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ABSTRACT

Delay-sensitive Communications:

Code-Rates, Strategies, and Distributed Control. (December 2011)

Parimal Parag, B. Tech., Indian Institute of Technology Madras;

M. Tech., Indian Institute of Technology Madras

Co–Chairs of Advisory Committee: Dr. Jean-François Chamberland
Dr. Srinivas Shakkottai

An ever increasing demand for instant and reliable information on modern com-

munication networks forces codewords to operate in a non-asymptotic regime. To

achieve reliability for imperfect channels in this regime, codewords need to be re-

transmitted from receiver to the transmit buffer, aided by a fast feedback mechanism.

Large occupancy of this buffer results in longer communication delays. Therefore,

codewords need to be designed carefully to reduce transmit queue-length and thus

the delay experienced in this buffer. We first study the consequences of physical layer

decisions on the transmit buffer occupancy. We develop an analytical framework to

relate physical layer channel to the transmit buffer occupancy. We compute the

optimal code-rate for finite-length codewords operating over a correlated channel,

under certain communication service guarantees. We show that channel memory has

a significant impact on this optimal code-rate.

Next, we study the delay in small ad-hoc networks. In particular, we find out

what rates can be supported on a small network, when each flow has a certain end-

to-end service guarantee. To this end, service guarantee at each intermediate link

is characterized. These results are applied to study the potential benefits of setting
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up a network suitable for network coding in multicast. In particular, we quantify

the gains of network coding over classic routing for service provisioned multicast

communication over butterfly networks. In the wireless setting, we study the trade-

off between communications gains achieved by network coding and the cost to set-up

a network enabling network coding. In particular, we show existence of scenarios

where one should not attempt to create a network suitable for coding.

Insights obtained from these studies are applied to design a distributed rate con-

trol algorithm in a large network. This algorithm maximizes sum-utility of all flows,

while satisfying per-flow end-to-end service guarantees. We introduce a notion of

effective-capacity per communication link that captures the service requirements of

flows sharing this link. Each link maintains a price and effective-capacity, and each

flow maintains rate and dissatisfaction. Flows and links update their respective vari-

ables locally, and we show that their decisions drive the system to an optimal point.

We implemented our algorithm on a network-simulator and studied its convergence

behavior on few networks of practical interest.
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CHAPTER I

INTRODUCTION

Cellular networks and the Internet are two celebrated examples of widely successful

telecommunication systems. The former offers great flexibility and ubiquitous ac-

cess, while the latter provides high data rates with negligible delays. The mobility

offered by wireless communication comes at the price of fading and severe channel

conditions. As a consequence, cellular service providers need to setup a large local

infrastructure equipped with highly centralized control. The Internet on the other

hand is a collection of several inter-connected networks, with several being added

everyday to the world-wide web. Internet users are rational and selfish agents trying

to maximize their individual experience. It is hard to have a central entity control-

ling such a large interconnected network. Therefore, any global objective needs to

be achieved in a distributed local fashion.

In both of the above communication networks, the last hop is usually the bottle-

neck link. Either, we have severely fading wireless channels in cellular networks, or

constrained wired link from home to cable head-end in the Internet. Recent advances

in technology such as smart phones and tablet personal computers are bringing these

two networks closer together to create a smarter, ubiquitous modern communication

system. These networks strive to offer a combination of communication, computa-

tion, and entertainment on a single hand-held mobile device. All of the above three

applications can be very sensitive to delay and jitter. Some of the delay-sensitive

applications such as video-conferencing, real-time computing, and streaming videos

constitute a large part of communication traffic. To support delay-sensitive applica-

The journal model is IEEE Transactions on Automatic Control.
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tions on modern communication networks one needs to efficiently utilize the available

resources.

To efficiently utilize a communication link, one employs transmitter buffers that

can store the incoming packets to be sent over the channel at the opportune times.

Buffering can improve communication efficiency, but it comes at the price of in-

creasing transmission delay. This illustrates the throughput-delay tradeoff, that we

investigate in detail in this work. In particular, we compute the achievable reliable

communication rates under statistical guarantees on occupancy of transmit buffer.

Depending on the application in question, there may be variability in the gen-

eration of packets to be sent over a communication channel. Furthermore, wireless

channels are stochastic in nature, leading to fluctuating service available to the trans-

mitter during every transmission opportunity. Variability in communication links

and arrival processes, is often captured by their statistical models. This modeling

enables the design of efficient and robust systems. However, statistical models make

it difficult to provide deterministic service guarantees. Therefore, throughout this

dissertation we will be interested in statistical guarantees on communication.

This dissertation addresses the problem of delay-sensitive communication at

multiple levels and from different perspectives. The common theme being provision

of statistical service guarantees to each communication flow. We are interested in

obtaining the fundamental rates of communication that can be supported for a com-

munication channel with a known statistical characterization. Moreover, we utilize

the insights obtained to extend this study to service guaranteed communication over

small networks. To provide service guarantees over large networks, one needs to

provide a distributed algorithm that utilizes local information to arrive at a global

optimum. Below, we introduce three related problems in detail.
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A. Bit-Erasure Channel

Given a statistical characterization of a communication link, one can identify a fun-

damental limit on the rate that can be reliably communicated over this link. This

information theoretic bound is known as the Shannon capacity [1] of the channel.

Recent advances in coding theory have led us to capacity achieving codes. These

codes are quite sophisticated and can be of large lengths, thereby increasing decod-

ing and hence communication delays. For applications intolerant to delays, these

coding schemes become impractical. Therefore, a natural question to ask is: what

are the bounds on rates of reliable communication with service guarantees?

It is easy to see that no finite delay guarantee can be satisfied for reliable com-

munication over stochastic channels. In fact, there is a non-vanishing probability of

reception failure, for any finite-length code. A simple way of achieving reliability over

such channels is simple retransmission of packets. If the communication is aided by

acknowledgments from the receiver, the transmitter buffer can store the packets and

keep retransmitting until successful reception. We focus our attention on statistical

service guarantees, such as queue-occupancy of this transmitter buffer.

There are two main questions we wish to address in this context of delay-sensitive

communication with finite-length codes. What is the optimal code-rate for a given

service guarantee, and what is the impact of channel correlation on this code-rate?

It is known that one can achieve reliable communication by operating at a code-

rate below Shannon capacity. However, this is an asymptotic result and the answer

is not obvious for finite code blocks and specific service guarantees. A low rate

code would have low probability of transmission failure and hence less number of

retransmissions in an expected sense. However, a low-rate code also sends fewer

bits across a communication link during every transmission opportunity. This seems
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to suggest an optimal operating point for finite-length codes with fixed code-rates.

Furthermore, correlation is not a huge issue in asymptotic results, since one can

always interleave transmitted bits such that successive coded bits are independent

from each other. However, this does not hold true in a non-asymptotic regime. In

fact, some preliminary results suggest that the optimal code-rate would depend on

channel memory. We seek to quantify this dependence as well.

Apart from a quantitative answer to the above two questions, one of the ma-

jor contributions in this work is the careful modeling of the physical and data link

layers. This modeling allows us to conduct our analysis utilizing existing mathemat-

ical tools. In particular, we employ a Markov modulated bit-erasure channel model

for the communication link. In this model, transmitted bits see one of the Markov

channel states. In each of these states, the transmitted bit can either be detected

successfully or erased completely. The erasure probability is characteristic of each

channel state. Further, the mixing time of this Markov chain models the channel

correlation. Packet arrival is modeled as a Bernoulli random process, with packet

length being geometrically distributed. Incoming packets are stored in large buffer

and await transmission. Packets are broken into segments, and encoded into a fi-

nite length code and transmitted over the bit-erasure channel with memory. Each

segment is retransmitted to the receiver, until a successful reception arrives at the

transmitter. We employ random coding for analytical tractability. The mathemat-

ical techniques utilized in this section can be utilized to study channels with errors

and more sophisticated coding schemes.

At the outset, we would like to admit that there are far more sophisticated

ways of trying to achieve reliability with service constraints. For example, one can

employ a rateless coding scheme at the transmitter. In this scheme, the transmitter

initially sends pure information bits, and then sends additional redundancy bits for
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each instance of reception failure. This is akin to changing code-rates based on the

partial channel state information sent by the receiver. Given complete channel state

information at the transmitter, temporal water filling maximizes system performance.

However, we stick to simpler models to keep the analysis tractable and understand

the simplest non-trivial problem in this area.

B. Network Coding

In modern communication networks, packets have to traverse through multiple hops

before they reach their desired destination. Traditionally, multi-hop communication

is modeled as commodity flows. To provide service guarantees on such communica-

tion flows is a highly non-trivial task, due to three main reasons. First, end-to-end

service guarantees for a flow translate into service guarantees on each link traversed

by the flow in a convoluted fashion. Second, service guarantees at each communica-

tion link are influenced by the various flows sharing it. Third, buffers at intermediate

nodes have a non-linear effect of on the characteristics of the incoming flow.

Before addressing provision of service guarantees to communication flows, we

must question the validity of considering multi-hop transmission as a commodity

flow. The main reason for keeping the packets from unique source-destination pairs

separated arises from the simplicity in implementation of network flows. However,

data is a special type of commodity that can be encoded and hence transformed

at various intermediate nodes. One can take advantage of the redundancy in the

network to send at higher information rate, through the network. It has been shown

that sending coded information at intermediate nodes can achieve the cut-set bound

for multicast [2]. This idea is popularly referred to as network coding. We wish

to address two important questions related to network coding in this work. First,
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we wish to quantify the gains of network coding for a given statistical end-to-end

service guarantee. Second, we wish to investigate the scenarios where it makes sense

to employ network coding.

We compare network coding to classical routing to quantify the gains under a

delay-sensitive setting. It is intuitive to see that network coding gains are maximal

when communication links are completely utilized. Source burstiness, channel vari-

ations, and service guarantees collectively imply that links may not always be fully

loaded. Furthermore, classical routing enjoys statistical multiplexing gains at the

intermediate nodes, which may offset the gains of network coding. Therefore, it is

not clear how much we gain by applying network coding in a communication sys-

tem subject to Quality of Service (QoS) constraints. We provide quantitative results

on the benefits of network coding for a simple butterfly network in the context of

delay-sensitive applications.

Network coding works well for multicast and requires a certain redundancy in

the network. Further, if one sends coded information between a source-destination

pair through multiple routes, then the bottleneck route determines the rate of the

coded information. In the case of wireless mesh networks, one can allocate avail-

able physical-layer resources to individual nodes in a small area to form a network.

Therefore, there is a tradeoff in terms of the amount of resource required to set up

a network suitable for network coding and the performance gains offered. Given a

budget of physical resources, one can design optimal network topologies for classic-

routing and network coding. One must compare the system performance in these

two cases, to see when one should attempt to create a network suitable for coding.

This brings us back to the question of end-to-end service guarantees for the

flows in a general network. One way to deal with this problem is working with effec-

tive bandwidth. Looking at service guarantees on the tail-decay rate of transmitter
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buffer occupancy, effective bandwidth identifies the data-rate needed by a source to

fulfill its service requirement [3, 4]. In general, the effective bandwidth of a source

can be much larger than the average throughput it produces. Three properties of

effective bandwidths can be utilized to ensure end-to-end service guarantees. First,

the aggregate effective bandwidth of independent sources is additive. Second, so

long as the capacity of any link is higher than the aggregate effective-bandwidths

of the flows sharing it, the service requirements the corresponding sources are met.

Third, for “nice” sources, one can characterize the effective bandwidth of the depar-

ture processes from each intermediate node. Thus, if end-to-end service guarantees

for a flow are characterized in terms of the tail-decay rate of aggregate buffers of

each node it traverses, then an end-to-end service guarantee can be provided to this

flow if its effective bandwidth requirement is met at each link. We derive the ef-

fective bandwidth of the departure processes and utilize it to find the end-to-end

service guarantee for flows on small mesh networks. Classic-routing and network

coding cases are analysed with the proposed effective-bandwidth method. Analysis

for network coding case gets simplified, since mixing flows at the bottleneck link is

equivalent to the flows being oblivious of each other.

C. Distributed Control

We discussed in the previous section the challenges associated with providing end-

to-end service guarantees to flows traversing networks. We also discussed effective

bandwidth as one of the techniques to overcome these challenges. Such techniques are

popularly referred to as stochastic network calculus. Network calculus works well for

small network, however it faces two main challenges as the network size grows. First,

the service guarantee on the aggregate buffer occupancy cannot be treated on each



8

link separately. This is due to the correlation between successive link buffers. The

second problem is scaling; computing effective bandwidth as function of required

service guarantee per flow at each link gets cumbersome. Therefore, we look for

alternate local solutions that lead to global per-flow service guarantees.

In this work, we provide a per-flow based service guarantee in terms of an

abstract quantity “flow-degradation”. Degradation of each flow is guaranteed to be

lower than their accepted threshold. Degradation can capture many types of service

requirements, such as delay and queue-lengths. We assume that the total flow-

degradation is the sum of the degradations seen by the flow at each traversed link.

Further, we assume that degradation is inherent to a link and is convex increasing

with the total load. Under these assumptions, our global goal is to maximize the

sum-utility of all flows such that their per-flow constraints are satisfied.

It turns out that a simple dual-decomposition fails to provide a truly distributed

algorithm. This results from the strong coupling of per-flow constraints at each

shared link. Specifically, the flow-degradations are sums of the link degradations in

routes, and each link-degradation is caused and seen by all the flows sharing the link.

To overcome this hurdle, we introduce an “effective-capacity” inherent to every link

which acts as a service-limited capacity. In terms of this variable, we are able to

decouple the per-flow service constraints. Thus, we achieve a distributed solution

that maximizes sum-utility of individual flows while satisfying their per-flow service

guarantees. Our findings are supported by numerical studies on few representative

networks. We also simulated an implementation on a network simulator.



9

CHAPTER II

CODE-RATE SELECTION, QUEUEING BEHAVIOR AND THE CORRELATED

ERASURE CHANNEL

This chapter considers the relationship between code-rate selection and queueing

performance for communication systems subject to time-varying channel conditions.

While error-correcting codes offer protection against channel uncertainties, there ex-

ists a natural tradeoff between the enhanced protection of low-rate codes and the

rate penalty imposed by additional redundancy. In the limiting regime where code-

words are asymptotically long, this tradeoff is well-understood and characterized by

the Shannon capacity. However, for delay-sensitive communication systems and fi-

nite block-lengths, a complete characterization of this tradeoff is not fully developed.

This chapter offers a new perspective on the queueing performance of communica-

tion systems with finite block-lengths operating over correlated erasure channels. A

rigorous framework that links code-rate to overall system performance for random

codes is presented. Guidelines for code-rate selection in delay-sensitive systems are

identified. These findings are supported by a numerical study.

A. Introduction

The transmission of digital information over noisy channels has become common-

place in modern communication systems. The dependability of contemporary data

links is due, partly, to the many successes of information theory and error-control

coding [5]. In particular, the reliable transmission of digital information is possible

at rates approaching Shannon capacity using asymptotically long codewords [6, 7].

Indeed, many notable communication systems employ long codewords to provide

high throughput and low error probabilities [8].



10

One context where the insights offered by classical information theory do not

apply directly is the broad area of delay-constrained communications [9]. Real-time

traffic and live interactive sessions are very sensitive to latency. Long codewords are

not particularly well-suited for real-time applications because they entail lengthy en-

coding/decoding delays. Alternative engineering methods, including power control,

automatic repeat-request, scheduling and feedback, can be leveraged to establish

rapid end-to-end connections [10, 11]. Often, delay considerations force a system to

operate well below its Shannon limit [12].

Several articles in information theory are focused on the tradeoff between through-

put and delay. Coding performance as a function of delay has been assessed in the

information theory literature using the reliability function [6]. This performance cri-

terion identifies the error exponent of a code family as a function of data rate. The

notion of reliability function can be extended to variable-length codes in the pres-

ence of feedback, leading to the famous Burnashev error exponent [13–15]. While

significant, these results remain asymptotic in nature and do not capture the queue-

ing aspect of communication systems. Alternative approaches include effective ca-

pacity [16, 17], outage capacity [18, 19], average delay characterizations [20], fluid

analysis [21] and heavy-traffic limits [22]. While these contributions provide valuable

insights about the design of delay-sensitive systems, many such articles make ide-

alized assumptions about the behavior of coded transmissions. For instance, some

authors adopt the notion of instantaneous capacity: individual data blocks are as-

sumed, implicitly or explicitly, to possess enough degrees of freedom to support

sophisticated coding schemes and thereby approach Shannon capacity within every

time-slot. Perhaps reasonable for long codewords, such assumptions become more

of a concern for short data blocks. This is especially problematic for channels with

memory, where correlation over time promotes deviations from expected behavior.
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For a delay-constrained communication system that utilizes short codewords,

two opposite considerations seem to underlie the selection of an error-correcting

code. A low-rate code will, in general, result in a small probability of decoding

failure; whereas the same system with a high-rate code is more prone to errors. Still,

the successful decoding of a codeword associated with a higher-rate code leads to the

transmission of a larger number of information bits. In the limit of asymptotically

long codewords, it is clear that code-rate should only be slightly below Shannon

capacity. However, the optimal operating point for a system with short block length

is not so obvious [23]. It may depend on the physical resources available and the

service constraints imposed on the system.

Many previous inquiries in the area adopt a higher-layer viewpoint, using sim-

plistic models for the physical layer; or they embrace a channel-coding perspective,

intentionally disregarding queueing considerations. Herein, we seek to bridge the gap

between these extremes to address an important question. What is the optimal code-

rate for a particular implementation? Our approach in obtaining an answer to this

question differs from established work in that we strive to provide exact solutions.

To facilitate the type of queueing analysis we wish to carry, we make the fol-

lowing assumptions. The packet arrival process at the transmitter is Bernoulli, with

packet length having a geometric distribution at the bit level. The communication

medium is a bit-erasure channel with memory. Random codes, with maximum-

likelihood decoding, are employed to protect the sent information against erasures.

Collectively, these assumptions are sufficient to conduct a rigorous analysis of the

probability of block decoding failure at the receiver as well as a complete charac-

terization of the ensuing queueing behavior at the source. Implicit to our system

model is the ability to acknowledge the reception of packets through instantaneous

feedback. We emphasize that model components are selected with the intent to keep
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analysis manageable. The focus is on developing tools and techniques that can be

used to bridge communication, coding and queueing. Still, the framework admits

several extensions beyond the formulation presented in this chapter; some of these

extensions are discussed alongside the main results wherever appropriate.

The remainder of this chapter is organized as follows. The system model is

introduced in Section B, with the probability of block decoding failure being com-

puted explicitly in Section 3. Packet arrivals and departures form the main topic of

Section C. Altogether, this dictates the queueing behavior of the packetized systems,

which is analyzed in Section D. Numerical results are contained in Section E. Fi-

nally, new insights, concluding remarks and avenues of future research are discussed

in Section F.

B. System Model

We initiate our exposition of the system we wish to study with a description of the

underlying communication channel. Bits are sent from a source to a destination over

a Gilbert-Elliott erasure channel. The channel can be in one of two states which we

denote by integers {1, 2}. In state 1, every transmitted bit is erased with probability

ε1 independently of other bits. Similarly, in state 2, every bit is lost with probability

ε2. Throughout, we assumes that ε2 ≤ ε1 ≤ 1. Transitions between channel states

occur according to a Markov process. The probability of jumping to state 2 given

that the Markov chain is currently in state 1 is denoted by α. The reverse transition

probability from state 2 to 1 is written as β. The parameters of this Markov chain

can be expressed in the form of a transition probability matrix,

P =







1− α α

β 1− β






. (2.1)
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A graphical interpretation of this communication channel appears in Fig. 1. We note

2

1

ε2

ε1

α β

00

0 0

11

1 1

e

e

Fig. 1. A Gilbert-Elliott bit erasure channel is employed to model the operation of a

communication link with memory. This model captures both the uncertainty

associated with transmitting bits over a noisy channel and the correlation over

time typical of several communication channels.

that the methodology adopted in this chapter allows a larger number of channel states

and can be applied to more intricate physical links. The only fundamental aspect

of the Gilbert-Elliott channel is that it represents the simplest non-trivial instance

of a finite-state channel with memory, which leads to a more accessible treatment

of the problem. Markov models have been employed to capture the behavior of

communication channels in the past, and several studies point to methods of selecting

parameters to best match the profiles of communication links at the physical layer [24,

25]. In our framework, correlation over time is captured through the transition

probability matrix of the channel. At this point, we leave the parameters of our

Markov channel in an abstract form, seeking general solutions.

The state of the channel at instant n is a random variable, which we denote by

Cn. Using this notation, one can write the progression of the Markov chain over time

as {Cn : n ∈ N}. Finding the conditional probability Pr(Cn+1 = d|Cn = c), where
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c, d ∈ {1, 2}, amounts to selecting an entry in P. Likewise, Pr(Cn+N = d|Cn = c) is

obtained by locating the corresponding entry in PN , where

PN =
1

α + β







1 α

1 −β













1 0

0 (1− α− β)N













β α

1 −1







=







β+α(1−α−β)N

α+β
α−α(1−α−β)N

α+β

β−β(1−α−β)N

α+β
α+β(1−α−β)N

α+β






.

This Markov chain converges to its stationary distribution at an exponential rate

that depends on the second largest eigenvalue of P, which is 1−α−β. This quantity

can therefore be employed to quantify channel memory.

1. Segments, Block-Length, and Code-Rate

To transmit information over this erasure channel, data packets must first be pro-

cessed and encoded. In our framework, a packet of length L is sectioned into M data

segments, each containing K information bits. Packing loss is treated implicitly as

the last data segment of a packet is zero-padded to K bits. Thus, the number of

segments within a packet of length L is equal to M = ⌈L/K⌉. Every segment is

encoded separately into a codeword of length N , which is subsequently stored in the

queue for eventual transmission over the Gilbert-Elliott erasure channel. The trans-

mission of a codeword then requires N consecutive uses of the channel. We assume

that decoding failures are handled through immediate retransmission of the missing

data. The block-length, N , remains fixed throughout; it is determined by system

requirements and the availability of physical resources. On the other hand, the size

of a data segment, K (and therefore the code-rate r = K/N), is a parameter that

should be optimized.
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2. Distribution of Erasures

A quantity that is of fundamental importance in our analysis is the probability of de-

coding failure at the destination. An intermediate step in identifying this probability

is to derive expressions for the distributions of the number of erasures, E, within a

codeword. This, in turn, depends on the number of visits to each state within N

consecutive realizations of the channel. Specifically, we are interested in conditional

probabilities of the form

Pr(E = e, CN+1 = d|C1 = c), (2.2)

where c, d ∈ {1, 2}. The generating functions for these conditional probabilities

can be derived based on generalizing the entries of P to the vector space of real

polynomials in x, with

Px =







(1− α)(1− ε1 + ε1x) α(1− ε1 + ε1x)

β(1− ε2 + ε2x) (1− β)(1− ε2 + ε2x)






. (2.3)

Proposition B.1. Let JxkK be the linear functional that maps a polynomial in x to

the coefficient of xk. Then, the conditional probability Pr(E = e, CN+1 = d|C1 = c)

is given by

Pr(E = e, CN+1 = d|C1 = c) = JxeK
[

PN
x

]

c,d
, (2.4)

where Px is the matrix defined in (2.3).

