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ABSTRACT

Content-aware Caching and Traffic Management in Content Distribution Networks.

(December 2010)

Meghana Mukund Amble, B.Tech, National Institute of Technology, Karnataka,

India

Chair of Advisory Committee: Dr. Srinivas Shakkottai

The rapid increase of content delivery over the Internet has lead to the pro-

liferation of content distribution networks (CDNs). Management of CDNs requires

algorithms for request routing, content placement, and eviction in such a way that

user delays are small. Our objective in this work is to design feasible algorithms that

solve this trio of problems.

We abstract the system of front-end source nodes and back-end caches of the

CDN in the likeness of the input and output nodes of a switch. In this model, queues

of requests for different pieces of content build up at the source nodes, which route

these requests to a cache that contains the content. For each request that is routed

to a cache, a corresponding data file is transmitted back to the source across links

of finite capacity. Caches are of finite size, and the content of the caches can be

refreshed periodically. A requested but missing item is fetched to the cache from

the media vault of the CDN. In case of a lack of adequate space at the cache, an

existing, unrequested item may be evicted from the cache in order to accommodate a

new item. Every such cache refresh or media vault access incurs a finite cost. Hence

the refresh periodicity allowed to the system represents our system cost. In order

to obtain small user delays, our algorithms must consider the lengths of the request

queues that build up at the nodes. Stable policies ensure the finiteness of the request

queues, while good polices also lead to short queue lengths.
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We first design a throughput-optimal algorithm that solves the routing-placement-

eviction problem using instantaneous system state information. The design yields in-

sight into the impact of different cache refresh and eviction policies on queue length.

We use this and construct throughput optimal algorithms that engender short queue

lengths. We then propose a regime of algorithms which remedies the inherent prob-

lem of wastage of capacity. We also develop heuristic variants, and we study their

performance.

We illustrate the potential of our approach and validate all our claims and results

through simulations on different CDN topologies.
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CHAPTER I

INTRODUCTION

Recent years have seen the rise of the Internet as a means of content delivery [1],

driven in part by the growing popularity of smart hand-held devices as a means of

content consumption. Available content includes software and smart-phone applica-

tions, music and video files for available for purchase, as well as media streaming

applications. Each type of content is associated with a particular desired quality of

service but, broadly speaking, low delays between request and reception is good for all

types of content. A content distribution network (CDN) is a distributed system that

routes requests for content arising from end-users to caches that can service these

queries; the CDN then returns content using a network that connects such caches

to end-users. The motivation behind such a system is that obtaining content from a

cache that is near a user is likely to suffer a shorter delay than from one that is farther

away, due to a smaller number of hops to be traversed. However, placing a large de-

mand for a popular piece of content on the nearest cache might be counterproductive,

as the link capacity between each cache and the end-users is finite.

An abstraction of such a CDN is illustrated in Figure 1. On the control plane, it

consists of frontend servers denoted by ‘S’, which aggregate queries arising in different

geographical regions, and route each query to an appropriate backend cache indicated

by a ‘D’. A frontend may have access to some subset of backend caches. Multiple

backend caches can potentially serve each query, and each frontend has to take a

decision on which such backend to pick. Further, cache sizes are finite and caches

can be periodically refreshed from a media vault, along with eviction of stale content.

The journal model is IEEE/ACM Transactions on Networking.
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On the data plane, the backend cache chosen to service a particular request needs to

process the query, and transmit data across a network connecting it to the end-user.

The following constraints affect system operation: (i) the network connecting the

backend caches to the end-users has finite capacity, (ii) each backend cache can only

host a finite amount of content, and (iii) refreshing content in the caches from the

media vault incurs a cost.

(a) Control Plane

 Media
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 Frontends 
 (demand
aggregation)

 Backend 
  caches
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C2

C2

C2

C3

C3
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Fig. 1. A content distribution network. (a) Control plane: Requests arrive at front-end

servers (S), and must be routed to one of (possibly) several back-end caches

(D) that have the content. Caches can only host a finite number of content files

(C), and the caches may be refreshed by placement and eviction of content,

(b) Data plane: Content is served to end-users across a network consisting of

finite capacity links.
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In this work, we develop algorithms for jointly solving the request routing and

content caching problems. The problem of content caching is related to an online

paging problem [2], wherein requests are generated for different pages, either in a

Bayesian fashion or by an adversary. A cache miss implies that the page has to be

brought into the cache, which involves a cost of fetching. The objective is to decide

what pages to evict when such misses happen, so as to minimize the total number

of misses. However, there are a number of key differences in our content distribution

scenario. According to our abstraction, requests are Bayesian with unknown statistics

and queue up in a request buffer of infinite size. There is no possibility of a miss,

but the queue lengths must be kept finite for system stability. A natural requirement

of algorithms in such a scenario is throughput optimality, which means that any

stabilizable request arrival vector should be stabilized by our algorithm. Further, a

short queue implies a small service delay, and hence queue length is our quality metric.

The cost of accessing the media vault is captured in the periodicity of refresh, with a

larger periodicity implying a lower cost. Finally, we abstract the resource constraints

of the network connecting caches to end-users by links of finite capacity—something

that is missing in the paging problem. Our main goal is to design throughput optimal

algorithms. We then provide quantitative performance analysis that could further

guide the design of distributed CDNs. This work is in submission to IEEE Infocom

2011.

At the refresh instants, the caches are allowed to provide service to any content

type, while at the inter-refresh instants, service is provided subject to presence of

content at the cache.

Our initial regime of algorithms uses instantaneous queue length information in

the system to solve the problem. This approach discussed in Chapter IV, follows nat-

urally from trying to stabilize a system, using a Lyapunov function that is quadratic
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in the request queue lengths. We use Foster Lyapunov techniques to establish that

the algorithms are throughput-optimal and then determine the upper bounds on the

delays in the system. Our initial algorithm provides the solution for request routing-

service at all times, handling evictions arbitrarily at the refresh instants. We shall

refer to such a technique as a two-step approach in this work.

In Chapter V, we introduce the problem of evictions at the caches. We relate

the average queue size to the drift of the Lyapunov function, with larger negative

drift implying a shorter queue length. The content that is evicted at refresh instants,

plays a major role in determining the drift at inter-refresh times. We then use this

insight to design an eviction technique that uses queue length information for making

eviction decisions. We formulate a distributed, low-complexity, two-step policy that

incorporates our initial throughput-optimal scheduling strategy, and this new eviction

technique. Finally, utilizing the nature of scheduling and eviction decisions made by

this two-step policy, we attempt to explore a heuristic, joint-scheduling-and-eviction

algorithm.

Our initial regime suffers from an inherent drawback in that it can potentially

create residual, unused capacity on the links. This problem has been studied earlier

in [3] in the context of wireless down-link scheduling. In Chapter VI, we therefore

design another class of algorithms, which still uses the queue information, but in a

manner so as to ensure at least non-zero service on all the links, while guaranteeing the

same amount of service that occurred via our basic algorithm. We refer to this as the

iterative regime, as opposed to the initial non-iterative class. The state information

here is immediately updated and scheduling is performed iteratively. We devise a

throughput-optimal algorithm in this domain, that provably yields lower drifts than

our non-iterative, two-step policy. Continuing along the same lines, we develop a

heuristic scheme that intuitively should out-perform our first iterative algorithm, as
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it guarantees complete capacity usage, instead of just non-zero service on the links.

