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ABSTRACT 

 

Assessing Affordability of Fruits and Vegetables in the Brazos Valley-Texas. 

(December 2011) 

Justus Lotade-Manje, D.U.E.S. I&II.; M.S., Université Abdou Moumouni  

 de Niamey, Niger;  M.S., Colorado State University-Fort Collins, Colorado 

Chair of Advisory Committee: Dr. Richard A. Dunn 

 

 The burden of obesity-related illness, which disproportionately affects low 

income households and historically disadvantaged racial and ethnic groups, is a leading 

public health issue in the United States. In addition, previous research has documented 

differences in eating behavior and dietary intake between racial and ethnic groups, as 

well as between urban and rural residents. The coexistence of diet-related disparities and 

diet-related health conditions has therefore become a major focus of research and policy. 

Researchers have hypothesized that differences in eating behavior originate from 

differing levels of access to and affordability of healthy food options, such as fresh fruits 

and vegetables. Therefore, this dissertation examines the affordability of fresh produce 

in the Brazos Valley of Texas.  

 This study uses information on produce prices collected by taking a census of 

food stores in a large regional area through the method ground-truthing. These are 

combined with responses to a contemporaneous health assessment survey. Key 

innovations include the construction of price indices based on economic theory, testing 
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the robustness of results to different methods of price imputation, and employing spatial 

econometric techniques.   

 In the first part of the analysis, I evaluate the socioeconomic and geographical 

factors associated with the affordability of fresh fruits and vegetables. The results based 

on Ordinary Least Squares (OLS) regression show that except housing values (as median 

value of owner-occupied units) and store type, most factors do not have significant 

effects on the prices for these food items. In addition, the sizes and signs of the 

coefficients vary greatly across items. We found that consumers who pay higher 

premiums for fresh produce reside in rural areas and high proportion of minorities 

neighborhoods. We then assess how our results are influenced by different imputation 

methods to account for missing prices. The results reveal that the impacts of the factors 

used are similar regardless of the imputation methods. Finally, we investigate the 

presence of spatial relationships between prices at particular stores and competing stores 

in the neighborhoods.  The spatial estimation results based on Maximum Likelihood 

(ML) indicate a weak spatial correlation between the prices at stores located near each 

others in the neighborhoods. Stores selling vegetables display a certain level of spatial 

autocorrelation between the prices at a particular store and its neighboring competitors. 

Stores selling fruits do not present such relations in the prices. 
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CHAPTER I 

INTRODUCTION 

Many researchers have hypothesized that differences in eating behavior originate 

from differing levels of access to healthy food options (Andreyeva et al. 2008; Inagami 

et al. 2006; Morland et al. 2002a; Morland et al. 2002b; Rose and Richard 2004). For 

example, consumption of fruit and vegetables is recommended through the Dietary 

Guidelines for Americans (U.S. Department of Health and Human Services and U.S. 

Department of Agriculture 2005), but these foods are often not easily accessible by 

racial and ethnic minority groups in large urban centers or populations in rural areas 

(Dubowitz et al. 2008; Liese et al. 2007; Morland and Filomena 2007; Morton and 

Blanchard 2007; Powell et al. 2007b; Sharkey and Horel 2008; Shaw 2006; McClelland 

et al. 1998; Zenk et al. 2005; Zenk et al. 2006). Along with reduced access, fresh fruit 

and vegetables may also be less affordable to rural populations and racial/ethnic 

minority groups (Morland and Filomena 2007; Liese et al. 2007; Ard et al. 2007; Block 

and Kouba 2006; Ball, Timperio, and Crawford 2009). Therefore, the aim of this 

dissertation is to examine the affordability of fresh fruits and vegetables in the Brazos 

Valley region of Texas.  

This study uses information on produce prices collected by taking a census of 

food stores in a large regional area through the method ground-truthing. These are 

combined with responses to a contemporaneous health assessment survey. Key 

 

____________ 
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innovations include the construction of price indices based on economic theory, testing 

the robustness of results to different methods of price imputation, and employing spatial 

econometric techniques.  

 This study is divided into three parts that comprise Chapters II-IV of the 

dissertation: 

Chapter II: Previous research has documented differences in affordability of 

healthy food items according to the demographic and socio-economic profiles of 

neighborhoods. Therefore, the first part of the dissertation investigates whether stores 

located in rural areas, in neighborhoods with lower socio-economic status, and in 

neighborhoods with higher proportions of African-American and Hispanic residents 

charge more for fresh fruit and vegetables. The results show that proportion of minority 

residents is positively associated with the cost of purchasing fresh produce. Convenience 

stores tend to sell these items at higher prices compared to supermarkets and grocery 

stores. In addition, rural consumers (those who live outside Brazos County) also tend to 

pay higher prices. 

Chapter III: This chapter examines the robustness of estimation results to the 

choice of imputation method when price data is missing. The price indices presented in 

Chapter II are constructed using three different imputation methods: zero, mean and 

regression imputation. The regression analysis of Chapter II is repeated using each of 

these methods and the resulting coefficient estimates are then compared. I find that there 

is no meaningful effect of the imputation method on the conclusions of the study.   
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 Chapter IV: This chapter examines the spatial relationships between fruits and 

vegetables prices among stores in proximity to each other. The main objective was to 

determine whether store prices are correlated based on geographic location once 

confounding neighbor characteristics were controlled. The results show the presence of a 

weak spatial relationship between stores selling vegetables, but not fruits. Stores that sell 

vegetables at relatively low prices tend to be located near stores that sell vegetables at 

relatively high prices. This suggests that stores differentiate themselves based on 

characteristics beside price. 

These three chapters provide better understanding of the factors determining the 

affordability of healthy food items in a highly diverse—demographically and socio-

economically—rural area of the southern United States. Given the many public health 

challenges facing these populations, policy-makers can use these results to benefit 

historically disadvantaged populations.  
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CHAPTER II 

DETERMINATION OF FACTORS AFFECTING AFFORDABILITY OF 

HEALTHY FOOD IN THE RURAL COUNTIES OF BRAZOS VALLEY 

2.1 Introduction 

 The burden of obesity-related illness, which disproportionately affects low 

income households and historically disadvantaged racial and ethnic groups, is a leading 

public health issue in the United States (Mokdad et al. 2003; Ogden et al. 2006). In 

addition, previous research has documented differences in eating behavior and dietary 

intake between racial and ethnic groups (Dubowitz et al. 2008). The coexistence of diet-

related disparities and diet-related health conditions has therefore become a major focus 

of research and policy (Satia et al. 2009).  

Many researchers have hypothesized that differences in eating behavior originate 

from differing levels of access to healthy food options (Andreyeva et al. 2008; Inagami 

et al. 2006; Morland et al. 2002a; Morland et al. 2002b; Rose and Richard 2004). For 

example, consumption of fruit and vegetables is recommended through the Dietary 

Guidelines for Americans (U.S. Department of Health and Human Services and U.S. 

Department of Agriculture 2005), but these foods are often not easily accessible by 

racial and ethnic minority groups in large urban centers or populations in rural areas 

(Dubowitz et al. 2008; Liese et al. 2007; Morland and Filomena 2007; Morton and 

Blanchard 2007; Powell et al. 2007b; Sharkey and Horel 2008; Shaw 2006; McClelland 

et al. 1998; Zenk et al. 2005; Zenk et al. 2006). Along with reduced access, fresh fruit 

and vegetables may also be less affordable to rural populations and racial/ethnic 
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minority groups (Morland and Filomena 2007; Liese et al. 2007; Ard et al. 2007; Block 

and Kouba 2006; Ball, Timperio, and Crawford 2009). Therefore, the aim of this paper 

is to examine whether stores located in rural areas, in neighborhoods with lower socio-

economic status, and in neighborhoods with higher proportions of African-American and 

Hispanic residents charge more for fresh fruit and vegetables.    

Our approach is novel in several respects. Unlike previous work, our information 

on the price of fresh fruits and vegetables comes from data collected by taking a census 

of food stores in a large regional area through the method ground-truthing. Moreover, 

this region in central Texas is home to a socio-economically and demographic diverse 

population spread over six rural counties and one medium-sized urban county. Finally, 

we handle missing prices through an imputation strategy more firmly grounded in the 

economic theory surrounding the decision of a profit-maximizing store owner to stock a 

particular item for sale. 

2.2 Data and Methods 

2.2.1 Data 

 The seven contiguous counties of the Brazos Valley are situated between the 

Dallas and Houston metropolitan areas. The region is home to 300,000 residents, of 

which 51.4% reside in one of six predominately rural counties. The seventh, Brazos 

County, includes the medium-sized urban center of Bryan-College Station. 

Socioeconomic characteristics were extracted from the 2000 decennial census Summary 

Files 3 (SF-3) at the level of the census block group (CBG) since the CBG is the smallest 

unit of census geography for which the detailed ―long-form‖ social and economic data 
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from the census are tabulated (17, 23). SF-3 data were merged for the six rural counties. 

The rural areas included 101 CBG and the urban county included 93 CBG. 

Table 2.1 presents selected socio-economic information for the counties in the 

Brazos Valley from the US Census Bureau. Median household income ranges from just  

 

Table 2.1. By County Demographic Repartition and Store Per Type.  

 Brazos Burleson Grimes Leon Madison Robertson Washington 

Population 170,954 16,598 25,603 16,462 13,379 15,819 32,034 

Median income 

($) 
33,186 31,174 33,327 29,443 28,963 29,983 35,852 

Bachelor’s 

degree (%)  
37 13.2 10.3 12.1 11.5 12.7 19.0 

Black (%) 10.7 14.3 18.2 10.1 21.8 22.9 17.8 

Hispanic (%) 20.8 16.5 18.2 10.9 18.9 16.8 11.6 

Store types        

Supermarket 11 2 2 1 2 3 2 

Grocery 3 3 2 4 0 2 0 

Convenience 114 19 25 25 12 18 32 

Source: US Census Bureau and BVFEP. 

 

over $34,000 in Madison County to nearly $45,000 in Washington County. Robertson 

County has the largest proportion of Blacks at 22.9%, while neighboring Leon County is 

only 10.1% Black. Leon County also has the lowest percentage of Hispanic residents. In 

contrast, Hispanics account for 20.8% of the population in Brazos County, the largest 



 7 

county in the region. As expected, it also has the most education population with 37% 

holding at least a Bachelor’s Degree. Thus, the Brazos Valley region allows us to study 

the effects of urbanicity, education levels, income levels and demographic make-up on 

affordability within a compact, contiguous area.  

Information about prices comes from the Brazos Valley Food Environment 

Project (BVFEP). As part of the BVFEP, trained observers enumerated all food stores 

and food service places by driving all Interstates, US Highways, Texas State Highways, 

Texas Farm-to-Market Roads and other major thoroughfares to locate all stores that 

could sell food items (Sharkey and Horel 2008). As previously published, the BVFEP 

used ground-truth methods in a two-stage approach to determine the location of all food 

stores and the availability of fresh produce.  Identification and surveying occurred 

between September 2006 and July 2007. Food stores were classified into several 

categories: supercenter, supermarket, grocery store, convenience store, dollar store, mass 

merchandiser, and pharmacy. The BVFEP indentified 2 supercenters, 22 supermarkets, 

14 grocery stores and 254 convenience stores across the seven counties (their geographic 

distribution is reported in Table 2.1). Investigators then entered all food stores with an 

extensive list of food items on a tally sheet in order to catalogue which items were sold 

and at what price (Bustillos et al. 2009). Based on input from local residents and 

nutrition professionals, ten types of fresh fruit (apples, avocado, bananas, berries, grapes, 

mango, melons, oranges, peaches and pears) and eleven types of fresh vegetables 

(broccoli and cauliflower, carrots, corn, green beans, leafy greens, lettuce, okra, onions, 

potatoes, squash and tomatoes) were included in this catalogue. The following 
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information was recorded: whether each type (e.g. apples) was available for purchase; 

the number of varieties of each type of fruit or vegetable available for purchase; and the 

lowest-priced variety of each type of fruit or vegetable. Because in-store prices were 

posted in several forms—per item, per ounces, per pound—all prices were later 

transformed or recalculated into a uniform price per pound. To do so when prices were 

posted per item, surveyors weighed the items using a sensor scale. The price of food 

items that were either not sold or not displayed were recorded as missing. Contrary to 

earlier studies (Latham and Moffat 2007; Cummins and Macintyre 2002), surveyors did 

not purposefully interact with store managers or employees during the data collection 

process. Although there are many fruit and vegetable varieties that were not included in 

the BVFEP, the 9 fruits used here accounted for 80% of consumption and expenditure 

according to the Fresh Look Marketing data. Lemons, limes and tangerines are the most 

commonly consumed fruits not included. The ten vegetables account for 72% of all fresh 

whole vegetable expenditure and 75% of consumption. The most common varieties not 

included are celery, cucumber, mushrooms and peppers. We omit okra and mango from 

the subsequent analysis given their limited availability and low consumption shares. 

It is worth noting that the ground-truthing methods utilized here differ from those 

typically employed in the literature. The direct observation approach more closely 

approximates the behavior of actual shoppers. When consumers want to buy a food 

product, they do not call stores to ask for the price of the items; they walk or drive to the 

stores. In addition, when the consumers go to the stores, they rarely ask for prices. They 

directly go to the section where the produces are displayed and buy the items needed or a 
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substitute if price is high. A full census of stores is another superlative aspect of our 

data. Previously, many researches use secondary data either available online or via third 

parties. These data tend to be targeted at only a subset of stores (Cassady et al. 2007 

Morland and Filomena 2007; Morris et al. 1992;), locations (Block and Kouba 2006; 

Hendrickson et al. 2006; Jetter and Cassady 2006; Morris et al. 1992) and types of food 

(Liese et al. 2007). These data are therefore less able to accurately describe the actual 

food environment. 

2.2.2 Price Imputation 

In previous studies, missing prices have typically been imputed by taking the 

mean price over the stores that do sell the item (Block and Kouba 2006; Lee et al. 2002). 

This imputation strategy may be misguided since stores that do not sell a particular item 

are likely not comparable to the average store that does. Instead, one could view the 

decision of a store-owner not to stock an item for sale as the result of profit-maximizing 

behavior. The price that consumers are willing to pay for the missing type is below the 

cost that a store owner faces to offer the type for sale. Nevertheless, there is still some 

reservation price that would lead the store owner to stock the item. Thus, the proper 

price for missing types is this unobserved shadow price and intuitively, it should be 

higher than the mean observed price. Ignoring the underlying reasons for missing price 

information may not be benign to the purpose at hand. If economically disadvantaged 

neighborhoods suffered from both low availability and affordability of fresh produce, 

then using the mean price calculated from stores in economically advantaged 
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neighborhoods would understate the true relationship between economic status and 

affordability.  