Proof. This result can be shown using mathematical induction. Let Ei:j denote

the number of channel erasures occurring between times i and j, inclusively. By

construction, the proposition holds for N = 1. As an inductive step, assume that
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(2.4) is satisfied for N = n− 1 > 0. Then, one can write

Pr (E1:n = e, Cn+1 = cn+1|C1 = c1) =
∑

cn∈{1,2}
Pr(E1:n = e, Cn+1 = cn+1, Cn = cn|C1 = c1)

=
∑

cn∈{1,2}

∑

k∈{0,1}
Pr(En:n = k, Cn+1 = cn+1|Cn = cn) Pr(E1:n−1 = e− k, Cn = cn|C1 = c1)

=
∑

cn∈{1,2}

∑

k∈{0,1}
JxkK [Px]cn,cn+1

Jxe−kK
[

Pn−1
x

]

c1,cn
= JxeK [Pn

x]c1,cn+1
.

That is, (2.4) also holds for N = n. Since both the basis and the inductive step have

been verified, we conclude that the proposition is true for all integers N > 1.

We note that one can employ this method or alternative combinatorial means

to obtain closed-form expressions for the desired conditional probabilities [26, 27].

3. Probability of Decoding Failure

At the onset of every transmission attempt, a new code is created to encode K

information bits. The code is defined by a random parity-check matrix H of size

(N−K)×N . The entries of H are selected independently and uniformly over {0, 1}.

This scheme assumes shared randomness between the source and its destination.

Maximum likelihood decoding is used at the destination to decode the received mes-

sages. Consequently, the probability of decoding failure becomes a function only of

the number of erasures contained within a block. Once the value of E is known, one

can compute the probability of decoding failure using the following result.

Proposition B.2. The probability of decoding failure, given e erasures within a

codeword of length N , is equal to

Pf(N −K, e) = 1−
e−1
∏

i=0

(

1− 2i−(N−K)
)

.
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Proof. Conditioned on E = e, decoding at the destination will succeed if and only

if the submatrix of H formed by choosing the e erased columns has rank e. Fur-

thermore, the probability that a random p× e matrix over F2 has rank e is equal to

∏e−1
i=0 (1− 2i−p). Collecting these two results [28, p. 73], we obtain the probability

of a successful transmission, which in turn determines the probability of decoding

failure, given E = e.

The unconditioned probability of decoding failure at the destination is equal to

Pf(N −K) = E [Pf (N −K,E)] ,

where the distribution of E accounts for all the possible channel realizations within

a block. While the probability of decoding failure offers an important measure of

performance, it alone does not capture the queueing behavior of the system. Corre-

lation among decoding-failure events may also influence the behavior of the queue at

the transmitter. Having introduced a precise model for the physical layer, we turn

to the description of the arrival and departure processes of the queue.

C. Arrival and Departure Processes

Packets enter the queue according to a discrete-time Bernoulli process whose clock is

synchronized with the codeword transmission cycle. During every codeword trans-

mission attempt, a new packet arrives at the source with probability γ, independently

of other time instants. The number of bits in every data packet is random, with

packet sizes forming a sequence of independent and identically distributed random

variables. The marginal distribution of a packet size is geometric with parameter ρ.

In other words, the probability that a packet contains exactly ℓ bits is given by

Pr(L = ℓ) = (1− ρ)ℓ−1ρ ℓ = 1, 2, . . .
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where ρ ∈ (0, 1). The arrival process and the packet-length distribution have been

selected, partly, to facilitate the analysis we wish to carry. In particular, the memo-

ryless property of the geometric distribution and the independence over time of the

Bernoulli process are crucial properties that make for a tractable characterization of

queueing behavior. Adopting an intricate arrival process more in tune with a spe-

cific application can easily render analysis intractable. This explains why our arrival

process conforms to a model commonly found in the queueing literature.

Departures from the queue are governed by the underlying Gilbert-Elliott chan-

nel and the selected number of parity bits, N−K, of our random code. Probability of

decoding failure is monotonically increasing in code-rate, given a fixed block-length

N . However, the successful decoding of a high-rate codeword leads to the transmis-

sion of a larger number of information bits. As mentioned before, these competing

considerations create a natural tradeoff between data content and probability of de-

coding failure. Accordingly, the code-rate r = K/N , or equivalently the number of

information bits per data segment K, is a parameter that should be optimized.

Once the code-rate is specified, the number of successfully decoded codewords

needed to complete a packet transmission is random with M = ⌈L/K⌉. We note that

L being geometric with parameter ρ implies that M is also geometric with parameter

ρr =

K
∑

ℓ=1

(1− ρ)ℓ−1ρ = 1− (1− ρ)K .

Thus, the probability that a data packet requires the successful transmission of ex-

actly m codewords becomes

Pr(M = m) = (1− ρr)
m−1 ρr m = 1, 2, . . .

We emphasize that, in the current setting, the number of coded blocks per data

packet M retains the memoryless property.



19

In our formulation, we assume that K is independent of channel state, which

simplifies analysis. When side information is present at the transmitter, one can

enhance performance by picking K as a function of the current state. Further-

more, even without explicit state knowledge, it is possible to estimate the channel

state through available feedback, i.e., the automatic repeat-request sequence. In

the latter scenario, the selection of K as a function of state estimates becomes a

partially observable Markov decision process; such problems are often computation-

ally intractable and necessitate careful consideration. Accounting for the presence

of partial state information at the transmitter is beyond the scope of this chapter,

and we leave this matter as a possible future endeavor. This section completes the

description of the communication system under consideration. We proceed below

with the characterization of overall performance.

D. Queueing Behavior

Packets are stored in the queue upon generation by the source, and they remain

in this buffer until all the corresponding data segments are decoded successfully

at the destination. We assume that there are no packet losses and, as such, the

transmit buffer has no hard limit. When discussing the size of the queue at the

transmitter, two distinct characterizations are possible. The first option is to keep

track of the number of packets contained in the queue. The second choice is to track

the amount of data awaiting transmission. Although the latter alternative provides a

more accurate representation of buffer occupancy in bits, the former option is closely

related to the concept of packet delay and it is simpler to analyze. For these reasons,

we elect to define the state of the queue as the number of data packets in the queue,

as is customary in classical queueing literature [29–31].
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Recall that, in the proposed setting, a packet of length L is first subdivided into

M data segments. Each segment is encoded separately into a codeword of length

N , and the resulting message is subsequently sent over the communication channel.

Successful receptions are acknowledged instantaneously through feedback, whereas

decoding failures trigger immediate retransmission of the missing block. Upon confir-

mation of an accurate transfer, a data segment is marked as delivered and transmis-

sion of the next data block begins. Though the presence of instantaneous feedback

is assumed for mathematical convenience, it may be approximated in practice using

high-speed decoders and high-power reverse-link communication.

For the head packet to depart from the queue, the destination must successfully

decode the received message and this codeword must be carrying the final segment

of information pertaining to this head packet. Specifically, a packet composed of

L bits will require the successful reception of M = ⌈L/K⌉ codewords before it

is removed from the queue. The length of the queue at the onset of block s is

denoted by Qs. The state of the Gilbert-Elliott channel at this instant is represented

by CsN+1. Together, these two quantities form the state of our Markov process,

Ys = (CsN+1, Qs). We emphasize that this state space is countable, with Ys belonging

to {1, 2}×N0. Furthermore, the Markov chain underlying the evolution of our system

possesses a special structure. It forms an instance of a discrete-time quasi-birth-death

process. Luckily, there are many established techniques to analyze such mathematical

objects [32–34].

Our next step is to examine the transition probabilities of this augmented

Markov chain. The probability of jumping from Ys to Ys+1 is given by

Pr(Ys+1 = (d, qs+1)|Ys = (c, qs))

=
N
∑

e=0

Pr (Qs+1 = qs+1|E = e, Qs = qs) Pr(E = e, C(s+1)N+1 = d|CsN+1 = c).
(2.5)
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A methodology was introduced in Section 2 to compute conditional probabilities of

the form Pr(E = e, C(s+1)N+1 = d|CsN+1 = c). Accordingly, it suffices to focus on the

other component of each summand, Pr (Qs+1 = qs+1|E = e, Qs = qs), to characterize

(2.5).

We first consider conditional events {Qs = qs} for which qs > 0. In this case,

admissible values for Qs+1 are given by {qs−1, qs, qs+1}. Two factors can affect the

length of the queue: the arrival of a new data packet and the completion of a packet

transmission. The latter occurrence will only take place if a codeword is successfully

decoded at the destination and the corresponding data block is the last segment of

the head packet. Keeping this fact in mind and using independence between arrivals

and departures, we get

Pr (Qs+1 = qs + 1|E = e, Qs = qs) = γ
(

Pf(N−K, e) + (1− Pf(N−K, e))(1− ρr)
)

Pr (Qs+1 = qs|E = e, Qs = qs) = γ (1− Pf(N−K, e)) ρr + (1− γ)
(

Pf(N−K, e)

+ (1− Pf(N−K, e))(1− ρr)
)

Pr(Qs+1 = qs − 1|E = e, Qs = qs) = (1− γ) (1− Pf(N−K, e)) ρr.

When the queue is empty, there are no departures. As such, only two possibilities

remain

Pr(Qs+1 = 1|E = e, Qs = 0) = γ

Pr(Qs+1 = 0|E = e, Qs = 0) = 1− γ.

Assembling these results and using (2.5), we obtain the probability transition matrix

of the Markov process {Ys}. A graphical representation of possible state transitions

appears in Fig. 2.

To proceed with the analysis of our queued system, a compact representation of
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1,0 1,1 1,2

2,0 2,1 2,2

Fig. 2. State space and transition diagram for the aggregate queued process {Ys};
self-transitions are intentionally omitted.

the conditional probabilities defined in (2.5) is apropos. For q ∈ N and c, d ∈ {1, 2},

we introduce the following convenient notation,

µcd = Pr(Ys+1 = (d, q − 1)|Ys = (c, q))

κcd = Pr(Ys+1 = (d, q)|Ys = (c, q))

λcd = Pr(Ys+1 = (d, q + 1)|Ys = (c, q)).

Similarly, when the queue is empty, we use

κ0
cd = Pr(Ys+1 = (d, 0)|Ys = (c, 0))

λ0
cd = Pr(Ys+1 = (d, 1)|Ys = (c, 0)).

Collectively, these labels define the 12 transition probabilities associated with a non-

empty queue, and the 8 transition probabilities subject to the non-negativity con-

straint at zero.

At last, we are ready to derive the equilibrium distribution of our aggregate

system. We note that this system is stable when mean packet arrival is less than
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mean packet departure over a codeword transmission period [35], i.e.,

γ < ρrE [1− Pf (N −K,E)] .

Under this stability condition, the Markov chain {Ys} is positive recurrent and pos-

sesses a unique stationary distribution [36]. Assuming that the system is stable, let

Y = (C,Q) be a random vector with the aforementioned probability distribution,

Pr(Y = (c, q)) = lim
s→∞

Pr(Ys = (c, q)).

We employ the semi-infinite vector π to represent the equilibrium distribution of our

system, with

π(2q + i) =















Pr(C = 1, Q = q) if i = 0

Pr(C = 2, Q = q) if i = 1.

The states {(1, q), (2, q)} are known as the qth level of the chain and πq = [π(2q) π(2q+

1)] is the stationary distribution associated with the qth level.

Using this compact notation, one can express the Chapman-Kolmogorov equa-

tions for the queued system as πT = π, where T denotes the transition probabilities

associated with the aggregate Markov chain {Ys}. We can represent the transition

probability operator T as a semi-infinite matrix of the form

T =

























C1 C0 0 0 · · ·

A2 A1 A0 0 · · ·

0 A2 A1 A0 · · ·

0 0 A2 A1 · · ·
...

...
...

...
. . .

























(2.6)

where the submatrices C1, C0, A2, A1, and A0 are 2× 2 real matrices. Specifically,
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we have

A0 =







λ11 λ12

λ21 λ22






A1 =







κ11 κ12

κ21 κ22







A2 =







µ11 µ12

µ21 µ22






.

When the queue is empty, the relevant submatrices become

C0 =







λ0
11 λ0

12

λ0
21 λ0

22






C1 =







κ0
11 κ0

12

κ0
21 κ0

22






.

When A = A0+A1+A2 is irreducible, this quasi-birth-death process is recurrent if

and only if (vA01)/(vA21) ≤ 1, where v is the stationary probability distribution of

A [35]. One possible approach to identify the stationary distribution of the Markov

chain {Ys} is to employ spectral representations and ordinary generating functions.

This technique is described in Section 1. An alternate numerical means for computing

the stationary distribution is the matrix geometric method discussed in Section 2.

As we will see, both approaches have their advantages and drawbacks.

1. Transform Method

The first approach we present makes use of generating functions [27, 31]. Let Π(z)

be the transform vector defined by

Π(z) =
∞
∑

q=0

zqπq. (2.7)

Theorem D.1. The invariant distribution of the Markov chain can be derived from

the recurrence relation induced by T. Finding the stationary distribution of the aug-
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mented Markov chain is equivalent to solving a matrix equation of the form

Π(z)D(z) = π0 (D(z)−D0(z)) , (2.8)

where the entries in D(z) and D0(z) are quadratic polynomials

D(z) = z2A0 + z (A1 − I) +A2 (2.9)

D0(z) = z2C0 + z (C1 − I) . (2.10)

The elements of π0 can be determined from the requirements imposed by stability and

normalization.

Proof. We begin this demonstration by writing the balance equations governing the

Markov chain {Ys}. From the Chapman-Kolmogorov equations πT = π and the

form of T given in (2.6), we obtain

πq−1A0 + πq (A1 − I) + πq+1A2 = 0 q ≥ 2 (2.11)

π0C0 + π1 (A1 − I) + π2A2 = 0 (2.12)

π0 (C1 − I) + π1A2 = 0. (2.13)

Next, we multiply (2.11) by zq+1 and sum over all q ≥ 2 to get

(Π(z)− π0) z
2A0 + (Π(z)− π1z − π0) z (A1 − I) +

(

Π(z)− π2z
2 − π1z − π0

)

A2 = 0.

Leveraging boundary conditions (2.12) and (2.13), the equation above reduces to

(2.8).

Using the results of Theorem D.1, one can write

Π(z) = π0

(

I−D0(z)D
−1(z)

)

where D−1(z) is a matrix whose entries are rational functions of z. Note that one
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can express the inverse of D(z) in terms of its adjugate matrix and determinant [37],

D−1(z) =
adjD(z)

detD(z)
.

Moreover, the entries of D0(z)D
−1(z)/z are rational functions where polynomial

numerators have at most degree three and the common polynomial denominator

detD(z) is of degree four. Through careful inspection, we find that (z − 1) is a

factor common to all numerator and denominator polynomials. After cancellation,

the entries ofD0(z)D
−1(z) can be expressed as quadratic polynomials over a common

cubic polynomial. Using the general formula for the roots of cubic polynomials, it

is then possible to carry partial fraction expansion for the entries of D0(z)D
−1(z)

and thereby obtain an expression for Π(z), which is invertible in closed-form. The

coefficients of π at level zero are obtained using stability and the fact that

Π(1) =

[

β
α+β

α
α+β

]

. (2.14)

Although a closed-form parametric solution for the stationary distribution of this

system exists and can be obtained using symbolic equation solvers, it is unfortunately

too cumbersome to be included in this chapter. Still, we emphasize that existence of

such a solution provides an efficient means to conduct numerical studies. A downside

to the approach outlined above lies in the fact that it does not scale well with

the number of states in the bit erasure channel, thereby precluding straightforward

generalizations to alternate environments. This is due to the difficulty associated

with finding the roots of high-degree polynomials. This impediment is addressed in

the next section.



27

2. Matrix Geometric Method

The Markov chain associated with operator (2.6) belongs to the class of random

processes with repetitive structures. As such, one can apply standard techniques

from the rich literature on matrix analytic methods [33, 38]. The essence of this

approach is to take advantage of the symmetric interactions among different levels of

the Markov chain. For q ≥ 2, the recursive structure of our system can be expressed

through the formula

πq+1A2 = πq(I−A1)− πq−1A0.

In finding a solution to this matrix equation, it seems that the general form of the

embedded Markov structure and, specifically, its block partitioning are far more

important than the precise values of each submatrix. The stationary distribution of

the queue, in matrix-geometric form, is characterized in the following theorem.

Theorem D.2. Consider a positive recurrent, irreducible Markov chain on a count-

able state space with transition probabilities given by (2.6). Let the matrix U be

defined such that the (c, d) entry is the probability that, starting from state (1, c),

the Markov chain {Ys} first re-enters level one by visiting (1, d) and does so without

visiting any state at level zero. The substochastic matrix U may be computed as the

limit, starting from U1 = A1, of the sequence defined by

Uj+1 = A1 +A0 (I−Uj)
−1

A2. (2.15)

Let matrix T̃ be given by

T̃ =







C1 C0

A2 A1 +RA2






(2.16)

where R = A0 (I−U)−1. Then, T̃ is a stochastic matrix associated with an irre-
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ducible Markov chain. If we denote the invariant distribution associated with T̃ by

[π̃0 π̃1], then the stationary distribution associated with T can be expressed as

π0 =
π̃0

(π̃0 + π̃1(I−R)−1)1
πq =

π̃1R
q−1

(π̃0 + π̃1(I−R)−1) 1
(2.17)

where q ≥ 1.

Proof. For completeness, we provide a succinct outline of a proof to this theorem;

our arguments are motivated, partly, by the derivation presented by Latouche and

Ramaswami [33]. For quasi-birth-death processes, several authors have reported

similar results [32, 34, 39].

The transitions of the Markov chain {Ys}, excluding states at level zero, are

governed by the substochastic matrix

























A1 A0 0 0 · · ·

A2 A1 A0 0 · · ·

0 A2 A1 A0 · · ·

0 0 A2 A1 · · ·
...

...
...

...
. . .

























. (2.18)

We note that the transitions of levels in {Ys}, excluding levels zero and one, are

dictated by the same semi-infinite matrix (2.18). Exploiting this symmetry and the

fact that {Ys} can only jump to neighboring levels, one can use the definition of U

to obtain the following implicit equation,

U = A1 +A0

( ∞
∑

i=0

Ui

)

A2

= A1 +A0 (I−U)−1
A2.

(2.19)

This is equivalent to a quadratic matrix equation and it can be solved efficiently using

numerical methods. For instance, multiplying both sides of (2.19) by R, substituting
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R = A0 (I−U)−1, and rearranging terms, we obtain

A0 +RA1 +R2A2 = R. (2.20)

We proceed to show that the iterative algorithm of (2.15) is one possible method

to obtain U. Consider the probability space of paths on {1, 2}×N0 with the measure

induced by Markov chain {Ys}. Let Sj(c, d) be the event such that, starting from

state (1, c), the Markov chain {Ys} first re-enters level one by visiting (1, d) and

with the excursions constrained to lie between levels one and j. It follows from this

definition that Sj(c, d) ⊂ Sj+1(c, d) and, therefore, limj→∞ Sj(c, d) = ∪j∈NSj(c, d).

Utilizing the monotone convergence theorem, we gather that

lim
j→∞

Pr(Sj(c, d)) = Pr

(

⋃

j∈N
Sj(c, d)

)

.

By construction, [U]c,d = Pr
(

⋃

j∈N Sj(c, d)
)

. To complete the proof, it remains to

show that [Uj ]c,d, as defined in iteration (2.15), is the probability of event Sj(c, d).

Mathematically, this is equivalent to the statement [Uj ]c,d = Pr(Sj(c, d)) for

all j ∈ N, which we verify using induction. From the definition of Sj(c, d), we

immediately obtain Pr(S1(c, d)) = [A1]c,d and, consequently, [U1]c,d = Pr(S1(c, d))

because U1 = A1. To continue, we assume this proposition holds for all integers

less than or equal to j and show this implies that it holds for j + 1. First, we note

that Sj+1(c, d) is the event such that, starting from state (1, c), the Markov chain

{Ys} first re-enters level one by visiting (1, d) and with the excursions constrained to

lie between levels one and j + 1. The elements in Sj+1(c, d) can be partitioned into

sets according to their number of visits to level two. In particular, the Markov chain

{Ys} remains at level one with probability [A1]c,d. Alternatively, it can immediately

transition to level two, revisit this level a number of times while remaining between
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levels two and j + 1, and then jump back down to level one.

Key to the proof is the symmetric nature of the chain: the probability that,

starting from state (2, c), the Markov chain {Ys} first re-enters level two by visiting

(2, d) and with the excursions constrained to lie between levels two and j + 1 is

equal to Pr(Sj(c, d)). Indeed, there is a natural, probability-preserving bijection

between paths in Sj(c, d) and paths from (2, c) that first re-enter level two at (2, d)

and remain between levels two and j+1. By the Markov property and our inductive

hypothesis, we can write the probability that, starting from (1, c), the Markov chains

immediately goes up to level two, visits this level exactly k + 1 times before it first

re-enters level one at (1, d) as
[

A0U
k
jA2

]

c,d
. The proposed partition of Sj+1(c, d) is

a countable union of disjoint events, where each set accounts for a distinct number

of visits to level two. It follows from the renewal property of Markov chains and the

symmetry of the problem that

Pr (Sj+1(c, d)) =

[

A1 +A0

∞
∑

k=0

Uk
jA2

]

c,d

=
[

A1 +A0 (I−Uj)
−1

A2

]

c,d
= [Uj+1]c,d

where the second equality follows from the Neumann expansion and the third equality

is an application of definition (2.15). Hence, for every j ∈ N, we have Pr(Sj(c, d)) =

[Uj ]c,d. This establishes that the iterative algorithm of (2.15) converges to U, as

desired.

To complete the proof, it remains to show that the candidate distribution spec-

ified in Theorem D.2 is indeed the invariant distribution of T. Notice that (2.20)

immediately ensures that

πq−1A0 + πqA1 + πq+1A2 = πq (2.21)
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for q ≥ 2. Consider the finite matrix T̃ with non-negative entries introduced in

(2.16). We wish to prove that this is a stochastic matrix. Since T represents a

probability transition matrix, we already have (C0 + C1)1 = 1. To establish the

second equality, we examine the following progression,

(A2 +A1 +RA2 − I)1 = (RA2 −A0)1

=
(

RA2 +RA1 +R2A2 −R
)

1

= R(A2 +A1 +RA2 − I)1

where the first step relies on the identity (A0 +A1 +A2)1 = 1 and the second step

follows from (2.20). Since the matrix I−R is invertible, one can move all terms to the

LHS to see that (A2+A1+RA2−I)1 = 0 and therefore (A2+A1+RA2)1 = 1. That

is, (2.16) is a stochastic matrix. This implies that it admits an invariant distribution

which satisfies π̃0C1 + π̃1A2 = π̃0 and π̃0C0 + π̃1(A1 + RA2) = π̃1. Then, for the

distribution defined in (2.17), we get

π0C1 + π1A2 = π0

π0C0 + π1A1 + π2A2 = π0C0 + π1(A1 +RA2) = π1.