In Chapter VII, we implement our various content placement, routing and evic-

tion schemes in simulations of the CDN with different network topologies, and observe

their performance. We then attempt to validate our results by studying the delays in

the system for all scenarios, as the refresh periodicity and the cache size constraints

are varied. We confirm that the delays in the system increase with the eviction costs

for small cache sizes in the network, irrespective of the scheduling policy employed.

The iterative algorithms show considerably lower queue lengths than the non-iterative

ones. Our ideas on the performance of the heuristic schemes are validated. Finally,

we observe that for any scheduling policy, the eviction strategy that uses queue length

information out-performs its random counterpart, for large eviction costs and small

cache size regimes.
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CHAPTER II

RELATED WORK

Considering the nature of our problem and the solution framework that we are at-

tempting to explore, we felt the need to review two vastly diverse areas of research.

The classical problem of caching and eviction has been visited in the context of

memory caches, On-Line Web Caching at HTTP Proxies and distributed Web Storage

systems. For example, [2,4,5] focus on on-line deterministic eviction algorithms (LRU,

FIFO and LFU) and its variants such as greedy dual size and randomized versions.

This kind of analysis involves the use of malicious adversaries posing worst case

request scenarios to the system, and then comparing performance with the optimal

off-line algorithm. The cost metric for a request sequence is the number of misses

incurred. This is then used in evaluating the competitive coefficient which creates

a standard of comparison amongst algorithms. LRU is the most popular eviction

strategy in use but fails in case of variable item sizes and costs. The greedy dual

size variant considers the trade-off between costs, sizes and recency of use. The

randomized version draws randomly from a smaller sample subset, chooses from and

records only these samples. Hence, it achieves lower complexity since the item space

being handled is reduced in size. Note that in this class of problems, however, the

cache already knows what to fetch a-priori and the eviction decisions are the focus of

attention.

Request routing, load balancing and content placement, while minimizing the lin-

ear communication costs, using distributed Nash Equilibrium and centralized integer

programming approaches, is examined in [6, 7]. The former deals with placement of

the entire contents of the cache at a single shot, while ensuring both local and global

utility maximization, using a two step strategy. The latter examines the problem
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of global bandwidth costs optimization, while developing co-operative caching tech-

niques. However, these overlook the issue of online evictions decisions at the caches

and finite capacity links.

In Chapter I, we have already addressed the resemblance that our CDN abstrac-

tion bears to the problem of scheduling in high-speed switches, and we briefly review

work in this space. Tassiulas et al. initially proposed Max Weight Scheduling for

Multi Hop Radio Networks with infinite buffers and interfering links in [8]. They

proved that this policy is throughput-optimal and characterized the capacity region

as the convex hull of all feasible schedules. This scheme commonly known as the

Back-Pressure algorithm uses the queue length difference between the nodes as pres-

sure of the links. Various extensions of this work that followed since are [9–13]. These

papers proposed the use of the classic algorithm and explored the delays in the system

for single down-link with variable connectivity, I.I.D on-off channels, multi-rate links

and multi-hop wireless flows. Techniques of joint rate control, routing and scheduling

using the same policy were developed in [14,15]. Notice that “scheduling of a content

type on a link” is similar to “scheduling of a link”, “presence of an item at the cache”

corresponds to the “existence of a link”, and “scheduling a single content on a link

in a time-slot” resembles the problem of “interference of links”.

While none of these pieces of work directly applies to our problem, we will build

upon the analytical techniques used in these papers as appropriate to our context.
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CHAPTER III

SYSTEM OVERVIEW

The CDN consists of the set S of frontend nodes indexed by s ∈ S that serve as

request sources, with |S| = S. The set D of backend caches is indexed by d ∈ D,

with |D| = E. The set of content files is denoted C, with each c ∈ C. We assume that

request packets are small, and that request routing has no overhead. Hence, capacity

constraints only apply to data delivery. Thus, supposing that content c is present

at backend d, for any request being routed from source s to destination d, there is a

corresponding data transfer from d back to s.

Link lsd has a capacity constraint Csd, which indicates the maximum number of

requests that may be served in a time instant on that link. Note that we assume

that all pieces of content are of equal size. Further, end-users are served by unicast

flows, i.e., servicing multiple requests of the same content will each require capacity

on the link. The total capacity available at source s is given by Cs =
∑
∀dCsd. We

further define the maximum available capacity over all sources as CsMax = maxsCs.

The sum total capacity of the network is given by Ctot =
∑

sdCsd. The number of

links at source s is Ns, while the number of links at cache d is Nd.

A. Request Arrivals at Front-end Nodes

Under the switch abstraction of the CDN, we have request queues of size qcs[k] at

source s for content c at (discrete) time k. We denote the vector of all such queues

(the system state) by ~Q[k]. The number of requests that arrive at time k is denoted

acs[k]. Arrivals are Bayesian, with finite mean λcs and second moment ηcs. We assume

that for any A ≥ 0, there exists a δA > 0, such that P(acs[k] ≤ A) > 1 − δA ∀c, s, k.

In other words, the maximum probability of instantaneous arrivals for any request
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queue overshooting this bound is given by δ. Finally, we define Λ , maxc,s λ
c
s. The

arrival processes must satisfy the following conditions that are necessary for stability:

∑
∀c

λcs <
∑
∀d

Csd. (3.1)

B. Servicing Requests

We assume that sources are content-aware, in that they know what content is present

in each cache that they have access to. For simplicity of notation, we assume that

each source is connected to all caches; all the analysis is valid even if this assumption

does not hold. The presence of content c at cache d at time instant k is indicated

by pcd[k] ∈ {0, 1} with the vector of pcd[k] denoted by ~p[k]. At each time instant, we

allow each source to make a request for one type of content from each cache that it

is connected to. We denote such a request by χcsd[k] ∈ {0, 1}, where it is understood

that for each (s, d) pair at most one of the χcsd[k] may be equal to 1. At most Csd

copies of the selected content c are then served by the cache. We denote the amount

of scheduled service to a request queue qcs[k], with respect to cache c as

µcsd[k] , χcsd[k]Csd. (3.2)

The total number of scheduled departures from request queue qcs[k] over all caches

is simply µcs[k] ,
∑

d µ
c
sd[k]. Since there are qcs[k] requests for c at s, the number of

copies of c that can be served is upper bounded by this value, and we refer to the

actual number of departures as

µ̃csd[k] , min[µcsd[k], qcs[k]]. (3.3)
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Thus, the total number of departures that occur at s is µ̃cs[k] ,
∑
∀d µ̃

c
sd[k]. The

evolution of the source queue containing requests for content c is then given by,

qcs[k + 1] = qcs[k] + acs[k]− µ̃cs[k]. (3.4)

Note that for all feasible schedules the departures must necessarily satisfy the capacity

constraints,

∑
∀c

µ̃cs[k] ≤
∑
∀c

µcs[k] ≤ Cs. (3.5)

C. Refreshing Cache Contents

Each cache d has a size Bd, which indicates the number of pieces of content that it

can store. The cache size is likely to be much larger than the number of frontends

that it serves, i.e. Bd ≥ Nd. Again, for simplicity of notation we consider identical

cache sizes B. The content present in the caches is refreshed periodically from the

media vault with periodicity D. Our refresh model is that each source may request

one item to be fetched from the media vault at time instants k = nD, where n ∈ N.

