
GENERALIZED SAMPLING-BASED FEEDBACK MOTION PLANNERS

A Dissertation

by

SANDIP KUMAR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2011

Major Subject: Aerospace Engineering

GENERALIZED SAMPLING-BASED FEEDBACK MOTION PLANNERS

A Dissertation

by

SANDIP KUMAR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Suman Chakravorty
Committee Members, Nancy Amato

Raktim Bhattacharya
John Junkins
John Valasek

Head of Department, Dimitris Lagoudas

December 2011

Major Subject: Aerospace Engineering

iii

ABSTRACT

Generalized Sampling-Based Feedback Motion Planners. (December 2011)

Sandip Kumar, B.Tech, Indian Institute of Technology, Kharagpur, India

Chair of Advisory Committee: Dr. Suman Chakravorty

The motion planning problem can be formulated as a Markov decision process

(MDP), if the uncertainties in the robot motion and environments can be modeled

probabilistically. The complexity of solving these MDPs grow exponentially as the

dimension of the problem increases and hence, it is nearly impossible to solve the

problem even without constraints. Using hierarchical methods, these MDPs can

be transformed into a semi-Markov decision process (SMDP) which only needs to

be solved at certain landmark states. In the deterministic robotics motion plan-

ning community, sampling based algorithms like probabilistic roadmaps (PRM) and

rapidly exploring random trees (RRTs) have been successful in solving very high

dimensional deterministic problem. However they are not robust to system with

uncertainties in the system dynamics and hence, one of the primary objective of this

work is to generalize PRM/RRT to solve motion planning with uncertainty.

We first present generalizations of randomized sampling based algorithms PRM

and RRT, to incorporate the process uncertainty, and obstacle location uncertainty,

termed as “generalized PRM” (GPRM) and “generalized RRT” (GRRT). The con-

trollers used at the lower level of these planners are feedback controllers which ensure

convergence of trajectories while mitigating the effects of process uncertainty. The

results indicate that the algorithms solve the motion planning problem for a single

agent in continuous state/control spaces in the presence of process uncertainty, and

constraints such as obstacles and other state/input constraints.

iv

Secondly, a novel adaptive sampling technique, termed as “adaptive GPRM”

(AGPRM), is proposed for these generalized planners to increase the efficiency and

overall success probability of these planners. It was implemented on high-dimensional

robot n-link manipulators, with up to 8 links, i.e. in a 16-dimensional state-space.

The results demonstrate the ability of the proposed algorithm to handle the motion

planning problem for highly non-linear systems in very high-dimensional state space.

Finally, a solution methodology, termed the “multi-agent AGPRM” (MAGPRM),

is proposed to solve the multi-agent motion planning problem under uncertainty. The

technique uses a existing solution technique to the multiple traveling salesman prob-

lem (MTSP) in conjunction with GPRM. For real-time implementation, an “inter-

agent collision detection and avoidance” module was designed which ensures that no

two agents collide at any time-step. Algorithm was tested on teams of homogeneous

and heterogeneous agents in cluttered obstacle space and the algorithm demonstrate

the ability to handle such problems in continuous state/control spaces in presence of

process uncertainty.

v

DEDICATION

To My Parents and My Wife

vi

ACKNOWLEDGMENTS

After working for three years in industry, and living with the feeling that a grad-

uate degree is a must, I landed in College Station four and a half years ago. I met

Dr. Suman Chakravorty and expressed my interest and since then have never looked

back. It has been an awesome journey, with finally the sense of satisfaction, in which

I have grown both on personal and professional front. I would like to gratefully and

sincerely thank my adviser, Dr. Suman Chakravorty, for his continuing guidance,

understanding, and patience during my graduate studies at Texas A&M University.

There were days when I was clueless, days when I was stuck, days when I was down,

days when I got scoldings, but Suman was always there to talk it through and had

continued trust in me that I would come this far. I would really like to thank him for

all the in-depth discussions, those frivolous talks, immensely scientific insights which

has made this dissertation possible today.

I would sincerely like to thank Dr. John Valasek, who has always been there

to monitor the progress and motivate me to work even harder to meet goals and

deadlines. His valuable comments during meetings have been deep rooted in this

work. I would like to thank Dr. Raktim Bhattacharya, who has been an inspiration

and taught me to enjoy my work and research. He was the goto person when I

was in need of ideas or directions beyond research and those discussions were really

helpful. I would like to thank Dr. Nancy Amato and Dr. John Junkins for their

critical comments and guidance. I would also like to thank Dr. Swaroop Darbha and

Dr. Sivakumar Rathinam in Mechanical Engineering, who helped me understand the

working and intricacies of multiple traveling salesman problem in a short duration.

I would also like to thank sponsors of this project, AFOSR.

Two people who has always been there not only as my research group mates but

also as friends and people who have taught me concepts which have been instrumental

throughout this journey, are Roshmik and Ali and I would like to extend my sincere

vii

thanks to them too. I would also like to thank my AFOSR meeting members, Mrinal,

Anshu, Elizabeth, Kenton and Kiron, who have always provided valuable inputs to

my work.

I would also like to thank my friends Gaurav, Nikhil, GV who have made this

journey memorable, enthusiastic and fun.

It has been amazing past one and a half year of marriage and past approximately

six years of knowing my lovely wife and one of my best friend, Vinny, who has shared

her life with me. She has been there always with her immense love and faith in me.

She has tolerated me and loved me even more, I would like to thank her for being

there always. And, last but I guess the most important, I take this opportunity to

thank my lovely and proud mummy and papa, who have always supported me with

their love, patience, guidance throughout my journey. I just want to say to them

that now you can be even more proud as I have finally done it.

viii

TABLE OF CONTENTS

Page

ABSTRACT . iii

DEDICATION . v

ACKNOWLEDGMENTS . vi

TABLE OF CONTENTS . viii

LIST OF TABLES . xi

LIST OF FIGURES . xii

1. INTRODUCTION . 1

1.1 Motivation . 3
1.2 Problem Statement . 5

1.2.1 Problem 1 . 5
1.2.2 Problem 2 . 6

1.3 Previous Work . 7
1.3.1 Related Work : Stochastic/ Uncertain Maps 9
1.3.2 Related Work : Process Uncertainty in Dynamical Models . . 10
1.3.3 Summary . 12

1.4 Dissertation Contributions . 14
1.4.1 Contribution 1 : Generalized PRM (GPRM) & Generalized

RRT (GRRT) . 14
1.4.2 Contribution 2 : Adaptive GPRM (AGPRM) 15
1.4.3 Contribution 3 : Multi-agent AGPRM (MAGPRM) 16

1.5 Dissertation Overview . 16

2. OVERVIEW OF TECHNICAL APPROACH 19

2.1 Markov Decision Process . 19
2.1.1 Sequential Decision Making 19
2.1.2 MDP . 20

2.2 Dynamic Programming . 20
2.2.1 The Basic Problem . 20
2.2.2 Dynamic Programming Algorithm 22

2.3 Configuration Space . 25
2.4 Sampling-Based Motion Planning Algorithm 26

ix

Page

2.4.1 Randomized Sampling Based Motion Planners 27

3. GENERALIZED SAMPLING-BASED MOTION PLANNERS 31

3.1 Introduction . 31
3.2 Solution Approach : Problem 1 . 35
3.3 Generalized Sampling-Based Motion Planners 38

3.3.1 Model . 38
3.3.2 GPRM . 39
3.3.3 GRRT . 44

3.4 Numerical Experiments . 46
3.4.1 Fully Actuated Point Robot 47
3.4.2 Nonholonomic Unicycle Robot 54

3.5 Conclusion . 57

4. ADAPTIVE SAMPLING FOR GENERALIZED SAMPLING-BASED
MOTION PLANNERS . 59

4.1 Introduction . 59
4.2 Generalized Sampling Based Methods 62

4.2.1 Hierarchical Methods and Generalized Probabilistic Roadmaps
(GPRM) . 63

4.2.2 Algorithm GPRM . 66
4.3 Adaptive Sampling . 67

4.3.1 Adaptive Sampling Details . 68
4.4 Results and Discussion . 77

4.4.1 Point Dynamics Robot . 77
4.4.2 n - Link Manipulator . 82

4.5 Conclusions . 89

5. MULTI-AGENT PROBLEM . 90

5.1 Introduction . 90
5.1.1 Characteristics of Multi-Agent System (MAS) 90
5.1.2 Formal Description . 92
5.1.3 Models to tackle MAS . 92
5.1.4 Coordination Problem . 93
5.1.5 Multiple Traveling Salesman Problem (MTSP) 94

5.2 A Class of The Multi-Agent Problems 96
5.2.1 A Class of Multi-Agent Problems in Presence of Uncertainty . 97

5.3 Solution Approach : Problem 2 . 99
5.4 Routing Problem as MTSP . 100

5.4.1 Definitions . 101
5.4.2 Solution of MTSP . 103

x

Page

5.4.3 Solving Multi-Agent Systems in Presence of Uncertainty . . . 104
5.4.4 Multi-Agent GPRM (MAGPRM) Algorithm 108
5.4.5 Probability of Success for MAGPRM 109

5.5 Inter-Agent Collision Avoidance . 110
5.5.1 Definitions . 111
5.5.2 The Algorithm . 114

5.6 Results and Discussion . 116
5.6.1 Vehicle Models Used . 116
5.6.2 Homogeneous Agents . 118
5.6.3 Heterogeneous Agents . 122

5.7 Conclusion . 126

6. CONCLUSION AND FUTURE DIRECTIONS 127

6.1 Contributions . 127
6.1.1 Contribution 1 : Generalized PRM (GPRM) & Generalized

RRT (GRRT) . 128
6.1.2 Contribution 2 : Adaptive GPRM (AGPRM) 128
6.1.3 Contribution 3 : Multi-agent AGPRM (MAGPRM) 129

6.2 Future Directions . 130

REFERENCES . 133

APPENDIX 1. ANALYSIS OF GENERALIZED SAMPLING-BASED MO-
TION PLANNERS . 139

APPENDIX 2. ANALYSIS OF THE COLLISION AVOIDANCE AND DE-
TECTION ALGORITHM . 149

VITA . 152

xi

LIST OF TABLES

TABLE Page

4.1 Result Comparison : Point-Dynamics GPRM with and without Adap-
tive Sampling . 78

4.2 Result Comparison : 3-Link-Manipulator GPRM with and without Adap-
tive Sampling . 84

4.3 5-Link Manipulator - AGPRM Results 87

4.4 8-Link Manipulator - AGPRM Results 88

xii

LIST OF FIGURES

FIGURE Page

3.1 Depicting Hierarchical Planning in Levels (for Single Agent) 36

3.2 Illustration of Robot Motion Under the GPRM Methodology 42

3.3 Comparison of GPRM with Traditional PRM : Map 1 (ps ≡ Probability
of Success) . 48

3.4 Comparison of GRRT with Traditional RRT: Map 1 (ps ≡ Probability of
Success) . 49

3.5 Comparison of GPRM with Traditional PRM: Map 6 (ps ≡ Probability
of Success) . 50

3.6 Comparison of GRRT with Traditional RRT: Map 6 (ps ≡ Probability of
Success) . 51

3.7 Performance of GRRT and GPRM on the Unicycle Robot: Map 1 (ps ≡
probability of success). (a) GPRM, (b) Bundle of final trajectories, with
ps = 100%. (c) GRRT with nonholonomic constraints. (d) Bundle of
final trajectories, with ps = 93.33% . 55

3.8 Performance of GRRT and GPRM on the Unicycle Robot: Map 6 (ps ≡
probability of success). (a) GPRM, (b) Bundle of final trajectories, with
ps = 100%. (c) GRRT with nonholonomic constraints. (d) Bundle of
final trajectories, with ps = 100% . 56

4.1 Transition Cost and Transition Probability 65

4.2 Problem Domain with Free Space, Obstacles, Start, Goal Positions . . . 69

4.3 Categories of New Landmarks Sampled 73

4.4 Adaptive Sampling in Steps, (Build-Up on Figure 4.2) 76

4.5 AGPRM with Point Robot : Map 1 . 79

4.6 AGPRM with Point Robot : Map 3 . 79

xiii

FIGURE Page

4.7 AGPRM with Point Robot : Map 5 . 80

4.8 AGPRM with Point Robot : Map 6 . 80

4.9 AGPRM with Point Robot : Map 9 . 81

4.10 AGPRM with Point Robot : Map 10 . 81

4.11 Three-Link Manipulator . 82

4.12 Configuration and Obstacle Space (* The infeasible region representing
obstacles in the configuration space is hypothetical and for understanding) 83

4.13 AGPRM with 3-Link Manipulator : Map 1 85

4.14 AGPRM with 3-Link Manipulator : Map 2 a 86

4.15 AGPRM with 3-Link Manipulator : Map 2 b (different initial configuration) 86

4.16 AGPRM with 5-Link Manipulator . 87

4.17 AGPRM with 8-Link Manipulator . 88

5.1 Depicting Hierarchical Planning in Levels (for Multi Agents) 105

5.2 MAGPRM Solutions and Trajectories . 120

5.3 MAGPRM Solutions . 121

5.4 MAGPRM with Dubins’ Car and 3D Vehicle with 1-Obstacle 123

5.5 MAGPRM with Dubins’ Car and 3D Vehicle with 5-Obstacles : Case 1 . 124

5.6 MAGPRM with Dubins’ Car and 3D Vehicle with 5-Obstacles : Case 2 . 125

1

1. INTRODUCTION

In recent years, considerable interest has been shown in, and relevant resources

have been devoted to, the design, development and operation of unmanned aerial, un-

derwater, and ground vehicle. The purposes of such unmanned vehicles are extremely

diverse, ranging from scientific exploration and data collection, to commercial ser-

vices, and military reconnaissance and intelligence gathering. Unmanned vehicles

make it possible to perform critical tasks without endangering the life of human pi-

lots. There is a strong perceived need for an increased level of automation, in order

to improve the system’s efficiency, reliability, and safety, and decrease cost. Some

successful examples are, NASA’s Spirit and Opportunity rovers which allow humans

to see and explore surface of Mars, autonomous vehicles that complete the DARPA

“Grand Challenge”, robots on the assembly floor that assemble everything from au-

tomobiles to mp3 players, thereby increasing productivity and decreasing costs. For

helping in mundane tasks such as vacuuming floors, there is the Roomba robot.

A basic problem which has to be faced and solved by autonomous vehicles, on

which this dissertation will focus, is the problem of motion planning. It involves

generation and execution of a plan for moving around an environment towards a

designated goal, or to accomplish a desired task avoiding collisions with obstacles in

the environment. Moreover, it is desirable to optimally use the available resources

to achieve the goal, thereby optimizing some “cost” measure.

There are many established techniques to solve motion planning problem in a

deterministic framework ranging from optimal control method [1], grid world ap-

proachs [2] to randomized sampling based motion planners [2] [3, 4]. However real

world systems are not deterministic and there evolution involves uncertainty due to

surrounding environments or internal parameter variance. Hence, in the real world,

This dissertation follows the style of IEEE Transactions on Systems, Man and Cy-
bernetics - Part B: Cybernetics .

2

these deterministic algorithms are applied along with some trajectory tracking tech-

niques, that accounts for the uncertainty in the system [5].

Another approach to solving motion planning problem is to take uncertainty into

account while solving the problem. Introduction of uncertainty in the motion plan-

ning problem increases the complexity of the problem. Uncertainty in the system can

be due to two scenarios, one due to sensing uncertainty and the other due to process

uncertainty. Sensing uncertainty arrises from sensor noise during measurements or

an uncertain environment, i.e. partial knowledge of obstacle locations in the given

environment. The process uncertainty is the motion uncertainty due to presence of

stochastic forcing in the system dynamics and controls.

Dynamical systems with uncertainty evolves as a stochastic process which has

the Markovian property, i.e the evolution is memoryless and the future and past

states do not influence the system evolution given the current state. The problem

of solving an optimization problem for such a Markovian stochastic process can be

modelled in a mathematical framework termed Markov Decision Process (MDP) [6].

Researchers have attempted to solve MDPs using Dynamic Programming (DP) [7,8]

and Reinforcement Learning (RL) techniques [9]. The DP methods are model-based

methods while RL is a model-free fashion of approaching the same problem.

Introduction of sensing uncertainty in the system, transforms the MDP into a so-

called Partially Observed Markov Decision Process (POMDP) [7,8]. An autonomous

robot, starting in an unknown region leads to the problems of localization (know-

ing the current position with respect to the surrounding), mapping (knowing the

map, given the location) and planning (given the current state and surrounding

map, plan over it). The Simultaneous Localization and Mapping (SLAM) research

community attempts to solve the localization and mapping problem simultaneously.

The researchers in planning community, attempt to solve the planning problem, i.e.

achieving a desired goal given an optimizing cost criteria, and a map of the surround-

3

ing environment. The map can be a deterministic or a stochastic one. The stochastic

map would be an output from a mapping algorithm.

In this dissertation we assume the robot state is known (or can be precisely

determined by sensors, i.e. there is no sensing uncertainty) and we shall focus on the

problem of solving motion planning in presence of process uncertainty over a given

stochastic map (knowledge of obstacle locations on an environment are probabilistic

but stationary over time).

1.1 Motivation

The motion planning problem is a sequential decision making problem and op-

timal control is the most general framework for solving such a problem. We wish

to solve the motion planning problem involving uncertainty in the form of process

uncertainty and stationary stochastic maps. The motion planning problem can be

formulated as a Markov decsion process (MDP), if the uncertainties in the robot

motion and environments can be modeled probabilistically. However MDPs are vir-

tually intractable for anything but small to moderate state spaces as they suffer

from “curse of dimensionality” [10]. It means the complexity of solving MDPs grows

exponentially as the dimensionality of the problem increase and hence it is nearly

impossible to solve even without constraints. Introduction of constraints (which in

robotic motion planning problem framework means obstacles, velocity and accelera-

tion rates, torque and force saturation, and limited domain), there is no structured

technique to accomplish the planning. Hierarchical methods [11, 12] have tried to

resolve the issue of dimensionality by introducing “distinguished states” (we will call

them “landmarks”) and invoking options/ policies at these states that can only ter-

minate at these states. Using this transformation the original large MDP can be

transformed into a semi Markov decision process (SMDP) which needs to be solved

only at these states, and hence, the computational burden is reduced drastically on

the stochastic optimization algorithm.

4

In parallel, deterministic robotic motion planning problems have been solved us-

ing randomized sampling based algorithms [2] (like probabilistic roadmaps (PRM) [3]

and rapidly exploring random trees (RRT) [4]). The essential idea behind these tech-

niques is to sample configurations of the robot in the free configuration space (Cfree)

and attempt to connect them using local planners (like straight line planners) and

hence generate a topological graph G(V,E) with vertices V being the sampled con-

figurations and edges E of the graph being the connecting path between vertices

developed using the local planners. Given the graph, the solution to the motion

planning problem involves discrete search on the developed graph (as in PRM) or

biasing the graph towards the goal configuration (as in RRT). They have proved

extremely powerful in solving high dimensional problems that were previously un-

solvable using traditional deterministic planning techniques. Unfortunately these

techniques were designed for a deterministic framework, and are not robust to sys-

tems with uncertainty. Various attempts have been made to incorporate uncertainty

in the problem : stochastic maps, process uncertainty and sensing uncertainty. These

research will be discussed in the related work section, further in this section.

The motivation of the work in this dissertation is to generalize the PRM method

to sequential decision making problems with process uncertainty and stochastic maps

such that the benefits of PRM may be realized for the robotic motion planning

problem under process and map uncertainty. The solution methodology will involve

design which scales for continuous state space and continuous control spaces, and

will handle constraints in the state space of the robot. Our technique will utilize

feedback solutions to the lowest level local planner of the hierarchical SMDP based

solution technique.

The use of feedback controllers in the presence of uncertainty ensure that the

trajectories converge to the goal location, thus mitigating the effects of process un-

certainty.

5

Our technique will decompose the problem into a two-layer hierarchical SMDP.

The “lowest level” will consist of feedback solutions between landmark states, and

the “top level” consists of a topological graph, with landmarks as vertices, on which

solution is searched (we will be using stochastic DP [7, 8]). Feedback planners of

lowest level provide information (e.g. transition probabilities and costs) to the top

level, and with probabilities involved they induce an MDP at the top level on these

landmark states, resulting in a SMDP, the solution to which can be found using

stochastic DP. Solution to this stochastic DP results in a hybrid feedback solution

to the motion planning problem in presence of process uncertainty and stochastic

maps.

Finally, we would also like to provide the formal analysis of the proposed algo-

rithm in terms of probabilistic completeness, as this being a sampling based motion

planner.

1.2 Problem Statement

In this dissertation, we focus on solving the robotic motion planning problem

in presence of uncertainty, where uncertainty is in the form of process uncertainty

and stochastic maps. Our main goal is to develop a solution which will scale to

continuous state/ control spaces in particular, be able to solve the motion planning

problem under uncertainty for agents/ robots having non-linear dynamics and high

dimensional state spaces.

1.2.1 Problem 1

Given a stochastic map of the environment, where obstacles location probabilities

are static, a robot equipped with a perfect state sensors (i.e. no sensing uncertainty

in robot state), the initial configuration (qI) of the robot, a desired goal configuration

6

(qG), and a minimum required success probability (pmin) in the domain, to solve, the

motion planning problem for the robot in presence of process uncertainty.

In order to solve the motion planning problem, we solve for the control policy

π, i.e. a sequence of control inputs π = {u(:, q1), . . . , u(:, qn)}, where u denote a

feedback control law which is a function of qi, i = 1, . . . , n sampled configurations

(landmarks states) and qn = qG, i.e. the final desired configuration, which will take

the robot from qI to qG through a path which will have a probability of success,

ps, associated with it such that ps > pmin, where pmin is the minimum required

probability of success. The notion of probability of success associated with the path

is important because in presence of process uncertainty, there is an ensemble of paths

between qI and qG and the robot may not succeed with probability 1.

The proposed solution methodology should be applicable to continuous state/

control spaces, high dimensional configuration spaces, and to any general dynamical

system given by:

ẋ = f(x) + g(x)u+ g′(x)w; (1.1)

where u represents the control and w the “process noise/ uncertainty” due to incor-

rect modeling of the system dynamics or errors in the control input.

This problem will be solved in two stages : 1) a general solution methodology will

be developed to solve the motion planning problem for a general dynamical system

as stated above, and 2) improve the efficiency of the proposed solution methodology

in (1) to address dynamical system having high dimensional state spaces.

1.2.2 Problem 2

Given a stochastic map with static obstacle probabilities, a system of N heteroge-

neous robots each equipped with the perfect state sensors, the initial configurations

(qI) of all the robots, a set of m final goal configurations (qG), and a priori specified

7

minimum required success probability (pmin) in the domain, to solve, the motion

planning problem for the set of robots in the presence of process uncertainty such

that at least one robot visits each of the goal locations.

The aim is to generalize the solution of Problem 1 to Problem 2. In this

multi-agent scenario solving the problem involves generating control sequences, for

each of the agent in the multi-agent system (MAS), π = {π(1), . . . , π(N)}, where

π(i), i = 1, · · · , N is the control sequence for the ith agent. The control sequence for

an agent will be defined as stated in the Problem 1. The final paths for each robot

will be associated with a ps > pmin for the environment. This problem involves two

additional sub-problems apart from the basic single agent motion planning problem

: 1) routing problem, i.e. which agent should go to which configuration, and 2)

collision avoidance in between agents.

The N agents considered here are teams of homogeneous and heterogeneous

agents, i.e. the agents might have the different capabilities and different govern-

ing dynamics. This general scenario would incur a heavy computational burden due

to reasons which will be discussed at a later stage of this dissertation.

1.3 Previous Work

Motion planning of robots while avoiding obstacles in the workspace has been

an active area of research for the last several decades in the robotics and artifi-

cial intelligence community. Classical motion planning can roughly be divided into

the following three different deterministic approaches [13]: 1) cell decomposition; 2)

roadmaps; and 3) potential field methods. In potential field methods a collision free

trajectory is generated by the robot according to “forces” defined as the negative

gradient of a potential function. The cell decomposition and roadmap techniques

are deterministic methods, because the environment of the robot is sampled or dis-

cretized in a deterministic manner. However, the problems are PSPACE-hard [2],

and to circumvent this computational complexity, randomized sampling-based meth-

8

ods known as PRMs were introduced [3, 14]. PRM techniques usually do not take

the dynamics of the robotic platform into account, and this case can lead to serious

performance issues. To address these issues, RRT was introduced as a random-

ized sampling based planner that takes into account the dynamics of the mobile

robot [2], [10] while building a tree of dynamically feasible trajectories in the free

space of the robot.

The randomized PRM and RRT techniques have resulted in the solution of

motion-planning problems in very high-dimensional state spaces, which were hitherto

unsolvable using deterministic motion-planning techniques. However, both PRM and

RRT are open-loop planners designed for perfectly known robot models/ workspaces,

and our primary motivation in this work is to generalize these two techniques to gen-

erate feedback motion planners that are robust to uncertainties in the robot motion

model and the map.

Furthermore, the robot motion planning problem can be formulated as an MDP

if the uncertainties in the robot model and the environment are modeled probabilis-

tically. However, MDPs are virtually intractable for anything but small to moderate

state spaces, because they are subject to the famous “curse of dimensionality” [10].

In particular, it is nearly impossible to solve these problems in continuous state and

control spaces even without constraints. In the presence of constraints, there are no

structured techniques for accomplishing the planning. One approach to resolving the

issue of dimensionality is through the use of hierarchical methods, an approach that

is seen in most biological systems. A variety of methods for solving large MDPs in

a hierarchical model-free manner have been developed, and the field of research is

known as hierarchical reinforcement learning (RL) [11,12].