Alternatively, one may take a statistical perspective and assume that over some 

period of time, all stores eventually stock all types of fruit. Since inventory and prices 

are only observed once for each store, it is possible that unobserved fruit types were 

recently sold or will be sold again soon. The goal is then to reasonably estimate these 

unobserved prices given the observable price data.  Both the economic and statistical 

perspectives suggest that one method to overcome this issue is to employ a price 

imputation that takes advantage of the observed prices in each store. For example, a 

store that sells apples and bananas above the mean price found in others stores would 

likely charge an above average price for berries, as well. Therefore, in the current study 

the price of each fruit or vegetable item was first estimated as a linear function of the 

store type, the county in which the store was located and the prices of the most common 

fruit or vegetable types—apples, oranges and bananas for fruit and onions, potatoes and 

tomatoes for vegetables. The coefficient estimates from these regressions, which are 

available in a supplemental appendix, were then used to impute values for the missing 

prices of other types (Bradley 2003).  

 2.2.3 Price Indices  

The actual and imputed prices (the former when available, the latter when 

missing) were then used to calculate two types of price indices for both fresh fruit and 

fresh vegetables: a high variety and a basic index. The high variety index includes the 

full set of items, while the basic index includes only the most common items (apples, 
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bananas and oranges for fruit and carrots, lettuce, onion, potatoes and tomatoes for 

vegetables). Such a distinction may be relevant for policy-makers, for example, if the 

intention of a particular program is to provide assistance to increase the amount of fruit 

and vegetable consumption with little importance attached to the variety of types 

consumed. Each index is calculated as the weighted mean price per pound multiplied by 

the recommended number of pounds consumed per week for a representative family of 

two adults and two children from the most recent USDA Thrifty Food Plan: 24.5 pounds 

of fruit and 31.5 pounds of vegetables. The Thrifty Food Plan expects that fruit and 

vegetable consumption will also come from a mix of sources (e.g. fresh whole, frozen, 

canned, dried, etc.), but the choice of multiplicative factors affects the magnitude of the 

subsequent coefficient estimates, but not their statistical significance. If only half of total 

fruit consumption should come from fresh whole items, then the appropriate adjustment 

is to either halve the coefficient estimate or reinterpret it as biweekly expenditure. The 

weights are equal to the consumption shares calculated for the Dallas metropolitan area 

from Fresh Look Marketing, Inc. (Chicago, Illinois) and represent all supermarkets 

(sales of at least $2 million) with about 70% of all commodity volume (ACV) in the 

Dallas market (Timothy Richards, personal communication).   

The price indices calculated for each store were linked to socio-economic 

information for the CBG in which the store was located from the 2000 decennial Census 

(U.S. Census Bureau. 2009 [Available from: http://www.census.gov]). To explore the 

role of economic status and demographic composition on the affordability of fresh 

produce, the following variables were utilized: the median value of owner-occupied 
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housing, the median household income, the percent of the population under 200% of the 

poverty line, the proportion of residents with a high school diploma, the proportion of 

residents who do not own an automobile, the proportion of residents above age 65, the 

proportion of the population that self-reports Black race, the proportion of the population 

that self-reports Hispanic ethnicity and an indicator for being located in Brazos County, 

i.e. urban.  

It is difficult a priori to sign the coefficient on our wealth and income measures. 

As normal goods, the demand for fresh fruits and vegetables should be increasing in 

monetary resources, which should also lead to higher prices. However, if higher demand 

for grocery items leads to the opening of supermarkets, economies of scale may actually 

lower prices. This leads us to hypothesize that conditional on store-type affordability is 

decreasing in income and wealth.  

Although education is positively correlated with income, we expect that the 

coefficient on education and affordability are positively related. Educated shoppers may 

be better able to compare the full menu of prices at different stores or understand various 

discounts. As more mobile consumers, stores may respond by offering lower prices.  

Since individuals without transportation are less likely to comparison shop, we 

expect that the relationship between transportation availability and affordability is 

negative. Because of mobility issues, it is possible that older residents are less able to 

shop at stores outside their immediate community, suggesting the age profile of the 

neighborhood is negatively association with affordability. For those who are able to 

choose among various firms, however, retirement likely provides additional time to 
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comparison shop. Additional price information for consumers would tend to lower the 

prices charged by firms and thus the overall effect is ambiguous a priori. 

We expect that convenience stores will charge a higher price for fresh fruits and 

vegetables, but have no prior on whether supermarkets charge less than grocery stores. 

We also do not have a strong prior on how race/ethnicity is related to affordability, 

though previous work in urban areas tends to find that neighborhoods with higher 

proportions of non-White residents pay more for fresh fruits and vegetables (Morland et 

al. 2002b; Morland and Filomena 2007; Jetter and Cassady 2006), though the work of 

Block and Kouba (2006) is an important exception.. 

2.2.4 Statistical Analysis  

A linear relationship between these explanatory variables and each price index 

was then estimated using ordinary least squares regression models. Therefore, each 

observation was a store, with the store-level price index being the dependent variable 

and the characteristics of the CBG in which the store is located being the explanatory 

variables (Model 1). Since the affordability of fresh produce could vary both within and 

between store types, a second set of regressions were estimated that include control 

variables for store type along with the CBG characteristics (Model 2). By comparing 

coefficient estimates across models, it is possible to determine whether a characteristic is 

correlated with affordability through the location choices of different store types. In each 

regression, the median value of owner-occupied housing and the median household 

income were taken in their natural logarithm; hence the coefficient estimates are 

interpreted as the effect of a 100% increase in variable.  
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It is important to note that the number of observations available for the regression 

analysis was relatively small. Even with imputation of missing prices, only 34 stores 

posted enough price information to calculate a high variety price index for fruit and 36 

stores posted enough price information to calculate a high variety price index for 

vegetables. This further highlights the importance both of using an appropriate price 

imputation strategy and selecting a parsimonious set of explanatory variables. Moreover, 

the typical issues associated with small sample sizes—large standard errors and low 

powered hypothesis tests—would be exacerbated by collinearity between explanatory 

variables. Table 2.2 provides the correlation matrix of our explanatory variables and 

only four of these are above 0.5 in absolute value and none are greater than 0.7. 

Nevertheless, we calculate variance inflation factors (VIF) to assess collinearity (O'Brien 

2007). Since multiple stores can be located in a single CBG, robust standard errors 

clustered at the CBG-level were calculated (Moulton 1990).  

2.3. Results  

Among the 39 stores that sold at least 3 fruit items (2 supercenters, 22 

supermarkets, 11 grocery and 4 convenience), apples, oranges, avocado and banana were 

the most commonly found (Table 2.3 provides both the number of stores with price data 

 



 

 

15 

 

Table 2.2: Matrix of Key Variables Used in the Regression Analysis. 

 Income House HS Age Auto Hispanic Black Pov 

Median household income 1.000        

Median value of owner-occupied 

housing 
0.058 1.000       

High school degree (%) 0.046 0.302 1.000      

Age>65 (%) -0.121 -0.269 -0.816 1.000     

Without automobile (%) -0.110 -0.557 -0.130 0.068 1.000    

Hispanic (%) -0.057 -0.454 0.253 -0.329 0.306 1.000   

Black (%) -0.092 -0.588 -0.093 0.018 0.679 0.214 1.000  

Below 200% of poverty (%) -0.082 -0.400 0.138 -0.203 0.483 0.504 0.437 1.000 

Income: Median household income 
HS: High school degree (%) 
Age: Age>65 (%) 
Auto: Without automobile (%) 
Pov: Below 200% of poverty (%) 
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by item along with the proportion of stores doing so). On a per weight basis, bananas 

were the cheapest fruit type, while berries were the most expensive. Among the 49 stores 

that sold at least 4 vegetable items (2 supercenters, 22 supermarkets, 14 grocery stores 

and 11 convenience stores), carrots, lettuce, onions, potatoes and tomatoes were the most 

common. Potatoes were the least expensive vegetable type, while green beans were the 

most expensive. 

  Although there were 39 stores that sold at least 3 types of fruit, only 35 stores 

posted the requisite information—the prices of apples, oranges and bananas—to 

calculate basic and high variety price indices (2 supercenters, 22 supermarkets, 9 grocery 

and 2 convenience). Similarly, of the 49 stores that sold at least four types of vegetables, 

37 posted the requisite price information to calculate a basic vegetable price index (2 

supercenters, 22 supermarkets, 10 grocery and 3 convenience) and 36 posted the 

requisite information to calculate a high variety index (2 supercenters, 22 supermarkets, 

10 grocery and 2 convenience). The mean cost of meeting the USDA recommended 

level of fruit consumption from a high variety basket of fruit types was just under $27 

per week (Table 2.4). In contrast, relying on only the three most common fruits lowered 

the weekly expense to just under $17 per week, a reduction of 37%. The effect of 

moving from a high variety to a low variety basket was much less when considering 
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Table 2.3. Price Availability, Mean Price and Consumption Shares of Fresh Fruit 

and Vegetables Types. 

 
Stores with non-
missing price1 

Mean price2 Minimum 
price 

Maximum 
price 

Consumption 
Share4 

  ($) ($) ($) (%) 

Fruit      

apples 36 (100) 1.12 ±0.30 0.61 1.99 11.7 

avocado 35 (97.2) 2.19 ±1.00 0.59 5.47 9.1 

bananas 35 (97.2) 0.47 ±0.11 0.29 0.69 33.8 

berries 26 (72.2) 2.79 ±0.58 1.50 3.99 6.2 

grapes 31 (86.1) 1.72 ±0.48 0.89 2.79 8.9 

melon 30 (83.3) 0.81 ±0.24 0.33 1.12 18.2 

oranges 36 (100) 0.98 ±0.37 0.33 1.89 7.7 

peaches 24 (66.7) 1.58 ±0.30 1.27 2.29 2.6 

pears 23 (63.9) 1.30 ±0.45 0.35 1.79 1.8 

All fruit types3 18 (50)    100 

Vegetables      

carrots 36 (73.5) 1.04 ±0.44 0.49 2.00 7.8 

corn 25 (51.0) 0.83 ±0.36 0.45 1.82 5.7 

cruciferous 29 (59.2) 0.95 ±0.33 0.32 1.59 3.8 

green beans 22 (44.9) 1.55 ±0.52 0.99 2.79 2.1 

greens 29 (57.1) 0.98 ±0.24 0.70 2.01 1.1 

lettuce 39 (79.6) 0.75 ±0.30 0.49 1.98 7.7 

onions 39 (77.6) 0.97 ±0.36 0.39 1.99 16.4 

potatoes 38 (75.5) 0.60 ±0.36 0.30 2.39 33.8 

tomatoes 38 (77.6) 1.33 ±0.43 0.69 2.39 4.8 

squash 30 (61.2) 1.23 ±0.39 0.50 1.88 17.0 

All veg. types3 21 (42.8)    100 
1 For fruit, sample is all stores selling at least three types: n=36. For vegetables, sample is all stores selling at least four types: n=49. 
Proportion of stores with non-missing price in parentheses.  
2 Means are reported ± SD.  
3All types summarizes the number of stores selling all types of fruits or vegetables, respectively.  
4Consumption share of each type from Fresh Look Marketing, Inc for Dallas market.  
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Table 2.4. Summary Statistics of Produce Availability, Store Types and CBG 

Characteristics. 

 n Mean Minimum Maximum 

Price indices, $     

High variety fruit 34 26.98 ± 3.97 19.07 37.89 

Basic fruit 35 16.87 ± 2.62 10.16 23.63 

High variety vegetable 36 28.72 ± 6.75 17.19 48.19 

Basic vegetable 37 27.58 ± 7.54 15.88 53.24 

Store types, %     

Proportion supermarkets/supercenters 38 63.2 ±48.9 0 1 

Proportion grocery stores 38 26.3 ±44.6 0 1 

Proportion convenience stores 38 10.5 ±31.1 0 1 

CBG characteristics     

Median owner-occupied housing  

     value, $ 

38 70,739 ± 39,191 0 187,500 

Median family income, $ 38 32,379 ± 15,124 13,292 88,172 

Proportion below 200% of poverty, % 38 45.5 ±18.5 2.0 78.1 

Proportion with HS diploma, % 38 73.4 ±16.6 40.8 100 

Proportion age 65 or older, % 38 13.9 ±6.8 1.6 55.5 

Proportion without a vehicle 38 9.6 ±7.7 0 38.0 

Proportion African American, % 38 18.8 ±17.7 0.2 75.5 

Proportion Hispanic, % 38 16.9 ±11.8 4.9 52.6 

Notes: Price indices are the cost of purchasing the recommended weekly servings of fruits and vegetables according to the USDA 
Thrifty Food Plan for a representative household of 2 adults and 2 children from fresh, whole items: 24.5 pounds (11.1kg ) of fruit 
and 31.5 pounds (14.3kg) of vegetables).  Not all price indices can be calculated for all stores because of variation in which prices for 
individual goods are available. Store types and CBG characteristics calculated over the set of stores for which a basic fruit index or a 
basic vegetable index or both could be calculated. Means are reported ± SD. n is the number of stores, CBG is census block group. 
Vegetable consumption: a 3.9% decline from $28.72 to $27.58 per week.  
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As summarized on Table 2.3, the set of stores (35) that had the requisite 

information to calculate a basic fruit price index is not a subset of the stores (37) that had 

the requisite information to calculate a basic vegetable price index. Thus, the remaining 

summary statistics were calculated over the 38 stores for which we were able to 

calculate a basic fruit index, a basic vegetable index or both. Among these, there are 24 

supermarkets or supercenters (65%), 10 grocery stores (27%) and 4 convenience stores 

(8%). It is evident that the CBG in which stores were located are exceptionally diverse. 

The median value of owner-occupied housing ranged from $0, indicating that the CBG 

was entirely comprised of commercial and rental units, up to $187,500. Because one 

supermarket was located in a CBG with no reported owner-occupied housing, this 

observations was dropped. The median household income was highly variable, with a 

standard deviation just under half the mean (COV=0.46). Moreover, the highest median 

income was more than 6.6 times larger than the lowest. This was also reflected in the 

poverty rate, which ranged from 2.0% to 78.1%. There were also several minority-

majority CBG in which more than 50% of the population was either African American 

or Hispanic. 

