,w20), µ̂0 > µ̂1] , for 0.5 < z ≤ ε↑(w2)

[ µ̂0 > µ̂1] ∪ [ µ̂ /∈ (w11,w10), µ̂0 < µ̂1] , for ε↑(w2) < z ≤ 1 − ε∗

Ω , for z > 1 − ε∗

(2.15)

where the cutpoints w11 < w10 and w21 < w20 can be found easily in each case by

numerical inversion of the respective function ε↑ or ε↓, such that w1 ∈ (w11,w10) and
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w2 ∈ (w21,w20). We have thus established the following Lemma.

Lemma 2. For arbitrary σ0 ≠ σ1,

P (ε̂r=
k

n0 + n1

, ε < z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , for z < ε∗

P (ε̂r= k
n0+n1

, µ̂ ∈ (w11,w10), µ̂0 > µ̂1) , for ε∗ ≤ z ≤ ε↓(w2)

P (ε̂r= k
n0+n1

, µ̂ ∈ (w11,w10), µ̂0 > µ̂1)+

P (ε̂r= k
n0+n1

, µ̂ ∈ (w21,w20), µ̂0 < µ̂1) , for ε↓(w2) < z ≤ 0.5

P (ε̂r= k
n0+n1

, µ̂ /∈ (w11,w10), µ̂0 < µ̂1)+

P (ε̂r= k
n0+n1

, µ̂ /∈ (w21,w20), µ̂0 > µ̂1) , for 0.5 < z ≤ ε↑(w2)

P (ε̂r= k
n0+n1

, µ̂0 > µ̂1)+

P (ε̂r= k
n0+n1

, µ̂ /∈ (w11,w10), µ̂0 < µ̂1) , for ε↑(w2) < z ≤ 1 − ε∗

P (ε̂r= k
n0+n1

) , for z > 1 − ε∗

(2.16)

The following theorem specifies how to compute these probabilities in the case

k = 0 (no apparent error). The proof of this theorem is similar to the proof of

Theorem 1 and is thus omitted.

Theorem 3. Let Xi ∼ N(µ0, σ2) be i.i.d. observations for i = 1, . . . , n0, and Xi ∼

N(µ1, σ2) be i.i.d. observations for i = n0 + 1, . . . , n0 + n1 used to derive the classifier
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in (2.3). Then

P (ε̂r=0, µ̂ ∈ (a, b), µ̂0 > µ̂1) = P (Z1 > 0)

P (ε̂r=0, µ̂ ∈ (a, b), µ̂0 < µ̂1) = P (Z ′
1 < 0)

P (ε̂r=0, µ̂ /∈ (a, b), µ̂0 < µ̂1) = P (Z2 < 0) + P (Z3 < 0)

P (ε̂r=0, µ̂ /∈ (a, b), µ̂0 > µ̂1) = P (Z ′
2 > 0) + P (Z ′

3 > 0)

P (ε̂r=0, µ̂0 > µ̂1) = P (Z4 > 0)

P (ε̂r=0) = P (Z4 > 0) + P (Z4 < 0)

(2.17)

where Z1 is a Gaussian random vector of size n0+n1+3, with mean µZ1 given by:

µZ1 = [(µ0 − µ1)1Tn0+n1+1, (µ0 + µ1) − 2a, −(µ0 + µ1) + 2b]
T

(2.18)

and covariance matrix ΣZ1 given by

(ΣZ1)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4n0 − 3)σ
2
0

n0
+ σ2

1

n1
, i, j = 1, . . . , n0, i = j

−3
σ2
0

n0
+ σ2

1

n1
, i, j = 1, . . . , n0, i ≠ j

σ2
0

n0
+ (4n1 − 3)σ

2
1

n1
, i, j = n0 + 1, . . . , n0 + n1, i = j

σ2
0

n0
− 3

σ2
1

n1
, i, j = n0 + 1, . . . , n0 + n1, i ≠ j

σ2
0

n0
− σ2

1

n1
,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i = n0 + n1 + 2, j = 1, . . . , n0 + n1 + 1

j = n0 + n1 + 2, i = 1, . . . , n0 + n1 + 1

,

σ2
1

n1
− σ2

0

n0
,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i = n0 + n1 + 3, j = 1, . . . , n0 + n1 + 1

j = n0 + n1 + 3, i = 1, . . . , n0 + n1 + 1

,

−(σ
2
0

n0
+ σ2

1

n1
) ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i = n0 + n1 + 2, j = n0 + n1 + 3

i = n0 + n1 + 3, j = n0 + n1 + 2

,

σ2
0

n0
+ σ2

1

n1
, otherwise

(2.19)
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Here Z ′
1 is a Gaussian random vector of size n0+n1+3, obtained from Z1 by multiplying

by −1 the last two components of Z1. Furthermore, Z2 (resp. Z3) is a Gaussian

random vector of size n0+n1+2, obtained from Z1 by eliminating component n0+n1+3

(resp. n0 +n1 + 2), while Z ′
2 (resp. Z ′

3) is a Gaussian random vector of size n0+n1+2,

obtained from Z ′
1 by eliminating component n0 + n1 + 3 (resp. n0 + n1 + 2) . Finally,

Z4 is Gaussian random vector of size n0+n1+1, obtained from Z1 by eliminating both

components n0 + n1 + 2 and n0 + n1 + 3.

The previous result can be extended to the case k > 0 by using the same reasoning

employed before in connection with Theorem 2, which establishes the following result.

Theorem 4. Under the same conditions as in Theorem 3,

P (ε̂r=
k

n0 + n1

, µ̂ ∈ (a, b), µ̂0 > µ̂1)=
k

∑
l=0

(n0

l
)( n1

k − l)P (E2
l,k−lZ1 > 0)

P (ε̂r=
k

n0 + n1

, µ̂ ∈ (a, b), µ̂0 < µ̂1)=
k

∑
l=0

(n0

l
)( n1

k − l)P (E2
l,k−lZ

′
1 < 0)

P (ε̂r=
k

n0 + n1

, µ̂ /∈ (a, b), µ̂0 < µ̂1)=
k

∑
l=0

(n0

l
)( n1

k − l) [P (E1
l,k−lZ2 < 0) + P (E1

l,k−lZ3 < 0)]

P (ε̂r=
k

n0 + n1

, µ̂ /∈ (a, b), µ̂0 > µ̂1)=
k

∑
l=0

(n0

l
)( n1

k − l) [P (E1
l,k−lZ

′
2 > 0) + P (E1

l,k−lZ
′
3 > 0)]

P (ε̂r=
k

n0 + n1

, µ̂0 > µ̂1)=
k

∑
l=0

(n0

l
)( n1

k − l)P (E0
l,k−lZ4 > 0)

P (ε̂r=
k

n0 + n1

)=
k

∑
l=0

(n0

l
)( n1

k − l) [P (E0
l,k−lZ4 > 0) + P (E0

l,k−lZ4 < 0)]

(2.20)

where the vectors Zi, i = 1, . . . ,4, Z ′
i, i = 1, . . . ,3, are defined in Theorem 3, and Er

l,k−l

is a diagonal matrix of size n0 + n1 + 1 + r, for r = 0,1,2, with diagonal elements

(−1l,1n0−l,−1k−l,1n1−(k−l),1,1r).
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Theorem 4, in conjunction with Lemma 2, allows the exact computation of the

joint probability in (2.1) for the resubstitution error estimator. The probabilities of

the kind P (Z > 0), where Z is a Gaussian vector, which are needed in the compu-

tations above, can be readily computed using the algorithm for integration of multi-

variate Gaussian densities over rectangular regions due to Genz and Bretz [117]. This

provides an efficient and very accurate method for the exact computation of the joint

probability in (2.1) in the resubstitution case.

c. Joint Density

It is relatively easy to apply a methodology similar to the one in the previous sections

to obtain the joint density in (2.2) for the resubstitution error estimator. Let the value

of the Gaussian density with mean µ and variance σ2 at x be denoted by ϕ(x,µ, σ2),

and let ψ(w) = ∣ϕ(x,µ0, σ2
0)−ϕ(x,µ1, σ2

1)∣. Lemma 3 can be easily shown. In addition,

Lemma 3 holds for the case of equal variances σ0 = σ1, by considering only two regions

with z < 0.5 and z > 0.5 and eliminating all terms that include w20 and w21.
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Lemma 3. For arbitrary σ0 ≠ σ1,

p(ε̂r=
k

n0 + n1

, ε = z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , for z < ε∗

1
ψ(w11) p (ε̂r=

k
n0+n1

, µ̂ = w11, µ̂0 > µ̂1) +

1
ψ(w10) p (ε̂r=

k
n0+n1

, µ̂ = w10, µ̂0 > µ̂1) , for ε∗ ≤ z ≤ ε↓(w2)

1
ψ(w11) p (ε̂r=

k
n0+n1

, µ̂ = w11, µ̂0 > µ̂1) +

1
ψ(w10) p (ε̂r=

k
n0+n1

, µ̂ = w10, µ̂0 > µ̂1) +

1
ψ(w21) p (ε̂r=

k
n0+n1

, µ̂ = w21, µ̂0 < µ̂1) +

1
ψ(w20) p (ε̂r=

k
n0+n1

, µ̂ = w20, µ̂0 < µ̂1) , for ε↓(w2) < z ≤ 0.5

1
ψ(w21) p (ε̂r=

k
n0+n1

, µ̂ = w21, µ̂0 > µ̂1) +

1
ψ(w20) p (ε̂r=

k
n0+n1

, µ̂ = w20, µ̂0 > µ̂1) +

1
ψ(w11) p (ε̂r=

k
n0+n1

, µ̂ = w11, µ̂0 < µ̂1) +

1
ψ(w10) p (ε̂r=

k
n0+n1

, µ̂ = w10, µ̂0 < µ̂1) , for 0.5 < z ≤ ε↑(w2)

1
ψ(w11) p (ε̂r=

k
n0+n1

, µ̂ = w11, µ̂0 < µ̂1) +

1
ψ(w10)p (ε̂r=

k
n0+n1

, µ̂ = w10, µ̂0 < µ̂1) , for ε↑(w2) < z ≤ 1 − ε∗

0 for z > 1 − ε∗

(2.21)

The following theorem specifies how to compute the terms on the right hand side

of (2.21).
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Theorem 5. Under the same conditions as in Theorem 3,

p(ε̂r =
k

n0 + n1

, µ̂ = a, µ̂0> µ̂1) =
k

∑
l=0

(n0

l
)( n1

k − l)P (E0
l,k−lY >0)ϕ(0, µ0+µ1−2a,

σ2
0

n0

+σ
2
1

n1

)

p(ε̂r =
k

n0 + n1

, µ̂ = a, µ̂0< µ̂1) =
k

∑
l=0

(n0

l
)( n1

k − l)P (E0
l,k−lY <0)ϕ(0, µ0+µ1−2a,

σ2
0

n0

+σ
2
1

n1

)

(2.22)

Here Y is a Gaussian random vector of size n0 + n1 + 1 with mean µY given by:

µY = 2
n1σ

2
0(a−µ1)−n0σ

2
1(a−µ0)

n1σ2
0+n0σ2

1
1n0+n1+1 (2.23)

and covariance matrix ΣY given by

ΣY = ΣY11 −
1

n0n1

(n1σ2
0 − n0σ2

1)2

n1σ2
0 + n0σ2

1

1(n0+n1+1)×(n0+n1+1) (2.24)

where:

ΣY11 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4n0 − 3)σ
2
0

n0
+ σ2

1

n1
, i, j = 1, . . . , n0, i = j

−3
σ2
0

n0
+ σ2

1

n1
, i, j = 1, . . . , n0, i ≠ j

σ2
0

n0
+ (4n1 − 3)σ

2
1

n1
, i, j = n0 + 1, . . . , n0 + n1, i = j

σ2
0

n0
− 3

σ2
1

n1
, i, j = n0 + 1, . . . , n0 + n1, i ≠ j

σ2
0

n0
+ σ2

1

n1
, otherwise

(2.25)

and E0
l,k−l is the diagonal matrix used in theorem 4.

Proof. See Appendix.

Theorem 5, in conjunction with Lemma 3, allows the exact computation of the

joint density in (2.2) for the resubstitution error estimator.
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d. Numerical Examples

Figures 3 and 4 display examples of the joint probability in (2.1) and the corre-

sponding joint density in (2.2), respectively, for the resubstitution error estimator,

computed using the expressions given previously.

2. Leave-one-out

We consider only the general unequal-variance case. The development here is con-

siderably more complex than in the case of resubstitution. However, Lemma 2 still

holds for the case of leave-one-out, by replacing ε̂r with ε̂l. The probabilities required

in the Lemma are given in the next Theorem, which is the counterpart of Theorem 3.

Theorem 6. Let Xi ∼ N(µ0, σ2) be i.i.d. observations for i = 1, . . . , n0, and Xi ∼

N(µ1, σ2) be i.i.d. observations for i = n0 + 1, . . . , n0 + n1 used to derive the classifier

in (2.3). Then

P (ε̂l=0, µ̂ ∈ (a, b), µ̂0 > µ̂1) =
n0

∑
m=0

n1

∑
n=0

(n0

m
)(n1

n
)P (E2

m,nZ1 > 0)

P (ε̂l=0, µ̂ ∈ (a, b), µ̂0 < µ̂1) =
n0

∑
m=0

n1

∑
n=0

(n0

m
)(n1

n
)P (E2

m,nZ
′
1 < 0)

P (ε̂l=0, µ̂ /∈ (a, b), µ̂0 < µ̂1) =
n0

∑
m=0

n1

∑
n=0

(n0

m
)(n1

n
)(P (E1

m,nZ2 < 0) + P (E1
m,nZ3 < 0))

P (ε̂l=0, µ̂ /∈ (a, b), µ̂0 > µ̂1) =
n0

∑
m=0

n1

∑
n=0

(n0

m
)(n1

n
)(P (E1

m,nZ
′
2 > 0) + P (E1

m,nZ
′
3 > 0))

P (ε̂l=0, µ̂0 > µ̂1) =
n0

∑
m=0

n1

∑
n=0

(n0

m
)(n1

n
)P (E0

m,nZ4 > 0)

P (ε̂l=0) =
n0

∑
m=0

n1

∑
n=0

(n0

m
)(n1

n
)(P (E0

m,nZ4 > 0) + P (E0
m,nZ4 < 0))

(2.26)

where Er
m,n is a diagonal matrix of size 2(n0+n1)+r+1, for r = 0,1,2, with diagonal ele-

ments

(−1m,1n0−m,−1m,1n0−m,−1n,1n1−n,−1n,1n1−n,1r+1). Here Z1 is a Gaussian random
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Fig. 3. Joint probability in (2.1) for the resubstitution error estimator: n0 = n1 = 10,

m0 = 1,m1 = 0, σ0 = 2, σ1 = 1. Bayes error = 0.32742.
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Fig. 4. Joint density in (2.2) for the resubstitution error estimator: n0 = n1 = 10,

m0 = 1,m1 = 0, σ0 = 2, σ1 = 1. Bayes error = 0.32742.
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vector of size 2(n0+n1)+3, with mean µZ1 given by:

µZ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n0−1
n0

(µ0 − µ1)12n0

n1−1
n1

(µ0 − µ1)12n1

µ0 − µ1

(µ0 + µ1) − 2a

−(µ0 + µ1) + 2b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and covariance matrix ΣZ1 given by

ΣZ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 C2 C4

C2T C3 C5

C4T C5T C6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.27)

where

(C1)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4 − 7
n0
+ 3
n2

0
)σ2

0 +
(n0−1)2σ2

1

n2
0n1

, i, j = 1, . . . , n0, i = j

(−3
n0
+ 2
n2

0
)σ2

0 +
(n0−1)2σ2

1

n2
0n1

, i, j = 1, . . . , n0, i ≠ j

(n0−1)σ2
0

n2
0

+ (n0−1)2σ2
1

n2
0n1

, i, j = n0 + 1, . . . ,2n0, i = j

(n0−2)σ2
0

n2
0

+ (n0−1)2σ2
1

n2
0n1

, i, j = n0 + 1, . . . ,2n0, i ≠ j

−(n0−1)σ2
0

n2
0

+ (n0−1)2σ2
1

n2
0n1

,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i = n0 + 1, . . . ,2n0, j = i − n0

j = n0 + 1, . . . ,2n0, i = j − n0

σ2
0

n0
+ (n0−1)2σ2

1

n2
0n1

, otherwise

(2.28)
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C2 = [(n1 − 1)(n0 − 1)σ2
0

n2
0n1

+ (n1 − 1)(n0 − 1)σ2
1

n2
1n0

]12n0×2n1 (2.29)

(C3)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4 − 7
n1
+ 3
n2

1
)σ2

1 +
(n1−1)2σ2

0

n0n2
1

, i, j = 1, . . . , n1, i = j

(−3
n1
+ 2
n2

1
)σ2

1 +
(n1−1)2σ2

0

n0n2
1

, i, j = 1, . . . , n1, i ≠ j

(n1−1)σ2
1

n2
1

+ (n1−1)2σ2
0

n0n2
1

, i, j = n1 + 1, . . . ,2n1, i = j

(n1−2)σ2
1

n2
1

+ (n1−1)2σ2
0

n0n2
1

, i, j = n1 + 1, . . . ,2n1, i ≠ j

−(n1−1)σ2
1

n2
1

+ (n1−1)2σ2
0

n0n2
1

,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i = n1 + 1, . . . ,2n1, j = i − n1

j = n1 + 1, . . . ,2n1, i = j − n1

σ2
1

n1
+ (n1−1)2σ2

0

n0n2
1

, otherwise

(2.30)

C4 = (n0 − 1)
n0

[(σ
2
0

n0

+ σ
2
1

n1

)2n0×1 (σ
2
0

n0

− σ
2
1

n1

)2n0×1 (σ
2
1

n1

− σ
2
0

n0

)2n0×1]
2n0×3

(2.31)

C5 = (n1 − 1)
n1

[(σ
2
0

n0

+ σ
2
1

n1

)2n1×1 (σ
2
0

n0

− σ
2
1

n1

)2n1×1 (σ
2
1

n1

− σ
2
0

n0

)2n1×1]
2n1×3

(2.32)

C6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(σ
2
0

n0
+ σ2

1

n1
) (σ

2
0

n0
− σ2

1

n1
) (σ

2
1

n1
− σ2

0

n0
)

(σ
2
0

n0
− σ2

1

n1
) (σ

2
0

n0
+ σ2

1

n1
) −(σ

2
0

n0
+ σ2

1

n1
)

(σ
2
1

n1
− σ2

0

n0
) −(σ

2
0

n0
+ σ2

1

n1
) (σ

2
0

n0
+ σ2

1

n1
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.33)

whereas Z ′
1 is a Gaussian random vector of size 2(n0+n1)+3, obtained from Z1 by

multiplying by −1 the last two components of Z1. Furthermore, Z2 (resp. Z3) is

a Gaussian random vector of size 2(n0 +n1)+2, obtained from Z1 by eliminating

component 2(n0 + n1) + 3 (resp. 2(n0 + n1) + 2), while Z ′
2 (resp. Z ′

3) is a Gaussian

random vector of size 2(n0 +n1)+2 , obtained from Z ′
1 by eliminating component

2(n0 + n1) + 3 (resp. 2(n0 + n1) + 2) . Finally, Z4 is Gaussian random vector of size
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2(n0+n1)+1, obtained from Z1 by eliminating both components 2(n0 + n1) + 2 and

2(n0 + n1) + 3.

Proof. See Appendix.

The previous result can be extended to the case k > 0 by using the same reasoning

employed before in connection with Theorem 2 and 4, which establishes the following

result.