These equations, together with (2.21), imply that the distribution defined in (2.17)

is invariant under T, as desired.

Corollary D.3. When the appropriate inverse matrices exist, one can write the first

two levels of the stationary distribution π associated with (2.6) as

π1 =

[

β
α+β

α
α+β

]

(

A2(I−C1)
−1 + (I−R)−1

)−1

and π0 = π1A2(I − C1)
−1. The remaining levels are obtained through the recursion

πq+1 = πqR, where q ≥ 1.
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Proof. The coefficients of π1 can be derived from the channel equilibrium condition,

[

β
α+β

α
α+β

]

=

∞
∑

q=0

πq = π0 +

∞
∑

q=1

πq

= π1

(

A2(I−C1)
−1 + (I−R)−1

)

.

Given that an inverse exists, one can solve for π1 in terms of the invariant distribu-

tion of the channel. From there, the distribution at other levels are obtained in a

straightforward manner.

In summary, we have presented an algorithmic method to derive the stationary

distribution of Y and obtain the stationary distribution of the queue

Pr(Q = q) = πq1.

The matrix R is closely related to the asymptotic behavior of the complementary

cumulative distribution function of the queue.

Corollary D.4. The decay rate of the complementary cumulative distribution func-

tion of the queue satisfies

lim
τ→∞

1

τ
log Pr(Q ≥ τ) = log ̺(R),

where ̺(R) is the spectral radius of R.

Proof. Since R is a positive matrix, the Perron-Frobenius theorem implies that R

has a unique positive eigenvalue λ = ̺(R) of maximum modulus [37]. Furthermore,

this eigenvalue is associated with a positive left-eigenvector v, and a positive right-

eigenvector w. It follows that

uRj

̺(R)j
= u

(

wTv

vwT
+ o(1)

)

=
uwT

vwT
(v + o(1))
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for any non-negative, non-zero vector u. The tail probability of the queue is conse-

quently governed by

Pr(Q ≥ τ) = π1

( ∞
∑

q=τ−1

Rq

)

1 = π1R
τ−1(I−R)−11

=
π1w

T

vwT
̺(R)τ−1

(

(v + o(1)) (I−R)−11
)

.

Taking the normalized limit of the logarithm completes the proof.

3. Linking Generating Functions to the Matrix Geometric Method

We presented two approaches to compute the stationary distribution of the aggre-

gate Markov process. Naturally, these methods must be related. In this section, we

explore their connection and we link the generating function procured by first prin-

ciples to the matrix geometric method. First, we note that U satisfies the implicit

equation

U = A1 +A0 (I−U)−1
A2. (2.22)

Using the relation R = A0 (I−U)−1 and rearranging terms in (2.22), we get A0 =

R (I−A1)−R2A2. Substituting this into (2.9), we obtain

D(z) = −z2R (A1 − I)− z2R2A2 + z (A1 − I) +A2

= (I− zR) (z (A1 − I) + (I+ zR)A2)

= (I− zR) (z (U− I) +A2)

= (I− zR) (U− I)
(

zI − (I−U)−1
A2

)

.

The third equality follows from (2.22), with U = A1 +RA2. Since the determinant

of a matrix product is the product of the individual determinants, we gather that the

roots of detD(z) are simply given by the roots of its factors. The stable modes of

Π(z) correspond to the roots of det (I− zR). Since (I−U)−1
A2 is a stochastic ma-
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trix, the Perron-Frobenius theorem asserts that det
(

zI − (I−U)−1
A2

)

has a root

at unity, with any other root having a magnitude smaller than one. These remain-

ing roots correspond to unstable modes of Π(z). Under partial fraction expansion,

stability forces the coefficients associated with these latter roots to vanish. The re-

maining unknown is resolved through the normalization axiom of probability laws.

This reconciles the two approaches, which necessarily lead to the same solution. The

generating function method can give closed-form expressions if the channel has only

two states, whereas the matrix geometric method gives rise to a numerical procedure

that applies to any finite-state channel.

E. Performance Evaluation

The detailed characterization presented in the previous sections makes it possible

to compute a number of performance criteria for the system under consideration,

including the probability of decoding failure, average throughput and mean delay.

In this chapter, we focus on two additional performance measures relevant to delay-

sensitive communications. We consider the probability that the queue occupancy

exceeds a certain threshold, Pr(Q > τ). Furthermore, we examine the decay rate

of the complementary cumulative distribution function of the queue, as discussed in

Corollary D.4.

Throughout this numerical study, unless stated otherwise, we employ the follow-

ing system parameters. The Gilbert-Elliott erasure channel is defined by α = 0.02,

β = 0.005, ε1 = 0.49, and ε2 = 0.0025. This yields an average bit-erasure probability

of ε = 0.1 and the channel memory decays at an exponential rate of (1 − α − β) =

0.975. During every codeword transmission attempt, a new packet arrives at the

source with probability γ = 0.25, and the expected packet length is set to ρ−1 = 195
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bits. The block length is fixed at N = 114 symbols. If codewords are transmitted

every 4.615 ms, then this corresponds to a mean arrival rate of roughly 10.6 kbps and

an ergodic channel capacity of roughly 22.2 kbps. These quantities are selected to

loosely reflect the operation of a wireless GSM-based relay link. Collectively, these

parameters dictate the evolution of the Markov process governing the queue.

The Shannon limit for the Gilbert-Elliott erasure channel channel is 1−ǫ bits per

channel use and the capacity-achieving input distribution is i.i.d. uniform. In fact,

this is true for an arbitrary (ergodic) erasure channel where the expected number

of erasures is independent of the input sequence. Suppose X and Y are the input

and output vectors of the erasure channel, respectively. Let O be a vector which

indicates the observed (i.e., not erased) positions at the destination. Then,

I(X ; Y ) = H(Y )−H(Y |X) = H(O) +H(XO)−H(O) = H(XO),

where XO is the subvector of X that includes only the observed positions. This

quantity is simultaneously maximized, for all O, by choosing X to be i.i.d. uniform.

Therefore, the maximum mutual-information rate is equal to the average number of

unerased positions.

We continue our early analysis with simple performance criteria that are based

solely on the evolution of the channel. They do not take into consideration the

behavior of the queue at the transmitter. One such criterion is the probability of

decoding failure at the receiver, which is equal to

Pf(N −K) =

N
∑

e=0

Pf(N −K, e) Pr(E = e)

=
N
∑

e=0

Pf(N−K, e)JxeK

([

β
α+β

α
α+β

]

PN
x 1

)

.

A closely related measure of performance is the average throughput associated with
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a saturated source; in the present setting, this is given by

Ts(K,N) =
K

N
(1− Pf(N −K)) .

The probability of decoding failure as a function of K appears in Fig. 3. The average
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Fig. 3. Probability of decoding failure, Pf(N −K), as a function of the number of in-

formation bits per codeword. The conditional probabilities of decoding failure

for various values of (c1, cN+1) are also included.

throughput associated with a saturated source is plotted as a function of the number

of information bits per codeword in Fig. 4. These two figures illustrate well the

natural tradeoff between data content and error protection. In particular, these

competing considerations lead to the unimodal throughput function of Fig. 4, where

optimal performance is achieved at K = 87. A naive conjecture would place K = rN

close to the rate implied by the Shannon limit (1−ε)N = 0.9×114 = 102.6, but this

is much larger than the optimal value of K = 87 for maximizing average throughput.
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Fig. 4. Average throughput for a saturated source as a function of K, the number

of information bits per codeword. The maximum throughput is obtained at

K = 87.

For a short block length, two factors affect the optimal code-rate K for a pre-

scribed queueing performance. The block length may be too small to ensure con-

vergence of the empirical average number of erasures within a block. In addition,

dependencies from block to block are non-negligible. Although the probability of de-

coding failure and the average throughput capture the effect of channel correlation

within a block, they do not capture dependencies from block to block. This is a subtle

yet important observation, especially for delay-sensitive traffic. The impact of these

factors becomes more severe with increasing channel memory. This consideration un-

derlies much of the queueing analysis presented in this chapter. Time-dependencies

in the service process of a queue can alter system performance dramatically. We thus

turn to queue-based performance criteria.
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Figure 5 depicts Pr(Q > τ), the complementary cumulative distribution func-

tion of the queue, as a function of K. Each curve represents the probability that, in

steady-state, buffer occupancy exceeds a certain threshold τ , where τ ∈ {5, 10, 15, 20, 25}.

The low threshold values reflect the intended use of this methodology in the context

of delay-sensitive applications. As expected, the probability of the queue exceeding
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Fig. 5. Tail probabilities in the equilibrium packet distribution of the queue

Pr(Q > τ), for threshold values τ ∈ {5, 10, 15, 20, 25}, as a function of the

number of information bits K per codeword. The minimums occur uniformly

at K = 83 for all threshold values.

a prescribed threshold decreases as τ increases. More interestingly, we note that

K = 83 appears uniformly optimal for all values of τ . That is, the optimal code-rate

seems robust to the choice of threshold value τ . This robustness property remains

present for the other system parameters we tested. Further supporting evidence for

this observation is offered by looking at the asymptotic decay rate in tail occupancy,

displayed in Fig. 6. When the arrival rate γρ−1 is between 47.5 and 60, one finds
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that K = 83 is also optimal in terms of tail decay. The true optimum K = 83 is

closer to the throughput maximizing code-rate K = 87 than to the naive conjecture.
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Fig. 6. Tail decay rate, − limτ↑∞
1
τ
log Pr(Q ≥ τ), as a function of the number of

information bits K per codeword and the average arrival rate γρ−1 in bits per

codeword transmission interval.

We explore the impact of channel correlation on optimal code-rate in our next set

of results. We fix β : α at a ratio of one to four, and vary the memory factor (1−α−β).

When the channel is memoryless, the optimal K is 93. For comparison, the capacity

is 1− ε = 0.9, which yields a K of roughly 103. As correlation increases, the optimal

value of K initially decreases, thereby offering more protection against erasures. Yet,

when the coherence time of the channel starts to approach the length of a codeword,

N = 114, the error correcting code becomes ineffective as it fails to handle the

increasingly likely long sequences of successive erasures. The optimal strategy then
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progressively shifts to including more information bits in every packet, and hoping

that the channel remains in its good state. In the limiting regime where (1−α− β)

approaches one, the optimal strategy is to transmit uncoded data, K = N . Indeed,

strong correlation is characterized by long strings of erasures followed by longer

strings of reliable bits, and the best strategy is to send as many information bits as

possible when the channel is good. At this point, the bit erasure channel essentially

becomes a correlated packet erasure channel. Numerical results are summarized in

Table I.

Table I. Optimal number of information bits per codeword and threshold violation

probability as functions of channel memory.

1− α− β Optimal K minPr(Q > 5)

0 93 0.0359

0.5 91 0.0438

0.9 85 0.0982

0.98 85 0.2843

0.99 95 0.3169

F. Discussion and Concluding Remarks

This chapter presents a new framework to analyze the relation between code-rate

and queueing behavior for communications over channels with memory. The sim-

plicity of the erasure channel and its closed-form characterization of error events are

instrumental in conducting our analysis. For short block lengths and channels with

memory, the optimal code-rate appears to be linked to the relative size of a code-

word compared to the coherence time of the channel. In certain circumstances, it
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is beneficial to provide significant protection against erasures. However, as channel

memory increases, performance may be improved by incorporating more data bits

in every codeword. In this latter case, the transmitter resorts to a strategy where

information is successfully sent when the channel starts in a good state, and it is lost

otherwise. This is in stark contrast to information theoretic results obtained through

asymptotically long codewords. Once the block length is selected, the optimal code-

rate seems rather impervious to the queue occupancy threshold. This observation

considerably simplifies system design because an optimal code-rate can be selected

irrespective of the target queue length. The set of admissible arrival rates, on the

other hand, will depend heavily on the queueing objective.

A distinguishing feature of this work is that it provides a rigorous approach

linking queueing performance to the operation of a communication system at the

physical layer. The methodology and results are developed for the Gilbert-Elliott

erasure channel, but can be generalized to more intricate finite-state channels with

memory. For example, the simple performance characterization of random codes over

erasure channels may extend to hard-decision decoding of BCH codes over Gilbert-

Elliott error channels. Possible avenues of future research include the study of al-

ternative arrival processes, the ability to vary the rate and the length of codewords

dynamically, and a more pragmatic feedback scheme.
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CHAPTER III

QUEUEING ANALYSIS OF A BUTTERFLY NETWORK FOR COMPARING

NETWORK CODING TO CLASSICAL ROUTING

Network coding has gained significant attention in recent years as a means to improve

throughput, especially in multicast scenarios. These capacity gains are achieved by

combining packets algebraically at various points in the network, thereby alleviating

local congestion at the nodes. The benefits of network coding are greatest when

the network is heavily utilized or, equivalently, when the sources are saturated so

that there is data to send at every scheduling opportunity. Yet, when a network

supports delay-sensitive applications, traffic is often bursty and congestion becomes

undesirable. The lighter loads typical of real-time traffic with variable sources tend

to reduce the returns of network coding. This work seeks to identify the potential

benefits of network coding in the context of delay-sensitive applications. As a sec-

ondary objective, this chapter also studies the cost of establishing network coding in

wireless environments. For a network topology to be suitable for coding, links need

to possess a proper structure. The cost of establishing this structure may require

excessive radio resources in terms of bandwidth and transmit power. Bursty traffic

together with structural cost, tend to decrease the potential benefits of network cod-

ing. This chapter describes how, for real-time applications over wireless networks,

there exist network topologies for which it may be best not to establish a network

structure tailored to network coding.

A. Introduction

Network coding is a novel paradigm that has received much attention in the litera-

ture recently [40–44]. It has the potential to improve the throughput and robustness
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of future communication networks. These performance gains are achieved by relax-

ing the restriction that data belonging to different information flows should remain

separated. Indeed, network coding is a transmission strategy where packets are com-

bined algebraically at intermediate nodes in the network. It can be viewed as an

extension of traditional routing. In certain circumstances, network coding helps im-

prove overall throughput; and it is known to achieve the min-cut flow in multicast

scenarios [2].

The research enthusiasm generated by network coding can be explained, partly,

by the ever expanding demand for Internet access and fast connectivity. Not only

is network coding mathematically elegant, it seeks to improve network performance

at a time when the number of data applications is rising furiously. The growing

demand for network connectivity is felt both at the core of the Internet and at its

periphery, where wireless systems are increasingly employed to provide flexibility

to mobile users. One class of data connections that is rapidly gaining prominence

on the Internet is the traffic generated by real-time applications. Delay-sensitive

services including voice over Internet protocol (VoIP), video conferencing, gaming

and electronic commerce are now commonly used by vanguardists on both wired and

wireless devices. Future communication infrastructures are expected to carry much

larger volumes of data with varying quality of service (QoS) requirements. As such,

this chapter seeks to provide preliminary answers to two important questions related

to delay-sensitive traffic and the efficient utilization of network coding.

First, are the potential benefits of network coding as substantial in the context

of delay-sensitive applications? It seems intuitively clear that the gains of network

coding are maximal when the links in the network are fully utilized. However, the

bursty nature of many data sources and the service quality required of most real-time

applications may force a network to operate much below its maximum throughput.
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This phenomenon is captured by the concept of effective bandwidth, which identifies

the data-rate needed by a source to fulfill its service requirement [3, 4]. In general,

the effective bandwidth of a source can be much larger than the average throughput

it produces. The bursty traffic generated by delay-sensitive applications combined

with the gains associated with statistical multiplexing act to decrease the benefits

of network coding. Therefore, it is not clear how much we gain by applying network

coding in a communication system subject to QoS constraints. In this chapter, we

provide quantitative results on the benefits of network coding for a simple butterfly

network in the context of delay-sensitive applications.

Another pertinent observation about network coding is that it often requires a

structured network topology. Coding benefits are optimum when the data-rates of

the various links are integer multiples of one another. In a wireless environment,

physical-layer resources can be allocated progressively to the different nodes. To

maximize the coding gain, these resources must be assigned to create a suitable

topology. While this enables efficient coding, there may be a non-negligible cost

associated with creating such a structure. In other words, in a wireless environ-

ment, the performance of a system with network coding should be compared to the

operation of the equivalent classic-routing system, with physical resources allocated

optimally in both cases. This leads us naturally to the second question we seek to

address. When is it relevant to create a topology suitable for network coding in a

wireless environment?

These two important questions are not only related through the rising popularity

of real-time applications and network coding, but also by their answers necessitating

the development of analogous mathematical tools. This similarity motivates our

joint treatment of these related topics. More specifically, we investigate the impact

of network coding on the queueing behavior of wireless communication systems.
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Fig. 7. Directed butterfly network.

We consider a simple scenario where two varying-rate sources communicate to

multiple destinations through the notorious butterfly network, shown in Fig. 7. Ev-

ery node is equipped with a data buffer where packets are stored prior to trans-

mission. We analyze the performance of this system, and compute its achievable

rate-region when the network operates under stringent service constraints. Due to

the time-varying nature of typical arrival and service processes, it is difficult to

provide deterministic delay guarantees for such systems. Accordingly, we adopt a

popular statistical QoS criterion that captures the asymptotic decay-rate in buffer

occupancy,

θ = − lim
x→∞

ln Pr{L > x}
x

(3.1)

where L has the equilibrium distribution of the buffer at the transmitter. Parame-
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ter θ reflects the perceived quality of the corresponding communication link: a larger

θ implies a lower probability of violating a queue-length restriction and a tighter

QoS constraint. This performance criterion is closely tied to large-deviations theory,

and it forms a basis for the concept of effective bandwidth which has been studied

extensively in the past [45–47, 47–50]. Given a specific arrival process, the effective

bandwidth characterizes the minimum constant service-rate required for a communi-

cation system to meet its QoS requirements. Parameter θ is also related to the dual

concept of effective capacity popularized by Guerin et al. [51], de Veciana et al. [52]

and Wu and Negi [16]. Unlike wired networks, wireless links frequently feature time-

varying service rates [53]. The effective capacity characterizes the maximum constant

arrival rate that a wireless system can support, given a minimum buffer occupancy

decay-rate θ0. When the decay-rate θ0 approaches zero, the effective capacity con-

verges to the maximum throughput supported by the wireless channel.

To study the performance of a communication system subject to a buffer oc-

cupancy constraint akin to (3.1), we need to characterize the queueing performance

of the network. In the mathematical framework under consideration, independent

sources sharing a same link can be studied separately. This is one of the appealing

properties of an analysis based on large deviations. The main challenge, as we will

see, is to characterize the performance of the tandem network shown in Fig. 8. This

network consists of two successive nodes where the output of the first node acts as

an input to the second queue.

1. Contributions

Fig. 9 shows the butterfly network we want to study. For a multicast scenario, where

stochastic sources A and B wish to communicate to destinations C and D, node 3

has the opportunity to employ packet combining. We consider two distinct versions
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Fig. 8. Network with tandem queues.

of this simple butterfly network. First, we analyze a noise-limited network with

constant and identical link capacities. This configuration is suitable for network

coding and is the basis for our initial queueing comparison. Then, we examine a

wireless network under a broadcast paradigm. In the latter scenario, we assume

that physical resources can be allocated freely among the various nodes to create

non-identical links, thereby enabling optimal operation within each configuration.

To compare the queueing performance of network coding versus classic rout-

ing, we characterize the achievable rate regions for both these cases under a QoS

guarantee on the tail-asymptotics of the buffer-content distributions. Not too sur-

prisingly, network coding outperforms classic routing for a network with identical

link capacities. Although statistical multiplexing had the potential to offset some of

the coding gain, classic routing remains a distant second to network coding for all

QoS requirements. More interesting results come from the wireless butterfly analysis.

Combining packets at an intermediate wireless relay does not necessarily yield per-

formance gains, and may even be detrimental in some cases. This behavior depends

on the topology of the butterfly network and the physical locations of the nodes.

This peculiarity follows from the fact that network coding needs symmetric links

between the sources and their destinations for maximal coding gains to be realized.

If the link capacities are not identical, then packet combining entails delay and in-
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Fig. 9. Butterfly network of interest with corresponding buffers.

efficiencies. These results are detailed below, and they may be employed to provide

guidelines on when to form a network suitable for combining packets algebraically

at intermediate nodes. Analysis is limited to the simple butterfly network. However,

the featured approach should generalized to topologies with constant service rates,

using the same queueing methods employed in this chapter. In fact, our methodology

for networks with two queues in tandem can be applied to several queues in cascade.

Still, an exact analysis would get increasingly complex for large networks and these

techniques may not lead to tractable expressions. In more complex topologies, it may

be necessary to use approximation methods, which is a different topic altogether.
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We would like to emphasize that our contribution is two-fold. We provide a

quantitative analysis of the tradeoff between the cost of establishing a structure

suitable for network coding and the ensuing returns associated with algebraic packet

combining. Second, we offer an alternate proof for deriving the tail-exponent of the

second buffer in a tandem queue.

2. Relevant Work

There have been many recent interesting contributions on queueing behavior when

network coding is employed at the transmitter. We compare and contrast our work

with the available literature below and summarize this discussion in Table II.

The random linear combining of data packets is considered in [54–58]. The au-

thors focus on coding delay in [55], whereas decoding delay is studied in the remaining

contributions. In [54], QoS is defined in terms of packet drop probability, and multi-

ple flows are considered over an arbitrary network. In [55], the authors compare the

performance of network coding versus scheduling for broadcast and multiple unicast

scenarios; their work is based on average delay performance. In [56,57], the authors

explore the throughput-delay tradeoff with and without network coding. In [56], the

coding scheme adapts to the underlying traffic conditions. Stability and delay per-

formance of a multicast erasure channel with stochastic arrivals are studied in [57].

In [58], the authors propose a coding and queue management algorithm. Note that

the random linear combining of packet transmissions is in effect a coding scheme

which trades off delay and throughput over a single flow. In our work, we study

the achievable rate region over a butterfly network when one employs either network

coding or classic routing at the intermediate node, a distinct framework altogether.