 Regression analysis of the store-level price indices on the characteristics 

associated with the CBG in which the store was located consistently revealed that stores 

in the urban county charged less for fresh produce (Table 2.5 and 2.6). The limited 

number of observations leads to rather imprecise coefficient estimates, but the sign 

pattern can still be instructive. The coefficient on the urban indicator was negative in 
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each regression, though it was never statistically significant. For example, the mean 

weekly expenditure required to satisfy the USDA recommended level of vegetable  

Table 2.5. Association between Fruit Price Indices and CBG Characteristics, 

Geographic Location, and Store Type: Regression Results from Pooled Sample of 

Urban and Rural Food. 
 

Price Index: Fresh Fruit 
High variety2 Basic3 

 Model 1 Model 2 Model 1 Model 2 

CBG characteristics     

 Median value of 
owner-occupied 
housing4 

3.223 6.777* 9.894** 10.00** 
(3.568) (3.420) (4.623) (4.390) 

 Median household 
income4 

1.616 3.01 -0.293 -3.297 
(4.267) (3.670) (6.617) (5.626) 

 Proportion below 
200% of poverty, 
% 

0.0956 0.127 -0.166 -0.243 
(0.123) (0.099) (0.236) (0.203) 

 Proportion with HS 
diploma, % 

-0.180* -0.0518 -0.118 -0.134 
(0.094) (0.131) (0.181) (0.171) 

 Proportion age 65 or 
older, % 

-0.0135 -0.0573 -0.316 -0.305 
(0.157) (0.193) (0.305) (0.288) 

 Proportion without a 
vehicle 

-0.145 -0.09 0.117 0.306 
(0.172) (0.247) (0.433) (0.454) 

 Proportion African 
American 

-0.00835 0.0498 0.0881 0.0348 
(0.106) (0.112) (0.153) (0.168) 

 Proportion Hispanic -0.0906 -0.0619 0.0388 0.0492 
(0.104) (0.084) (0.181) (0.191) 

Geographic Location     
 Urban  -3.826 -4.945 -7.257 -7.397 

(2.200) (3.404) (5.113) (4.458) 
Store Types

5
     

 Grocery store  1.412  -4.265 
 (1.786)  (3.139) 

 Convenience store  9.909***  2.141 
 (2.612)  (3.360) 

N 33 33 35 35 
R

2
  0.242 0.485 0.248 0.332 

1Coefficient estimates from linear regression. Robust standard errors clustered at CBG level in parentheses below coefficient 
estimates. *P<0.1 **P<0.05 ***P<0.01 
2High variety indices include all produce types listed in Table 2.1.  
3Basic fruit index only includes apples, bananas, and oranges. Basic vegetable index only includes carrots, lettuce, onion, potatoes 
and tomatoes.  
4 Taken in natural logarithm.  
5Referent category is supercenter/supermarkets.  
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Table 2.6. Association between Vegetable Price Indices and CBG Characteristics, 

Geographic Location, and Store Type: Regression Results from Pooled Sample of 

Urban and Rural Food. 
 

Price Index: 
Fresh Vegetables 

High variety2 Basic3 

 Model 1 Model 2 Model 1 Model 2 

CBG characteristics     

 Median value of 
owner-occupied 
housing4 

-0.529 0.676 10.58* 11.28** 
(1.713) (1.881) (5.420) (5.110) 

 Median household 
income4 

-2.823 -1.31 0.597 -3.025 
(3.131) (2.658) (7.229) (6.140) 

 Proportion below 
200% of poverty, 
% 

-0.064 -0.00589 -0.198 -0.281 
(0.093) (0.093) (0.268) (0.232) 

 Proportion with HS 
diploma, % 

-0.00823 0.0376 -0.146 -0.15 
(0.063) (0.072) (0.208) (0.191) 

 Proportion age 65 or 
older, % 

-0.104 -0.0754 -0.334 -0.309 
(0.128) (0.127) (0.317) (0.280) 

 Proportion without a 
vehicle 

-0.0822 -0.15 0.124 0.431 
(0.102) (0.131) (0.466) (0.498) 

 Proportion African 
American 

0.00534 0.044 0.121 0.0416 
(0.058) (0.066) (0.159) (0.166) 

 Proportion Hispanic 0.00698 0.00577 0.0696 0.0691 
(0.091) (0.084) (0.166) (0.162) 

Geographic Location     
 Urban  -1.467 -2.038 -6.479 -7.353 

(1.834) (1.686) (5.169) (4.543) 
Store Types

5
     

 Grocery store  2.732  -5.891 
 (1.730)  (3.633) 

 Convenience store  3.400*  4.091 
 (1.973)  (3.209) 

N 34 34 36 36 
R

2
 0.117 0.263 0.226 0.367 

     1Coefficient estimates from linear regression. Robust standard errors clustered at CBG level in parentheses below coefficient 
estimates. *P<0.1 **P<0.05 ***P<0.01 
2High variety indices include all produce types listed in Table 2.1.  
3Basic fruit index only includes apples, bananas, and oranges. Basic vegetable index only includes carrots, lettuce, onion, potatoes 
and tomatoes.  
4 Taken in natural logarithm.  
5Referent category is supercenter/supermarkets.  
HS: High School; CBG: census block group. 
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consumption using the basic set of items was over $6.00 higher when shopping at a store 

located in one of the rural counties, while fruit consumption was over $7.00 higher.  

 We also found that the value of owner-occupied housing was associated with 

more expensive produce at local stores. The coefficient estimate on median value of 

owner-occupied housing was positive in all but one regression and statistically 

significant in five. As expected, the coefficient on our measure of education was 

negative in each regression and was statistically significant in one. The coefficients on 

income and poverty rate did not show a consistent pattern, which is particularly 

problematic given the imprecision of our estimates. 

The coefficient on the proportion of residents who are African American was 

positive in seven regressions, but was never significant. Except for the high variety fruit 

basket, the coefficient on the proportion of Hispanic residents also positive and never 

approached significance (the smallest P-value is 0.340). It is also worth noting that 

coefficient estimates did not respond strongly to the inclusion of controls for the type of 

store when the price indices for fresh vegetables were the dependent variables, e.g. the 

size and significance of coefficients were similar. The effect when the fruit price indices 

were the dependent variables was stronger, but the estimates were nonetheless 

qualitatively similar.    
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2.4. Discussion  

 The first goal of this article was to describe the relationship between the prices 

charged by stores for fresh produce and the characteristics of the surrounding 

communities. We demonstrated that individuals who shop at food stores located in the 

rural counties of the Brazos Valley region must pay significantly more to attain the 

USDA recommended level of fresh fruit and vegetable consumption through fresh whole 

items than residents who shop in the urban area. Moreover, the difference in cost 

between urban and rural stores was not explained by differences in the type of stores that 

locate in these areas. This result is consistent with previous work in the literature and 

further illustrates the challenges that rural households face with respect to making 

healthy lifestyle decisions. Of course, individuals who reside in rural areas but work in 

the urban area are able to shop at urban retailers with little additional transportation or 

time cost. Nevertheless, numerous at-risk groups such as the older adults, the 

unemployed, those without access to transportation and parents who cannot afford child-

care either do not have this option or experience costs that make it prohibitively 

expensive. Therefore, in future work we plan to study how the affordability of healthy 

food items affects the decision of where rural residents shop.  

 We also found that higher housing values are positively associated with the cost 

of fresh fruits and vegetables. Since median household income was also included in the 

set of regressors, two explanations are possible. First, housing values reflect the 

economic value of a location, which is capitalized through rent and property taxes. Thus, 

median housing values capture some of the operating costs of a store owner and higher 
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operating costs naturally imply higher prices. Second, housing is an asset, and often the 

largest one for a household. It is possible that two areas with identical median household 

incomes nevertheless exhibit large differences in asset wealth. Wealth differences could 

cause differences in demand for healthy food items, thereby raising price. Alternatively, 

the attitudes and preferences that lead individuals to accumulate asset wealth, e.g. greater 

patience or greater appreciation of the long-run consequences of current decisions, may 

be associated with the attitudes and preferences that encourage healthy eating behavior. 

This suggests that failing to distinguish the supply-side effects of land values from the 

demand side effects of income and wealth may misstate the role of community socio-

economic status on affordability since the two are positively correlated. 

 Given the lack of precision in coefficient estimates, it is impossible to judge the 

association between medium household income and the cost of fresh produce.  There 

was suggestive evidence, however, that stores located in areas with higher proportions of 

African-Americans charge more for fresh fruits and vegetables. The evidence was much 

weaker with respect to the proportion of Hispanic residents.  

In addition to providing a fuller description of affordability differences between 

urban and rural areas, the current paper also makes several methodological 

improvements over previous work. The analysis confronts the common problem of 

missing prices using a price imputation strategy that is more firmly grounded in 

economic and statistical theory than has previously been employed. The inclusion of a 

control for local housing values along with local income information is also a positive 

step in separating potential supply-side influences on availability from demand-side 
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explanations. In addition, we used data from the Brazos Valley Food Environment 

Project, which identified all traditional and non-traditional food stores using ground-

truthed methods and conducting a comprehensive assessment of the availability and 

price of fresh fruit and vegetables. By including supercenters, supermarkets, grocery 

stores, convenience stores, dollar stores, mass merchandisers, and pharmacies, this study 

provided a more complete picture of availability and price of fresh fruit and vegetables 

The analysis suffers from several limitations. First, the number of food stores in 

the Brazos Valley region is relatively small and future work should consider canvassing 

a larger area to increase the precision of estimates. Doing so could not only increase the 

number of observations in an analysis similar to the one undertaken here, but also allow 

for separate regressions for urban and rural areas. Of course, the cost associated with 

completing a census of food stores should not be underestimated. Second, we are unable 

to translate differences in local affordability into differences in eating behavior. Third, it 

must be acknowledged that fresh whole items from food stores are not the only source of 

fruit and vegetables, though the majority of fruit and vegetable consumption is in the 

form of fresh whole items. In food stores, fruit and vegetables can also be purchased in 

frozen, canned, dried and juiced forms. Additionally, fruit and vegetable consumption 

may also occur in restaurant settings. Since the nutritional value of consumption likely 

varies by the form consumed, the affordability of these different options, both in 

absolute terms and relative to each other, is also worthy of future study.  Fourth, sales 

shares were not available for the stores in our sample, and thus we were unable to weight 

observations in the regression analysis. Future data collection effects should do so in 
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order to account for differences in the relative importance that each store plays in the 

actual purchasing decisions of households. Finally, while our imputation strategy allows 

us to calculate a hypothetical measure of affordability for stores that do not sell all items, 

these stores may typically exhibit limited availability Researchers and policy makers 

should keep both aspects—availability and affordability—in mind when considering 

improvements in the food environment. 

Despite these limitations, this study extends prior work by examining the 

affordability of fresh fruit and vegetables from traditional and non-traditional food stores 

in a large rural area; and how access to an affordable supply of fresh fruit and vegetables 

differs by neighborhood and geographic inequalities. The approach and findings of this 

study are relevant and have important research and policy implications for understanding 

access and availability of affordable, healthy foods. Access to a good variety of 

affordable healthy foods, such as fruit and vegetables, can play a pivotal role in the 

nutritional health of rural families. Many of these families live in socioeconomically-

deprived neighborhoods; many have a low household income, are unemployed, older, or 

lack access to a vehicle. In order for rural families to be food secure and have access to 

fruit and vegetables, food resources need to be available and affordable in local stores.   
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CHAPTER III 

COMPARISON OF THREE IMPUTATION METHODS FOR MISSING ITEMS: 

IMPLICATION OF THE PRICE INDICES FOR FRUIT AND VEGETABLES 

3.1 Introduction 

The increasing burden of obesity-related illness has become a leading public 

health issue in the United States. Many researchers hypothesize that the local food 

environment—the availability and affordability of both healthy and unhealthy eating 

options—plays an important role in obesity outcomes. The food options available to 

households can constrain eating choices and the characteristics of households including 

the type of neighborhood can affect the set of goods and services that firms offer for sell 

and the prices they charge. In order to explain differences in obesity outcomes among 

different subpopulations (e.g. wealthy versus poor; urban versus rural; White versus non-

White), a number of recent papers have investigated how the affordability of healthy 

food items varies with neighborhood characteristics (Ball, Timperio, and Crawford 

2009; Jetter and Cassady 2006; Kaufman et al. 1999; Lotade-Manje et al. 2009; Pollar et 

al. 2002). These investigations require the use of information about the prices of food 

items, but in practice this information is often incomplete. While the appropriateness of 

different imputation strategies has been considered in medical and biological science, it 

has received scant attention in food policy.  

Therefore, this paper uses store-level price information to compare how different 

imputation methods affect the results from an analysis of the association between 

neighborhood socio-economic conditions and the affordability of healthy food options. 
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We focus on the prices of fresh fruits and vegetables, since both have been identified as 

important components of a healthy diet. In addition, previous work in this area has used 

a variety of imputation strategies without considering robustness to the method chosen 

(Block and Kouba 2006; Dunn et al. 2011; Hendrickson et al. 2006; Latham and Moffat 

2007; Lee et al. 2002).  

3.2 Missing Data and Imputation 

3.2.1 Missing Data 

Missing data can arise because of non-response to survey questions, errors in 

processing responses or constructing the dataset or the impossibility of collecting certain 

information (Blend and Marwala 2008). Moreover, missingness may be either temporary 

or permanent (Armknecht and Maitland-Smith 1999). The data are temporarily missing 

when the observations are not available for a limited period—for example due to 

seasonality or the availability may occur in the near future due to human interventions or 

technical manipulations. The data are permanently unavailable when there is no 

possibility to retrieve them—for example when the market does not carry the product 

anymore, the respondents of surveys cannot be reached or are unwilling to answer to 

certain items, or in general the sources of information cease to exist.  

For the purposes of statistical analysis, the most important characteristic of a 

missing datum is whether the data generating process that led to missingness was 

ignorable or non-ignorable. Ignorable processes are associated with data that are either 

missing completely at random (MCAR) or missing at random (MAR). The former 

occurs whenever the probability of missingness is the same for all the observations, and 
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it is difficult to distinguish complete data with incomplete data (Heitjan 1997). In this 

case, the data are missing simply by ―accident‖ and cannot be related to any event 

associated with the characteristics of the data. For example, during a census, a surveyor 

may sneeze and omit the price of a particular good sitting on a store shelf. As long as 

higher price goods did not increase the likelihood of a sneeze, omission is completely by 

accident. Even though there is incomplete data set, results with available data on hand 

are still consistent and provide valid inferences1. The latter arises when the reason for 

missingness is random conditional on observable characteristics, i.e. the behavior of 

observationally equivalent units is random with respect to the completeness of data. For 

example, if males were more likely than females to withhold income information from a 

survey, but neither sex withheld based on income level, then the data generating process 

would be ignorable conditional on gender. Since the data are MAR, one could calculate 

unbiased means of income for males and income for females.  