Theorem 7. Under the same conditions as in Theorem 6,

P (ε̂l= k
n0+n1

, µ̂ ∈ (a, b), µ̂0 > µ̂1) =

∑kl=0 (n0

l
)(n1

k−l)∑
l
p=0∑k−lq=0 ( lp)(

k−l
q
)∑n0−l

m=0∑
n1−(k−l)
n=0 (n0−l

m
)(n1−(k−l)

n
)P (E2,p,q,k,l

m,n Z1 > 0)

P (ε̂l= k
n0+n1

, µ̂ ∈ (a, b), µ̂0 < µ̂1) =

∑kl=0 (n0

l
)(n1

k−l)∑
l
p=0∑k−lq=0 ( lp)(

k−l
q
)∑n0−l

m=0∑
n1−(k−l)
n=0 (n0−l

m
)(n1−(k−l)

n
)P (E2,p,q,k,l

m,n Z ′
1 < 0)

P (ε̂l= k
n0+n1

, µ̂ /∈ (a, b), µ̂0 < µ̂1) =

∑kl=0 (n0

l
)(n1

k−l)∑
l
p=0∑k−lq=0 ( lp)(

k−l
q
)∑n0−l

m=0∑
n1−(k−l)
n=0 (n0−l

m
)(n1−(k−l)

n
) [P (E1,p,q,k,l

m,n Z2 < 0)

+ P (E1,p,q,k,l
m,n Z3 < 0)]

P (ε̂l= k
n0+n1

, µ̂ /∈ (a, b), µ̂0 > µ̂1) =

∑kl=0 (n0

l
)(n1

k−l)∑
l
p=0∑k−lq=0 ( lp)(

k−l
q
)∑n0−l

m=0∑
n1−(k−l)
n=0 (n0−l

m
)(n1−(k−l)

n
) [P (E1,p,q,k,l

m,n Z ′
2 > 0)

+ P (E1,p,q,k,l
m,n Z ′

3 > 0)]

P (ε̂l= k
n0+n1

, µ̂0 > µ̂1) =

∑kl=0 (n0

l
)(n1

k−l)∑
l
p=0∑k−lq=0 ( lp)(

k−l
q
)∑n0−l

m=0∑
n1−(k−l)
n=0 (n0−l

m
)(n1−(k−l)

n
)P (E0,p,q,k,l

m,n Z4 > 0)

P (ε̂l= k
n0+n1

) =

∑kl=0 (n0

l
)(n1

k−l)∑
l
p=0∑k−lq=0 ( lp)(

k−l
q
)∑n0−l

m=0∑
n1−(k−l)
n=0 (n0−l

m
)(n1−(k−l)

n
) [P (E0,p,q,k,l

m,n Z4 > 0)

+ P (E0,p,q,k,l
m,n Z4 < 0)]

(2.34)
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where the vectors Zi, i = 1, . . . ,4, and Z ′
i, i = 1, . . . ,3, are defined in Theorem 6, and

Er,p,q,k,l
m,n is a diagonal matrix of size 2(n0 +n1)+ r + 1 with diagonal elements given by

the component-wise product of the vectors E1 and E2 where:

E1 = (−1p,1n0 ,−1l−p,1n0−l,−1q,1n1 ,−1k−l−q,−1n1−k+l,1r+1)

E2 = (−1l,1m,−1n0−m,1m,−1n0−l−m,−1k−l,1n,−1n1−n,1n,−1n1−k+l−n,1r+1)
(2.35)

Theorem 7, in conjunction with Lemma 2, with ε̂r replaced by with ε̂l, allows

the exact computation of the joint probability in (2.1) for the leave-one-out error

estimator.

a. Joint Density

As in the resubstitution case, it is possible to apply a methodology similar to the one

in the previous sections to obtain the joint density in (2.2) for the leave-one-out error

estimator. As mentioned previously, Lemma 2 still holds for the case of leave-one-out,

by replacing ε̂r with ε̂l, whereas the following result is the counterpart of Theorem 5.

The proof of this theorem is similar to the proof of Theorem 5 and is thus omitted.

Theorem 8. Under the same conditions as in Theorem 6,

p (ε̂l= k
n0+n1

, µ̂ = a, µ̂0 > µ̂1) =

∑kl=0 (n0

l
)(n1

k−l)∑
l
p=0∑k−lq=0 ( lp)(

k−l
q
)∑n0−l

m=0∑
n1−(k−l)
n=0 (n0−l

m
)(n1−(k−l)

n
)P (E0,p,q,k,l

m,n Y > 0)

× ϕ (0, µ0 + µ1 − 2a,
σ2
0

n0
+ σ2

1

n1
)

p (ε̂l= k
n0+n1

, µ̂ = a, µ̂0 < µ̂1) =

∑kl=0 (n0

l
)(n1

k−l)∑
l
p=0∑k−lq=0 ( lp)(

k−l
q
)∑n0−l

m=0∑
n1−(k−l)
n=0 (n0−l

m
)(n1−(k−l)

n
)P (E0,p,q,k,l

m,n Y < 0)

× ϕ (0, µ0 + µ1 − 2a,
σ2
0

n0
+ σ2

1

n1
)

(2.36)

in which E0,p,q,k,l
m,n is the diagonal matrix used in Theorem 7, and Y is a Gaussian
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random vector of size 2(n0 + n1) + 1 with mean µY given by:

µY = 2
n1σ

2
0(a−µ1)−n0σ

2
1(a−µ0)

n1σ2
0+n0σ2

1
[ (n0−1)

n0
1T2n0

(n1−1)
n1

1T2n1
1]T(2n0+2n1+1)×1

(2.37)

and covariance matrix ΣY given by

ΣY = ΣY11 −
1

n0n1

(n1σ2
0 − n0σ2

1)2

n1σ2
0 + n0σ2

1

H(2n0+2n1+1)×(2n0+2n1+1) (2.38)

where

ΣY11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 C2 ad12n0

C2T C3 cd12n1

ad1T2n0
cd1T2n1

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.39)

and

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a212n0×2n0 b12n0×2n1 a12n0

b12n1×2n0 c212n1×2n1 c12n1

a1T2n0
c1T2n1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.40)

with Ci, i = 1,2,3 as defined in theorem 6, and a = (n0−1)
n0

, b = (n0−1)(n1−1)
n0n1

, c = (n1−1)
n1

,

and d = (σ
2
0

n0
+ σ2

1

n1
).

Theorem 8, in conjunction with Lemma 3, with ε̂r replaced by with ε̂l, allows

the exact computation of joint density in (2.2) for the leave-one-out error estimator.

b. Numerical Examples

Figures 5 and 6 display examples of the joint probability in (2.1) and the correspond-

ing joint density in (2.2), respectively, for the leave-one-out error estimator, computed

using the expressions given previously. Comparing these figures to Figures 3 and 4,

one observes, among other interesting facts, that there is in the present case more

probability mass at large values of the error estimator, as expected due to the gener-

ally larger variance of leave-one-out with respect to resubstitution.



38

Fig. 5. Joint probability in (2.1) for the leave-one-out error estimator: n0 = n1 = 10,

m0 = 1,m1 = 0, σ0 = 2, σ1 = 1. Bayes error = 0.32742.
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Fig. 6. Joint density in (2.2) for the leave-one-out error estimator: n0 = n1 = 10,

m0 = 1,m1 = 0, σ0 = 2, σ1 = 1. Bayes error = 0.32742.
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B. Multivariate Case

Consider now a set of n = n0 +n1 independent distributed samples, where n0 samples

{X1,X2, . . . Xn0} come from the multivariate Gaussian distribution N(µ0,Σp×p), and

n1 samples denoted by {Xn0+1,Xn0+2, . . . Xn0+n1} come from the multivariate Gaussian

distribution N(µ1,Σp×p), where µ0 and µ1 are arbitrary p×1 mean vectors and Σp×p is

a covariance matrix common to both classes. The approach used in deriving the joint

distribution of actual and estimated errors in the univariate case is not applicable here;

however, we will employ an approximation method, which is based on the previously

derived exact expressions for the univariate case.

This is done by using the Fisher discriminant w = Σ−1(µ0−µ1) to project the data

to the real line, which gives the maximum separation possible between the classes, and

then we use the exact results stated in previous section on the resultant distributions,

namely, the univariate Gaussian distributions N(η0,∆2) and N(η1,∆2), where

ηi = (µ0 − µ1)TΣ−1µi , ∆2 = (µ0 − µ1)TΣ−1(µ0 − µ1)

for i = 0,1.

1. Numerical Examples

In Figure 7, we have assumed mean vectors of opposite signs µ0 = m0 = d1p×1 and

µ1 =m1 = −d1p×1, and covariance Σ matrix with variance 1 on diagonal and correlation

r for the off-diagonal elements, where ∣r∣ ≤ 1. The MC approximation uses 3 × 106

random samples.

Differences between the proposed approximation and the MC approximation arise

in two cases. In the first case, they are different for values of actual error very close

to Bayes error. This could happen because the MC approximation is poor very close
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to Bayes error, since there are not enough MC samples that can be used in that case.

However, this case is not so important anyway, given that the actual classification

error usually is not this close to the Bayes error. In the second case, they differ as the

value of n/p becomes smaller. We have observed that the proposed approximation is

less accurate in such small-sample settings. For fixed n/p, the proposed approximation

is better for smaller Bayes error.

C. Conditional Bounds and Regression for the Actual Error Given the Estimated

Error

A problem of great importance in practice is to bound the actual classification error

given the observed value of the error estimator, which is akin to finding confidence

intervals in classical parameter estimation. In addition, great insight can be obtained

by finding the expected classification error conditioned on the observed value of the er-

ror estimator, which contains “local” information on the accuracy of the classification

rule, as opposed to the “global” information contained in the unconditional expected

classification error. These are called, respectively, conditional bounds and regression

of the actual error given the observed error estimated error, and they can be readily

computed given the knowledge of the joint distribution of actual and estimated error,

as detailed in the sequel.

Given the knowledge of the joint probability in (2.1), one can write the condi-

tional distribution of the actual error given the estimated error as

P (ε < z ∣ ε̂ = k

n0 + n1

) = P (ε̂ = k

n0 + n1

, ε < z)/P (ε̂ = k

n0 + n1

) , k = 0,1, . . . , n0+n1

(2.41)

provided that the denominator P (ε̂ = k
n0+n1

) is nonzero (this probability is determined

by Theorems 2, 4, or 6).
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Fig. 7. Joint probability in (2.1) for the resubstitution (top panels) and leave-one-out

(bottom panels) in the multivariate case: n0 = n1 = 15, m0 = m1 = −d1p×1,

d = 0.75, r = 0.1, p = 2. Bayes error = 0.1559. Legend key: proposed approxi-

mation (○), MC approximation (◇).
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To find an exact 100(1 − α)% upper bound on the actual error given the resub-

stitution estimate, we would like to find zα such that

P (ε < zα ∣ ε̂ = k

n0 + n1

) = 1 − α (2.42)

The value zα can be found by means of a simple one-dimensional search.

As for the regression, from the conditional distribution in (2.41), one can obtain

the conditional expectation of the actual error given the error estimator, via

E (ε ∣ ε̂r =
k

n0 + n1

) = ∫
1

0
(1 − P (ε < z ∣ ε̂r =

k

n0 + n1

))dz (2.43)

by using the fact that E[X]=∫ P (X > z)dz for any nonnegative random variable X.

Figure 8 illustrates the exact 95% upper conditional bound and regression in

the univariate case, using the expressions for the joint probability in (2.1) obtained

previously, whereas Figure 9 provides similar examples in the bivariate case (p =

2), using the proposed approximation for the joint probability in (2.1) developed

previously. The total number of sample points is kept to 20 to facilitate computation.

In the multivariate case, we have assumed mean vectors of opposite signs µ0 = m0 =

d1p×1 and µ1 =m1 = −d1p×1, and covariance matrix Σ with variance 1 on the diagonal

and correlation r for the off-diagonal elements, where ∣r∣ ≤ 1. In all examples, the

conditional bounds and regression are calculated for only those values of the error

estimate such that P (ε̂ = k
n0+n1

) > 0.001. In particular, note that the latter probability

is displayed in the plots to show the concentration of mass of the observed error

estimates. Values of the error estimate of very small probability (< 0.001) are difficult

to handle owing to poor accuracy of the required Gaussian probability computations

and are therefore avoided here (these cases are very rare and thus of little practical

importance in any case); nonetheless, such cases could be obtained at the expense of

more computational work.
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Fig. 8. The 95% upper conditional bounds and regression of actual error given the

resubstitution and leave-one-out error estimates in the univariate case. In all

cases, m1 = 0. The horizontal solid line displays the Bayes error. The marginal

probability mass function for the error estimators in each case is also plotted

for reference. Legend key: 95% upper conditional bound (△), regression (∇),

probability mass function (○).
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Fig. 9. The 95% upper conditional bounds and regression of actual error given

the resubstitution and leave-one-out error estimates in the bivariate case:

m0 = −m1 = d1p, r = 0.1, p = 2. The marginal probability mass function

for the error estimators in each case is also plotted for reference. The hori-

zontal solid line displays the Bayes error. Legend key: 95% upper conditional

bound (△), regression (∇), probability mass function (○).
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Figure 10 presents univariate and bivariate examples derived from gene-expression

data from a recently-published breast cancer study [118]. Discrimination is between

good (class 0) vs. bad (class 1) prognosis. A subset of 30 samples was randomly

selected among the total of 295 included in the aforementioned study, with n0 = 12

and n1 = 18 to reflect the proportion between classes observed in the full data set, and

corresponding normalized gene expression measurements were extracted for the genes

“LOC51203” and “FGF18.” Those are the top genes according to both the t-test and

fold change. Univariate and bivariate Shapiro-Wilk tests (using the R statistical soft-

ware) applied on the full data set, for more sensitivity, did not reject Gaussianity

of these genes, either individually or as a pair, over either of the classes at a 95%

significance level. Sample means and variances (the pooled covariance matrix was

used in the bivariate case) were used as estimates of the unknown true means and

variances.

These results confirm the lack of regression for small-sample error estimation

observed in the simulation study in [105], as one can see in the figures that both the

confidence bounds and the nonlinear regressions are virtually horizontal, except for a

slight bit of upward movement at the extreme right, where there is very little error-

estimator mass and therefore negligible practical significance. This means that the

error estimate provides essentially no information regarding the error as in practically

useless, both for predicting the actual error or bounding it with confidence in the

small-sample setting for this Gaussian model. As might be expected, the situation

is worse with two features as opposed to one, but there is virtually no regression in

either case. This is a very small sample, a total of 20 sample points, but the number

of features is also very small. Consider the much larger numbers of features often used

in practice and consider the much more complex classification rules being employed.

These results provide analytic support for the synthetic results obtained in [105].
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Fig. 10. The 95% upper conditional bounds and regression of actual error given the

resubstitution and leave-one-out error estimates in the univariate case (top

row) and bivariate case (bottom row), for distributional parameters estimated

from gene-expression data (see text). The marginal probability mass function

for the error estimators in each case is also plotted for reference. The observed

error estimates in each case are printed and indicated by a vertical bar, and the

expected error estimates based on the estimated distributions are also printed.

Legend key: 95% upper conditional bound (△), regression (∇), probability

mass function (○).
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D. Conclusion

This chapter contributes to the analytical study of classification error estimation for

LDA under a Gaussian model, a subject with a long history in Pattern Recognition

and Statistics. It presents, for what is believed to be the first time, the analytical

formulation for the joint sampling distribution of the actual and estimated errors of

a classification rule. Here, we considered the resubstitution and leave-one-out error

estimators; we remark however that the same methodology could in principle be

employed to derive similar results for other error estimators. We provide here exact

results in the univariate case, and suggest a simple method to obtain an accurate

approximation in the multivariate case. We also showed how these results can be

applied in the computation of condition bounds and the regression of the actual error,

given the observed error estimate. In contrast to asymptotic results, the analysis

presented here is applicable to finite training data. In particular, it applies in the

small-sample settings commonly found in genomics and proteomics applications.

In practice the unknown parameters of the Gaussian distributions, which figure in

the expressions, are not known and need to be estimated. Using the usual maximum-

likelihood estimates for such parameters and plugging them into the theoretical exact

expressions provides a sample-based approximation to the joint distribution, and also

sample-based methods to estimate upper conditional bounds on the actual error; this

approach was employed in the numerical example based on gene-expression data of

Section C. As the ML estimators are consistent and all expressions are smooth,

these sample-based approximations will converge to the actual values as sample size

increases without bound.
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CHAPTER III

ANALYTIC STUDY OF PERFORMANCE OF ERROR ESTIMATORS FOR

LINEAR DISCRIMINANT ANALYSIS THROUGH RMS – UNIVARIATE MODEL

In this chapter we derive exact analytical expressions for the bias, variance, and

RMS for the resubstitution and leave-one-out error estimators in the case of linear

discriminant analysis in the univariate Gaussian model. Sample sizes for the two

classes need not be the same. The mean resubstitution and leave-one-out errors

are represented by probabilities involving bivariate Gaussian distributions. Their

second moments and cross-moments with the actual error are represented by 4-variate

Gaussian distributions. From these, the bias, variance, and RMS for resubstitution

and leave-one-out as estimators of the actual error can be computed. At the end, one

practical use of these results on the gene-expression data is discussed.

A. Criteria of Performance of Error Estimation

The widely-adopted metrics for performance of an error estimator ε̂ of the actual

classifier error ε are the:

● Bias:

Bias[ε̂] = E[ε̂] −E[ε] (3.1)

● Deviation Variance

Vard[ε̂] = Var(ε̂ − ε) = Var(ε) +Var(ε̂) − 2Cov(ε, ε̂) (3.2)

● RMS:

RMS[ε̂] =
√
E[(ε − ε̂)2] =

√
E[ε2] +E[ε̂2] − 2E[εε̂] (3.3)
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The bias and the deviation variance measure respectively the average centrality

and dispersion of the error estimator in relation to the actual error. The ideal estima-

tor is unbiased and has minimum variance. However, the usual bias-variance dilemma

applies; for example, the resubstitution error estimator generally has small variance

but is often optimistically biased, whereas the the leave-one-out error estimator is

nearly unbiased, but generally has large variance. As can be easily checked, the RMS

combines these two complementary criteria into a single metric:

RMS[ε̂] =
√

Bias[ε̂]2 +Vard[ε̂] (3.4)

In fact, this implies that any one of the three criteria can be obtained by knowledge

of the other two. In particular, the variance of deviation is given by:

Vard[ε̂] = RMS[ε̂]2 −Bias[ε̂]2 (3.5)

From the above discussion, it becomes clear that the bias, variance, and RMS

can be obtained with the knowledge of the first moments E[ε] and E[ε̂], the second

moments E[ε2] and E[ε̂2], and the cross moment E[εε̂]. In this section, we write down

these moments in terms of probabilities involving the discriminant W (X̄0, X̄1,X).

Note that all the formulas in this section are not exclusive to the Gaussian case, but

apply in general. We will write all equations for the resubstitution estimator; the

corresponding equations for the leave-one-out estimator can be obtained by simply

replacing W (X̄0, X̄1,Xi) by W (i)(X̄0, X̄1,Xi) throughout.