These methods, instead of taking actions, invoke policies or options at each state,

which continue until termination. Moreover, if it is assumed that these temporally

abstract policies can terminate only at one of a few “distinguished states”, then

the original large MDP can be transformed into a significantly smaller SMDP that

9

needs to be solved only at the distinguished states and thus drastically reduces

the computational burden of the dynamic programming algorithms used to solve

the problem. However, following issues are key in the formulation and solution of

an SMDP : 1) how the landmark states are chosen; 2) how the local options are

designed; and 3) how the generalized cost and transition probabilities of the options

are estimated. The model-free techniques estimate the control without estimating

the SMDP parameters through simulation or online training. However, questions 1

and 2 are not addressed in these techniques. In this work we will model the motion

planning problem as a SMDP and will answer the questions posed above.

Further in this section we would like to discuss work closely related to solving

motion planning problem in presence of stochastic maps and process uncertainty.

1.3.1 Related Work : Stochastic/ Uncertain Maps

In this section, we review research related to map uncertainty.

In [15], the need to plan on uncertain maps is addressed. They propose an

uncertainty roadmap, where they maintain an upper and lower bound on the map

probabilities and refine them incrementally as needed.

In [16], a sampling based motion planner was proposed with sensing uncertainty

built into the planning process. This is an utility guided planner and they refined

the uncertain map model using sensing actions.

In [17], an algorithm is proposed to compute motion plans that are robust to

uncertain maps, which is an extension of PRM. The map uncertainty is evaluated

using a feature-based EKF algorithm. Monte Carlo simulations are done for the

open-loop local planner to detect collision and uses A∗ search over the roadmap.

The results shown in the work shows high failure rate for a 3-DOF mobile robot with

uncertain maps.

In [18], a particle RRT (pRRT) algorithm is proposed which can deal with un-

certainty in the model. The RRT is extended using using particle based techniques,

10

i.e. each extension is simulated multiple times under various likely conditions of the

environment. The likelihood of a path involves simulating particles with uncertainty

in domain. The work especially dealt with uncertainty in parameters used to define

the workspace.

1.3.2 Related Work : Process Uncertainty in Dynamical Models

In this section, we consider research that has tried to account for process uncer-

tainty in the planning.

In [19], a medial axis based PRM is proposed, which generates trajectories that

are robust to modeling errors since samples on the medial axis of the plane maximize

their distance from obstacles, however they do not explicitly consider uncertainty in

the PRM.

In [20], a variant of PRM is proposed called the belief roadmap (BRM), which

solves a POMDP and uses a Kalman filter based estimator. This work does not

account for process uncertainty.

In [21], a motion planning algorithm to deal with process uncertainty for non-

holonomic dynamical systems is proposed. Obstacle location uncertainty are solved

using a minimum clearance approach. They pose the overall problem as an MDP,

by discretizing the space as a grid and solve it using DP.

In [22], a stochastic motion roadmap is proposed to deal with process uncertainty.

As a variant of PRM, they sample the configurations and consider discrete actions at

each state, and transition probabilities are calculated. Using these transition proba-

bilities they search the roadmap using DP and also carry the notion of a probability

of success. Hence, they do not consider stochastic maps and the control space is

discrete.

In [23], a planning algorithms is proposed to account for uncertainty in the dy-

namics of the vehicle. They propose a hierarchical planning approach, characterize

noise as a function of controller type, terrain type and control input, introduce er-

11

ror dynamics, assume line follower, and search on the discretized free space using

A* based- ARA* algorithm. The notion of motion uncertainty while following a

trajectory in a corridor is calculated using the distance from the obstacles.

In [24], the problem of planning paths guaranteed to be safe in the presence of

boundedness in process and sensing uncertainty is addressed. They propose a RRT-

based algorithm, set-RRT, which uses set configurations. They attempt to solve

the sensing uncertainty problem and propose to use proprioceptive sensors instead

of exteroceptive sensors and rely on prediction to ensure collision avoidance. Not

considering exteroceptive sensors leads to unbounded growth of belief uncertainty

thereby leading to severe performance degradation and has been noted in [20].

In [25], a technique is proposed to account for uncertainties in the motion primi-

tives used by a maneuver automaton. The framework of a maneuver automaton and

a dynamic programming formulation were extended to explicitly account for uncer-

tainty in each of the motion primitives. The motion primitives considered were trim

conditions and maneuvers and uncertainty was considered in trim parameters and

maneuver displacement and duration.

In [26], uncertainty was considered in sensing, localization and mapping in the

motion planning problem. They propose to use RRT along with simulated particle

based SLAM algorithm to solve this problem. They estimate the collision likelihood

using the particle filter based framework.

It is worth mentioning that [27] introduced the notion of landmark based approach

to solve motion planning problem under uncertainty. They introduced landmarks as

a subset of robot’s configuration space where position sensing and motion control

are perfect, outside which the sensing is null and control is imperfect. They propose

landmark design and an approach to solve the problem using geometrical analysis.

They used grid-based motion planners.

12

1.3.3 Summary

The work mentioned above involved attempts to solve the motion planning prob-

lem in presence of uncertain maps, process uncertainty and sensing uncertainty. This

dissertation addresses motion planning problems in presence of process uncertainty

and stochastic maps.

Uncertain maps are dealt in various fashion including mapping using sensing [16],

refinement of lower and upper bounds in map model [15], Monte Carlo simulations

of local planner [17] and simulating multiple times under various likely condition of

the map [18]. The work in this dissertation uses occupancy grid based stochastic

map, which carry obstacle occupancy probabilities in the grids. We use the map

probabilities while simulating “lowest level” controller in between states to determine

the success probability of a path.

Process uncertainty in the robot motion model has been tackled in various fash-

ion. [19]’s medial axis method, does not include process uncertainty explicitly, lacks

applications to nonholonomic and non-linear dynamical systems. [21] attempts to

solve the underlying MDP using grid based methods, which do not scale to large di-

mensional state spaces. [23] assumes an admissible path and follows it using control

laws involving error dynamics and thus constitutes a localized controller. [24] en-

sures collision avoidance due to process uncertainty by performing prediction using

box sets of configurations, which may not be easy to compute, and uses an open loop

planner, which is not robust to uncertainty. [25] accounts for uncertainties in motion

primitives of a maneuver automaton, which is a simplification of a complicated dy-

namical system and assumes a finite collection of motion primitives. [26] attempts to

solve the planning problem using particle RRT, using open loop planners and parti-

cles carrying the history of motion. And finally [22] does not account for uncertain

maps, and the control space is discrete and known.

The work mentioned covers the current state of work related to uncertain maps

and process uncertainty in the motion model. Apart from the shortcomings men-

13

tioned with individual work, some of the major issues that are not addressed are as

follows:

• A structured way of handling process uncertainty as well as map uncertainty

has not been developed. A way of incorporating process uncertainty into the

planning stage has been proposed in [22], but a robust methodology of han-

dling process uncertainty is not demonstrated, as they used open-loop planners.

They used discrete controls and map uncertainty was not addressed. Hence a

robust methodology of incorporating process and map uncertainty in the plan-

ning stage of the motion planning algorithm has not been addressed.

• In order to solve motion planning problem in presence of uncertainty, an MDP

has to be solved in continuous state and control spaces, none of the work

mentioned has solved a suitably posed MDP in continuous state and control

spaces.

• A general framework for application to robotic motion planning problem in

high-dimensional state space under uncertainty has not been demonstrated.

• No performance guarantees have been provided for the proposed algorithms.

In [22], the error in approximation of the generated probabilities has been

addressed with reference to Voronoi cells, but no performance guarantees of

the proposed algorithms is given.

This work would address the above mentioned open issues related to algorithms

attempting to solve motion planning in presence of process uncertainty and map

uncertainty. The proposed solution methodology will present a structured way of

addressing process and map uncertainty, incorporating the uncertainties in a robust

fashion in the planning stage, addressing the motion planning in continuous state

and control spaces and provide performance guarantees. We also demonstrate the

application of proposed methodology to high-dimensional state spaces. The following

section will list the contributions of this work.

14

1.4 Dissertation Contributions

We have now set the basic foundation for the work in this dissertation. We seek

to solve the robotic motion planning problem in presence of process uncertainty and

stochastic maps with obstacles/ constraints, for a high-dimensional configuration

space, non-linear governing dynamics, and continuous state/ control spaces. The

issues with the current level of work with respect to motion planning under process

and map uncertainty has been listed above in subsection 1.3.3, we would like to

address the shortcomings in this work.

We pose the motion planning problem as an MDP. Furthermore, to incorporate

continuous state/ control spaces with constraints, we convert the high dimensional

MDP in a hierarchical fashion into a discrete state/ control SMDP, thereby solving

the MDPs at a finite number of “distinguished states”.

1.4.1 Contribution 1 : Generalized PRM (GPRM) & Generalized RRT (GRRT)

We generalize the probabilistic roadmaps (PRM) and rapidly exploring random

trees (RRTs) for deterministic robotic motion planning such that the topological

graph construction incorporates “process uncertainty”. This topological graph con-

struction has the randomly sampled “landmark states” as the vertices, and use feed-

back controllers to connect vertices resulting in transition costs/ probabilities.

Traditionally PRMs generate a nominal track which is then tracked in presence of

disturbances using a local feedback control and/ or estimator. In our approach, the

generalized PRM (GPRM), incorporates the feedback controllers into the topological

graph (i.e. roadmaps in PRM) construction phase. Posing the motion planning prob-

lem as a path query, with a desired probability of success from an initial landmark

to a final landmark, that is solved on the developed roadmap using stochastic DP re-

sulting in a computationally tractable solution technique with provable performance

guarantees.

15

The RRTs were introduced as a randomized sampling based motion planner,

that takes into account the dynamics of the mobile robot while building a tree of

dynamically feasible trajectories in the free configuration space of the robot. In prac-

tice, in presence of disturbances, the nominal trajectory is tracked using feedback

controllers. In our approach of developing the generalized RRT (GRRT), the dynam-

ically feasible trajectories incorporate the feedback controllers while expanding the

tree. Incorporating the need for a trajectory to have a desired probability of success

in a domain, leads to a modification of the “tree expansion step” when compared to

the traditional RRTs.

A formal analysis of the generalized sampling-based planners (GPRM and GRRT),

and formal proof of the probabilistic completeness of these planners is presented in

this work.

A preliminary version of this work has been published in IEEE International Con-

ference on Systems, Man and Cybernatics, 2009 (IEEE SMC ’09) [28] and a journal

version has appeared in IEEE Transactions on Systems, Man, and Cybernetics -

Part B: Cybernetics, 2011 [29].

1.4.2 Contribution 2 : Adaptive GPRM (AGPRM)

In order to increase the efficiency of the algorithm, an adaptive sampling tech-

nique is proposed for the GPRM, adaptive GPRM (AGPRM). Intelligent sampling

in these randomized sampling-based framework can result in large speedups when

compared to naive uniform sampling, while expanding the roadmap. We propose

to use the information of transition probabilities, encoded in and unique to these

generalized planners, and bias sampling to improve the efficiency of sampling, and

increase the overall success probability of GPRM.

A preliminary version of this work has been published in the 49th IEEE Confer-

ence on Decision and Control, 2010 (IEEE CDC ’10) [30] and a journal version has

16

been accepted and will appear in Journal of Control Theory and Application, Special

Issue on Approximate Dynamic Programming, 2010.

1.4.3 Contribution 3 : Multi-agent AGPRM (MAGPRM)

We propose the multi-agent GPRM (MAGPRM) to solve the multi-agent motion

planning problem in presence of process uncertainty and stochastic maps, using the

GPRM in conjunction with a multiple traveling salesman problem (MTSP) solution

methodology. Assuming partial observability between agents, i.e. an agent is aware

of only its neighbors, we propose to solve the routing problem discussed in Problem

2 using passive co-ordination by a well proven MTSP solution methodology [31],

wherein the costs of the MTSP problem are from the GPRM, and hence solve the

multi-agent motion planning problem in the presence of uncertainty.

To summarize, we develop a hierarchical generalized sampling-based motion plan-

ners to solve the robotic motion planning problem under uncertainty, in presence

of constraints, high-dimensional configuration space, and continuous state/ control

spaces. Further, we will generalize our proposed solution methodology to the multi-

agent scenario and propose an extended algorithm based on passive co-ordination us-

ing an existing MTSP solution methodology in conjunction with GPRM, to solve the

multi-agent motion planning problem under uncertainty in continuous state/control

spaces.

1.5 Dissertation Overview

The remainder of the dissertation is organized as follows:

Section 2 : In this section we present some basic background material related

to Markov decision process (MDP), dynamic programming (DP) and randomized

sampling based algorithm. We also review sequential decision making, and ran-

domized algorithms : probabilistic roadmaps (PRM) and rapidly exploring random

17

trees (RRTs). We will needs these basic theories to build up our proposed solution

methodology.

Section 3 : In this section, we discuss the need of generalized sampling based

planners which can incorporate process uncertainty and stochastic maps during the

design phase for solving the robotic motion planning problem under uncertainty. We

develop the algorithms generalized PRM (GPRM) and generalized RRT (GRRT)

building upon on the basic PRM and RRT algorithms respectively. We give the

algorithms of the two proposed sampling based planners. We present the simulation

results of application of these planners on idealized point robot and a nonholonomic

Dubin’s car model, and finally we discuss the results and what we achieved by the

proposed planners.

Section 4 : In this section, we discuss the need of improving the efficiency of the

proposed planners and ways of achieving it by using intelligent sampling. We present

a novel adaptive sampling methodology unique to these generalized sampling-based

motion planners (especially GPRM), named the adaptive GPRM (AGPRM). We

give a detailed break down of the proposed methodology and give the algorithms.

We present results of application of AGPRM on idealized point robots and high-

dimensional n-link manipulators. We present a comparison AGPRM with a naive

uniform sampling based GPRM and discuss the results.

Section 5 : In this section, we address the problem of solving the motion planning

problem under uncertainty for a multi-agent system. We briefly present the differ-

ences involved in solving a multi-agent scenario compared to solving a single-agent

scenario. We attempt to model the multi-agent scenario as a routing problem cou-

pled with a single-agent motion planning problem. We pose the “routing problem”

as solving a multiple traveling salesman problem (MTSP). We propose to solve the

multi-agent system motion planning problem by solving the MTSP, using an exist-

ing solution technique, in conjunction of GPRM. Furthermore, we discuss inter-agent

18

collision due to moving agents, and list the inter-agent collision avoidance module

requirement and propose a solution methodology for this problem.

Section 7 : In this section, we present the conclusion and discussions related to

the problems proposed to solve in this work and the corresponding solution method-

ologies and their achievements. We outline the contributions and discuss possible

future extensions of the work.

Appendix 1 : In this appendix, we formally analyze the generalized sampling

based motion planners proposed using Markov chains and give a formal proof of

probabilistic completeness of these planners.

Appendix 2 : In this appendix, we analyze the proposed collision detection and

avoidance module for the multi-agent motion planning problem. A formal proof is

given that this module will ensure the paths of the agents will be inter-agent collision

free.

19

2. OVERVIEW OF TECHNICAL APPROACH

2.1 Markov Decision Process

A Markov decision process (MDP) is a mathematical framework for sequential

decision making problems in stochastic domains [6].

2.1.1 Sequential Decision Making

A finite, discrete sequential decision-making problem can be specified using the

following parameters:

• A discrete time step t

• A finite set of environment states X and a state xt ∈X describes the state of

the world at time step t

• A finite set of actions A, and at ∈ A

• A finite set of observations Ω and ot ∈ Ω provides the agent with the informa-

tion about the current state xt

• A state transition function P : X ×A×X → [0, 1] which gives the transition

probability p(xt|xt−1, at−1) that the system moves to state xt when the action

at−1 is performed in state xt−1.

• An observation function O : X ×A× Ω→ [0, 1] which defines the probability

p(ot|xt, at−1) the agent perceives observation ot in state xt when action at−1

was performed in the previous time step.

• A reward function R : x × A → R, which provides the agent with a reward

rt+1 = R(xt, at) based on the action at taken in state xt.

A common assumption is that the environment has the Markov property, and hence

transition probabilities are given by p(xt|xt−1, at−1).

20

2.1.2 MDP

A Markov decision process (MDP) is a sequential decision-making problem in

which the current state is fully observable to the agent. So an addition assumption

that the set of observations equals Ω = x and the only non-zero observation proba-

bility is p(ot = xt|xt, at−1) = 1. Hence formally, a Markov Decision Process (MDP)

M is defined as a 4-tuple M = (X,A, R, P) where : X is a finite set of |X| = N

states; A is a finite set of actions; R is a reward function R : X ×A 7→ R, such that

R(x, a) represents the reward obtained by the agent in state x after taking action a;

and P is a Markovian transition model where P (x′|x, a) represents the probability

of going from state x to state x′ after taking action a. We assume that the rewards

are bounded, that is, there exists Rmax such that Rmax ≥ |R(x, a)|, ∀x, a.

2.2 Dynamic Programming

2.2.1 The Basic Problem

Given a discrete-time dynamic system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1 (2.1)

where the state xk is an element of a space Sk, the control uk is an element of a space

Ck, and the random “disturbance” wk is an element of a space Dk.

The control uk is constrained to take values in a given nonempty subset Uk(xk) ⊂

Ck, which depends on the current state xk; that is, uk ∈ Uk(xk) for all xk ∈ Sk and

k.

The random disturbance wk is characterized by a probability distribution P (·|xk, uk)

that may depend explicitly on xk and uk but not on values of prior disturbances

wk−1, . . . , w0.

21

We consider the class of policies (also called control laws) that consist of a se-

quence of functions

π = {µ0, . . . , µN−1} (2.2)

where µk maps states xk into controls uk = µk(xk) and is such that µk(xk) ∈ Uk(xk)

for all xk ∈ Sk. Such policies will be called admissible.

Given an initial state x0 and an admissible policy π = µ0, . . . , µN−1, the states

xk and disturbances wk are random variables with distributions defined through the

system equation

xk+1 = fk(xk, µk(xk), wk), k = 0, 1, . . . , N − 1. (2.3)

Thus, for given functions gk,k = 0, 1, . . . , N , the expected cost of π starting at x0 is

Jπ(x0) = E
{
gN(xN) +

N−1∑
k=0

gk(xk, µk(xk), wk)
}

(2.4)

where the expectation is taken over the random variables, wk and xk. An optimal

policy π∗ is one that minimizes this cost; that is,

Jπ∗(x0) = min
π∈Π

Jπ(x0), (2.5)

where Π is the set of admissible policies.

Note that the optimal policy π∗ is associated with a fixed initial state x0. However,

an interesting aspect of the basic problem and of dynamic programming is that it

is typically possible to find a policy π∗ that is simultaneously optimal for all initial

states.

22

The optimal cost depends on x0 and is denoted by J∗(x0); that is,

J∗(x0) = min
π∈Π

Jπ(x0). (2.6)

It is useful to view J∗ as a function that assigns to each initial state x0 the optimal

cost J∗(x0) and call it the optimal cost function or optimal value function.

2.2.2 Dynamic Programming Algorithm

The dynamic programming (DP) technique rests on a very simple idea, the prin-

ciple of optimality [7].

Principle of Optimality

Let π∗ = µ∗0, µ
∗
1, . . . , µ

∗
N−1 be an optimal policy for the basis problem, and assume

that when using π∗, a given state xi occurs at time i with positive probability.

Consider the subproblem whereby we are at xi at time i and wish to minimize the

“cost-to-go” from time i to time N

E
{
gN(xN) +

N−1∑
k=i

gk(xk, µk(xk), wk)
}
.

Then the truncated policy {µ∗i , µ∗i+1, . . . , µ
∗N − 1} is optimal for this sub-problem.

The intuitive justification of the principle of optimality is very simple. If the

truncated policy µ∗i , µ
∗
i+1, . . . , µ

∗
N−1 were not optimal as stated, we would be able to

reduce the cost further by switching to an optimal policy for the subproblem once

we reach xi.

Dynamic Programming (DP)

The principle elements of a problem in DP are:

23

1. A discrete-time dynamic system whose state transition depends on a control.

Assume n states and at state i the control must be chosen from a given finite

set U(i) and the choice of control u specifies the transition probability pij(u)

to the next state j.

2. A cost that accumulates additively over time and depends on the visited states

and the controls chosen. At the kth transition, we incur a cost αkg(i, u, j),

where g is a given function, and α is a scalar with 0 < α ≤ 1, called the

discount factor.

We are interested in policies, that is sequence π = {µ0, µ1, . . .} where each µk is a

function mapping states into controls with µk(i) ∈ U(i) for all states i. Let us denote

by ik the state at time k. Once a policy π is fixed, the sequence of states ik becomes

a Markov chain with transition probabilities

P (ik+1 = j|ik = i) = pij(µk(i)). (2.7)

We can distinguish between finite horizon problems, where the cost accumulates

over a finite number of stages, say N , and infinite horizon problems, where the

cost accumulates indefinitely. In N -stage problems the expected cost of a policy π,

starting from an initial state i, is

JπN(i) = E

[
αNG(iN) +

N−1∑
k=0

αkg(ik, µk(ik), ik+1)

∣∣∣∣i0 = i

]
(2.8)

where αNG(iN) is a terminal cost for ending up with final state iN , and the ex-

pected value is taken with respect to the probability distribution of the Markov

chain {i0, i1, . . . , iN}. The distribution depends on the initial state i0 and the pol-

24

icy π, as discussed earlier. The optimal N -stage cost-to-go starting from state i, is

denoted by J∗N(i); that is,

J∗N(i) = min
π
JπN(i). (2.9)

The costs J∗N(i), i = 0, . . . , n, can be viewed as the components of a vector J∗N , which

is referred to as the N-stage optimal cost-to-go vector.

In infinite horizon problems, the total expected cost starting from an initial state

i and using a policy π = µ0, µ1, . . . is

Jπ(i) = lim
N→∞

E

[N−1∑
k=0

αkg(ik, µk(ik), ik+1)

∣∣∣∣i0 = i

]
(2.10)

The optimal cost-to-go starting from state i is denoted by J∗(i) that is,

J∗(i) = min
π
Jπ(i). (2.11)

The costs J∗(i), i = 0, . . . , n, as the components of a vector J∗, referred to as the

optimal cost-to-go vector.

The DP algorithm states that the optimal control choice with k stages to go

must minimize the sum of the expected present stage cost and expected optimal cost

J∗k−1(j) with k − 1 stages to go, appropriately discounted by α; that is,

J∗k (i) = min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αJ∗k−1(j)), i = 1, . . . , n. (2.12)

Infinite horizon problems represent a reasonable approximation of problems involving

a finite but very large number of stages. Since the infinite horizon cost of a given

policy is the limit of the corresponding N -stage costs as N →∞, the following holds:

25

1. The optimal infinite horizon cost-to-go is the limit of the corresponding N -stage

optimal cost-to-go as N →∞, that is

J∗(i) = lim
N→∞

J∗N(i) (2.13)

for all states i.

2. The following limiting form of the DP algorithm holds for all states i

J∗(i) = min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αJ∗(j)), i = 1, . . . , n. (2.14)

This is a system of equations (one equation per state), which has a solution the

optimal costs-to-go for all the states. This is referred to as Bellman’s equation.

3. If µ(i) attains the minimum in the right hand side of the Bellman’s equation

for each i, the stationary policy µ is optimal.

2.3 Configuration Space

The state space of a robot/dynamical system for motion planning is a set of

possible transformations that could be applied to it. This is referred as the configu-

ration space, or C-Space [2]. With n degrees of freedom, the set of transformations

is mostly a manifold of dimension n, and is referred to as the configuration space.

Hence in order to solve a motion planning problem, algorithms must search in this

C-space.

In presence of obstacles, the configurations that either collide, cause the robot to

collide with obstacles or have some specified links of the robot to collide with each

other, which need to be removed from the C-space. The removed part of C is referred

to as obstacle region. A motion planning algorithm must search for a path in this

remaining space from an initial configuration to a goal configuration.

26

Let W denote the workspace, which could be either 2D or 3D. Let q ∈ C denote

the configuration of A, where A represents the transformed configurations of a robot

in the given workspace W , and the obstacle region be denoted by O, which is also

O ∈ W . The obstacle region, Cobs ⊆ C, is given by:

Cobs = {q ∈ C|A(q) ∩ O 6= ∅}, (2.15)

which is the set of all configurations, q, at which A(q), the transformed robot inter-

sects the obstacle region, O.

The remaining configurations are called the free space, which is defined by Cfree =

C\Cobs. Hence this region denotes all the possible configurations of the robot which

are safe, and motion planning has to be solved by searching for a path in this space.

2.4 Sampling-Based Motion Planning Algorithm

In the book by Lavalle [2], sampling based motion planning algorithms were

discussed in detail.

One of the major philosophies of addressing the motion planning problem, is the

sampling-based motion planning. The main idea is to avoid the explicit construction

of the obstacle space, i.e., the Cobs, and instead perform a search that check/ probe

the C-space with a sampling scheme. The probing is enabled using a collision de-

tection module. This enables the development of motion planning algorithms that

do not depend on any particular geometric models of the work space. This general

philosophy has been instrumental in solving, in these recent years, problems ranging

from robotics, manufacturing to applications in biology. Problems solved using these

sampling based algorithms were practically impossible to solve, when trying to solve

using techniques which explicitly represent Cobs.

The algorithms involving sampling based methods suffer from the drawback that

they can give weaker guarantees that the problem will be solved. An algorithm is

27

considered complete given any input it reports perfectly whether there exist is a

solution in a finite amount of time. If solution exists, it must return it in finite time.