A non-ignorable process is associated with data that is not missing at random 

(NMAR). This arises when a datum is more likely to be missing because of its value. 

Suppose that in our hypothetical survey, wealthier males were more likely than poorer 

males to report income, while the opposite was true for females. Because the data are 

MNAR, the mean income of males calculated from this survey would be biased 

downward and the mean income of females would be biased upward. It is thus intuitive 

that the assumption of data that are MAR conditional on a set of observable 

                                                
1 Carpenter and Kenward (2005) at www. Missingdata.org.uk or  
http://missingdata.lshtm.ac.uk/jargon_web/node4.html  
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characteristics is the minimum necessary condition for most imputation strategies to be 

valid. 

In our data, missingness arises either when stores do not offer particular items for 

sale or the price for an available item is not displayed, which may result from either a 

human error or a managerial decision. The decision not the sell a product can be viewed 

as an outcome of a profit-maximizing store-owner: the price that consumers are willing 

to pay for the missing type is below the cost that a store owner faces to offer the type for 

sell. Nevertheless, there is still some reservation price that would lead the store owner to 

stock the item. In this context, the proper price for missing items is this unobserved 

shadow price. It is also clear that in this framework, the data generating mechanism for 

prices is non-ignorable, and thus unconditioned prices are not MAR.  

Alternatively, one may take a statistical perspective and assume that over some 

period of time, all stores eventually stock all types of produce. Since inventory and 

prices are only observed once for each store, it is possible that unobserved types were 

recently sold or will be sold again soon. An argument for an ignorable mechanism 

conditional on store type or location may be more palatable under this scenario, but there 

is no way to test whether the economic framework or the statistical is closer to the truth.  

3.2.2 Imputation Methods 

Different types of missing values and the techniques used to deal with the 

missing observations are well described by Nordholt (1998) and Hawthorne and Elliott 

(2005). In this study, we investigate the effect of three methods of handling missing 
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prices of fruit and vegetables. Following pages provide more detailed information 

regarding the conception and implementation of the methods. 

Zero substitution—replacing missing values with zero—as used by Hendrickson 

et al. (2006), is obviously the least tenable since prices are not zero and implementation 

would bias the mean downward (Gan et al. 2006). Its impact on regression analysis is 

less clear, however.  

Mean imputation, which is one of the most used techniques in the literatures 

(Raymond 1986), replaces missing observations with the mean value over observed 

prices. If an item is not stocked because the reservation price of store owners is high 

relative to prevailing demand, the mean observed price would tend to underestimate the 

true value, suggesting that mean imputation may be inappropriate if missingness arises 

from profit-maximizing behavior. Separating the analysis by store-type or location to 

calculate subgroup means would simply result in biased imputation with each subgroup, 

though the size of the bias may be less than using a grand mean over all observations.  

An additional problem with mean imputation relates to the spike it creates at the 

mean of the price distribution. This spike tends to reduce the correlations between price 

and other variables, as well as the standard errors of estimates. Given that the mean of a 

variable Xi is ∑Xi/n (i.e. summation of the values over the number of observation) and 

the variance
1
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i , adding a mean value to the variables does not change 

the general mean of the variable, but the variance declines because the numerator 

remains unchanged while the denominator increases. Moreover, in a multivariate 
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regression setting, an attenuated covariance between price and one explanatory would 

bias the coefficient estimates of all characteristics. When each of the covariances is 

attenuated, the direction of this bias for any estimate cannot be signed a priori since each 

of the attenuated covariances interacts with the covariance matrix of explanatory 

variables.  

Regression imputation (RI) involves estimating a relationship between observed 

prices and characteristics, then using the estimated relationship to predict prices. One 

can view mean imputation as a restricted form of RI when only a constant term is 

estimated. Similarly, calculation of subgroup means based on observable characteristics 

like county of location or store-type is equivalent to regression imputation with a 

constant and a collection of dummy variables. More generally, RI permits inclusion of 

continuous explanatory variables. Valid imputation requires that conditional on the 

included explanatory variables missing data are MAR. This makes the selection of 

explanatory variables a vital component of the imputation process, a problem taken up 

subsequently. RI also suffers from the same form of attenuation found with mean 

imputation since observationally identical observations receive the same imputed value. 

One can partially overcome this through stochastic substitution (RISS) or multiple 

imputation (MI), whereby the imputed value is the regression prediction plus a randomly 

selected residual from the estimation.  

3.3 Previous Investigations of Imputation Method Performance  

Numerous studies in the medical and physical sciences have compared the 

performance of different imputation strategies. In most applications, zero imputation 
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performs poorly relative to mean imputation. For example, Fraser et al. (2009) compare 

the results of a food questionnaire survey that has missing items and full data (the 

surveyors did a follow up to fill in the missing values) and find that the correlation 

between the data with zero imputation in the original (full) data is at least 0.9. But the 

authors also added that the true use of zero imputation may depend on the importance of 

the missing variables. In this sense, imputing zero for food not eaten may make more 

sense compared to imputing a zero for price of the food.  In other scenarios, however, 

zero imputation is clearly suboptimal. Sehgal et al. (2008) tested the performance of 

different imputation methods including zero imputation. The test results show that 

among the techniques used, zero imputation has the highest error rate across the missing 

values.  

Although mean imputation is often preferable to zero imputation, it is not without 

its own performance issues. For instance, when evaluating the performance of several 

methods values in gene microarray data, Troyanskaya et al. (2001) find that mean 

imputation performs better than zero imputation, but is less accurate than other methods 

and performs poorly in non-time series data. Using the mean imputation technique, 

Armknecht and Moulton (1995) show that the method can result in different outcomes if 

the quality of the products is accounted for. The authors mentioned that the quality 

should be considered whenever the variety of the replacing product is incomparable.  

When it comes to the simple regression method, Musil et al. (2002) found that it 

performs better than mean imputation; the latter was actually the least accurate method 

to be used among the methods used (listwise deletion, mean substitution, simple 
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regression, regression with an error term, and the expectation maximization [EM] 

algorithm). This result is confirmed by Shrive et al. (2006), who found that the 

regression method outperform the mean imputation among other imputation techniques. 

Raymond and Roberts (1987) also encourage the use of regression imputations. The 

authors constructed missing values by dropping existing values and proceeded to 

compare different methods of imputations. The results of the comparisons were that 

regression imputation is a method of choice when facing 10%-40% percentage of 

missing items. Using simulation techniques to compare the results full data and the 

results with imputed values, the authors found that regression methods provide the most 

accurate regression estimates. Olinsky, Chen and Harlow (2003) compared the efficacy 

of mean and regression imputation techniques in structural equation modeling using two 

sample sizes with seven levels of incomplete data. They also found that regression 

imputation tended to outperform mean imputation.  

 Although regression imputation tends to be preferred to zero and mean 

imputation, Tanguma (2000) notes that under certain conditions mean substitution has its 

advantages relative to regression imputation. I therefore conclude that at the very least, 

researchers who face missing data should check whether their results are robust to the 

choice of method and if they are not, should attempt to understand why.  

3.4 Data 

Information on the prices of fresh fruits and vegetables come from the Brazos 

Valley Food Environment Project (BVFEP). The Brazos Valley area is comprised of 

seven contiguous counties situated between the Austin, Dallas and Houston metropolitan 
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areas and is home to over 300,000 residents. The region is geographically diverse with 

51.4% of the population residing in one of six predominately rural counties (Burleson, 

Grimes, Leon, Madison, Robertson and Washington). The seventh, Brazos County, 

includes the medium-sized urban center of Bryan-College Station.  

As part of the BVFEP, trained observers enumerated all food stores and food 

service places by driving all Interstates, US Highways, Texas State Highways, Texas 

Farm-to-Market Roads and other major thoroughfares to locate all stores that could sell 

food items (Musil et al. 2002). Food stores were classified into several categories: 

supercenter, supermarket, grocery store, convenience store, dollar store, mass 

merchandiser, and pharmacy. Investigators then entered all food stores with an extensive 

list of food items in order to catalogue which items were sold and at what price (Sharkey 

and Horel 2008).  

Ten types of fresh fruit (apples, avocado, bananas, berries, grapes, mango, 

melons, oranges, peaches and pears) and eleven types of fresh vegetables (broccoli and 

cauliflower, carrots, corn, green beans, leafy greens, lettuce, okra, onions, potatoes, 

squash and tomatoes) were included in this catalogue. The following information was 

recorded: whether each type (e.g. apples) was available for purchase; the number of 

varieties of each type of fruit or vegetable available for purchase; and the lowest-priced 

variety of each type of fruit or vegetable. Because in-store prices were posted in several 

forms—per item, per ounces, per pound—all prices were later transformed or 

recalculated into a uniform price per pound. To do so, when prices were posted per item, 
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surveyors weighed the items using a sensor scale. The price of food items that were 

either not sold or not displayed were recorded as missing. 

Socioeconomic characteristics of communities were extracted from the 2000 

decennial census Summary Files 3 (SF-3) at the CBG levels, since the CBG is the 

smallest unit of census geography for which the detailed ―long-form‖ social and 

economic data from the census are tabulated. The socio-economic variables examined in 

this study are: the median income of the families living in the county; the median value 

of houses in a given Census Block Group (CBG); the proportion of residents that live 

below the 200% poverty level; the proportion of residents that are at least of 65 years 

old; the proportion of residents who have at least graduated from high school; the 

proportion of the residents that do not have access to transportation (vehicle); and the 

proportion of the population that is Black of Hispanic.   

3.5 Method 

This section describes each of the methods used to impute missing prices for the 

current dataset; the calculation of price indices over the individual produce items; and 

the methods used to compare the performance of the various indices. 

3.5.1 Zero Imputation 

 Observed values are assigned when displayed, while missing prices are replaced 

by zero.  

3.5.2 Mean Imputation 

 Several mean imputations are considered. First, the missing price of each item is 

replaced with the mean price of the item over stores that stocked it. Second, the missing 
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price of each item is replaced with the mean price of the item over stores of the same 

type (supermarket/supercenter, grocery store and convenience store) that stocked it. 

Third, the missing price of each item is replaced with the mean price of the item over 

stores in the same county that stocked it.  

3.5.3 Regression Imputation 

 This imputation technique predicts the values of the missing prices based on the 

available prices of assumed related products using a linear regression. The process is as 

follow: the missing price of each fruit item is predicted based on an estimated 

relationship with county, store type and the prices of common fruit types (apples, 

avocados, bananas, grapes and oranges). There are some stores that sell four of the five 

common types. In this case, the missing price of the common type is imputed from an 

estimated relationship with county, store type and the prices of remaining common 

types.  

Similarly, the missing price of each vegetable item is predicted based on an 

estimated relationship with county, store type and the prices of common vegetable types 

(carrots, lettuce, onions, potatoes and tomatoes). For stores that sell only three of the five 

common types, the missing price of the common type is first imputed from an estimated 

relationship with county, store type and the prices of remaining common types. 

Imputation was not attempted over stores that sell less than three of the common types.  

3.5.4 Calculation of Price Indices 

 Two types of price indices are calculated for fruits and for vegetables. The first 

index is based on a fixed basket method. In this case, each index is calculated as the 
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weighted average price per pound multiplied by the recommended number of pounds 

consumed per week for a representative family of two adults and two children from the 

most recent USDA Thrifty Food Plan: 24.5 pounds of fruit and 31.5 pounds of 

vegetables2. The weights are equal to the consumption shares calculated for the Dallas 

metropolitan area from Fresh Look Marketing, Inc. (Chicago, Illinois) and represent all 

supermarkets (sells of at least $2 million) with about 70% of all commodity volume 

(ACV) in the Dallas market3 using the consumption shares for each type.          

      The general expression for the fixed price index is:   

                              
i

ii pcnpP )(                                                                  (1) 

where P(p) represents the price index for a designated food type under the fixed method 

assumption, ci is consumption share pertaining to the specific food item i, pi is the price 

per unit vector for the food type i, and n is the designated number of servings. 

The second index (economic) is based on the solution to a consumer’s 

expenditure minimization problem. Unlike the fixed-basket, an economic index allows 

for substitution behavior as the relative price of goods change. Assuming that fresh fruits 

and fresh vegetables are weakly separable with subgroup utilities that are Cobb-Douglas, 

Dunn el al. (2011) demonstrate that the magnitude of this substitution bias can be large, 

estimating a lower bound of at least 8%. We adopt their economic price index here, 

which takes the form:  

                                                
2 The choice of multiplicative factors affects the magnitude of the subsequent coefficient estimates, but not 
their statistical significance. If only half of total fruit consumption should come from fresh whole items, 
then the appropriate adjustment is to either halve the coefficient estimate or reinterpret it as biweekly 
expenditure.  
3 We thank Timothy Richards for providing this information. 
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where p represents the per unit price vector for a designated food type, u represents a 

desired attainable level of utility; αi is proportion of expenditure on a certain food type 

pertaining to the specific food item i, pi is the price per unit vector for the food type i, 

and n is the designated number of servings. 

3.5.5 Comparison of Imputation Methods 

After imputing the missing prices, we compute both the fixed-basket and 

economic indices defined above for fruits and vegetables. We then compare the mean 

values of these indices to determine the robustness our affordability measure to different 

imputation strategies.  We also use these price indices as dependent variables in OLS 

regressions to assess the robustness of the relationship between the affordability of fruit 

and vegetables and socio-economic characteristics. In these regressions, both median 

household income and median housing value are taken in their natural log. In addition, 

we define categorical variables for types of store and county location.   

3.6 Results 

 Table 3.1 provides descriptive statistics of availability and price for the fruit and 

vegetables items in our study. On average 14% of fruit items are missing compared to 

19% for vegetables. Of the stores selling at least three fruits, the prices of apples, 

bananas and oranges were available at all of them. Of the stores selling at least three 

vegetables, the prices of onions and potatoes were never missing. Bananas exhibited the 

lowest average price among fruit items, while potatoes tended to be the cheapest 



 

 

40 

vegetable on a per pound basis. On average, the most expensive fruits are berries 

followed by avocado—both above $2 per pound. It is also worth noting that these prices 

varied widely: the cheapest avocados were available at $1 per pound, while the most 

expensive were $5.50. The price of berries started at $1.50 per pound in some stores, 

reaching as high as $4 per pound at others. For the vegetables, greens are the far the 

most expensive but cost only $1.50 on average; some stores in the areas sell as high as 

$2.79 per pound or lower at the price of $0.99 per pound. 