1. First Moment of the Actual Error

We restate (3.6) here:

E[ε] = α0P (W (X̄0, X̄1,X) ≤ 0 ∣X ∈ Π0) + α1P (W (X̄0, X̄1,X) > 0 ∣X ∈ Π1)
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2. Second Moment of the Actual Error

Here, we have restated the theorem proved in [24] to find the second moments of true

error. We will employ this theorem it in the context of LDA. From (1.4), we have

that:

E[ε2] = E [(α0ε
0 + α1ε

1)2] = α2
0E[ε0ε0] + 2α0α1E[ε0ε1] + α2

1E[ε1ε1] (3.6)

It follows that

E[ε0ε0]=E[P (W (X̄0, X̄1,X)≤ 0∣X ∈Π0, X̄0, X̄1)P (W (X̄0, X̄1,X
′)≤ 0∣X ′ ∈Π0, X̄0, X̄1)]

=E[P (W (X̄0, X̄1,X) ≤ 0,W (X̄0, X̄1,X
′) ≤ 0∣X,X ′ ∈Π0, X̄0, X̄1)]

=P (W (X̄0, X̄1,X) ≤ 0,W (X̄0, X̄1,X
′) ≤ 0∣X,X ′ ∈Π0)

(3.7)

Similar expressions obtain for the other terms in (3.6), namely E[ε0ε1] and E[ε1ε1].

In all,

E[ε2] = α2
0P (W (X̄0, X̄1,X) ≤ 0,W (X̄0, X̄1,X

′) ≤ 0 ∣X,X ′ ∈ Π0)

+ 2α0α1P (W (X̄0, X̄1,X) ≤ 0,W (X̄0, X̄1,X
′) > 0 ∣X ∈ Π0,X

′ ∈ Π1)

+ α2
1P (W (X̄0, X̄1,X) > 0,W (X̄0, X̄1,X

′) > 0 ∣X,X ′ ∈ Π1)

(3.8)

3. First Moment of the Estimated Error

From (1.8), we have that:

E[ε̂ r]= α̂0E[ε̂ r0 ] + α̂1E[ε̂ r1 ]= α̂0P (W (X̄0, X̄1,X1) ≤ 0) + α̂1P (W (X̄0, X̄1,Xn0+1) > 0)

(3.9)

The corresponding equation for leave-one-out is obtained by replacing W (X̄0, X̄1,X1)

and W (X̄0, X̄1,Xn0+1) by W (1)(X̄0, X̄1,X1) and W (n0+1)(X̄0, X̄1,Xn0+1), respectively.

Note that W (1)(X̄0, X̄1,X1) is distributed as W ′(X̄ ′
0, X̄1,X) conditioned on X ∈ Π0,
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where W ′ and X̄ ′ are the usual W and X̄0 in the case where there are n0 − 1

samples in class 0 and n1 samples in class 1. An analogous comment applies to

W (n0+1)(X̄0, X̄1,Xn0+1). By virtue of (3.6), this leads to the well-known fact that

E[ε̂l] = E[εn−1], provided that α̂i = αi, for i = 0,1.

4. Second Moment of the Estimated Error

From (1.8), we have that:

E[(ε̂ r)2] = E [(α̂0ε̂
r
0 + α̂1ε̂

r
1 )2]

= α̂2
0E[(ε̂ r0 )2] + 2α̂0α̂1E[ε̂ r0 ε̂ r1 ] + α̂2

1E[(ε̂ r1 )2]

= α̂2
0E [ 1

n2
0

n0

∑
i=1

n0

∑
j=1

I{W (X̄0,X̄1,Xi)≤0,W (X̄0,X̄1,Xj)≤0}]

+ 2α̂0α̂1E [ 1

n0n1

n0

∑
i=1

n0+n1

∑
j=n0+1

I{W (X̄0,X̄1,Xi)≤0,W (X̄0,X̄1,Xj)>0}]

+ α̂2
1E [ 1

n2
1

n0+n1

∑
i=n0+1

n0+n1

∑
j=n0+1

I{W (X̄0,X̄1,Xi)>0,W (X̄0,X̄1,Xj)>0}]

= α̂2
0

n0

P (W (X̄0, X̄1,X1) ≤ 0) + α̂
2
1

n1

P (W (X̄0, X̄1,Xn0+1) > 0)

+ α̂2
0

n0 − 1

n0

P (W (X̄0, X̄1,X1) ≤ 0,W (X̄0, X̄1,X2) ≤ 0)

+ α̂2
1

n1 − 1

n1

P (W (X̄0, X̄1,Xn0+1) > 0,W (X̄0, X̄1,Xn0+2) > 0)

+ 2α̂0α̂1P (W (X̄0, X̄1,X1) ≤ 0,W (X̄0, X̄1,Xn0+1) > 0)

(3.10)

5. Cross-moment of Actual and Estimated Errors

From (1.4) and (1.8), we have that:

E[εε̂ r] = E [(α0ε
0 + α1ε

1)(α̂0ε̂
r
0 + α̂1ε̂

r
1 )]

= α0α̂0E[ε0ε̂ r0 ] + α0α̂1E[ε0ε̂ r1 ] + α1α̂0E[ε1ε̂ r0 ] + α1α̂1E[ε1ε̂ r1 ]
(3.11)
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It follows from (1.9) that

E[ε0ε̂ r0 ] = E [P (W (X̄0, X̄1,X) ≤ 0 ∣X ∈ Π0, X̄0, X̄1)
1

n0

n0

∑
i=1

I{W (X̄0,X̄1,Xi)≤0}]

= 1

n0

n0

∑
i=1

E [P (W (X̄0, X̄1,X) ≤ 0 ∣X ∈ Π0, X̄0, X̄1)I{W (X̄0,X̄1,Xi)≤0}]

= 1

n0

n0

∑
i=1

E [P (W (X̄0, X̄1,X) ≤ 0,W (X̄0, X̄1,Xi) ≤ 0 ∣X ∈ Π0,Xi, X̄0, X̄1))]

= P (W (X̄0, X̄1,X) ≤ 0,W (X̄0, X̄1,X1) ≤ 0 ∣X ∈ Π0)
(3.12)

Similar expressions obtain for the other terms in (3.11), namely E[ε0ε̂ r1 ], E[ε1ε̂ r0 ],

and E[ε1ε̂ r1 ]. In all,

E[εε̂ r] = α0α̂0P (W (X̄0, X̄1,X) ≤ 0,W (X̄0, X̄1,X1) ≤ 0 ∣X ∈ Π0)

+ α0α̂1P (W (X̄0, X̄1,X) ≤ 0,W (X̄0, X̄1,Xn0+1) > 0 ∣X ∈ Π0)

+ α1α̂0P (W (X̄0, X̄1,X) > 0,W (X̄0, X̄1,X1) ≤ 0 ∣X ∈ Π1)

+ α1α̂1P (W (X̄0, X̄1,X) > 0,W (X̄0, X̄1,Xn0+1) > 0 ∣X ∈ Π1)

(3.13)

B. Actual Classification Error

Starting from the expressions obtained in the previous section, in this section we

derive the exact expressions for the bias, variance, and the RMS of the resubstitution

and leave-one-out for LDA in the univariate Gaussian model. The basic method used

in these proofs consists in writing out the W statistics in an appropriate matrix form.

Notice that all results are derived for general variances σ2
0 and σ2

1 (equal variances

are not assumed).

The first and second moments of the actual classification error can be written

exactly in the univariate Gaussian case according to the following two theorems. We

remark that a special case of Theorem 9 is shown in [1], for the equal-variance case

σ0 = σ1.
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Theorem 9. Let Xi ∼ N(µ0, σ2) be i.i.d. observations for i = 1, . . . , n0, and Xi ∼

N(µ1, σ2) be i.i.d. observations for i = n0 + 1, . . . , n0 + n1 used to derive the classifier

in (2.3). Then we have:

E[ε] = α0 [P (ZI < 0) + P (ZI ≥ 0)] + α1 [P (ZII < 0) + P (ZII ≥ 0)] (3.14)

where ZI and ZII are Gaussian bivariate vectors with means and covariance matrices

as follows:

µZI =
⎡⎢⎢⎢⎢⎢⎢⎣

µ
2

−µ

⎤⎥⎥⎥⎥⎥⎥⎦
, ΣZI =

⎛
⎜⎜⎜⎜⎜⎜
⎝

(1 + 1
4n0

)σ2
0 +

σ2
1

4n1

σ2
0

2n0
− σ2

1

2n1

.
σ2
0

n0
+ σ2

1

n1

⎞
⎟⎟⎟⎟⎟⎟
⎠

µZII =
⎡⎢⎢⎢⎢⎢⎢⎣

−µ
2

µ

⎤⎥⎥⎥⎥⎥⎥⎦
, ΣZII =

⎛
⎜⎜
⎝

σ2
0

4n0
+ (1 + 1

4n1
)σ2

1 − σ2
0

2n0
+ σ2

1

2n1

.
σ2
0

n0
+ σ2

1

n1

⎞
⎟⎟
⎠

(3.15)

where µ = µ0 − µ1.

Proof. See Appendix.

Theorem 10. Let Xi ∼ N(µ0, σ2) be i.i.d. observations for i = 1, . . . , n0, and Xi ∼

N(µ1, σ2) be i.i.d. observations for i = n0 + 1, . . . , n0 + n1 used to derive the classifier

in (2.3). Then we have:

E[ε2] = α0α0 [P (ZI
0 < 0) + P (ZI

0 ≥ 0) + P (ZI
1 < 0) + P (ZI

1 ≥ 0)]

+ 2α0α1 [P (ZII
0 < 0) + P (ZII

0 ≥ 0) + P (ZII
1 < 0) + P (ZII

1 ≥ 0)]

+ α1α1 [P (ZIII
0 < 0) + P (ZIII

0 ≥ 0) + P (ZIII
1 < 0) + P (ZIII

1 ≥ 0)]

(3.16)

where Zj
i , for i = 0,1 and j = I, . . . , III, are 4-variate Gaussian random vectors with
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means and covariance matrices as follows:

µZI
0
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ
2

−µ
µ
2

−µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ΣZI
0
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 + 1
4n0

)σ2
0 +

σ2
1

4n1

σ2
0

2n0
− σ2

1

2n1

σ2
0

4n0
+ σ2

1

4n1

σ2
0

2n0
− σ2

1

2n1

.
σ2
0

n0
+ σ2

1

n1

σ2
0

2n0
− σ2

1

2n1

σ2
0

n0
+ σ2

1

n1

. . (1 + 1
4n0

)σ2
0 +

σ2
1

4n1

σ2
0

2n0
− σ2

1

2n1

. . .
σ2
0

n0
+ σ2

1

n1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

µZI
1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ
2

−µ

−µ2
µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ΣZI
1
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 + 1
4n0

)σ2
0 +

σ2
1

4n1

σ2
0

2n0
− σ2

1

2n1
− σ2

0

4n0
− σ2

1

4n1
− σ2

0

2n0
+ σ2

1

2n1

.
σ2
0

n0
+ σ2

1

n1
− σ2

0

2n0
+ σ2

1

2n1
−σ

2
0

n0
− σ2

1

n1

. . (1 + 1
4n0

)σ2
0 +

σ2
1

4n1

σ2
0

2n0
− σ2

1

2n1

. . .
σ2
0

n0
+ σ2

1

n1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

µZII
0
= µZI

0
, ΣZII

0
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 + 1
4n0

)σ2
0 +

σ2
1

4n1

σ2
0

2n0
− σ2

1

2n1
− σ2

0

4n0
− σ2

1

4n1

σ2
0

2n0
− σ2

1

2n1

.
σ2
0

n0
+ σ2

1

n1
− σ2

0

2n0
+ σ2

1

2n1

σ2
0

n0
+ σ2

1

n1

. .
σ2
0

4n0
+ (1 + 1

4n1
)σ2

1 − σ2
0

2n0
+ σ2

1

2n1

. . .
σ2
0

n0
+ σ2

1

n1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

µZII
1
= µZI

1
, ΣZII

1
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 + 1
4n0

)σ2
0 +

σ2
1

4n1

σ2
0

2n0
− σ2

1

2n1

σ2
0

4n0
+ σ2

1

4n1
− σ2

0

2n0
+ σ2

1

2n1

.
σ2
0

n0
+ σ2

1

n1

σ2
0

2n0
− σ2

1

2n1
−σ

2
0

n0
− σ2

1

n1

. .
σ2
0

4n0
+ (1 + 1

4n1
)σ2

1 − σ2
0

2n0
+ σ2

1

2n1

. . .
σ2
0

n0
+ σ2

1

n1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.17)

where µ = µ0 −µ1, and µZIII
i

and ΣZIII
i

are obtained from µZI
i

and ΣZI
i
, respectively, by

exchanging n0 and n1, and σ0 and σ1, for i = 0,1.

Proof. See Appendix.
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C. Resubstitution Error Estimator

The first and second moments of the resubstitution error estimator and its cross-

moment with the actual classification error can be written exactly in the univariate

Gaussian case according to the following three theorems, respectively.

Theorem 11. Let Xi ∼ N(µ0, σ2) be i.i.d. observations for i = 1, . . . , n0, and Xi ∼

N(µ1, σ2) be i.i.d. observations for i = n0 + 1, . . . , n0 + n1 used to derive the classifier

in (2.3). Then we have:

E[εr] = α̂0 [P (ZI < 0) + P (ZI ≥ 0)] + α̂1 [P (ZII < 0) + P (ZII ≥ 0)] (3.18)

where ZI and ZII are Gaussian bivariate vectors with means and covariance matrices

as follows:

µZI =
⎡⎢⎢⎢⎢⎢⎢⎣

µ
2

−µ

⎤⎥⎥⎥⎥⎥⎥⎦
, ΣZI =

⎛
⎜⎜
⎝

(1 − 3
4n0

)σ2
0 +

σ2
1

4n1
− σ2

0

2n0
− σ2

1

2n1

.
σ2
0

n0
+ σ2

1

n1

⎞
⎟⎟
⎠

µZII =
⎡⎢⎢⎢⎢⎢⎢⎣

−µ
2

µ

⎤⎥⎥⎥⎥⎥⎥⎦
, ΣZII =

⎛
⎜⎜
⎝

σ2
0

4n0
+ (1 − 3

4n1
)σ2

1 − σ2
0

2n0
− σ2

1

2n1

.
σ2
0

n0
+ σ2

1

n1

⎞
⎟⎟
⎠

(3.19)

where µ = µ0 − µ1.

Proof. Similar to Theorem 9.

Theorem 12. Let Xi ∼ N(µ0, σ2) be i.i.d. observations for i = 1, . . . , n0, and Xi ∼

N(µ1, σ2) be i.i.d. observations for i = n0 + 1, . . . , n0 + n1 used to derive the classifier

in (2.3). Then we have:

E[(ε̂ r)2] = α̂2
0

n0

[P (ZI < 0) + P (ZI ≥ 0)] + α̂2
1

n1

[P (ZII < 0) + P (ZII ≥ 0)]

+ α̂2
0

n0 − 1

n0

[P (ZIII
0 < 0) + P (ZIII

0 ≥ 0) + P (ZIII
1 < 0) + P (ZIII

1 ≥ 0)]

+ α̂2
1

n1 − 1

n1

[P (ZIV
0 < 0) + P (ZIV

0 ≥ 0) + P (ZIV
1 < 0) + P (ZIV

1 ≥ 0)]

+ 2α̂0α̂1 [P (ZV
0 < 0) + P (ZV

0 ≥ 0) + P (ZV
1 < 0) + P (ZV

1 ≥ 0)]

(3.20)
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where ZI and ZII are defined in Theorem 11, and Zj
i , for i = 0,1 and j = III, IV,V, are

4-variate Gaussian random vectors with means and covariances matrices as follows:
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(3.21)

where µ = µ0 − µ1.

Proof. Similar to Theorem 10.

Theorem 13. Let Xi ∼ N(µ0, σ2) be i.i.d. observations for i = 1, . . . , n0, and Xi ∼

N(µ1, σ2) be i.i.d. observations for i = n0 + 1, . . . , n0 + n1 used to derive the classifier

in (2.3). Then we have:

E[εε̂ r] = α0α̂0 [P (ZI
0 < 0) + P (ZI

0 ≥ 0) + P (ZI
1 < 0) + P (ZI

1 ≥ 0)]

+ α0α̂1 [P (ZII
0 < 0) + P (ZII

0 ≥ 0) + P (ZII
1 < 0) + P (ZII

1 ≥ 0)]

+ α1α̂0 [P (ZIII
0 < 0) + P (ZIII

0 ≥ 0) + P (ZIII
1 < 0) + P (ZIII

1 ≥ 0)]

+ α1α̂1 [P (ZIV
0 < 0) + P (ZIV

0 ≥ 0) + P (ZIV
1 < 0) + P (ZIV

1 ≥ 0)]

(3.22)

where Zj
i , for i = 0,1 and j = I, . . . , IV, are 4-variate Gaussian random vectors with

means and covariances as follows:
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where µ = µ0 − µ1.

Proof. See Appendix.

D. Leave-one-out Error Estimator

By virtue of the relation E[ε̂li] = E[εi,ni−1], for i = 0,1, the first moment of the leave-

one-out error estimator can be obtained by using Theorem 9, while replacing αi by

α̂i and ni by ni − 1, for i = 0,1. As for the second moment of the leave-one-out

error estimator and its cross-moment with the actual classification error, they can

be written exactly in the univariate Gaussian case according to the following two

theorems, respectively.

Theorem 14. Let Xi ∼ N(µ0, σ2) be i.i.d. observations for i = 1, . . . , n0, and Xi ∼

N(µ1, σ2) be i.i.d. observations for i = n0 + 1, . . . , n0 + n1 used to derive the classifier

in (2.3). Then we have:

E[(ε̂l)2] = α̂2
0

n0

[P (ZI < 0) + P (ZI ≥ 0)] + α̂2
1

n1

[P (ZII < 0) + P (ZII ≥ 0)]

+ α̂2
0

n0 − 1

n0

[P (ZIII
0 < 0) + P (ZIII

0 ≥ 0) + P (ZIII
1 < 0) + P (ZIII

1 ≥ 0)]

+ α̂2
1

n1 − 1

n1

[P (ZIV
0 < 0) + P (ZIV

0 ≥ 0) + P (ZIV
1 < 0) + P (ZIV

1 ≥ 0)]

+ 2α̂0α̂1 [P (ZV
0 < 0) + P (ZV

0 ≥ 0) + P (ZV
1 < 0) + P (ZV

1 ≥ 0)]

(3.24)

where ZI and ZII are defined in Theorem 9, but with ni replaced by ni −1, for i = 0,1,

and Zj
i , for i = 0,1 and j = III, IV,V, are 4-variate Gaussian random vectors with

means and covariance matrices as follows:
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(3.25)

where µ = µ0 − µ1. ◇

Proof. Similar to Theorem 10.

Theorem 15. Let Xi ∼ N(µ0, σ2) be i.i.d. observations for i = 1, . . . , n0, and Xi ∼

N(µ1, σ2) be i.i.d. observations for i = n0 + 1, . . . , n0 + n1 used to derive the classifier

in (2.3). Then we have:

E[εε̂l] = α0α̂0 [P (ZI
0 < 0) + P (ZI

0 ≥ 0) + P (ZI
1 < 0) + P (ZI

1 ≥ 0)]

+ α0α̂1 [P (ZII
0 < 0) + P (ZII

0 ≥ 0) + P (ZII
1 < 0) + P (ZII

1 ≥ 0)]

+ α1α̂0 [P (ZIII
0 < 0) + P (ZIII

0 ≥ 0) + P (ZIII
1 < 0) + P (ZIII

1 ≥ 0)]

+ α1α̂1 [P (ZIV
0 < 0) + P (ZIV

0 ≥ 0) + P (ZIV
1 < 0) + P (ZIV

1 ≥ 0)]

(3.26)

where Zj
i , for i = 0,1 and j = I, . . . , IV, are 4-variate Gaussian random vectors with

means and covariance matrices as follows:
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(3.27)

where µ = µ0 − µ1.

Proof. Similar to Theorem 13.

Figure 11 provides graphs of the basic performance measures for resubstitution

and leave-one-out as a function of sample size in the balanced case, n0 = n1 = n.