Unfortunately sampling based motion planning cannot achieve completeness but they

follow a weaker notion of completeness. The notion of denseness is important, which

means that the samples come arbitrarily close to any configuration as the number of

iterations or as the number of samples tends to infinity. A deterministic approach

in which one samples densely is called resolution complete. Many of the sampling

based techniques are based on random sampling on configurations, which is dense

with probability one. This leads to algorithms that will be probabilistically complete,

which means with enough samples, the probability that the algorithm will find an

existing solution converges to one.

2.4.1 Randomized Sampling Based Motion Planners

Randomized Sampling based methods were introduced to provide approximate

solutions, while avoiding the prohibitive cost of computing the exact representation

of the free space. Randomized motion planners, such as the Probabilistic Roadmap

(PRM) [3] and the Rapidly Exploring Randomized Tree (RRT) [4] have been very

successful in solving planning problems for robots with many degress of freedom,

problems that were previously considered intractable. However, these algorithms

depend on having a complete and accurate model of the world.

It has been shown experimentally that when problem dimensionality increases,

randomized sampling and planning methods fare better than deterministic methods

with respect to computational complexity [32].

Probabilistic Roadmaps (PRM)

When a single start-goal pair is provided to the planning algorithm, it is called

the single query version of the motion planning problem. Whereas, in a motion plan-

28

ning problem suppose numerous start-goal queries are provided, while keeping the

robot motion model and the locations of the obstacles fixed, then this is called mul-

tiple query version. A general framework was introduced as probabilistic roadmaps

(PRMs), in which the end-goal is to build/construct a topological graph called a

roadmap, which will efficiently solve the multiple start-goal queries. The probabilis-

tic aspect is due to the randomization of sampling configuration in the C-space.

Let G(V,E) represent a topological graph in which V is a set of vertices and E is

the set of paths that map into Cfree. The algorithm has been discussed and listed in

the Planning Algoirthms book by Lavalle [4]. There are two phases of computation:

Preprocessing Phase During this phase, need to build G, which is also called a

roadmap and it should be accessible from every part of Cfree. In this phase generate

collision free samples, connect a sampled configuration to neighboring samples using

a local planner.

Algorithm 2.1: PRM : Construction/ Preprocessing Phase

G.init(), i← 0;1

while i < N do2

if α(i) ∈ Cfree then3

G.add vertex(α(i)),i← i+ 1;4

foreach q ∈ neighborhood(α(i),G) do5

if not G.same component(α(i), q) and connect(α(i), q) then6

G.add vertex(α(i), q);7

Query Phase In this phase, a pair of configurations, qI (start) and qG (goal), is

given. Each configuration must be able to connect easily to G using a local planner.

Once connected, need to perform a discrete search over the roadmap to obtain a

sequence of edges that forms a path from the start, qI to goal, qG. In this phase it

29

is assumed that G is complete enough to answer any number of incoming queries,

i.e., the roadmap is resolution complete. After the query comes, the qI and qG are

connected successfully to existing vertices in the existing roadmap G, and then a

search over this updated roadmap is performed for the path that connects the vertex

qI to the vertex qG. The path in the graph/roadmap corresponds to a path in Cfree,

which hence will be the solution to the query.

Researchers have analyzed the performance of this sampling-based roadmaps al-

gorithm. Narrow channels in Cfree poses a challenging planning problem for this

sampling-based roadmap algorithms. They have provided metrics to understand the

difficulty level of these planners, but these metrics are difficult to apply to any par-

ticular problem to determine whether the proposed algorithm will perform well or

not.

Rapidly Exploring Random Trees(RRT)

For a single query case, the faster you search the solution the better it is. RRTs are

built in an increment fashion in a way that quickly reduces the connecting distance

of a randomly-chosen point (a random configuration) to the existing tree. RRTs are

suited particularly for motion planning problems, that involve obstacles and differ-

ential constraints (nonholonomic and kinodynamic) [4]. The idea is to incrementally

build a tree, on which a solution can be searched, that gradually improves the reso-

lution needed for the domain but it does not need to set/provide any such resolution

parameters, explicitly. As the number of such sampled random points tends to in-

finity, the tree densely covers the domain of work space. As given in the publication

30

in which RRT was introduced [4], the algorithm is :

Algorithm 2.2: RRT Algorithm

Data: initial configuration qinit, number of vertices to be constructed k,

increment allowed ∆q

G.init(qinit);1

for i = k do2

qrand ← RAND CONF();3

qnear ← NEAREST VERTEX(qrand,G);4

qnew ← NEW CONF(qnear,∆q);5

G.add vertex(qnew);6

G.add edge(qnear, qnew);7

The RAND CONF() function samples random configurations in Cfree, by using

a collision detection module to reject samples which intersect with the obstacles or

in Cobs. The function NEAREST VERTEX() gives the configuration on the tree

which is near to this new random sample generated. The function NEW CONF()

generates a new configuration qnew, by traveling from qnear an incremental distance

∆q, in the direction of this randomly sampled configuration, qrand. If any differential

constraints exists for the robot motion model, then these new configurations can be

generated using numerical integration techniques. Finally in the existing tree a new

vertex, qnew and a new edge is added from qnear to qnew. For a motion planning

problem the RRT can be biased towards the goal configuration.

31

3. GENERALIZED SAMPLING-BASED MOTION PLANNERS*

3.1 Introduction

In this section∗, generalized versions of the traditional probabilistic sampling

based planners-the probabilistic roadmap (PRM) and the rapidly exploring random

tree (RRT) -are presented. The traditional techniques are generalized to take into

account uncertainties in the robot motion model and in the obstacle locations in the

map. These techniques result in hybrid hierarchical feedback planners in the state

space of the robot. The algorithms are analyzed to show that they are probabilistic

complete, i.e. they generate hybrid planners with a guaranteed minimum probability

of success if such a planner exists. Experiments are performed on an idealized planer

holonomic point robot and on a nonholonomic unicycle robot, and results show that

the performance of the generalized planners, in terms of their probability of success,

is significantly improved compared to the traditional techniques.

Motion planning of robots while avoiding obstacles in the workspace has been an

active area of research for the last several decades. Classical motion planning can

roughly be divided into the following three different deterministic approaches [13]: 1)

cell decomposition; 2) roadmaps; and 3) potential field methods. The cell decomposi-

tion and roadmap techniques are deterministic methods, because the environment of

the robot is sampled or discretized in a deterministic manner. However, the problems

are PSPACE-hard [2], and to circumvent this computational complexity, randomized

sampling-based methods known as PRMs were introduced [3], [14]. PRM techniques

usually do not take the dynamics of robotic platform into account, and this case can

lead to serious performance issues. To address these issues, RRT was introduced

as a randomized sampling based planner that takes into account the dynamics of

the mobile robot [2], [10] while building a tree of dynamically feasible trajectories

∗Reprinted with permission from “Generalized sampling-based motion planners”, by S. Chakravorty
and S. Kumar, 2011, IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics,
41(3):855 c©2011 IEEE

32

in the free space of the robot. The randomized PRM and RRT techniques have

resulted in the solution of motion-planning problems in very high-dimensional state

spaces, which were hitherto unsolvable using deterministic motion-planning tech-

niques. However, both PRM and RRT are open-loop planners designed for perfectly

known robot models/ workspaces, and our primary motivation in this dissertation

is to generalize these two techniques to generate feedback motion planners that are

robust to uncertainties in the robot motion model and the map. Because PRM and

RRT helped solve motion planning problems in high dimensions, we expect that the

generalized techniques-the generalized probabilistic roadmaps (GPRM) and the gen-

eralized rapidly exploring random tree (GRRT)-will help us solve feedback motion

planning problems in high dimensional state spaces under uncertainty (in fact, using

existing techniques, these problems can only be solved in low-dimensional or discrete

state and control spaces). The GPRM and GRRT techniques are closely related to

Markov decision process (MDPs), sequential composition (SC), and other general-

ized versions of the PRM. In the following discussion, we examine the relationship

between our techniques and the following seemingly disparate planning techniques :

1)MDPs; 2)SC; and 3) other generalized PRMs.

The robot motion planning problem can be formulated as an MDP if the uncer-

tainties in the robot and the environment are probabilistically modeled. However,

MDPs are virtually intractable for anything but small to moderate state spaces,

because they are subject to the famous “curse of dimensionality” [10]. In particu-

lar, it is nearly impossible to solve these problems in continuous state and control

spaces even without constraints. In the presence of constraints, there are no well

established techniques for accomplishing the planning. One approach to resolving

the issue of dimensionality is through the use of hierarchical methods, an approach

that is seen in most biological systems. A variety of methods for solving large MDPs

in a hierarchical model-free manner have been developed, and the field of research

is known as hierarchical reinforcement learning (RL) [11], [12]. These methods, in-

33

stead of taking actions, invoke policies or options at each state, which continue until

termination. Moreover, if it is assumed that these temporally abstract policies can

terminate only at one of a few “distinguished states”, then the original large MDP

can be transformed into a significantly smaller SMDP that needs to be solved only at

the distinguished states and thus drastically reduces the computational burden of the

dynamic programming algorithms used to solve the problem. However, these issues

are key in the following formulation and solution of an SMDP : 1) how the landmark

states are chosen; 2) how the local options are designed; and 3) how the cost of

operation and transition probabilities of the options is estimated. The model-free

techniques estimate the control without estimating the SMDP parameters through

simulation or online training. However, questions 1 and 2 are not addressed in these

techniques. We answer the aforementioned three questions by proposing GPRM,

which can be interpreted as a principle technique for specifying an SMDP as follows:

1) randomizing the selection of the landmark states; 2) designing the local options

using traditional feedback control system design techniques; and 3) evaluating the

cost of operation and probability of success of the local options through Monte Carlo

simulations. Our method is the only technique for stochastic control that is ap-

plicable to continuous state or action spaces in a computationally tractable manner

compared to the majority of the existing MDP and SMDP solution techniques, which

deal with finite-state and action-space problems such as grid-world navigation. Fur-

thermore, our method can handle constraints in the state space of the robot, which,

to the best of our knowledge, cannot be accomplished by any existing technique.

The methodology advocated in this dissertation for robot motion planning is

related to the SC methods [33, 34, 35] for deterministic robotic systems. In these

methods, a global control policy (e.g. for stabilization and tracking) is designed by

concatenating local policies with smaller (local) domains of operation. Applications

of these methods to robotic systems can be found in [36, 37, 38]. These papers ad-

vocate the design of local planners using traditional control techniques and stitching

34

them together using a higher level graph that shows the interconnection of these local

policies to form a global policy. These methods form a covering of their workspace

in a deterministic manner and attempt to cover the entire workspace of the robot

with the domains of attractions of the local controllers. In contrast, our approach

(GPRM) samples the workspace in a randomized manner and constructs an SMDP

on the sampled landmarks to solve the higher level planning problem. Thus, it

fundamentally differs from SC methods in the way that the higher level planner is

constructed and its parameters are estimated. Moreover, our methods are particu-

larly designed to handle systems with probabilistic models of uncertainty and proven

to be robust to these uncertainties, which is not the case with SC methods.

There have been several attempts in the last few years to generalized PRM and

RRT methodologies to handle robot motion and map uncertainties [17,16,18,20,15].

In [17], [16] and [15], various computationally efficient ways of generalizing PRMs

to account for map uncertainty are devised. In [18] a method based on tree prun-

ing is proposed to account for parametric uncertainty in the motion model. In [20],

sensing uncertainty in linear systems is considered, and a sampling based method

using covariance factorization is developed to solve the problem. All the aforemen-

tioned methods result in open-loop controllers and thus, in the presence of process

uncertainty in the motion model, cannot be robust. Our generalized techniques re-

sult in hybrid feedback controllers and hence are robust to the process uncertainty

in the robot motion models. Moreover, we provide performance guarantees for our

techniques : if feasible, we prove that a minimum allowable probability of success is

achieved as the number of samples increases.

The generalized techniques presented here can be interpreted as a unifying frame-

work for the seemingly disparate planning techniques of PRMs, MDPs and SC. The

contributions of this dissertation in this section are given as follows:

1. We develop the randomized hybrid hierarchical techniques GPRM and GRRT

for the solution of constrained feedback motion planning problems with con-

35

tinuous state and control spaces under stochastic models of uncertainty, which

generalizes the PRM and RRT algorithms for deterministic motion planning.

2. We rigorously establish performance guarantees in terms of a minimum desired

probability of success of the feedback planners by analyzing the absorption

probabilities of the underlying Markov chains into certain failure sets.

The techniques are extensively tested on holonomic and nonholonomic systems in

several maps of varying degrees of difficulty to validate the theoretical performance

guarantees. To the best of our knowledge, such solutions to constrained stochastic

control problems in continuous state and action spaces is absent from the literature.

A preliminary version of this work has been published in IEEE International Con-

ference on Systems, Man and Cybernatics, 2009 (IEEE SMC ’09) [28] and a journal

version has appeared in IEEE Transactions on Systems, Man, and Cybernetics -

Part B: Cybernetics, 2011 [29].

3.2 Solution Approach : Problem 1

The robotic motion planning problem stated in Problem 1 (refer subsection 1.2.1),

can be formulated as a Markov decision process (MDP), if the uncertainties in the

robot motion and environments can be modeled probabilistically. This MDP becomes

infinite dimensional if considered in continuous state and control spaces. Using hi-

erarchical methods this infinite dimensional MDP can be modeled as semi Markov

decision process (SMDP), which involve solving the MDP at some “distinguished

states” which we will call as landmark states.

A hierarchical-based generalized sampling-based motion planners will be devel-

oped (Figure 3.1) and details of the development will be discussed in section 3.3.

These generalized sampling-based motion planners are generalization of probabilistic

roadmaps (PRM) and rapidly exploring random tree (RRT) and are called General-

ized PRM (GPRM) and Generalized RRT (GRRT) respectively.

36

Fig. 3.1. Depicting Hierarchical Planning in Levels (for Single Agent)

37

The solution methodology proposed in these generalized sampling based motion

planners involve :

• sample configurations (landmarks) from the free configuration space, the method

of doing this differs in GPRM and GRRT (Cfree),

• find a feedback based control solution to transition of robot from one landmark

state to another, (the lowest level planner)

• estimate the transition cost/ probabilities for each of these transitions by using

the stochastic maps provided and Monte Carlo simulations.

• Generate a topological graph G(V,E) using the sampled landmarks (V) and

the connections (E) made.

• Run stochastic dynamic programming (DP) (the top level planner), an opti-

mization algorithm over the developed graph to get solution in GPRM

• Keep developing the graph till the start configuration is connected to the de-

sired goal configuration in GRRT

• Ensure the probability of the final path achieved either in GPRM or GRRT,

has probability of success ps associated with it and it maintains ps > pmin,

where pmin is a priori specified for a given environment and is the minimum

acceptable success probability for any path solution.

There is a collision detection module which ensures that the sampled configu-

rations q are obstacle free i.e. p(O|q) = 0, where O represents the obstacles and

also the path (the edge on G) generated by the lowest level planner (the feedback

solution) in between two configurations or landmarks have a pedge > 0. This collision

detection module has the stochastic map provided as the input.

Furthermore, to develop efficient algorithm to address high dimensional dynam-

ical systems, a novel adaptive sampling methodology is developed and discussed in

38

Section 4. The novel methodology developed has been extended to GPRM case and

can be extended to GRRT but has not been developed and discussed. The adaptive

sampling methodology is specific to the generalized sampling based motion planners

developed because of the transition probabilities information encoded in the solution

of GPRM and hence uses this information to improve the subsequent sampling to

solve the motion planning problem efficiently.

3.3 Generalized Sampling-Based Motion Planners

In this section, we present the generalized sampling-based motion planners, GPRM

and GRRT, which extend the traditional PRM and RRT algorithms to systems with

uncertainty. In the following sections, we first formulate the uncertainty models,

followed by a detailed description of the generalized algorithms.

3.3.1 Model

The generalized sampling-based algorithms require an uncertainty model for both

the motion of the robot and a model for map uncertainty. In the following discussion,

we outline the models that are used in this section of the dissertation.

We assume that the dynamics of the mobile robot are specified by the following

white-noise-perturbed stochastic differential equation :

ẋ = f(x) + g(x)u+ h(x)w (3.1)

where x represents the state of the robot, w represents the white noise perturbation,

and u represents the control input to the robot. The aforementioned equation is

a nonparametric model of uncertainty in the robot motion model and will be used

throughout this dissertation for the lowest level control law designs.

39

We assume that the uncertainty in the map is specified through a binary occu-

pancy value p(O/y), i.e. the probability that there is a obstcle at the point y in the

map. The occupancy values in the map can be considered the output from a mapping

algorithm. However, in this dissertation, we shall not cover the mapping algorithm

and assume that a map with binary occupancy values is provided to the planner

by some suitable mapping algorithm. The state of the robot consists of x = (q, q̇),

where q represents the configuration of the robot, and q̇ represents the generalized

velocities. The free region in the map induces a free region in the configuration

space, e.g. Cfree. This case means that any state whose configuration is in Cfree is

safe. This condition, in turn, induces a free space in the state space of the robot, e.g.

Xfree. From now on, we will assume that, for GPRM and GRRT, we are sampling

equilibrium states, i.e. states wherein the velocities are zero, in the free state space

Xfree.

Furthermore, we shall assume in this dissertation that the state of the robot is

perfectly known. The case of imperfect state observation will be considered in future

research.

3.3.2 GPRM

In motion planning, the objective is to plan the path of a robot from a start state

to an end state. PRM attempts to accomplish this condition by the following two

approaches:

1. randomly sampling the state space of the robot, and

2. connecting every sampled point with its k-nearest neighbors using some local

open-loop planner such as a straight line planner while checking for collisions

with obstacles.

The result of PRM is a graph or roadmap on the workspace of the robot that contains

the feasible connections between the sampled points in the state space. The problem

40

is solved if there exists a path on the graph that connects the start and the goal states;

otherwise, more points are sampled in the state space of the robot until a graph that

contains such a feasible path is found. In the case of systems with uncertainty, it

may be impossible to find a path that succeeds with probability 1, and hence, we

are interested in finding paths that have a success probability above a prescribed

minimum threshold pmin. The algorithm is analyzed and later in this work shown

to be probabilistic complete. Hence if there exist a path with probability of success

greater than pmin, the algorithm will find it with probability 1. In situations when

the algorithm is applied to maps with no possible solution, the algorithm will stop

after a large number of iterations and return failure.

The pseudo-code for the GPRM algorithm is shown as follows. As shown in the

pseudo-code, steps 2-3 and 5 are different from the traditional PRM algorithm. In

the following sections, we discuss these steps of the algorithm in detail.

Algorithm 3.1: GPRM Algorithm

Data: the start state x0, the goat state xg, the minimum probability of

success pmin

Initialize the GPRM with nodes x0 and xg;1

for ps > pmin do2

Sample equilibrium states in Xfree probabilistically using a uniform3

distribution ;

Grow the GPRM by connecting every sampled state in the domain with it4

k-nearest neighbors using suitable obstacle-free feedback controllers;

Evaluate the cost of every connection in the resulting graph using Monte5

Carlo simulations;

Plan on the resulting graph using the evaluated edge cost from step 5;6

Evaluate the probability of success ps of the resulting path from step 6,7

and set ps = 0 if there is no path.;

41

Step 4: Given the robot dynamics as defined in the previous section and some

equilibrium point xg in the state space of the robot, there exists a feedback controller

u(., xg) such that the robot can be controlled into a neighborhood of the point xg with

some (high) probability, in the presence of the stochastic disturbance forces and in

the absence of any obstacles in the map. Note here that the equilibrium point of the

robot xg corresponds to some location in the map that the robot needs to reach. Let

Ωxg denote a neighborhood of the point xg. Then, the aforementioned case implies

that the probability of the state of the robot p(x(t)) is mostly concentrated in the

region Ωxg as t→∞.

Step 5: The feedback controller that we design for controlling the robot from one

node to another is for an obstacle free map, and hence, there is no guarantee that

the controller will succeed in connecting the two nodes in the presence of obstacles.

Thus, we need to test the controller through repeated simulations to evaluate its

probability of success. This condition can precisely be stated as follows. Given a

start node xi and a target node xj, we may evaluate the probability of success of the

local controller u(:, xj) in connecting the nodes as follows. Recall that we are never

sure to be in either landmark xi or xj due to uncertainty in the system. Hence, the

feedback controller to control the system from xi → xj is turned on when the state of

the robot enters some prespecified neighborhood of xi, e.g. Ωi, and turned off when

the state of the robot enters some neighborhood of the node xj, e.g. Ωj, at which time

the feedback controller, to get it to one of the neighboring nodes of xj, is switched on

(this situation is shown in Figure 3.2). Let one particular instance of a trajectory, e.g.

the Nth instance, which goes from Ωi → Ωj under the feedback controller u(:, xj),

be x
(N)
0 , . . . , x

(N)
t(N), where t(N) denotes the time that the controller terminates. This

time t(N) is stopping time and is a random variable, because it depends on the

particular realization. The probability of success of the Nth realization is given by :

42

pij,(N)
s = (1− p(O/x(N)

0)) · · · (1− p(O/x(N)
t(N))) (3.2)

where, as aforementioned, p(O/x) is the occupancy probability that there is an ob-

stacle at the point x in the state space of the robot. In addition, we can find the

cost of the plan from xi to xj, c
(N)
ij in terms of physical variables such as fuel and

time. Then, if we do repeated simulations, the probability of success and cost of the

controller u(:, xg) in controlling the robot from xi to xj can be approximated as :

pijs ≈
1

M

M∑
N=1

pij,(N)
s (3.3)

cijs ≈
1

M

M∑
N=1

cij,(N)
s (3.4)

Fig. 3.2. Illustration of Robot Motion Under the GPRM Methodology

43

Due to law of large numbers, it follows that, as M → ∞ the aforementioned

estimates converge too the true values of the parameters. Given the probability of

success of a controller in connecting nodes xi and xj and the cost in successfully

connecting them, the cost of the edge connecting the nodes xi and xj in the graph

is give by :

cij = pijs c
ij
s + (1− pijs)cF (3.5)

where cF is some heurestically defined, suitable high cost of failure. The aforemen-

tioned equation allows to evaluate the edge costs in the graph that is formed by

connecting any node to it k-nearest neighbors.

Step 7 : In tradition PRM, if we find a path from the start node to the goal

node, the planning problem is solved. However, in the presence of uncertainty, we

have to ensure that the probability of success of the path planned on the graph is

above the minimum threshold value of pmin. Thus, it is not necessary that, if there is

a path from the start node to the goal node, it has the minimum required probability

of success. This case has to be tested. Thus, once a minimum cost path is found

on the graph according to the edge costs as previously defined, the probability of

success of the individual segments of the path, which in turn, is from step 5. Thus, if

the success probability is higher than the threshold, the planning problem is solved;

otherwise, more points have to be sampled in the state space.

Remark 1. The feedback controller is designed for a workspace without any obstacles,

because otherwise, the controller design is very complicated due to the constraints

imposed on the robotic system by its workspace. The requirement of feedback con-

trollers that stabilize a system to a given equilibrium point xg is mild. In fact, for

any fully actuated system, linearizing the system about the given equilibrium and

designing a linear quadratic (LQ) controller for the linearized system results in such

44

a stabilizing controller, at least locally. For nonholonomic and underactuated sys-

tems, in general, such linearized techniques may not provide a stabilizing controller

due to Brockett’s theorem [39]. In that case, suitable nonlinear controllers may be

designed to stabilize the system about a nominal trajectory, which can be obtained

using optimal control techniques. In the example section, we use a dynamic feed-

back linearization-based controller to design stabilizing controllers about equilibrium

configurations of a unicyle robot.

Remark 2. The analytical evaluation of the probability of success of an option is

difficult, because it is equivalent to the “first passage time” problem for a stochastic

nonlinear system. In general, Monte Carlo techniques, including sequential Monte

Carlo techniques, are the most efficient method for evaluating such probabilities [40].

In this dissertation, we use simple Monte Carlo to evaluate these probabilities The

time of execution of the options t(ω), where ω is a particular realization of the

trajectory under the option, can, in general, be infinite, i.e. the option may take an

infinite time to terminate. However, the expected time to terminate can be shown

to be finite, E[t] <∞ (refer Appendix 1).

3.3.3 GRRT

The traditional RRT algorithm attempts to connect a start point and an end

point in the workspace of a robot by growing a tree using a random sampling as

follows.

1. Randomly pick a point in the state space of the robot

2. Find the nearest node on the tree according to some pre-specified metric

3. Connect the nearest node on the tree to the sampled node using some local

planner while checking for collision

4. Add the new node to the tree if the robot does not collide with obstacles

45

The tree is grown in this manner until a feasible path is found from the start point

to the goal point. Due to uncertainty, it might not be possible to find a path that

succeeds in connecting two points with probability 1. Hence, in the current scenario,

we require that the path has a minimum pre-specified probability of success pmin.

We now present the generalized version of the RRT algorithm, i.e. GRRT. The

pseudo-code for the algorithm is presented as follows (steps 2-4 of the algorithm are

different from the traditional RRT algorithm, and in the following sections, we dis-

cuss the details about these differences, starting with step 3).

Algorithm 3.2: GRRT Algorithm

Data: Start state x0, goal node xg, minimum probability of success pmin

Input: Initialize tree with x0, set p(x0) = 1, set N = 1

for tree reached goal node xg do1

Generate node xN at random (xN is an equilibrium state in Xfree);2

Connect xN to the node x∗ on the tree, using local feedback control, that3

satisfies

x∗ = arg max
i
p(xi)p(xi, xN) (3.6)

where p(xi, xN) is the probability of successfully transitioning from

xi → xN under the local feedback law;

Set p(xN) := p(x∗)p(x∗, xN);4

if p(xn) > pmin then5

add node xN to the tree with label p(xN) and set N = N + 1;6

else7

Goto step 2;8

Step 3: The nodes (or, more precisely, the neighborhoods of the nodes) are

connected by local feedback controllers that have been designed using control design

46

techniques and the probability of success of the controller evaluated as in the GPRM

algorithm. The reason that we chose the node as in (refer Equation 3.6) has to do

with the proof of completeness of the resulting algorithm (refer Appendix 1). In

fact, the choice can be thought of as the “nearest node” metric that is used to select

the node in the tree that is connected to the newly generated node. Hence, x∗ as

defined in (Equation 3.6) is the best node in terms of the probability of success of

transitioning from x0 → x∗ → xN , where, as aforementioned, x0 is the root node.