Descriptive statistics for the various prices are summarized in Table 3.2 and 

several noteworthy patterns emerge. As expected, the mean with zero imputation is 

always lower than when using mean or regression imputation. For six of the eight 

indices, the mean value using regression imputation is larger than when using mean 

imputation. This is consistent with the economic argument presented earlier that stores 

chose not to offer items for sale when the reservation price of the store-owner is above 

what consumer demand will support. Finally, for fruits, the high variety index always 

larger than the basic index, whereas the reverse is observed in the case of the vegetable 

prices.  
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Table 3.1: Percentage of Stores with Non-Missingness and Description 

Statistic of Price Per Pound of Fresh Produce Items. 
 

 
Non-missing price 

(%) Mean Std. Dev. Min Max 

Fruits      
apples 100 $1.12 0.30 $0.61 $1.99 
avocado 97.1 $2.19 1.02 $0.59 $5.47 
bananas 100 $0.47 0.11 $0.29 $0.69 
berries 74.3 $2.79 0.58 $1.50 $3.99 
grapes 88.6 $1.72 0.49 $0.89 $2.79 
mango 74.3 $1.08 0.40 $0.36 $2.19 
melon 82.9 $0.82 0.25 $0.33 $1.12 
oranges 100 $0.97 0.37 $0.33 $1.89 
peaches 74.3 $1.58 0.30 $1.27 $2.29 
pears 71.4 $1.30 0.45 $0.35 $1.79 

Vegetables      
carrots 94.6 $1.10 0.45 $0.49 $2.00 
corn 70.3 $0.83 0.36 $0.45 $1.82 
cruciferous 78.4 $0.93 0.32 $0.32 $1.49 
green 

beans 56.8 $0.97 0.24 $0.70 $2.01 
greens 75.7 $1.50 0.47 $0.99 $2.79 
lettuce 97.3 $0.73 0.29 $0.49 $1.98 
okra 29.7 $1.89 1.02 $0.50 $3.49 
onions 100 $0.95 0.37 $0.39 $1.99 
potatoes 100 $0.62 0.38 $0.30 $2.39 
squash 83.8 $1.31 0.44 $0.69 $2.39 
tomatoes 100% $1.22 0.40 $0.50 $1.88 

Notes: Fruit availability is calculated over 33 stores with observable prices for apples, oranges and 
bananas. Vegetable availability is calculated over 33 stores with observable prices for onions, 
potatoes and tomatoes. Std. Dev. is standard deviation. 
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Table 3.2. Description Statistic of the Prices and the Socioeconomic Factors. 

      
Approach             Variables 

Explanation 
Mean Std. Dev. Minimum Maximum 

Fixed 
Approach Price indices 

Imputation 
Method      

 High variety      
                           Fruit Regression $1.114 0.164 $0.778 $1.547 
  Mean  $1.110 0.161 $0.778 $1.547 
  Zero $1.002 0.21 $0.553 $1.547 
 Vegetable Regression $0.910 0.219 $0.557 $1.493 
  Mean  $0.905 0.213 $0.587 $1.493 
  Zero  $0.873 0.228 $0.506 $1.493 
 Basic variety      
 Fruit Regression  $0.730 0.196 $0.415 $1.421 
  Mean $0.736 0.201 $0.415 $1.421 
  Zero $0.721 0.200 $0.415 $1.421 
 Vegetable Regression $1.015 0.369 $0.500 $1.899 
  Mean $0.999 0.341 $0.500 $1.899 
  Zero $0.923 0.305 $0.500 $1.899 
Economic 
Approach High variety 

 
    

 Fruit Regression $1.007 0.137 $0.712    $1.292 
  Mean $1.015 0.135 $0.712 $1.289 
  Zero $0.963 0.128 $0.712 $1.133 
 Vegetable Regression $0.837 0.188 $0.531 $1.254 
  Mean $0.836 0.186 $0.549 $1.254 
  Zero $0.869 0.204 $0.591 $1.254 
 Basic variety      
 Fruit Regression $0.739 0.19 $0.451 $1.424 
  Mean $0.746 0.197 $0.451 $1.424 
  Zero $0.737 0.192 $0.451 $1.424 
 Vegetable Regression $0.918 0.276 $0.446 $1.533 
  Mean $0.902 0.21 $0.509 $1.334 
  Zero $0.869 0.204 $0.591 $1.254 
Explanatory Income $30,303 1.547 $6,248 $119,014 
 Median house value $67,643 1.500 $23,500 $188,716 
 Poverty level (%) 44.521 18.473 1.081 83.505 
 Age 65 or older (%) 12.138 4.669 7.700 20.00 
 Education (%)  76.019 5.517 67.300 81.300 
 No Transportation (%) 9.162 7.168 0 38.037 
 Hispanic (%)  17.842 15.752 1.557 80.651 
 African-American (%) 16.486 16.009 0.186 75.534 
 Convenience stores  0.809 0.394 0.00 1.00 
 Supermarket  0.079 0.271 0.00 1.00 

Std. Dev. is standard deviation. 
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Table 3.2 also reports descriptive statistics for the CBGs in which the stores are 

located. The result shows also that on average 76% of the residents have at least earned 

high school diploma. The average median income among these CBGs is just over 

$30,300, while the average median value of owner-occupied housing is about $67,600 

for mortgage. The average poverty rate is higher than both the state and national average 

with 44% living below the poverty level. Only 9% of the residents do not have own 

transportation. Among the CBGs in this sample, on average, 34% of the population 

identified as either Hispanics or African-Americans. In addition at least 88% of the food 

stores in the region serving consumers are convenience stores.  

We proceed by testing the equality of the means for the different price indices 

under alternative scenarios. We report the results of the t-test for the mean prices that are 

not statistically significant different on Table 3.3. This presentation is due to the fact that 

only few of the prices are not significantly different. The high variety prices for fruit and 

vegetables based on the fixed and economic assumption are not significantly different 

when the regression and mean imputations methods are applied.  This equality is also the 

case for the basic variety in addition to the equality between zero and regression 

imputations. 

To examine how estimations respond to the choice of imputation method, Tables 

3.4-3.7 report coefficient estimates from regressions where a price index is the 

dependent variable and socio-economic characteristics of the CBG are the independent 

variables. For simplicity of assessment and comparison of the results, we present the 
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fixed methods on the left hand side of the tables and the economic method on the right 

hand side of the tables.  

The results provided on Table 3.4 shows that the median value of housing is 

positive associated with the high variety fruit index, regardless of how it is computed or 

missing prices are imputed. The association is larger by at least 25% using the fixed-

basket index rather than the economic one. The differences across imputation type are 

much smaller, however, with the smallest associations found when using regression  

imputation. The density of the African-American residents has significantly positive 

association with all but one index (fixed-basket with regression imputation). Stores 

classified as convenience stores exhibit significantly higher prices of fruit prices when 

the imputation methods do not involve replacing missing values with zero. In contrast, 

the coefficient on supermarkets is only significant when using zero imputation. The 

proportions of residents who are at least of 65 years of age or older and also those with 

high school diplomat are both negatively associated with the high variety fruit index, but 

only significant when using the economic index.  
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           Table 3.3. T-tests for Equality of Means of the Dependent Variables (High Variety Prices). 

Null Hypothesis Alternative Hypothesis Test 
Statistic 

P-Values Decision 

Fruit_Fixed Method: 

-High Variety 

 

 
 
 

   

Price_Mean =Price_Regression Price_Mean ≠ Price_Regression 0.987 0.331 Fail to reject the null 
hypothesis 

-Basic Variety     
Price_Regression = Price_Zero Price_Regression ≠ Price_Zero -1.03 0.331 Fail to reject the null 

hypothesis 
Price_Regression = Price_Mean Price_Regression ≠ Price_Mean -1.000 0.324 Fail to reject the null 

hypothesis 
Fruit_Economic-Method: 

-High Variety 

 

    

Price_Mean =Price_Regression Price_Mean ≠ Price_Regression 0.188 0.331 Fail to reject the null 
hypothesis 

-Basic Variety     
Price_Regression = Price_Zero Price_Regression ≠ Price_Zero 1.000 0.324 Fail to reject the null 

hypothesis 
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           Table 3.3 continued.  

Null Hypothesis Alternative Hypothesis Test 
Statistic 

P-Values Decision 

Vegetables_Fixed Method: 
-High Variety 

    

Price_Mean =Price_Regression Price_Mean ≠ Price_Regression 1.292 0.206 Fail to reject the null 
hypothesis 

-Basic Variety     
Price_Regression = Price_Mean Price_Regression ≠ Price_Mean 1.625 0.111 Fail to reject the null 

hypothesis 
Price_Regression = Price_Zero Price_Regression ≠ Price_Zero 1.625 0.110 Fail to reject the null 

hypothesis 
Vegetables_Economic 

Method: 
-High Variety 

    

Price_Regression = Price_Mean Price_Regression ≠ Price_Mean 0.635 0.530 Fail to reject the null 
hypothesis 

-Basic Variety     
Price_Regression = Price_Zero Price_Regression ≠ Price_Zero -0.657 0.506 Fail to reject the null 

hypothesis 
Price_Regression = Price_Mean Price_Regression ≠ Price_Mean 1.186 0.241 Fail to reject the null 

hypothesis 
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Table 3.4. Regression Results for High Variety Fruit Price Index by Imputation 

Method and Computation Method. 

 
    Fixed Method Economic Method 

High 
variety 

fruit  Variables  
Zero  

Imputation 
Mean  

Imputation 
Regression  
Imputation 

Mean 
Imputation 

Regression 
Imputation 

Fixed Income 

-0.114 -0.038 -0.057 -0.056 0.148 

(0.081) (0.08) (0.08) (0.065) (0.15) 

 
Housing   0.481***   0.485***   0.459***    0.359***  0.332** 

(0.132) (0.125) (0.13) (0.11) (0.122) 

 

Poverty 0.001 0.0005 0.001 -0.002 0.002 

(0.002) (0.001) (0.002) (0.002) (0.005) 

 

Education -0.025 -0.028 -0.028     -0.058***  -0.052** 

(0.031) (0.026) (0.026) (0.016) (0.015) 

 

Transport -0.0001 0.002 0.002 0.002 0.003 

(0.009) (0.007) (0.007) (0.007) (0.007) 

 

65 yrs old -0.012 -0.016 -0.015   -0.064**  -0.056** 

(0.044) (0.039) (0.039) (0.023) (0.021) 

 

African-
American 0.004* 0.005* 0.004 0.005**   0.004** 

(0.002) (0.003) (0.003)      (0.002) (0.002) 

 

Hispanics 0.003 0.003 0.003 0.004 0.002 

(0.003) (0.003) (0.003) (0.003) (0.003) 

 

Supermarkets  0.231** 0.009 0.011 0.004 0.006 

(0.086) (0.049) (0.052) (0.059) (0.070) 

 

Convenience 
stores 0.141  0.365** 0.409*** 0.248 0.260* 

(0.124) (0.142) (0.142) (0.149) (0.150) 

 

Burleson-
Madison -0.011 0.144 0.120 0.195* 0.190* 

(0.145) (0.125) (0.130) (0.098) (0.109) 

 

Grimes-
Washington 0.127 0.137 0.135 -0.11 -0.043 

(0.187) (0.162) (0.166) (0.133) (0.120) 

 Leon-Robertson 

0.327 0.318 0.400    0.625***  0.636** 

(0.343) (0.315) (0.315) (0.195) (0.192) 

 Intercept 

-1.563 -1.853 -1.490 2.600 0.074 

(3.114) (2.309) (2.407) (1.905) (2.054) 

 RMSE 0.1416 0.1266 0.1296 0.110 0.118 

  R-squared 0.734 0.611 0.641 0.605 0.561 

* 10 percent significance level, ** 5 percent significance level, ***1 percent significance level 
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Table 3.5 reports analogous results for the high variety vegetable price index. 

Only the median value of owner-occupied housing exhibits a statistically significant 

association with the cost of purchasing vegetables and the coefficient estimates are 

similar across both computation and imputation method. Age, ethnicity, transportation, 

store types and Burleson-Madison county indicator all have positive relationship with 

the prices of vegetables. The level of poverty has negative relationship. However these 

relationships are not statistically at standard levels. 

The results using the basic index over stores that at least three varieties of fruit (Table 

3.6) differ from those using the high variety index over stores that sell at least five 

different varieties (Table 3.4). Whereas the median value of housing is large and 

statistically significant in the former, the coefficient estimates are small and statistically 

insignificant in latter. The proportion of African-American residents is also not 

significantly associated with the basic fruit index. There are some commonalities 

between the two sets of results, however. For example, both the proportion of residents 

above age 65 and the proportion of residents who have completed high school are 

negatively associated with the cost of purchasing fruit. In addition, there is little 

difference in coefficient estimates across computation or imputation method. 
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Table 3.5. Regression Results for High Variety Vegetable Price Index by 

Imputation Method and Computation Method.  

    
  
Fixed Method Economic Method 

High 

variety veg Variables 
Zero  

Imputation 
Mean  

Imputation 
Regression  
Imputation 

Mean 
Imputation 

Regression  
Imputation 

Fixed 

Income 0.047 0.059 0.063 -0.101 -0.108 

(0.15) (0.284) (0.145) (0.099) (0.243) 

 

Housing 0.485* 0.429* 0.408 0.438* 0.448* 

(0.238) (0.237) (0.246) (0.222) (0.229) 

 

Poverty -0.002 -0.002 -0.002 -0.002 -0.005 

(0.004) (0.004) (0.004) (0.004) (0.008) 

 

Education 0.03 0.024 0.022 -0.004 -0.0001 

(0.054) (0.053) (0.056) (0.029) (0.027) 

 

Transport 0.017 0.016 0.014 0.007 0.009 

(0.015) (0.014) (0.015) (0.009) (0.009) 

 

65 yrs old 0.065 0.060 0.057 0.018 0.021 

(0.073) (0.072) (0.076) (0.040) (0.035) 

 

African-
American 0.002 0.002 0.002 0.005 0.005 

(0.005) (0.005) (0.005) (0.004) (0.004) 

 

Hispanics 0.004 0.003 0.003 0.005 0.006 

(0.005) (0.005) (0.005) (0.004) (0.006) 

 

Supermarkets 0.141 0.100 0.098 0.085 0.065 

(0.148) (0.145) (0.147) (0.120) (0.100) 

 

Convenience  
stores 0.011 0.073 0.036 0.052 0.117 

(0.160) (0.168) (0.180) (0.137) (0.140) 

 

Burleson-
Madison 0.097 0.062 0.055 0.113 0.125 

(0.150) (0.148) (0.154) (0.125) (0.135) 

 

Grimes-
Washington 0.439 0.399 0.402 0.165 -0.035 

(0.348) (0.342) (0.370) (0.185) (0.336) 

 

Leon-
Robertson -0.245 -0.221 -0.204 -0.024 0.217 

(0.549) (0.540) (0.565) (0.335) (0.160) 

 

Intercept -8.439 -7.304 -6.925 -3.215 -3.432 

(6.023) (5.793) (6.104) (3.322) (3.170) 

 RMSE 0.2111 0.2087 0.2207 0.1684 0.173 

  R-squared 0.474 0.415 0.384 0.462 0.431 

* 10 percent significance level, ** 5 percent significance level, ***1 percent significance level 
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Table 3.6. Regression Results for Basic Fruit Price Index by Imputation Method 

and Computation Method. 