Previous contributions differ from the framework presented below in many more

respects. First, we are comparing network coding to routing at a given node in a
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simple butterfly network. We consider a multicast scenario with two transmitters

and two receivers. Second, we disregard coding/decoding delay and focus on the

equilibrium queue-length buildup due to stochastic arrivals, limited service rate and

feedback from the receiver. Third, we use pre-selected codes with fixed rates for

reliable communication over the links. Furthermore, our QoS constraint on tail-

asymptotics deviates significantly from average delay constraints, thereby offering

better insights for delay-sensitive traffic. This methodology can be utilized to provide

different QoS guarantees to flows with various requirements. In addition, we take

into consideration the stochastic nature of arrivals, which may reduce the gains of

network coding due to statistical multiplexing.

A two-way relay channel is considered in [59–62]. Note that two-way relays can

be modeled as a butterfly network where sources are also destinations. However,

this is not an equivalence relation. In the two-way relay model, direct links are

absent and side-information about the received data is available at the destination,

an advantage that is not present in our network. In [60], the authors characterize

the end-to-end rate regions for MAC-XOR and PHY-XOR operations for two-way

relay channel. They also present an opportunistic scheduling algorithm to show that

the system can be stabilized for any bit-arrival rate pair within the Shannon rate

region. In [61], the authors study the energy-delay tradeoff when network coding is

used at the relay node. The energy is measured in terms of code-rates and channel

conditions. In [62], authors show that, for asymmetric traffic, one needs to perform

time-sharing between traditional slotted multi-hopping and network coding. In [63],

the authors characterize the stability region for bursty traffic at multiple sources with

and without network coding in the wireless network. In [59], the authors propose a

framework to develop adaptive joint network coding and scheduling schemes. The

authors show that, for asymmetric traffic, scheduling and network coding need to
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be combined to maximize supportable throughputs over this network. In [64], the

authors propose a dynamic routing-scheduling-coding strategy based on queue-state

information for serving multiple unicast sessions. The authors study queues over a

butterfly network for a discrete-time packet model, and they use fluid approximations

to show the stability of the system for their proposed algorithm.

Again, we emphasize that the wireless butterfly network considered in our chap-

ter is not equivalent to two-way relaying. We assume adaptive network coding in the

sense that every time there is an opportunity to do network coding, the relay node

combines packets algebraically. The servicing policy adopted throughout is taken

to be first-come first-served. A fluid assumption allows us to bypass the scheduling

problem. It is clear that, given a suitable network topology, the flexibility to switch

between network coding and classical routing, when the need arises, is better than

always using classical routing. What sets our work apart is accounting for the cost

associated with making a network suitable for network coding. We study whether

coding gains can offset the cost of facilitating a proper network structure. The rate

regions achieved in [60,62–64], correspond to the cases where the queue is stable for

stochastic arrivals. There is no explicit guarantee on the buffer distribution. In our

work, we find the achievable rate region under a tail-asymptote requirement on the

decay-rate of the queue distribution. Therefore, the conclusions by the authors in

the aforementioned papers would not necessarily apply in a framework akin to ours.

3. Organization

The remainder of this chapter is organized as follows. We introduce the system

model in Section B. We list pertinent results on the performance of tandem queues in

Section C. These tools are used to analyze symmetric butterfly networks in Section D.

Wireless butterfly networks are studied in Section E. Key queueing results about
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the second buffer of a tandem network are established in Section F. A complete

characterization of the departure process at the output of a single queue with constant

service and Markov-modulated arrivals is presented in Section 1. An expression for

the equilibrium distribution of the buffer-occupancy is derived in Section 2. This

enables us to obtain the corresponding asymptotic decay-rate of buffer-occupancy

in Section G. In Section H, we determine the maximum achievable rate for the

second buffer in the QoS constrained tandem network under consideration. Finally,

we conclude with some relevant remarks and future directions in Section I.

B. Problem Statement

We study a communication system where two independent users wish to send their

messages to two common destinations over a butterfly network, as shown in Fig. 9.

A multicast scenario is considered where independent sources A & B store their

respective information in buffers at nodes 1 & 2, and must transmit their data to

both destinations C & D. To facilitate this process, node 1 sends its packets to

nodes 3 & 5. Similarly, node 2 forwards its packets to nodes 3 & 6. Node 3 can

take two courses of action; either it stores the received packets from the sources in

a queue and then forwards them individually to node 4, or it combines the packets

algebraically before transmitting the data.

The first setting will be called the classic routing case. In this scenario, node 4

duplicates the received packets from node 3 and forwards copies to nodes 5 & 6.

These destination nodes disregard redundant information (they could potentially

take advantage of redundancy to improve the reliability of previously received mes-

sages, but this is beyond the scope of this chapter) and retain new data. For the

second scenario, we consider the network coding scheme where node 3 adds the two
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streams of packets over GF(2) and relays the coded messages to node 4 [2]. The

latter duplicates the received packets and transmits them to nodes 5 & 6. Node 5

can resolve the information received from node 2 by adding the packets obtained

from node 1 to the corresponding packets received from node 4. In a similar fashion,

node 6 can decode the information originating from node 1 by adding packets from

node 2 to the corresponding packets from node 4. Service quality is captured by a

global QoS constraint θ0 on the system. That is, the asymptotic decay-rate of buffer

occupancy must be greater than or equal to θ0 for all the queues in the system.

For the sake of analysis, we assume that packets are infinitely divisible and hence

the arrival and service processes are fluid in nature. Thus, it becomes possible to

define instantaneous arrival and service rates. Under this assumption, every node in

the network is equipped with a single fluid queue served by an individual transmitter.

We also take the buffers in the system to be arbitrary large. A similar approach

applies to the finite buffer case, albeit with additional boundary conditions on the

buffer occupancy.

1. Source Model

Many real-time traffic sources can be accurately represented by on-off models [65].

This motivates our assumption of arrivals being two-state Markov-modulated fluid

processes. In addition, there is a vast amount of literature available on the queue-

ing behaviors of Markov-modulated fluid processes for wire-line networks [4, 45, 66].

We postulate that sources A & B are independent, and that they both satisfy the

following assumption.

Assumption B.1. During an on period, the source emits packets at a constant peak

rate into its buffer; it remains idle otherwise. Moreover, the on and off times are
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independent and exponentially distributed.

Mathematically, the sources are defined through their underlying Markov chains.

Let {I1(t) ∈ {0, 1} : t ≥ 0} and {I2(t) ∈ {0, 1} : t ≥ 0} be independent two-

state continuous-time Markov chains (CTMC) modulating on-off sources A & B,

respectively. State zero represents the off state and state one denotes the on state.

Suppose that the peak-rate for the source at node i ∈ {1, 2} is taken as ai. With a

slight abuse of notation, we can write the arrival process at buffer i as

a(Ii(t)) = ai1{Ii(t)=1}, i ∈ {1, 2}

where 1{·} represents the standard set indicator function. We denote the mean off

and on times by λ−1
i and µ−1

i , respectively. The generator matrix for the modulating

two-state Markov process can then be written as

Qi =







−λi λi

µi −µi






, i ∈ {1, 2}.

2. Queueing Model

We denote the capacity of link i–j by cij . This capacity effectively limits the offered

service rate at node i for transmission to node j. In particular, if there exists a

link between nodes i & j and the buffer associated with node i is non-empty, then

node i can transmit to node j at a maximum rate cij . For simplicity, we assume

that c34 = c45 = c46 = c3. The offered service-rates on links 4–5 and 4–6 are then

equal to the maximum arrival-rate at node 4. As such, node 4 doesn’t need to store

data. It only facilitates the duplication and the forwarding of its received packets to

nodes 5 & 6. In other words, the buffer associated with node 4 is always empty.

Node 1 sends the same information to both nodes 3 & 5, and therefore retains
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data in its buffer until both receiving nodes have acquired the corresponding packet.

Accordingly, the service rate at node 1 is c1 = min{c13, c15}. Similarly, the service

offered to the buffer at node 2 is c2 = min{c23, c26}. Altogether, nodes 1, 2 and 3

transmit packets at rates c1, c2 and c3 respectively, whenever their own buffers are

non-empty. Observe that, by construction, congestion can only occur at these three

nodes. We can therefore safely assume that there are no queues at the other nodes.

We have depicted the fluid model of interest in Fig. 9 for the butterfly network under

consideration. We represent the fluid level in the buffer at node i and time t by Li(t).

The stochastic evolution of Li(t) depends on whether one opts for network coding or

classic routing.

3. Network Coding

For network coding, packets originating from links 1–3 and 2–3 are combined alge-

braically over GF(2) and then stored in the buffer at node 3. From a fluid perspective,

this is equivalent to both flows entering buffer 3 oblivious of each other. Buffer 3

can be serviced at a maximum rate c3. However, to prevent decoding delays at

the destinations, the service rates offered at nodes 1, 2 and 3 are made equal to

ĉ1 = min{c1, c3}, ĉ2 = min{c2, c3} and č3 = max{ĉ1, ĉ2}. In this scenario, there is

no congestion at node 3 and hence L3(t) = 0 for all times t. Furthermore, for the

non-trivial case where ai > ĉi, we can write the stochastic evolution of Li(t) as

d

dt
Li(t) = (a(Ii(t))− ĉi)1{Ii(t)=1}

− ĉi1{Ii(t)=0,Li(t)>0},

(3.2)

where i ∈ {1, 2}. When the buffer at node 1 is non-empty, the net rate of fluid input

is a(I1(t)) − ĉ1; this is called the drift rate. For i ∈ {1, 2}, we can define a drift

matrix Di = diag(−ĉi, ai − ĉi) for the buffer at node i, whose diagonal entries are
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the drift rates corresponding to the state of the arrival process. In matrix form, we

have

Di =







−ĉi 0

0 ai − ĉi






, i ∈ {1, 2}.

4. Classic Routing

For the case of classic routing, the service rate offered at node i ∈ {1, 2} is ci. The

evolution of Li(t) for the non-trivial case of ai > ci, is then governed by

d

dt
Li(t) = (a(Ii(t))− ci)1{Ii(t)=1}

− ci1{Ii(t)=0,Li(t)>0},

(3.3)

where i ∈ {1, 2}. It will be shown in the later sections that the departure process at

the output of buffer i is a two-state on-off process modulated by a countable-state

Markov process Ki(t). The departure process at node i can be represented as

c(Ki(t)) = ci1{Ki(t)6=0}, i ∈ {1, 2}.

The buffer at node 3 is fed by the aggregation of these two independent arrival

processes, and it is serviced at a constant rate c3. To initiate the analysis of this

more complicated scenario, we study the simple case where the resources at buffer 3

are split between the flows of sources A & B. Consider two parallel buffers at node 3

with positive constant service-rates ν and c3 − ν, respectively. We assume that the

flow from node 1 goes to the first parallel buffer; and the flow from node 2, to the

second one. The aggregate fluid in both the buffers will be greater than or equal

to the fluid level of a single-buffer system with incoming data from nodes 1 & 2

and service-rate c3. Thus, the decay-rate of buffer occupancy for a system with

a single buffer at node 3 must be no less than the exponential decay-rate of the
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corresponding system with parallel buffers and partitioned service. Yet, it can be

shown that these asymptotic values are equal for independent flows and optimal

splitting rate [47, 49, 50, 67]. The two independent flows can therefore be decoupled

and studied separately. If the shared buffer is constrained by a requirement θ0 on the

decay-rate of buffer occupancy, the queues in the decoupled system are constrained

by the same parameter θ0 as well. We denote by Li3(t) the fluid level in the buffer

of the decoupled system holding data from node i. We can write the stochastic

evolution of Li3(t) for the non-trivial case of ci > max{ν, c3 − ν}, as

d

dt
L13(t) = (c(K1(t))− ν)1{K1(t)6=0}

− ν1{K1(t)=0,L13(t)>0}

d

dt
L23(t) = (c(K2(t))− c3 + ν)1{K2(t)6=0}

− (c3 − ν)1{K2(t)=0,L23(t)>0}.

C. Key Results

In this section, we list the mathematical results needed to compute the achievable

rate-regions for data multicast through the butterfly network, and under specific QoS

requirements. Let ℓ1(t) be the amount of fluid at time t in a queue being fed by an

on-off source satisfying Assumption B.1, and serviced at a constant rate c. Let a

denote the arrival-rate into this buffer when the source is on. The mean off and

on times of the source are denoted by λ−1 and µ−1, respectively. Furthermore, the

output of this queue (also called departure process) is fed into another arbitrary large

reservoir. This second queue is being serviced at a constant rate υ. The amount of

fluid in the latter buffer at time t is denoted by ℓ2(t).

We wish to find the maximum peak rate a, such that the QoS criterion of (3.1)
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is no less than θ0 for both queues. Let θ1 and θ2 be the asymptotic buffer decay-rate

governing the first and second queues in the tandem network, i.e.,

θj = − lim
x→∞

ln Pr{ℓj > x}
x

(3.4)

where ℓj is the steady-state queue-length of buffer j. More specifically, we wish to

identify set A (as a function of θ0, c, and υ) defined by

A(θ0, c, υ) = {a ∈ R
+ : min{θ1, θ2} ≥ θ0}

= {a ∈ R
+ : θ1 ≥ θ0} ∩ {a ∈ R

+ : θ2 ≥ θ0}.
(3.5)

If a ≤ c, the first buffer always remains empty and the behavior of the tandem queue

reduces to that of a system with a single queue. We therefore focus on the non-trivial

case where a > c. Under this condition, Theorem F.1 in Section F asserts that if

aλ/(λ+ µ) < c < a then

θ1 =
µ

a− c
− λ

c
. (3.6)

The lower bound on c ensures stability of the queue. This formula implicitly de-

termines the maximum peak-rate a such that a QoS constraint of θ0 is satisfied at

buffer 1. We define

A1(θ0, c) =
{

a ∈ R
+ : θ1 ≥ θ0

}

=
{

a ∈ R
+ : a ≤ ā1(θ0, c)

}

,

(3.7)

where we define ā1(θ, c) = c+ cµ/(λ+ cθ). The second buffer always remains empty

if υ ≥ c. Thus, we consider the situation where υ < c. We identify the range of

allowable rates such that buffer 2 satisfies QoS constraint θ0 (see Section H) as

A2(θ0, c, υ) =
{

a ∈ R
+ : θ2 ≥ θ0

}

=
{

a ∈ R
+ : a ≤ ā2(θ0, c, υ)

}

,

(3.8)
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where the function ā2(θ, c, υ) is given by

ā2(θ, c, υ) =















ā1(θ, υ), 0 < υ ≤ υ∗

ā3(θ, c, υ), υ∗ < υ < c.

Here, ā1(θ, υ) is as defined above and ā3(θ, c, υ) is given by the expression

ā3(θ, c, υ) =

c+
cµ

λ









−1 +

√

1−
(

(c− υ) θ
µ
− 1
)

(

(c− υ) θ
λ
− 1
)

(c− υ) θ
λ
− 1









2

with parameter υ∗ determined implicitly by

c

υ∗ − 1 =
θυ∗µ

λµ+ (λ+ θυ∗)2
.

Collecting these results, we obtainA(θ0, c, υ) = {a ∈ R+ : a ≤ min{ā1(θ0, c), ā2(θ0, c, υ)}}.

That is, a is admissible if and only if a ∈ A(θ0, c, υ) with

a ≤















ā1(θ0, υ) 0 < υ ≤ υ∗

min{ā1(θ0, c), ā3(θ0, c, υ)} υ∗ < υ < c.

(3.9)

An intuitive explanation for the behavior of this tandem network is as follows.

Build-ups in the system can occur at buffers 1 & 2. When the service rate of the

second buffer is small (υ ≤ υ∗), the behavior of the system is dominated solely by

the action of the second queue. On the other hand, when υ > υ∗, deviations are

caused by the combined behavior of the two queues with large build-ups occurring in

the first queue when ā1(θ0, c) ≥ ā3(θ0, c, υ), and in the second queue otherwise. The

more complicated expression corresponding to this latter case follows from the fact

that, being altered by the first buffer, the structure of the arrival process feeding the
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second buffer is more intricate. We plot the boundary of A(θ0, c, υ) with increasing

υ ∈ (0, c) in Fig. 10 for various values of QoS constraint θ0. It is clear from the

figure that the achievable rate region A(θ0, c, ν) shrinks with QoS constraint θ0, as

one would expect. The system parameters used in this example are λ−1 = 0.65 s,

µ−1 = 0.352 s and c = 1 Mbps.
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Fig. 10. Maximum supportable peak-rate of the on-off source a(θ0, ν) = supA(θ0, c, ν)

versus ν under various values of QoS requirement θ0 for a tandem queue. The

first queue is serviced by a fixed constant service rate c = 1 Mbps and the

second queue is serviced by a rate ν ∈ [0, c] Mbps. Parameter θ0 denotes the

target asymptotic exponential decay rate of the tail buffer occupancy.

Before we apply these results to compute achievable rate regions for the butterfly

network, we point out that there are at least three different ways of obtaining the tail

exponents of tandem queues. First, there is the transform method studied in [68–70].
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Under this approach, the authors find the Laplace-Stieltjes transform of the desired

distributions [69, 70]; still, these transforms are not straightforward to invert. A

much stronger result, the joint distribution for tandem queues, is obtained in [68].

However, for our purposes it suffices to know the marginal content distributions of

the two buffers. Furthermore, the marginal distribution for the second buffer in [68]

is not expressed in its convenient reduced form.

A second approach would be to use sample-path large deviations as in the semi-

nal paper by Chang-Zajic [47,49,50]. One can use the Lindley recursion and inverses

of counting processes (Galois connections) to construct a discrete-time embedded

process that would be closely related to the continuous-time process at hand. Thus,

one can employ this methodology to study stationary random variables such as buffer

content. However, to use these results [47,49,50], one needs to verify the general mix-

ing conditions for the sample-path large deviations of the departure process. These

conditions are highly technical and, to show they are satisfied, one requires expertise

in probability theory and filtrations; this would lead to a more contrived exposition.

The third approach, which we adhere to in this chapter, can also be found in

previous literature [71–73]. One can study two queues separately by first charac-

terizing the stationary departure process from the first queue, and using it as an

arrival process for the second queue. This gives us an explicit distribution for the

marginal content of the second buffer in a tandem network. That is, we provide an

alternate proof for the tail-exponent of the second buffer in a tandem queue (though

it is a specialized result, it gives us the desired form) utilizing the Anick-Mitra-

Sondhi approach [71–73] together with a characterization of the departure process

by Aalto [74, 75].
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D. Achievable Rate Regions

The results listed above can be employed to identify achievable rate regions for the

butterfly network under consideration. With a slight abuse of notation, we let θi be

the asymptotic decay-rate of buffer-occupancy for the queue at nodes i ∈ {1, 2, 3} in

Fig. 9, for a pair of peak-arrival rates (a1, a2) at sources A & B. We need to find the

set of all two-tuples (a1, a2) such that the global QoS constraint θ0 is satisfied, i.e.,

R =
{

(a1, a2) ∈ R
+ × R

+ : min {θ1, θ2, θ3} ≥ θ0
}

.

Network Coding As mentioned earlier, the effective service rates offered at nodes 1,

2 and 3 are ĉ1 = min{c1, c3}, ĉ2 = min{c2, c3}, and č3 = max{ĉ1, ĉ2}. This prevents

undue decoding delays at the destinations. Using the notation of the previous section,

we can write the achievable rate-region R for this system as

Rnc = A1(θ0, ĉ1)×A1(θ0, ĉ2),

where A1 is the set defined in (3.7).

Classic Routing For classic routing, consider two parallel buffers at node 3 with

constant service-rates ν and c3 − ν, respectively. Assume that the flow from node 1

goes to the first buffer; and the flow from node 2, to the second one. Again, we

emphasize that the aggregate fluid in both the buffers will be greater than or equal to

the level of fluid in a single-buffer system with combined arrivals from nodes 1 & 2 and

serviced at rate c3. Using the aforementioned splitting property, the two independent

flows can be decoupled and studied separately. If the shared buffer is constrained by

a QoS requirement θ0, the queues in the decoupled system are subject to the same

criterion. For a fixed 0 < ν < c3, there exists a unique peak-rate pair (a1, a2) such
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that the QoS constraint θ0 is satisfied by the system if the achievable rate region

is A(θ0, c1, ν) × A(θ0, c2, c3 − ν) = [0, a1] × [0, a2]. Accordingly, the achievable rate-

region is equal to the union of the regions corresponding to all the possible values of

ν. That is,

Rcr =
⋃

0≤ν≤c3

A(θ0, c1, ν)×A(θ0, c2, c3 − ν), (3.10)

where A is the achievable rate region of (3.5).

E. Wireless Butterfly Network

In this section, we study a wireless butterfly network under a broadcast paradigm.

We assume that the system operates in frequency division multiplexing (FDM) mode.

We should point out that FDM operation is not necessarily optimal in terms of

achievable rates or delays. More complex schemes provide future avenues of re-

search. It is not clear though that a similar analytical framework can be used while

considering alternative multiple-access schemes.

Consider the multicast scenario where two sources wish to communicate with

two destinations. An additional node that acts as a relay is present to facilitate

communication over the network. All the nodes have an identical power budget P ,

and the total spectral bandwidth available to the system is limited. The source nodes

produce independent on-off traffic, as in our previous setting. The total available

spectral bandwidth W is divided to make three non-interfering frequency bands.

Node 1 broadcasts its messages to nodes 3 & 5, and node 2 does the same to

nodes 3 & 6 (see Fig. 11). Node 3 sends its messages to nodes 5 & 6 simultane-

ously. The packets transmitted by node 3 can be either multiplexed messages from

nodes 1 & 2, or algebraic sums thereof. Again, we call these modes of operation

classic routing and network coding, respectively. We note that this setup is closer
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to the practical mesh networks being deployed today than it is to an information

theoretic perspective seeking to identify fundamental limits of wireless systems.

5 6

3

1 2

d

d/2 d/2

δ

Fig. 11. Wireless butterfly network with two sources, two destinations and a relay

node.

For simplicity, we assume that all the transmission links are time-invariant.

We consider two cases: the additive white Gaussian noise (AWGN) case, and a

scenario where the wireless channels are subject to path loss. Again, we suppose

that every node is equipped with an arbitrary large buffer to store data packets

that are awaiting transmission through the wireless medium. We also assume that a

simple link layer acknowledgment scheme is present, so that data can be flushed out

of the corresponding buffer once reception is confirmed.
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1. Channel Model

For an AWGN channel, the maximum rate at which error-free data transfer is possible

is given by

W log2

(

1 +
P

N0W

)

(3.11)

where P represents the expected power of the signal, N0/2 is the double-sided power

spectral density of the noise process, and W is the spectral bandwidth. Recent

developments in error-control coding allow operation near Shannon capacity with

minimal error-rates and small delays. Therefore, the channel capacity expression

of (3.11) can be viewed as an optimistic approximation of code performance. We

assume that codes are designed to operate at a fixed rate, which is the constant

service rate offered by the channel. In the case where all the links are AWGN limited,

we allocate equal spectral bandwidth to the three nodes, and hence they become of

equal capacity. We denote the constant service rate offered by each connection as

c = (W/3) log2 (1 + 3P/(N0W )), where P/(N0W ) is the observed signal-to-noise

ratio (SNR).