To generate the results, two Gaussian with different means µ1 = −µ0 = 1 and unequal

variances σ2
0 = 1, σ2

1 = 4 have been employed. The optimal linear classifier error in this

example is 0.2335. The different parts of the figure show bias, devaiation variance,

correlation coefficient, and RMS.

E. RMS Bounds

When one designs a classifier and reports an error estimate, there is no way to tell

how accurate the estimate is because we do not know the true error of the classifier.

Knowledge of estimation accuracy rests with the accuracy of the error estimation rule,

which is most commonly judged by the RMS. When reporting an estimate, it would

be beneficial to state some bound on the RMS. In addition, as in any experimental

situation, it would be useful to determine ahead of time the the minimum sample

size necessary to obtain a desired degree of estimation accuracy. In this vein, some

recommendations on sample size requirements have been provided in the literature

[49, 50]. In particular, if one has a bound on the RMS in terms of sample size,

then the required sample size for a desired RMS can be obtained. There exist some
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Fig. 11. Performance measures for resubstitution and leave-one-out as a function of

sample of sample size for LDA in the univariate model: (a) mean errors, (b)

correlation coefficient with actual error, (c) deviation variance, (d) RMS.

Fig. 12. RMS versus Bayes error in a Gaussian model for (a) leave-one-out, (b) resub-

stitution.
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distribution-free bounds for some classification rules [24, 119, 120]. These bounds tend

to be very loose and therefore of limited practical value. For instance, for leave-one-

out and the k-nearest-neighbor (kNN) classification rule with random tie-breaking,

there exists the following distribution-free bound [24]:

RMS[ε̂l] ≤

¿
ÁÁÁÀ 1

n0 + n1

⎛
⎝

1 + 24

√
k

2π

⎞
⎠

(3.28)

If k = 3 and n0 + n1 = 100, then the bound is approximately 0.419, which means

knowledge of the true error is highly uncertain. The problem here is not mainly

kNN; rather, it is the distribution-free nature of the bound. Another example is the

following resubstitution bound for the histogram rule [24]:

RMS[ε̂r] ≤
√

6k

n0 + n1

(3.29)

where k is the maximum number of fixed partitions of the feature space. Taking

k = 10 and k = 20 with n0 +n1 = 100, then the bounds are 0.77 and 1.09, respectively,

both being of no practical value.

Now consider leave-one-out, resubstitution and LDA in the model class we have

been considering. Consider two equal univariate Gaussian distributions with means

µ1 = −µ0 = 1 and σ0 = σ1 = 1. Using the RMS expressions obtained before, the

RMS versus Bayes error curves are shown in Fig. 12 for different sample sizes and

balanced design, n0 = n1 = n. Letting εbay denote the Bayes error, we see that RMS

is an increasing function of εbay. Letting κε̂(n, τ) = maxεbay≤τ RMS[ε̂] for n0 = n1 = n

and ε̂ = ε̂r, ε̂l, we have the bounds RMS[ε̂l] ≤ κε̂l(20,0.5) = 0.145 and RMS[ε̂r] ≤

κε̂r(20,0.5) = 0.080 for n = 20, and RMS[ε̂l] ≤ κε̂l(30,0.5) = 0.127 and RMS[ε̂r] ≤

κε̂r(30,0.5) = 0.065 for n = 30. These are far tighter than the distribution-free bounds

in (3.28); indeed, no distribution-free bound is known for LDA.
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From a practical perspective, given a desired RMS, the required sample size can

be determined. If one desires that the RMS be bounded by η, then one need only

find the minimum value of n so that κε̂(n,0.5) ≤ η where ε̂ = ε̂r, ε̂l. Table I shows the

required sample size calculated using this scheme for a balanced design (n0 = n1 = n).

Note that the required sample size in Table I does not depend on the actual value

of the common variance, a peculiar result of the equal-variance model class being

considered. In the univariate case, the number of samples needed to achieve a given

κε̂l(n,0.5) is much higher than κε̂r(n,0.5), which is evident in Fig. 12, owing to the

abrupt increase of RMS[ε̂l] for large εbay. While RMS[ε̂l] ≈ RMS[ε̂r] when εbay ≤ 0.35,

since we do not know the true error, the bound for RMS[ε̂l] must take into account

the possibility εbay > 0.35. It is instructive to compare the sample sizes determined

from Table I with those determined from (3.28) and (3.29) to achieve a given RMS,

say 0.1. From (3.28), in the case of kNN with k = 3 and leave-one-out, we need

n0 = n1 = 875, whereas n0 = n1 = 67 from Table I in the univariate LDA case. From

(3.29) for resubstitution and in case of the histogram rule with k = 10 and k = 20, we

need 3000 and 6000 sample points in each class, respectively, whereas from Table I

we need 13 sample points in each class for univariate LDA and resubstitution.

Table I. Minimum sample size, n, (n0 = n1 = n) for desired κ(n,0.5) in univariate case.

κ(n,0.5) resub loo
0.050 51 793
0.060 36 403
0.070 26 230
0.080 20 143
0.090 16 95
0.100 13 67



68

1. Implementation for Gene-expression Classification

In this section, we demonstrate the practical use of RMS bounds in the case of

classification using gene-expression data from a breast-cancer study that analyzed

295 gene-expression microarrays containing a total of 25760 transcripts on each [118].

Discrimination is between good versus bad prognosis. Here we design of a classifier

based on a single gene. Using resubstitution, from Table I, we need 20 sample points

for each class to have κε̂r(n,0.5) = 0.08. This bound does not apply to leave-one-out;

indeed, κε̂l(20,0.5) > 0.13. However, as explained previously, if it happens that εbay <

0.35 then RMS[ε̂l] ≈ RMS[ε̂r], so that κε̂l(20,0.35) ≈ κε̂r(20,0.35) < κε̂r(20,0.5) = 0.08

also. This example will elucidate this situation because we will have an accurate

estimate of the true error. We consider the total of 295 gene-expression profiles for

70 genes from the 295 microarrays as the population and draw a random sample of

size 40 with n0 = n1 = 20. Using the 40 sample points selected, we applied the t-test

to find the differentially expressed genes among the 70 genes. Results of the t-test on

the sample showed 35 genes to be differentially expressed among the 70 genes. Then

the Shapiro-Wilk test (using the R statistical software) was applied on these 35 genes

to test the normality of each gene at significance level 0.95. Note that to do so, only

the 40 points taken randomly from the whole population were considered, so as to

reflect the situation that no additional data are available in practice. The test did not

reject the Gaussianity assumption of 26 genes out of the 35 genes previously selected

by t-test. Then F-test for equality of variances of both classes was performed on these

26 selected genes to test the equality of variances of each gene across the classes. The

result of F-test reduced the number of genes to 13. In sum, these 13 genes are those

that show significant different expressions between two classes (by t-test), are close

to normal (by Shapiro-Wilk test), and have close to equal variances in the two classes
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(by F-test). Since we take into account the validity of the classifier, through RMS, as

well as its goodness, through estimated error, we call this whole procedure of selecting

the genes validity-goodness feature selection. The genes selected using this scheme

are shown in Table II. The last column of this table shows the hold out estimate using

190 hold-out points selected from the 255 remaining sample points to reflect the equal

prior probability of the classes, as was done for training. With 190 hold-out points,

one can expect the hold-out estimate to be very accurate. Comparing the values of

hold-out in these examples with those of the estimators themselves, we conclude that

both resubstitution and leave-one-out have reasonably estimated the true error. We

would certainly have expected this owing to the RMS bound on resubstitution and,

as we see the true errors are less than 0.35, so that the Bayes errors must also be less

than 0.35, in hindsight we expect this from leave-one-out. In practice, of course, we

do not have a population based evaluation of the true error, so that a conservative

approach requires taking κε̂l(n,0.5) as the bound.

Table II. Genes selected using the validity-goodness model selection criterion.

genes resubs error loo error hold-out
Contig46218 RC 0.225 0.225 0.260

NM 016359 0.200 0.200 0.211
Contig28552 RC 0.300 0.300 0.250
Contig32125 RC 0.350 0.375 0.358

AB037863 0.275 0.275 0.331
NM 020974 0.275 0.275 0.255

Contig55377 RC 0.225 0.225 0.233
Contig25991 0.325 0.325 0.315
NM 006101 0.325 0.325 0.282
NM 003239 0.325 0.325 0.293
NM 01644 0.325 0.325 0.298
NM 001809 0.225 0.250 0.173
NM 004702 0.225 0.225 0.239
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F. Conclusion

Because the error of a classifier characterizes its predictive capacity, which represents

the scientific content of the classifier, the salient epistemological problem in pattern

recognition is error-estimator performance. When one has access to large samples,

the issue is not so severe because the data can be split into training and test data, and

moreover, training-data error estimators tend to have good large-sample performance,

as demonstrated in this chapter for resubstitution and leave-one-out. Current high-

throughput technologies often produce high-dimensional data with a small number of

replicates. Hence, the efficacy of classifiers derived from such data sets requires direct

performance analysis. In this chapter we have provided analytic representation for

the main performance criteria: bias, variance, and RMS for resubstitution and leave-

one-out for LDA in a univariate Gaussian model. More such studies will be necessary

if we are to gain critical understanding of classifier performance in the context of small

samples. The second part of the study will address the corresponding multivariate

model.
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CHAPTER IV

ANALYTIC STUDY OF PERFORMANCE OF ERROR ESTIMATORS FOR

LINEAR DISCRIMINANT ANALYSIS THROUGH RMS – MULTIVARIATE

MODEL

In this chapter, we derive double asymptotic (in sample size and dimension) ana-

lytical expressions for the first moments, second moments, and cross-moments with

the actual error for the resubstitution and leave-one-out error estimators in the case

of linear discriminant analysis (LDA) in the multivariate Gaussian model under the

assumption of a common known covariance matrix. Sample sizes for the two classes

need not be the same. Such asymptotic results generally provide good small sample

approximations and this is demonstrated in the present situation via numerical com-

parisons. From the asymptotic moment representations, we directly obtain double

asymptotic expressions for the bias, variance, and RMS of the error estimators.

A. Double Asymptotic Approximation

1. Previous Work

In [121], Raudys proposed an approximation to the expected actual classification

error:

E[ε0] = P (W (X̄0, X̄1,X) ≤ 0 ∣X ∈ Π0) ≂ Φ
⎛
⎝
− E[W (X̄0, X̄1,X) ∣X ∈ Π0]√

Var(W (X̄0, X̄1,X) ∣X ∈ Π0)
⎞
⎠
(4.1)

in which Φ(.) is the standard normal cumulative function. To obtain the correspond-

ing approximation to E[ε1], it suffices to modify the argument of Φ by replacing Π0

by Π1 and multiplying by −1. In the case n0 = n1 = n, then E[ε] = E[ε0] = E[ε1].
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Using (4.1) in this case, Raudys obtained in [33] the approximation:

E[ε] ≂ Φ
⎛
⎜
⎝
−δ

2

1√
1 + 1

n +
2p
nδ2 +

p
n2δ2

⎞
⎟
⎠

(4.2)

where δ2 = (µ0 − µ1)TΣ−1(µ0 − µ1). In [116], Raudys pointed out, without exhibiting

an explicit proof, that this approximation is asymptotically exact under the double

asymptotic condition n → ∞, p → ∞, n/p → constant. Under these conditions, the

following asymptotically-equivalent approximation results:

E[ε] ≂ Φ
⎛
⎜
⎝
−δ

2

1√
1 + 2p

nδ2

⎞
⎟
⎠

(4.3)

To obtain the approximation for the expectation of the resubstitution error, (4.1) is

modified by replacing X by X1:

E[ε̂ r0 ] = P (W (X̄0, X̄1,X1) ≤ 0) ≂ Φ
⎛
⎝
− E[W (X̄0, X̄1,X1)]√

Var(W (X̄0, X̄1,X1))
⎞
⎠

(4.4)

To obtain the corresponding approximation to E[ε̂ r1 ], it suffices to modify the argu-

ment of Φ by replacing X1 by Xn0+1 and multiplying by −1. In the case n0 = n1 = n,

then E[ε̂ r] = E[ε̂ r0 ] = E[ε̂ r1 ], and (4.4) leads to the following approximation:

E[ε̂ r] ≂ Φ
⎛
⎜
⎝
−δ

2

1 + 2p
nδ2√

1 + 1
n +

2p
nδ2

⎞
⎟
⎠

(4.5)

This expression is equivalent to the one published by Raudys in [115, 116], under the

double asymptotic condition n→∞, p→∞, n/p→ constant, namely:

E[ε̂ r] ≂ Φ
⎛
⎝
−δ

2

√
1 + 2p

nδ2

⎞
⎠

(4.6)

We will prove in the following subsections that all the approximations discussed

above are asymptotically exact, as n0 →∞, n1 →∞, p→∞, p/n0 → λ0, p/n1 → λ1 —
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which Serdobolskii calls “Kolmogorov asymptotic conditions” in [122].

Wyman and his colleagues [123] used Monte-Carlo simulations to compare differ-

ent expressions for expectation of true error. The expressions they considered for this

comparison were those proposed by Raudys [121], Efron [47], Anderson [46], Okamoto

[43], Sayre [48], Deev [124], and [95]. They concluded that: “A simple and relatively

obscure asymptotic expansion derived by Raudys (Tech. Cybern. 4, 168-174, 1972) is

found to yield better approximation than the well-known asymptotic expansions”.

With all ambiguity on the origin of Kolmogorov asymptotic analysis, this ap-

proach has been vigorously followed in Soviet-Union [50, 115, 116, 121, 122, 124–128].

The finite-sample approximations obtained via these asymptotic expressions have

been shown to be remarkably accurate in small-sample cases [123, 129]. More re-

cently, this kind of asymptotic approach has been used successfully to analyze the

performance of popular multiuser detection algorithms such as CDMA [130, 131] .

There the assumption is that in a K-user channel with spreading gain N, both K and

N go to infinity while their ratio remains constant. In this context, the assumption of

increasing dimension of the system has been called a “large-system limit”. One can

find its root in the prominent work of Wigner [132]. Recently, Serdobolskii, who was

a pioneer on developing the Kolmogorov asymptotic approach in the Soviet Union,

has published a book [122] to integrate the main results on this kind of limit that

have been developing independently in the eastern and western hemispheres.

In what follows, we will denote convergence in probability under Kolmogorov

asymptotic conditions by “ pklim
n0,n1, p→∞

”. Similarly, “ klim
n0,n1, p→∞

” and “
K→” will denote or-

dinary convergence under the Kolmogorov asymptotic conditions. For simplifying

the notations, the following functions are defined that will be used throughout this
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chapter:

f0(n0,n1,p,δ
2)=

¿
ÁÁÀ1+ 1

n1

+ p
δ2

( 1

n0

+ 1

n1

)+ p

2δ2
( 1

n2
0

+ 1

n2
1

) , f1(n0,n1,p,δ
2)=f0(n1,n0,p,δ

2)

g0(n0,n1,p,δ
2)=

¿
ÁÁÀ1+ 1

n1

+ p
δ2

( 1

n0

+ 1

n1

)+ p

2δ2
( 1

n2
1

− 1

n2
0

) , g1(n0,n1,p,δ
2)=g0(n1,n0,p,δ

2)

(4.7)

2. Actual Classification Error

Let us define a sequence of Gaussian discrimination problems defined by the sequence

of parameter and sample sizes:

(µp,0, µp,1,Σp, np,0, np,1) , p = 1,2, . . . (4.8)

where the means and covariance matrix are arbitrary except that the Mahalanobis dis-

tance, δ =
√

(µp,0 − µp,1)TΣ−1
p (µp,0 − µp,1), is assumed to be a constant (with slightly

more work, this condition can be relaxed to an arbitrary Mahalanobis distance con-

verging to a constant δ as p →∞, as in [125]). For simplicity of notation, and at no

risk of ambiguity, we will omit in the sequel the subscript “p” from the parameters

and sample sizes in (4.8).

The assumption that the covariance matrix Σ is known simplifies the analysis,

eliminating the need for many of the regularity conditions required by Serdobolskii

in [122]. Let

Ĝi=E[W (X̄0,X̄1,X) ∣ X̄0,X̄1,X ∈Πi] , D̂i=Var(W (X̄0,X̄1,X) ∣ X̄0,X̄1,X ∈Πi) (4.9)

for i = 0,1. Then the population-specific classification errors are given by:

ε0 = Φ
⎛
⎝
− Ĝ0√

D̂0

⎞
⎠
, ε1 = Φ

⎛
⎝
Ĝ1√
D̂1

⎞
⎠

(4.10)
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We have the following result:

Theorem 16. Consider the sequence of Gaussian discrimination problems defined

by (4.8). Then

klim
n0,n1, p→∞

E[ε0]= pklim
n0,n1, p→∞

ε0=Φ(−G0√
D

) , klim
n0,n1, p→∞

E[ε1]= pklim
n0,n1, p→∞

ε1=Φ( G1√
D

) (4.11)

so that

klim
n0,n1, p→∞

E[ε] = pklim
n0,n1, p→∞

ε = α0Φ(− G0√
D

) + α1Φ( G1√
D

) (4.12)

where

G0 = klim
n0,n1, p→∞

E[Ĝ0] =
1

2
(δ2 + λ1 − λ0) , G1 = klim

n0,n1, p→∞
E[Ĝ1] = −1

2
(δ2 + λ0 − λ1)

D = klim
n0,n1, p→∞

E[D̂0] = klim
n0,n1, p→∞

E[D̂1] = δ2 + λ0 + λ1

(4.13)

Proof. See Appendix.

We remark that (4.12) is equivalent to the specialization of Deev’s formula [116]

to the case where the covariance matrix is known.

Theorem 16 suggests the following finite-sample approximation:

E[ε0] ≂ Φ
⎛
⎜
⎝
− E[Ĝ0]√

E[D̂0]

⎞
⎟
⎠
= Φ

⎛
⎝
− E[W (X̄0, X̄1,X) ∣X ∈ Π0]√

E[Var(W (X̄0, X̄1,X) ∣ X̄0, X̄1,X ∈ Π0)]
⎞
⎠

(4.14)

To obtain the corresponding approximation to E[ε1], it suffices to replace Ĝ0 by Ĝ1,

D̂0 by D̂1, and Π0 by Π1, and multiply the argument of both Φ functions by −1.

Evaluating the expectation in the numerator and denominator of (4.14) yields

E[ε0] ≂ Φ
⎛
⎜
⎝
−δ

2

1 + p
δ2

( 1
n1
− 1
n0

)
√

1 + p
δ2

( 1
n1
+ 1
n0

)

⎞
⎟
⎠

(4.15)

with the corresponding approximation for E[ε1] obtained by simply exchanging n0
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and n1. This approximation is asymptotically exact, as shown by Theorem 16. How-

ever, in the case n0 = n1 = n, (4.15) reduces to (4.3) and not (4.2). The reason is that,

if one compares (4.14) to Raudys’ formula (4.1), one observes that the denominators

differ by the term:

Var[E(W (X̄0, X̄1,X)∣X̄0, X̄1,X ∈ Π0)] =

Var(W (X̄0,X̄1,X)∣X ∈Π0)−E[Var(W (X̄0,X̄1,X)∣X̄0, X̄1,X ∈Π0)]=
δ2

n1

+ p

n2
0

+ p

n2
1

K→ 0

(4.16)

Hence, the finite-sample approximations obtained by (4.1) and (4.14) differ, but are

asymptotically equivalent. By Theorem 16, this also proves that Raudy’s approxi-

mation (4.2) is indeed asymptotically exact. For moderate n0/p and n1/p, the term

(4.16) becomes close to zero, and (4.1) and (4.14) yield very similar values.