Thus, we have a regime in which,

• At refresh instants sources may request any piece of content from each cache,

since the chosen content would be fetched from the media vault, i.e., for k = nD

χcsd[k] can be chosen as 1 independent of pcd[k]. (3.6)

• At inter-refresh instants sources may only request pieces of content that are

currently present in the caches, i.e., for k 6= nD, ∀χcsd[k] = 1, we have,

χcsd[k]× pcd[k] = 1. (3.7)
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We further define the request of an item from a cache, over all sources, as,

Xc
d[k] =

 1 if
∑
∀s χ

c
sd[k] ≥ 1

0 else.

Following terminology from switching literature, we will refer to the vector of

requests made by sources as a schedule, ~χ[k] and the policy for doing so as a scheduling

algorithm.

D. Content Evictions

Finally, caches must evict certain pieces of content at the refresh instants to make

room for the new content fetched. We denote eviction of content c at cache d at

time k by ecd[k] ∈ {0, 1}. We will refer to the policy used for evictions as an eviction

algorithm. Evictions must satisfy the following constraints,

• A requested item cannot be evicted:

χcsd[k] + ecd[k] ≤ 1. (3.8)

• Only content that is present can be evicted, i.e. ∀ecd[k] = 1, we have,

ecd[k]× pcd[k] = 1. (3.9)

• The required number of evictions at a cache is given as,

∑
c

ecd[k] =
∑
c

Xc
d[k] (1− pcd[k]) . (3.10)

We summarize all the notations used in this work, in the following table,
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Table I. Summary of notations.

Notation Definition

E Number of caches

S Number of sources

Bd Size of a cache d

D Eviction Periodicity

Nd Degree of cache d

Ns Degree of source s

pcd Presence of content c at cache d

lsd Physical link between s and d

Csd Capacity of link lsd

qcs Queue for content c at source s

ecd Eviction of content c at cache d

χcsd Schedule of content c on link lsd

acs Number of arrivals of content c at source s

λcs Arrival rate of content c at source s

ηcs Second Moment of arrivals of content c at source s

µcsd Scheduled number of departures of content c on link lsd

µ̃csd Actual number of departures of content c on link lsd
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We will study the question of algorithm design in the next sections. Our objective

is to develop algorithms that are throughput optimal, which means that as long as

the arrival rates satisfy the necessary condition (3.1), the expected values of all the

request queues will remain finite. Such an objective implies that the delay suffered

between request and service would also remain finite. Further, a quality of service

metric that we consider is the expected value of the sum of all queues—the shorter

the value, the smaller the expected delay.
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CHAPTER IV

EXPLORING SCHEDULING ALGORITHMS

THE PERIODIC MAX-WEIGHT ALGORITHM

Since our CDN model bears a resemblance to a switch, we are inspired by the Max-

Weight scheduling algorithm that was shown to be throughput optimal for a switch

[10]. Unlike a switch, however, we have to take content placement, eviction and

scheduling decisions refresh instants.

A. Formulating the Algorithm - A Heuristic Fluid Model

The intuition for a max weight scheduling policy arises, by examining the the heuristic

fluid model of the system, using a Lyapunov function V (t) involving the source queues

lengths. We will attempt to use the Lyapunov stability criterion to determine the

optimization expression, that may possibly allow for throughput-optimality in the

system. The Lyapunov function we use is,

V (t) =
∑
s,c

1

2
(qcs(t))

2 . (4.1)

With some abuse of notation, we re-define certain discrete time variables for this

section, to suit our needs as,

• µ̃csd here is the fraction of time that the packets of content c departs on link lsd.

• χcsd is the fraction of time that the content c is scheduled on link lsd.

• µcsd is the fraction of time that Csd packets of the content c are scheduled to be

sent on the link lsd.

• pcd is the fraction of time of content c is present at cache d.
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• ecd is the fraction of time that the content c is scheduled to be evicted from cache

d.

Departure rate =
∑
d

µ̃csd (pcd (1− ecd)) + µ̃csd (1− pcd)

=
∑
d

µ̃csd (1− pcdecd) .

(a)⇒ Departure rate =
∑
d

µ̃csd. (4.2)

Hence giving q̇cs(t) = λcs −
∑
d

µ̃csd, (4.3)

where (a) arises from (3.8). Simplifying the Lyapunov derivative,

V̇ (t) =
∑
s,c

qcs(t)q̇
c
s(t)

=
∑
s,c

qcs(t)

(
λcs −

∑
d

µ̃csd

)
=

∑
s,c

qcs(t) (λcs)−
∑
s,c,d

qcs(t)µ̃
c
sd.

The Lyapunov stability theorem for continuous time systems states that, the

derivative of the Lyapunov function needs to be negative semi-definite, in order for

the system to attain stable equilibrium. Hence to possibly achieve stable equilibrium

in the system, the second term needs to be maximized.

Since µ̃csd(t) ≤ µcsd(t), by maximizing the scheduled service at every time instant,

we maximize actual service at every time instant as well, differing only by a constant

factor.
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Returning to the discrete model, the schedule that the continuous time heuristic

therefore suggests is given as,

χc∗sd[k] = arg max
χc
sd

∑
s,c,d

qcs[k]Csdχ
c
sd[k]. (4.4)

We refer to the above optimization as Max-Weight optimization independent of

cache contents (MWI), which we use at the refresh instants. Note that the solution

does not give information about the contents to be evicted, and we could choose

to simply evict a random subset of the cache contents that does not interfere with

the schedule. Further, at the inter-refresh time instants, we require a schedule with

the proviso that it only incorporate content that is already present in the caches.

We could again use a Max-Weight schedule, except that it must now be calculated

subject to the presence of scheduled content (MWP). We refer to the policy that

comprises of MWI at the refresh instants, and MWP at the inter-refresh instants as

the Periodic Max-Weight scheduling algorithm (PMW). We formally define the policy

in Algorithm 1.
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Algorithm 1: Periodic Max-Weight Scheduling

At the refresh instants (MWI plus Evictions): For all k = nD, schedule

the links,

~χ∗[k] = arg max
χ
WI(~χ[k], ~Q[k]), (4.5)

where

WI(~χ[k], ~Q[k]) ,
∑
∀s,c,d

qcs[k]Csdχ
c
sd[k] (4.6)

Fetch the requested content from the media vault and, if needed, evict contents

arbitrarily from the cache such that the conditions (3.8) and (3.9) are satisfied,

e.g. randomly select content that has not been scheduled to be evicted.