In the second case, we assume that the received power decays exponentially in

distance with exponential factor α. That is, the ratio of the transmit power to the

received power is κdα. Given a spectral bandwidth allocation of ηW and a distance

of d meters, the capacity of the corresponding connection becomes

c(d, η) = ηW log2

(

1 +
P

ηN0Wκdα

)

bits/second. (3.12)

Once the spectral bandwidth allocation is completed, the capacity of each link stays

fixed. We choose a code-rate to operate close to capacity, and this rate becomes the

maximum allowable constant service rate for the corresponding queue.
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2. AWGN Links

We begin the wireless analysis with the scenario where node 3 utilizes network coding.

In this case, the data rate to be transmitted out of node 3 is the maximum of the

rates from nodes 1 & 2, which is c. Therefore, there is no congestion at this node and

the achievable rate region is limited by the QoS constraint at nodes 1 & 2. Under a

QoS constraint θ0, the maximum possible rate received by destinations C & D have

identical functional form and are equal to a1 from source A and a2 from source B,

where

ai = c+
cµi

λi + cθ0
, i ∈ {1, 2}.

That is, the achievable rate region for the source rate-pair (a1, a2) isRnc = A(1)
1 (θ0, c)×

A(2)
1 (θ0, c).

Next, we consider the situation where node 3 simply forwards packets from

nodes 1 & 2 to the destinations. In this case, source rate-pairs (a1, a2) are also limited

by the congestion at node 3; and, for all ν ∈ (0, c), we have A(θ0, c, ν) ⊂ A1(θ0, c).

The total achievable rate region for classic routing thus becomes

Rcr =
⋃

0≤ν≤c

A(1)(θ0, c, ν)×A(2)(θ0, c, c− ν).

The results for a specific value of θ0 are shown in Fig. 12. The system parameters

selected for this numerical study appear in Table III. Additionally, we chose an

expected received power equal to 100 mW.

3. Links with Path Loss

To illustrate the effects of path attenuation, we consider an example where the sources

and destinations are located on the vertices of a perfect square of side-length d. The

relay node lies on the perpendicular bisector of the edges connecting the two sources
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Fig. 12. Boundaries of achievable peak-rate regions for on-off sources when (a) clas-

sical routing or (b) network coding is employed at intermediate node 3 for

the QoS constrained communication over butterfly network of Fig. 11, where

each link is additive white Gaussian noise limited. The asymptotic exponen-

tial decay-rate of the buffer-occupancy is bounded below by θ0 = 0.1.

at a distance δ from the top of the square. The distance from the two sources to the

relay node being identical, we assume that a fraction η/2 of the total bandwidth is

allocated to each source; and the remaining (1− η)W , to the relay node.

To maximize the gains of network coding, we need to make the link capacities

identical. The capacity of the link between a source and the relay is c (d13, η/2),

where d13 = d23 =
√

(d/2)2 + δ2. Similarly, the capacity of the link between the

relay and a destination can be written as c (d35, (1− η)), where the distance from

the relay to a destination is d35 = d36 =
√

(d/2)2 + (d− δ)2. Since the service-rate

available to the source is limited by the minimum of the direct-link and relay-link
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capacities, we allocate bandwidth parameter η in the following fashion:

min
{

c
(

d13,
η

2

)

, c
(

d,
η

2

)}

= c
(

max{d13, d},
η

2

)

= c (d35, (1− η)) .

(3.13)

We denote this optimal bandwidth allocation parameter by η∗, which is evaluated

numerically. We would like to point out that this η∗ is unique, which follows from

the monotonicity of c(d, η) in η (see (3.12)).

Proposition E.1. The optimal bandwidth allocation parameter η∗ that satisfies (3.13)

is unique.

Proof. It is easy to see that c(d, η) is continuous and even differentiable in the

range (0, 1]. We will quickly show that c(d, η) is strictly increasing in η. Then,

it will follow that c(d, (1 − η)) is continuous and decreasing in η and hence η∗

is unique since c(d1, 0) = 0 < c(d2, 1) for any finite d1, d2. To that end, it suf-

fices to show that ∂c(d,η)
∂η

≥ 0 for all η ∈ [0, 1]. From (3.12), it is straightfor-

ward to verify that ∂c(d,η)
∂η

is decreasing in η; hence we only need to check that

∂c(d,η)
∂η

|η=1 = W
ln 2

(

ln (1 + k2)− k2
1+k2

)

is greater than zero. Here, we are denoting

P
N0Wκdα

by k2. Clearly, if f(k2) = ln (1 + k2)− k2
1+k2

≥ 0 for all k2 ≥ 0, we are done.

This is easy to verify since f(0) = 0 and f ′(k2) =
k2

(1+k2)2
≥ 0.

For the classic routing case, each source broadcasts its packets to the relay

node where information is stored. The relay then forwards the received messages to

the destinations using a first-come-first-serve scheduling policy. The links from the

sources to the relay node have identical capacity c(d13, η/2) = c(d23, η/2). Similarly,

the link from the relay node to the destinations have capacity c(d35, (1− η)). Using

the same queueing performance analysis as before and for a fixed δ, we can obtain

the achievable rate-region under QoS constraint θ0 for network coding and classic
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routing (for different values of η in the latter case). The two regions are shown in

Fig. 13 for a transmit power of P = 40 W and the system parameters of Table III.

In this example, we have taken d = 15 m and α = 1.8 (typical values of α range from

1.6 to 1.8 for line-of-sight communication in buildings [76, Page 139, Table 4.2]). The

region enclosed by the thick solid line represents the achievable rate region achieved

by network coding. The thin dashed lines characterize the regions corresponding to

classic routing for different values of η. Clearly, classic routing outperforms network

coding in this case. This is a scenario where the cost of establishing a network

topology suitable for network coding exceeds the benefits of packet combining.

F. Queueing Results

Below, we list and derive queueing results related to the analysis of the tandem

network introduced in Section C. Recall that the arrival process feeding the first

queue is a Markov-modulated fluid process with on-rate a. This queue is serviced

at a constant rate c, whereas the second queue is served at a rate υ. When a ≤ c,

the first buffer in the system remains empty at all times, and the analysis of the

tandem network degenerates into a single-queue scenario. We therefore assume that

a > c, which is the more interesting case. For this situation, the following theorem

enables us to obtain the tail-asymptotics of the first buffer in a tandem network. The

corresponding rate-region is governed by (3.4) and (3.6).

Theorem F.1 (Mitra [45, 71, 77]). Let ℓ1(t) be the amount of fluid in an arbitrary

large reservoir being fed by an on-off source satisfying Assumption B.1, and serviced

at a constant rate c. The off and on times of the source are exponentially distributed

with means λ−1 and µ−1, respectively. If the constant arrival-rate of the fluid in the
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Fig. 13. Boundaries of achievable peak-rate regions for on-off sources when (a) classi-

cal routing (denoted by dashed lines for values of fraction η ∈ [0.01, 0.99]) and

(b) network coding (denoted by the solid line) are employed at the intermedi-

ate node 3 for the QoS constrained communication over butterfly network of

Fig. 11 where each link is limited by path loss. The asymptotic exponential

decay-rate of the buffer occupancy is bounded below by θ0 = 0.1 and the

relay node is at distance δ = 9m.

on state is such that

aλ

λ+ µ
< c < a,

then the limit limt→∞ Pr{ℓ1(t) > x} exists for all x ≥ 0. The corresponding asymp-

totic decay-rate of buffer occupancy can be identified by looking at the largest negative

eigenvalue ζ that satisfies the matrix equation ζDφ = Qφ. Here, Q is the generator

matrix for the modulating Markov chain and D is the drift matrix corresponding to
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the arrival process. More precisely, we have

θ1 = − lim
x→∞

ln Pr{ℓ1 > x}
x

=
µ

a− c
− λ

c

where ℓ1 is a random variable whose distribution coincides with the equilibrium dis-

tribution of the queue.

This is a standard result and, as such, we state it without proof. For alternate

treatments of this theorem and other pertinent queueing results on the decay-rate of

buffer-occupancy under various conditions, see [3, 4, 45–47, 49, 50, 53, 66, 72].

1. Departure Process of a Fluid Buffer

We next consider the case where there are two queues in tandem and the departure

process of the first queue serves as the input to the second buffer. The departure

process at the output of the first buffer is characterized using a theorem first proved

by Aalto [74, 75].

Theorem F.2 (Aalto). For the fluid queue described in Theorem F.1, the departure

process can be viewed as an on-off source where packets are emitted at a constant

rate during an on period, and the source is idle otherwise. The off times are expo-

nentially distributed with mean λ−1; while the on times have the same distribution

as the duration of a busy period in an M/M/1 queue with arrival rate (1− c/a)λ and

service rate cµ/a. Furthermore, the departure rate is c when the queue is non-empty.

Mathematically, this departure process is modulated by a countable state birth-death
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process {K(t) : t ≥ 0} with given transition rates

λ0,1 = λ, (3.14)

λn−1,n =

(

a− c

a

)

λ, n = 2, 3, . . . (3.15)

µn,n−1 =
cµ

a
, n ∈ N. (3.16)

The modulating birth-death process is depicted in Fig. 14. The departure process is

off, when K(t) = 0 and it is on otherwise. That is, the departure rate is given by

c(K(t)) =















0, K(t) = 0,

c, K(t) ∈ N.

(3.17)

1 20

λ

cµ/acµ/acµ/a

λ
(

1 −

c

a

)

λ
(

1 −

c

a

)

Fig. 14. Graphical representation of the modulating birth-death process.

Having characterized the departure process of the queue, we next present an

expression for the equilibrium distribution of K(t). Let

pn = lim
t→∞

Pr(K(t) = n), n = 0, 1, 2, . . .
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and define ρ =
(

a−c
c

)

λ
µ
. Then, the stationary distribution of K is given by [78]

p0 =
(a− c)(1− ρ)

a− c+ cρ
,

pn =

(

a

a− c

)

ρnp0, n = 1, 2, . . .

2. Distribution of the Tandem Queue

For the tandem network described in Section C, we wish to find the equilibrium

distribution of the second buffer. Note that we already have similar results for the

first queue based on Theorem F.1. We also have knowledge of the departure process

from the first queue, as afforded by Theorem F.2. The properties of the second queue

can therefore be studied based on this departure process alone.

Consider a buffer that is being fed by a Markov modulated on-off source gener-

ating fluid at a rate c(K(t)), where c(K(t)) is the departure function of (3.17) and

K(t) is the modulating Markov process described in Theorem F.2. The arrival rate

in the queue is c when K(t) ≥ 1, and it is zero otherwise. Fluid is removed from the

queue at constant rate υ, provided that it is non-empty. Paralleling the approach

of Virtamo and Norros [73], we derive necessary and sufficient conditions for a non-

trivial stationary probability distribution to exist. Then, we find the spectrum of

the operator that governs the equilibrium distribution of the buffer. This allows us

to present an explicit expression for the distribution of the queue.

Clearly, if υ ≥ c, there is no congestion in this buffer. We therefore examine

the case where υ < c. Writing the stochastic evolution equation for the buffer of

interest, we get

d

dt
ℓ2(t) = (c− υ)1{K(t)6=0} − υ1{K(t)=0,ℓ2(t)>0}.

It can be shown that the stochastic process governing the evolution of this buffer,
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{ℓ2(t) : t ≥ 0}, is positive recurrent if and only if [36, 66]

(

a− υ

υ

)

λ

µ
< 1.

That is, there exists a stationary probability distribution for the buffer provided that

the stability condition mentioned above is satisfied. Applying standard queueing

arguments, we can derive the Chapman-Kolmogorov equations for the probability

distribution of stationary buffer-occupancy ℓ2 as follows. We use π(x, n) to denote the

probability that ℓ2 exceeds x while the underlying birth-death process is in state n,

i.e.,

π(x, n) = lim
t→∞

Pr(ℓ2(t) > x,K(t) = n)

= Pr(ℓ2 > x,K = n).

The corresponding Chapman-Kolmogorov equations become

(

c1{n≥1} − υ
) d

dx
π(x, n)

= λn−1,n1{n≥1}π(x, n− 1) + µn+1,nπ(x, n+ 1)

−
(

λn,n+1 + µn,n−11{n≥1}
)

π(x, n).

(3.18)

for n = 0, 1, 2, . . . The constants {λn−1,n, µn,n−1 : n ∈ Z
+} are the transition rates

of the modulating process K(t) defined in (3.14)-(3.16). Additionally, we employ

the convention that µ0,−1 = λ−1,0 = 0. With some abuse of notation, we define the

sequence π(x) as

π(x) =
{

π(x, n) : n ∈ Z
+
}

.

Let H denote the Hilbert space of square summable sequences indexed by Z+, and

let B(H) be the space of bounded linear operators from H to itself. For sequence
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h ∈ H, we define operators D and Q in B(H) by

(Dh)n =
(

c1{n≥1} − υ
)

hn, (3.19)

(Qh)n = λn−1,n1{n≥1}hn−1 − λn,n+1hn

+
cµ

a

(

hn+1 − hn1{n≥1}
)

,
(3.20)

where {λn−1,n} are defined in (3.14)-(3.16). It is straightforward to check continuity

of these two operators. In particular, for any h ∈ H, we have

‖D(h)‖ ≤ max{υ, c− υ}‖h‖,

‖Q(h)‖ ≤ 3
(

λ+
cµ

a

)

‖h‖.

For the aforementioned system, we can rewrite (3.18) in a compact form in terms

of the sequence π(x) and the bounded linear transformations Q and D,

D
d

dx
π(x) = Qπ(x). (3.21)

The transformation D can be expressed in terms of the identity operator I and the

standard projection operator e∗0. For any h ∈ H, we have Ih = h and e∗0h = h0. We

can then write

D = (c− υ)D̃ = (c− υ)

(

I − c

c− υ
e0e

∗
0

)

.

The linear transformation Q can be described in matrix form as

Q =
cµ

a
EQ̃E−1,
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where we have defined the operators E = diag
(√

a−c
a
, ρ1/2, ρ, ρ3/2, . . .

)

and

Q̃ =



















−aρ
a−c

√

aρ
a−c

0 0 · · ·
√

aρ
a−c

−(1 + ρ)
√
ρ 0 · · ·

0
√
ρ −(1 + ρ)

√
ρ · · ·

...
...

...
...

. . .



















.

We emphasize that Q̃ is a symmetric matrix, which makes it very convenient for the

spectral analysis carried out below. Note also that E, E−1 and D are diagonal and

hence commutative operators.

It is easy to see that D̃ and Q̃ belong to B(H), and that D̃ is invertible. It

follows that D̃−1Q̃ ∈ B(H). Since D̃−1 =
[

I − c
υ
e0e

∗
0

]

, we can represent D̃−1Q̃ using

a countable state matrix as



















−aρ
a−c

(

υ−c
υ

)

√

aρ
a−c

(

υ−c
υ

)

0 0 · · ·
√

aρ
a−c

−(1 + ρ)
√
ρ 0 · · ·

0
√
ρ −(1 + ρ)

√
ρ · · ·

...
...

...
...

. . .



















. (3.22)

It should also be apparent from the Chapman-Kolmogorov equation of (3.21)

that

π(x) = E exp

(

x
cµ

a(c− υ)
D̃−1Q̃

)

E−1π(0). (3.23)

To evaluate π(x), we need to identify boundary condition π(0) and find a spectral

representation for the operator

exp

(

x
cµ

a(c− υ)
D̃−1Q̃

)

. (3.24)

The equilibrium distribution π(0) can be obtained from the natural boundary condi-

tions on the buffer occupancy for a stable system; this is accomplished later. Rather,
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we begin by deriving an expression for (3.24) through a two-step approach: first we

compute the spectrum of D̃−1Q̃, and then we obtain an equivalent representation for

I in terms of the associated eigenfunctions.

a. Spectrum of Bounded Operator

In general, finding the spectrum of a non-compact bounded linear operator is a

difficult task. However, in the present case, the relevant operator is a compact per-

turbation of a standard shift operator. It is well-known in the literature that the

continuous spectrum of a shift operator remains invariant under compact perturba-

tions [79, 80]. We present relevant results formally in the following theorem, which

will be used to obtain a spectral representation for the operator of (3.24).

Let us denote the spectrum of an operator A by

σ(A) = {ζ ∈ C : (A− ζI) is not invertible in B(H)}.

This spectrum is composed of two parts. First, there is the discrete spectrum of

A, also called the set of eigenvalues of A, which is defined as σd(A) = {ζ ∈ C :

(A− ζI) is not injective}. That is, ζ is an eigenvalue of A if and only if there exists

a sequence h ∈ H such that (A − ζI)h = 0. On the other hand, the values of

ζ ∈ σ(A) for which the operator (A − ζI) is injective but not surjective belong to

the continuous spectrum of A. If there exists h ∈ H such that (A− ζI)−1h /∈ H, yet

the range of operator (A− ζI)−1 is dense in H, then ζ ∈ σc(A).

Theorem F.3. Let operators D,Q ∈ B(H) be as defined in (3.19)-(3.20). Then, the
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continuous spectrum of D−1Q is

σc(D
−1Q) =

[

− cµ

a(c− υ)

(

1 +

√

(

a− c

c

)

λ

µ

)2

,

− cµ

a(c− υ)

(

1−
√

(

a− c

c

)

λ

µ

)2 ]
(3.25)

and D−1Q has a discrete eigenvalue ζ0 = 0. Furthermore, if

a/c− 1

a/υ − 1
<

√

(

a− c

c

)

λ

µ
,

then there is an additional eigenvalue located at ζ1 = − µ
a−υ

+ λ
υ
. In this latter case,

we have ζ1 > sup σc(D
−1Q).

Proof. Let w ∈ l∞(Z+) be such that, for some ζ , we have

ζDw = Qw. (3.26)

Then, ζ belongs to the spectrum of the linear operator D−1Q. Substituting ξ =

a(c−υ)
cµ

ζ and w̃ = E−1w, we obtain

ξD̃w̃ = Q̃w̃. (3.27)

There is a one-to-one correspondence between the eigenvalues and eigenfunctions

of (3.26) and (3.27). Therefore, it suffices to show that spectrum of D̃−1Q̃ has a

continuous part [−(1 +
√
ρ)2,−(1 − √

ρ)2] and an eigenvalue ξ0 = 0. In addition,

we need to show that operator D̃−1Q̃ also has an additional eigenvalue ξ1 = −(1 −

c′)(1− ρ
c′
) when

√
ρ > c′. Here we have implicitly defined c′ = a/c−1

a/υ−1
. Now, we show

that this is indeed true. We choose to solve (3.27) due to its symmetric structure
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and greater simplicity. From (3.22), it follows that

ξw̃0 = − aρ

a− c

(

υ − c

υ

)

w̃0 +

√

aρ

a− c

(

υ − c

υ

)

w̃1,

ξw̃1 =

√

aρ

a− c
w̃0 − (1 + ρ)w̃1 +

√
ρw̃2,

ξw̃n =
√
ρw̃n−1 − (1 + ρ)w̃n +

√
ρw̃n+1, n ≥ 2.

Taking the z-transform, W̃ (z) =
∑∞

n=0 w̃nz
n, we get

W̃ (z) =

(

1−
√

a

a− c

)

w̃0

+

√

a

a− c





1−
(

1 + ξ c/a−c/υ
1−c/υ

)

z√
ρ

1− 1+ρ+ξ√
ρ

z + z2



 w̃0.

(3.28)

We define γ0(ξ), γ1(ξ) to be the roots of the characteristic polynomial γ2− (1+ρ+ξ)√
ρ

γ+1.

To solve for w̃ from its z-transform, we break the problem into two separate

cases. First, assume that |γ0(ξ)| 6= 1. Then γ0(ξ), γ1(ξ) are two different roots, and

the z-transform can be written as

W̃ (z) =

(

1−
√

a

a− c

)

w̃0

+

√

a

a− c

(

1− α(ξ)

1− zγ0(ξ)
+

α(ξ)

1− zγ1(ξ)

)

w̃0,

(3.29)

where we have implicitly defined

α(ξ) =
1

2

(

1 +
ρ− 1− 1+c′

1−c′
ξ

√

(1 + ρ+ ξ)2 − 4ρ

)

.

From this decomposition, we gather that

w̃n(ξ) =

√

a

a− c

(

(1− α(ξ))γ0(ξ)
n + α(ξ)γ1(ξ)

n

)

w̃0,

where n ∈ N. Note that w̃ ∈ H only when α(ξ) is 0 or 1 since γ0(ξ)γ1(ξ) = 1

(see [73]). The corresponding eigenvalues are ξ0 = 0 and ξ1 = −(1 − c′)
(

1− ρ
c′

)

.
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Since γ0(0) =
√
ρ, zero is always an eigenvalue of (3.27). However, γ1(ξ1) = c′√

ρ

which implies that ξ1 is an eigenvalue only when c′ <
√
ρ.

On the other hand, we claim that ξ belongs to the continuous spectrum if and

only if |γ1(ξ)| = 1; this is equivalent to ξ ∈ [−(1 +
√
ρ)2,−(1 −√

ρ)2]. To prove the

claim, we note that D̃−1Q̃ can be equivalently expressed in terms of the right shift

operator S, the left shift operator T , a compact perturbation K and the identity

operator I. In particular, we can write

D̃−1Q̃ =
√
ρ

(

S + T − 1 + ρ√
ρ

I +K

)

(3.30)

where S =
∑

n∈Z+ en+1e
∗
n, T =

∑

n∈Z+ ene
∗
n+1 and

K =

(

1 + ρ√
ρ

−√
ρ

(

aυ − ac

aυ − cυ

))

e0e
∗
0

−
(

1−
√

a

a− c

)

e1e
∗
0 −

(

1−
√

a

a− c

(

1− c

υ

)

)

e0e
∗
1.

It is immediate that S + T is self-adjoint with real continuous spectrum σc(S + T ),

and ‖S‖ = ‖T‖ = 1. Also, it is a well-known result by Weyl that the continuous

spectrum (plus limit points of point spectrum if any) of a self-adjoint operator re-

mains unchanged under compact perturbations [79,80]. This fact, along with (3.30),

gives us

σc

(

D̃−1Q̃
)

=
√
ρσc

(

S + T − 1 + ρ√
ρ

I

)

=
√
ρσc(S + T )− (1 + ρ).

Next, we show that σc(S+T ) = [−2, 2]. Since ‖S+T‖ ≤ 2, it is clear that σc(S+T ) ⊂

[−2, 2] [81, Proposition 7.19]. To establish set equality, we use Proposition 7.39 in [81]

which states that

σc(S + T ) =

{

λ : inf
‖h‖=1

‖(S + T − λI)h‖ = 0

}

.
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We choose the following sequence {h(N)(φ) : N ∈ Z
+} parametrized by φ ∈ [0, 1],

h(N)(φ) =















1√
N
ej2πφn n ∈ {0, 1, . . . , N − 1}

0 otherwise.