Step 4 and 5: Step 4 labels any newly generated node with the “probability

of success” of the robot moving from the root node to that particular node. We

only want to keep nodes in the tree that have a success probability (of transitioning

to it from the root node) more that the threshold of pmin. Hence, we include the

tree pruning in step 5. Note that, given the probability of success, p(xi, xj) of

transitioning from any parent node xi to its children xj in the tree, the probability

of success of a path x0, x1, . . . , xK is given by p(x0, x1)p(x1, x2) · · · p(xm−1, xm) =

p(xK−1)p(xK−1, xK) according to the labeling convention that we have used, where,

as aforementioned, p(x) represents the probability of successfully transitioning from

root node to node x.

GRRT algorithm is also analyzed and later in this work shown to be probabilistic

complete. Hence if there exist a path with probability of success greater than pmin,

the algorithm will find it with probability 1. In situations when the algorithm is

applied to maps with no possible solution, the algorithm will stop after a large

number of iterations and return failure.

3.4 Numerical Experiments

In this section, we will detail the application of the generalized sampling-based

motion to a fully actuated holonomic point robot and an underactuated nonholo-

nomic unicycle model.

47

3.4.1 Fully Actuated Point Robot

In this section, we apply the generalized planners developed in the previous sec-

tion to an idealized holonomic point robot. We will deal with a planner robotic

system, but the extension to a 3-D system is quite straightforward. Note that the

higher level planning algorithms do not change with the robot model and only the

lowest level controllers change with different or complicated robot models. The de-

sign of local point-to-point feedback controllers for holonomic systems such the fully

actuated point robot considered here is quite trivial and can be done using the stan-

dard LQ control theory [1].

The robot motion model was assumed to be :

q̈ = u+ w (3.7)

where q is the position vector, u are the input forces, and w is a white noise term

that quantifies the uncertainty in the motion model of the robot. We assumed that

the state of the robot could perfectly be sensed. We used several different maps and

assumed that the map uncertainty in each case was specified to us using a discrete

occupancy grid (OG) representation, i.e. we are given a distribution p(O/xij) that

denotes the probability that there is an obstacle in the (i, j)th grid in the map.

The local feedback controllers that connect the sampled points were designed

using linear quadratic regulation (LQR) techniques [1]. The cost function used pe-

nalized both the control effort and the state deviation from the goal equilibrium

point. The safe recurrent classes Ωk around some sampled point xk were defined

to be some ball of radius ε, where ε was chosen in a heurestic manner. We found

the probability of success and the cost of operation, where the cost of operation was

quadratic cost,of the feedback controllers that join two nodes on the graph using

repeated Monte Carlo simulations accordingly to (Equation 3.3) and (Equation 3.4).

We have tested the controllers using a naive Monte Carlo method, but for higher

48

dimensional problems, very efficient subset simulations technique exist [40], which

can be leveraged to find the success probabilities in an efficient manner.

(a) Standard PRM (b) ps = 2%, Trajectories Ensemble

(c) Modified PRM (d) ps = 89.68%, Trajectories Ensemble

Fig. 3.3. Comparison of GPRM with Traditional PRM : Map 1 (ps ≡
Probability of Success)

The result of our simulation experiments are shown in Figure 3.3, Figure 3.4,

Figure 3.5 and Figure 3.6. Each of these figures presents the performance of the

GPRM and GRRT algorithms, along with their traditional counterparts on two

different maps. We have performed our simulations on several other maps, but

the paucity of space does not allow us to present all these results. Figure 3.4(a)

and Figure 3.6(a) represent the tree built RRT in the map. In Figure 3.4(b) and

Figure 3.6(b), we represent the final nominal (noise-free) path from the start node

to the goal node found by RRT in red and the ensemble of trajectories that result

49

(a) Standard RRT tree (b) ps = 12%, Trajectories Ensemble

(c) Feedback based RRT tree (d) ps = 100%, Trajectories Ensemble

Fig. 3.4. Comparison of GRRT with Traditional RRT: Map 1 (ps ≡
Probability of Success)

50

(a) Standard PRM (b) ps = 6%, Trajectories Ensemble

(c) Modified PRM (d) ps = 96.83%, Trajectories Ensemble

Fig. 3.5. Comparison of GPRM with Traditional PRM: Map 6 (ps ≡
Probability of Success)

51

(a) Standard RRT tree (b) ps = 0%, Trajectories Ensemble

(c) Feedback based RRT tree (d) ps = 87.9%, Trajectories Ensemble

Fig. 3.6. Comparison of GRRT with Traditional RRT: Map 6 (ps ≡
Probability of Success)

52

due to the process uncertainty in the motion model in blue, along with probability

of success of the path. In Figure 3.4(c) and Figure 3.6(c), we represent the tree

built by GRRT, showing the noise-free paths between nodes. In Figure 3.4(d) and

Figure 3.6(d), we represent the nominal noise-free path, along with the ensemble

of trajectories due to process uncertainty, as well the probability of success of the

path. Similarly, in Figure 3.3(a) and Figure 3.5(a), we show the graph built by PRM

and the nominal path and the trajectory ensemble, along with the probability of

success of the path. The same data are presented for GPRM in Figure 3.3(c) ,(d) ,

Figure 3.5(c) and (d). The graphs and trees constructed by GPRM and GRRT are

virtual, because there is not one single path that connects the nodes but an entire

bundle of them between any two nodes because of the uncertainty in the robot motion

model.hence, the connection encodes the feedback controller that joins the two nodes,

rather than an actual path that joins them as in the case in traditional PRM or RRT.

However, for visual comprehension, we only present the noise-free paths in the GRRT

and GPRM tree and graph figures, respectively [see Figure 3.3(c), Figure 3.4(c),

Figure 3.5 (c) and Figure 3.6(c)]. As shown in the figures, the performance of GPRM

and GRRT is significantly better that the performance of the traditional PRM and

RRT algorithms. For instance, in map 1, the probabilities of success of the GRRT

and GPRM algorithms are 100% and 89.68%, respectively, whereas the probabilities

of success of the traditional RRT and PRM are 12% and 2%, respectively. A similar

observation holds for map 6. Although the nominal noise-free path in PRM and RRT

does not collide with any obstacles, the presence of the noise in the robot motion

model leads to collisions in most cases due to the open-loop nature of the plan. This

case is clearly shown in Figure 3.3(b), Figure 3.4(b), Figure 3.5(b) and Figure 3.6(b),

where the trajectory ensemble grows in size over time and diverges from the nominal

noise-free path and thereby leads to collisions, which were not present in the nominal

path. Moreover, it is also shown in the same figures that there is no guarantee

that the robot will reach the goal under these plans. In contrast, the robustness

53

that is attained due to feedback can be gauged from Figure 3.3(d), Figure 3.4(d) ,

Figure 3.5(d) and Figure 3.6(d), where the ensemble of trajectories is tightly bundled

around the nominal noise-free path due to the presence of feedback. We note here

that the very low success probabilities of the traditional methods are due to the

complicated nature of the two maps. In similar maps, there have better performance

but the GRRT and GPRM performance is always significantly better. This result is

not surprising, because the original PRM and RRT algorithms are open-loop planners

and were not developed for uncertain robot models and state spaces. The control

in the open-loop planners is a function of time alone and is based on the nominal

dynamics (unperturbed dynamics). Thus, in the presence of perturbations or noise,

the path if the robot can substantially deviate, and the nominal performance of the

robot cannot be maintained. However, the feedback plans in GRRT and GPRM

assures robustness to such perturbations, because the control is a function of the

state of the robot (not time), and hence, even when the robot path deviates from

the nominal, the control law can still guide it towards the goal. In fact, all other

techniques that modify the PRM and RRT to handle uncertainty, such as [17,16,18]

and [15], suffer from the exact same problem, because they open-loop planners that

are designed to handle only stationary map uncertainty and thus, similar to PRM

and RR as aforementioned, cannot be robust to the dynamic process uncertainty in

the robot motion model.

54

3.4.2 Nonholonomic Unicycle Robot

In this section, we apply the sampling-based motion planners to the motion plan-

ning of a unicycle model whose equations of motion are given by

ẋ = vcosθ + wx (3.8)

ẏ = vsinθ + wy (3.9)

θ̇ = ω + wθ (3.10)

where (x, y, θ) represents the pose of the robot, the velocity v and the angular veloc-

ity ω represent the control inputs to the problem, and wx, wy and wθ are uncorrelated

white noise terms. We assume that the robot can approximated by a point in this

dissertation. In this case, our sampled poses are in the (x, y, θ) spaces, and the job of

the local feedback controllers is to stabilize the robot about any of these equilibrium

configurations. Because the unicycle model is a nonholonomic system, the design of

feedback controllers that stabilizes the robot about a particular equilibrium configu-

ration is much more involved than in the case of the fully actuated robot considered

in the previous section. In fact, the standard linear control theory cannot be used in

the design of feedback controllers for such systems, even locally [41], [42], because it

is known from Brockett’s theorem that a static feedback controller that can stabilize

such systems about any equilibrium does not exist. Thus, suitable nonlinear control

techniques have to be resorted to design feedback laws [41], [42]. We chose a dynamic

feedback linearization-based controller design that has been treated in detail in [42].

This controller can stabilize the robot about any given configuration in a smooth

manner and with exponential convergence.

Uncertainty was added to the robot motion model by adding white noise to the

robot dynamics equations are aforementioned, with the intensity of the white noise

being approximately 30% of the maximum allowable vehicle linear and angular speed,

i.e. the noise in the x, y equations had intensity equal to 30% of the maximum

55

allowable linear speed (σx,y = 0.3 vmax), whereas the noise in the θ equation has

intensity equal to 10% of the maximum allowable angular speed (σθ = 0.1 ωmax).

(a) (b)

(c) (d)

Fig. 3.7. Performance of GRRT and GPRM on the Unicycle Robot:
Map 1 (ps ≡ probability of success). (a) GPRM, (b) Bundle of final
trajectories, with ps = 100%. (c) GRRT with nonholonomic constraints.
(d) Bundle of final trajectories, with ps = 93.33%

The results of our numerical simulations are shown in Figure 3.7 and Figure 3.8.

Figure 3.7(a) and Figure 3.8(a) represent the tree of feasible trajectories shown with-

56

(a) (b)

(c) (d)

Fig. 3.8. Performance of GRRT and GPRM on the Unicycle Robot:
Map 6 (ps ≡ probability of success). (a) GPRM, (b) Bundle of final
trajectories, with ps = 100%. (c) GRRT with nonholonomic constraints.
(d) Bundle of final trajectories, with ps = 100%

57

out any noise in the system. Figure 3.7 (b) and Figure 3.8(b) show the nominal

path, along with the final path ensemble around it. Similarly Figure 3.7(c) and Fig-

ure 3.8(c) show the graph built by the GPRM algorithm; however the edges between

the nodes on the graph are only virtual, i.e. they are not the actual trajectories.

Figure 3.7(d) and Figure 3.8(d) represent the path ensemble around the nominal

trajectory. We performed the experiments on the set of six maps that we has used

in the case of the fully actuated robot, except in this case, because due to the non-

holonomic constraints on the motion of the robot, the trajectories of the robot are

smoother that in the case of the fully actuated robot. This result is not so surprising,

because the algorithms are exactly the same for the two cases, except in the design

of the local feedback controllers.

GPRM and GRRT are both successful at handling motion uncertainty however

the GRRT algorithm is easier to search because of the tree structure. One avenue is

to use the GRRT algorithm as the option in the GPRM algorithm for large degree of

freedom (DOF) systems and complicated maps, because this approach would control

the number of nodes in the GPRM, thereby reducing the search complexity in GPRM

while, at the same time, making the options more powerful that if we were to use

only primitive local feedback controllers. This case will be one of our future avenues

for research. Thus, in this section, we have shown the application of the generalized

sampling-based feedback motion planners to both fully actuated and under-actuated

robotic systems. As shown in the results, the planner have excellent performance in

wither case in quite complicated maps, in the presence of motion uncertainty and

uncertainty in the map.

3.5 Conclusion

This section has presented generalized versions of sampling-based motion plan-

ners PRM and RRT, i.e. GPRM and GRRT. These algorithms generalize the PRM

and RRT methodologies to the case where there is uncertainty in both the robot

58

motion model and the map provided to the robot. We have analyzed the algorithms

and shown their probabilistic completeness. The algorithms were tested on an ide-

alized planer fully actuated holonomic robot and an under-actuated nonholonomic

unicycle, and the results clearly show that the performance of the generalized plan-

ners is significantly better than the performance of their traditional counterparts,

mainly because the traditional PRM and RRT algorithms were not designed to take

uncertainty into account. Although we have obtained very promising initial results,

much remains to be done. As aforementioned, we do not foresee any significant

difficulty in applying the algorithms to robots that can be described by rigid body

equations of motion or any other fully actuated robot system, because the systems

are essentially feedback equivalent to the planer robot described in this section [43].

Furthermore, it was noted that the GPRM algorithm has to sample far more points

before it attains a satisfactory probability of success compared to GRRT. We will

explore the use of more sophisticated sampling strategies to increase the efficiency

of the planner and increase its probability of success. Moreover, using GRRT as

options within GPRMs might help us reduce the number of points that need to be

sampled by GPRM to obtain an adequate probability of success. Furthermore, this

approach might allow our techniques to scale to larger maps that the ones considered

here. Finally, and perhaps most importantly, we would like to relax the assumption

that the state of the robot is perfectly known, instead assuming that we only have

noisy measurements of the state relative to the map. This approach implies that we

need to solve the planning problem in conjunction with the simultaneous localization

and mapping (SLAM) problems, thereby leading to a solution to the simultaneous

planning, localization, and mapping (SPLAM) problem, which is partially observ-

able Markov decision process (POMDP) and is orders of magnitude more complex

compared to the MDPs considered in this section.

59

4. ADAPTIVE SAMPLING FOR GENERALIZED SAMPLING-BASED

MOTION PLANNERS*

4.1 Introduction

In this section∗a novel adaptive sampling methodology for the generalized sampling-

based motion planners (introduced in the previous section) is presented.

The general motion planning problem in robotics is to find a collision free path

for a robot from one configuration to another, in a given obstacle space.

Exact planners are intractable for most practical problems because the complex-

ity grows exponentially with the dimensionality of the problem [44]. Randomized

Sampling based methods were introduced to provide approximate solutions, while

avoiding the prohibitive cost of computing the exact representation of the free space.

Probabilistic Roadmaps (PRM) are one of the most successful sampling based meth-

ods for multi-query planning, which sample the domain in a random fashion and

build a roadmap over these samples to represent the free space [3]. For single-query

planning Expansive Space Tree planners (ESTs) [45,46] and Rapidly-exploring ran-

dom trees (RRTs) [4] were developed. Then there are Sampling based Roadmap for

Trees (SRTs) planner [47,48] which construct a PRM style roadmap of single query

planner trees. Some of the recent efforts to get optimal solution for motion planning

using these sampling based motion planners were presented in [49] where PRM∗ and

RRT∗ were developed.

To address highly constrained motions and domains, a key idea is to bias the

sampling towards good regions of the configuration space [3], and various different

sampling strategies to do the same have been proposed. These planners make local

hypothesis that identify poor visibility regions [32] in the free space, and [32] catego-

rizes the research efforts related to this based of the different methodologies adopted.

∗Reprinted with permission from “Adaptive sampling for generalized sampling-based motion plan-
ners”, by S. Kumar and S. Chakravorty, 2010, IEEE Conference on Decision and Control, 7688-7693
c©2010 IEEE,

60

Some use the information of workspace geometry, broadly categorized as Workspace

based sampling strategies. Techniques in this category are watershed labeling algo-

rithm [50] and workspace importance sampling [51]. Some use geometric patterns

and reject unpromising samples, categorized as Filtering based sampling strategies.

Techniques under this category are Gaussian strategy [52], bridge test [53], and

Vis-PRM [54] and medial axis sampling [55, 56, 19]. Some use information gained

during the roadmap construction, categorized as Adaptive Sampling Strategies and

techniques include two-phase connectivity expansion strategies [3], and multiphase

sampling [57]. There also exists a Deformation Strategy for Sampling, which tries

to deform the domain into a more expansive domain [58]. Furthermore, in [59],

the different research efforts related to importance sampling and different connec-

tions strategies other than k-near neighbors were further discussed in detail. [60]

presents an Obstacle-based PRM (OBPRM), one of the first and very successful

representatives of obstacle-based sampling methods. [61, 62] were other manipula-

bility based importance sampling approaches. Connection sampling methods [63, 3]

generates samples that facilitate the connection of the roadmap. Alternate PRM

connection strategies other than k-near neighbors were also developed. Some of

the earlier efforts related to this discussed creating sparse roadmaps as in [64, 3],

where computation of edges which were part of the same connected components

were avoided. Then in-order to capture connectivity of the Cfree other strategies

were aimed at connecting different components of the roadmap [63, 65]. Lazy PRM

were introduced in [66, 67, 68], which presented the idea of evaluating the collision

checks only when it is absolutely necessary, i.e., lazy evaluation, in-order to speed

up performance. Furthermore, a combination of lazy PRM and ESTs were presented

in [69] as Single-query, Bi-directional, Lazy collision checking (SBL) planners. All

the above strategies spend more time generating a node when compared to a naive

uniform sampling, and, adopted strategies of evaluating edges at a later stage of

planning, with the expectation that a much smaller roadmap is required to answer

61

queries, resulting in faster computation time. These strategies were studied and ana-

lyzed in refs. [70,32,71,72,59] where various measures/ metrics such as connectivity,

coverage and completeness were proposed to evaluate their effectiveness. In ref. [73],

an attempt is made to provide metrics for the sampling process during the roadmap

construction. Thus, sampling intelligently can achieve a significant speedup when

compared to naive uniform sampling.

Unfortunately PRM and its variants work in the deterministic framework, and

with the introduction of map and robot model uncertainty, the technique is no

longer robust. Furthermore, PRM does not account for the dynamics of the robot.

Rapidly-exploring random trees (RRTs) incorporate randomized sampling of the do-

main, as in PRM, while also incorporating the dynamics of the robot while plan-

ning [4]. However, like PRMs, RRTs are open loop planners, and thus are not robust

to map and model uncertainty. The generalized sampling based motion planners,

Generalized-PRM (GPRM) and Generalized-RRT (GRRT), were introduced to in-

corporate stochastic models of map and model uncertainty along with the dynamical

constraints of the robot, and provide a feedback solution to the motion planning

problem [29], [28]. We would like to mention other attempts to generalize PRMs and

RRTs to handle map uncertainty [17, 16, 18, 22]. However, none of these techniques

provide a feedback solution to the planning problem and therefore are not robust to

model uncertainty.

In this section, we introduce a novel strategy for adaptive sampling in GPRM.

The strategy proposed here incorporates the information of the probabilities encoded

in the connections of the GPRM. With this extra information, which is unique to

planners incorporating uncertainty, the sampling strategy biases the samples such

that the efficiency and the overall success probability for the planning increases in

GPRM. We show that motion planning problem on complex maps can be efficiently

solved using GPRM, in conjunction with the adaptive sampling strategy, while simul-

taneously increasing the success probability of the solution. A preliminary version of

62

this work has been published in the 49th IEEE Conference on Decision and Control,

2010 (IEEE CDC ’10) [30] and a journal version has been accepted and will appear in

Journal of Control Theory and Application, Special Issue on Approximate Dynamic

Programming, 2010. In this section, along with the detailed algorithm of the pro-

posed methodology, we extend the domain of application of the proposed algorithm

to n-link manipulators.

The rest of the section is organized as follows. section 4.2 discusses hierarchical

planning methods and the GPRM algorithm in brief, section 4.3 introduces concep-

tualization, development and the algorithm of the Adaptive Sampling Strategy for

GPRM. section 4.4 discusses the application of GPRM along with Adaptive Sampling

on two different dynamical systems along with results.

4.2 Generalized Sampling Based Methods

The basic motion planning problem is to find a collision free path for a robot in a

given obstacle space. With the introduction of map and model uncertainty, one can

no longer have the same formulation of the motion planning problem. In the presence

of stochastic model uncertainty, there is a need for feedback control, which is then

associated with a probability that the robot reaches the goal without hitting the ob-

stacles. Generalized Sampling Based Algorithms [29,28] were introduced to address

the problem of feedback motion planning in such constrained work spaces. Before

going into the details of the methodology of [29, 28], we note that the complexity of

the motion planning problem has increased due to:

• Introduction of model uncertainty in the dynamics of the robot, which implies

that we have to obtain satisfactory performance over an ensemble of paths

instead of a single path.

• Introduction of map uncertainty, implies the planner has to succeed for an

ensemble of maps.

63

The notion of collision avoidance and collision-free paths as the solution to the motion

planning problem, can no longer be satisfied, and therefore the above criteria need

to be replaced by a solution/ path with a high probability of success. The motion

planning problem can be re-framed as : To solve the motion planning problem in

the presence of map uncertainty and model uncertainty, generate a feedback solution

with a probability of success above an a-priori specified probability, pmin.

4.2.1 Hierarchical Methods and Generalized Probabilistic Roadmaps (GPRM)

If the uncertainties in the robot model and environment can be modeled proba-

bilistically, the robot motion planning problem can be formulated as Markov Deci-

sion Problem (MDP) [2]. These MDPs are computationally intractable for anything

but small state/ control spaces and especially hard to solve in continuous state and

control spaces. Hierarchical Methods can be used to break down the complexity

of the problem. The Generalized Probabilistic Roadmaps(GPRM) [29, 28], is a sam-

pling based hierarchical method which extends the Probabilistic Roadmaps (PRM) [3]

technique for deterministic path planning, to systems with stochastic model and map

uncertainty.

In the following paragraph we briefly introduce GPRM, more details can be found

in [29]. The state of the robot is given by x = (q, q̇), where q represents configuration

of the robot and q̇ the generalized velocities. The free region in the map corresponds

to a free region in the configuration space, Cfree, which induces a free region in the

state-space of the robot, say χfree. GPRM samples equilibrium states (i.e. state

wherein the velocities are zero) in χfree, which are called landmarks.

The planning problem of guiding the robot from the start landmark to the goal

landmark is divided into two hierarchical levels. The lowest level planner guides the

robot from one landmark to another using feedback control and accounts for the

model uncertainty in the robot dynamics, specified by the following equation:

64

ẋ = f(x) + g(x)u+ h(x)w (4.1)

where x is the state of the robot, w is a white noise perturbation, and u is the

control. However, the control does not account for constraints, i.e. obstacles in the

map, which are specified by p(O/y), the probability that a point y in map is occupied.

The interaction between feedback planner and the obstacles in the map result in

a transition probability and transition cost for the robot from one landmark to next.

Figure 4.1 depicts a sample path between the landmarks s and r given a feedback

controller u that guides it towards r. The control u is taken at state s, the agent will

reach one of the k -nearest neighbors of s. The transition probability, of an individual

path, ps,r is given by :

ps,r =
∏
y

(1− p(O/y)) (4.2)

where y represents the grids along the path. A failure state, say xfail, is introduced

and 1 − ps,r is the probability of landing in the failure state. The transition cost,

cs,r is directly proportional to the probability of transitioning to the failure state,

xfail. Due to the presence of model uncertainty, the average cost c(s, u) and the

average transition probability p(r/s, u), i.e. average probability of reaching state r

given current state s and control action u, have to be formed by averaging over all

such sample paths. This is achieved using Monte Carlo simulations.

The top level planner, works on global map in the landmark space. It uses the

information of the metrics of the lowest level planner, minimizes the cost-to-go from

each landmarks over all possible policies, and gives the optimal control policy over

the landmark map.

65

Fig. 4.1. Transition Cost and Transition Probability

66

The optimal control action u∗(·) for each state/ landmark of the map is the

outcome of the top level planner. The optimal cost-to-go J∗(·), required in calculation

of u∗(·), is found as the solution of the Bellman fixed point equation/ Dynamic

Programming equation :

J∗(s) = min
u
{c(s, u) +

∑
r

(p(r/s, u)J∗(r)} (4.3)

u∗(s) = argmin
u
{c(s, u) +

∑
r

p(r/s, u)J∗(r)} (4.4)

where J∗(s) is the optimal cost-to-go from state s, u∗(s) is the optimal control action

to be taken at state s. Here, control u at state s is the next landmark among the

k -nearest neighbors of s that the robot is guided to, p(r/s, u) is the probability of

transition from s → r given the robot is guided towards the landmark specified by

u, and c(s, u) is the cost of transition. Note that p(r/s, u) and c(s, u) are got by

evaluating the lowest level feedback planner. The details of the algorithm and the

calculation of metrics are in [29,28].

4.2.2 Algorithm GPRM

The pseudo-code for the generalized probabilistic roadmaps (GPRM) algorithm

was given in 3.1 in section subsection 3.3.2.

A few points have to be made regarding the feedback controllers specified in step

2 above :

• Due to model uncertainty present in the dynamical system, it is impossible to

control the robot exactly to the point xg even in the absence of obstacles

• In the case of stochastic systems, a feedback controller is necessary due to un-

certainty. The feedback controller ensures that even in presence of uncertainty

67

in the model, the robot reaches a neighborhood of the target equilibrium state

with a high probability, in the absence of obstacles

• The feedback controller is designed for a workspace without any obstacles as

otherwise the controller design is complicated

The feedback controller can be designed in many ways. For linear systems LQR based

controllers can be used. For non-linear system, the system can be linearized about an

equilibrium point and a feedback controller can be designed for the linearized system.