The next expression is the finite-sample approximation obtained with Raudys’

formula (4.1) in the general case n0 ≠ n1, which has not been available before:

E[ε0] ≂ Φ
⎛
⎝
−δ

2

1 + p
δ2

( 1
n1
− 1
n0

)
f0(n0,n1,p,δ2)

⎞
⎠

(4.17)

which of course reduces to (4.2) when n0 = n1 = n. If we remove the terms which tend

to zero under Kolmogorov asymptotic conditions, then (4.17) becomes:

E[ε0] ≂ Φ
⎛
⎜
⎝
−δ

2

1 + p
δ2

( 1
n1
− 1
n0

)
√

1 + p
δ2

( 1
n0
+ 1
n1

)

⎞
⎟
⎠

(4.18)

i.e., the same as (4.15), which reduces to (4.3) when n0 = n1 = n. Also notice that

(4.18) corresponds to replacing λ0 by p/n0 and λ1 by p/n1 in (4.11), as it should. To

obtain the corresponding approximations for E[ε1], it suffices to exchange n0 and n1

in (4.17) and (4.18).
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3. Resubstitution Error Estimator

Consider the expectation of the resubstitution error estimator E[ε̂ r]. Let

ε r0 = P (W (X̄0, X̄1,X1) ≤ 0∣X̄0, X̄1)

ε r1 = P (W (X̄0, X̄1,Xn0+1) > 0∣X̄0, X̄1)
(4.19)

Note that ε ri is different from the class-specific resubstitution error ε̂ ri , for i = 0,1.

However, it is clear that E[ε ri ] = E[ε̂ ri ], for i = 0,1. In particular,

E[ε̂ r] = α̂0E[ε r0 ] + α̂1E[ε r1 ] (4.20)

Let

Ĝ r
0 = E[W (X̄0, X̄1,X1) ∣ X̄0, X̄1] , Ĝ r

1 = E[W (X̄0, X̄1,Xn0+1) ∣ X̄0, X̄1]

D̂ r
0 = V ar(W (X̄0, X̄1,X1) ∣ X̄0, X̄1) , D̂ r

1 = V ar(W (X̄0, X̄1,Xn0+1) ∣ X̄0, X̄1)
(4.21)

Then

ε r0 = Φ
⎛
⎜
⎝
− Ĝ r

0√
D̂ r

0

⎞
⎟
⎠
, ε r1 = Φ

⎛
⎜
⎝
Ĝ r

1√
D̂ r

1

⎞
⎟
⎠

(4.22)

Theorem 17. Consider the sequence of Gaussian discrimination problems defined

by (4.8). Then

klim
n0,n1, p→∞

E[ε̂ r]= klim
n0,n1, p→∞

E[ε̂ r0 ]= klim
n0,n1, p→∞

E[ε̂ r1 ]= pklim
n0,n1, p→∞

ε r0 = pklim
n0,n1, p→∞

ε r1 = Φ( −G√
D

)

(4.23)

where

G = klim
n0,n1, p→∞

E[Ĝ r
0 ] = − klim

n0,n1, p→∞
E[Ĝ r

1 ] =
1

2
(δ2 + λ0 + λ1)

D = klim
n0,n1, p→∞

E[D̂ r
0 ] = klim

n0,n1, p→∞
E[D̂ r

1 ] = δ2 + λ0 + λ1

(4.24)

Proof. See Appendix.
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Theorem 17 suggests the following finite-sample approximation:

E[ε̂ r0 ] ≂ Φ
⎛
⎜
⎝
− E[Ĝ r

0 ]√
E[D̂ r

0 ]

⎞
⎟
⎠
= Φ

⎛
⎝
− E[W (X̄0, X̄1,X1)]√

E[Var(W (X̄0, X̄1,X1) ∣ X̄0, X̄1)]
⎞
⎠

(4.25)

To obtain the corresponding approximation to E[ε̂ r1 ], it suffices to replace Ĝ r
0 by Ĝ r

1 ,

D̂ r
0 by D̂ r

1 , and X1 by Xn0+1, and multiply the argument of both Φ functions by −1.

Evaluating the expectation in the numerator and denominator of (4.25) yields

E[ε̂ r0 ] ≂ Φ
⎛
⎜
⎝
− δ

2
√

1 − 1
n0

√
1 + p

δ2
( 1

n0

+ 1

n1

)
⎞
⎟
⎠

(4.26)

with the corresponding approximation for E[ε̂ r1 ] obtained by exchanging n0 and n1.

Theorem 17 shows this approximation is asymptotically exact. If n0 = n1 = n, then

(4.26) reduces to

E[ε̂ r0 ] ≂ Φ
⎛
⎜
⎝
− δ

2
√

1 − 1
n

√
1 + 2p

nδ2

⎞
⎟
⎠

(4.27)

which is not the same as (4.5) or (4.6). Once again, the reason is that, if one compares

(4.25) to Raudys’ formula (4.4), one observes that the denominators differ by the term:

Var[E(W (X̄0, X̄1,X1)∣X̄0, X̄1]=Var(W (X̄0, X̄1,X1))−E[Var(W (X̄0, X̄1,X1)∣X̄0, X̄1]

=δ2 ( 1

n0

+ 1

n1

) + p
2
( 1

n0

+ 1

n1

)
2

K→ 0

(4.28)

Hence, the finite-sample approximations obtained by (4.4) and (4.25) differ, but are

asymptotically equivalent. Furthermore, both are asymptotically equivalent to (4.6).

Incidentally, this proves that both (4.5) and (4.6) are asymptotically exact. For

moderate values of n0, n1, n0/p, and n1/p, the term (4.28) becomes close to zero, and

in fact all three approximations give very similar results.

The next expression is the finite-sample approximation obtained with Raudys’
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formula (4.4) in the general case n0 ≠ n1, which has not been available before:

E[ε̂ r0 ] ≂ Φ
⎛
⎝
−δ

2

1 + p
δ2

( 1
n0
+ 1
n1

)
g0(n0,n1,p,δ2)

⎞
⎠

(4.29)

which of course reduces to (4.5) when n0 = n1 = n. To obtain the corresponding

approximation for E[ε1], it suffices to exchange n0 and n1 in (4.29). If we remove the

terms which tend to zero under Kolmogorov asymptotic conditions, then (4.29) and

(4.26) both become:

E[ε̂ r] ≂ E[ε̂ r0 ] ≂ E[ε̂ r1 ] ≂ Φ
⎛
⎝
−δ

2

√
1 + p

δ2
( 1

n0

+ 1

n1

)
⎞
⎠

(4.30)

which reduces to (4.6) when n0 = n1 = n. Also notice that (4.30) corresponds to

replacing λ0 by p/n0 and λ1 by p/n1 in (4.23), as it should.

4. Leave-one-out Error Estimator

By virtue of the relation E[ε̂li,ni
] = E[εi,ni−1], for i = 0,1, the expectation of the

leave-one-out error estimator can be obtained by using the results of Section 2, while

replacing αi by α̂i and ni by ni − 1, for i = 0,1.

B. Second-order Double Asymptotic Approximation

Here we extend the double asymptotic method to obtain results for the double asymp-

totic joint distribution of the pair of random variables (W (X̄0, X̄1,X),W (X̄0, X̄1,X ′)),

which allows one to obtain finite-sample approximations to the second and cross mo-

ments of actual and estimated errors, and therefore the bias, variance, and RMS

performance measures.
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1. Second-order Approximations

We start by considering the entension of equations (4.1) and (4.4) to second moments.

Consider the standard bivariate Gaussian distribution function

Φ(a, b;ρ) =
a

∫
−∞

b

∫
−∞

1

2π
√

1 − ρ2
exp{− 1

2(1 − ρ)2) (x2 + y2 − 2ρxy)} dxdy (4.31)

This corresponds to the distribution function of a joint bivariate Gaussian vector with

zero means, unit variances, and correlation coefficient ρ. Note that Φ(a,∞;ρ) = Φ(a)

and Φ(a, b; 0) = Φ(a)Φ(b). For simplicity of notation, we write Φ(a, a;ρ) as Φ(a;ρ).

The rectangular-area probabilities involving any jointly Gaussian pair of variables

(X,Y ) can be written in terms of the standard bivariate Gaussian distribution func-

tion:

P (X ≤ c, Y ≤ d) = Φ(c − µX
σX

,
d − µY
σY

; ρXY ) (4.32)

where µX = E[X], µY = E[Y ], σX =
√

Var(X), σY =
√

Var(Y ), and ρXY is the

correlation coefficient between X and Y .

Using (4.32), we obtain the second-order extension of Raudys’ formula (4.1):

E[ε20] = P (W (X̄0, X̄1,X) ≤ 0,W (X̄0, X̄1,X
′) ≤ 0 ∣X,X ′ ∈ Π0)

≂ Φ
⎛
⎝
− E[W (X̄0, X̄1,X)∣X ∈ Π0]√

Var(W (X̄0, X̄1,X) ∣X ∈ Π0)
;
Cov(W (X̄0, X̄1,X),W (X̄0, X̄1,X ′)∣X,X ′ ∈Π0)

Var(W (X̄0, X̄1,X)∣X ∈ Π0)
⎞
⎠

(4.33)

In the general case n0 ≠ n1, evaluation of the terms in (4.33) yields

E[ε20] ≂ Φ
⎛
⎜
⎝
−δ

2

1 + p
δ2

( 1
n1
− 1
n0

)
f0(n0,n1,p,δ2)

;

1
n1
+ p

2δ2 ( 1
n2

0
+ 1
n2

1
)

f 2
0 (n0,n1,p,δ2)

⎞
⎟
⎠

(4.34)

Equation (4.34) is the second-order extension of (4.17). Similarly, it can be shown
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that

E[ε0ε1]≂Φ
⎛
⎝
−δ

2

1+ p
δ2

( 1
n1
− 1
n0

)
f0(n0,n1,p,δ2)

⎞
⎠

Φ
⎛
⎝
−δ

2

1+ p
δ2

( 1
n0
− 1
n1

)
f1(n0,n1,p,δ2)

⎞
⎠

(4.35)

The corresponding approximation for E[ε21] is obtained from E[ε20] by exchanging

n0 and n1.

A key fact is that by removing the terms that tend to zero under Kolmogorov

asymptotic conditions the covariance term in (4.34) becomes zero, and the pair of

random variables (W (X̄0, X̄1,X),W (X̄0, X̄1,X ′)) become independent. This sug-

gests the approximation

E[ε20] ≂
⎡⎢⎢⎢⎢⎢⎣
Φ

⎛
⎜
⎝
−δ

2

1 + p
δ2

( 1
n1
− 1
n0

)
√

1 + p
δ2

( 1
n0
+ 1
n1

)

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦

2

(4.36)

Equation (4.36) is simply the square of the approximation (4.18). The corresponding

approximations for E[ε0ε1] and E[ε21] are obtained similarly.

To obtain the approximation for the second moment of the resubstitution error,

(4.33) is modified by replacing X and X ′ by X1 and X2, respectively:

E[(ε̂ r0 )2] = P (W (X̄0, X̄1,X1) ≤ 0,W (X̄0, X̄1,X2) ≤ 0)

≂ Φ
⎛
⎝
− E[W (X̄0, X̄1,X1)]√

Var(W (X̄0, X̄1,X1))
;
Cov(W (X̄0, X̄1,X1),W (X̄0, X̄1,X2))

Var(W (X̄0, X̄1,X1))
⎞
⎠

(4.37)

In the general case n0 ≠ n1, (4.37) gives

E[(ε̂ r0 )2]≂Φ
⎛
⎜
⎝
−δ

2

1+ p
δ2

( 1
n0
+ 1
n1

)
g0(n0,n1,p,δ2)

;

1
n1
+ p

2δ2 ( 1
n2

1
− 1
n2

0
)

g2
0(n0,n1,p,δ2)

⎞
⎟
⎠

(4.38)

The corresponding approximation for E[(ε̂ r1 )2] is obtained from E[(ε̂ r0 )2] by exchang-
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ing n0 and n1. Similarly, it can be shown that

E[ε̂ r0 ε̂ r1 ] ≂ Φ

⎛
⎜⎜
⎝
−δ

2

1+ p
δ2

( 1
n0
+ 1
n1

)
g0(n0,n1,p,δ2)

,−δ
2

1+ p
δ2

( 1
n0
+ 1
n1

)
g1(n0,n1,p,δ2)

;

1
n0
+ 1
n1
+ p

2δ2 ( 1
n0
+ 1
n2

0
)

2

g0(n0,n1,p,δ2)g1(n0,n1,p,δ2)

⎞
⎟⎟
⎠

(4.39)

Throwing out the terms that tend to zero under Kolmogorov asymptotic condi-

tions in (4.38) gives the approximation

E[(ε̂ r0 )2] ≂
⎡⎢⎢⎢⎢⎣
Φ

⎛
⎝
−δ

2

√
1 + p

δ2
( 1

n0

+ 1

n1

)
⎞
⎠

⎤⎥⎥⎥⎥⎦

2

(4.40)

Equation (4.40) is simply the square of the approximation (4.30). The corresponding

approximations for E[ε̂ r0 ε̂ r1 ] and E[(ε̂ r1 )2] are obtained similarly.

The approximation for the cross-moment between actual and resubstitution er-

rors is

E[ε0ε̂ r0 ] = P (W (X̄0, X̄1,X) ≤ 0,W (X̄0, X̄1,X1) ≤ 0 ∣X ∈ Π0) ≂

Φ
⎛
⎝

−E[W (X̄0,X̄1,X)∣X ∈Π0]√
Var(W (X̄0,X̄1,X)∣X ∈Π0))

,
−E[W (X̄0,X̄1,X1)]√
Var(W (X̄0,X̄1,X1))

;

Cov(W (X̄0, X̄1,X),W (X̄0, X̄1,X1) ∣X ∈ Π0)√
Var(W (X̄0, X̄1,X ∣X ∈ Π0))

√
Var(W (X̄0, X̄1,X1))

⎞
⎠

(4.41)

In the general case n0 ≠ n1, (4.41) gives

E[ε0ε̂ r0 ] ≂ Φ
⎛
⎜
⎝
−δ

2

1+ p
δ2

( 1
n1
− 1
n0

)
f0(n0,n1,p,δ2)

,−δ
2

1+ p
δ2

( 1
n0
+ 1
n1

)
g0(n0,n1,p,δ2)

;

1
n1
+ p

2δ2 ( 1
n2

1
− 1
n2

0
)

f0(n0,n1,p,δ2)g0(n0,n1,p,δ2)
⎞
⎟
⎠

(4.42)

Similarly, it can be shown that

E[ε0ε̂ r1 ]≂Φ
⎛
⎜
⎝
−δ

2

1+ p
δ2

( 1
n1
− 1
n0

)
f0(n0,n1,p,δ2)

,−δ
2

1+ p
δ2

( 1
n0
+ 1
n1

)
g1(n0,n1,p,δ2)

;

1
n1
+ p

2δ2 ( 1
n2

1
− 1
n2

0
)

f0(n0,n1,p,δ2)g1(n0,n1,p,δ2)
⎞
⎟
⎠

(4.43)
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The corresponding approximations for E[ε1ε̂ r0 ], and E[ε1ε̂ r1 ] are obtained from E[ε0ε̂ r1 ]

and E[ε0ε̂ r0 ] by exchanging n0 and n1, respectively .

Throwing out the terms that tend to zero under Kolmogorov asymptotic condi-

tions in (4.42) gives the approximation

E[ε0ε̂ r0 ] ≂ Φ
⎛
⎜
⎝
−δ

2

1 + p
δ2

( 1
n1
− 1
n0

)
√

1 + p
δ2

( 1
n0
+ 1
n1

)

⎞
⎟
⎠

Φ
⎛
⎝
−δ

2

√
1 + p

δ2
( 1

n0

+ 1

n1

)
⎞
⎠

(4.44)

Equation (4.44) is simply the product of the approximations in (4.18) and (4.30).

Corresponding approximations for E[ε0ε̂ r1 ], E[ε1ε̂ r0 ], and E[ε1ε̂ r1 ] are obtained simi-

larly.

To obtain the approximation for the second moment of the leave-one-out error

E[(ε̂l0)2], (4.37) is modified by replacing W (X̄0, X̄1,X1) by W (1)(X̄0, X̄1,X1) and

W (X̄0, X̄1,X2) by W (2)(X̄0, X̄1,X2). In the general case n0 ≠ n1, this gives

E[(ε̂l0)2] ≂ Φ
⎛
⎜
⎝
−δ

2

1 + p
δ2

( 1
n1
− 1
n0−1

)
f0(n0−1,n1,p,δ2)

;

1
n1
+ p

2δ2 ( 1
n2

1
+ 2
(n0−1)4 −

(n0−2)2
(n0−1)4)

f 2
0 (n0−1,n1,p,δ2)

⎞
⎟
⎠

(4.45)

The corresponding approximation for E[(ε̂l1)2] is obtained from E[(ε̂l0)2] by exchang-

ing n0 and n1, respectively. Similarly,

E[ε̂l0ε̂l1]≂Φ
⎛
⎝
−δ

2

1+ p
δ2
( 1
n1
− 1
n0−1)

f0(n0−1,n1,p,δ2)
,−δ

2

1+ p
δ2
( 1
n0
− 1
n1−1)

f1(n0,n1−1,p,δ2)
;

1
n0
+ 1
n1
+ p

2δ2
( 1
n0
+ 1
n1

)2

f0(n0−1,n1,p,δ2)f1(n0,n1−1,p,δ2)
⎞
⎠

(4.46)

The corresponding approximation for E[(ε̂l1)2] is obtained from E[(ε̂l0)2] by exchang-

ing n0 and n1, respectively .

Throwing out the terms that tend to zero under Kolmogorov asymptotic condi-
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tions in (4.38) gives the approximation

E[(ε̂l0)2] ≂

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ

⎛
⎜⎜⎜
⎝
−δ

2

1 + p
δ2 ( 1

n1
− 1
(n0−1))√

1 + p
δ2 ( 1

(n0−1) + 1
n1

)

⎞
⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

2

(4.47)

Equation (4.47) is simply the square of the approximation (4.18), with n0 replaced

by n0 − 1. The corresponding approximations for E[ε̂l0ε̂l1] and E[(ε̂l1)2] are obtained

similarly.

The approximation for the cross-moment E[ε0ε̂l0] between actual and leave-one-

out errors is obtained by replacing W (X̄0, X̄1,X1) by W (1)(X̄0, X̄1,X1) in (4.41). The

corresponding approximations for E[ε0ε̂l1], E[ε1ε̂l0], and E[ε1ε̂l1] are entirely similar.

When n0 ≠ n1, this gives

E[ε0ε̂l0]≂Φ
⎛
⎜
⎝
−δ

2

1+ p
δ2

( 1
n1
− 1
n0
)

f0(n0,n1,p,δ2)
,−δ

2

1+ p
δ2
( 1
n1
− 1
n0−1

)
f0(n0−1,n1,p,δ2)

;

1
n1
+ p

2δ2 ( 1
n2

1
− 1
n2

0
)

f0(n0,n1,p,δ2)f0(n0−1,n1,p,δ2)
⎞
⎟
⎠

E[ε0ε̂l1]≂Φ
⎛
⎜
⎝
−δ

2

1+ p
δ2
( 1
n1
− 1
n0
)

f0(n0,n1,p,δ2)
,−δ

2

1+ p
δ2
( 1
n0
− 1
n1−1

)
f1(n0,n1−1,p,δ2)

;

1
n1
+ p

2δ2 ( 1
n2

1
− 1
n2

0
)

f0(n0,n1,p,δ2)f1(n0,n1−1,p,δ2)
⎞
⎟
⎠

(4.48)

The corresponding approximations for E[ε1ε̂l0], and E[ε1ε̂l1] are obtained from E[ε0ε̂l1]

and E[ε0ε̂l0] by exchanging n0 and n1, respectively .