Clearly, ‖h(N)‖ = 1. Furthermore, taking λ = 2 cos(2πφ), we get

∥

∥(S + T − λI)h(N)
∥

∥ =

√

3

N
.

This shows that [−2, 2] ⊂ σc(S + T ). As a consequence, we have

σc

(

D̃−1Q̃
)

=
[

− (1 +
√
ρ)2 ,− (1−√

ρ)2
]

and hence (3.25) follows. We now show that ζ1 > sup σc (D
−1Q). It suffices to show

that ξ1 > sup σc

(

D̃−1Q̃
)

. Substituting the expressions for ξ1 = −(1− c′)(1− ρ
c′
) and

sup σc

(

D̃−1Q̃
)

= −(1−√
ρ)2, and canceling common terms on both sides, we need

to show that

c′√
ρ
+

√
ρ

c′
> 2.

This holds because γ1(ξ1) =
c′√
ρ
< 1. This completes the proof.

b. Spectral Representation of Identity

For further analysis, we introduce variable y and constants p and q in the following

way:

y = y(ξ) =
1 + ρ+ ξ

2
√
ρ

, p =
2

1− c′
, q = − c′ + ρ

(1− c′)
√
ρ
.

We emphasize that there is a one-to-one correspondence between y and ξ; we can

therefore express y as a function of ξ, and ξ as a function of y unambiguously.

Hence, we use y(ξ) and ξ(y) interchangeably depending on the context. We define
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y0 = y(ξ0) and y1 = y(ξ1) for eigenvalues ξ0 and ξ1. In addition, we assume without

loss of generality that w̃0 = 1 for eigen-sequence w̃(y(ξ)) corresponding to ξ ∈

σ(D̃−1Q̃). For convenience, we make the dependence of w̃ on y (and hence ξ) explicit

hereafter. For eigenvalues ξ0 and ξ1, we gather from proof of Theorem F.3 that the

corresponding eigen-sequences are

w̃(y0) =

√

a

a− c

(

√

a− c

a
,
√
ρ, ρ, . . .

)

w̃(y1) =

√

a

a− c

(

√

a− c

a
,
c′√
ρ
,

(

c′√
ρ

)2

, . . .

)

.

This leads to their z-transforms being

W̃ (y0, z) =

(

1−
√

a

a− c

)

+

√

a

a− c

(

1

1− z
√
ρ

)

W̃ (y1, z) =

(

1−
√

a

a− c

)

+

√

a

a− c

(

1

1− zc′/
√
ρ

)

.

We can also find W̃ (yi, z) by substituting α(ξi) = i ∈ {0, 1} in (3.29). Furthermore,

we can write the z-transform of the eigen-sequence corresponding to ξ ∈ σc(D̃
−1Q̃)

by substituting y, p and q in (3.28) to obtain

W̃ (y, z) =
∑

k∈Z+

w̃k(y)z
k

=

(

1−
√

a

a− c

)

+

√

a

a− c

(

1− (py + q)z

1− 2yz + z2

)

.

We notice that W̃ (y,
√
ρ) = 1 +

√

a
a−c

c′

(1−c′)
is independent of y for y 6= y0, and

W̃ (y0,
√
ρ) = 1 +

√

a
a−c

ρ
(1−ρ)

.

For any eigen-sequence w̃ and corresponding ξ ∈ σ(D̃−1Q̃), we have Q̃w̃ = ξD̃w̃,

which in turn implies

w̃∗Q̃ = ξw̃∗D̃. (3.31)

Moreover, for i ∈ {0, 1} and y ∈ [−1, 1], we have ξ(yi) 6= ξ(y). Note that w̃(y) /∈ H;
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however, w̃(y) ∈ l∞(Z+) and w̃(yi) ∈ l1(Z+) (see proof of Theorem F.3). There-

fore, the usual inner product on H (sum of point-wise product of sequences) is well

defined for w̃(y) and w̃(yi). Hence, using (3.31) and the eigen relationship, we get

w̃∗(yi)ξ(y)D̃w̃(y) = ξ(yi)w̃
∗(yi)D̃w̃(y), which in turn yields

(ξ(y)− ξ(yi))〈D̃w̃(y), w̃(yi)〉 = 0.

Thus, we obtain

〈D̃w̃(y), w̃(yi)〉 = 0. (3.32)

It is equally straightforward to see that

〈D̃w̃(y1), w̃(y0)〉 = 0. (3.33)

Below, we use these orthogonal properties to derive the desired spectral representa-

tion of the identity operator.

Theorem F.4. Let s0, s1 denote the weights corresponding to eigenvalues ξ0 and ξ1,

and let s(y) be the weighting function associated with the continuous spectrum of

D̃−1Q̃. Define these quantities as follows,

s0 = (w̃(y0)
∗D̃w̃(y0))

−1 = −
(

a− c

a

)

(1− ρ)

(

1− c′

c′ − ρ

)

s1 = 1{c′<√
ρ}

(

w̃(y1)
∗D̃w̃(y1)

)−1

= 1{c′<√
ρ}

(

a− c

a

)

( ρ

c′
− c′

)

(

1− c′

c′ − ρ

)

s(y) =
2

π

(

a− c

a

)

√

1− y2

1− y2 + ((p− 1)y + q)2
.
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Then, the identity operator I can be expressed in terms of D̃ as

I =

(

s0w̃(y0)w̃(y0)
∗ + s1w̃(y1)w̃(y1)

∗

+

∫ 1

−1

s(y)w̃(y)w̃(y)∗dy

)

D̃.

(3.34)

Proof. It is easy to compute s0 and s1 using orthogonality by post-multiplying both

sides of (3.34) by w̃(yi). The proper weights are then obtained through (3.32)-(3.33).

Getting s(y) is slightly more involved. First, we right multiply (3.34) by D̃−1, and

then take the double z-transform of both sides. After rearranging terms, we deduce

that it is equivalent to show that

1

1− z1z2
− c

υ
− s0W̃ (y0, z1)W̃ (y0, z2)

− s1W̃ (y1, z1)W̃ (y1, z2)

=

∫ 1

−1

s(y)W̃ (y, z1)W̃ (y, z2)dy,

(3.35)

where we know from the definition of D̃ that

∞
∑

k=0

∞
∑

l=0

zk1z
l
2

[

D̃−1
]

kl
=

1

1− z1z2
− c

υ
.

It can be shown that the right-hand-side of (3.35) is the contour integral of a complex

integrand over the unit circle [82]. To prove this, we denote the RHS of (3.35) by
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H(z1, z2) and substitute y = cos θ to get

H(z1, z2)

=
2

π

∫ π

0

(

1− c

a

) sin2 θ

sin2 θ + ((p− 1) cos θ + q))2

× W̃ (cos θ, z1) W̃ (cos θ, z2) dθ

=
1

π

∫ 2π

0

(

1− c

a

)

Re

[

sin θ

sin θ − i ((p− 1) cos θ + q))

]

× W̃ (cos θ, z1) W̃ (cos θ, z2) dθ

=
1

π

∫ 2π

0

(

1− c

a

) sin θ

sin θ − i ((p− 1) cos θ + q))

× W̃ (cos θ, z1) W̃ (cos θ, z2) dθ.

The last equality follows from W̃ (cos θ, z) and Im
(

sin θ
sin θ−i((p−1) cos θ+q))

)

being respec-

tively, even and odd in θ. Substituting t = ejθ in the equation above, we get

H(z1, z2)

=
1

iπ

∮

dt

t
S̃(t)W̃

(

t2 + 1

2t
, z1

)

W̃

(

t2 + 1

2t
, z2

)

,
(3.36)

where we have used

S̃(t) =
(

1− c

a

) t2 − 1

p
(

t−√
ρ
)

(

t− c′√
ρ

) ,

W̃

(

t2 + 1

2t
, z

)

=

(

1−
√

a

a− c

)

+

√

a

a− c

(

(p(t2 + 1) + 2qt) z − 2t

2(t− z)(zt − 1)

)

.

We need to show that H(z1, z2) is identical to the LHS of equation (3.35). To do so,
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we employ complex integration, residue theory, and the fact that

W̃

(

t2 + 1

2t
, z

) ∣

∣

∣

∣

t=
√
ρ

= W̃ (y0, z),

W̃

(

t2 + 1

2t
, z

) ∣

∣

∣

∣

t= c′√
ρ

= W̃ (y1, z).

We find the residues pertinent to the integrand as

Res

[

1

t
S̃(t)W̃

(

t2 + 1

2t
, z

)

, t = z

]

=
1

2

√

a− c

a
,

Res

[

1

t
S̃(t), t =

√
ρ

]

= −s0
2
,

Res

[

1

t
S̃(t), t =

c′√
ρ

]

= −s1
2
.

From the residue theorem, we obtain

H(z1, z2)

= lim
t→0

(

2S̃(0)W̃

(

t2 + 1

2t
, z1

)

W̃

(

t2 + 1

2t
, z2

))

+

√

a− c

a

(

W̃

(

z21 + 1

2z1
, z2

)

+ W̃

(

z22 + 1

2z2
, z1

))

− s0W̃ (y0, z1)W̃ (y0, z2)− s1W̃ (y1, z1)W̃ (y1, z2).

We can verify through algebraic manipulation that

lim
t→0

(

2S̃(0)W̃

(

t2 + 1

2t
, z1

)

W̃

(

t2 + 1

2t
, z2

))

+

√

a− c

a

(

W̃

(

z21 + 1

2z1
, z2

)

+ W̃

(

z22 + 1

2z2
, z1

))

=
1

1− z1z2
− c

υ

and, as such, the desired result follows. That is, (3.35) holds and hence the identity

expression of (3.34) is valid.

We are now ready to characterize the equilibrium distribution of the buffer
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overflow probability for the second buffer in a tandem network.

Theorem F.5. For the system described in Theorem F.1, let the departure process

of the first queue serve as an input to the second buffer. The latter queue is assumed

to be served at constant rate υ and its occupancy is denoted by ℓ2(t). If

(a

υ
− 1
) λ

µ
< 1,

then we can express the equilibrium probability distribution of ℓ2(t) exceeding a thresh-

old x as

lim
t→∞

Pr(ℓ2(t) > x) = K ′
(

s1e
ζ1x +

∫ 1

−1

s(y)eζ(y)xdy

)

where K ′ is a constant.

Proof. Using the Chapman-Kolmogorov equation given in (3.21) and the identity

expression of (3.34), we can rewrite (3.23) as

π(x) = E exp

(

x
cµ

a(c− υ)
D̃−1Q̃

)(

s0w̃(y0)w̃(y0)
∗

+ s1w̃(y1)w̃(y1)
∗ +

∫ 1

−1

s(y)w̃(y)w̃(y)∗dy

)

D̃E−1π(0).

For this system to be stable, we need limx→∞ π(x) = 0 and π(0, n) = pn for n ∈ N,

since at steady state the probability of the buffer being empty is zero for the states

where the input rate c exceeds the service rate υ. These boundary conditions imply

that w̃(y0)
∗D̃E−1π(0) = 0, which can be employed to obtain π(0, 0),

π(0, 0)

√

a

a− c

(

υ

c− υ

)

=
ap0
a− c

(

W̃ (y0,
√
ρ)− 1

)

.

Since D̃E−1π(0) is almost a geometric sequence, the expression w̃(y)∗D̃E−1π(0) is

closely related to the z-transform of w̃(y). In view of the discussion at the beginning

of Section b, it is not too surprising to find that w̃(y)∗D̃E−1π(0) is constant for all
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y ∈ {y1} ∪ [−1, 1]; and it is equal to

w̃(y)∗D̃E−1π(0)

= −π(0, 0)

√

a

a− c

(

υ

c− υ

)

+
ap0
a− c

(

W̃ (y,
√
ρ)− 1

)

= p0

(

a

a− c

) 3

2
(

c′

1− c′
− ρ

1− ρ

)

= −p0
s0

√

a

a− c
> 0.

This, along with the fact that ζ = cµ
a(c−υ)

ξ, implies

π(x) =− p0
s0

√

a

a− c
E

(

eζ1xs1w̃(y1)

+

∫ 1

−1

eζ(y)xs(y)w̃(y)dy

)

.

We can get an expression for the probability of the buffer exceeding a fixed threshold

x, using the relationship Pr(ℓ2 > x) =
∑∞

n=0 π(x, n) = 〈π(x), 1〉. Noting that

〈Ew̃(y), 1〉 =
√

a− c

a
+

√

a

a− c

(

c′

1− c′

)

> 0

for all y ∈ {y1} ∪ [−1, 1], we obtain

Pr(ℓ2 > x) = −p0
s0

(

1 +
ac′

(a− c)(1− c′)

)

×
(

s1e
ζ1x +

∫ 1

−1

s(y)eζ(y)xdy

)

.

This is the desired expression.

G. Tail Asymptotics for Buffer Occupancy

In this section, we characterize the exponential decay-rate of the complementary

cumulative distribution function (also referred to as tail-asymptote) of the equilib-

rium buffer-occupancy random variable of the second buffer in a tandem-queue. We

emphasize that finding this tail-asymptote is essentially the same as obtaining the
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effective bandwidth of the departure process discussed in Section 1 (see also [74,75]).

From the buffer distribution derived above, we can obtain the dominant exponential

decay rate. An alternate way of finding the effective bandwidth of the departure

process would be to first compute the moment generating function of the busy pe-

riod of the fluid queue [83–85], and then use the method proposed in [86]. There

is also literature available on finding tail-asymptote of the departure process in a

discrete-time queue [47, 49, 50].

Recall that ζ(y) < ζ1 < 0 for all y ∈ [−1, 1], whenever
√
ρ > c′. That is, if the

discrete eigenvalue ζ1 exists, then it is larger than the supremum of the continuous

spectrum. We characterize the tail-asymptote in the following theorem.

Theorem G.1. For ℓ2(t) described in Theorem F.5, the exponential decay rate as-

sociated with the steady-state probability of the buffer exceeding a threshold is given

by θ2, where

θ2 = − lim
x→∞

ln Pr(ℓ2 > x)

x

=















µ
a−υ

− λ
υ

√
ρ > c′

cµ
a(c−υ)

(1−√
ρ)2

√
ρ ≤ c.′

(3.37)

Proof. We use the fact that s(y) is non-negative, bounded and integrable. For
√
ρ >

c′, the desired result follows from

K ′s1e
ζ1x ≤ Pr(ℓ2 > x) ≤ K ′eζ1x

(

s1 +

∫ 1

−1

s(y)dy

)

.

On the other hand, for the case where
√
ρ ≤ c′ and for some ǫ ∈ (0, 1), we have

K ′eζ(1−ǫ)x

∫ 1

1−ǫ

s(y)dy ≤ Pr(ℓ2 > x)

≤ K ′eζ(1)x
∫ 1

−1

s(y)dy.
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Taking logarithms on both sides, dividing by x, and taking limits; we get

ζ(1− ǫ) ≤ lim inf
x→∞

ln Pr(ℓ2 > x)

x

≤ lim sup
x→∞

ln Pr(ℓ2 > x)

x
≤ ζ(1).

Finally, letting ǫ → 0 and using the continuity of ζ(·), we obtain the desired result.

H. Maximum Achievable Rate for Departure Process

In Theorem G.1, we found the tail-asymptote of the second buffer in a tandem queue

as described in Theorem F.1. In this section, we find the achievable rate region

A2(θ0, c, ν) for the tandem queue considered in Section C. While establishing this

region, several cases must be considered. These cases are not individually difficult,

but they are collectively tedious. Therefore, the proof appears in Appendix J. We

have tried to make the presentation as clear and concise as possible.

Theorem H.1. For exponential-decay rate θ2 described in Theorem G.1, we define

A2(θ0, c, υ) =
{

a ∈ R
+ : θ2 ≥ θ0

}

=
{

a ∈ R
+ : a ≤ ā2(θ0, c, υ)

}

where the function ā2(θ, c, υ) is given by

ā2(θ, c, υ) =















ā1(θ, υ), 0 < υ ≤ υ∗

ā3(θ, c, υ), υ∗ < υ < c.

The first component, ā1(θ, υ), is equal to

ā1(θ, υ) = ν

(

1 +
µ

λ+ νθ

)
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and the second component ā3(θ, c, υ) is given by the expression

ā3(θ, c, υ) =

c+
cµ

λ









−1 +

√

1−
(

(c− υ) θ
µ
− 1
)

(

(c− υ) θ
λ
− 1
)

(c− υ) θ
λ
− 1









2

with parameter υ∗ determined implicitly by

c

υ∗ − 1 =
θυ∗µ

λµ+ (λ+ θυ∗)2
.

I. Conclusion

We compared network coding to classic routing for a QoS constrained communication

system, and computed the achievable rate regions for both scenarios. For an AWGN

model with identical link capacities, network coding significantly outperforms classic

routing. This essentially implies that the benefits associated with network coding are

far more important than the multiplexing gains achieved by routing for symmetric

networks. However, we obtained more interesting results for the wireless butterfly

network. In this case, allocating resources to form a network topology suitable for

packet combining at intermediate nodes does not always offer gains and may even be

detrimental at times. These results depend on the topology of the butterfly network.

For network coding to be useful, we need symmetric direct links. It turns out that

it is often better to route packets rather than trying to establish a direct link to

the destination using excessive amounts of physical resources. A possible avenue of

future research is to study networks with varying service rates.
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J. Proof of Theorem H.1

If the second buffer in the tandem queue described in Theorem F.5 has a QoS con-

straint θ0 on the asymptotic decay-rate of buffer-occupancy, then we must have

θ0 ≤ θ2.

This condition enables us to determine the set A2(θ0, c, ν) of on-time arrival rates

that can be supported by this queue under QoS constraint θ0, and for a given service-

rate ν.

First, we gather that, for ν1 ≤ ν2,A2(θ0, c, ν1) ⊆ A2(θ0, c, ν2). This fact fol-

lows directly from stochastic majorization of the buffer-content processes. Second, if

the constant service-rate ν of the second queue is greater than or equal to the con-

stant service-rate c of the first queue, then the second queue always remains empty

(equivalently, θ2 = ∞). Under such circumstances, the second queue does not limit

peak-rate a. We therefore focus on the case where ν ∈ [0, c). If a ∈ [0, ν), then

both queues stay empty with θ1 = θ2 = ∞; thus, we have [0, ν) ⊆ A2(θ0, c, ν) for all

θ0 ≥ 0 and all 0 ≤ ν < c.

Let us define ā1(θ0, ν) = ν
(

1 + µ
λ+θ0ν

)

. Note that ā1(θ0, ν) is increasing in ν.

Let νc be the service-rate such that ā1(θ0, νc) = c. For ν ∈ [0, νc], we can show that

[0, ā1(θ0, ν)] ⊆ A2(θ0, c, ν). When a ∈ [ν, ā1(θ0, ν)] ⊆ [ν, c], the first queue remains

empty and the arrival processes at the first and second buffers are path-wise identical.

Therefore, by Theorem F.1, we get θ2 =
µ

a−ν
− λ

ν
. Since a ≤ ā1(θ0, ν), it follows that

θ2 ≥ θ0 and hence [0, ā1(θ0, ν)] ⊆ A2(θ0, c, ν). It is clear that for any finite θ0, νc < c.
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We can explicitly write νc as

νc =















1
2

(

c− λ+µ
θ0

)(

1 +
√

1 + 4cλθ0
(cθ0−λ−µ)2

)

, c ≥ λ+µ
θ0

1
2

(

c− λ+µ
θ0

)(

1−
√

1 + 4cλθ0
(cθ0−λ−µ)2

)

, c < λ+µ
θ0

.

Next, we consider the case where a ≥ c. In this scenario, the arrival rate at

the second queue is c(K(t)), as described in Section 1. In the previous section,

we obtained the exponential decay-rate θ2 governing the queue-distribution for this

system,

θ2 =















µ
a−ν

− λ
ν
, a/c−1

a/ν−1
<

√
ρ

cµ
a(c−ν)

(1−√
ρ)2, a/c−1

a/ν−1
≥ √

ρ.

We note that ā1(θ0, ν) denotes the maximum supportable rate when the dis-

crete eigenvalue ζ1 of D−1Q governs the decay-rate of the buffer overflow proba-

bility, i.e., when c′ = a/c−1
a/ν−1

<
√
ρ. Furthermore, the condition

√
ρ > c′ is equiv-

alent to the quadratic expression ρ − ν
c

√
ρ + λ

µ

(

1− ν
c

)

> 0. This equation speci-

fies upper and lower bounds on the existence of ζ1. That is, ζ1 exists only when

√
ρ /∈

[

ν
2c

(

1−
√

1− 4λc
µν

(

c
ν
− 1
)

)

, ν
2c

(

1 +
√

1− 4λc
µν

(

c
ν
− 1
)

)]

. We call the end-

points of the interval
√
ρl and

√
ρu, respectively. We have ρ = λ

µ

(

a
c
− 1
)

, which gives

upper and lower bounds au1(ν) = c
(

1 + µ
λ
ρu
)

and al1(ν) = c
(

1 + µ
λ
ρl
)

in terms of

ρu and ρl, respectively. Thus, when a ∈ A2(θ0, c, ν) lies between these two bounds,

the supremum of the continuous spectrum dominates the tail-asymptotics and the

discrete eigenvalue ζ1 disappears. We can write au1(ν) and al1(ν) explicitly,

au1(ν) = ν

(

1 +
νµ

2cλ

(

1 +

√

1− 4
( c

ν
− 1
) cλ

νµ

))

, (3.38)

al1(ν) = ν

(

1 +
νµ

2cλ

(

1−
√

1− 4
( c

ν
− 1
) cλ

νµ

))

. (3.39)

For the real interval [al1, au1] to exist, the discriminant in (3.38)-(3.39) must be non-
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negative. Defining

ν ′ =
2c

1 +
√

1 + µ
λ

,

we deduce that au1 and al1 are well-defined real numbers provided that ν > ν ′. That

is, discrete eigenvalue ζ1 exists for all ν ≤ ν ′. In this case, the achievable rate region

is limited by ā1(θ0, ν). Note that ν ′ < c. Clearly,

1− 4
( c

ν
− 1
) cλ

νµ
= (1 +

λ

µ
)− λ

µ

(

2c

ν
− 1

)2

is an increasing function that maps ν ∈ [ν ′, c] to [0, 1]. Therefore,
√
ρu is an in-

creasing function of ν. Furthermore, because
√
ρu
√
ρl =

λ
µ

(

1− ν
c

)

is a decreasing

function of ν, it follows that
√
ρl is a decreasing function of ν in [ν ′, c]. Since ρu

and ρl are both non-negative in this interval, it follows that au1 monotonically in-

creases and ranges over
[

ν ′
(

1 + ν′µ
2cλ

)

, c
(

1 + µ
λ

)

]

, whereas al1 decreases and ranges

over
[

ν ′
(

1 + ν′µ
2cλ

)

, c
]

.