Other non-linear feedback controllers may also be used, such as the dynamic feedback

controller used for the non-holonomic system in [28]. The feedback controller operates

between one landmark and another and in presence of model uncertainty ensures

the robot reaches a neighborhood of the target equilibrium state in the absence of

obstacles. In the presence of obstacles, Monte Carlo simulations are used to compute

the transition probability and transition cost in using the feedback planner to guide

the robot from one landmark to another. The feedback controller used in the work

presented here is state-feedback based LQR controller.

The GPRM is capable of handling model and map uncertainty as discussed above,

but as the complexity of the map, i.e the size of the map and the clutter of the

obstacles increase, the number of landmarks required to find a solution becomes

large, thereby greatly increasing the computational resources required. A logical

extension for complicated maps is to sample in areas where samples are required,

i.e. use an adaptive sampling strategy. The next section describes such an adaptive

sampling algorithm.

4.3 Adaptive Sampling

In sampling based motion planning algorithms, the number of samples determine

the complexity of computation required to solve the problem. For a complex domain,

a naive uniform sampling will require a large number of samples and hence, more

68

computational resources. Introduction of adaptive sampling adds intelligence to the

planning algorithm, by efficiently adding new samples.

4.3.1 Adaptive Sampling Details

In a sampling based motion planners framework, co-ordinates of configuration

space are sampled in random fashion which is mapped into the obstacle space as

shown in Figure 4.2(a) (they are referred to as equilibrium states, xg or landmarks

in GPRM framework). A connectivity graph is constructed over the landmarks as

shown in Figure 4.2(b), it is based on the cost and transition probabilities computed

from the lowest level feedback planner used in GPRM.

Using the information encoded in the connectivity graph, we introduce the major

ingredients of the adaptive sampling strategy in the following.

Identification of Start and Goal Clouds

A cloud of samples is referred to as a collection of landmarks which are inter-

connected with transition probabilities higher than pmin, in the connectivity graph

of the map/ obstacle space. The start and the goal clouds are the cloud of samples

containing the start and the goal (or end) landmarks respectively.

The motion planning problem, in the generalized sampling based motion planning

framework, is to find a path1 with success probability higher than pmin between the

start and the goal landmark. The idea is to identify the cloud of samples as shown in

Figure 4.2(c) containing the start landmark state and the goal landmark state and try

to connect them during the re-sampling phase and hence solve the motion planning

problem.

To identify these clouds the information carried by the connectivity graph is used.

1A path here implies a local feedback controller guides the robot from one landmark to another,
while the higher level planner guides the robot regarding the landmark, to go to next.

69

(a) Landmarks (b) Connections

(c) Cloud of Sampled

Fig. 4.2. Problem Domain with Free Space, Obstacles, Start, Goal Po-
sitions

70

The connectivity graphs in the generalized motion planner framework encode both

the transition cost and the transition probability information.

We assign goal proximity probability, p̄g(x), and start proximity probability, p̄s(x),

to each of the landmarks, x. Proximity probability is a metric defined between two

landmark states (say xa and xb), and it carries the information of the probability

of transition from state xa to xb, given by p̄b(xa), and vice-versa, p̄a(xb). The goal

proximity probability, p̄g(x) is defined as the proximity probability between a land-

mark, x, and the goal landmark state, xg, along with a constraint that p̄g(x) > pmin,

where pmin is given. It is calculated by traversing from the goal landmark, xg to the

concerned landmark, x, keeping track of all the transition probability in the path.

Similarly, the start proximity probability p̄s(x) is calculated by traversing from the

start landmark, xs, to the concerned landmark, x, and keeping track of the transition

probabilities along the way. These metrics, once calculated, will suggest landmarks

which are connected to the goal and the start landmarks, with a overall transition

probability greater than the threshold probability (pmin) of the domain. In this way

the cloud of samples connected to the start and the goal with a high transition

probability can be computed.

Identification of other clouds

We also want to identify clouds other than the start and the goal clouds that are

present in the workspace. We compute this information to identify and differentiate

between the good and bad samples. These good and bad samples will be discussed

in item 3 below.

The process of computing the information about clouds can be stated as:

• pick a landmark, x, and assign a group identification, gid(x), representing cloud

information

71

• all the directly and indirectly connected landmarks are assigned the same group

identification, gid(·)

• restart the process with a new landmark which has no assigned group yet

• continue till all the landmarks are covered, i.e each landmark has a assigned

group identification, gid(·)

Once the process is complete, all samples having same gid(·) lie in that group.

Sampling good landmarks

Sampling of landmarks in the configuration space is usually done using uniform

sampling over the configuration space, when no knowledge is available to bias the

sampling. Sampling good landmarks xgood involves sampling landmarks which have

the potential to solve the motion planning problem, or about rejecting the bad land-

marks xbad from a set of sampled landmarks. We re-sample the space, i.e. generate

a set of new landmarks, Xnew, and find the k -nearest neighbors of each landmark in

Xnew. Based on the potential connections2, every new landmark can be categorized

completely, refer Figure 4.3, as a landmark whose neighbors:

i. ∈ Xnew only, the set of new landmarks generated, (refer Figure 4.3(a))

ii. ∈ different clouds, (refer Figure 4.3(b))

iii. ∈ different clouds and Xnew, (refer Figure 4.3(c))

iv. ∈ Xnew and a specific cloud, (refer Figure 4.3(d))

v. ∈ a specific cloud only, (refer Figure 4.3(e))

Samples in Category (item iv) and (item v) are categorized as “bad” since

2The connections with k -nearest neighbors, prior to computing the transition probabilities, which
either establishes a connection or discards it.

72

obviously they have minimal potential to solve the problem. Hence, using the cloud

information we reject the identified bad samples.

Identifying Weak Link / Links in a Low Probability Connected Path

The connectivity graph of a map has the transition cost and transition probability

information. In contrast, in the deterministic framework of sampling based motion

planners, such as PRM, these graphs only carry the transition cost information. In

GPRM the top level planner searches for a high probability path over the domain,

and returns a path connecting the start landmark xs and the goal landmark xg, and a

success probability associated with it, say ppath. There could be cases where in spite

of the connectivity, the ppath is less than the desired threshold success probability

pmin. Such an outcome can be used as a starting point for finding a neighboring path,

path′ with a path probability ppath′ , which has a success probability ppath′ > pmin. We

identify the weak link / links3 of the low probability path and then sample around

these in search of path′. Finding a neighboring path with a higher probability of

success in the vicinity of a low-probability path may not always be feasible, as has

been experienced during numerical simulations, but results show that the technique

works fine most of the time.

3Connections in the connectivity graph, which are responsible for low success probability of the
path.

73

(a) C1 (b) C2

(c) C3 (d) C4

(e) C5

Fig. 4.3. Categories of New Landmarks Sampled

74

Based on the ingredients of the Adaptive Sampling Strategy as described above,

the algorithm can be summarized as follows :

Algorithm 4.1: AGPRM - Adaptive Sampling GPRM

Invoke GPRM over the given map initially with a small number of randomly1

selected landmarks and pmin;

while a path with high success probability NOT found do2

Assign p̄s(·) and p̄g(·) to all landmarks;3

Identify landmarks with high p̄s(·) and p̄g(·) and their gid(·);4

Pick a pair of landmarks, one with high p̄g(·) and another with high p̄s(·);5

for each pair found do6

Samplea between these landmarks;7

Identify bad samples xbad and reject them;8

flag← EvaluateImportantConnections();9

if flag then10

Perform GPRM;11

if path with high success probability found then12

STOP;13

else if a low probability path found then14

while 0 < ppath < pmin do15

Find weak link / links in the low probability path;16

Sampleb between the pair of landmarks along the weak link;17

Discard bad samples;18

Using EvaluateImportantConnections() perform GPRM;19

if a path with ppath > pmin found then20

STOP;21

aIn simulations the samples were drawn from a Gaussian distribution, with mean placed at the
arithmetic mean of generalized positions of start and goal landmark and the standard deviation σ
being 2-norm of the distance between start and mean.
bIn simulations, a biased distribution was assumed, i.e. an elliptical distribution with major axis
aligned along start and goal configurations.

75

Algorithm 4.2: AGPRM - EvaluateImportantConnections()

Data: Start landmark, Goal landmark, set of new samples

Generate connections using k − near landmarks;1

Find the connections involving start landmark and goal landmark;2

Evaluate these connections now;3

if Any connection having start landmark succeeded then4

flagstart ← true;5

else6

flagstart ← false;7

if Any connection having goal landmark succeeded then8

flaggoal ← true;9

else10

flaggoal ← false;11

flag = flagstart ∧ flaggoal;12

if flag then13

Evaluate all other connections;14

else15

Discard samples involved in other connections;16

return flag;17

The Figure 4.4 depicts in brief the stages in the adaptive sampling methodology.

AGPRM uses the probabilistic complete algorithm GPRM in its core and the

proposed adaptive sampling technique attempts to improve the solution in terms of

sampling efficiency and performance. In situations when the algorithm is applied

to maps with no possible solution, the algorithm will stop after a large number of

iterations and return failure.

76

(a) Assign good landmarks between start
and goal clouds, in Figure 4.2(c)

(b) Assign new connections

(c) The Final Path

Fig. 4.4. Adaptive Sampling in Steps, (Build-Up on Figure 4.2)

77

4.4 Results and Discussion

The Adaptive Sampling methodology developed is applied along with GPRM to

point robot dynamics and 3-link manipulator case. Results presented here study the

improvement with respect to the number of samples required to solve the problem.

The Adaptive sampling algorithm is not time optimized as of yet, but will be a topic

of future research.

4.4.1 Point Dynamics Robot

First a fully actuated point robot is studied. The dynamics of the robot is given

by:

q̈ = u+ w, (4.5)

where q is the generalized position vector of the robot, u are the input forces and w is

a white noise term that quantifies the uncertainty in the motion model of the robot.

This case was solved using basic GPRM, refer [29]. Numerical simulation results

are presented for a set of maps with varying degrees of complexity. In general, the

results indicate that:

• The quality of sampling improved, i.e the landmarks were generated in required

regions.

• The number of landmarks required to solve any complex map is approximately

reduced to half the number required for solving the same map with basic

GPRM, with progressively higher rewards in larger/ complex maps (refer Table

Table 4.1).

.

Each of the maps (Figure 4.5 - Figure 4.8) discussed in the results section has two

sub-figures : sub-figure (a) represents the initial landmarks the adaptive sampling

78

Table 4.1
Result Comparison : Point-Dynamics GPRM with and without Adap-
tive Sampling

Map# Number of Samples Required (pmin = 0.8)
basic GPRM AGPRM AGPRM η

1 62 (ps = 0.896) 30 (ps = 1.0) 2.07
3 72 (ps = 0.889) 32 (ps = 0.889) 2.25
5 72 (ps = 1.0) 61 (ps = 1.0) 1.18
6 162 (ps = 0.889) 64 (ps = 0.889) 2.53
10 182 (ps = 1.0) 52 (ps = 1.0) 3.50

starts with, and sub-figure (b) represents the final solution for the map with the

additional landmarks sampled, and a path shown between the start and goal query.

In the results shown in Figure 4.5, the final connectivity graph on the map shows

the adaptive nature of the sampling done to solve the map. There are areas in the

map where more sampling was done and areas where no sampling has been done.

This is something to be expected from an adaptive sampling algorithm. Maps with

more complexity were also solved and Figure 4.6 - Figure 4.8 represent the solutions.

Some maps have always challenged the sampling and motion planning algorithms,

one of them is the single passage map, the solution to which is given in Figure 4.9.

The algorithm was able to solve the map with minimal increase in landmarks for the

map.

Efficiency (η) in Table (Table 4.1) is defined as efficiency of the Adaptive Sampling

based GPRM (AGPRM) and is given by the ratio of GPRM Samples required to the

AGPRM Samples required for solving the given query in the given obstacle space.

The maps discussed till now have dimensions 60 x 60 units. Figure 4.10 represents

one of the largest map the algorithm was tried on, it is 150 x 150 units in area.

The maps discussed here were also solved using the basic GPRM algorithm and

the results when compared with the adaptive sampling case, suggest that the number

79

(a) Initial Landmarks (b) Query Solved

Fig. 4.5. AGPRM with Point Robot : Map 1

(a) Initial Landmarks (b) Query Solved

Fig. 4.6. AGPRM with Point Robot : Map 3

80

(a) Initial Landmarks (b) Query Solved

Fig. 4.7. AGPRM with Point Robot : Map 5

(a) Initial Landmarks (b) Query Solved

Fig. 4.8. AGPRM with Point Robot : Map 6

81

(a) Initial Landmarks (b) Query Solved

Fig. 4.9. AGPRM with Point Robot : Map 9

(a) Initial Landmarks (b) Query Solved

Fig. 4.10. AGPRM with Point Robot : Map 10

82

of samples required to solve the maps have approximately been reduced by half or

more (refer Table Table 4.1).

4.4.2 n - Link Manipulator

The GPRM algorithm along with the Adaptive Sampling developed is applied to

an n-link manipulator. An n-link manipulator with fixed arm length is a dynamical

system with n degrees of freedom (DOF). Here we have taken a fixed-base n-link

manipulator operating in a plane perpendicular to gravity with n = 3 (Figure 4.11),

5 and 8 links. The dynamics of the system is developed and a feedback controller

is designed to stabilize the manipulator about any given configuration by linearizing

the dynamical system about the configuration and using linear quadratic control

techniques. This feedback controller is then applied on the non-linear system. The

developed dynamics, along with the designed controller, is used in the simulations

involved in the GPRM algorithm. The maps studied are of varying complexity.

θ1

L1

θ2

L2

θ3

L3

Fig. 4.11. Three-Link Manipulator

The configuration space of 3-link system is given by the link angles [θ1, θ2, θ3].

There exist an obstacle/ physical space, (Figure 4.12 (a) and (b)), in which the

manipulator has to operate. Each configuration space entity is a configuration of the

link manipulator in the obstacle space. And the obstacles in the obstacle/ physical

83

(a) Configuration Space* (b) Obstacle Space

Fig. 4.12. Configuration and Obstacle Space (* The infeasible region
representing obstacles in the configuration space is hypothetical and for
understanding)

84

Table 4.2
Result Comparison : 3-Link-Manipulator GPRM with and without
Adaptive Sampling

Map# Number of Samples Required (pmin = 0.75)
basic GPRM AGPRM AGPRM η

1 32 (ps = 1.0) 21 (ps = 1.0) 1.52
2 a 102 (ps = 1.0) 22 (ps = 1.0) 4.64
2 b 102 (ps = 0.797) 26 (ps = 0.797) 3.92

space generate an infeasible region in the configuration space of the link manipulator

(Figure 4.12 (a)). The landmarks generated from the configuration space/ state

space have to avoid this infeasible region and hence, avoid the link configurations

which clash with the obstacles in the physical space. A similar approarch during

motion planning helps achieve obstacle avoidance.

The results of the GPRM algorithm along with the Adaptive Sampling method-

ology, on the link manipulator case has been depicted in Figure 4.13-Figure 4.15.

Table (Table 4.2) compares the number of samples required by the Adaptive Sam-

pling based algorithm for the 3-link manipulator case with basic GPRM with uniform

sampling. Efficiency (η) in Table (Table 4.2) has been defined prior to Table (Ta-

ble 4.1).

For each map, two figures are shown. Fig (a) shows all the landmarks generated

while searching to reach the final configuration. Fig (b) shows the sequence of land-

marks in the optimal solution. The numbering of the intermediate landmarks in Fig

(b) is for understanding the sequence of travel of the link manipulator from the start

to end configuration.

We studied performance on two different maps. Results for Map 1 are shown in

Figure 4.13. Map 2 (Figure 4.14, Figure 4.15) was studied with two different initial

configuration (i.e. Map 2 a, b):

• Map 2 a with vertically down initial configuration and,

85

• Map 2 b with initial configuration flat right.

The problem in Map 2b, is a hard problem because the end configuration is closer

to the initial configuration, but the shortest path is blocked due to obstacles. The

results indicate that the number of samples required are similar but the probability

of success (ps) gets reduced for the basic GPRM and AGPRM algorithms.

(a) Landmarks (b) Query Solved

Fig. 4.13. AGPRM with 3-Link Manipulator : Map 1

5-Link Manipulator

After improved results using AGPRM for 3-link manipulator, the algorithm was

tested on higher dimensional state-space systems with highly non-linear dynamics.

Figure 4.16 shows one of the results obtained from applying AGPRM to solve the

motion planning problem for 5-link case with process uncertainty and the aforemen-

tioned stochastic maps (i.e. Map 1, 2a, 2b). The figures depict that the algorithm

was successful in solving the 5-link case under different maps with different initial

conditions. The dimension of the map has to be increased as the length of each link

86

(a) Landmarks (b) Query Solved

Fig. 4.14. AGPRM with 3-Link Manipulator : Map 2 a

(a) Landmarks (b) Query Solved

Fig. 4.15. AGPRM with 3-Link Manipulator : Map 2 b (different initial
configuration)

87

Table 4.3
5-Link Manipulator - AGPRM Results

Map (80×80) No. of samples
1 180

2 b 390

was kept same, keeping the obstacle configurations similar. The Table 4.3 shows the

number of samples required to solve the problem.

(a) Map 1 solution (b) Map 2 b solution

Fig. 4.16. AGPRM with 5-Link Manipulator

8-Link Manipulator

Figure 4.17 shows the results obtained by applying AGPRM algorithm on a 8-

link manipulator, i.e. a 16 dimensional state-space system. These results essentially

depicts that the algorithm is capable of handling highly non-linear high-dimension

state space systems while solving the motion planning problem in presence of uncer-

88

Table 4.4
8-Link Manipulator - AGPRM Results

Map (140×140) No. of samples
1 255

2 b 250

tainty. The dimension of the map has to be increased to 140×140 units of length to

accommodate 8-links, with each link having the same length as for 3-link and 5-link

case. Table 4.4 shows the number of samples required to solve the motion planning

problem on corresponding maps for the 8-link manipulator. The number of samples

required for solving the Map 2b for 8-link required less number of samples compared

to solving a similar map for 5-link case, this could be because of certain on-going

improvements done in the algorithm.

(a) Map 1 solution (b) Map 2 b solution

Fig. 4.17. AGPRM with 8-Link Manipulator

89

4.5 Conclusions

This section of the dissertation presents an adaptive sampling strategy for the gen-

eralized probabilistic roadmaps framework. The strategy was tested on an idealized

point robot with fully actuated dynamics and a 3-link manipulator having 3-DOF

and 6-dimensional state space with stochastic map and model uncertainty. The nu-

merical simulations were done on several complicated maps for the point dynamics

robot and for the 3-link manipulator. The results are promising when compared

to basic GPRM, and suggests that a solution to complicated maps, where a basic

GPRM might fail or would require a high number of landmarks, is possible with

significantly less number of landmarks, using the adaptive sampling strategy. Fur-

thermore once the efficiency of the algorithm was tested, the algorithm was applied

to other highly non-linear systems with very high-dimensional state-spaces. The al-

gorithm was successfully applied to 5-link and 8-link manipulator case (i.e. upto 16

dimensional state space systems) to solve the motion planning problem in presence

of uncertainty and hence depicted the capability of solving very high-dimensional

state space systems. The results here indicate that we have increased the efficiency

of sampling, and the probability of success associated with the solution of GPRM

algorithms along with showcasing the capability to handle highly non-linear systems

with very high dimensional state-spaces. The results presented here have not been

time optimized and this is a subject of ongoing research. We will also be work-

ing towards the proof of convergence of the adaptive sampling techniques and the

proof and simulation results of approaching resolution complete maps with multiple

queries.

90

5. MULTI-AGENT PROBLEM

5.1 Introduction

In a single-agent system only one agent interacts with the environment, where

a multi-agent system (MAS) consists of multiple agents which execute actions and

influence their surroundings. Each agent receives observations and selects actions

individually, but it is the resulting joint action which influences the environment and

generates the reward1 for the agents. This has extremely important consequences on

the characteristics and the complexity of the problem.

5.1.1 Characteristics of Multi-Agent System (MAS)

A multi-agent system results in increased complexity in both the action and state

space whenever a new agent is added to the system. Since the total number of joint

actions is defined as the cross-product of the individual action sets, the action space

scales exponentially with the number of agents. The same is true for the state space

of the multi-agent system also. Some fundamental characteristics of a multi-agent

system [74,75] are discussed below.

Environment : In single-agent system the environment is assumed to be static

and hence transition and reward function do not depend on the time step t.

However, when other agents are part of the environment then new state and

received reward also depend on the actions selected by the other agents, i.e.

environment is dynamic. Collision check and avoidance algorithms will change

in such a scenario.

Homogeneous and heterogeneous agents : Agents in a MAS can be either ho-

mogeneous or heterogeneous. Homogeneous agents have identical capabilities,

1cost of transition

91

and heterogeneous agents have different designs and different capabilities, for

instance different equations of motion.

Control : The control is decentralized, each agent selects action individually, but

the system is affected by the joint action, that is, the combination of all selected

actions.

Knowledge : This is the information an agent has about the world and the task

it has to solve. An agent has specific internal knowledge : the actions it can

perform, the transition and reward functions.

Observability : This is the degree to which agents either individually or as a team,

identify the current world state. Ref. [76] gives the following four models for

observability:

• Individual observability : Every agent observes the complete unique world

state.

• Collective observability : The combined observations of all agents uniquely

identify the world state. Each agent only observes a part of the state.

• Collective partial observability : Each agent observes part of the full state

information but there are no assumptions about the combined observa-

tions of the agents.

• Non-observability The agents receive no feedback from the world.

Communication : An ideal situation is that the agents are able to communicate

instantaneously to all agents for free and there are no limitations in the number

of messages. Because of communication constraints and delay, perfect commu-

nication may not be feasible.

92

5.1.2 Formal Description

The parameters of the multi-agent system can be summarized as [74,75]:

• A discrete time step t

• A ground of n agents A = {A1, A2, . . . , An}

• A set of environments states X, xt ∈X

• A set of actions Ai for every agent i, and ati ∈ Ai. The joint action a ∈ A =

A1 × · · · × An is the vector of all individual actions.

• A set of observations Ωi for every agent i

• A state transition function T : X ×A×X → [0, 1] which gives the transition

probability p(xt|at−1,xt−1) that the system moves to state xt when the joint

action at−1 is performed in state xt−1.

• An observation function O : X × A × Ω1 × Ω2 × · · · × Ωn → [0, 1] which

defines the probability p(ot1, . . . , o
t
n|xt,at−1) that the observations are observed

by the agents 1, . . . , n in state xt after joint action at−1 is performed. It can

be concisely written as p(ot|xt,at−1,xt−1)

• A reward function Ri : X × A → R which provides agent i with a reward

rt+1
i ∈ Ri(x

t,at) based on the joint actions at taken in state xt. The global

reward function R(xt,at) =
∑n

i=1Ri(x
t,at) is the sum of all individual rewards

received by the n agents.

5.1.3 Models to tackle MAS

The different approaches of dealing with multi-agent systems are [74,75] :

Multiagent MDP (MMDP) : This model follows the general model from MDP

with two additional assumptions. First, each agent has knowledge of the global

93

reward. Secondly, the system has full observability, i.e. each agent observes

the complete state xt.

Collaborative multiagent MDP : Each agent in this model acts individually,

has full observability, and has knowledge of the individual reward and not the

shared global reward. It uses known dependencies between the agents to create

a factorized representation of transition and reward function, and hence, needs

to observe the state variables of agents on which it depends.

Stochastic Games : All involved agents have to select an action ai, and the re-

sulting joint action a provides each player i an individual payoff Ri(a). This

assumes full observability and complete knowledge of reward function but ac-

tion information of other agents is not available. The agents try to maximize

individual reward.

Decentralized POMDP : It assumes that the observations of the agents are un-

certain and is an extension of the single-agent POMDP model with collective

partial observability.

The general multi-agent problem has been formulated and the different approaches

of solving the motion planning problem in presence of process and sensing uncertainty

was discussed above. We intend to solve the multi-agent motion planning problem

in presence of process uncertainty and map uncertainty, however we assume perfect

state sensors. The multi-agent problem which we would address in this dissertation

is given in the following section 5.2.

5.1.4 Coordination Problem

The multi-agent motion planning problem in presence of process uncertainty and

stochastic maps can be posed as an multi-agent Markov decision process (MMDP).

In traditional methods of solving an MMDP, it is treated as a single large MDP and

94

standard solution techniques available for MDPs are applied, this was done by [77].

The goal of solving an MMDP should be that of finding the best/optimal policy

for the system of agents. However actions are taken at an individual level of the

agents and its should be ensured that without using communication (i.e. real-time

data transfer not allowed), the combined actions of all the agents should result in an

optimal policy for the system of agents. The problem of identifying individual policy

for each agent which results in the optimal joint policy is called the coordination

problem.

Researchers working on solving this problem have come up with possible solutions

such as coordination graphs (CGs) as in [74] and max-plus algorithm in conjunction

with CGs as in [78]. In [74] the solution to cooperative action selection for a system

of agents (or coordination problem) is proposed as constructing a coordination graph

and optimizing over it using variable elimination algorithm. In [78], the researchers

proposed a improved optimization technique, max-plus algorithm, which replaces the

variable elimination procedure while optimizing the coordination graphs.