At the inter-refresh instants (MWP): For all k 6= nD, schedule the links,

~̂χ[k] = arg max
χ
WP(~χ[k], ~Q[k], ~p[k]), (4.7)

where

WP(~χ[k], ~Q[k], ~p[k]) ,
∑
∀s,c,d

qcs[k]Csdp
c
d[k]χcsd[k] (4.8)
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At k = lD, we define the weight of the schedule w∗[k] as,

w∗[k] , max
χ
WI(~χ[k], ~Q[k]). (4.9)

At k 6= lD, we define the weight of the schedule ŵ[k] as,

ŵ[k] , max
χ
WP(~χ[k], ~Q[k], ~p[k]). (4.10)

Following (3.2), we refer to the scheduled service associated with ~χ∗[k] as ~µ∗[k], and

similarly that with ~̂χ[k] as ~̂µ[k].

B. Stability and Performance Analysis of the PMW Algorithm

We will now show that the PMW algorithm stabilizes the system, and derive bounds

on the total queue length under this policy. We first recall the Foster-Lyapunov

stability criterion that will enable us to show such stability.

Theorem 1. (Foster-Lyapunov stability criterion) Let Q be a countable state-space,

and let ~Q[k] be an irreducible, aperiodic, countable-state Markov chain. Suppose there

exists a Lyapunov function V : Q → R+, and C, which is a finite subset of Q. If

ε > 0 and b is a constant such that the drift

∆V [k] = E
[
V [k + 1]− V [k]| ~Q[k]

]
≤ −ε+ bIC , (4.11)

then ~Q[k] is positive recurrent. Further, if g[k] and f [k] are two processes such that

the drift can be expressed as

∆V [k] ≤ E
[
g[k]− f [k]| ~Q[k]

]
,
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and the system is positive recurrent, then

lim sup
k→∞

1

k

k−1∑
i=0

E [f [i]] ≤ lim sup
k→∞

1

k

k−1∑
i=0

E [g[i]] . (4.12)

We first prove that the PMW algorithm is stable if the refresh periodicity D = 1,

and the result will be used to show stability of the PMW policy with D ∈ N. We

have the following theorem.

Theorem 2. The Periodic Max-Weight scheduling policy is throughput optimal for a

refresh periodicity equal to one.

Proof. Consider the Lyapunov function

V [k] =
1

2

∑
∀c,s

(qcs[k])2 . (4.13)

The drift of the Lyapunov function is given by

∆V = E
[
V [k + 1]− V [k]| ~Q[k]

]
=

1

2

∑
s,c

E
[
(qcs[k + 1])2 | ~Q[k + 1]

]
− E

[
(qcs[k])2 | ~Q[k]

]
. (4.14)

(a)
=

1

2

∑
s,c

E

[
(qcs[k] + acs[k]− µ̃cs[k])2 − (qcs[k])2 | ~Q[k]

]

=
1

2

∑
s,c

E
[
2 (qcs[k]) (acs[k]− µ̃cs[k]) | ~Q[k]

]
+E

[
(acs[k]− µ̃cs[k])2 | ~Q[k]

]
,

=
∑
c,s

E
[
(qcs[k]) (λcs − µ̃cs) | ~Q[k]

]
−
∑
c,s

E
[
acs[k]µ̃cs[k]| ~Q[k]

]
+

1

2

∑
c,s

E
[
ac2s [k]| ~Q[k]

]
+

1

2

∑
c,s

E
[
µ̃c2s [k]| ~Q[k]

]
=

∑
c,s

E
[
(qcs[k]) (λcs − µ̃cs) | ~Q[k]

]
+B1, (4.15)
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where (a) arises using (3.4). B1 is a finite, bounded, positive quantity defined as,

B1 =
1

2

∑
c,s

E
[
ac2s [k]| ~Q[k]

]
+

1

2

∑
c,s

E
[
µ̃c2s | ~Q[k]

]
−
∑
c,s

E
[
λcsµ̃

c
s[k]| ~Q[k]

]
, (4.16)

We employ the following simplification in our drift,

∑
c,s

E
[
qcs[k] (µcs[k]− µ̃cs[k]) | ~Q[k]

]
=

∑
c,s

E
[
µ̃cs[k] (µcs[k]− µ̃cs[k]) | ~Q[k]

]
=

∑
c,s

E
[
µ̃cs[k]µcs[k]| ~Q[k]

]
− E

[
µ̃c2s [k]| ~Q[k]

]
≤

∑
c,s

E
[
min

[
µc2s [k], Csµ̃

c
s[k]
]
| ~Q[k]

]
− E

[
µ̃c2s [k]| ~Q[k]

]
(a)

≤
∑
c,s

min
[
E
[
µc2s [k]| ~Q[k]

]
,E [Csµ̃

c
s[k]] | ~Q[k]

]
−
∑
c,s

E
[
µ̃c2s [k]| ~Q[k]

]
(b)

≤ min

[∑
c,s

E
[
µc2s [k]| ~Q[k]

]
,
∑
cs

E
[
Csµ̃

c
s[k]| ~Q[k]

]]
−
∑
c,s

E
[
µ̃c2s [k]| ~Q[k]

]
(c)

≤ min

[∑
cs

C2
s ,
∑
s

E
[
Csµ̃s[k]| ~Q[k]

]]
−
∑
c,s

E
[
µ̃c2s [k]| ~Q[k]

]
. (4.17)

(a) is obtained from Jensen’s inequality and concavity of the min[.,.] operator, (b)

from the min function property that the sum of the min is less than or equal to the

min of the sum and (c) arises from (3.5). Hence using the result (4.17) in (4.15)
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yields,

∆V =
∑
c,s

E
[
(qcs[k]) (λcs − µ̃cs) | ~Q[k]

]
+B1

≤
∑
c,s

E
[
qcs[k] (λcs − µcs[k]) | ~Q[k]

]
−
∑
c,s

E
[
µ̃c2s [k]|~q[k]

]
+B1 + min

[∑
c,s

C2
s ,
∑
s

E
[
Csµ̃s[k]| ~Q[k]

]]
≤ B1 +B2 +

∑
c,s

E
[
qcs[k] (λcs − µcs[k]) | ~Q[k]

]
,

where B2 is a finite, bounded, positive quantity defined as,

B2 = min

[∑
c,s

C2
s ,
∑
s

E
[
Csµ̃s[k]| ~Q[k]

]]
−
∑
c,s

E
[
µ̃c2s [k]| ~Q[k]

]
. (4.18)

Hence, we derive the drift as,

∆V [k] ≤ B1 +B2 +
∑
c,s

E
[
(qcs[k]) (λcs − µcs[k]) | ~Q[k]

]
, (4.19)

where B1 and B2 are defined in (4.16) and (4.18).

We use a similar line of reasoning that was used earlier in [10] and [9] in order

to bound the drift. Consider a vector ~ε with each of its elements equal to a constant

ε > 0 such that
(
~λ+ ~ε

)
lies in the capacity region (3.1). LetM = {~µi} be the set of

all feasible service schedules. The convex combination of all feasible service schedules∑
i βi~µi defines the capacity region, where we have

∑
i βi = 1. It then follows that

~λ + ~ε ≤
∑

i βi~µi. The scheduled service at time k also satisfies µ∗[k] ≤
∑

i βi~µi. We

then deduce from (3.2) and (4.5) that,

∑
∀s,c

E
[
qcs (λcs − µc∗s [k]) | ~Q[k]

]
≤ −ε

∑
∀s,c

qcs[k]. (4.20)
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Examining the drift in (4.19) when µcs[k] = µc∗s [k],

∆V ≤ B1 +B2

+
∑
c,s

E
[
(qcs[k]) (λcs − µc∗s ) | ~Q[k]

]
(a)

≤ B1 +B2 − ε
∑
c,s

qcs[k], (4.21)

where (a) follows from (4.20). Hence, except for a finite subset of Q, the drift is

negative for the PMW policy with an eviction periodicity equal to 1, and the proof

follows by using the Foster-Lyapunov criterion.