When a ∈ [al1(ν), au1(ν)], the continuous spectrum dominates the tail asymp-

totics. This implies,

(

(c− ν)
θ0
λ

− 1

)

ρ+ 2
√
ρ+

(

(c− ν)
θ0
µ

− 1

)

≤ 0.

Therefore, since
√
ρ ≥ 0, we know that

√
ρ belongs to the interval









0,

−1 +

√

1−
(

(c− ν) θ0
λ
− 1
)

(

(c− ν) θ0
µ
− 1
)

(c− ν) θ0
λ
− 1
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when (c− ν) θ0
λ
> 1; and it belongs to the set









0,

1−
√

1−
(

(c− ν) θ0
λ
− 1
)

(

(c− ν) θ0
µ
− 1
)

1− (c− ν) θ0
λ









⋃









1 +

√

1−
(

(c− ν) θ0
λ
− 1
)

(

(c− ν) θ0
µ
− 1
)

1− (c− ν) θ0
λ

,∞









when (c− ν) θ0
λ
< 1. We emphasize that we require (c− ν) θ0

µ
≤ 1 in the first case for

a non-negative
√
ρ to exist. Furthermore, we need ν ∈ [c − λ+µ

θ0
, c] for a real

√
ρ to

exist. For the second queue to be stable, we must have a < ν
(

1 + ν
λ

)

, which implies

a ≤ ā3(θ0, c, ν) where

ā3(θ0, c, ν)

= sup

{

a ≤ c
(

1 +
µ

λ

)

: θ0 ≤
cµ

a(c− ν)

(

1−
√

(

a− c

c

)

λ

µ

)2}

,

=c+
cµ

λ









√

1−
(

(c− ν) θ0
µ
− 1
)

(

(c− ν) θ0
λ
− 1
)

− 1

(c− ν) θ0
λ
− 1









2

.

It is clear from the explicit form of ā3(θ0, c, ν) that it is increasing in ν. We can write

the achievable rate region A2(θ0, c, ν) in terms of ā1, au1, al1 and ā3 as

A2(θ0, c, ν) =
{

a ∈ R
+/[al1(ν), au1(ν)] : a ≤ ā1(θ0, ν)

}

∪ {a ∈ [al1(ν), au1(ν)] : a ≤ ā3(θ0, c, ν)} .

Let ν∗ be the value of ν where ā1(θ0, ν) intersects al1 or au1. In other words, if

we substitute ā1 for a in the expression for ρ, the value of ν that equates
√
ρ and c′
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is ν∗. It can be seen that ā3(θ0, c, ν
∗) = ā1(θ0, ν

∗) by substituting λ = µ(a/c−1)
(a/ν∗−1)2

and

√
ρ = a/c−1

a/ν∗−1
to obtain

θ0 =
ā1µ(c− ν∗)

c(ā1 − ν∗)2
=

ā3µ(c− ν∗)

c(ā3 − ν∗)2
,

where a = ā1(θ0, ν
∗) = ā3(θ0, c, ν

∗). The value ν∗ can be written as the positive root

of the following equation in the interval [0, c],

θ0(c− ν) =
(θ0ν)

2 µ

λµ+ (λ+ θ0ν)2
.

The LHS is continuous and monotonically decreasing for ν ∈ [0, c] and ranges over

[cθ0, 0], whereas the RHS is continuous and monotonically increasing in the same

interval and ranges over [0, (cθ0)
2µ

λµ+(λ+cθ0)2
]. It is clear from the continuity and the mono-

tonicity of these functions that there exists a unique real ν∗ ∈ [0, c] for all values of

λ, µ, c, θ0 > 0. Furthermore, since ν > ν ′ for au1 and al1 to exist, we have ν∗ ≥ ν ′. In

addition, since
(

(c− ν) θ0
λ
− 1
)

(

(c− ν) θ0
µ
− 1
)

is decreasing in ν, we can prove that

it is less than or equal to 1 for all ν ∈ [ν∗, c] by showing it to be less than or equal

to 1 at ν = ν∗. This is equivalent to showing (c − ν∗)θ0 ∈ [0, λ+ µ]. Therefore, we

only need to show that equation

(θ0ν
∗)2µ

λµ+ (λ+ θ0ν∗)2
≤ λ+ µ

is valid, which is equivalent to λ (θ0ν
∗ + λ+ µ)2 ≥ 0 and obviously true. Hence,

the result holds. We know from Theorem F.3 that discrete eigenvalue ζ1 is always

greater than the supremum of the continuous spectrum of D−1Q, whenever it exists.

Therefore,

µ

a
(

1− ν
c

)

(

1−
√

(a

c
− 1
) λ

µ

)2

≥ µ

a− ν
− λ

ν
,

which in turn implies c
(

1 + µ
λ

)

≥ ā3(θ0, c, ν) ≥ ā1(θ0, ν).
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If ā1 intersects au1 and ā3 at ν∗, then ā1 > au1 > al1 for all ν < ν∗. Since, al1 is

decreasing, we have ā1 > al1 for ν ∈ [ν∗, c] as well. Also, since ā1 and au1 intersect

uniquely at ν∗ in [ν ′, c] and are both increasing, ā1 < au1 within this interval. Thus,

we have

A2(θ0, c, ν) = {a ∈ R
+ : a ≤ ā1(θ0, ν), ν < ν∗}

∪ {a ∈ R
+ : a ≤ ā3(θ0, c, ν), ν ≥ ν∗}.

Otherwise, when ā1 intersects al1 and ā3 at ν∗, ā3 < al1 < au1 for all ν < ν∗

because ā3 is increasing in ν. Since al1 is decreasing, ā1 > al1 for ν ∈ (ν∗, c]. In

this interval, ā1 and au1 do not intersect and are both increasing with ā1 < au1. We

conclude that

A2(θ0, c, ν) = {a ∈ R
+ : a ≤ ā1(θ0, ν), ν < ν∗}

∪ {a ∈ R
+ : a ≤ ā3(θ0, c, ν), ν ≥ ν∗}.

From the discussion above, it is clear that we have al1(ν) < ā1(θ0, ν) < au1(ν) for

ν > ν∗. Also, it was shown that ā3(θ0, c, ν
∗) = ā1(θ0, ν

∗), and therefore we conclude

that A2(θ0, c, ν) = [0, ā2(θ0, c, ν)] where the maximum achievable rate ā2(θ0, c, ν) is

continuous in ν. This rate can therefore be characterized completely for all ν ∈ [0, c]

as

ā2(θ0, c, ν) =















ā1(θ0, ν) ν ∈ [0, ν∗]

ā3(θ0, c, ν) ν ∈ [ν∗, c].

This is the desired result.
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Table II. Comparing our work with the literature

[54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64]

Scheme ×U B U M B ×U ×U ×U ×U ×U M, ×U

Arrivals S F B B B S P P P S S

Service C S B+V IID IID V C C C C V

Policy WC – FC FC FC FC O FC O FC –

Aspect D C D C,D D,Q Q Q C Q Q Q

QoS PD – MD S,D MQ S S MD S S S

Network L D P D D A 2W 2W 2W T A

Schemes: broadcast (B), multicast (M), unicast (U), multiple unicast (×U). Arrivals:

Bernoulli (B), fixed (F), Poisson (P), stochastic (S). Service: bulk (B), constant (C),

independent and identically distributed (IID), stochastic (S), variable (V). Policy:

first-come first-served (FC), opportunistic (O), work conserving (WC). Aspect:

coding delay (C), decoding delay (D), queueing delay (Q). QoS: delay (D), mean

delay (MD), mean queue-length (MQ), packet-drop probability (PD), stability (S).

Network: arbitrary (A), downlink (D), large (L), point-to-point (P), two-way relay

(2W), tandem (T).

Table III. System parameters

N0 = 10−6 W/Hz Noise power spectral density

W = 22 MHz Spectral bandwidth

λ−1
1 = λ−1

2 = 650 ms Mean off -time

µ−1
1 = µ−1

2 = 352 ms Mean on-time
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CHAPTER IV

VALUE-AWARE RESOURCE ALLOCATION FOR SERVICE GUARANTEES IN

NETWORKS

The traditional formulation of the total value of information transfer is a multi-

commodity flow problem. Each data source is seen as generating a commodity along

a fixed route, and the objective is to maximize the total system throughput under

some concept of fairness, subject to capacity constraints of the links used. This

problem is well studied under the framework of network utility maximization and

has led to several different distributed congestion control schemes. However, this

view of value does not capture the fact that flows may associate value, not just

with throughput, but with link-quality metrics such as packet delay and jitter. In

this work, the congestion control problem is redefined to include individual source

preferences. It is assumed that degradation in link quality seen by a flow adds up

on the links it traverses, and the total utility is maximized in such a way that the

end-to-end quality degradation seen by each source is bounded by a value that it de-

clares. Decoupling source-dissatisfaction and link-degradation through an effective

capacity variable, a distributed and provably optimal resource allocation algorithm is

designed to maximize system utility subject to these quality constraints. The appli-

cability of the controller in different situations is supported by numerical simulations,

and a protocol developed using the controller is simulated on ns-2 to illustrate its

performance.

A. Introduction

Recent years have seen an enormous growth in demand for Internet access, with

applications ranging from personal use to commercial and military operations. Sev-
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eral of these applications are sensitive to a quality of packet delivery. For instance,

archiving data transfers can tolerate long delays, while voice over Internet protocol

(VoIP) is very sensitive to latency. Between these extreme examples lies a spectrum

of applications with varying service requirements, e.g. video conferencing, electronic

commerce and online gaming. All these applications require the allocation of enough

network resources for satisfactory performance.

The design of efficient network control systems demands that end-user value

be taken into consideration when allocating resources. The Internet architecture

is built around the concept of a flow, which is a transfer of data between a fixed

source-destination pair. How do we quantify the value of such a flow? The classi-

cal formulation of the total value of information transfer is a multi-commodity flow

problem, in which each data source is seen as generating a commodity along a fixed

route; the objective is to maximize the sum throughput under some concept of fair-

ness, subject to capacity constraints on the links used [87–90]. If the flow from

source r has a rate xr ≥ 0 and the system utility associated with such a flow is

represented by a concave, increasing function Ur(xr), the objective can be stated as

max
∑

r∈S
Ur(xr) subject to yl ≤ cl, ∀ l ∈ L (4.1)

where S is the set of sources, L denotes the set of links, and cl is the capacity of

link l ∈ L. Also, the load on link l is equal to yl =
∑

r∈S Rlrxr where R denotes

the routing matrix of the network, with Rlr = 1 if the flow associated with source

r is routed through link l. Note that we refer to flows and sources interchangeably;

if there are multiple flows between a source and a destination, we simply give them

different names. This is a convex optimization problem that is well studied under

the framework of network utility maximization [87–90].

This approach to network resource allocation can often be used to decompose
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the problem into several subproblems, each of which is amenable to a distributed so-

lution. This so-called optimization decomposition framework has yielded a rich set of

control schemes and protocols whose architectural implications are discussed in [91].

For example, there is a strong connection between the primal solution to the utility

maximization problem and TCP-Reno [92, 93] characterized in [87, 88]. Similarly,

one can identify connections between TCP-Vegas and the dual solution of the prob-

lem [94]. The same approach has been taken in the design of several new protocols

such as Scalable TCP [95,96] (which allows scaling of rate increases/decreases based

on network characteristics), FAST-TCP [97] (meant for high bandwidth environ-

ments), TCP-Illinois [98] (which uses loss and delay signals to attain high through-

put), and TRUMP [99] (a multipath protocol with fast convergence properties). A

good tutorial on network utility maximization algorithms is [100].

Still, there is a growing realization that throughput cannot be considered as

the sole value metric. As mentioned above, in applications such as voice calls, data

is rendered useless after a certain delay threshold. Thus, simply ensuring that link

capacities are not exceeded is not sufficient to capture value in this scenario. How do

we ensure that the user is not dissatisfied with the quality of service? In many cases

the quality of data transfer over a link decreases with load. For example, metrics

such as the delay and the jitter experienced by packets as they pass through a router

depend on the total load on the corresponding links. Such quality degradation may

also add up over multiple hops. Indeed, the delay experienced by packets in a flow

is the sum of the delays over each hop taken.

Once we have a clear conception of quality degradation as a function of link load,

a pertinent question becomes: Can we design a simple distributed algorithm for fair

resource allocation under which each users’ quality is no worse than a prescribed

value? To address this question, we need to redefine the traditional congestion
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control problem to explicitly account for the tradeoff between throughput and quality

degradation. We denote the degradation in the quality of link l with load yl by a

convex increasing function Vl(yl), and assume that degradation in link quality seen

by a flow is additive over the links it traverses. Furthermore, we assume that the

quality degradation is inherent to a link, and is identical for all flows sharing the link.

Thus, there are no priorities assigned to particular flows. We maximize utility in such

a way that the total degradation seen by source r is no greater than a pre-specified

positive value σr. The modified objective becomes

max
∑

r∈S
Ur(xr) subject to

∑

l∈L
RlrVl (yl) ≤ σr, (4.2)

where, again, xr ≥ 0, y = Rx and under the assumption that limy→cl Vl(y) = ∞. We

emphasize that this convex optimization problem requires the quality degradation

on each route to remain bounded. In this chapter, our objective is to design a dis-

tributed control scheme that can approach the optimal operating point which trades

off throughput and quality, without maintaining per-flow information or prioritizing

certain packets at intermediate hops. We overview our main contributions below,

with details contained in subsequent sections.

Classical optimization-decomposition techniques typically yield a “source-rate

responds to link-price” type of controller [87–91], wherein each link’s price increases

with the link-load in order to prevent the link-capacity from being exceeded. As

the link-price increases, sources cut down their transmission rates, where the aggres-

siveness of the source controller is determined by its utility function. However, the

solution to our delay-aware problem has remained elusive due to the strong coupling

between the quality seen at source, which requires a hard guarantee, and link quality

degradation, which depends on the link-loads along its route.

We present illustrative examples of what quality degradation functions may look
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like in Section B, and discuss an example that we use later in the chapter. We then

proceed to provide a centralized solution to our problem of interest in Section C. We

develop two algorithms to this end. A primal algorithm is proposed in Section D.

Our main contribution, a dual algorithm, is presented in Section E, and stems from

the realization that it is possible to decouple the QoS guarantees at sources and

link quality degradation using an effective capacity that is based on the link-price

and user-dissatisfaction. Once we set the effective capacity for a link, the quality

degradation depends solely on this decision and not on the actual link-load.

Each source declares its dissatisfaction to the links it uses based on the difference

between the quality it sees and what it requires. The links select a price based on the

difference between load and effective capacity, which in turn depends on link-load

and aggregate dissatisfaction of users sharing the link. This decoupling of link-load

and effective capacity appears to have the correct properties to allow a distributed

solution. Finally, sources employ route-prices (the sum of all link-prices on a route)

to determine their source-rates.

We prove that the algorithm is indeed capable of solving our resource allocation

problem using Lyapunov techniques [101]. We report numerical results about the

simulated operation of the controller in Section F to illustrate its performance. A new

contribution over our earlier version [102] is the development of a realistic protocol

based on the proposed controller. The protocol is presented in Section G, where

we report simulation experiments on ns-2 to show that it performs as desired. We

conclude with pointers to future work in Section H.
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B. Examples of Quality Degradation Functions

We begin this section by discussing candidate measures of link quality degradation

with load. We make several assumptions on the properties of link quality degradation

functions. They can be expressed in the following manner; if the total sum-rate on

link l is yl =
∑

r∈S Rlrxr then

• the quality degradation function Vl(yl) is non-negative, convex increasing in

link-load yl,

• the total quality degradation seen by flow r is βr(x) =
∑

l∈L RlrVl(yl) (i.e.,

quality degradation adds up over multiple hops), and

• the service process at one link does not impact the arrival process at the suc-

ceeding link.

The above assumptions ensure the analytical tractability of our optimization prob-

lem. We also believe that they provide acceptable models of quality degradations

in communication systems with queues. Below, we support these assumptions with

common examples of quality degradation functions.

For an M/M/1 queue with arrival rate y and service rate c, the expected waiting

time in the queue is y/(c (c− y)) for a stable queue, that is when y < c. In this case,

one can select the quality degradation function to be the expected waiting time for

any packet in the queue,

V (y) = y/(c (c− y)).

We note that the quality degradation function is non-negative, convex, and increases

from 0 to ∞ when x ranges in [0, c).

As a second example, consider a single server fluid queue with constant-rate ar-

rival y and a two-state on-off service process where on and off times are exponentially
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distributed with rates µ and λ, respectively. When the service is on and the buffer

is non-empty, it is serviced at a constant rate r such that y < rλ/(λ+ µ). It can

be shown [53] that the probability of buffer exceeding a threshold z is exponentially

decreasing as z increases. A possible quality degradation function in this case is the

inverse of this decay-rate. One can write the decay-rate explicitly in terms of the

above parameters as

1/V (y) = − lim
z→∞

z−1log Pr (L > z) = λ/y − µ/(r − y).

If we denote rλ/(λ+ µ) by c then, one can write

V (y) = y(c− y)−1
(

cλ−1 − y(µ+ λ)−1) .

Again, note that the quality degradation function is non-negative, convex, and in-

creases from 0 to ∞ when x ranges in [0, c). Recent results [103] suggest that, under

appropriate conditions, the delay seen in a queue is independent of other queues even

though packets traverse the network along connected paths.

C. Centralized Resource Allocation

We begin by developing ideas on how to solve the resource allocation problem of (4.2)

in a centralized fashion, and we create model networks that we will use as examples to

illustrate the performance of various control loops throughout. Consider the scenario

where the utility functions assume unbounded negative values when xr = 0 and the

quality degradation functions grow unbounded when sum-rates yl approach cl. In this

case, an optimal solution is characterized by xr > 0 and yl < cl. Let x
∗ = {x∗

r : r ∈ S}

be a feasible point such that y∗ = Rx∗, and suppose there exist constants wr ≥ 0
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such that

U ′
r(x

∗
r)−

∑

s∈S
ws

∑

l∈L
RlsRlrV

′
l (y

∗
l ) = 0,

wr (βr(x
∗)− σr) = 0,

(4.3)

for all r ∈ S, then x∗ is a global maximum. Moreover, if Ur(·) is strictly concave,

then x∗ is the unique global maximum.

We illustrate by the following example how our model takes into consideration

all of the desired properties of the quality degradation function and how they impact

resource allocation with service guarantees.

x1
x2

x3

c1 c2

Fig. 15. Three flows sharing a two-link network.

Example [Three-Flows Two-Hop Network] Consider a network composed of three

sources transmitting over two links, as shown on Fig. 15. Let link i have capacity ci

and suppose that we are using logarithmic utility and quality degradation functions.

Then, the resource allocation problem becomes

max
n
∑

i=1

ai log xi subject to

− log (1− (xi + x3)/ci) ≤ σi, i = 1, 2

−
2
∑

i=1

log

(

1− xi + x3

ci

)

≤ σ3.

(4.4)

Let wi be the Lagrange multipliers corresponding to the quality degradation con-
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straint of flow i. The Lagrangian is

L(x, w) =
3
∑

i=1

ai log xi +
2
∑

i=1

wi

(

log

(

1− xi + x3

ci

)

+ σi

)

+ w3

(

2
∑

i=1

log

(

1− xi + x3

ci

)

+ σ3

)

.

Therefore, we can derive the KKT conditions for this system,

ai/x
∗
i − (wi + w3)/(ci − x∗

i − x∗
3) = 0, i = 1, 2

a3/x
∗
3 −

2
∑

i=1

(wi + w3)/(ci − x∗
i − x∗

3) = 0,

wi (log (1− (xi + x3)/ci) + σi) = 0, i = 1, 2

w3

(

2
∑

i=1

log (1− (xi + x3)/ci) + σ3

)

= 0.

(4.5)

Let us consider the situation where σ3 < min{σ1, σ2}. In this case, w1 = w2 = 0 and

2
∑

i=1

log

(

1− xi + x3

ci

)

+ σ3 = 0.

For the simple case where ai = 1 and ci = c for i = 1, 2, 3, we get optimal rates

x∗
1 = x∗

2 = 2x∗
3 =

2c

3

(

1− e−σ3/2
)

. (4.6)

This illustrative example provides supporting evidence that our modeling intu-

ition is accurate for resource allocation with service guarantees. We list pertinent

observations derived from this model:

• for any finite service requirement, the sum-rate is always less than the capacity

of each link;

• throughputs decrease with the number of hops due to service requirements;

• when quality degradation is inherent to a link, the flow with the most stringent
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service requirements limits the throughput of every neighboring flow.

D. Primal Algorithm

In this section, we develop an algorithm that can be employed to obtain an approxi-

mate solution to our optimization problem. The approach that we adopt is called the

Primal method, as it follows from the primal formulation of the problem. The main

idea is to relax the constraints by incorporating them as a cost into the objective.

Essentially, the idea is that there is a price for violating the quality constraints and,

as such, we can maximize the difference between utility and cost. We consider the

objective

J(x) =
∑

r∈S
(Ur(xr)−Br (βr(x))) , (4.7)

where Br(·) is a convex barrier function that increases from zero to infinity as its

argument ranges from zero to σr. To maximize this function, we can use a gradient

descent approach,

ẋr = kr(xr) (U
′
r(xr)− qr) ,

qr =
∑

s∈S
B′

s (βs(x))
∑

l∈L
RlsRlrV

′
l (yl) .

(4.8)

Since the problem is convex, it is straightforward to show using Lyapunov techniques

[87,88,101] that this algorithm converges and leads to a maximizer of (4.7). To this

end, note that J(x), as defined in (4.7), is a strictly concave function. We denote its

unique maximizer by x̂. Then, J(x̂)− J(x) is non-negative and equals zero only at

x = x̂. This makes W (x) , J(x̂)− J(x) a natural candidate Lyapunov function; we

use it in the following proposition, which has a similar proof to that found in [88].

Proposition D.1. Consider a network in which all sources follow the primal control
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algorithm (4.8). Suppose J(x) is as defined in (4.7) and let functions Ur(·), kr(·),

Vl(·) and Bs(·) be such that W (x) grows unbounded as ‖x‖ → ∞, and x̂i > 0 for all

i. Then, the controller in (4.8) is globally asymptotically stable and the equilibrium

value maximizes (4.7).

Proof. Differentiating W (x) with time t, we get

Ẇ = −
∑

r∈S

∂J

∂xr

ẋr = −
∑

r∈S
kr(xr) (U

′
r(xr)− qr)

2
< 0,

for all x 6= x̂, and Ẇ = 0 for x = x̂. Note that the second equality follows from (4.7)

and (4.8). Thus, all the conditions of the Lyapunov theorem are satisfied, which

ensures that the system state necessarily converges to x̂.