5.1.5 Multiple Traveling Salesman Problem (MTSP)

Traveling salesman problem (TSP) is a well known combinatorial optimization

problem in operational research and theoretical computer science. The problem

has been solved efficiently in [79]. A generalization of traveling salesman problem

is the multiple traveling salesman problem (MTSP) which consists of determining

the routes for multiple salesmen. Ref. [80] discusses an overview of formations and

solution procedures for MTSP. A generalization of MTSP is one in which the agents

can start at multiple depots (i.e. start locations) and the type of agents can be

heterogeneous. The generalized MTSP problem statement is as follows : Given a set

of heterogeneous agents that start from distinct depots (or start locations), a set of

targets (or goal locations), find an assignment of targets to be visited by each agent

along with the sequence in which it should be visited so that each target is visited at

95

least once by an agent, all the agents return to their respective depots after visiting

the targets, and the total cost incurred by the collection of agents is minimized.

Problem Statement

The different parameters in the MTSP problem [31] are:

• n targets and m vehicles located at distinct depots. (for simplification agents

will be referred as vehicles here)

• V = {V1, . . . , Vm}, with m vertices, representing the vehicles (i.e. the vertex Vi

corresponds to the ith vehicle)

• T = {T1, . . . , Tn}, represents n targets

• V i = Vi ∪ T : set of all the vertices corresponding to the ith vehicle.

• Ei = V i× V i denote the set of all edges (pair of vertices) corresponding to ith

vehicle

• Ci : E → R+ denote the cost function with Ci(a, b), representing the cost of

traveling from vertex a to vertex b for vehicle i.

• Cost functions are asymmetric, i.e. Ci(a, b) need not be equal to Ci(b, a),

∀ a, b ∈ V i, i = 1, . . . ,m.

A vehicle either does not visit any target or visits a subset of targets in T . If the

ith vehicle does not visit any target, then its tour, TOURi = φ and it corresponding

cost, C(TOURi) = 0. If the ith vehicle visits at least one target, then its tour

may be represented by an ordered set {Vi, Ti1 , . . . , Tiri , Vi} where Til , l = 1, . . . , ri

96

corresponds to ri distinct targets being visited in that sequence by the ith vehicle.

And the associated cost with the tour for the ith vehicle will be given by:

C(TOURi) = Ci(Vi, Ti1) +

ri−1∑
k=1

C(Tik , Tik+1
) + Ci(Tiri , Vi). (5.1)

Hence we need to find tours for the vehicles such that each target is visited at least

once and the overall cost defined by
∑

i∈V C(TOURi) is minimized.

Ref. [80] summarizes different formulations and solution procedures for multiple

traveling salesman problem. The paper discusses exact algorithms, heuristic solution

procedures and transformations to single TSP, to solve MTSP. The transformation

based solution approaches essentially transforms the MTSP to a single TSP on an

expanded graph and uses already available solution techniques for TSPs (such as

[79]). One of the major concerns with respect to transformation’s solutions are

their scalability with increasing number of agents. A recent work [31] presents an

effective transformation method to solve the generalized2 MTSP. In this work the

generalized MTSP is transformed first to a one in a set asymmetric TSP (ATSP)

and then this one in a set ATSP is transformed to a single ATSP by Noon-Bean

transformation [81]. The single ATSP is solved using the Lin-Kernighan-Helsgaun

(LKH) solver [79] and it is shown that solving the single ATSP on a transformed

graph is equivalent to solving the generalized MTSP.

5.2 A Class of The Multi-Agent Problems

The motion planning problem for single agent in presence of uncertainty in the

form of process uncertainty, and stochastic maps, has been solved using the proposed

generalized sampling based motion planners, i.e. GPRM and GRRT. Once the single

agent problem has been solved some of the important extensions are to : dynamic

maps, multi-agent systems and problems with sensing uncertainty. We shall not solve

2Heterogeneous agents starting at multiple depots

97

problem with sensing uncertainty in this dissertation. We would like to generalize our

solution methodology to multi-agent scenarios in the presence of process uncertainty

and stochastic maps. The particular multi-agent problem that we would like to solve

in this dissertation will be discussed in subsection 5.2.1.

Researchers solve the coordination problem to solve the MMDP posed by the

multi-agent motion planning problem (refer subsection 5.1.4). All the successful

approaches [74, 78] were top-down in solution methodology, i.e. the coordination

problem was solved in the MMDP framework.

In this work, we intend to present an approximate approach of solving a partic-

ular MMDP for the start locations and a particular cost structure as explained in

subsection 5.2.1. In Section 3 and 4 we successfully solved the single agent motion

planning problem in presence of uncertainty posed as MDP which was converted to

SMDP and solved thereafter. Our approach to solving the MMDP posed by multi-

agents is bottom-up where we intend solve multiple MDPs for single agents and use

the cost of transition and transition probabilities generated by the solution to solve

the coordination problem and hence solve the overall MMDP posed by the systems

of agents. This coordination problem is equivalent to the routing problem solved by

the TSP research community as discussed in subsection 5.1.5. Hence we intend to

use the already existing literature related to solution of MTSPs to solve the routing

problem (or the coordination problem in MMDPs). Details of the approach to solve

the MMDP will be discussed in further sections.

5.2.1 A Class of Multi-Agent Problems in Presence of Uncertainty

We want to solve the motion planning problem, under given scenario :

• m agents, with m initial configurations, i.e. qI = {qI1 , qI2 , . . . , qIm},

• n goal locations, i.e. qG = {qG1 , qG2 , . . . , qGn},

• Process uncertainty present in robot motion model,

98

• Environment given by stochastic maps, i.e. static obstacle probabilities.

Given the above multi-agent scenario, additional considerations need to be made:

1. Number of agents and number of goal locations might not be same, i.e. m 6= n

(general case). If, the number of agents and number of goal locations are same,

then solving m single agents problems can be straightforward. But as the goal

locations are different in number, some agents will have to go to more than one

goal and some might not have to go to any goal. Hence with the given scenario

one has to solve a routing problem (or the coordination problem as discusses in

subsection 5.1.4) for the multi-agent system.

2. Due to presence of other agents in the given static stochastic map, in addi-

tion to collision with obstacles, we need to address collision with other agents.

Furthermore, this has to be a real-time solution.

3. Typically in a multi-agent system, one can assume presence of heterogeneous

agents, i.e. agents having different capabilities. Thus, there is a need to discuss

homogeneous as well as heterogeneous agents scenario.

The routing problem, in item 1 above, has been solved extensively in the travel-

ing salesman problem (TSP) research community, primarily in deterministic frame-

work [79]. The generalized multi-agent routing problem has been posed as a multiple

traveling salesman problem (MTSP) [80,31] and there have been multiple approaches

to solve it. We aim to use the already existing routing problem solution techniques for

multi-agent systems developed in [31], and in synergistic manner apply it along with

GPRM to the multi-agent systems in presence of process uncertainty and stochastic

maps. We expect this generalized technique - multi-agent adaptive sampling gen-

eralized probabilistic roadmaps(MAGPRM), will help us solve the feedback motion

planning problems in high dimensional state spaces under uncertainty in a multiple

agent scenario, with GPRM as the underlying framework, which successfully solved

the single agent scenario.

99

The section 5.3 will discuss the solution approach for the multi-agent motion

planning problem under uncertainty.

5.3 Solution Approach : Problem 2

In order to solve the motion planning problem under uncertainty involving multi-

agent systems, stated in Problem 2 (refer subsection 1.2.2), a solution methodology

is proposed using the multiple traveling salesman problem (MTSPs) [31].

We have solved the motion planning problem under uncertainty for a single agent

case (Problem 1). We propose to address the multi-agent motion planning problem

under uncertainty by solving the following sub-problems using proposed methodolo-

gies along with GPRM as follows:

Routing Problem : This is the problem of identifying which agents will go to

which goal locations. Hence given m agents and their initial configurations,

qI = {qI(i)}, i = 1, . . . ,m, and n target final configurations, qG = {qG(i)}, i =

1, . . . , n, and given m 6= n (general case), how to determine which set of goals

any given agent will go to. Due to the condition of m 6= n, some agents may

go to multiple goal configurations and/ or other agents may not go to any goal

configuration.

Solving the “routing problem” amounts to solving a passive/offline co-ordination

problem, i.e., co-ordination between agents before starting the execution of the

planning. MTSP is the tool through which we plan to solve this routing prob-

lem. We will solve the original problem of multi-agent motion planning under

uncertainty using GPRM in conjunction with MTSP, in a hierarchical fashion.

The solution of GPRM will generate transition costs and probabilities between

any pair of goal locations3 for any given agent. Using these cost and transition

probabilities, the MTSP algorithm will be used to solve the “routing problem”

3Goal locations here includes the initial configurations and the desired configurations

100

and hence, solve the multi-agent motion planning problem under uncertainty.

Inter-Agent Collision Avoidance : Inclusion of multi-agents in the domain cre-

ates a need to address the inter-agent collision avoidance through an updated

collision detection module which, in general, cannot be assured by the routing

problem. To address this problem, we shall use collective partial observability

(ref. subsection 5.1.1), and develop schemes with guaranteed collision avoid-

ance.

Homogeneous and Heterogeneous Agents : In case of all agents being homo-

geneous in dynamics and capabilities, a single graph based solution can be

provided using GPRM along with MTSP. For heterogeneous agents, solving

the motion planning problem will involve constructing topological graphs in

GPRM for every type of agent present in the system, i.e. given m agents

consisting of t type of agents will need t number of graphs and a number of

GPRMs solutions.

5.4 Routing Problem as MTSP

This section is focused on solution of the routing problem explained in the sec-

tion 5.3. We intend to solve this sub-problem using multiple traveling salesman

problem(MTSP) solution methodology. The details of MTSP were presented in sub-

section 5.1.5. MTSP solution methodology is primarily developed for deterministic

framework, but we intend to use it in conjunction with GPRM/AGPRM, developed

for single agent motion planning problem under uncertainty in Section 3 and 4. In

this section we develop the synergistic coupling of MTSP solutions with GPRM to

solve the routing problem, a sub-problem of the actual problem of multi-agent motion

planning motion planning under uncertainty.

We will first re-iterate some existing definitions and develop some new ones to

mathematically present the problem and then solve it.

101

5.4.1 Definitions

General

C : The configuration space of the agent. A configuration is given by q, i.e a

generalized position.

X : The state-space of the agent. A state is given by, x = (q, q̇), i.e. comprised

of generalized position and generalized velocity.

li : ith landmark, i.e. a sample in state-space (li ∈ X).

L : Set of landmarks, i.e. L = {li},∀i, on a given stochastic map.

G : Set of start and goal locations4 in a multiple agents scenario on a given

stochastic map. These start and goal locations are a part of the set of land-

marks, i.e. G ⊂ L

A : Set of all agents, {ai},∀i. (ai is the ith agent)

qi : Configuration of ai, where qi ∈ C

Qk : Configuration of all agents at time step k, i.e. Qk = {qk1 , qk2 , . . . , qk|A|} and

Qk ∈ C|A|

U : Set of controls. (u ∈ U)

M : Set of lower level controllers. (µ ∈M)

4landmarks

102

Controls

µ(·) : The lower level (say Level1 in MAGPRM or lowest level of GPRM as in

Figure 3.1 or Figure 5.1) controller for the agents. In MAGPRM it is a feedback

controller, parametrized using landmark. Also µ ∈M and :

µ(·) : X 7→ U

π(·) : Policy operator at Level2 of MAGPRM (or top level of GPRM as in Figure 3.1

or Figure 5.1), i.e. solution of GPRM for a single agent.

π(·) : L 7→M

Given a goal landmark, lgoal, π is a solution provided by GPRM developed

in section subsection 3.3.2. This solution is dependent on lgoal and hence the

operator π can be rigorously written as follows:

π(· ; lgoal) : L 7→M

γ(·) : An operator at Level3 of MAGPRM (need to introduce a new level above

Level1 and Level2).

γ(·) : A× G 7→ G

Let this be the solution of MAGPRM, i.e. given a particular ai ∈ A and the

location(∈ G) of ai, say g ∈ G, the operator outputs the next goal location for

ai, i.e. g′ ∈ G. This g′ parametrizes the Level2 π(·) operator, i.e.:

π(· ; g′) : L 7→M

103

Furthermore in terms of goal landmark, lgoali ∈ L for the ith agent, the location

g′ ∈ G where G ⊂ L, is given by :

g′ = lgoali , and hence

π(· ; lgoali) : L 7→M, for ith agent

Solution from GPRM is a feedback policy, i.e. given any landmark the policy

will suggest which should be the next landmark in the domain. Ideally we

would like the operator of Level3 of MAGPRM to also be a feedback policy.

We will be discussing this in detail in subsection 5.4.3.

5.4.2 Solution of MTSP

In [31], a solution methodology is proposed for the generalized MTSP problem

formulation stated in subsection 5.1.5. The solution methodology involves two trans-

formation steps:

• Converting a generalized MTSP to a one-in-a-set ATSP (where ATSP : Asym-

metric Traveling Salesman Problem).

• Converting a one-in-a-set ATSP to a single ATSP. This is done using the Noon-

Bean Transformation [81].

The generalized MTSP is posed as a single ATSP by the proposed transformations

which involve cost modifications. The single ATSP can be solved using the well-

known TSP solver, LKH [79]. Solving the single ATSP and working backwards gives

the solution to the generalized MTSP. Details of the algorithm developed can be seen

in [31].

104

5.4.3 Solving Multi-Agent Systems in Presence of Uncertainty

In this section, the single agent generalized sampling based motion planners

(GPRM) will be generalized to MAGPRM (multi-agent AGPRM), to solve the multi-

agent system problem using the MTSP solution methodology stated in the previous

section along with the GPRM technique.

As GPRM was a hierarchical approach , as shown in Figure 3.1, to solve the

MDP posed by the motion planning problem in presence of process uncertainty and

stochastic maps, the proposed algorithm, MAGPRM, for solving the multi-agent

motion planning involves introduction of a new level in the existing hierarchy. GPRM

solved the single agent case, as shown in Figure 3.1 or Figure 5.1, in a hierarchical

fashion. The lowest level (say Level1) in GPRM solves the motion planning problem

between one landmark to another and inherently was generating the cost of transition

and transition probabilities between two landmarks. These transition probabilities

and costs induced an abstract MDP, on the discrete set of landmark states, i.e. the

higher level (Level2 in Figure 5.1). We used Dynamic Programming to solve the

Level2 abstract MDP with the transition cost and probabilities generated by the

Level1. Hence using these two levels the single agent motion planning problem,

between any two start and goal locations, under uncertainty is solved.

In a multi-agent motion planning scenario, having m agents and n goal locations,

there are two additional sub-problems that need to be solved, as discussed in sec-

tion 5.3, namely routing problem and inter-agent collision avoidance. In order to

solve the routing problem we introduce Level3 which comprises of a graph whose

vertices are landmarks (g ∈ G), i.e. the m agents’ initial locations and the n desired

goal locations. The edges of the graph in Level3 are abstract connections from “agent

locations to goal locations” and “goal to goal locations”. “Agent locations to agent

locations” connections are avoided as a part of assumption that an agent should not

go to another agent’s location.

105

Fig. 5.1. Depicting Hierarchical Planning in Levels (for Multi Agents)

106

Using GPRMs the cost of transition and the path probability associated with

these edges in Level3 is computed (Figure 5.1). These costs and transition proba-

bilities associated with every edge is specific to agents, but gets simplified in case of

presence of multiple agents of same type. The number of GPRMs that needs to be

solved are 2n(m+n)5. Using the computed costs6 and after two cost transformations,

as discussed in subsection 5.4.2 the prospective MTSP algorithm [31] via the LKH

solver solves the routing problem, i.e. allotment of goal locations to different agents.

In this MTSP level, i.e. Level3 of MAGPRM, the solution is an operator operator

γ(·). Currently the solution of MTSP, for each agent, is a sequence of goal locations to

be visited. This solution (γ(·)) is definitely not a feedback policy, i.e. if the sequence

is broken by the agents due to any plausible reason, the policy does not remain

optimal. Hence in order to make γ(·) a feedback policy additional considerations

need to be made.

In Level3 the abstract graph consists of nodes which are the agent/start locations

(s ∈ G) and the goal locations (g ∈ G) and G = {s} ∪ {g}. The cost of the edges

of this graph has been calculated, by running a number of GPRMs, and stored.

In the event that an agent deviates and visits a non-assigned goal location, then

the operator γ(·) should be able to provide the next best move for the agents with

the remaining set of unvisited goal locations. In order to make the operator γ(·) a

feedback policy, every time a deviation from the assigned sequence of goal locations

is witnessed, the MTSP algorithm needs to recompute in real-time the operator γ(·)

with the current agent locations and the remaining unvisited goal locations.

5These are the number of edges that needs to be evaluated. m agents to n goals and vice versa
gives 2mn edges, n goals to n goals gives 2n2 edges and hence the total is 2n(m+ n)
6The MTSP algorithm only takes costs as input, the costs computed by GPRM do take into account
the transition probabilities.

107

The set of agent and goal locations are provided a priori and these locations are

treated as landmarks in the GPRM level. In an event of change of these location

(∈ G), i.e. addition/deletion of new goal locations, addition/deletion of new agent

locations, after a solution of MAGPRM has been found, the new locations will have

to be added as additional landmarks and it has to be connected to the existing graph

via appropriate feedback controllers for different agents. This will result in modified

graphs at Level2 of MAGPRM and the cost for the abstract graph edges at Level3

of MAGPRM needs to be recomputed. Once the updated costs are available, the

proposed MTSP solution procedure needs to be re-run, to get the new policy γ(·).

In order to have a well connected graph at GPRM level after the additional locations

are added, this step needs to be done offline to ensure connectivity. The notable part

here is that even if there is a change of set of locations after a MAGPRM solution is

found, the addition computational burden is minimal if the GPRM graphs are well

connected as we need to only solve the MTSP.

108

5.4.4 Multi-Agent GPRM (MAGPRM) Algorithm

The proposed methodology of solving the multi-agent motion planning problem

is summarized in 5.1 below.

Algorithm 5.1: Multi-Agent GPRM (MAGPRM)

Data: Set of agents (A), start locations x0, goal locations xg, pmin for the

environment

for ith agent at start location x0i ∈ x0 do1

for jth goal location, xgj ∈ xg do2

while ps(x0i → xgj) < pmin do3

if ith agent’s type already evaluated then4

Use already existing roadmap to build and connect further;5

Construct AGPRM, parametrized with goal location xgj and6

agent-type of ith agent;

Construct a cost of transitions matrix for each agent-type (i.e. cost of7

transitions between agents↔ goals and goals↔ goals);

Solve the routing problem for each agent, using the above generated costs in8

prospective MTSP algorithm;

The proposed algorithm solves the general7 multiple agent motion planning prob-

lem in presence of process uncertainty and stochastic maps. This algorithm will

provide an offline routing solution for individual agents. The real-time implemen-

tation of this solution requires an inter-agent collision avoidance module which will

be discussed in the following section 5.5.

The algorithm constructs a roadmap using AGPRM between each pair of start

and goal locations. The loop at line 3 depicts this; with each pair a new AGPRM,

parametrized at the current goal location, is solved.

7Involving heterogeneous agents

109

In the case of, multiple agents of same agent-type, lines 4-5 ensures that the

already existing roadmap and the already existing landmarks in the domain are used

to build further or to find a solution to the motion planning between ith agent and

the jth goal location.

In the case of heterogeneous agents, different roadmaps for different types of

agents have to be constructed and hence, is more computational intensive. The

landmarks might still be shared but transition costs and transition probabilities

calculations will involve running the simulations and constructing a different roadmap

each time a new type of agent comes into the system. Line 7 emphasizes this feature

of the algorithm.

Once the cost of transitions between each start and goal locations are computed,

the routing problem is solved using the prospective MTSP algorithm. The solution

outcome of MAGPRM is the sequence of goal locations to be visited by individual

agents, which takes into account the process uncertainty in the dynamics propagation

of the agents and traversal along a stochastic map.

5.4.5 Probability of Success for MAGPRM

An important point to be discussed here is the probability of success (ppath)

associated with the final paths suggested by the MAGPRM algorithm. Inherently

there is a threshold probability (pmin) provided for the map when performing a

GPRM, which ensures the solution has ppath ≥ pmin. A GPRM run between each pair

of start and goal location gets a probability of success in accordance to it. The cost

of these transitions from start to goal locations generated from GPRM incorporate

the probability of success in it. These costs are used by the MTSP algorithm at

Level3 of MAGPRM. The chosen MTSP algorithm does not take constraints such

as:

• limiting the number of goal locations to be visited by an agent.

110

• the probability of success of the final paths to have a minimum threshold.

Hence the hard constraint of finding a solution having probability of success

greater than threshold provided cannot be ensured at MTSP level, and hence some-

times the solution by MAGPRM may have probability of success for agents less than

the threshold.

Let path probability for MAGPRM be denoted by pMpath and that of GPRM as

pGpath. MAGPRM’s solution is a combination of multiple GPRM solution at Level2

and as probabilities are multiplicative, this enforces the upper bound for pMpath, i.e.

pMpath ≤ min pGpath always. Hence the pmin for GPRM directly is not applicable to

MAGPRM and it has the relationship

pMmin < pGmin. (5.2)

As mentioned above the pMmin is not enforced as a hard constraint when MTSP

solution is found, due to lack of capabilities of prospective MTSP algorithm to handle

constraints. An adaptive solution to this problem can be formulated as follows : in

an event of, pMpath < pMmin, the algorithm increases the pGmin for GPRM solutions in

Level2, which can be achieved by adaptive sampling, if possible. But there is a

possibility of no improvement in pMpath, under which condition the solution outcome

of MAGPRM is reported as such. This proposed adaptive solution has not been

implemented in this dissertation.

5.5 Inter-Agent Collision Avoidance

The multi-agent scenario will introduce moving agents in the system. In addition

to collision avoidance module responsible for detecting the collisions of agents with

the obstacles, another online collision avoidance and detection module is required to

handle inter-agent collision. This section is focused on developing the online collision

detection and avoidance module.

111

5.5.1 Definitions

General

Pi : Priority of ai. The priority of agents are assigned (heuristically) based on the

type of agent. More information when Alert zone is discussed ahead.

d(·) : Function defining distance between two agents,

d(ai, aj) = ||qi − qj||

Collision Zone

vtimax : maximum velocity of agent-type ti
8, for ith agent.

εti : radius of collision, for a particular agent-type.

collision(·) : Function defining collision between two agents as:

ε = max{εti , εtj}

collision(ai, aj) =

1 if d(ai, aj) ≤ ε, i 6= j

0 else

COLLISION(·) : Collision function for checking collision in between all agents.

COLLISION(Qk) =

1 if ∃ i, j : collision(ai, aj) = 1

0 else

Alert Zone

Ωi : Alert-zone for the ith agent, Ωi ⊂ C
8This is required for heterogeneous (i.e. multiple agent-type) multi-agent case

112

rti : radius of the alert-zone of ith agent of agent-type ti, also assume rti = kvtimax,

where k is some constant. rti and εti need to follow:

vmax = max{vtimax,∀i}

εti < rti − vmax ∗ dt

which ensure that after entering an alert zone, even traveling with maximum

velocity, an agent cannot enter the collision zone of another agent after one

time step.

Priority assignment : Agents are assigned priority by arranging them with

rti in descending order, i.e. agents with largest rti will have highest priority.

And with the same agent-type, ti, the priority is assigned randomly.

alert(·) : Function defining alertness between two agents as:

alert(ai, aj) =

1 if d(ai, aj) ≤ rti || d(ai, aj) ≤ rtj , i 6= j

0 else

ALERT (·) : Alert function for checking alertness in between all agents.

ALERT (Qk) =

1 if ∃ i, j : alert(ai, aj) = 1

0 else

qj ∈ Ωi : aj is in alert-zone of ai, i.e. alert(ai, aj) = 1 & d(ai, aj) ≤ rti . (=⇒ qi ∈

Ωi)

S1
i : Set of agents in alert-zone of ai (in the 1st level), i.e. S1

i = {aj | qj ∈ Ωi}

n1
i : Number of agents in the set S1

i , i.e. n1
i = |S1

i |

113

Pmax(·) : The highest priority in a set of agents, for example in S1
i ,

Pmax(S1
i) = max

j
{Pj | aj ∈ S1

j }

amax(·) : The highest priority agent in a set of agents, for example in S1
i ,

amax(S1
i) = arg max

aj∈S1i
{Pj}

Controls

β(·) : The decision operator to avoid possible collision.

β(·) : X |A| ×A×M 7→M∪ {µ0}

where µ0 is a local controller that stops the agent at its current position. Given

all agents, their states and their current controllers, this operator takes the

decision for every ai ∈ A, i.e. which controller µik(·) the ith agent should take

at current time step, k. The control options as output of β(·) are restricted to:

continue : Use the already planned µik(·) for ai, i.e. no change required.

stop : Replace µik(·) with µ0(·) for ai, i.e. the agent needs to stop at the

current position.

evasive action : Pick a new controller µ̃ik(·) ∈M for ai.

114

5.5.2 The Algorithm

Algorithm 5.2: Collision Detection and Avoidance

Data: A,M,P , Q0, ALERT (Q0) = 0,

Result: COLLISION(Qk) = 0, ∀k

for every tk do1

Initialize ∀i, µik ← continue;2

if ALERT (Qk) = 1 then3

Construct the set of agents, B = {ai | ∃j, alert(i, j) = 1};4

if COLLISION(Qk) = 1 then5

return fail;6

else7

B′ : Sort B based on priority P ;8

for every ai, with µik ← continue | take evasive action; starting9

with ai = amax(B′) do

for every aj ∈ S1
i \ai do10

µjk ← stop, i.e. µjk ← µ0;11

for every aj ∈ S1
i \ai do12

Check for future collision, i.e. calculate collisionk+1(ai, aj);13

if collisionk+1(ai, aj) = true then14

µik ← evasive action, i.e. µik ← µ̃ik;15

else16

continue;17

Propagate ai using µik, ∀i;18

This algorithm for the collision detection and avoidance is for every agent at every

time-step of propagation. The functions used in the algorithm have been explained

in the subsection 5.5.1. With Qk depicting the set of configuration of all the agents,

115

the function ALERT (Qk) is checked for every time step k and if its triggered then

the collision detection and avoidance module ensures that collision in-between agents

at every time-step is avoided.