  
 

Fixed  Method Economic Method 
Basic 

variety 

fruits     Variables 

Zero Mean Regression Mean Regression 

Imputation  Imputation Imputation Imputation Imputation 

Fixed 
(regular) 

Income -0.08 -0.068 -0.073 -0.116 -0.134 

(0.168) (0.174) (0.171) (0.139) (0.144) 

 

Housing 0.014 0.062 0.042 -0.037 -0.045 

(0.138) (0.136) (0.132) (0.136) (0.133) 

 

Poverty -0.007 -0.00004 -0.0003 -0.001 -0.005 

(0.002) (0.002) (0.002) (0.002) (0.004) 

 

Education -0.056* -0.060* -0.059* -0.059** -0.045** 
(0.029) (0.032) (0.031) (0.027) (0.014) 

 

Transport -0.006 -0.010 -0.009 -0.010 -0.006 

(0.010) (0.011) (0.010) (0.010) (0.008) 

 

65 yrs old 
-0.065* -0.067 -0.067 -0.067* -0.050** 

(0.037) (0.042) (0.040) (0.035) (0.019) 

 

African-
American 0.00002 0.001 0.001 0.001 0.0004 

(0.003) (0.003) (0.003) (0.003) (0.003) 

 

Hispanics -0.001 -0.0007 -0.001 0.0006 0.001 

(0.004) (0.004) (0.004) (0.004) (0.004) 

 

Supermarkets -0.148 -0.222* -0.191 -0.179 -0.168 

(0.127) (0.121) (0.116) (0.112) (0.095) 

 

Convenience 
stores 0.206 0.167 0.183 0.115 0.169 

(0.257) (0.231) (0.240) (0.212) (0.198) 

 

Burleson-
Madison -0.168 -0.078 -0.115 -0.085 -0.117 

(0.137) (0.150) (0.141) (0.151) (0.141) 

 

Grimes-
Washington -0.340 -0.387 -0.375 -0.425* 0.209 

(0.280) (0.294) (0.287) (0.250) (0.200) 

 

Leon-
Robertson 0.314 0.312 0.313 0.285 -0.293 

(0.244) (0.293) (0.270) (0.249) (0.159) 

 

Intercept 6.662 6.394 6.505 7.952* 7.000 

(4.582) (4.862) (4.726) (4.046) (3.118) 

 RMSE 0.1989 0.1941 0.1899 0.1795 0.1707 

  R-squared 0.397 0.429 0.423 0.492 0.479 

* 10 percent significance level, ** 5 percent significance level, ***1 percent significance level 
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Table 3.7. Regression Results for Basic Vegetable Price Index by Imputation 

Method and Computation Method. 

  
 

Fixed  Method Economic Method 

Basic 
variety 

vegetable Variables 

  
Zero 

Imputation 

  
Mean 

Imputation 
Regression  
Imputation 

  
Mean  

Imputation 

  
Regression 
Imputation 

Fixed 
(regular) 

Income -0.132 0.072 0.117 -0.03 -0.042 
(0.164) (0.141) (0.149) (0.084) (0.193) 

 

Housing 0.332   0.352**  0.368**  0.317**  0.348** 
(0.198) (0.163) (0.160) (0.120) (0.131) 

 

Poverty -0.004 -0.005  -0.006* -0.002 -0.005 
(0.003) (0 .003) (0.003) (0.002) (0.005) 

 

Education 0.035 0.031 0.031 -0.0007 0.015 
(0.060) (0.059) (0.057) (0.025) (0.030) 

 

Transport 0.006 0.003 0.005 -0.002 0.003 
(0.014) (0.014) (0.014) (0.007) (0.008) 

 

65 yrs old 0.078 0.066 0.064 0.015 0.035 
(0.079) (0.077) (0.075) (0.033) (0.041) 

 

African-
American 

0.004 0.007 0.007 0.006* 0.006* 
(0.004) (0.004) (0.004) (0.003) (0.003) 

 

Hispanics 0.005 0.007*  0.008** 0.005* 0.007* 
(0.004) (0.004) (0.004) (0.003) (0.003) 

 

Supermarkets 0.173 0.048 0.055 0.040 0.074 
(0.112) (0.112) (0.118) (0.076) (0.072) 

 

Convenience  
stores 

0.444***     0.579***   0.665***    0.338***    0.425*** 
(0.152) (0.147) (0.161) (0.092) (0.093) 

 

Burleson-
Madison 

-0.158 -0.083 -0.075 0.013 -0.039 
(0.150) (0.137) (0.137) (0.102) (0.119) 

 

Grimes-
Washington 

0.147 0.122 0.132 0.064 -0.119 
(0.368) (0.354) (0.343) (0.149) (0.311) 

 

Leon-Robertson -0.532 -0.280 -0.243 0.011 0.143 
(0.550) (0.538) (0.523) (0.255) (0.178) 

 

Intercept -5.151 -7.013 -7.681 -2.661 -4.280 

(5.775) (5.957) (5.843) (2.590) (2.800) 

 RMSE 0.2633 0.2415 0.2473 0.1559 0.1867 

  R-squared 0.452 0.636 0.676 0.581 0.62 
* 10 percent significance level, ** 5 percent significance level, ***1 percent significance level 
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The relationship between the affordability of vegetables and the socio-economic 

characteristics of the community in which the store is located also varies depending upon 

whether affordability is measured using a high variety (Table 3.5) or basic (Table 3.7) 

price index. The value of housing has a large, positive association with the basic price 

index, though there is relatively little variation across computation or imputation 

method. The proportion of residents with at least a high school education and the 

proportion of residents at least 65 years old are both negatively associated with the basic 

index, but again, differences across computation and imputation method are slight. 

However, the coefficient estimates on the convenience store indicator are sensitive to 

these choices. Zero imputation yields the smallest coefficient estimate, while regression 

imputation produces the largest. Using a fixed basket index also tends to produce larger 

coefficient estimates than when using an economic index. 

3.7 Discussion and Conclusions 

 In this study, we have examined the robustness of an empirical analysis of the 

affordability of fruits and vegetables are to different methods of computing price indices, 

different methods for imputing missing prices, and different definitions of affordability. 

Our results suggest that the definition of affordability, specifically the decision to 

include or omit less common types of items, has the far greater effect on our conclusions 

than either the computation (fixed versus economic index) or imputation method (zero, 

mean or regression). Both the mean cost of purchasing fruits and vegetables and the 

coefficient estimates from our regression analysis vary greatly across high variety and 

basic indices.  
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This is not to say, however, that imputation or computation methods are 

unimportant. Zero imputation always produces the smallest average affordability 

measure and intuition suggests this must be biased downward from the true cost of 

purchasing fruits and vegetables. It is also notable that mean imputation tends to produce 

smaller average costs than regression imputation using the prices of common items, 

which is consistent with the argument that stores that decide not to sell a particular item 

do so because their reservation price is higher than the price consumers are willing to 

pay.  

Furthermore, we found a handful of cases where the economic index yielded 

smaller (closer to zero) coefficient estimates than the fixed-basket index. Since a fixed-

basket index does not allow for substitution across items in response to differences in 

relative price, it would tend to exhibit greater variation and potentially inflated 

coefficient estimates.  

Although many of our coefficient estimates were similar across computation and 

imputation method, this may simply be due to lack of precision because the number of 

available stores in our dataset is relatively small. Future work that utilized a larger 

sample of stores, e.g. scanner data, would be a useful extension. It would also allow for a 

sample that was more representative of the United States than is currently available just 

using stores in the Brazos Valley.  
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CHAPTER IV 

SPATIAL PRICE COMPETITION IN THE HEALTHY FOOD MARKET IN 

THE BRAZOS VALLEY REGION OF TEXAS 

4.1 Introduction 

The consequences of poor dietary habits in terms of increased disease risk and 

medical costs are well-documented (Brown et al. 1995; You and Nayga 2005; Joshipura 

et al. 1999; Bazzano et al. 2002; Liu et al. 2000; Hung et al. 2004). The affordability and 

accessibility of healthful food options have been identified as barriers to consuming a 

healthy diet (Caraher et al. 1998; Flournoy 2006). Moreover, disparities in affordability 

and accessibility across different racial, ethnic and socio-economic groups have been 

proposed as contributing to the observed disparities in nutrition-related illness (Jetter and 

Cassady 2004; Young et al. 2008).  

In much of the existing literature, affordability and accessibility are implicitly 

conceived as existing in two orthogonal dimensions. But, if food stores act as profit-

maximizing firms, then economic theory suggests that the pricing strategy of one firm 

depends upon the presence and pricing strategies of other firms. For example, firms 

engaged in oligopolistic competition will compete for customers by lowering their 

prices. As the degree of competition increases (greater accessibility), the cost of 

purchasing items should decrease (greater affordability).  

In this paper, the prices of fruits and vegetables (F&V) collected in the Brazos 

Valley (BV) as part of a census of the local food environment are used to investigate the 

spatial correlation in prices between stores. Specifically, the costs of purchasing F&V 
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are modeled using spatially autoregressive regression analysis (Anselin 1988). 

Regression results imply that fruit prices are positively spatially autocorrelated, which is 

consistent with competition effects. Vegetable prices are also positively spatially 

autocorrelated, but the relationship is weaker than for fruit.  

The results of this study hold important implications for evaluating policies 

intended to improve the food environment, particularly for disadvantaged groups. For 

example, numerous studies have found that inner-city urban and poor rural areas exhibit 

both low access and high costs for purchasing healthy food options. Many studies have 

also found that neighborhoods with higher proportions of Black residents tend to have 

limited access to healthy food and must pay a higher price (Graddy 1997; Chung and 

Meyers 1999; Hayes 2000; Powell et al. 2007a). Interventions that increase the 

availability of fresh fruits and vegetables in these types of areas, but neglected 

competition effects on pricing would understate the true benefits of such programs.    

In addition, previous work that has examined the affordability of fruits and vegetables 

across neighborhood characteristics has ignored the spatial component of price 

competition (Miller and Coble 2007; Ball, Timperio, and Crawford 2009; Block and 

Kouba 2006). This is problematic since failure to account for spatial lags can result in 

inconsistent parameter estimates and/or improper interpretation of coefficients (Anselin 

1988). 

4.2 Literature Review 

While previous theoretical and empirical research has examined the effect of 

competition on pricing strategies (Donkin et al. 2000; Hotelling 1929; Greenhut and 
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Ohta 1973; Lundberg and Lundberg 2008), very little attention has been directed toward 

fruit and vegetable prices specifically. Furthermore, existing studies have tended to use 

competition measures such as market concentration, market density or distance to the 

nearest competitor. Compared to many researches on housing markets (Bourassa et al. 

2007; Can 1992; Jeanty et al. 2010; Pace et al. 2009), however, the explicit use of spatial 

econometric techniques is missing.  For example, some authors in the food sector use 

spatial factors as dependency criteria while others (Claycombe 1991) prefer to choose 

characteristics of stores, and consider evenly distributed consumers around the stores. 

Many authors who focus on competition between stores assess the relationship 

between location choice and market power. Built upon Hotelling’s model (1929) of a 

profit-maximizing firm, Greenhut and Ohta (1973), Stern (1972) and Tirole (1988) 

among others examine spatial competition as a two part process: location choice 

followed by the selection of a price strategy. All of these authors use a location theory 

where distance and (market) concentration are considered in price competition.  The key 

components of their models include the cost of entry and exit, the geography of the 

market (linear versus circular), the distribution of consumers and potential competitors, 

transportation costs and the expected time horizon (one-shot versus repeated interaction). 

Assumptions regarding these market characteristics can influence the implied 

relationship between competition and pricing (Ohta 1980 1981).  For example, Pal 

(1998), uses the Cournot method of competition to assess interaction between firms. He 

finds that when the market is of linear shape, stores cluster to increase their market 

share, while firms locate at equal distance if the market is circular.  
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Claycombe and Mahan (1993) find a strong association between commuting 

variables and concentration of retail stores on the price of beef. These authors find that 

in general, the longer the commuting distance to work, the lesser the concentration of 

stores and lower the price of beef. Further explanation given to this finding is that of 

price competition between neighboring stores with perfect information regarding 

competitors’ pricing strategies. In addition, limited number of competitors allows stores 

to take into consideration the ability of consumers to have better information regarding 

prices and lower their search costs.  

Kalnins (2003) assesses how the price of hamburgers at one restaurant affects the 

prices at peers in the surrounding area. He finds are a price increase is associated with 

price changes at restaurants of the same chain but there is no direct evidence of cross-

chain competition.  

Hess and Gerstner (1991) consider price matching between supermarkets and 

grocery stores and conclude that such policies inhibit, rather than foster competition. 

Price matching leads to price coordination and thus higher prices. These authors use 

simple linear regressions by including the relative matching percentages.  

Fik (1988) uses the price of a market basket for chain stores to assess spatial 

competition. Prices and socioeconomic variables are collected by census tract and 

treated as time series. Although the model specification does not employ spatial lag 

dependence, spatial indices are included in the analysis. Fik (1988) found a significant 

spatial competition between the stores.  
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4.3 Methods 

4.3.1 Study Site 

The data used in this paper were collected in the seven counties (Brazos, 

Burleson, Grimes, Leon, Madison, Robertson and Washington) of the Brazos Valley 

region of central Texas (BV). Brazos County, which includes the adjointing cities of 

Bryan and College Station, is the most populous in the region with nearly 200,000 

residents accounting for nearly two-thirds of the total population. In addition, almost half 

of all food stores are located in Brazos County. It has the highest percentage of 

households living in poverty (Table 4.1) and 31.5% of its residents are ethnic/racial 

minorities. Madison County is the least populous county with the lowest median 

household income and follows Brazos County with the second highest poverty rate. In 

contrast, residents of Washington County exhibit the highest socio-economic status. 