We now prove that the PMW algorithm stabilizes the system for any finite refresh

periodicity D.

Theorem 3. The Periodic Max-Weight scheduling policy is throughput optimal for

all finite refresh periodicities.

Proof. From Theorem 2 we already know that at refresh instants, the drift of the

Lyapunov function given in (4.13) satisfies the Foster-Lyapunov criterion. Hence, we

only need to consider the drift at inter-refresh instants. When k 6= nD, the drift

simplifies to (4.19) with µcs[k] = µ̂cs[k] yielding,

∆V ≤ B1 +B2 +
∑
c,s

E
[
(qcs[k]) (λcs − µ̂cs[k]) | ~Q[k]

]
. (4.22)

Let l , max{n : nD < k}, i.e., l is the prior refresh instant nearest to k. We

have the following two useful relations:

• Since the maximum number of departures from the system is upper bounded
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at any time instant,

qcs[k] ≥ qcs[k − 1]− CsMax

⇒ qcs[k] ≥ qcs[lD]− CsMax(k − lD + 1). (4.23)

• Since the maximum number of arrivals to the system is upper bounded by A ≥ 0

with probability (1− δA) at any time instant,

qcs[k − 1] ≥ qcs[k]− A

⇒ qcs[lD] ≥ qcs[k]− A(k − lD). (4.24)

We then have with probability (1− δA),

∑
c,s,d

µ̂csd[k]qcs[k] ≥
∑
c,s,d

µc∗sd[lD]qcs[k]

(a)

≥
∑
c,s,d

µc∗sd[lD]qcs[lD]− CtotCsMax(k − lD + 1)

≥
∑
c,s,d

µc∗sd[k]qcs[lD]− CtotCsMax(k − lD + 1)

(b)

≥
∑
c,s,d

µc∗sd[k]qcs[k]− CtotCsMax(k − lD + 1)

−CtotA(k − lD),

where (a) follows from (4.23), and (b) from (4.24). Thus, we have just shown that

with probability (1− δA),

−
∑
c,s

µ̂cs[k]qcs[k] ≤ −
∑
c,s

µc∗s [k]qcs[k] + f(D), (4.25)

where

f(D) = CtotCsMax(k − lD + 1) + CtotA(k − lD). (4.26)
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Now, from (4.22) and (4.25) we obtain,

∆V ≤ B1 +B2 + (1− δA)f(D)

+(1− δA)
∑
c,s

E
[
(qcs[k]) (λcs − µc∗s [k]) | ~Q[k]

]
+δA

∑
c,s

E
[
(qcs[k]) (λcs − µ̂cs[k]) | ~Q[k]

]
(c)

≤ B1 +B2 + (1− δA)f(D)

+ (δAΛ− (1− δA)ε)
∑
c,s

qcs[k]

≤ B1 +B2 + (1− δA)f(D)

−αA
∑
c,s

qcs[k], (4.27)

where

αA , (−δAΛ + (1− δA)ε) . (4.28)

(c) arises from (4.20) and from the fact that,

∑
c,s

E
[
(qcs[k]) (λcs − µ̂cs[k]) | ~Q[k]

]
≤ Λ

∑
c,s

qcs[k].

By selecting A in such a way that αA > 0, the drift is negative except for a finite

subset of Q. Therefore, combining the results of Theorem 2 and the relation (4.27), the

Periodic Max-Weight Scheduling Algorithm is stable for all finite refresh periodicities.

We just proved that the PMW Algorithm stabilizes the system when the peri-

odicity is finite. However, stability only guarantees the finiteness of the queues, but

does not yield information about delays. From Little’s Law, the sum of the queue

lengths in the system characterizes the delays, and we now find upper bounds on the

expected queue lengths.
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Corollary 1. The sum of the queue backlogs in the system using the PMW Algorithm

with unit refresh periodicity satisfies

∑
s,c

E [qcs[k]] ≤
∑

s,c η
c
s

2ε
−

3
∑

s,c λ
c2
s

2ε

+
min

[∑
c,sC

2
s ,
∑

sCsλs

]
ε

.

Proof. We use the steady state condition of the Markov chain given in (4.12) to find

the expected queue lengths. From Theorem 1 and (4.12) we have,

0 ≤ B1 +B2 − ε
∑
c,s

E [qcs[k]] . (4.29)

Since the algorithm is stable,

E [µ̃cs[k]] = λcs ∀c, s,

and we make use of this fact in the expansions of B1 and B2 defined in (4.18) and

(4.16). Thus,

0 ≤ 1

2

∑
c,s

E
[
ac2s [k]

]
− 1

2

∑
c,s

E
[
µ̃c2s
]

−
∑
c,s

λc2s + min

[∑
c,s

C2
s ,
∑
s

Csλs

]
−ε
∑
c,s

E [qcs[k]]

(a)

≤ 1

2

∑
c,s

ηcs −
3

2

∑
c,s

λc2s + min

[∑
c,s

C2
s ,
∑
s

Csλs

]
−ε
∑
c,s

E [qcs[k]] ,

where (a) arises from Jensen’s inequality. The proof follows.

The above result characterizes the rate at which the sum of the queue lengths
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increases if the number of content files served by the CDN increases, with no propor-

tionate increase in the delivery capacity. We now find a similar bound on the expected

queue lengths for the PMW Algorithm with a refresh periodicity greater than one.

A similar result has been obtained in [11] in the context of wireless networks where,

for multi-rate systems, it has been proved that the source queue lengths obtained

through any scheduling policy increases with the system capacities and the network

size.

Corollary 2. The sum of the queue lengths for the CDN that uses the PMW Algo-

rithm with period D satisfies

∑
c,s

E [qcs[k]] ≤
∑

s,c η
c
s

2αA
−

3
∑

s,c λ
c2
s

2αA

+
min

[∑
c,sC

2
s ,
∑

sCsλs

]
αA

+
(1− δA) f(D)

αA
,

where f(D) is given by (4.26).

Proof. The proof follows from (4.27) in the same manner as Corollary 1.

From (4.26) it is clear that as D increases, the difference k − lD increases on

average, with an upper bound of D − 1. Thus, on average, a larger periodicity D

corresponds to a larger value of f(D), which, from Corollary 2, implies an increase

in average queue length. The result is intuitive since a longer refresh interval im-

plies a greater propensity for the cache contents to become stale. The analytical

characterization indicates that an increase in refresh periodicity lengthens delays in

a proportional manner.

Discussion

Since links from sources to caches do not interfere with each other, the PMW policy
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simplifies to a “longest queue first” (LQF) schedule, which can be solved indepen-

dently at each source node in a distributed manner. At the caches we simply evict

a random subset of unscheduled content files to create space for the scheduled ones.