In the event of ALERT (Qk) being triggered, a set of all those agents for which

alert(·) is triggered is created. All these agents are sorted such the highest priority

agent is arranged first9. Starting with the highest priority agent, as listed in the

algorithm from lines 10-15, the agents can either continue, stop or take evasive

action. An analysis of the algorithm is discussed in Appendix 2. A formal proof

showing that this online collision detection and avoidance module will ensure that the

agents, while following the solution from MAGPRM, will not collide with each other

at any time-step and hence, the complete trajectory of the agents will be collision

free is given in Appendix 2.

Hence, an online implementation of this collision detection and avoidance module

along with the solution outcome of MAGPRM solves the motion planning problem

for multiple homogeneous/ heterogeneous agents in presence of process uncertainty

and stochastic maps.

9Any possible conflict, in probable next action of different agents, will not arise by handling of
agents with respect to their priority. Details covered in Appendix 2.

116

5.6 Results and Discussion

In this section, we will detail the application of the multi-agent GPRM (i.e.

MAGPRM) algorithm to scenarios with homogeneous and heterogeneous agents in

the problem. The agents involved in these numerical experiments are dubins car and

a simplified three dimensional vehicle, mimicking a helicopter.

5.6.1 Vehicle Models Used

In order to apply the MAGPRM algorithm to heterogeneous agents scenario

atleast two different types of agents were required. The numerical experiments done

using MAGPRM involves the following two types of robot models used along with

their specific feedback controllers.

Nonholonomic Unicyle robot

This is the same as explained in subsection 3.4.2. The equations of motion are

given by :

ẋ = v cos θ + wx (5.3)

ẏ = v sin θ + wy (5.4)

θ̇ = ω + wθ (5.5)

where (x, y, θ) represents the pose of the robot, the velocity v and the angular ve-

locity ω represents the control inputs to the problem and wx, wy and wθ are the

uncorrelated noise terms for the different states of the robot. A sampled pose is

in the (x, y, θ) spaces and the local feedback controller used to stabilize the robot

about these sampled equilibrium configurations is given by [42] which is a dynamic

feedback linearization-based controller.

117

Simplified 3D helicopter robot

A simplified three-dimensional helicopter robot is constructed using a Dubins car

for two-dimensional traveling (as in subsection 3.4.2) and a double integrator for the

altitude traversal (z−direction). Hence the dynamics of this simplified robot can be

given by:

ẋ = v cos θ + wx (5.6)

ẏ = v sin θ + wy (5.7)

θ̇ = ω + wθ (5.8)

z̈ = uz + wz (5.9)

where (x, y, θ, z) represents the pose of the robot, the ground velocity (two-dimensional)

v, the angular velocity ω and uz, the input forces in the z−direction, represents the

control inputs to the problem. And wx, wy, wθ and wz are the uncorrelated noise

terms for each of the states of the robot. Our sampled poses are in the (x, y, θ, z, ż)

spaces. The local feedback controllers can stabilize the robot about any of the equi-

librium configurations sampled.

A dynamic feedback linearization-based controller design is chosen as in subsec-

tion 3.4.2 for the Dubins car model. A LQR based feedback controller is designed

for the double integrator in z−direction as in subsection 3.4.1.

Uncertainty was added to the robot motion model by adding white noise to the

robot dynamics equations are aforementioned, with the intensity of the white noise

being approximately a fraction of the maximum allowable vehicle linear and angular

speed, i.e. the noise in the x, y equations had intensity equal to 30% of the maximum

allowable linear speed (σx,y = 0.3 vmax), whereas the noise in the θ equation has

intensity equal to 10% of the maximum allowable angular speed (σθ = 0.1ωmax). For

the z−direction double integrator in Equation 5.9, the noise was considered to have

σz = 0.3 umaxz , where umaxz is the maximum input force possible.

118

In simulations, for GPRMs the threshold success probability, pGmin = 0.85 and

that for MTSP level was a priori assigned to pMmin = 0.7 and this is as discussed in

subsection 5.4.5.

5.6.2 Homogeneous Agents

In these numerical experiments, multiple homogeneous agents10 starting at dif-

ferent locations on a stochastic map were supposed to cover a given number of goal

locations. As the agents are homogeneous, the cost of transition and the probability

of transition from one landmark to another is the same given all agents are working

with the same map and the same sampled landmarks.

The result of our simulation experiments are shown in Figure 5.2 and Figure 5.3.

Figure 5.2(a), Figure 5.3(a) and Figure 5.3(b) show three different cases, i.e. different

number of agents starting at different start locations and have to visit a different

number of goal locations.

The Figure 5.2 depicts a case in which all the start locations for the robots were

constricted to a smaller region compared to the spread of the goal locations, i.e.

throughout the map. Figure 5.2(a) shows the solution of MAGPRM (i.e. at Level2

of MAGPRM) in terms of the goal locations to be visited by the active11 agents

and the various landmarks used to navigate through those assigned goal locations.

Figure 5.2(b) shows the actual trajectories (i.e. at Level1 of MAGPRM) of the

active agents based on the dynamics (i.e. Nonholonomic unicycle robot) and the

corresponding feedback controller as explained in subsection 5.6.1.

10All agents are Dubins car
11In MAGPRM solution not all agents are were assigned a goal location and hence active agents
are the ones which has been assigned atleast one goal location.

119

An important observation to be made in this result is that even if multiple agents

were present, the solution provided by MAGPRM suggests only a handful of agents

to cover the set of goal locations. Inherently the solution of MTSP (i.e. at Level3

of MAGPRM) is driven by space partitioning and that phenomena is seen in this

solution even if the costs generated by GPRM, which is fed to MTSP to get a solution,

have the travel time penalized. The probability of success associated with the final

paths of the individual agents are ∼ 0.7.

Figure 5.3(a) and Figure 5.3(b) shows results obtained by MAGPRM, depicting

coverage of goal location by the agents starting from their start locations. Both the

solutions have 40 goal locations and the number of agents are 5 and 10 respectively.

In Figure 5.3(a) 3 out of 5 available agents are active. The probability associated

with the final solution have probability of success ppath = 0.7 (i.e. the threshold

probability). In Figure 5.3(b) 4 out of the 10 available agents were active. The

solution of MAGPRM in these solutions also show the space partitioning behavior.

The probability of success in this solution is also ppath = 0.7.

120

(a) MAGPRM - Showing solutions for individual vehicles

(b) MAGPRM - Showing trajectories for individual vehicles

Fig. 5.2. MAGPRM Solutions and Trajectories

121

(a) MAGPRM - 5 vehicles and 40 final locations

(b) MAGPRM - 10 vehicles and 40 final locations

Fig. 5.3. MAGPRM Solutions

122

5.6.3 Heterogeneous Agents

In these set of experiments, heterogeneous12 agents are present in the map. The

equations of motion and the feedback controller associated with each type of agent

has been explained in subsection 5.6.1. Three dimensional static stochastic maps

are used for these simulations. In each of these simulations there are several 3-

dimensional goal locations along with 2-dimensional goal locations. The Dubins car

can only cover the 2-dimensional goal locations and the simplified 3D helicopter robot

can traverse to both 2-dimensional and 3-dimensional goal locations.

The initial set of landmarks sampled were more towards 2-dimensional goals

compared to 3-dimensional goals. The connections of 3-dimensional goal locations

was further facilitated using AGPRM, hence the solutions shown below has less

number of 3-dimensional sampled landmarks.

Figure 5.4 shows the solution outcome of MAGPRM. The Dubins car will go

to only one of the 2-dimensional goal locations and the simplified 3D helicopter

robot will be covering all other 2-dimensional and 3-dimensional goal locations. A

partitioning of space is seen in the solution.

Figure 5.5 and Figure 5.6 shows the MAGPRM solution for another case with mul-

tiple obstacles present in the map. The Dubins car is covering all the 2-dimensional

goal locations and the simplified 3D helicopter robot is covering only the 3-dimensional

goal locations. Figure 5.5(a) shows the solution of MAGPRM and Figure 5.5(b)

shows the actual trajectories of the robots. A partitioning of space is again visible.

The collision avoidance and detection module explained in section 5.5 is imple-

mented and comes into play if required while the robots start to navigate to the

assigned goal locations. The solutions shown in Figure 5.4 and Figure 5.6 do not

require the usage of this collision related module, since the solution has the parti-

tioning of space which implies that the robots do not come close enough to trigger

the collision module.

12A Dubins car and a simplified 3D robot

123

Fig. 5.4. MAGPRM with Dubins’ Car and 3D Vehicle with 1-Obstacle

124

(a) MTSP solution for the robots

(b) Trajectories of the robots

Fig. 5.5. MAGPRM with Dubins’ Car and 3D Vehicle with 5-Obstacles
: Case 1

125

Fig. 5.6. MAGPRM with Dubins’ Car and 3D Vehicle with 5-Obstacles
: Case 2

126

The heterogeneous agents case discussed in this section depicts the power of

MAGPRM. The stochastic decision making problem in presence of heterogeneous

agents for which the computation of the cost of transitions are different (which was

not the case in homogeneous agents) is solved. In order to solve this heteroge-

neous agents problem using MAGPRM, multiple GPRMs are solved in the underlying

framework and a solution graph is generated for each type of agent.

5.7 Conclusion

In this section of the dissertation, we have presented the motion planning prob-

lem under uncertainty in presence of multiple agents. In order to solve the overall

problem in conjunction with our existing solution methodology for single agent (i.e.

GPRM), there are two sub-problems namely routing problem and inter-agent colli-

sion avoidance which needs to be additionally solved. To solve the routing problem

an existing solution approach to the multiple traveling salesman problem is used.

The MTSP solution methodology in conjunction with GPRM results in the MAG-

PRM algorithm whose solution will be an offline solution to motion planning prob-

lem for multiple agent in presence of process uncertainty and stochastic maps. To

solve the inter-agent collision avoidance problem a heuristic algorithm is developed

which guarantees collision free trajectories for every agent in real-time. Numerical

experiments using these algorithms were performed on homogeneous agents and het-

erogeneous agents scenario for maps of different difficulty levels and different number

of start, goal locations and number of agents. Results show that the algorithm does

indeed solve the motion planning problem for multiple agents in presence of process

uncertainty and stochastic maps.

127

6. CONCLUSION AND FUTURE DIRECTIONS

The motion planning problem is a sequential decision making problem and opti-

mal control is the most general framework for solving such a problem. These problems

for real-world systems cannot be solved in a deterministic framework since in the real-

world, the evolution of dynamics involves uncertainty. An approach to solve motion

planning problems in presence of uncertainty is to incorporate the uncertainty in the

motion model, which increases the complexity of the problem. The work presented

in this dissertation focuses on such problems where the uncertainty is from process

noise, and uncertain environments, while perfect state sensing is assumed.

The motion planning problem can be formulated as a Markov decision process

(MDP), if the uncertainties in the robot motion and environments can be modeled

probabilistically. The complexity of solving these MDPs grow exponentially as the

dimension of the problem increases and hence, it is nearly impossible to solve the

problem even without constraints. Using hierarchical methods, these MDPs can

be transformed into a semi-Markov decision process (SMDP) which only needs to

be solved at certain landmark states. Sampling based algorithms like probabilistic

roadmaps (PRM) and rapidly exploring random trees (RRTs) have been successful

in solving very high dimensional deterministic robotic motion planning problem.

However they are not robust to system with uncertainties and hence, one of the goals

of this work is to generalize PRM/RRT to solve motion planning with uncertainty. It

is shown that the SMDPs are the right framework to extend PRM/RRT to systems

with uncertainties.

6.1 Contributions

In this dissertation, we give a systematic way of handling process uncertainty,

stochastic maps and solve, in continuous state and control spaces, the motion plan-

ning problem that has an a priori specified minimum required success probability.

128

6.1.1 Contribution 1 : Generalized PRM (GPRM) & Generalized RRT (GRRT)

We present a generalization of randomized sampling based algorithms PRM and

RRT, to incorporate the process uncertainty, and obstacle location uncertainty,

termed as generalized PRM (GPRM) and generalized RRT (GRRT) algorithms.

The controllers used at the lower level of these planners are feedback controllers

which ensure convergence of trajectories to goal landmarks while mitigating the ef-

fects of process uncertainty. GPRM incorporates these feedback controllers into

the topological graph construction phase, and in GRRT, the dynamically feasible

trajectories incorporate these feedback controllers while expanding the tree. These

algorithms are analyzed and a formal proof is presented proving these algorithms

to be probabilistic complete, i.e. given a solution exists, as the number of sampled

configurations increases the algorithms find the solution with probability 1. The

algorithms have been discussed in detail and have been implemented on different

robotic systems such as point robot dynamics and Dubins car demonstrating the

capability of the algorithm to handle non-linear dynamics in presence of uncertainty.

The results indicate that the algorithms solve the motion planning problem for a

single agent in continuous control spaces in the presence of process uncertainty, with

constraints such as obstacles and velocity/acceleration constraints.

A preliminary version of this work has been published in IEEE International Con-

ference on Systems, Man and Cybernatics, 2009 (IEEE SMC ’09) [28] and a journal

version has appeared in IEEE Transactions on Systems, Man, and Cybernetics -

Part B: Cybernetics, 2011 [29].

6.1.2 Contribution 2 : Adaptive GPRM (AGPRM)

A novel adaptive sampling technique is proposed for these generalized planners in

Section 4 to increase the efficiency and overall success probability of these planners

and in order for them to tackle high dimensional problems. The proposed adaptive

129

GPRM (AGPRM) algorithm has been developed on the basis of information of

transition probabilities encoded in the GPRM, which are unique to these generalized

algorithms. The algorithm is implemented on a point robot and n-link manipulators,

with n up to 8 links, i.e. a 16-dimensional state-space. The results demonstrate the

ability of the proposed algorithm to handle highly non-linear systems with very high-

dimensional state space.

A preliminary version of this work has been published in the 49th IEEE Confer-

ence on Decision and Control, 2010 (IEEE CDC ’10) [30] and a journal version has

been accepted and will appear in Journal of Control Theory and Application, Special

Issue on Approximate Dynamic Programming, 2010.

6.1.3 Contribution 3 : Multi-agent AGPRM (MAGPRM)

The multiple agent motion planning problem in presence of process uncertainty

and stochastic maps maybe posed as a multi-agent Markov decision process (MMDP).

In order to approximately solve this MMDP, a coordination sub-problem needs to be

solved. In the single agent case, GPRM solves the MDP posed by the motion plan-

ning problem in presence of uncertainty. In presence of heterogeneous multi-agents

with given start and desired goal configurations, an abstract graph, specific to an

agent type, can be constructed with all start and goal configurations as nodes and its

edges represents the cost of transitions given by a GPRM between that pair of start

and goal configuration. Solution of the agent routing problem over this graph us-

ing a multi-agent traveling salesman problem (MTSP) solution technique solves the

coordination problem. The solution methodology, called the multi-agent AGPRM

(MAGPRM) is the result to solve the multi-agent motion planning problem under

uncertainty, using a MTSP solution technique in conjunction with GPRM.

The solution of MAGPRM does not take into account the presence of other

moving agents in the domain, hence, for real-time implementation an inter-agent

collision detection and avoidance module was designed which ensures that no two

130

agents collide at any time-step. A formal analysis and proof of performance of this

module is also presented.

Numerical experiments were performed on a set of homogeneous and heteroge-

neous agents, comprising of Dubins car and three-dimensional simplified helicopter

robot. Results demonstrate that an optimal joint policy, for the systems of agents,

is achieved and the individual agents routing has a probability of success above the

minimum required success probability.

6.2 Future Directions

In this section several interesting directions for future research involving alterna-

tive approaches and extension of the current work is presented.

Immediate extensions of the current work can be done in a couple of areas. To

provide solution convergence guarantees for any adaptive sampling algorithm has al-

ways been a challenge: researchers usually demonstrate the converge using numerical

simulations. In the proposed adaptive sampling based GPRM (AGPRM), numeri-

cal results have shown improvement in efficiency, and the algorithm converges to a

solution. A formal proof of this convergence will be an immediate extension.

Another immediate extension can be done by implementing the adaptive solution

to achieve some pre-specified pMmin for a MAGPRM solution, as discussed in subsec-

tion 5.4.5. Adaptive sampling implementation for GPRM improves the efficiency

for achieving the requisite pGmin. Due to lack of capabilities of prospective MTSP

solution technique to handle constraints, a solution of MAGPRM is not guaranteed

to achieve pMmin, thus introducing an adaptive solution technique to handle this can

achieve similar performance as in AGPRM.

On a similar note, an alternative MTSP solution technique which is capable of

handling constraints can eliminate the problem of not-achieving pMmin by a MAGPRM

solution. Using such a solution technique will ensure that the specified lower bound,

pMmin is followed, i.e. pMpath ≥ pMmin. Furthermore, such a MTSP solution technique

131

can ensure that the number of goal locations visited by agents are bounded, if it is

a requirement.

In our approach to solving motion planning problems under uncertainty, the prob-

lem was posed as a MDP. Using randomized sampling of landmarks and Monte-Carlo

simulation in between landmarks, transition costs and transition probabilities were

computed, which were used to solve the MDP using Dynamic Programming (DP).

Many reinforcement learning algorithms, in machine learning, are closely related

to DP techniques. But compared to DP, the reinforcement learning algorithms do

not need the knowledge of the underlying MDP, these techniques learn the tran-

sition costs and transition probabilities through offline/online simulation. Hence,

generalizing GPRM using reinforcement learning will be an interesting direction for

investigation.

The proposed MAGPRM algorithm in this work, is an approximate method of

solving a particular MMDP for a set of start locations. To solve the general MMDP,

i.e. solving the stochastic optimization problem for the joint states and control spaces

for multi-agents, by using the solution of GPRM, for underlying MDPs for individual

agents, will be another interesting investigation (i.e. posing the MMDP in terms of

GPRM formulation). In a general MMDP, the joint state and control spaces of all

the agents increase the complexity of the decision process.

The MAGPRM algorithm developed in this dissertation to solve the heteroge-

neous multi-agent motion planning problem under uncertainty, can also be perceived

as a tool to measure performance for different controller options for the same agent.

It can be a powerful tool to compare multiple controllers, or in suggesting which

controller to be used in different domains of the problem.

Incorporating sensing uncertainty in the motion planning algorithm is a ongoing

research effort and is a very important addition to the problem. Another important

extension is to solve the motion planning problem with increasing stochastic map’s

dimension/knowledge, i.e. with new observations made in the domain, the mapping

132

algorithm updates the map and then the motion planning algorithm extends its

existing graph to cover the updated map.

133

REFERENCES

[1] A. Bryson and Y. Ho, Applied optimal control. New York, NY: American Insti-
tute of Aeronautics and Astronautics, 1979.

[2] S. LaValle, Planning algorithms. Cambridge, U.K.: Cambridge Univ Pr, 2006.

[3] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic roadmaps
for path planning in high-dimensionalconfiguration spaces,” IEEE Transactions
on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[4] S. LaValle, “Rapidly-exploring random trees: A new tool for path planning,”
Tech. Rep. 98-11, Computer Science Dept., Iowa State University, 1998.

[5] D. Hsu, R. Kindel, J. Latombe, and S. Rock, “Randomized kinodynamic mo-
tion planning with moving obstacles,” The International Journal of Robotics
Research, vol. 21, no. 3, p. 233, 2002.

[6] M. Puterman, Markov decision processes: Discrete stochastic dynamic program-
ming. New York, NY: John Wiley & Sons, Inc., 1994.

[7] D. Bertsekas, Dynamic Programming and Optimal Control: 3rd Edition.
Nashua, NH: Athena Scientific, 2007.

[8] D. Bertsekas and J. Tsitsiklis, Neuro-dynamic programming. Nashua, NH:
Athena Scientific, 1996.

[9] R. Sutton and A. Barto, Reinforcement Learning, vol. 18. Cambridge, MA: MIT
Press, 1998.

[10] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” The Interna-
tional Journal of Robotics Research, vol. 20, no. 5, p. 378, 2001.

[11] R. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning,” Artificial Intelligence,
vol. 112, no. 1, pp. 181–211, 1999.

[12] R. Parr, “Hierarchical control and learning for Markov decision processes”. PhD
thesis, Dept. Comput. Sci., Univ. of California, Berkeley, CA, 1998.

[13] S. LaValle, “Robot motion planning: A game-theoretic foundation,” Algorith-
mica, vol. 26, no. 3, pp. 430–465, 2000.

[14] N. Amato and Y. Wu, “A randomized roadmap method for path and manipu-
lation planning,” in Proc. IEEE International Conference on Robotics and Au-
tomation, vol. 1, pp. 113–120, IEEE, 1996.

[15] L. Guibas, D. Hsu, H. Kurniawati, and E. Rehman, “Bounded uncertainty
roadmaps for path planning,” Algorithmic Foundation of Robotics VIII, pp. 199–
215, 2009.

134

[16] B. Burns and O. Brock, “Sampling-based motion planning with sensing un-
certainty,” in IEEE International Conference on Robotics and Automation,
pp. 3313–3318, IEEE, 2007.

[17] P. Missiuro and N. Roy, “Adapting probabilistic roadmaps to handle uncertain
maps,” in Proc. IEEE International Conference on Robotics and Automation,
pp. 1261–1267, IEEE, 2006.

[18] N. Melchior and R. Simmons, “Particle RRT for path planning with un-
certainty,” in IEEE International Conference on Robotics and Automation,
pp. 1617–1624, IEEE, 2007.

[19] S. Wilmarth, N. Amato, and P. Stiller, “MAPRM: A probabilistic roadmap
planner with sampling on the medial axis of the free space,” in Proc. IEEE
International Conference on Robotics and Automation, vol. 2, pp. 1024–1031,
IEEE, 1999.

[20] S. Prentice and N. Roy, “The belief roadmap: Efficient planning in belief space
by factoring the covariance,” The International Journal of Robotics Research,
vol. 28, no. 11-12, p. 1448, 2009.

[21] R. Alterovitz, M. Branicky, and K. Goldberg, “Motion planning under uncer-
tainty for image-guided medical needle steering,” The International Journal of
Robotics Research, vol. 27, no. 11-12, p. 1361, 2008.

[22] R. Alterovitz, T. Siméon, and K. Goldberg, “The stochastic motion roadmap: A
sampling framework for planning with Markov motion uncertainty,” in Robotics:
Science and Systems, Citeseer, 2007.

[23] D. Mellinger and V. Kumar, “Control and planning for vehicles with uncertainty
in dynamics,” in IEEE International Conference on Robotics and Automation,
pp. 960–965, IEEE.

[24] R. Pepy, M. Kieffer, and E. Walter, “Reliable robust path planner,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1655–1660, IEEE, 2008.

[25] T. Schouwenaars, B. Mettler, E. Feron, and J. How, “Robust motion planning
using a maneuver automation with built-in uncertainties,” in Proc. American
Control Conference, vol. 3, pp. 2211–2216, IEEE, 2003.

[26] Y. Huang and K. Gupta, “RRT-SLAM for motion planning with motion and
map uncertainty for robot exploration,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1077–1082, IEEE, 2008.

[27] A. Lazanas and J. Latombe, “Motion planning with uncertainty: A landmark
approach,” Artificial Intelligence, vol. 76, no. 1-2, pp. 287–317, 1995.

[28] S. Chakravorty and S. Kumar, “Generalized sampling based motion planners
with application to nonholonomic systems,” in IEEE International Conference
on Systems, Man and Cybernetics, pp. 4077–4082, IEEE, 2009.

135

[29] S. Chakravorty and S. Kumar, “Generalized sampling-based motion planners,”
IEEE Transactions on Systems, Man, and Cybernatics—Part B: Cybernetics,
vol. 41, no. 3, p. 855, 2011.

[30] S. Kumar and S. Chakravorty, “Adaptive sampling for generalized sampling
based motion planners,” in 49th IEEE Conference on Decision and Control,
pp. 7688–7693, IEEE, 2010.

[31] P. Oberlin, S. Rathinam, and S. Darbha, “Today’s Traveling Salesman Prob-
lem,” Robotics & Automation Magazine, IEEE, vol. 17, no. 4, pp. 70–77, 2010.

[32] D. Hsu, J. Latombe, and H. Kurniawati, “On the probabilistic foundations of
probabilistic roadmap planning,” Robotics Research, pp. 83–97.

[33] R. Burridge, A. Rizzi, and D. Koditschek, “Sequential composition of dynam-
ically dexterous robot behaviors,” The International Journal of Robotics Re-
search, vol. 18, no. 6, p. 534, 1999.

[34] D. Conner, “Integrating planning and control for constrained dynamical sys-
tems”. PhD thesis, Robotics Inst. Comput. Sci., Carnegie Mellon Univ., Pitts-
burg, PA, 2007.

[35] D. Conner, H. Choset, and A. Rizzi, “Flow-through policies for hybrid controller
synthesis applied to fully actuated systems,” IEEE Transactions on Robotics,
vol. 25, no. 1, pp. 136–146, 2009.

[36] A. Quaid and A. Rizzi, “Robust and efficient motion planning for a planar robot
using hybrid control,” in Proc. IEEE International Conference on Robotics and
Automation, vol. 4, pp. 4021–4026, IEEE, 2000.