Throwing out the terms that tend to zero under Kolmogorov asymptotic condi-

tions in (4.42) gives the approximation

E[ε0ε̂l0] ≂ Φ
⎛
⎜
⎝
−δ

2

1 + p
δ2

( 1
n1
− 1
n0

)
√

1 + p
δ2

( 1
n0
+ 1
n1

)

⎞
⎟
⎠

Φ
⎛
⎜
⎝
−δ

2

1 + p
δ2

( 1
n1
− 1
n0−1

)
√

1 + p
δ2

( 1
n0−1 + 1

n1
)

⎞
⎟
⎠

(4.49)

Equation (4.44) is simply the product of the approximations in (4.18) and itself with

n0 replaced by n0 − 1. The approximations for E[ε0ε̂l1], E[ε1ε̂l0] and E[ε1ε̂l1] are

obtained similarly.
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We will prove in the following subsections that all the second-order approxima-

tions discussed above are asymptotically exact under Kolmogorov asymptotic condi-

tions.

2. Actual Classification Error

Note that the populations specific errors satisfy

ε20 =
⎡⎢⎢⎢⎢⎣
Φ

⎛
⎝
− Ĝ0√

D̂0

⎞
⎠

⎤⎥⎥⎥⎥⎦

2

, ε0ε1 = Φ
⎛
⎝
− Ĝ0√

D̂0

⎞
⎠

Φ
⎛
⎝
Ĝ1√
D̂1

⎞
⎠
, ε21 =

⎡⎢⎢⎢⎢⎣
Φ

⎛
⎝
Ĝ1√
D̂1

⎞
⎠

⎤⎥⎥⎥⎥⎦

2

(4.50)

where Ĝi and D̂i were defined in (4.9). Using the results of Theorem 16, we obtain:

Theorem 18. Consider the sequence of Gaussian discrimination problems defined

by (4.8). Then

klim
n0,n1, p→∞

E[ε20]= pklim
n0,n1, p→∞

ε20=[Φ(−G0√
D

)]
2

, klim
n0,n1, p→∞

E[ε21]= pklim
n0,n1, p→∞

ε21=[Φ( G1√
D

)]
2

klim
n0,n1, p→∞

E[ε0ε1] = pklim
n0,n1, p→∞

ε0ε1 = Φ(− G0√
D0

)Φ( G1√
D1

)

(4.51)

so that

klim
n0,n1, p→∞

E[ε2] = pklim
n0,n1, p→∞

ε2 = ( klim
n0,n1, p→∞

E[ε])
2

= [α0Φ(− G0√
D

) + α1Φ( G1√
D

)]
2

(4.52)

where G0, G1 and D are the same as in (4.13).

Theorem 18 suggests the following finite-sample approximation:

E[ε20] ≂
⎡⎢⎢⎢⎢⎢⎣
Φ

⎛
⎜
⎝
− E[Ĝ0]√

E[D̂0]

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦

2

=
⎡⎢⎢⎢⎢⎣
Φ

⎛
⎝
− E[W (X̄0, X̄1,X) ∣X ∈ Π0]√

E[Var(W (X̄0, X̄1,X) ∣ X̄0, X̄1,X ∈ Π0)]
⎞
⎠

⎤⎥⎥⎥⎥⎦

2

(4.53)

with similar approximations for E[ε0ε1] and [ε21] derived from (4.51). These approxi-
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mations are asymptotically exact, as shown by Theorem 18. Recalling (4.15), we see

that (4.53) yields (4.36), showing that both (4.36) and (4.34) are asymptotically exact

under the Kolmogorov limit. For moderate n0/p and n1/p, the two approximations

yield very similar results.

An asymptotically exact approximation to the full second moment E[ε2] is ob-

tained from (4.52) upon replacing λ0 by p/n0 and λ1 by p/n1.

3. Resubstitution Error Estimator

In this section, we are interested in the second moment of the resubstitution error

estimator E[(ε̂ r)2] and the cross-moment with the actual classification error E[εε̂ r].

Let

ε r00 = P (W (X̄0, X̄1,X1) ≤ 0,W (X̄0, X̄1,X2) ≤ 0 ∣ X̄0, X̄1)

ε r01 = P (W (X̄0, X̄1,X1) ≤ 0,W (X̄0, X̄1,Xn0+1) > 0 ∣ X̄0, X̄1)

ε r11 = P (W (X̄0, X̄1,Xn0+1) > 0,W (X̄0, X̄1,Xn0+2) > 0 ∣ X̄0, X̄1)

(4.54)

Note that E[(ε̂ r0 )2] = E[ε r00], E[ε̂ r0 ε̂ r1 ] = E[ε r01] and E[(ε̂ r1 )2] = E[ε r11]. From represen-

tation of E[(ε̂ r)2] given in (3.10), it follows that

E[(ε̂ r)2] = α̂
2
0

n0

E[ε r0 ]+
α̂2

1

n1

E[ε r1 ]+α̂2
0

n0 − 1

n0

E[ε r00]+α̂2
1

n1 − 1

n1

E[ε r11]+2α̂0α̂1E[ε r01] (4.55)

where ε r0 and ε r1 are defined in (4.19).

Let

Ĥ r
0 = Cov(W (X̄0, X̄1,X1),W (X̄0, X̄1,X2) ∣ X̄0, X̄1)

Ĥ r
01 = Cov(W (X̄0, X̄1,X1),W (X̄0, X̄1,Xn0+1) ∣ X̄0, X̄1)

Ĥ r
1 = Cov(W (X̄0, X̄1,Xn0+1),W (X̄0, X̄1,Xn0+2) ∣ X̄0, X̄1)

(4.56)

ε r00=Φ
⎛
⎜
⎝
−Ĝ r

0√
D̂ r

0

;
Ĥ r

0

D̂ r
0

⎞
⎟
⎠
, ε r11=Φ

⎛
⎜
⎝
Ĝ r

1√
D̂ r

1

;
Ĥ r

1

D̂ r
1

⎞
⎟
⎠
, ε r01=Φ

⎛
⎜
⎝
−Ĝ r

0√
D̂ r

0

;
Ĥ r

0

D̂ r
0

⎞
⎟
⎠
−Φ

⎛
⎜
⎝
−Ĝ r

0√
D̂ r

0

,
−Ĝ r

1√
D̂ r

1

;
Ĥ r

01

D̂ r
01

⎞
⎟
⎠

(4.57)
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where Ĝ r
i and D̂ r

i were defined in (4.21).

Theorem 19. For the sequence of Gaussian discrimination problems defined by (4.8),

klim
n0,n1, p→∞

E[ε r00] = klim
n0,n1, p→∞

E[ε r01] = klim
n0,n1, p→∞

E[ε r11]

= pklim
n0,n1, p→∞

ε r00 = pklim
n0,n1, p→∞

ε r01 = pklim
n0,n1, p→∞

ε r11 = Φ(− G√
D

;
H

D
) = [Φ(− G√

D
)]

2 (4.58)

and

klim
n0,n1, p→∞

E[(ε̂ r)2] = ( klim
n0,n1, p→∞

E[ε̂ r])
2

= [Φ(− G√
D

)]
2

(4.59)

where G and D are given in (4.24) and H = klim
n0,n1, p→∞

E[Ĥ r
0 ] = klim

n0,n1, p→∞
E[Ĥ r

1 ] = 0 .

Proof. See Appendix.

Theorem 19 suggests the following finite-sample approximation:

E[(ε̂ r0 )2] ≂ Φ
⎛
⎜
⎝
− E[Ĝ r

0 ]√
E[D̂ r

0 ]
;
E[Ĥ r

0 ]
E[D̂ r

0 ]

⎞
⎟
⎠

= Φ
⎛
⎝
− E[W (X̄0, X̄1,X1)]√

E[Var(W (X̄0, X̄1,X1) ∣ X̄0, X̄1)]
;

E[Cov(W (X̄0, X̄1,X1),W (X̄0, X̄1,X2) ∣ X̄0, X̄1)]
E[Var(W (X̄0, X̄1,X1) ∣ X̄0, X̄1)]

⎞
⎠

(4.60)

with corresponding approximations to E[ε̂ r0 ε̂ r1 ] and E[(ε̂ r1 )2] being obtained from

(4.57). These approximations are asymptotically exact, as shown by Theorem 19.

Eq. (4.60) yields

E[(ε̂ r0 )2] ≂ Φ
⎛
⎜
⎝
− δ

2
√

1 − 1
n0

√
1 + p

δ2
( 1

n0

+ 1

n1

) ;− 1

n0 − 1

⎞
⎟
⎠

(4.61)

If one throws out extra terms that tend to zero under the Kolmogorov limit, this

reduces to (4.40), showing that both (4.40) and (4.38) are asymptotically exact under



88

the Kolmogorov limit. For moderate n0/p and n1/p, the three approximations yield

very similar results.

An asymptotically exact approximation to the full second moment E[(ε̂ r)2] is

obtained from (4.59) upon replacing λ0 by p/n0 and λ1 by p/n1.

To find the cross-expectation between true error and resubstitution, we can use

the representation of E[εε̂ r] given in (3.13) in conjunction with the independence of

testing and training samples to show E[εiε̂ rj ] = E[εiε rj ] for i, j = 0,1. Thus,

E[εε̂ r] = α0α̂0E[ε0ε r0 ] + α0α̂1E[ε0ε r1 ] + α1α̂0E[ε1ε r0 ] + α1α̂1E[ε1ε r1 ]

= α0α̂0E

⎡⎢⎢⎢⎢⎢⎣
Φ

⎛
⎝
−Ĝ0√
D̂0

⎞
⎠

Φ
⎛
⎜
⎝
−Ĝ r

0√
D̂ r

0

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
+ α0α̂1E

⎡⎢⎢⎢⎢⎢⎣
Φ

⎛
⎝
−Ĝ0√
D̂0

⎞
⎠

Φ
⎛
⎜
⎝
Ĝ r

1√
D̂ r

1

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦

+ α1α̂0E

⎡⎢⎢⎢⎢⎢⎣
Φ

⎛
⎝
Ĝ1√
D̂1

⎞
⎠

Φ
⎛
⎜
⎝
−Ĝ r

0√
D̂ r

0

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
+ α1α̂1E

⎡⎢⎢⎢⎢⎢⎣
Φ

⎛
⎝
Ĝ1√
D̂1

⎞
⎠

Φ
⎛
⎜
⎝
Ĝ r

1√
D̂ r

1

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦

(4.62)

where where Ĝi and D̂i were defined in (4.9), and Ĝ r
i and D̂ r

i were defined in (4.21).

Using the results of Theorems 16 and 17, the following result immediately follows.

Theorem 20. For the sequence of Gaussian discrimination problems defined by (4.8),

klim
n0,n1, p→∞

E[ε0ε̂ r0 ]= klim
n0,n1, p→∞

E[ε0ε̂ r1 ]= pklim
n0,n1, p→∞

ε0ε
r
0 = pklim

n0,n1, p→∞
ε0ε

r
1 =Φ(−G0√

D
)Φ( −G√

D
)

klim
n0,n1, p→∞

E[ε1ε̂ r0 ]= klim
n0,n1, p→∞

E[ε1ε̂ r1 ]= pklim
n0,n1, p→∞

ε1ε
r
0 = pklim

n0,n1, p→∞
ε1ε

r
1 =Φ( G1√

D
)Φ( −G√

D
)

(4.63)

so that

klim
n0,n1, p→∞

E[εε̂ r]=( klim
n0,n1, p→∞

E[ε]) ( klim
n0,n1, p→∞

E[ε̂ r])=Φ( −G√
D

)[α0Φ(−G0√
D

)+α1Φ( G1√
D

)]

(4.64)

where G0, G1, G and D are the same as in (4.13) and (4.24).
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Theorem 20 suggests the following finite-sample approximation:

E[ε0ε̂ r0 ] ≂ Φ
⎛
⎜
⎝
− E[Ĝ0]√

E[D̂0]

⎞
⎟
⎠

Φ
⎛
⎜
⎝
− E[Ĝ r

0 ]√
E[D̂ r

0 ]

⎞
⎟
⎠

= Φ
⎛
⎝
− E[W (X̄0, X̄1,X) ∣X ∈ Π0]√

E[Var(W (X̄0, X̄1,X) ∣ X̄0, X̄1,X ∈ Π0)]
⎞
⎠

× Φ
⎛
⎝
− E[W (X̄0, X̄1,X1)]√

E[Var(W (X̄0, X̄1,X1) ∣ X̄0, X̄1)]
⎞
⎠

(4.65)

with corresponding approximations to E[ε0ε̂ r1 ], E[ε0ε̂ r1 ], and E[ε0ε̂ r1 ] being obtained

from (4.62). By Theorem 20, these approximations are asymptotically exact. Eq. (4.65)

yields

E[ε0ε̂ r0 ] ≂ Φ
⎛
⎜
⎝
−δ

2

1 + p
δ2

( 1
n1
− 1
n0

)
√

1 + p
δ2

( 1
n1
+ 1
n0

)

⎞
⎟
⎠

Φ
⎛
⎜
⎝
− δ

2
√

1 − 1
n0

√
1 + p

δ2
( 1

n0

+ 1

n1

)
⎞
⎟
⎠

(4.66)

If one throws out extra terms that tend to zero under the Kolmogorov limit, this

reduces to (4.44), showing that both (4.44) and (4.42) are asymptotically exact under

the Kolmogorov limit. For moderate n0/p and n1/p, the three approximations yield

very similar results.

An asymptotically exact approximation to the full second moment E[εε̂ r] is

obtained from (4.64) upon replacing λ0 by p/n0 and λ1 by p/n1.

4. Leave-one-out Error Estimator

In theorem 16, we showed that klim
n0,n1, p→∞

E[ε0, n] = Φ (− G0√
D
). It follows that

klim
n0,n1, p→∞

E[ε̂l0,n0
] = klim

n0,n1, p→∞
E[ε0,n0−1] = pklim

n0,n1, p→∞
ε̂l0,n = Φ(− G0√

D
) (4.67)

A similar fact applies to klim
n0,n1, p→∞

E[ε̂l1,n1
]. On the other hand, if (Xp, Yp)

PÐ→ (X,Y ),

then XpYp
PÐ→ XY , by the Continuous Mapping Theorem [133]. Thus, we have the
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following result.

Theorem 21. For the sequence of Gaussian discrimination problems defined by (4.8),

klim
n0,n1, p→∞

E[(ε̂l0)2] = pklim
n0,n1, p→∞

(ε̂l0)2 = [Φ(− G0√
D

)]
2

klim
n0,n1, p→∞

E[ε̂l0ε̂l1] = pklim
n0,n1, p→∞

ε̂l0ε̂
l
1 = Φ(− G0√

D0

)Φ( G1√
D1

)

klim
n0,n1, p→∞

E[(ε̂l1)2] = pklim
n0,n1, p→∞

(ε̂l1)2 = [Φ( G1√
D

)]
2

(4.68)

so that

klim
n0,n1, p→∞

E[(ε̂l)2]= pklim
n0,n1, p→∞

(ε̂l)2=( klim
n0,n1, p→∞

E[ε̂l])
2

= 1

λ0+λ1

[λ0Φ(−G0√
D

) + λ1Φ( G1√
D

)]
2

(4.69)

where G0, G1 and D are the same as in (4.13).

Similar expressions are obtained for E[εε̂l]. An asymptotically exact approxima-

tion to the full second moment E[(ε̂l0)2] is obtained by replacing λ0 by p/n0 and λ1 by

p/n1. However, the fact that E[ε̂l0,n0
] = E[ε0,n0−1] and E[ε̂l1,n1

] = E[ε1,n1−1] suggests

that a more precise approximation is to replace λ0 by p
n0−1 and λ1 by p

n1−1 , which

results in an expression equivalent to (4.47).

Figures 13–15 provide graphical demonstration of the basic performance mea-

sures using the asymptotically-exact approximations for resubstitution and leave-

one-out, as a function of total sample size, the balanced case n0 = n1 = n being

assumed throughout, so that the x-axis represents 2n. Monte-Carlo approximations

are also displayed to illustrate the finite-sample accuracy of the approximations. Two

Gaussians with different means and equal covariance matrix have been employed such

that the Mahalanobis distance δ2 = 4 corresponds to Bayes error = 0.1586. Figure 16

displays a plot of the RMS of resubstitution and leave-one-out as functions of both
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sample size and dimensionality and again assuming n0 = n1 = n. The Gaussian distri-

butions used here have means µ0 = −1p×1 and µ1 = 1p×1 with equal covariance matrices

in which the diagonal elements are 1 and off-diagonal elements are ρ. Notice that

here we have not fixed the Bayes error. This allows one to determine the minimum

value of RMS in terms of both sample size and dimensionality, shown by the pink

line. Notice that for each sample size, the RMS decreases as a function of p and then

increases for increasing p. We refer to this phenomenon as RMS peaking.

Fig. 13. Comparison of expectation for resubstitution and leave-one-out using the dou-

ble asymptotic approximation with Monte Carlo estimates as a function of

sample size for dimensions p = 3, 6, 9, and 15 (Bayes error 0.1586).
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Fig. 14. Comparison of deviation variance for resubstitution and leave-one-out using

the double asymptotic approximation with Monte Carlo estimates as a func-

tion of sample size for dimensions p = 3, 6, 9, and 15 (Bayes error 0.1586).
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Fig. 15. Comparison of RMS for resubstitution and leave-one-out using the double

asymptotic approximation with Monte Carlo estimates as a function of sample

size for dimensions p = 3, 6, 9, and 15 (Bayes error 0.1586).
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Fig. 16. Demonstration of RMS peaking phenomenon: (a) resubstitution, ρ = 0.3; (b)

resubstitution, ρ = 0.5; (c) leave-one-out, ρ = 0.3; (d) leave-one-out, ρ = 0.5.
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C. Asymptotic Performance of Error Estimation

In this section we state the consequences of the Theorems 16–21 to the limiting values

of bias, variance, and RMS of resubstitution and leave-one-out error estimators under

Kolmogorov asymptotic conditions.

From Theorems 16 and 17, we conclude that the asymptotic bias of resubstitution

is given by (for the sake of simplicity, we consider here the asymptotically balanced

case λ1 = λ0 = λ):

klim
n0,n1, p→∞

Bias[ε̂ r] = Φ
⎛
⎜
⎝
−δ

2

1√
1 + 2λ

δ2

⎞
⎟
⎠
− Φ

⎛
⎝
−δ

2

√
1 + 2λ

δ2

⎞
⎠
< 0 (4.70)

Therefore, resubstitution has an optimistic asymptotic bias. Recalling that under

the Kolmogorov limit we have n0/p, n1/p→ 1/λ, we observe that this bias disappears

as the sample sizes n0, n1 grow much faster than the dimensionality p. In fact, this

is also true if the opposite happens and the dimensionality grows much faster than

the sample sizes; however, this corresponds to the no-information case klim
n0,n1, p→∞

E[ε] =

klim
n0,n1, p→∞

E[ε̂ r] = 1
2 .

As for the asymptotic bias of leave-one-out, since E[ε̂li,ni
] = E[εi,ni−1], for i = 0,1,

klim
n0,n1, p→∞

Bias[ε̂l]=0. This is true also in the unbalanced case λ0 ≠ λ1.