Hence, the complexity of the algorithm is low.
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CHAPTER V

EXPLORING EVICTION POLICIES

It is intuitively clear that evictions have an impact on performance. For example,

if content items that have large request queue lengths are evicted, they cannot be

served during the inter-refresh period, to the detriment of user delay. There might be

eviction policies that result in short queue lengths, while maintaining system stability.

A. Min-weight Eviction Policy

Consider any two policies R and M, both of which are known to be throughput

optimal. Suppose that M is such that the weight wM [k] ≥ wR[k], i.e., the schedule

it selects always has a greater weight than the one selected by R. Then,

∑
c,s,d

Csdq
c
s[k]χcMsd [k] ≥

∑
c,s,d

Csdq
c
s[k]χcRsd [k]

⇒
∑
c,s

qcs[k]µcMs [k] ≥
∑
c,s

qcs[k]µcRs [k] (5.1)

⇒
∑
c,s

qcs[k]
(
λcs − µcMs [k]

)
≤

∑
c,s

qcs[k]
(
λcs − µcRs [k]

)
. (5.2)

Hence, using (5.2) and from the expression for the drift in (4.19), we deduce that

except for a finite subset of Q,

∆V M ≤ ∆V R ≤ 0, (5.3)

and it follows from an argument similar to Corollaries 1 and 2 that the queue lengths

under M are shorter than for R. Thus, a greater weight of the schedule at each

time instant results in a shorter queue length. While the MWI schedule indeed does

maximize this weight at the refresh times, the evictions performed at refresh instants

would impact the space over which MWP is calculated during the inter-refresh times.
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In other words, appropriate evictions during refresh instants could result in a greater

negative drift during inter-refresh instants.

The fetch and eviction decisions made at refresh time lD impact the availability

of content at some time k. Define the presence of content at a cache pcd[k] as follows:

pcd[k] = (1− ecd[lD]) (pcd[lD]) + (1− pcd[lD]) (Xc∗
d [lD]) , (5.4)

where

Xc∗
d [lD] =

 1 if
∑

s χ
c∗
sd[lD] ≥ 1

0 else.

Consider the two policies M and R, both of which employ the PMW policy for

scheduling and differ only in their evictions. Let R correspond to random evictions.

Denote the eviction variables as ecRd [lD] and ecMd [lD] for the two policies. In order for

M to perform better than R, from (5.1) we would like,

∑
c,s

qcs[k]µ̂cMs [k] ≥
∑
c,s

qcs[k]µ̂cRs [k],

to hold good.

From (4.7) and since the second term in (5.4) is the same for both policies,

⇒
∑
s,d

Csd
∑
c

qcs[k]
(
1− ecMd [lD]

)
(pcd[lD]) ≥

∑
s,d

Csd
∑
c

qcs[k]
(
1− ecRd [lD]

)
(pcd[lD]) .

If exactly the same number of arrivals took place for all queues in the interval [lD, k],

then we could ensure the above condition holds by choosing to evict,

ec∗d [k] = arg min
ec∗d

∑
c

(∑
s

(qcs[k]pcd[k]Csd)

)
ecd[k] ∀d ∀k,

subject to (3.8). In other words, we propose a Min-Weight Eviction strategy to

complement the Max-Weight (Independent) Algorithm that is used at refresh times.

More formally, we have the following algorithm.
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Algorithm 2: PMW Scheduling with Min-weight Evictions

At the refresh instants, for all k = lD, schedule based on MWI as in

Algorithm 1. Evict contents based on,

ec∗d [k] = arg min
ec∗d

∑
c,s

(qcs[k]pcd[k]Csd) e
c
d[k], (5.5)

∀d, k, subject to condition (3.8).

At the inter-refresh instants, for all k 6= lD, schedule based on MWP as

in Algorithm 1.

We then have the following straightforward theorem.

Theorem 4. The PMW Algorithm with Min-Weight Evictions is throughput optimal

for all finite refresh periodicities.

Proof. It follows from Theorem 3 that since the PMW algorithm is stable for any

feasible eviction policy, it is also throughput-optimal for the Min-Weight Evictions

policy for all finite refresh periodicities.

B. Joint Scheduling and Eviction Policy

The PMW policy with Min-Weight evictions is a two-step approach, which first han-

dles scheduling at the nodes, and then the evictions at the caches. We would like

to explore the performance of a policy that provides a one-shot, joint solution to

the scheduling-eviction problem. Since we have just defined the PMW policy with

Min-Weight Evictions, we use the same nature of scheduling and eviction decisions

made in that policy. We then formulate a joint optimization problem that renders

the coupled solution of what content needs to be scheduled at the links, and what
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content needs to be evicted from the caches. Such a scheduling-eviction optimization

(SE) can be written as,

max
χc
sd,e

c
d

∑
csd

(ECsdq
c
s[k])χcsd[k]−

∑
cd

(∑
s

(qcs[k]Csdp
c
d[k])

)
ecd[k]. (5.6)

We now propose a Joint Scheduling and Eviction policy (JSE), that incorporates

the SE solution at the refresh instants, and MWP at the inter-refresh instants.

Algorithm 3: Joint Scheduling and Eviction

At the refresh instants, for all k = nD, schedule and evict content from the

cache, based on SE, subject to (3.8),

(χc∗sd[k], ec∗d [k]) = arg max
χc
sd,e

c
d

∑
csd

(ECsdq
c
s[k])χcsd[k]−

∑
cd

(∑
s

(qcs[k]pcd[k]Csd)

)
ecd[k].

(5.7)

Fetch the missing contents as needed.

At the inter-refresh instants, for all k 6= nD, schedule based on MWP as

in Algorithm 1.

Since we have no provable results on JSE, we will study the performance of this

heuristic algorithm through our simulations in Chapter VII. We will then attempt to

gain an insight into the usefulness of a joint approach over a two-step one, if it exists.
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CHAPTER VI

EXPLORING SCHEDULING ALGORITHMS

THE ITERATIVE PERIODIC MAX WEIGHT ALGORITHM

An important observation on LQF scheduling in the context of wireless networks in [3]

is that it could result in capacity wastage if a queue scheduled for service does not

have enough packets to utilize the entire capacity. This loss intensifies with higher

system capacities. The paper then proposes an iterative solution – Iterative Longest

Queue First policy (ILQF), to lessen such wastage.

This problem applies to our context as well. We therefore attempt a similar iter-

ative scheme to ensure non-zero service on all the links, at all instants. We formulate

this scheme in such a way that it further guarantees the same amount of service as

provided by the PMW scheduling policy, had it been in use. We now propose the

IPMW - Iterative Periodic Max-Weight Scheduling policy which uses the Iterative

variants of MWI and MWP (IMWI / IMWP).

We introduce some additional terminology for our new policy. Let us refer to

the schedules and scheduled service as χcI∗sd [k] / µcI∗sd [k] for k = lD and χ̂cIsd[k] / µ̂cIsd[k]

for k 6= lD. We refer to d as the cache whose link is being scheduled in the current

iteration. Es is the set of all caches ordered in the descending capacities of their links

to that node s, i.e. Csd ≤ Cs(d−1) ∀d ∈ Es. EsPERM is set of all permuted cache

orderings and Esj ∈ EsPERM ∀1 ≤ j ≤ E!. F s[k] is the set of all caches that serviced

the selected queue until the current iteration. The algorithm is described as follows.