Convergence is a highly desirable attribute. Yet, the primal controller suffers

from the following drawbacks. The approach is not optimal; the relaxation will

produce an acceptable solution only if the barrier values at the optimal solution

of our original objective (4.2) are small. Further, the above formulation does not

allow for optimal points on the boundary of the constraint set. To overcome these

limitations, we can approach the problem from a dual perspective and hope for better

performance.

E. Dual Algorithm

We start by writing a dual formulation for the resource allocation problem defined in

(4.2). This provides new insight on how to obtain a distributed means of achieving

optimal resource allocation. The dual formulation corresponding to our optimization

problem is given by

D(w) =max
xs≥0

∑

s∈S
Us(xs)− ws (βs(x)− σs) .
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Let x∗ be the optimal maximizer, then for all r ∈ S

U ′
r(x

∗
r) =

∑

s∈S
ws

∑

l∈L
RlsRlrV

′
l (y

∗
l ) .

This gives us a system of equations that can be solved to find the optimal x∗ for any

vector w. However, it requires knowledge of the load on every link a flow traverses.

Therefore, this approach is not completely distributed.

Nevertheless, this formulation gives us the hint that instead of link load and

link-degradation being dependent on each other directly with load y = Rx and

degradation V (y), we can break up their coupling. We do this by introducing a new

variable ỹl, we refer to as effective capacity of link l. This variable upper bounds

the total link load yl, and Vl(ỹl) upper bounds the link degradation. We then define

“effective quality degradation” σ̃r ,
∑

l∈LRlrVl(ỹl) seen by flow r. Then, the relaxed

version of the resource allocation problem becomes

max
∑

r∈S
Ur(xr)

subject to yl ≤ ỹl, ∀ l ∈ L

σ̃r ≤ σr, and xr ≥ 0 ∀ r ∈ S.

(4.9)

Assuming that our concave utility and convex quality degradation functions ensure

that values of xr and (cl − ỹl) are always positive, we can express the dual problem

in terms of positive Lagrange multipliers pl and wr,

min
p,w≥0

D(p, w). (4.10)

Here, D(p, w) is the maximum of the Lagrangian function L(x, ỹ, p, w) with respect
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to x, ỹ, where

L =
∑

s∈S
Us(xs)−

∑

l∈L
pl (yl − ỹl)−

∑

s∈S
ws (σ̃s − σs) .

Let x∗, ỹ∗ be the maximizers for L for any p, w, then

U ′
r(x

∗
r) =

∑

l∈L
Rlrpl, pl = V ′

l (ỹ
∗
l )
∑

r∈S
Rlrwr.

We find the partial derivatives of D(p, w) with respect to variables p and w,

∂D

∂pl
= ỹ∗l − y∗l ,

∂D

∂wr

= σr − σ̃∗
r , (4.11)

where y∗l and σ̃∗
r are link-load and effective degradation for maximizing rate x∗ and

effective-capacity ỹ∗. We employ gradient descent method for minimizing the dual

of the relaxed problem. Therefore, the update equations for Lagrange multipliers p,

w can be written as

ṗl = hl(pl)

(

−∂D

∂pl

)+

pl

, ẇr = kr(wr)

(

−∂D

∂pl

)+

wr

, (4.12)

where hl(·), kr(·) are positive functions and the notation (z)+ρ is used to represent

the function

(z)+ρ =











z ρ > 0

max{z, 0} ρ = 0.

Function (z)+ρ can be thought of as net input-rate into a fluid queue ρ. Clearly, when

queue is non-empty fluid can enter at rate z, or leave at rate −z. However, when

queue is empty fluid can only enter, but not leave.

We can now easily see that the above algorithm is distributed in nature. At

any time during the evolution of our algorithm, we can treat Lagrange multipliers pl

and wr as link-price and route-dissatisfaction, respectively. A flow r needs to “pay”

link-price pl for congesting link l if it uses the link (with the route-price being the
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sum of all such pl), and wr is its end-to-end dissatisfaction under the current system

state. The effective capacity of link l is ỹl and is decoupled from the actual load on

this link, yl =
∑

r∈S Rlrxr. We denote the sum of link-prices by qr =
∑

l∈LRlrpl for

any flow r, and the sum of route-dissatisfaction on a link l by νl =
∑

r∈S Rlrwr to

yield the total dissatisfaction on that link. Note that such a total implies that there

is no need to maintain per-flow information at the link. Notice again that due to

decoupling through ỹ, the perceived quality degradation is a function of the effective

capacity, and not the actual link-load.

The algorithm is illustrated in Fig. 16. Although the diagram is reminiscent of

traditional “source-rate responds to link-price” [87–90] corresponding to the con-

gestion control problem defined in (4.1), the system is actually very different. The

system may be described as follows:

• Each flow r, as it traverses its route, accrues the price qr that it needs to “pay”

for using each of the links l. Using this route-price, each source computes a

feasible rate

xr = U
′−1
r (qr).

Furthermore, each source declares its dissatisfaction wr to the links it uses

based on the difference between the quality degradation σ̃r that it sees and

the degradation σr that it is willing to tolerate. The dissatisfaction is updated

using

ẇr = kr(wr) (σ̃r − σr)
+
wr

.

• Each link detects the total dissatisfaction νl of flows it accommodates, and it

computes effective capacity

ỹl = V
′−1
l (pl/νl)



113

and updates the link price by

ṗl = hl(pl) (yl − ỹl)
+
pl
.

The link ensures that the quality degradation inflicted on its users is Vl(ỹl) by

increasing or reducing its aggregate flow as needed.

In summary, along with the two traditional elements of source-rate xr and link-price

pl, we have two additional control variables: source-dissatisfaction wr and effective

capacity ỹl (with link-degradation Vl(ỹl)) that provide two further dimensions of

control that are required for a distributed solution. We next show that for admissible

Sources

x and w y and ν

Links

p and V(ỹ)q and σ̃

R

RT

xr = U
′
−1

r (qr)

ẇr = kr(wr) (σ̃r − σr)
+

wr

ỹl = V
′
−1

l (pl

νl
)

ṗl = hl(pl) (yl − ỹl)
+

pl

Fig. 16. Block diagram of value-aware resource allocation with decoupling of user-dis-

satisfaction on the source side, and quality on the link side.

functions Vl(·), the effective capacity is equal to the sum rate for all links for which

the capacity constraint is binding.

Proposition E.1. Assume that Vl(·) is strictly convex and increasing, and σr is

finite for all r ∈ S. Then, at equilibrium, for all l ∈ L1 , {l ∈ L : ŷl < ˆ̃yl}, we have
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p̂l = ν̂l = 0.

Proof. Our proof is by contradiction. Let us assume that at the equilibrium, there is

a l ∈ L such that ŷl < ˆ̃yl and ν̂l 6= 0. For this l, we have p̂l = 0 by KKT conditions.

Note that V ′
l (·) is a non-negative increasing function. That is, either V ′

l (0) = 0 or

V ′
l (z) > 0 for all z ∈ [0, cl]. For the former case, 0 ≤ ŷl ≤ ˆ̃yl = 0 = V

′−1
l (0), i.e.,

ŷl = ˆ̃yl. For the latter case, p̂l cannot be zero since V
′−1
l (0) is not in the feasible

range of ŷl and hence this will force ŷl = ˆ̃yl at the equilibrium. Therefore, the result

holds.

We have in effect, shown that the equilibrium conditions of our control loop

satisfy the KKT conditions of the original optimization problem defined in (4.2).

The conditions are easy to verify, and we may state this result as a corollary to

Proposition E.1.

Corollary E.2. The stationary point of (4.12) is a maximizer of the convex opti-

mization problem described in (4.2).

It is quite easy to show that the above algorithm is globally asymptotically

stable. To show this, we choose our Lyapunov function to be

Q(p, w) = D(p, w)−D(p̂, ŵ), (4.13)

where p̂, ŵ are the unique minimizers of D(p, w). It is clear that Q(p, w) ≥ 0 for

all values of p, w. Also, it is easily seen that D(p, w) grows radially unbounded in

p, w for our choice of Vl(·). Therefore, to prove that the above algorithm is stable it

suffices to show Ḋ(p, w) ≤ 0, with equality if and only if p = p̂ and w = ŵ. Note

that at p̂, ŵ, one would have ṗl = ẇr = 0.
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Proposition E.3. Let Q(p, w) be as defined in (4.13) and functions Ur(·), Vl(·), kr(·)

and hl(·) be such that Q(p, w) grows unbounded with ‖p‖ and ‖w‖. The controller

in (4.12) is globally asymptotically stable and the equilibrium value maximizes (4.2).

Proof. Differentiating D with respect to time, we get

Ḋ(p, w) =
∑

l∈L

∂D

∂pl
ṗl +

∑

r∈S

∂D

∂wr
ẇr

= −
∑

l∈L
hl(pl) (yl − ỹl) (yl − ỹl)

+
pl

−
∑

r∈S
kr(wr) (σ̃r − σr) (σ̃r − σr)

+
wr

< 0,

for all (p, w) 6= (p̂, ŵ) and Ḋ(p̂, ŵ) = 0. The second equality follows from equa-

tions (4.11) and (4.12). Thus, all the conditions of the Lyapunov theorem [101] are

satisfied and we have proved that the Lagrange multipliers converge to p̂, ŵ. Hence,

the system converges to the minimizer of (4.10). From the convexity of our original

problem (4.2) and Corollary E.2, it follows that the stable point is the maximizer

of (4.2).

F. Numerical Studies

We utilize two realistic topologies presented in [99], illustrated in Fig. 17 and Fig. 18,

to conduct numerical experiments. Our objective is to study the performance of

our value-aware controller in different networking scenarios. We simulated our dis-

tributed resource allocation algorithm in Matlab using discrete-time evolution of

link-prices and end-to-end dissatisfaction. Sources send packets at the rate gener-

ated by the controller, and links average this rate out using an exponential averaging

factor α. Links base their decision on this average rate.
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Fig. 17. Access-core topology for numerical experimentation.

1. Access-Core Topology

Our first network is an Access-core topology shown in Fig. 17. It represents a

paradigm similar to commercially available Internet access, wherein users have a

relatively small access bandwidth (from homes and businesses), connected together

by a resource rich core-network. User bandwidth is constrained, either directly at

the final hop into the home, or at a neighborhood head-end. Applications such as

P2P file transfers (low quality constraint), as well as voice and video calls (higher

quality constraints) result in end-to-end traffic on such a topology.

We consider the situation when nodes 1 and 3 wish to communicate to node

5; and similarly nodes 2 and 4, to node 6 over an Access-core network as shown in

Fig. 17. The labels on the links denote their respective capacity. We refer to a flow
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Fig. 18. Abilene topology for numerical experimentation.

by its origin node. The QoS constraints on quality of degradation for flows 1-4 are

2, 1, 3, 2, respectively. We plot the convergence of the source rates in Fig. 19. We

also plot load yl and effective capacity ỹl for the diagonal core link used by flows 2 &

3 in Fig. 20. We also plotted the quality seen by the flow 2 and its constraint σ2 = 1

in Fig. 21. Note, we have different rates of convergence of different parameters.

We assume that core links have a capacity of much higher order than that of

access links. Thereby, every link on the core is taken to be of capacity 10, whereas

access node 1 connects to the core with capacity 0.5. Similarly, capacities for nodes

2-4 are 0.3, 1, 0.4 respectively. We chose nodes 5, 6 to have identical access link

capacities of 1.

2. Abilene Topology

Our second network represents the major nodes of the Abilene network topology [104],

shown in Fig. 18. The network consists of high bandwidth links, and connects sev-

eral universities and research labs. Traffic consists of large scale data transfers (low

quality constraints) and distributed computation (where flows have strict delay con-
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Fig. 19. Convergence of source-rate on Access-core topology.

straints).

We consider 3 flows over the Abilene network as shown in Fig. 18 with labels

denoting the capacity of the corresponding link. Note, they are of same order. We

call the flow on bottom to be flow 1 and one on the top, flow 2. These two flows

have QoS constraint on dissatisfaction 8 and 15 respectively. Flow 3 has the zigzag

path and has the most stringent QoS constraint of 1. We plot the convergence of

flow rates in Fig. 22. We also plot load yl and effective capacity ỹl for the link of

capacity 3 shared by flows 2 and 3, in Fig. 23. We have also plotted the quality seen

by the zigzag flow and it’s acceptable constraint σ3 = 1 in Fig. 24.

The conclusions that we draw from our simulations are (i) our value-aware re-

source allocation algorithm converges to a stable solution, (ii) user quality constraints

are satisfied at equilibrium, i.e., the algorithm performs as designed, and (iii) the ef-

fective capacity is identical to the actual link load at equilibrium showing that our

relaxation produces a tight solution.
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G. ns-2 Experiments

We adopt utility functions of the form Ur(xr) = ar log(xr). We take ar = 100

and normalize source-rates xr to Megabits per second. The header of each packet

transmitted by a source contains two additional fields, (i) source dissatisfaction wr

and (ii) route price qr. Dissatisfaction is updated for each packet at the destination

node as indicated by our dual algorithm. We selected the scaling function kr(wr) to

be a constant 103. Route price qr is initialized to zero and is updated by the links.

Depending on the current value, sources update their current rate as indicated by

the algorithm.

As indicated by our algorithm, the price-update can be implemented by a virtual

queue being served at rate equal to the effective capacity with an arrival rate of yl.

This virtual queue is implemented by traffic shaping (TS) queue, described below.

We also need to compute the quality degradation at each link Vl(ỹl). We choose
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quality degradation per link to be the delay experienced by packets arriving in a

queue with a rate ỹl and being served at link-capacity cl. This queue is implemented

by the router queue that buffers packets pending transmission over the link. The

queues are shown in Fig. 25.

a. The Traffic Shaping Queue

The purpose of this queue is to shape traffic entering the router queue, and is il-

lustrated by the queue on the left in Fig. 26. Since our system requires decoupling

of the real load yl on link l from the effective capacity ỹl, we need to either add or

subtract packets arriving at the link. For example, if two sources (S1, S2) are using

link l, then a packet arrival from S1 or S2 is enqueued into the TS queue. The TS

queue is drained at a rate ỹl. The queue dynamics are implemented using a token

generator at each link. Tokens are created at rate ỹl. Each token observes the TS

queue and if it is non-empty, it places the packet at the head of the TS queue into
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the router queue. Otherwise, the token itself is placed in the router queue. Delays

are created due to the time that packets spend in the TS queue, but we will see that

these delays are small. We choose a large buffer size (10, 000 packets) to ensure that

very few packets are lost.

b. The Router Queue

We approximate the delay in router queue with a decreasing function of difference

in link-capacity cl and the effective capacity ỹl. In particular, we take V ′
l (ỹl) ≈

K/(cl − ỹl)
2. Therefore, we can update effective capacity ỹl at periodic time intervals

according to the following equation

ỹl = cl −
√

Kνl/pl. (4.14)
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We choose K = 109 for fast convergence. Unlike the analytical result presented

earlier, we note that in reality it takes a while for the impact of changing effective

capacity ỹl to be felt on the end-to-end delay. Therefore, we do not change ỹl at the

same time scale as source rates. Instead, we do so periodically at each link. The

times at which each link changes its value of ỹl are not synchronized. The objective

is to get the source rates to converge to effective capacity ỹl . The value of ỹl is again

changed after a time interval, assuming that the sum of source rates converged to

that ỹl, and hence the observed delay is Vl(ỹl).

We now study the performance of our protocol using a network simulator (ns-2)

on the two realistic topologies presented that we saw earlier in Section F. Let Ti

denote the propagation delay for flow i with no queueing delays. Our objective is to

study the performance of our value-aware controller in different networking scenarios,

and our example situations are shown in Fig. 27 and Fig. 28.
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c. Abilene Topology

As shown in Fig. 27, the rates of the three flows are x1, x2 and x3. In the system

considered, T1 = 50 ms, T2 = 45 ms and T3 = 25ms. We consider two cases. In

the first case, flow 1 has stringent quality degradation constraint. In particular,

respective degradation tolerances in terms of delays are σ1 = 55 ms and σ2 = σ3 =

1000 s. Thus, we have set a very high delay tolerance for flows 2 and 3, whereas for

yl ỹl cl

Link

TS Queue Router Queue

Fig. 25. Each node in our system contains a TS-queue and a router queue for each

out-going link.
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Fig. 26. The dynamics of the TS-queue and router queue in our system. Tokens are

used in order to modulate the arrival rate into the router queue. Tokens are

dropped when they reach the head of the router queue.
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Fig. 27. Flows considered for ns-2 experimentation for Abilene topology.

flow 1 this tolerance is very low and nearly equals the propagation delay of 50 ms,

and hence allows a queuing delay of only 5 ms for the five intermediate queues at

routers 1, 5, 4, 6 and 10. The tight delay constraint on flow 1 has an effect on the

other two flows which share the link between routers 6 and 10 with it. In Fig. 29

we plot the rates associated with individual flows. Figure 30 shows the acceptable

delay for packets for flow 1, the delay through the router queues (the control delay),

and the actual total delay (TS queue plus router queue) for packets to reach node

11 from node 1. Figure 31 plots the effective capacity ỹ for the link between nodes 6

and 10 (shared by all the three flows), which is less than the total link capacity of 25
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Fig. 28. Flows considered for ns-2 experimentation for Access-core topology.

Mbps. It is clear that the protocol is successful in ensuring a good delay performance

for flow 1, at the expense of overall system throughput.

d. Access-Core Topology

Our other experiment involves the Access-core topology, with flows of interest shown

in Fig. 28. In the system considered T1 = T3 = 20 ms and T2 = 25 ms. Flow 1

has very stringent delay constraint. In particular, delay tolerances are σ1 = 25 ms,

σ2 = σ3 = 1000 s. In this case, flows 2 and 3 are highly delay tolerant, while flow

1 has low delay tolerance and it nearly equals the propagation delay of 20ms, and

allows a queuing delay of 5ms for the three intermediate queues at routers 1, r1 and

r4. The tight delay constraint on flow 1 has an effect on the other two flows which

share the link between r4 and 4 with it. In Fig. 32 we plot the three rates for flows 1,

2 and 3. Fig. 33 shows the acceptable delay for packets for flow 1, the delay through
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Fig. 29. Convergence performance of source-rates on Abilene network topology.

the router queue (control delay) and the actual total delay (TS queue plus router

queue) for packets to reach node 4 from node 1. The total delay is close to the target.

Fig. 34 plots the ỹ at router r4 which is shared by all the three flows. Again, the

throughput is less than the link capacity of 15 Mbps in the interest of reducing delay.

H. Conclusions

In this chapter we considered the design of a distributed resource allocation algorithm

that would allow each individual flow to specify its measure of value. We assumed

that every flow passing through a link suffers a certain quality-degradation due to the

load on the link, and that such degradation adds up over the multiple links that the

flow traverses. The objective is to ensure that the system throughput is maximized

in a fair manner, subject to each flow’s quality of service satisfying a hard constraint.
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topology.

Our aim was to ensure that the algorithm should be simple, use local information,

and the relays need not maintain per-flow information.

We first showed that attempting to solve this problem by the usual optimiza-

tion decomposition techniques using the primal formulation yields an approximate

solution, and using the dual formulation yields a centralized solution. However, the

observation that decoupling the link-load from the quality degradation using a sec-

ondary variable that we call effective capacity, allows us to design such a controller.

Under our scheme, the source chooses its rate based on a route price, and it declares

a dissatisfaction based on the quality of service that it sees. Links choose an effective

capacity based on dissatisfaction and link-price, and modify the price as if the effec-

tive capacity were the actual capacity of the link. The control scheme only requires

that links be aware of aggregate quantities of the flows using them, and the sources

perform computations solely based on the parameters obtained from the links they
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Fig. 31. Convergence performance of effective capacity on Abilene network topology.

traverse, hence satisfying our requirements.

We studied illustrative examples of quality-degradation functions that helped us

gain insight into the working of the system. We performed simulations on realistic

topologies to illustrate the performance of our algorithm, and used it as a basis for

developing a delay-sensitive protocol. We showed that the protocol does indeed trade

delay and throughput, so as to maximize the total utility of the system. In the future

we would like to test out our ideas on a real network.
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CHAPTER V

CONCLUSION

We studied delay-sensitive communication over networks in this thesis. We looked

at it at increasingly higher levels. First, we looked at point-to-point communication

with service guarantees. Second, we studied the advantages of network coding for

multicast over small networks, for communication with service guarantees. Third,

we looked at a distributed algorithm to provide end-to-end service guarantees in a

large network.

In the first chapter, we quantified the impact of channel correlation on optimal

code-rate for finite-length block codes operating over a point-to-point communication

link. To this end, we model the transmit-buffer occupancy by states of a Markov

chain, where the transition matrix depends on the physical layer parameters. We no-

tice that the occupancy of the transmit-buffer is dominated by the smallest negative

eigenvalue of the transition matrix of this corresponding Markov chain. Therefore,

the optimal code-rate depends on this large deviation parameter alone. Further-

more, the optimal coding-rate is much smaller than the Shannon capacity of lightly

correlated channels. However, when the channel correlation becomes significant,

the code-rate exceeds the channel capacity. In the extreme case, as the bit-erasure

channel starts mimicing a packet-erasure channel, the code-rate approaches unity.

The results in this dissertation are for erasure channels. However, these results

can be generalized to error channels to find the bounds of maximum mutual informa-

tion rate with servic guarantees, utilizing thresholds on empirical mutual information

for retransmission decision. We have also assumed feedback in one transmission op-

portunity at the transmitter. This assumption can be relaxed by considering parallel

systems working in time-multiplexed fashion.
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In the second chapter, we characterized the gains of network coding in case

of multi-cast when each flow satisfies a service guarantee. We characterized the

departure process at each intermediate node and thereby computed the exact buffer-

occupancy distribution. We utilized the following facts for queueing analysis at

intermediate nodes. The effective bandwidths of independent sources are additive

in the routing case. In the coding case, flows are oblivious to one another in the

bottleneck link. We also found the optimum physical resources to be allocated in a

wireless environment to create a network suitable primarily for coding or routing. We

showed that there exists a physical distribution of nodes, where creating a network

suitable for coding performs worse than a network designed for routing alone.

In the third chapter, we proposed a distributed algorithm to provide per-flow

based service guarantee in a large network. To this end, we employed an approximate

“effective capacity” that is indicative of the upper limit on the link-rate, such that

the service-guarantees for each flow sharing that link can be supported. In this

algorithm, each link maintains a price queue with the arrival being the actual load

on the link, and the service being the effective capacity of the link. Further, links can

update their effective capacity based on the aggregate dissatisfaction declared by the

flows sharing the link, and its current price. On the other hand, sources maintain

a dissatisfaction queue, with the arrival being the flow-degradation, and the service

being the accepted tolerance. Sources update their rates based on the route-price.

We showed that this algorithm achieves the global objective of maximizing the sum-

utility of flows while providing their individual service guarantee of maintaining their

degradations below the declared acceptable thresholds.
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