A perhaps surprising consequence of Theorems 16–21 is that all variances and

covariances are asymptotically zero, i.e.,

klim
n0,n1, p→∞

Var(ε)= klim
n0,n1, p→∞

Var(ε̂ r)= klim
n0,n1, p→∞

Var(ε̂l)= klim
n0,n1, p→∞

Cov(ε, ε̂ r)= klim
n0,n1, p→∞

Cov(ε, ε̂l)=0

(4.71)

and this is true also in the unbalanced case λ0 ≠ λ1. Consequently, the deviation

variances are also asymptotically null, i.e.,

klim
n0,n1, p→∞

Vard[ε̂ r] = klim
n0,n1, p→∞

Vard[ε̂l] = 0 (4.72)
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Hence, klim
n0,n1, p→∞

RMS[ε̂ r] = ∣Bias[ε̂ r]∣ whereas klim
n0,n1, p→∞

RMS[ε̂l] = 0 . The asymptotic

RMS of leave-one-out is therefore exactly zero under any limiting rates λ0 and λ1

between sample sizes and dimensionality.

D. RMS Bounds

As we considered RMS bounds in the first part of this study for the univariate case,

we consider them for the multivariate case, where we must keep in mind that in

the present case the expressions for RMS are asymptotic. In intensive simulation

studies, we have observed in the multivariate case that the finite sample approxima-

tions obtained for RMS[ε̂ r] and RMS[ε̂ l] are very accurate when 0 < εbay < 0.3 for

all dimensions, but while they retain good accuracy when 0.3 < εbay < 0.5 for high

dimensions, accuracy deteriorates in this high-Bayes-error setting for low dimensions.

This can be partially explained by noticing the fact that the finite sample approxi-

mations obtained from the Kolmogorov asymptotic conditions are inherently suitable

for cases where the dimension is comparable to the sample size. In analogy to how we

proceeded in the univariate case in the first part of this study, we note that RMS is an

increasing function of the Bayes error, εbay, and we let κε̂(n, p, τ) = maxεbay≤τ RMS[ε̂]

for n0 = n1 = n and ε̂ = ε̂r, ε̂l. The desired RMS bound is given by κε̂(n, p,0.5). Note

that κε̂(n, p,0.5) = limδ2→0RMS[ε̂]. Letting δ2 → 0 in our asymptotic expressions for

the RMS of resubstitution and leave-one-out yields the approximate bounds for finite

samples:

RMS[ε̂r]≤ κε̂r(n, p,0.5) ≈

¿
ÁÁÀ1

4
+( 1

2n
−1)(Φ(−

√
p

2n
)−[Φ(−

√
p

2n
)]

2

) (4.73)

RMS[ε̂l] ≤ κε̂l(n, p,0.5) ≈
√

1

8n
+Φ(−

√
p

8n3
,−

√
p

8n3
;

1

n
) − 1

8
(4.74)
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Based upon the preceding comments, these will be very accurate in high dimensions

and less so for small dimensinos.

It can be seen from (4.73) and (4.74) that the bound for leave-one-out is much

less affected by dimensionality than the bound for resubstitution. This is because the

terms involving p in (4.74) are functions of
√
p/n3, whereas the corresponding terms

in (4.73) are functions of
√
p/n. This difference in sensitivity to dimension between

resubstitution and leave-one-out is not specific to the bound κε̂(n, p,0.5) but holds in

the whole range of δ2. This phenomenon can be seen in Fig 16.

To find the necessary number of samples to insure a given RMS, one can find

the minimum n to satisfy (4.73) and (4.74). Table III shows the minimum number

of sample points needed for resubstitution and leave-one-out to achieve a given value

of κε̂(n, p,0.5). In this table we have considered different dimensions for resubstitu-

tion and only two dimensions for leave-one-out. The reason, as mentioned before, is

that leave-one-out is much less affected by dimensionality. To test the applicability

(robustness) of the expressions in (4.73) and (4.74), and the necessary sample sizes de-

termined from these expressions, we have examined the effect of estimating the covari-

ance matrix, defined in the definition of discriminant, on κε̂(n, p,0.5), which has been

obtained under the assumption of a known covariance matrix. This has been accom-

plished by using the required sample sizes in Table III in the Monte-Carlo estimation

of κε̂(n, p,0.5) when the covariance matrix is estimated from the data. The results

are shown in Table III by the values in parentheses. Comparing these values with the

given values of κε̂(n, p,0.5) on the left-hand side of the table reveals that (4.73) and

(4.74), and the sample sizes determined therefrom, can be reliably used in practice.

A key observation regarding Table III is that the required sample size for resubstitu-

tion increases significantly as the dimension increases, whereas for leave-one-out the

increase is slight, an observation consistent with the RMS peaking phenomenon seen
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in Fig. 16. As a final point, since the bounds are determined by εbay = 0.5 and the

finite sample RMS approximations are less accurate for 0.3 < εbay < 0.5 for low dimen-

sions, in Table III we see that the accuracy of the results improves as the dimension

increases.

Table III. Minimum sample size, n, (n0 = n1 = n) for desired κε̂(n, p,0.5). The values in

parentheses are the Monte-Carlo estimation of κε̂(n, p,0.5) when covariance

matrix is estimated from data.

resub loo

κε̂(n, p,0.5) p=2 p=3 p=4 p=6 p=10 p=3 p=10

0.05
114

(0.043)

145

(0.045)

177

(0.045)

240

(0.047)

367

(0.048)

88

(0.054)

92

(0.048)

0.06
79

(0.051)

101

(0.053)

123

(0.054)

167

(0.056)

254

(0.058)

62

(0.065)

65

(0.056)

0.07
58

(0.060)

74

(0.062)

90

(0.063)

122

(0.066)

187

(0.067)

46

(0.076)

49

(0.065)

0.08
44

(0.069)

57

(0.070)

69

(0.073)

93

(0.075)

142

(0.078)

36

(0.083)

38

(0.074)

0.09
35

(0.076)

45

(0.080)

54

(0.083)

74

(0.085)

112

(0.088)

29

(0.091)

31

(0.083)

0.10
28

(0.087)

36

(0.090)

44

(0.092)

60

(0.095)

91

(0.098)

24

(0.101)

25

(0.091)

1. Implementation for Gene-expression Classification

In this section, we consider three-gene classification using the same gene-expression

profiles used in chapter III. To have κε̂r(n, p,0.5) ≈ 0.1, we need n0 = n1 = 36. This

sample size makes κε̂l(n, p,0.5) < 0.1. Proceeding analogously to chapter III, using

the 72 sample points selected, we applied the t-test to each gene to find significant
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differences between the good prognosis class and bad prognosis class. 53 of the 70

genes in the study had p-value less than 0.05. We chose the 9 genes showing the

most significant differences among the two classes. Among these genes we picked the

genes Contig28552 RC, NM 003981 and NM 020188, shown to be close to normal by

the Shapiro-Wilk test and to have close to equal covariance matrices between classes

by Box’s M test. It is known that Box’s M test performs well when the number of

sample points in each class exceeds 9 and the dimension is less than 5 [134]. The

significance level for all tests is 95%. The estimated errors using these three genes are

ε̂r = 0.153 and ε̂l = 0.167, with hold-out giving a good approximation of the true error

to be 0.164. Comparing the values of hold-out in these examples with those of the

estimators themselves, we conclude that both resubstitution and leave-one-out have

reasonably estimated the true error. Figure 17 shows the designed classifier. This

example demonstrates how one can use Table III and combine it with the proper

assumptions to get to a reliable estimation of the true error.

E. Conclusion

Using the double asymptotic method of Kolmogorov, we have derived double asymp-

totic (in sample size and dimension) representations for the second moments and

cross-moments with the actual error for resubstitution and leave-one-out in a multi-

variate Gaussian model. From these, the bias, variance, and RMS for resubstitution

and leave-one-out as estimators of the actual error can be computed. Such asymptotic

results have historically been shown to provide good small sample approximations and

this has been demonstrated in the present situation via numerical comparisons. As

has generally been historically the case, the results for known covariance matrix have

been obtained prior to those for unknown covariance matrix, the latter typically being
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Fig. 17. The designed classifier for good-prognosis (green) vs. bad-prognosis (red)

using the minimum number of samples to get a given RMS. The three genes

selected are Contig28552 RC, NM 003981 and NM 020188.

significantly more difficult. Obtaining corresponding results with unknown covariance

matrix is the next logical step in the line of this research.
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APPENDIX A

PROOFS IN CHAPTER II

Proof of Theorem 1.

We give the proof for the case P (ε̂r=0, µ̂ ∈ (a, b), µ̂0 > µ̂1), the other cases being en-

tirely similar. Note that the event corresponding to direction of classification, µ̂0 > µ̂1

in this case, how affect the different situations that corresponds to ε̂r = 0. From the

expression for the univariate discriminant

W (x) = (x − µ̂) (µ̂0 − µ̂1)

and noting the the definition of apparent error, it follows that

P (ε̂r=0, µ̂ ∈ (a, b), µ̂0 > µ̂1)

=P (W (X1)≥0,. . . ,W (Xn0)≥0,W (Xn0+1)<0,. . . ,W (Xn0+n1)<0,µ̂∈(a, b),µ̂0> µ̂1)

=P (W (X1)>0,. . . ,W (Xn0)>0,W (Xn0+1)<0,. . . ,W (Xn0+n1)<0,µ̂>a,−µ̂>−b,µ̂0−µ̂1>0)

=P (X1−µ̂>0,. . . ,Xn0−µ̂>0,µ̂−Xn0+1>0,. . . ,µ̂−Xn0+n1 >0,µ̂0−µ̂1>0,µ̂>a,−µ̂>−b,µ̂0−µ̂1>0)

+P (X1−µ̂<0,. . . ,Xn0−µ̂< 0,µ̂−Xn0+1<0,. . . ,µ̂−Xn0+n1 <0,µ̂0−µ̂1<0,µ̂>a,−µ̂>−b,µ̂0−µ̂1>0)

= P (Z1 > 0)

since P (. . . , µ̂0 − µ̂1 < 0, . . . , µ̂0 − µ̂1 > 0) = 0, with the vector Z1 being given by:

Z1 = [2(X1 − µ̂), . . . ,2(Xn0 − µ̂),2(µ̂ −Xn0+1), . . . ,2(µ̂ −Xn0+n1), µ̂0 − µ̂1, µ̂ − a,−µ̂ + b]T

Vector Z1 is a linear combination of the vector of observations X = [X1, . . . ,Xn0+n1],

namely, Z1 = AX − c, where c is determined as follows:
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c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

⋮

0

2a

−2b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
(n0+n1+3)×1

(A.1)

matrix A is a function of n0 and n1, a and b determined as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

A1

A2

A3

⎞
⎟⎟⎟⎟⎟⎟
⎠(n0+n1+3)×(n0+n1)

(A.2)

where

A1 =

⎛
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⎝
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n0

) − 1
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. . . − 1
n0

− 1
n1

. . . − 1
n1

− 1
n0

(2 − 1
n0

) . . . − 1
n0

− 1
n1

. . . − 1
n1

⋮ ⋮ ⋱ ⋮ ⋮

− 1
n0

− 1
n0

. . . (2 − 1
n0

) − 1
n1

. . . − 1
n1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
n0×(n0+n1)

(A.3)

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
n0

. . . 1
n0

( 1
n1
− 2) 1

n1
. . . 1

n1

1
n0

. . . 1
n0

1
n1

( 1
n1
− 2) . . . 1

n1

⋮ ⋮ ⋮ ⋱
1
n0

. . . 1
n0

1
n1

1
n1

. . . ( 1
n1
− 2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
n1×(n0+n1)

(A.4)
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A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
n0

. . . 1
n0

− 1
n1

. . . − 1
n1

1
n0

. . . 1
n0

1
n1

. . . 1
n1

−1
n0

. . . −1
n0

−1
n1

. . . −1
n1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

3×(n0+n1)

. (A.5)

Therefore, Z is a Gaussian random vector, with mean µZ = AµX − c and covari-

ance ΣZ = AΣXAT . Substituting the values of µX = [µ01n0 , µ11n1]T and ΣX =

diag(1n0 ,1n1) results in (2.10) and (2.11). ◻

Proof of Theorem 5.

We give the proof for the case ε̂r = 0. The case ε̂r > 0 is obtained by using the same

argument employed in connection with Theorems 2, 4, and 7. From Theorem 3 and

the proof of Theorem 1, we observe that

P (ε̂r=0, µ̂ > a, µ̂0 > µ̂1) = P (Z > 0) (A.6)

where

Z = [X1 − µ̂, . . . ,Xn0 − µ̂0, µ̂ −Xn0+1, . . . , µ̂ −Xn0+n1 , µ̂0 − µ̂1,2(µ̂ − a)] (A.7)

is a Gaussian random vector of size n0+n1+2, with mean µZ given by:

µZ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(µ0 − µ1)1n0+n1+1

(µ0 + µ1) − 2a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.8)
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and covariance matrix ΣZ given by

(ΣZ)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4n0 − 3)σ
2
0

n0
+ σ2

1

n1
, i, j = 1, . . . , n0, i = j

−3
σ2
0

n0
+ σ2

1

n1
, i, j = 1, . . . , n0, i ≠ j

σ2
0

n0
+ (4n1 − 3)σ

2
1

n1
, i, j = n0 + 1, . . . , n0 + n1, i = j

σ2
0

n0
− 3

σ2
1

n1
, i, j = n0 + 1, . . . , n0 + n1, i ≠ j

σ2
0

n0
− σ2

1

n1
,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i = n0 + n1 + 2, j = 1, . . . , n0 + n1 + 1

j = n0 + n1 + 2, i = 1, . . . , n0 + n1 + 1

,

σ2
0

n0
+ σ2

1

n1
, otherwise

(A.9)

Let Z = [Y,W ], where Y is the vector containing the first n0+n1+1 components of Z,

and W = 2(µ̂ − a). Note that

p (ε̂r = 0, µ̂ = a, µ̂0 > µ̂1) = P (ε̂r=0, µ̂0 > µ̂1 ∣ µ̂ = a) p(µ̂ = a)

= P (Y > 0 ∣ µ̂ = a)p(µ̂ = a)

= P (Y > 0 ∣W = 0)p(µ̂ = a)

(A.10)

Now, it is a well-known fact (e.g. see Theorem 2.5.1 in [135]) that the distribution of

vector Y given W is again Gaussian, with mean µY − µW

σ2
W

ΣYW , and covariance matrix

ΣY − 1
σ2

W
ΣYWΣT

YW . In addition, p(µ̂ = a) is a Gaussian density with mean µ0+µ1

2

and variance 1
4(

σ2
0

n0
+ σ2

1

n1
). The computation of p (ε̂r = k

n0+n1
, µ̂ = a, µ̂0 < µ̂1) is entirely

similar. ◻

Proof of Theorem 6.

We give the proof for the case P (ε̂l=0, µ̂ ∈ (a, b), µ̂0 > µ̂1), the other cases being en-

tirely similar. The univariate discriminant where the i-th sample is left out is given
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by

W (i)(x) = (x − µ̂(i)) ν̂(i)

where µ̂(i) and ν̂(i) are the average and difference, respectively, of sample means

when the i-th sample is left out. Let us define the event intersection of the events

A = {µ̂ − a > 0} ∩ {−µ̂ + b > 0} ∩ {µ̂0 − µ̂1 > 0}. We have that:

P (W (1)(X1) ≥ 0,. . . ,W (n0)(Xn0) ≥ 0,W (n0+1)(Xn0+1) < 0,. . . ,W (n0+n1)(Xn0+n1)<0,A)

= P (X1 − µ̂(1) ≥ 0, ν̂(1) ≥ 0,X2 − µ̂(2) ≥ 0, ν̂(2) ≥ 0, . . . , Xn0 − µ̂(n0) ≥ 0, ν̂(n0) ≥ 0,

µ̂(n0+1) −Xn0+1 ≥ 0, ν̂(n0+1) ≥ 0, . . . , µ̂(n0+n1) −Xn0+n1 ≥ 0, ν̂(n0+n1) ≥ 0,A)

+ P (X1 − µ̂(1) < 0, ν̂(1) < 0,X2 − µ̂(2) ≥ 0, ν̂(2) ≥ 0, . . . , Xn0 − µ̂(n0) ≥ 0, ν̂(n0) ≥ 0,

µ̂(n0+1) −Xn0+1 ≥ 0, ν̂(n0+1) ≥ 0, . . . , µ̂(n0+n1) −Xn0+n1 ≥ 0, ν̂(n0+n1) ≥ 0,A)

⋮

+ P (X1 − µ̂(1) < 0, ν̂(1) < 0,X2 − µ̂(2) < 0, ν̂(2) < 0, . . . , Xn0 − µ̂(n0) < 0, ν̂(n0) < 0,

µ̂(n0+1) −Xn0+1 < 0, ν̂(n0+1) < 0, . . . , µ̂(n0+n1) −Xn0+n1 < 0, ν̂(n0+n1) < 0,A)

where in fact the total number of joint probabilities that should be computed is 2n02n1 .

Simplification by grouping repeated probabilities results in:

P (ε̂l = 0) =
n0

∑
m=0

n1

∑
n=0

(n0

m
)(n1

n
) P (Z1,m,n ≥ 0)
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where Z1,m,n = Em,nZ1 in which matrix Z1 = AX −c where c is determined as follows:

c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

⋮

0

2a

−2b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
(2n0+2n1+3)×1

(A.11)

and X = [X1, . . . ,Xn0+n1] and A is:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A1

A2

A3

A4

A5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
(2n0+2n1+3)×(n0+n1)

(A.12)

where

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2(1 − 1
n0

) − 1
n0

. . . − 1
n0

−( 1
n1
− 1
n0n1

) . . . −( 1
n1
− 1
n0n1

)

− 1
n0

2(1 − 1
n0

) . . . − 1
n0

−( 1
n1
− 1
n0n1

) . . . −( 1
n1
− 1
n0n1

)

⋮ ⋮ ⋱ ⋮ ⋮

− 1
n0

− 1
n0

. . . 2(1 − 1
n0

) −( 1
n1
− 1
n0n1

) . . . −( 1
n1
− 1
n0n1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
n0×(n0+n1)
(A.13)

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
n0

. . . 1
n0

−( 1
n1
− 1
n0n1

) −( 1
n1
− 1
n0n1

) . . . −( 1
n1
− 1
n0n1

)
1
n0

0 . . . 1
n0

−( 1
n1
− 1
n0n1

) −( 1
n1
− 1
n0n1

) . . . −( 1
n1
− 1
n0n1

)

⋮ ⋱ ⋮ ⋮ ⋮
1
n0

. . . 1
n0

0 −( 1
n1
− 1
n0n1

) −( 1
n1
− 1
n0n1

) . . . −( 1
n1
− 1
n0n1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
n0×(n0+n1)

(A.14)
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A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

( 1
n0
− 1
n0n1

) . . . ( 1
n0
− 1
n0n1

) −2(1 − 1
n1

) 1
n1

. . . 1
n1

( 1
n0
− 1
n0n1

) . . . ( 1
n0
− 1
n0n1

) 1
n1

−2(1 − 1
n1

) . . . 1
n1

⋮ ⋮ ⋮ ⋱

( 1
n0
− 1
n0n1

) . . . ( 1
n0
− 1
n0n1

) 1
n1

. . . 1
n1

−2(1 − 1
n1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
n1×(n0+n1)

(A.15)

A4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

( 1
n0
− 1
n0n1

) . . . ( 1
n0
− 1
n0n1

) 0 − 1
n1

− 1
n1

. . . − 1
n1

( 1
n0
− 1
n0n1

) . . . ( 1
n0
− 1
n0n1

) − 1
n1

0 − 1
n1

. . . − 1
n1

⋮ ⋮ ⋮ ⋱

( 1
n0
− 1
n0n1

) . . . ( 1
n0
− 1
n0n1

) − 1
n1

− 1
n1

. . . − 1
n1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
n1×(n0+n1)

(A.16)

A5 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
n0

. . . 1
n0

− 1
n1

. . . − 1
n1

1
n0

. . . 1
n0

1
n1

. . . 1
n1

−1
n0

. . . −1
n0

−1
n1

. . . −1
n1

⎞
⎟⎟⎟⎟⎟⎟
⎠

3×(n0+n1)

(A.17)

Therefore, Z1 is a Gaussian random vector, with mean µZ1 = AµX − c and covari-

ance ΣZ = AΣXAT . Substituting the values of µX = [µ01n0 , µ11n1]T and ΣX =

diag(1n0 ,1n1) results in the values of µZ1 and ΣZ1 stated in the Theorem. ◻



124

APPENDIX B

PROOFS IN CHAPTER III

Proof of Theorem 9

Using the fact that the univariate discriminant is given by:

W (X) = (X − X̄) (X̄0 − X̄1) (B.1)

it follows that we have:

P (W (X̄0, X̄1,X) ≤ 0 ∣X ∈ Π0)=P (X − X̄ < 0, X̄0 − X̄1>0)+P (X − X̄ ≥ 0, X̄0 − X̄1<0)

where X̄ = X̄0+X̄1

2 . Expanding X̄0 and X̄1 by 1
n0
∑n0
i=1Xi and X̄1 = 1

n1
∑n0+n1
i=n0+1Xi,

respectively results in:

P (W (X̄0, X̄1,X) ≤ 0 ∣X ∈ Π0) = P (ZI < 0) + P (ZI ≥ 0)

where vector ZI is ZI = AY in which Y = [X,X1, . . . ,Xn0 ,Xn0+1, . . . ,Xn0+n1]T and

A =
⎛
⎜⎜
⎝

1 − 1
2n0

− 1
2n0

. . . − 1
2n0

− 1
2n1

. . . − 1
2n1

0 − 1
n0

− 1
n0

. . . − 1
n0

1
n1

. . . 1
n1

⎞
⎟⎟
⎠

Therefore, ZI is a gaussian random vector with meanAµY and covarianceAΣYAT .