33

Algorithm 4: Iterative Periodic Max-Weight Scheduling

At the refresh instants, for all k = lD, at each source s,

repeat

Find the longest queue qcI∗s [k].

for each d ∈ Es\F s[k] (in order), update the queue and schedule the link, do

qcI∗s [k] =
(
qcI∗s [k]− Csd

)+
, (6.1)

χcI∗sd [k] = 1,

F s[k] = F s[k] ∪ {d}.

Fetch the missing content and evict arbitrarily subject to (3.8) and (3.9).

if qcI∗s [k] = 0, then

break.

end if

end for

until F s[k] = Es.
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Algorithm 4 continued.

At the inter-refresh instants, for all k 6= lD, at each source s, we initially

estimate schedules, queue updates, system throughputs without actual

implementation as,

for each Esj ∈ EsPERM , do

Step 1 Find the MWP schedule ~̂χ[k].

for each d ∈ Esj (in order), estimate the throughput µesj[k], update the queue

and schedule the link as, do

for each c, do

if qcsj[k]χ̂csd[k] = 1, then

µesj[k] = µesj[k] + min[Csd, q
c
sj[k]], (6.2)

qcsj[k] =
(
qcsj[k]− Csd

)+
,

χcesdj[k] = 1,

F sej [k] = F sej [k] ∪ {d}.

end if

end for

end for

end for



35

Algorithm 4 continued.

for each Esj ∈ EsPERM , do

We now continue with scheduling the remaining sets of unserviced links -

Esj \F sej [k],

Step 2

for each d ∈ Esj \F sej [k] (in order), do

Find the longest queue qcesdj[k] subject to (3.7) for that cache d. Estimate

the throughput, update the queue and schedule the link as,

µesj[k] = µesj[k] + min[Csd, q
ce
sdj[k]], (6.3)

qcesdj[k] =
(
qcesdj[k]− Csd

)+
,

χcesdj[k] = 1,

F sej [k] = F sej [k] ∪ {d}.

end for

Compute the net estimated throughput for this cache ordering as

µej [k] =
∑

s µ
e
sj[k].

end for

Now find arg maxj µ
e
j [k] and use the schedule ~χej[k] corresponding to this

optimal link ordering as
~̂
χI [k].
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A. Stability and Performance Analysis of the IPMW Policy

Theorem 5. The Iterative Periodic Max-Weight scheduling policy is throughput op-

timal, for all finite refresh periodicities. The average queue length is no greater than

that of the Periodic Max-Weight scheduling policy.

Proof. From the definition of IMWI, it is noticeable that,

µ̃cI∗s [nD] ≥ µ̃c∗s [nD] ∀c, s, n. (6.4)

Further from the definition of IMWP, ∀ χ̂csd[k] = 1,

ˆ̃µcIs [k] = ˆ̃µcs[k], (6.5)

⇒ ˆ̃µcIs [k] ≥ ˆ̃µcs[k]. (6.6)

Using (6.6) and (6.4), it is evident that the real throughput on the links for the

IPMW policy, is greater or, at worst the same as the throughput for the PMW policy

at all instants. Hence for all k, c, s,

µ̃cIs [k] ≥ µ̃cs[k]. (6.7)

Re-writing the drift in 4.19 to involve the real service instead of scheduled service for

the IPMW policy,

∆V = B1 +
∑
c,s

E
[
(qcs[k]) (λcs − µ̃cs[k]) | ~Q[k]

]
(6.8)

= B1 +
∑
c,s

E
[
(qcs[k])

(
λcs − µ̃cIs [k]

)
| ~Q[k]

]
≤ B1 +

∑
c,s

E
[
(qcs[k]) (λcs − µ̃cs[k]) | ~Q[k]

]
.

⇒ ∆V I ≤ ∆V ∗ ≤ 0. (6.9)

Hence the proof follows directly from that of Theorem 3.
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Finally, corresponding to Algorithm 2, we have a version of IPMW coupled with

min-weight evictions, which is also throughput optimal, and which has an average

queue length at most that of PMW with min-weight evictions.

Algorithm 5: IPMW Scheduling with Min-Weight Evictions

At the refresh instants, for all k = lD, schedule based on IMWI as in

Algorithm 4. Evict contents based on,

ec∗d [k] = arg min
ec∗d

∑
c

(∑
s

(qcs[k]pcd[k]Csd)

)
ecd[k] ∀d ∀k,

subject to condition (3.8).

At the inter-refresh instants, for all k 6= lD, schedule based on IMWP as

in Algorithm 4.

B. A Heuristic Variant of IPMW

Perfect Iterative Periodic Max Weight Algorithm

The greater drifts obtained using the iterative PMW algorithm indicate that iterative

queue updates, and ensuring non-zero service on all the links, can rid us of the capacity

wastage problem. Now we propose a heuristic variation of IPMW, wherein we ignore

the question of throughput-optimality of the policy, and try to achieve maximum

possible service on each of the links, at all times. We formulate the Perfect Iterative

Periodic Max Weight Algorithm, which incorporates the Perfect Iterative variants

of MWI and MWP (PIMWI / PIMWP), at the refresh and inter-refresh instants

respectively.

Let us refer to the schedules and the scheduled service as χcPI∗sd [k] / µcPI∗sd [k] for

k = lD and χ̂cPIsd [k] / µ̂cPIsd [k] for k 6= lD.



38

Algorithm 6: Perfect Iterative Periodic Max-Weight Scheduling

At the refresh instants, for all k = lD, at each source s,

Find the longest queue qcPI∗s [k].

for each d ∈ Es (in order), update the queue and schedule the link as, do

qcPI∗s [k] =
(
qcPI∗s [k]− Csd

)+
, (6.10)

χcPI∗sd [k] = 1.

Fetch the missing content and evict arbitrarily subject to (3.8) and (3.9).

end for

At the inter-refresh instants, for all k 6= lD, at each source s, we initially

estimate schedules, queue updates, throughputs without actual implementation,

for each Esj ∈ EsPERM , do

for each d ∈ Esj (in order), do

Find the longest queue qcesdj[k] subject to (3.7) for that cache d. Estimate

the throughput µesj[k], update the queue and schedule the link as,

µesj[k] = µesj[k] + min[Csd, q
ce
sdj[k]], (6.11)

qcesdj[k] =
(
qcesdj[k]− Csd

)+
,

χcesdj[k] = 1.

end for

Compute the net estimated throughput for this cache ordering as

µej [k] =
∑

s µ
e
sj[k].

end for
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Algorithm 6 continued.

Now find arg maxj µ
e
j [k] and use the schedule ~χej[k] corresponding to this

optimal link ordering as
~̂
χPI [k].