4.4 Data 

Trained surveyors identified then visited all food stores in the BV.  Surveyors 

recorded the latitude and longitude at each location then entered the establishment to 

collect information on item availability and cost. The fresh fruits included in the survey 

instrument were apples, avocado, bananas, berries, grapes, melons, oranges, peaches and 

pears. Fresh vegetables were broccoli or cauliflower, carrots, corn, green beans, leafy 

greens, lettuce, onions, potatoes, squash and tomatoes.  
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               Table 4.1. By County Demographic Repartition and Store Types.  

Store type Brazos Burleson Grimes Leon Madison Robertson Washingt

on 

Population 170,954 16,598 25,603 16,462 13,379 15,819 32,034 

Median income ($) 33,187 31,175 33,328 29,443 28,964 29,984 35,852 

Education (%): 

Bachelor or higher 

37 13.2 10.3 12.1 11.5 12.7 19.0 

Percentage Black 10.7 14.3 18.2 10.1 21.8 22.9 17.8 

Percentage 

Hispanic 

20.8 16.5 18.2 10.9 18.9 16.8 11.6 

Supermarket 11 2 2 1 2 3 2 

Grocery 3 3 2 4 0 2 0 

                   Source: US Census Bureau and BVFEP. 
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Table 4.2. Description of the Variables Used in the Regression Models.  

Variable     Description       Type 
Dependents        

hFPI  
High variety fruit price 
index    > 0 

bFPI  
Basic variety fruit price 
index    > 0 

hVPI  High variety vegetable price index   > 0 
bVPI  Basic variety vegetable price index   > 0 
Independents       

Income  
Log household median 
income    > 0 

Nberstores Number of stores per census tract   ≥ 0 
HScl   Percentage of residents with at least high school diploma ≥ 0 

Blacks  
Percentage of residents who are African 
Americans  ≥ 0 

Hispanics  
Percentage of residents who are 
Hispanics   ≥ 0 

Grocery  Store type grocery stores    0, 1 
 

 

Prices are standardized into a price per pound ($/lb). For example, apples are 

recorded by price per bag or price per apple, so they have to be transformed into price 

per pound using their respective weights. Surveyors also identified the store as a 

supermarket, grocery or convenience stores based upon observation store characteristics 

such as size, but this information was not recorded. 

Prices of individual items were aggregated into a consumption weighted price 

index using consumption shares from FreshLook Marketing for the Dallas metropolitan 

area. Reported in Table 4.2, stores that sold at least 5 fruit items, a high variety index 

over all fruit types was calculated. For stores selling 3 to 4 fruit items, a basic variety 

index over apples, oranges and bananas was calculated. Similarly, for stores that sold at 
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least 5 vegetables items, a high variety index over all vegetable types was calculated. For 

stores selling 3 to 4 vegetables items, a low variety index over  carrots, lettuce, onions, 

potatoes and tomatoes was calculated (Dunn et al. 2009). The summary of the prices 

(Table 4.3) shows that the average high variety prices for fruits is 1.01/lb and for basic 

variety is 0.74/lb; the average high variety price for vegetables is 0.84/lb and 0.92/lb for 

basic variety prices.  

 

Table 4.3. Descriptive Statistics of Factors Used in the Study. 

Variables Means Std. Dev. 

Price Indices
a
   

High Fruits 1.01  0.137 

Basic Fruits 0.74  0.189 

High Vegetables 0.84  0.188 

Socio-economic 

Indicators 

 

 

Median Income 30,292  1.546 

Population 1464 672.252 

Education  76.02 5.517 

Age 65 and older 12.14  4.669 

Poverty below 200% 42.02 15.96 

African-Americans 16.49  16.009 

Hispanics 17.84  15.752 

Number of stores 3.5 1.942 

Grocery stores 0.05 0.210 
a At the store and CBG level of computation. Std. Dev. is standard deviation. 
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The summary statistics for the CBGs with a store for which a price index can be 

calculated are also reported in Table 4.2. 

The latitude and longitude were used to assign stores to Census Block Groups 

(CBG). Socio-economic characteristics of CBGs taken from the 2000 Census were then 

linked to stores.  

4.5 Empirical Model 

To analyze price competition between stores, spatial econometric modeling was 

applied to assess spatial F&V price dependence. The key components of a spatial price 

model account for three sources of spatial dependence: spatial autoregression, spatial 

autocorrelation and heterogeneity (Anselin 1988). The general model developed in Cliff-

Ord (1973 1981) and Ord (1975) is formulated as: 

                     XWYY                                                                     (3) 

                     W                                                                               (4)                                            

                   μ ~ N(0,Ω), ε ~ N (0, σ
2) 

where Y is a vector (n × 1) of observations for the dependent variable, i.e. the prices of 

F&V, and X is a matrix (n × k) of exogenous variables, such as neighborhood 

socioeconomic and store characteristics. The parameter ρ is the spatial dependence 

parameter that introduces spatial lags, i.e. spatial autoregression (Wall 2004). The 

parameter λ introduces spatial autocorrelation into the error structure through the 

residual ε, while the residual μ is assumed spatially independent. W is the spatial weight 

matrix (n × n) and β is a vector (k × 1) of parameters associated with the explanatory 

variables (Anselin 1988).  
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Previous empirical research has implicitly assumed that ρ = λ = 0, so that (1) and 

(2) reduce to: 

                             XY                                                                         (5) 

                            ε ~ N (0, σ
2) 

However, stores do not price their items independently of other stores, and as noted by 

Tobler (1979), ―everything is related to everything else, but near things are more related 

than distant things.‖ Therefore, the assumption that ρ = 0 is relaxed, while maintaining 

the assumption that λ = 0. This results in a mixed regressive spatial autoregressive model 

(Anselin, 1988) is: 

                       XWYY                                                                     (6) 

                         = (I – ρW)
-1

βX + (I – ρW)
-1

ε                                                   (7) 

                         with ε ~ N(0, σ2),  

Estimation of equation 4 directly is problematic since the dependent variable is 

explained by itself, generating endogeneity. Simple estimation of OLS will not be 

consistent due to the correlation between Y and ε (Anselin and Bera 1998). Estimation of 

the reduced form equation 5 avoids this issue along with other problems that are caused 

by a correlation between errors and regressors (Viton 2010).  

As in all spatial econometric analyses, incorporating spatial dependence through 

the spatial weight matrix, W, is the key specification choice (Hui et al. 2007; Getis 

2009). Spatial interactions are dictated by W and the choice different W's will lead to 

different regression results (Leenders 2002). Further, W is an n × n matrix so 
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computational cost of estimation is increasing in the size of the dataset as estimation of 

equation 5 is typically by Maximum Likelihood methods.  

Researchers in the social sciences generally construct W using either distance or 

neighboring elements. In the former, the elements of W are defined as wij = 1/di,j where 

di,j  is the distance between locations i and j. By this definition, as the distance between 

locations increases, the influence of one on the other decreases. In the latter, the 

elements of W are defined as wi,j = 1 if i and j are neighbors, e.g. in localities that share a 

common border or are within a specified distance of each other, and 0 otherwise. Under 

both defintions, W is symmetric. Alternatively, the elements of W can be defined using 

the length of shared borders. This is computed by taking the ratio of the common border 

by the total length (perimeter) of the particular unit being considered. Doing so allows W 

to be asymmetric.  Typically, W is standardized so that each row sums to unity. In all 

cases, the diagonal of the matrix is zero because the stores cannot be their own 

neighbors. 

In the subsequent analysis, the elements of the weight matrix are defined as 

wi,j=1 if di,j<1. That is, the prices of stores within one mile of each other are allowed to 

exert influence on each other. The weight matrix is left un-standardized.  

4.5.1 Model Specification 

The (reduced-form of the) following spatial autoregressive specification is 

estimated for each of the four price indices defined previously: high variety fruit price 

(hFPI), basic variety fruit price (bFPI), high variety vegetables price (hVPI), and basic 

variety vegetables price (bVPI). The model specification is presented as follow: 
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       Prices = β0 + ρ*W*Prices + β1*Log of median Income + β2*Number of stores 

           + β3*Percentage Blacks + β4*Percentage Hispanics + β5*Grocery + ε      (8)                                         

Where Prices is a vector for each price index and appears on both sides of the outcome 

equation, β0 is the intercept of the regression, ρ is the parameter representing the spatial 

dependence intrinsic to our data collection and measuring the spillovers of a particular 

location in the neighboring areas, and βi represents coefficients associated with each of 

the explanatory variables. It is important to mention that the weight matrix W is not 

standardized for the intensities of neighborhood relationships are not equally distributed; 

standardizing might change existing and intended economic relationships between the 

stores (Hao 2008). In addition, W*Prices is not specified in the model but generated by 

the inherent program codes (Pisati 2001), so the reduced form version (equation 6) is 

actually estimated.  

Log of median Income and Log of housing value are respectively the logarithm 

of the household median income per county and logarithm of average housing values per 

CBG. Poverty represents percentage of the population living below 200% poverty line 

per CBG; Age is the percentage of persons who are 65 years of age or older. Grocery 

and Convenience are indicator variables for store type and number of stores represents 

the total number of stores observed in each Census tract. The number of competitors per 

area was directly included in the specification because it reinforced the fact that prices 

might vary by density of the stores associated with their geographical locations. 

Therefore, the greater the number of competitors the greater the interaction between 

stores, and the lower the prices.  
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4.6 Data Analysis 

The extent of spatial autoregression among prices is examined using Moran’s I 

and Geary’s C whose respectively formulae are: 
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where i and j denote stores and xi and xj are observations (prices) for i and j; wij is the 

itth, jth element of the spatial weight matrix W; and n is the total number of locations. 

For positive spatial autocorrelation, the expected value of I tends toward 1 and C toward 

0. For negative spatial autocorrelation, the expected value of I tends toward -1 and C is 

greater than 1. The first method is the main focus in this study due to its popularity. 

In addition, the ML estimates are assessed using Wald, Likelihood Ratio (LR) 

and Lagrange Multiplier (LM) tests (Anselin 1988) to examine the appropriateness of 

allowing for spatial autoregression. A robust version of the latter test can be utilized 

when preliminary results are statistically significant. The software used for the analysis 

was the statistical package STATA (v. 11.0, Stata Corp, College Station, TX).   

The importance of the effects of all the factors used is based on the t test statistics 

but the primary focus is to determine if the coefficient associated with the lag dependent 
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variable ρ, was statistically significant (based on the p-values at 5% significance level). 

This allowed for an understanding of the fruits and vegetables price dependence on 

nearby store prices. The rest of the factors used were based on their significant impacts 

on the price indices.  

We are working with the hypothesis of the existence of spatial relationships 

between store prices of fruits and vegetables. The following section contains the results 

of the regression models and related figures. The focus is about assessing the presence of 

spatial dependencies in price indices for fruits and vegetables in the Brazos Valley.  

It is important to mention that the term spatial relationship(s) is used to cover 

both spatial lagged dependency that is the average of the nearby price indices and spatial 

autocorrelation in the error. 

4.7 Results 

It can be observed (Table 4.4) that the proportion of Black residents is negatively 

correlated with standard measures of socio-economic status. However, the relationships 

are positive between Hispanics and convenience stores.  
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Table 4.4.  Correlation Between Factors Used in the Study.  

Refer to the description of the variables on page 61 

 Income Grocery Convenience Blacks Hispanics Education Age House poverty 
Number 
of stores 

Income 1          
Grocery -0.469 1         

Convenience -0.118 -0.193 1        
Blacks -0.0754 0.039 0.399 1       

Hispanics 0.083 -0.101 0.603 0.300 1      
Education 0.257 -0.316 0.128 -0.154 0.169 1     

Age -0.331 0.412 -0.243 -0.068 -0.309 -0.771 1    
House 0.249 -0.284 -0.473 -0.667 -0.441 0.417 -0.229 1   

Poverty 0.084 -0.097 0.191 0.384 0.421 0.094 -0.293 -0.310 1  
Number of stores 0.262 -0.151 -0.016 0.075 0.096 -0.015 0.154 -0.095 -0.134 1 
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   A priori assessment conducted using a graph of residuals versus the predicted 

values shows that the residuals are not randomly distributed. The specific pattern and 

clustering of the residuals plotted in the figure contribute to the argument that stores are 

not randomly distributed with respect to price. Diagnostic tests were performed to assess 

the existence of spatial relationships in the prices.  

The results, based on Moran’s I, are presented in Figures 4.1– 4.4. The south-west and 

north-east quadrants indicate positive spatial relationships, and the south-east and north-

west indicate negative spatial relationships between the prices.  It is important to 

mention that the directional location and density of the numbers explain de relations                           

in the quadrants, the numbers represent solely store (no economic value). 

4.7.1 Fruit Price Indices 

The Moran scatterplots for the high variety price indices (Figure 4.1) show a 

negative relationship between the price z (on the horizontal axis) and Wz (on the vertical 

axis), weighted average price index for neighboring stores. Moran’s I score for this 

relationship of -0.029, an indication of weak spatial dependence. In addition, the 

negative slope implies clustering of stores with opposing price schemes. For example, 

plots in the upper-left quadrant indicate the presence of stores with low price indices 

surrounded by stores with high price indices.  
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Moran scatterplot (Moran's I = -0.029)
high variety fruit price index without convenience
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                         Figure 4.1. Moran scatterplot for high variety fruit price index. 

 

Similar to the high variety index, Figure 4.2 reveals a negative spatial 

relationship between stores pricing of the low variety fruit price index. This relationship 

is weaker (-0.015), however. Based on the direction, slope, and value of Moran’s I, the 

scatterplots for the fruit price indices demonstrate that stores with lower prices tend to be 

surrounded by those with higher prices, and vice versa.  
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Moran scatterplot (Moran's I = -0.035)
basic variety price index without convenience
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                         Figure 4.2. Moran scatterplot for basic variety fruit price index. 
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4.7.2 Vegetable Price Indices 

This section is similar to the fruit price indices. The results for the high and low 

vegetable price indices (Figures 4.3 and 4.4) are similar. For both, Moran’s I is negative, 

-0.029 for the former and -0.027 for the latter (se z values). Given the magnitudes of the 

Moran’s I scores, the results indicate only a week presence of spatial autocorrelation. 