Substituting the values of µY = [µ01n0+1, µ11n1]T and ΣY = diag(σ2
01n0+1, σ2

11n1)

reduces to the expression stated in Theorem 9. Evaluating the mean and covari-

ance matrix of vector ZII stated in the theorem is entirely similar by considering

P (W (X̄0, X̄1,X) > 0 ∣X ∈ Π1, X̄0, X̄1) .
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Proof of Theorem 10

We try to expand the first term in (3.8). Other terms are very similar. Using

the univariate representation of classifier in (B.1), we have:

P (W (X̄0, X̄1,X) ≤ 0,W (X̄0, X̄1,X ′) ≤ 0 ∣X,X ′ ∈ Π0) =

P (X − X̄ ≥ 0, X̄0 − X̄1 < 0,X ′ − X̄ ≥ 0, X̄0 − X̄1 < 0)+

P (X − X̄ < 0, X̄0 − X̄1 > 0,X ′ − X̄ < 0, X̄0 − X̄1 ≥ 0)+

P (X − X̄ ≥ 0, X̄0 − X̄1 < 0,X ′ − X̄ < 0, X̄0 − X̄1 ≥ 0)+

P (X − X̄ < 0, X̄0 − X̄1 ≥ 0,X ′ − X̄ ≥ 0, X̄0 − X̄1 < 0)

Expanding X̄0 and X̄1 by 1
n0
∑n0
i=1Xi and X̄1 = 1

n1
∑n0+n1
i=n0+1Xi, respectively results in

P (W (X̄0, X̄1,X) ≤ 0,W (X̄0, X̄1,X ′) ≤ 0 ∣X,X ′ ∈ Π0) =

P (ZI
0 < 0) + P (ZI

0 ≥ 0) + P (ZI
1 < 0) + P (ZI

1 ≥ 0)

where ZI
0 = A0Y and ZI

1 = A1Y in which Y = [X,X ′,X1, . . . ,Xn0 ,Xn0+1, . . . ,Xn0+n1]T

and

A0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 − 1
2n0

− 1
2n0

. . . − 1
2n0

− 1
2n1

. . . − 1
2n1

0 0 − 1
n0

− 1
n0

. . . − 1
n0

1
n1

. . . 1
n1

0 1 − 1
2n0

− 1
2n0

. . . − 1
2n0

− 1
2n1

. . . − 1
2n1

0 0 − 1
n0

− 1
n0

. . . − 1
n0

1
n1

. . . 1
n1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 − 1
2n0

− 1
2n0

. . . − 1
2n0

− 1
2n1

. . . − 1
2n1

0 0 − 1
n0

− 1
n0

. . . − 1
n0

1
n1

. . . 1
n1

0 −1 1
2n0

1
2n0

. . . 1
2n0

1
2n1

. . . 1
2n1

0 0 1
n0

1
n0

. . . 1
n0

− 1
n1

. . . − 1
n1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Therefore, ZI
0 and ZI

1 are gaussian random vectors with means A0µY and A1µY

and covariance matrices A0ΣYAT0 and A1ΣYAT1 , respectively. Substituting the values
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of µY = [µ01n0+2, µ11n1]T and ΣY = diag(σ2
01n0+2, σ2

11n1) reduces to the expression

stated in Theorem 10. Evaluating the means and covariance matrices of ZII
i < 0 and

ZII
i < 0, i = 0,1 stated in the theorem is entirely similar by considering the corre-

sponding terms in (3.8).

Proof of Theorem 13

We try to expand the first term in (3.13). Other terms are very similar. Using

the univariate representation of classifier in (B.1), we have:

P (W (X̄0, X̄1,X) ≤ 0,W (X̄0, X̄1,X1) ≤ 0 ∣X ∈ Π0) =

P (X − X̄ ≥ 0, X̄0 − X̄1 < 0,X1 − X̄ ≥ 0, X̄0 − X̄1 < 0)+

P (X − X̄ < 0, X̄0 − X̄1 > 0,X1 − X̄ < 0, X̄0 − X̄1 ≥ 0)+

P (X − X̄ ≥ 0, X̄0 − X̄1 < 0,X1 − X̄ < 0, X̄0 − X̄1 ≥ 0)+

P (X − X̄ < 0, X̄0 − X̄1 ≥ 0,X1 − X̄ ≥ 0, X̄0 − X̄1 < 0)

Expanding X̄0 and X̄1 by 1
n0
∑n0
i=1Xi and X̄1 = 1

n1
∑n0+n1
i=n0+1, respectively results in

the gaussian vectors ZI
0 and ZI

1 with the means and covariance matrices stated in

Theorem 13.
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APPENDIX C

PROOFS IN CHAPTER IV

Proof of Theorem 16

Since the classification error ε is invariant to any linear transformation, we can

use the canonical convenient form proposed by [136], with Σ = I and µ1 = −µ0 =

( δ2 ,0, . . . ,0)T .

We prove that Var(Ĝ0)
K→0. Let V (i) denote the i-th component of vector V . We

have

Var(Ĝ0)=Var(E[W (X̄0, X̄1,X)∣X̄0, X̄1,X ∈Π0])=Var((−δ
2
−X̄(1)) ā(1)−

p

∑
i=2

X̄(i)a(i))

(C.1)

where X̄ = X̄0+X̄1

2 and ā = X̄0 − X̄1 are Gaussian vectors, with mean vectors and

covariance

µX̄ = (0, . . . ,0) , µā = (−δ,0, . . . ,0) ,ΣX̄ = 1

4
( 1

n0

+ 1

n1

) Ip ,Σā = ( 1

n0

+ 1

n1

) Ip (C.2)

Given the independence of the vector components, and using the results of [137] to

find the variance of a product of non central gaussian vectors, algebraic manipulation

leads to:

Var(Ĝ0) = δ2

n1

+ p
2
( 1

n2
0

+ 1

n2
1

) K→0 (C.3)

as desired. By a simple application of Chebyshev’s inequality, it follows that

pklim
n0,n1, p→∞

Ĝ0 = klim
n0,n1, p→∞

E[Ĝ0] = klim
n0,n1, p→∞

E[W (X̄0, X̄1,X) ∣X ∈ Π0]

= klim
n0,n1, p→∞

[δ
2

2
+ p

2
( 1

n1

− 1

n0

)] = 1

2
(δ2 + λ1 − λ0)∆=G0

(C.4)
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An analogous argument shows that Var(Ĝ1)
K→0 and

pklim
n0,n1, p→∞

Ĝ1 = klim
n0,n1, p→∞

E[Ĝ1] =
1

2
(δ2 + λ0 − λ1)∆=G1 (C.5)

Now we prove that Var(D̂0)
K→0. We have

D̂0 = Var(W (X̄0, X̄1,X) ∣ X̄0, X̄1,X ∈ Π0) = āTΣX ā = āT ā = δ̂2 (C.6)

since ΣX = Ip, where ā is defined as before and δ̂2 = (X̄0 − X̄1)
T (X̄0 − X̄1). Notice

that

δ̂2

1
n0
+ 1
n1

∼ χ2
1 (

δ2

1
n0
+ 1
n1

) + χ2
p−1 (C.7)

i.e., the sum of a noncentral and a central independent chi-square random variable,

with the noncentrality parameter and degrees of freedom indicated. It follows that

Var(D̂0)=(
1

n0

+ 1

n1

)
2

[Var(χ2
1 (

δ2

1
n0
+ 1
n1

))+Var(χ2
p−1)]=4δ2 ( 1

n0

+ 1

n1

) + 2p( 1

n0

+ 1

n1

)
2
K→0

(C.8)

as desired. By a simple application of Chebyshev’s inequality, it follows that

pklim
n0,n1, p→∞

D̂0 = klim
n0,n1, p→∞

E[D̂0] = klim
n0,n1, p→∞

E[Var(W (X̄0, X̄1,X) ∣ X̄0, X̄1,X ∈ Π0)]

= klim
n0,n1, p→∞

[δ2 + p( 1

n0

+ 1

n1

)] = δ2 + λ0 + λ1
∆=D

(C.9)

An analogous argument shows that Var(D̂1)
K→0 and

pklim
n0,n1, p→∞

D̂1 = klim
n0,n1, p→∞

E[D̂1] = δ2 + λ0 + λ1 = D (C.10)
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By using the Continuous Mapping Theorem [133], it follows that

pklim
n0,n1, p→∞

ε0 = pklim
n0,n1, p→∞

Φ
⎛
⎝
− Ĝ0√

D̂0

⎞
⎠
= Φ

⎛
⎝

pklim
n0,n1, p→∞

− Ĝ0√
D̂0

⎞
⎠
= Φ(− G0√

D
)

pklim
n0,n1, p→∞

ε1 = pklim
n0,n1, p→∞

Φ
⎛
⎝
Ĝ1√
D̂1

⎞
⎠
= Φ

⎛
⎝

pklim
n0,n1, p→∞

Ĝ1√
D̂1

⎞
⎠
= Φ( G1√

D
)

(C.11)

Boundedness and continuity of Φ allows one to apply the Helly-Bray Theorem [138]

to obtain

klim
n0,n1, p→∞

E[ε0]= klim
n0,n1, p→∞

E

⎡⎢⎢⎢⎢⎣
Φ

⎛
⎝
− Ĝ0√

D̂0

⎞
⎠

⎤⎥⎥⎥⎥⎦
=E

⎡⎢⎢⎢⎢⎣
Φ

⎛
⎝

pklim
n0,n1, p→∞

−Ĝ0√
D̂0

⎞
⎠

⎤⎥⎥⎥⎥⎦
=Φ(−G0√

D
)

klim
n0,n1, p→∞

E[ε1]= klim
n0,n1, p→∞

E

⎡⎢⎢⎢⎢⎣
Φ

⎛
⎝
Ĝ1√
D̂1

⎞
⎠

⎤⎥⎥⎥⎥⎦
=E

⎡⎢⎢⎢⎢⎣
Φ

⎛
⎝

pklim
n0,n1, p→∞

Ĝ1√
D̂1

⎞
⎠

⎤⎥⎥⎥⎥⎦
=Φ( G1√

D
)

(C.12)

Proof of Theorem 17

Using the linear transformation introduced in the proof of Theorem 16, we first

transform the data to normal distributions with Σ = I and µ1 = −µ0 = ( δ2 ,0,0, . . . ,0)T .

We prove that Var(Ĝ r
0 )

K→0 and Var(D̂ r
0 )

K→0. Notice that the random vector

(X1, X̄0, X̄1) has a multivariate normal distribution with mean vector (µ0, µ0, µ1)

and covariance matrix
⎛
⎜⎜⎜⎜⎜⎜
⎝

I I
n0

0

I
n0

I
n0

0

0 0 I
n1

⎞
⎟⎟⎟⎟⎟⎟
⎠

(C.13)

Using properties of the multivariate normal distribution [4], we conclude that

X1 ∣ X̄0, X̄1 ∼ N (X̄0,(1 − 1

n0

)I) (C.14)

From this it follows easily that

(X1 −
X̄0 + X̄1

2
)
T

(X̄0 − X̄1) ∣X̄0, X̄1 ∼ N ( δ̂
2

2
,(1 − 1

n0

) δ̂2) (C.15)
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in which δ̂2 = (X̄0 − X̄1)
T (X̄0 − X̄1). Hence, to show that Var(Ĝ r

0 )
K→0 and Var(D̂ r

0 )
K→0,

all we need to do is to show that Var(δ̂2)K→0. As we proved (C.8) using (C.7), it follows

that

Var(δ̂2) = 4δ2 ( 1

n0

+ 1

n1

) + 2p( 1

n0

+ 1

n1

)
2
K→0 (C.16)

as desired. By a simple application of Chebyshev’s inequality, it follows that

pklim
n0,n1, p→∞

Ĝ r
0 = klim

n0,n1, p→∞
E[Ĝ r

0 ] = klim
n0,n1, p→∞

E[W (X̄0, X̄1,X1)]

= klim
n0,n1, p→∞

[δ
2

2
+ p

2
( 1

n0

+ 1

n1

)] = 1

2
(δ2 + λ0 + λ1)∆=G

(C.17)

pklim
n0,n1, p→∞

D̂ r
0 = klim

n0,n1, p→∞
E[D̂ r

0 ] = klim
n0,n1, p→∞

E[Var(W (X̄0, X̄1,X1 ∣ X̄0, X̄1)]

= klim
n0,n1, p→∞

[(1 − 1

n0

)(δ2 + p( 1

n0

+ 1

n1

))] = δ2 + λ0 + λ1
∆=D

(C.18)

An analogous argument shows thatVar(Ĝ r
1 )

K→0 and Var(D̂ r
1 )

K→0 and

pklim
n0,n1, p→∞

Ĝ r
1 = klim

n0,n1, p→∞
E[Ĝ r

1 ] = −
1

2
(δ2 + λ0 + λ1)=−G,

pklim
n0,n1, p→∞

D̂ r
1 = klim

n0,n1, p→∞
E[D̂ r

1 ] = δ2 + λ0 + λ1=D
(C.19)

The rest of the proof proceeds much as in the case of the proof of Theorem 16. By

using the Continuous Mapping Theorem [133], it follows that

pklim
n0,n1, p→∞

ε r0 = pklim
n0,n1, p→∞

Φ
⎛
⎜
⎝
− Ĝ r

0√
D̂ r

0

⎞
⎟
⎠
= Φ

⎛
⎜
⎝

pklim
n0,n1, p→∞

− Ĝ r
0√
D̂ r

0

⎞
⎟
⎠
= Φ(− G√

D
) (C.20)

pklim
n0,n1, p→∞

ε r1 = pklim
n0,n1, p→∞

Φ
⎛
⎜
⎝
Ĝ r

1√
D̂ r

1

⎞
⎟
⎠
= Φ

⎛
⎜
⎝

pklim
n0,n1, p→∞

Ĝ r
1√
D̂ r

1

⎞
⎟
⎠
= Φ(− G√

D
) (C.21)
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Boundedness and continuity of Φ allows one to apply the Helly-Bray Theorem [138]

to obtain

klim
n0,n1, p→∞

E[ε̂ r0 ]= klim
n0,n1, p→∞

E[ε r0 ]= klim
n0,n1, p→∞

E

⎡⎢⎢⎢⎢⎢⎣
Φ
⎛
⎜
⎝
−Ĝ r

0√
D̂ r

0

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
=E

⎡⎢⎢⎢⎢⎢⎣
Φ
⎛
⎜
⎝

pklim
n0,n1, p→∞

−Ĝ r
0√
D̂ r

0

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
=Φ(−G√

D
)

(C.22)

klim
n0,n1, p→∞

E[ε̂ r1 ]= klim
n0,n1, p→∞

E[ε r1 ]= klim
n0,n1, p→∞

E

⎡⎢⎢⎢⎢⎢⎣
Φ
⎛
⎜
⎝
Ĝ r

1√
D̂ r

1

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
=E

⎡⎢⎢⎢⎢⎢⎣
Φ
⎛
⎜
⎝

pklim
n0,n1, p→∞

Ĝ r
1√
D̂ r

1

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
=Φ(−G√

D
)

(C.23)

From this it also follows that

klim
n0,n1, p→∞

E[ε̂ r] = klim
n0,n1, p→∞

(α̂0E[ε̂ r0 ] + α̂1E[ε̂ r1 ])

= λ1

λ0 + λ1

Φ( −G√
D

) + λ0

λ0 + λ1

Φ( −G√
D

)=Φ( −G√
D

)
(C.24)

Proof of Theorem 19

Using the linear transformation in the proof of Theorem 16, we transform the

data to normal distributions with Σ = I and µ1 = −µ0 = ( δ2 ,0,0, . . . ,0)T . In the proof

of Theorem 17, it was shown that Var(Ĝ r
i )

K→0 and Var(D̂ r
i )

K→0, for i = 0,1, from

which we have:

pklim
n0,n1, p→∞

Ĝ r
0 = 1

2
(δ2 + λ0 + λ1) = G, pklim

n0,n1, p→∞
Ĝ r

0 = −1

2
(δ2 + λ0 + λ1) = −G

pklim
n0,n1, p→∞

D̂ r
0 = pklim

n0,n1, p→∞
D̂ r

1 = δ2 + λ0 + λ1 = D
(C.25)

We now prove that Var(Ĥ r
0 )

K→0. Similarly to the proof of Theorem 17 and the way

(C.14) was obtained, it is possible to show that

⎡⎢⎢⎢⎢⎢⎢⎣

X1

X2

⎤⎥⎥⎥⎥⎥⎥⎦
∣ X̄0, X̄1 ∼ N

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

X̄0

X̄0

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

(1 − 1
n0

) I − 1
n0
I

− 1
n0
I (1 − 1

n0
) I

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠

(C.26)
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It follows that

Ĥ r
0 = Cov(W (X̄0, X̄1,X1),W (X̄0, X̄1,X2) ∣ X̄0, X̄1) = − 1

n0

δ̂2 (C.27)

where δ̂2 was defined in the proof of Theorem 17. It was shown there that Var(δ̂2)K→0.

Therefore, Var(Ĥ r
0 )

K→0, as desired. Application of the Chebyshev’s inequality yields

pklim
n0,n1, p→∞

Ĥ r
0 = klim

n0,n1, p→∞
E[Ĥ r

0 ]

= klim
n0,n1, p→∞

E[Cov(W (X̄0, X̄1,X1),W (X̄0, X̄1,X2) ∣ X̄0, X̄1)]

= klim
n0,n1, p→∞

− 1

n0

E[δ̂2] = klim
n0,n1, p→∞

[− δ
2

n0

− p
2
( 1

n2
0

+ 1

n0n1

)] = 0

(C.28)

An analogous argument shows that Var(Ĥ r
1 )

K→0 and pklim
n0,n1, p→∞

Ĥ r
1 = klim

n0,n1, p→∞
E[Ĥ r

1 ] =

0. The rest of the proof proceeds as in the case of the proofs of Theorem 16 and 17.
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