We will examine the performance of this policy later via simulations in Chapter

VII.
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CHAPTER VII

SIMULATIONS

We now illustrate the insights from our analytical model by simulating our CDN ab-

straction using C++. We developed a network model with defined attributes such

as the network capacities, arrival rates, eviction periodicities and cache sizes. It is

composed of a clocking mechanism and event coordinator that synchronizes request

arrivals, scheduling, request routing, service, content fetches and evictions and queue

updates at the frontend and rearend nodes. We use the Open Source Linear Program-

ming Solver - lp solve (Version: 5.5.0.15) to compute the SE schedules and evictions

which is a binary integer program.

Fig. 2. Zipf arrival process at a front-end node showing the normalized arrivals of

various content types versus their popularity ranks.

The popularity of each piece of content follows a Zipf distribution, with some
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Fig. 3. A fully connected network topology with all the front-end nodes capable of

routing requests to any of the rear-end nodes.

dominant ones and a large number of less popular ones [16, 17]. Similarly, the popu-

larity of content can vary by geographical region, thus creating different distributions

at each of the frontend nodes. In our simulation, each source node with fixed ar-

rival rates has a different rank distribution over content, and the arrivals take place

proportional to these ranks. A typical rank distribution at a node is illustrated in

Figure (2), with the average normalized arrivals for the different content types in the

increasing order of ranks.

We randomly assign the initial cache contents, network capacities and arrival

rates for the network.

We are interested in the following scenarios:

1. A fully connected CDN, with S = 7, E = 2, C = 16 and B = 10 in Figure 3,

with link capacities chosen arbitrarily. We derived our analytical results for this
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Fig. 4. The Abilene network topology where each node represents a source and an

associated cache. Sources may route requests to neighboring caches.

topology, although they are easily generalized to arbitrary topologies.

2. A CDN topology that follows the Abilene network [18], illustrated in Figure 4.

Sources can access a local cache, as well as other neighboring caches as single-

hop flows only. Links are capacitated, and we have S = 11, E = 11, C = 16

and B = 5. We expect all our analytical insights to also apply in this case. We

varied the eviction periodicity for these two scenarios as 1 ≤ D ≤ 20 time units,

with the total time of simulation T = 12000 time units.

3. The Abilene network in which refresh periodicities are different at different

caches. We set the baseline refresh periods arbitrarily for each of the caches

Dd and then vary them by common multiples to view the variation of the

performance with the entire set of Dd for all policies.
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(a) Fully Connected Topology

Fig. 5. Variation of average queue length with refresh periodicity for different algo-

rithms.

A. Variation of Delays with Eviction Periodicity

We conduct a first set of simulations to illustrate the performance of our routing-

placement-eviction policies as the refresh periodicity increases. We had tied large

(negative) Lyapunov drifts with shorter queue lengths. We now show that such design

is indeed valid from a performance standpoint. In Corollary 2, we had discussed the

increase of the queue backlogs in the system with the refresh periodicity, due to

the factor f(D). Further in Theorem 5, we state the IPMW policy results in the

same or larger drifts ( more departures) than PMW, indicative of smaller delays. In

Chapter V, as per our discussion, Min-Weight eviction strategies with any scheduling

algorithm will always engender shorter queues. We would also like to examine the

performance of JSE and PIPMW in their own regimes.

In Figures 5 and 6, we see that for any network, all scheduling algorithms expe-
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(a) Abilene Network Topology

(b) Heterogeneous Eviction Periodicities

Fig. 6. Variation of average queue length with refresh periodicity for different algo-

rithms.
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(a) Random Eviction Strategy (b) Min-Weight Eviction Strategy

Fig. 7. Performance comparison for eviction strategies for the fully connected topology.

(a) Random Eviction Strategy (b) Min-Weight Eviction Strategy

Fig. 8. Performance comparison for eviction strategies for the Abilene topology.
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rience higher delays with larger refresh periodicities. To get a better picture, Figures

7 and 8 give a clear comparison of all iterative and non-iterative algorithms for the

two eviction strategies. The PMW policy coupled with Random Evictions has the

largest queue lengths, which corresponds to the greatest Lyapunov drift. The PMW

policy with Min-weight evictions performs better, as expected, by our maximizing the

cache weight through appropriate evictions. The iterative versions of both algorithms

(IPMW) outperform the non-iterative ones; again the result follows from Lyapunov

drift arguments. Surprisingly, the heuristic JSE policy that implements a joint ver-

sion of the PMW with Min-Weight evictions, gives lower delays in the system than

the two-step approach. This give us us new insight into the potential advantage that

a coupled approach could have over the two-step approach. Finally, the heuristic

PIPMW algorithm, that ensures full service on all links, does better than IPMW,

independent of the eviction strategy employed.

B. Variation of Delays with Cache Size

We now explore performance variation with the cache size. Intuition suggests that

the decision to cache the “useful” objects and the eviction technique employed play

an important role only when B > Nd,. We studied this facet of the problem using

the Abilene network with homogeneous eviction periods, and varied the cache size as

B ∈ {5, 7, 10} along with D.
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(a) Cache Size B = 5 (b) Cache Size B = 7

(c) Cache Size B = 10

Fig. 9. Variation of average queue lengths with eviction periodicity for variable cache

sizes.

In Figure 9(c) we observe that the queue lengths for all the policies are longer for

smaller caches. Also the delays grow large with D for B = 5, while they remain almost

independent of refresh periodicity for caches as large as B(= 10) >> max[Nd](= 4).

This is understandable since the range of content that is available at cache to schedule

during the refresh periods is more diverse for larger caches.
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For the very same reason, the advantage offered by the Min-Weight eviction

policies in terms of performance is considerable only for small cache sizes of B = 5.

This gain reduces through B = 7 and the eviction policy seems to lose its relevance

for B = 10, where the random policy converges in performance with its Min-Weight

Eviction counterpart.
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CHAPTER VIII

CONCLUSION

In this work we studied algorithms for request routing, content placement, and content

eviction in content distribution networks. We used the abstraction of a switch to

model the CDN, and our objective was to design algorithms that would be throughput

optimal (stabilize the system). Further using insights obtained, we then began our

search for better algorithms that would yield short queues as well, and hence delays.

Our main constraints were finite cache sizes and the periodicities with which content

is refreshed in the caches. We showed how algorithms that engender large negative

Lyapunov drifts in the system are desirable, since such drifts beget short average

queue lengths. We initially developed a scheduling algorithm that used instantaneous

queue length information and performed random evictions. For the same scheduling

algorithm, we then developed an eviction technique that used state information. We

illustrated its superior performance over the former. We also created a regime of

algorithms that uses iteratively updated queue lengths for scheduling, employing the

same eviction strategies developed earlier. We showed that these are more efficient

than their non-iterative counterparts, yielding lower delays. We discussed the use

of two heuristic algorithms in each regime, which could potentially exhibit desirable

performance. Finally, we validated all our results through simulations.

Our current work only accounted for requests with a soft delay tolerance. Future

extensions of this work could possibly include streaming traffic with requests that

have hard delay constraints, and which are dropped if such a constraint cannot be

met. Further, we observed through our simulations that, a coupled approach of

scheduling and evictions is somehow advantageous, giving rise to relatively shorter

delays than the non-iterative two-step algorithms. The inherent conservative nature
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of the heuristic scheme could be the causative factor. Design of joint, low complexity,

throughput-optimal routing and eviction algorithms is yet another area of interest to

be explored.
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