One interpretation is that store pricing lacks a spatial dimension. Alternatively, 

difference is local characteristics which have not been accounted for obscure the true 

spatial pricing relationship. Therefore, we also conduct spatial diagnostic tests from OLS 

regression results (Tables 4.7 and 4.8).  

 

Moran scatterplot (Moran's I = -0.029)
high variety vegetables without convenience
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                    Figure 4.3. Moran scatterplot for high variety vegetable price index. 
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Moran scatterplot (Moran's I = -0.027)
basic vegetables price index without convenience
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                     Figure 4.4. Moran scatterplot for basic variety vegetable price index. 

 

4.8 Estimation of the Spatial Regression Models 

Three different types of regressions, OLS, spatial lagged and spatial error, were 

conducted. Diagnostic tests for spatial dependency were performed and results are 

summarized in the tables on pages 76 and 77. Six tests—specifically, Moran’s I, 

Lagrange Multiplier (LM), Robust Lagrange Multiplier, Wald (W), and Likelihood 

Ration (LR)—were performed for each price index under the null hypothesis that there is 

no spatial autocorrelation (dependence/relationship) between a price index at a particular 

store and neighboring stores. The first three tested for spatial error dependence in the 

OLS regressions, and the first and the last two were performed for the spatial lagged and 

spatial error based on the ML regressions.  

Results for the high variety fruit price index are reported in Table 4.5. Assessing 

the residuals from OLS regression (column 1), Moran’s I is positive and highly 
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statistically significant (p < 0.05) indicating the presence of spatial autocorrelation. From 

the second to the third column, however, neither ρ nor λ are significant indicating that 

one cannot reject the null hypothesis of no spatial relationships between a price index for 

a given store and the prices of competitors located in the surrounding areas. Looking to 

the LM, LR and W tests, these similarly indicate that the modeling of spatial 

relationships is not statistically significant (even at 10% level). Thus, except for Moran’s 

I, all the tests (reported and not reported in column 1) based on OLS and ML fail to 

indicate the presence of spatial dependence parameters. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

** denote significance at 5% level, 
*** denote significance at 1% level. 

 

Table 4.5.  Impacts of Nearby High Variety Fruit Price Stores. 

 High variety fruits price index 
Variables  OLS (I) Lag (II) Error(III) 
Income  -0.138 (0.093) 2.346 (0.869)** 2.335 (0.903)** 
Number stores 0.003 (0.013) -0.101(0.093) -0.104 (0.098) 
Blacks  -0.0004 (0.002) -0.010 (0.013) -0.0005 (0.013) 
Hispanics  -0.0005 (0.003) -0.0001(0.001) -0.0001 (0.001) 
Grocery  -0.029 (0.070) -0.00015(0.002) -0.0002 (0.002) 
Constant  2.448 (0.967)** -0.031(0.062) -0.029 (0.064) 
Test Results     
Moran's I  3.368***   
     
rho   -0.009(0.011)  
lambda    -0.004 (.007) 
     
Wald   0.764 0.367 
Likelihood Ratio  0.755 0.537 
Lagrange Multiplier  0.592 0.319 
Robust Lagrange multiplier  0.341 0.068 
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Table 4.6 presents the results for the basic variety fruit price index. Again 

examining the OLS regression coefficients using Moran’s I reveals spatial correlation. 

ML regressions results further reveal spatial correlation in the error, though no evidence 

of lagged dependency. Unlike the lag parameter ρ, the spatial relationship parameter λ is 

highly statistically significant (p < 0.01). In addition the Wald and LR of the spatial error 

specification support the inclusion of a spatial error component. In contrast, none of the 

tests are significant in the spatial lagged estimation.   

 

** denote significance at 5% level, 
*** denote significance at 1% level. 

 

            In Table 4.7, Moran’s I indicates significant (p < 0.01) presence of spatial correlations 

for the high variety vegetable price index. ML regression results indicate that both the 

Table 4.6. Impacts of Nearby Basic Variety Fruit Price Stores. 

 Basic variety fruits price index 
Variables  OLS (I) Lag(II) Error(III) 
Income  0.049 (0.095) 0.069 (0.875) 0.365 (0.138)*** 
Number stores -0.001 (0.014) -0.101(0.093) 0.105 (0.091) 
Blacks  -0.0002 (0.002) -0.007(0.012) 0.032(0.010)*** 
Hispanics  -0.002 (0.003) 0.0002 (0.001) -0.004(0.001)** 
Grocery  -0.176 (0.068)** -0.002 (0.002) -0.001(0.003) 
Constant  0.377 (0.952) 0.174 (0.060)** 0.399 (0.033)*** 
Test Results      
Moran's I  3.412***   
     
rho   -0.020 (0.013)  
lambda    -0.566 (0.043)*** 
     
Wald   2.345 174.469*** 
Likelihood Ratio  2.268 43.620*** 
Lagrange Multiplier  1.669 0.312 
Robust Lagrange multiplier  1.389 0.032 
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spatial relationship parameters ρ and λ are statistically (p < 0.05 and p < 0.01, 

respectively) different from zero. This significance indicates the presence of spatial 

relationships in the dependent variable and in the error term. The Wald test supports the 

inclusion of a spatial lag in the explanatory variables, while the Wald and LR support the 

inclusion of a spatial error.  

 

* denote significance at 10% level, 
** denote significance at 5% level, 
*** denote significance at 1% level. 
 

   

As with the high variety vegetable price indices, Moran’s I is positive and 

significant for the basic variety (Table 4.8) while ρ and λ are negative and statistically 

significant. Comparing the two spatial models (columns II and III), all the tests are 

Table 4.7. Impacts of Nearby High Variety Vegetable Price Stores. 

 High variety vegetable price index 
Variables  OLS (I) Lag(II) Error(III) 
Income  -0.0676 (0.126) 1.406 (1.102) -1.620 (0.016)*** 
Number stores -0.030 (0.018) -0.101(0.093) 0.057(0.120) 
Blacks   0.0009 (0.002) -0.041(0.016)*** -0.006 (0.002)*** 
Hispanics   0.0008 (0.003) 0.002 (0.002) -0.004 (0.0004)*** 
Grocery   0.165 (0.098)** 0.002 (0.003) 0.007(0.0003)*** 
Constant  1.489 (1.261) -0.146 (0.082)* -0.316 (0.004)*** 
Test Results     
Moran's I  4.516***   

     
rho   -0.043 (0.020)**  
lambda    -1.000 (0.003)*** 
     
Wald   4.859** 86000*** 
Likelihood Ratio  4.511 226.37*** 
Lagrange Multiplier  2.604 0.627 
Robust Lagrange multiplier  2.209 0.232 
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significant for spatial lag model results whereas Wald and Likelihood ratio are 

significant for the spatial error model.  

 

* denote significance at 10% level, 
** denote significance at 5% level, 
*** denote significance at 1% level. 
 

 

Regarding socioeconomic factors included in the estimations, contrary to the 

expectations, income has positive impacts (p < 0.01) on both basic food price indices. 

However, the impact is negative (p < 0.01) for high variety vegetable price indices. This 

indicates for an increase in income by a factor of 1, basic prices will increase whereas 

high variety prices will go down. As expected, the number of stores has negative impacts 

(p < 0.01 for high variety, and p < 0.05 and 0.01 for basic variety) the vegetable price 

Table 4.8. Impacts of Nearby Basic Variety Vegetable Price Stores. 

 Basic variety vegetable price index 
Variables  OLS (I) Lag(II) Error(III) 
Income  -0.086 (0.134) 1.844 (1.192) -0.157(0.134) 
Number stores -0.037 (0.019)* -0.101(0.093) -0.040 (0.116) 
Blacks   0.001(0.002) -0.040 (0.016)** -0.049 (0.017)*** 
Hispanics   0.0005 (0.003) 0.001(0.002) 0.0004 (0.002) 
Grocery   0.203 (0.092)** 0.002 (0.003) -0.009 (0.006) 
Constant  1.663 (1.338) -0.227(0.080)*** -0.244 (0.044)*** 
Test Results     
Moran's I  2.884***   
     
rho   -0.018 (0.008)**  
lambda    -0.567(0.101)*** 
     
Wald   4.908** 31.201*** 
Likelihood Ratio  4.601* 29.992* 
Lagrange Multiplier  3.850* 0.503 
Robust Lagrange multiplier  3.354* 0.006 
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indices. This is contrary to the fruits where the number of stores has positive impacts on 

the basic price indices. The effects of the residents classified as minorities are dissimilar. 

Blacks have negative impacts for basic fruit and high variety vegetable prices when the 

estimation is based on spatial error. Hispanics has positive effects (p < 0.01) for these 

price indices.  

Overall, the estimations for the vegetable price indices have more significant 

parameters compared to the fruits. This might be due to the longevity of each food item. 

4.9 Discussion and Conclusions 

This paper applied spatial econometric techniques to investigate the relationship 

between fruit and vegetable (F&V) prices at stores located nearby that could be potential 

competitors. Based on data collected in the Brazos Valley region of Texas, we conducted 

an assessment of the presence of spatial price dependence and determined the spatial 

effects in terms of both lagged dependency and error structure. These spatial 

relationships covered the prices of high and basic variety vegetable consumption baskets 

and the basic variety fruit consumption basket. 

These results are contrary to our expectation that low-price stores would tend to 

drive down prices at potential competitors, i.e. positive spatial dependence. Several 

explanations are possible. First, fruit, particularly items in the high variety basket such as 

berries and melon, may be highly seasonal with pricing subject to market forces largely 

outside the control of local outlets. 

Second, the strong negative relationship among vegetable prices may be the 

result of contrasting pricing strategies among larger outlets. National chains can have a 



 

 

79 

broader pricing policy compared to local stores so that the latter might be more flexible 

in their pricing schemes. In addition, national chain stores with pricing strategies such as 

Every Day Low Price (EDLP) might be less flexible than those with strategies 

categorized as promotions (Promo). Stores adopting EDLP strategy have more stable 

prices compared to the latter (Lal and Rao 1997). When the two types of stores are 

located in the same neighborhoods, prices at promo can be lower than EDLP during the 

promotions generating negative spatial dependence. This type of relationship, well 

detailed by Lal and Rao (1997), is characteristic of the competition between Albertson’s 

(EDLP) and Kroger or Safety (Promo). 

Although this study provides additional knowledge about fruit and vegetable 

market pricing behavior, there are limitations worth mentioning. First, the small 

geographic region considered here might hinder the generalization of the findings to 

other locations. Another limitation is the fact that this study did not involve time 

variation during the data collection. As fruits and vegetables are in general seasonal 

products, the prices vary over time and space. Including time and space in the study 

might provide ample understanding of the pricing strategies and factors affecting the 

prices.  

Finally, store may be competing along multiple dimensions, e.g. quality, variety, 

etc. It may be more profitable for a high price-high quality store to open near a low 

price-low quality store than to open near another high price-high quality store. This type 

of market segmentation would also generate negative spatial dependence. 
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 Despite these limitations, our findings are that there exist spatial relationships 

between stores in term of vegetable prices. The implication for policy makers is 

understanding how to improve the food environment through competition between 

stores. For example, if stores with high prices compete with those charging high prices 

for one market segment, and stores with low prices compete with those charging low 

prices for another segment, the end result will be lower prices for fruits and vegetables in 

the Brazos Valley conditional on the market segment. 
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CHAPTER V 

CONCLUSIONS 

 The burden of obesity-related illness, which disproportionately affects low 

income households and historically disadvantaged racial and ethnic groups, is a leading 

public health issue in the United States. In addition, previous research has documented 

differences in eating behavior and dietary intake between racial and ethnic groups, as 

well as between urban and rural residents. 

This study has extended prior work by examining the affordability of fresh fruit 

and vegetables from traditional and non-traditional food stores in a large rural area; how 

access to an affordable supply of fresh fruit and vegetables differs by neighborhood and 

geographic inequalities; whether results are robust to the choice of empirical methods, 

such as the definition of the market basket and price imputation technique; and how the 

pricing strategies of stores interact in a spatial economic framework. 

 First, the determinants of affordability of fruits and vegetables are assessed in 

Chapter II. We demonstrated that individuals who shop at food stores located in the rural 

counties of the Brazos Valley region must pay significantly more to attain the USDA 

recommended level of fresh fruit and vegetable consumption through fresh whole items 

than residents who shop in the urban area. In addition, stores located in neighborhoods 

with higher proportions of minority residents also charged more for fresh produce. These 

results are consistent with previous works in the literature and further illustrates the 

challenges that historically disadvantaged rural households face with respect to making 

healthy lifestyle decisions.   
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 In Chapter III, we have examined the robustness of an empirical analysis of the 

affordability of fruits and vegetables are to different methods of computing price indices, 

different methods for imputing missing prices, and different definitions of affordability. 

Our results suggest that the definition of affordability, specifically the decision to 

include or omit less common types of items, has the far greater effect on our conclusions 

than either the computation (fixed versus economic index) or imputation method (zero, 

mean or regression). Both the mean cost of purchasing fruits and vegetables and the 

coefficient estimates from our regression analysis vary greatly across high variety and 

basic indices. This is not to say, however, that imputation or computation methods are 

unimportant. Mean imputation tends to produce smaller average costs than regression 

imputation using the prices of common items, which is consistent with the argument that 

stores that decide not to sell a particular item do so because their reservation price is 

higher than the price consumers are willing to pay. 

Finally, Chapter IV applied spatial econometric techniques to investigate the 

relationship between fruit and vegetable (F&V) prices at stores located nearby that could 

be potential competitors. Based on data collected in the Brazos Valley region of Texas, 

we conducted an assessment of the presence of spatial price dependence and determined 

the spatial effects in terms of both lagged dependency and error structure. These spatial 

relationships covered the prices of high and basic variety vegetable consumption baskets 

and the basic variety fruit consumption basket. These results are contrary to our 

expectation that low-price stores would tend to drive down prices at potential 

competitors, i.e. positive spatial dependence. 
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 The approach and findings of this study are relevant and have important research 

and policy implications for understanding access and availability of affordable, healthy 

foods. Access to a good variety of affordable healthy foods, such as fruit and vegetables, 

can play a pivotal role in the nutritional health of rural families. Many of these families 

live in socio-economically deprived neighborhoods; many have a low household income, 

are unemployed, older, or lack access to a vehicle. In order for rural families to be food 

secure and have access to fruit and vegetables, food resources need to be available and 

affordable in local stores.    
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