[37] L. Yang and S. Lavalle, “The sampling-based neighborhood graph: An approach
to computing and executing feedback motion strategies,” IEEE Transactions on
Robotics and Automation, vol. 20, no. 3, pp. 419–432, 2004.

[38] S. Patel, S. Jung, J. Ostrowski, R. Rao, and C. Taylor, “Sensor based door
navigation for a nonholonomic vehicle,” in Proc. IEEE International Conference
on Robotics and Automation, vol. 3, pp. 3081–3086, IEEE, 2002.

[39] R. Brockett, “Asymptotic stability and feedback stabilization,” Differential Ge-
ometric Control Theory, pp. 181–208, 1983.

[40] S. Au and J. Beck, “Subset simulation and its application to seismic risk based
on dynamic analysis,” Journal of Engineering Mechanics, vol. 129, p. 901, 2003.

[41] I. Kolmanovsky and N. McClamroch, “Developments in nonholonomic control
problems,” Control Systems Magazine, vol. 15, no. 6, pp. 20–36, 1995.

[42] G. Oriolo, A. De Luca, and M. Vendittelli, “WMR control via dynamic feed-
back linearization: design, implementation, and experimental validation,” IEEE
Transactions on Control Systems Technology, vol. 10, no. 6, pp. 835–852, 2002.

[43] G. Campion, G. Bastin, and B. Dandrea-Novel, “Structural properties and clas-
sification of kinematic and dynamic models of wheeled mobile robots,” IEEE
Transactions on Robotics and Automation, vol. 12, no. 1, pp. 47–62, 1996.

136

[44] J. Reif, “Complexity of the mover’s problem and generalizations extended ab-
stract,” in Proc. 20th Annual IEEE Conference on Foundations of Computer
Science, pp. 421–427, 1979.

[45] D. Hsu, J. Latombe, and R. Motwani, “Path planning in expansive configuration
spaces,” in Proc. IEEE International Conference on Robotics and Automation,
vol. 3, pp. 2719–2726, IEEE, 1999.

[46] D. Hsu, “Randomized single-query motion planning in expansive spaces”. PhD
thesis, Dept. Comput. Sci., Stanford Univ., Stanford, CA, 2000.

[47] K. Bekris, B. Chen, A. Ladd, E. Plaku, and L. Kavraki, “Multiple query prob-
abilistic roadmap planning using single query planning primitives,” in Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1,
pp. 656–661, IEEE, 2003.

[48] M. Akinc, K. Bekris, B. Chen, A. Ladd, E. Plaku, and L. Kavraki, “Proba-
bilistic roadmaps of trees for parallel computation of multiple query roadmaps,”
Robotics Research, pp. 80–89, 2005.

[49] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” International Journal of Robotics Research, vol. 30, no. 7, pp. 846–
894, 2011.

[50] J. van den Berg and M. Overmars, “Using workspace information as a guide
to non-uniform sampling in probabilistic roadmap planners,” The International
Journal of Robotics Research, vol. 24, no. 12, p. 1055, 2005.

[51] H. Kurniawati and D. Hsu, “Workspace importance sampling for probabilistic
roadmap planning,” in Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 2, 2004.

[52] V. Boor, M. Overmars, and A. Van Der Stappen, “The gaussian sampling strat-
egy for probabilistic roadmap planners,” in Proc. IEEE International Conference
on Robotics and Automation, vol. 2, 1999.

[53] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling narrow pas-
sages with probabilistic roadmap planners,” in IEEE International Conference
on Robotics and Automation, vol. 3, pp. 4420–4426, Citeseer, 2003.

[54] T. Simeon, J. Laumond, and C. Nissoux, “Visibility-based probabilistic
roadmaps for motion planning,” Advanced Robotics, vol. 14, no. 6, pp. 477–493,
2000.

[55] L. Guibas, C. Holleman, and L. Kavraki, “A probabilistic roadmap planner for
flexible objects with aworkspace medial-axis-based sampling approach,” in Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1,
1999.

[56] J. Lien, S. Thomas, and N. Amato, “A general framework for sampling on the
medial axis of the free space,” in IEEE International Conference on Robotics
and Automation, vol. 3, pp. 4439–4444, Citeseer, 2003.

137

[57] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. Amato, “A machine
learning approach for feature-sensitive motion planning,” Algorithmic Founda-
tions of Robotics VI, pp. 361–376, 2004.

[58] D. Hsu, L. Kavraki, J. Latombe, R. Motwani, and S. Sorkin, “On finding nar-
row passages with probabilistic roadmap planners,” in Robotics: The Algorith-
mic Perspective: 1998 Workshop on the Algorithmic Foundations of Robotics,
pp. 141–154, 1998.

[59] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and
S. Thrun, Principles of robot motion: theory, algorithms, and implementation.
Cambridge, MA: The MIT Press, 2005.

[60] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo, “Obprm: An obstacle-
based prm for 3d workspaces,” Robotics: The Algorithmic Perspective, pp. 630–
637, 1998.

[61] P. Leven and S. Hutchinson, “A framework for real-time path planning in chang-
ing environments,” The International Journal of Robotics Research, vol. 21,
no. 12, p. 999, 2002.

[62] P. Leven and S. Hutchinson, “Using manipulability to bias sampling during the
construction of probabilistic roadmaps,” IEEE Transactions on Robotics and
Automation, vol. 19, no. 6, pp. 1020–1026, 2003.

[63] L. Kavraki, “Random networks in configuration space for fast path planning,”
1995.

[64] P. Svestka, “A probabilistic approach to motion planning for car-like robots,”
RUU-CS, no. 93-18, 1993.

[65] M. Morales, S. Rodriguez, and N. Amato, “Improving the connectivity of prm
roadmaps,” in Proc. IEEE International Conference on Robotics and Automa-
tion, vol. 3, pp. 4427–4432, IEEE, 2003.

[66] R. Bohlin and L. Kavraki, “Path planning using lazy prm,” in Proc. IEEE In-
ternational Conference on Robotics and Automation, vol. 1, pp. 521–528, IEEE,
2000.

[67] R. Bohlin, “Path planning in practice; lazy evaluation on a multi-resolution
grid,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 1, pp. 49–54, IEEE, 2001.

[68] R. Bohlin and L. Kavraki, “A randomized algorithm for robot path planning
based on lazy evaluation,” Handbook on Randomized Computing, pp. 221–249,
2001.

[69] G. Sanchez and J. Latombe, “On delaying collision checking in prm planning:
Application to multi-robot coordination,” The International Journal of Robotics
Research, vol. 21, no. 1, p. 5, 2002.

[70] R. Geraerts et al., “Sampling-based motion planning: Analysis and path qual-
ity,” 2006.

138

[71] L. Kavraki, M. Kolountzakis, and J. Latombe, “Analysis of probabilistic
roadmaps for path planning,” IEEE Transactions on Robotics and Automation,
vol. 14, no. 1, pp. 166–171, 1998.

[72] S. Lindemann and S. LaValle, “Current issues in sampling-based motion plan-
ning,” Robotics Research, pp. 36–54, 2005.

[73] R. Pearce, M. Morales, and N. Amato, “Structural Improvement Filtering Strat-
egy for PRM,” Robotics: Science and Systems IV, p. 167, 2009.

[74] C. Guestrin, “Planning under uncertainty in complex structured environments”.
PhD thesis, Dept. Comput. Sci., Stanford Univ., Stanford, CA, 2003.

[75] J. Kok, “Coordination and learning in cooperative multiagent systems”. PhD
thesis, Dept. Comput. Sci., Univ. of Amsterdam, Amsterdam, The Netherlands,
2006.

[76] D. Pynadath and M. Tambe, “The communicative multiagent team decision
problem: Analyzing teamwork theories and models,” Journal of Artificial Intel-
ligence Research, vol. 16, no. 1, pp. 389–423, 2002.

[77] C. Boutilier, “Planning, learning and coordination in multiagent decision pro-
cesses,” in Proc. 6th conference on Theoretical aspects of rationality and knowl-
edge, pp. 195–210, Morgan Kaufmann Publishers Inc., 1996.

[78] J. Kok and N. Vlassis, “Using the max-plus algorithm for multiagent decision
making in coordination graphs,” RoboCup 2005: Robot Soccer World Cup IX,
pp. 1–12, 2006.

[79] K. Helsgaun, “An effective implementation of the lin-kernighan traveling sales-
man heuristic,” European Journal of Operational Research, vol. 126, no. 1,
pp. 106–130, 2000.

[80] T. Bektas, “The multiple traveling salesman problem: an overview of formula-
tions and solution procedures,” Omega, vol. 34, no. 3, pp. 209–219, 2006.

[81] C. Noon and J. Bean, “An efficient transformation of the generalized traveling
salesman problem,” Ann Arbor, vol. 1001, pp. 48109–2117, 1989.

[82] A. Ladd and L. Kavraki, “Measure theoretic analysis of probabilistic path plan-
ning,” IEEE Transactions on Robotics and Automation, vol. 20, no. 2, pp. 229–
242, 2004.

[83] D. Isaacson and R. Madsen, Markov chains, theory and applications, vol. 4. New
York: Wiley, 1976.

[84] C. Hsu, Cell-to-cell mapping: a method of global analysis for nonlinear systems.
New York, NY: Springer, 1987.

[85] M. Dellnitz and O. Junge, “On the approximation of complicated dynamical
behavior,” SIAM Journal on Numerical Analysis, vol. 36, no. 2, pp. 491–515,
1999.

139

APPENDIX 1

ANALYSIS OF GENERALIZED SAMPLING-BASED MOTION PLANNERS

We will show that both the GPRM and the GRRT algorithms are probabilistically

complete, i.e. the algorithms will find a feasible path, given that such a path exists

as the number of samples goes to infinity. We use the path isolation techniques

commonly used in showing the probabilistic completeness of PRMs [82]. The basic

idea of the proof is very simple : we show that, is there is a feasible “safe” path

parametrized by a sequence of points, in the sense that will be formalized as follows,

from a start state of a goal state, then there is a finite neighborhoods of each of these

points such that, if samples are chosen from these neighborhoods, the path formed by

sequencing the sampled points is also feasible. Hence, because these neighborhoods

are finite, samples will be chosen in each of these neighborhoods with probability 1 as

the number of sampled goes to infinity, and thus, the algorithms are probabilistically

complete. The analysis of the generalized sampling based motion planners requires

the use of the theory of Markov chains. The reader is referred to [83] for relevant

details with regard to Markov chains.

Let x0, x1, . . . , xN(= xg) denote a particular path that attains the goal config-

uration xg with a success probability that is higher than the minimum threshold

probability pmin. The former statement has to be made mathematically precise and

is done as follows. Recall that, due to the stochasticity of the system, it is never

possible for the system to exactly attain some state xk in the sequence; instead, we

stop the controller, drawing the robot to xk, and switch to the controller, drawing

it to xk+1, when the robot enters some pre-specified neighborhood Ωk of the point

xk. The situation is illustrated in Figure 3.2. The robot moved from x′ ∈ Ωk−1 to

some x ∈ Ωk under the action of control u(; , xk). Once it reaches x, the controller

u(:, xk+1) switches on, and the robot moves from x ∈ Ωk to x′′ ∈ Ωk+1, at which

point the controller u(:, xk+2) switches on, and so on, until the robot reaches some

140

point y in the neighborhood ΩN of xN . In addition, note that all the obstacles in

the Figure 3.2 are lumped into the single sink cell ΩO. Thus, the aforementioned

statement, which is carefully stated, implies that the system transitions through the

neighborhoods Ω0 → Ω1 · · · → ΩN with a probability higher than the minimum

threshold pmin, successfully transitioning from x→ y, denoted by p(y/x), is greater

than the minimum threshold probability pmin.

First, let us focus on the transition from the set Ωk−1 to the set Ωk. Let the

feedback controller based on drawing the robot to the point xk be denoted by u(:

, xk). This feedback control induces a Markov process on the state space of the

robot, according to which the robot moves in a probabilistic manner. Assuming

that we discretize the time by some small ∆T , let the transition density function

of the resulting Markov chain be denoted by p(y/x;xk) (on the obstacle free state

space), where the dependence on xk shows the explicit dependence of the transition

probabilities of Monte Carlo on the point xk. We need to find out the probability

that the robot makes it form some x ∈ Ωk−1 to some x′ ∈ Ωk without colliding with

any of the obstacles in the state space oof the robot. Note that te aforementioned

transition probabilities do not account for the obstacles in the state space. Let us

further discretize the continuous state Markov chain into a finite-state Markon chain

through some small spatial discretization ∆x into a finite set of cells Ci with measure

µ(Ci). The evolution of the continuous state Markon chain is approximated by a

discrete Monte Carlo that evolves on the cell space. The transition probabilities

between individual cells in the cell space are given by

P (Cj/Ci) =

∫
Ci

(

∫
Ci
p(y/x)

1

µ(Ci)
)dy. (1.1)

This discrete MC is an arbitrary good approximation of the continuous MC as

the size of the spatial discretization gets small under mild regularities conditions

on the system dynamics, in particular, the existence of a smooth transition density

function p(y/x), and ergodicity, i.e. the property that any initial distribution decays

141

to a unique stationary distribution. The approximation is good in the sense that the

difference between the piecewise constant approximation in cell space and the true

probability density function (pdf) evolution in continuous space is arbitrarily small

as the size of the spatial discretization becomes small. Such cell -based techniques

are a well-established method for the global analysis of nonlinear systems known as

generalized cell-to-cell mapping [84], [85]. For simplicity, all our subsequent analysis

is done on the finite state MC formed by the spatial discretization of the state space.

The implicit assumption is that the discretization is fine enough such that the finite

MC. The original transition probabilities of the MC in the obstacle-free state space

have to be modified to obtain the probabilities of success of transitioning from cell x

to cell x′ (we slightly abuse the notation here to avoid the notational inconvenience

of using the symbol Ci for cells).

Let all the cell that correspond to the obstacles in the state space be lumped into

a single sink cell {xo} = ΩO. Once the robot hits an obstacle in its state space, it

is deemed to have failed, and hence, p(x/xo;xk) = 0 for any x in the state space of

the robot. In addition, for simplicity, let the number of cells in the set Ωk be nR for

all the sets Ω1,Ω2, . . . ,ΩN . Once the robot enters the set Ωk, it is captured, and the

next feedback law to get it to Ωk+1 starts. Thus, p(x′/x;xk) = 0 for all x ∈ Ωk and

any x′ ∈ Ω. Thus, Ωk and OmegaO are the recurrent classes of the modified MC,

i.e. the states that the MC infinitely often visits as the time increases to infinity.

The rest of the states are transient, i.e. the MC stops visiting these states as time

increases to infinity. Because the number of states in the safe recurrent class Ωk is

fixed and the number of sink states that correspond to the obstacle recurrent class

is one, the number of transient states is also fixed, e.g. denoted by the number

nT . We further assume that the MC on the obstacle-free map is ergodic, i.e. any

142

initial distribution asymptotically converges to a unique stationary distribution. The

transition probability of the modified MC can be written as the following matrix [83]:

P̃ (xk) =


P̃1(xk) 0 0

0 P̃2(xk) 0

R1(xk) R2(xk) Q(xk)

 (1.2)

where P̃1(xk) is an nR × nR matrix, P̃2(xk) is a scalar, R1(xk) is an nT × nR matrix,

R2(xk) is an nT × 1 matrix, and Q(xk) is an nT × nT matrix. P̃1 represents the

transition matrix (in our case, InR
, i.e. the nR × nR identity matrix) that governs

the transitions within the “safe” recurrent class Ωk, P̃2 is simply oe and denotes

that once the robot is in the sink state it stays there, R1 denotes the transition

probabilities that one of the transient states transitions to one of the states in the

“safe” recurrent class, R2 represent the transition probabilities that one the transient

states transitions into the sink state ΩO and Q represents the probabilities that the

transient states stay within the transient class of states. The original transition

probability matrix in the obstacle-free case is modified only in the first nR + 1 rows.

In particular, note that R1, R2, and Q are the same for the original and the modified

MCs. Due to the ergodicity of the unconstrained MC, it is ensured that trajectories

that start from any robot state is bound to get captured in either the safe set or the

failure sink state. This condition implies that there are two recurrent classes in the

modified MC.

The transition probability matrix that contains the probabilities that some tran-

sient state gets absorbed into some satte within the safe recurrent class Ωk is given

by [83]

Pa(xk) = (I −Q(xk))
−1R1(xk) (1.3)

143

where the explicit mention of the point xk shows the dependence of the absorption

probability matrix on the feedback control u(:, xk). Note that the absorption prob-

ability matrix Pa is an nT × nR matrix and that the (i, j)th element in the matrix

denotes the probability that the ith element in the transient class is absorbed into the

safe recurrent class Ωk through the jth element. To understand the aforementioned

formula, note that the probabilities that the transient states remain within the tran-

sient class after n steps is given by Qn. Thus, the probability that the transient states

get absorbed into the safe recurrent class after n steps is QnR1, and the probability

that the transient states get absorbed into the sink class is QnR2. It may be shown

that the infinite sum I+Q+Q2+Q3+· · · exists, and hence, (I−Q)−1 exists, because

Q is sub-stochastic, i.e. its row sum is less than or equal to one. Hence, ||Q||∞ ≤ 1,

where ||.||∞ is the matrix norm induced by the max norm [83]. Thus, the probability

that some state in the transient class eventually gets absorbed into some state of

the safe recurrent class Ωk is given by (I −Q(xk))
−1R1(xk), and the probability that

some state is absorbed into the sink class is given by (I −Q(xk))
−1R2(xk).

Next we consider the sequence of transitions Ω0 → Ω1 · · · → ΩN . Again, recall

the assumption that there are exactly nR states in each of the aforementioned N safe

recurrent classes. In (equation), the matrix Pa(xk) contains the probabilities that

any one of the transient states of the MC induced by u(:;xk) (let us denote the MC

byM(xk)) is absorbed into any one of the safe recurrent states in the safe recurrent

class Ωk. However, in view of the aforementioned sequence of transformations from

one safe recurrent class to the next, we are only interested in the transient state of

the MC M(xk) that correspond to the safe recurrent class Ωk−1 of the MC induced

by u(:;xk−1), M(xk−1). The matrix that contains the probabilities that some state

in Ωk−1 is absorbed into some state in the safe recurrent class Ωk is give by

Pa(xk−1, xk) = Γk(I −Q(xk))
−1R1(xk) (1.4)

144

where Γk is a constant nR × nT matrix that maps the safe recurrent states in Ωk−1

into the transient states of M(xk). The matrix Γk is independent of the choice of

xk−1 and xk, given that Ωk−1 and Ωk are fixed. Then, it follows that the transition

probability matrix that denotes the transitions from Ω0 → Ω1 → · · · → ΩN is give

by

Pa(x0, x1, . . . , xN) =
N∏
k=1

Γk(I −Q(xk))
−1R1(xk) (1.5)

The product matrix Pa(x0, . . . , xN) is nR × nR, because each of the component ma-

trices in the product is nR × nR. The (i, j)th element of the matrix denotes the

probability that the ith state of the safe recurrent class Ω0 is absorbed into the jth

state of the safe recurrent class ΩN , under the sequence of controllers u(:, x1), u(:

, x2), . . . , u(:;xN).

Suppose now that the sequence of controllers parameterized by the points (x1, . . . , xN)

is slightly perturbed to the parameter (x′1, . . . , x
′
N). It is reasonable to assume now

that the transition probability matrix of the MC due to u(:, xk) is close to the tran-

sition probability matrix of the MC induced by u(:, x′k) if xk and x′k are close to each

other, given that the safe recurrent class Ωk remains the same. In other words, we

assume that P (xk), the transition probability matrix on the obstacle-free space for

the robot under control u(:;xk), parametrized by the point xk, is a continuous func-

tion of xk. Because the matrices Q(xk) and R1(xk) are unchanged once the MC is

modified to account for the obstacles in the state space, it follows that these matrices

are also continuous functions of xk. This case, in turn, implies that (I − Q(xk))
−1

is also continuous in parameter xk, and hence the product matrix Pa(x0, . . . , xN)

is continuous with respect to the set of parameters (x0, . . . , xN), which is the case,

because the kth component of the product is continuous with respect to xk and

thus, trivially, also continuous with respect to the parameter (x0, . . . , xN). Hence

the product is also continuous with respect to parameter (x0, . . . , xN). Therefore, it

145

follows that, given any ε > 0, there exists a δ > 0 such that, if ||xk − x′k|| < δ for

all k, |Pa(x0, . . . , xN)(i, j) − Pa(x′0, . . . , x′N)(i, j)| < ε for all possible elements (i, j)

of the matrices.

Take ε = min(i,j)Pa(x0, . . . , xN)(i, j)−pmin. Due to the aforementioned argument,

it follows that there exists δ∗ such that if ||xk − x′k|| < δ∗,

|Pa(x0, . . . , xN)(i, j)− Pa(x′0, . . . , x′N), (i, j)| < min(i,j)Pa(x0, . . . , xN)(i, j)− pmin

which in turn, implies that Pa(x0, . . . , xN)(i, j) > Pmin for all (i, j). Noting that

δ∗ > 0, with probability 1, it is true that a point x′k will eventually be chosen in δ∗

balls around each of the xk as the number of sampled points go to infinity. Thus,

this case shows that the GPRM algorithm is probabilistically complete.

The aforementioned development may be summed up in the following result.

Proposition 1.1. Let p(x) denote the (discretized) transition probability matric that

corresponds to the feedback controller u(:, x) on the obstacle-free state space. Assume

that the transition probability matric P (x) is continuous in x and is ergodic for all

x. Let (x0, . . . , xN) parametrize the sequence of controllers u(:, x0), . . . , u(:, xN) with

associated safe recurrent classes Ω0,Ω1, . . . ,ΩN such that a feasible path exists from

x0 to xN(= xg), i.e. Pa(x0, . . . , xN)(i, j) > pmin for all elements (i, j), where the

(i, j)th element of the absorption probability matrix Pa denotes the probability that

the ith state in Ω0 successfully transitions of the jth state in ΩN . Give then the safe

recurrent classes Ω0, . . . ,ΩN are unchanged, there exists a δ∗ > 0 such that, if ||xk−

x′k|| < δ∗, i.e. x′k ∈ Bδ∗(xk), Pa(x
′
0, . . . , x

′
N)(i, j) > pmin for all (i, j). Consequently,

the GPRM algorithm finds a feasible path, if one exists as aforementioned, with

probability 1. Hence, the GPRM algorithm is probabilistically complete.

The follow remarks are due to the assumptions made in Proposition 1.

Remark 3. The transition probabilities of the MC underlying the closed-loop system

under u(:, x) is given by p(y′/y, u(y, x)). Thus, if the transition probability function

146

is continuous in u, which is true under mild regularity conditions on the system

dynamics, and if the feedback control u(:, x) is continuous in x, it follows that the

controlled MC transition probabilities are continuous in x. The condition that the

feedback control law continuously varies with the equilibrium about which it stabi-

lizes is a mild assumption. For instance, in the LQ case, this case amounts to the

assumption that the feedback gain matrix K(x) smoothly varies with the equilib-

rium x. This condition, in turn, reduces to the smoothness to the solutions of the

associated algebraic Riccati equation with respect to the open-loop system matrix

A(x) about equilibrium x.

Remark 4. We may also find the expected time for states in Ωk−1 to get absorbed

into Ωk or ΩO. The expected times of absorption from the states in Ωk−1 is given by

Γk(I −Q(xk))
−11̄, where 1̄ is a vector of ones. Thus, the expected time of execution

of the feedback controller u(:, xk) is finite. Hence, it follows that the expected total

time of operation of the entire sequence of controllers u(:, x1) through u(:, xN) is also

finite.

We may also give explicit bounds on the expected number of samples needed to

get a safe feasible path and the probability of failure of the GPRM, given that a fixed

number of samples have been drawn. Without loss of generality, assume that the

feasible space of planning is [0, 1]d. Let the volume of the regions Bδ∗(xk) previously

defined be p∗. Then, the following results directly follow from the traditional PRM

analysis ([82], Th. IV.2, Corollary IV.3)

Proposition 1.2. We have the same conditions as in Proposition 1, Given that there

exists a safe path x1, . . . , xN , the expected number of iterations required by GPRM

to find a feasible path is previously bounded by E[M] ≤ (H(N)/p∗), where H(N) is

the Nth harmonic number and is O(logN). Moreover, the probability of not finding

a feasible path after M iterations is bounded as Pf ≤ N(1− p)M .

147

Next we show the probabilistic completeness of the GRRT algorithm. We shall

retain all the machinery that was developed for the GPRM algorithm and use Propo-

sition 1. The proof of completeness is through induction.

Let (x0, . . . , xN) be a sequence of nodes such that the path through them is

feasible based on Proposition 1. Then due to Proposition 1, it follows that there

exists balls Bδ around each xk such that, if x′k ∈ Bδ(xk), the path through x′0, . . . , x
′
N

is also feasible. For notational ease, let us simple denote the balls Bδ(xk) as Bk. The

statement for the induction is given as follows.

Suppose that some x′0 ∈ B0, . . . , x
′
M ∈ BM are chosen in that order, i.e.

first x′1, then x′2, and so on. Then there exists a feasible path from x0 to

xM based on Proposition 1.

First we prove the statement for M = 1. Suppose that some x′1 ∈ B1 is chosen and

not connected to x′0 ∈ B0 (if it is connected, the result is trivial). Then, through the

construction of GRRT, in particular because of (eq. ref), this case means that there is

some other node in the tree, e.g. x, such that p(x′1) = p(x, x′1)p(x) > p(x, x′0) > pmin.

Hence it follows that there is a safe path from x0 to x1.

Next we assume that the statement is true for M = k − 1 and show that it

is true for M = k. Supposed that, for the first time, x′k ∈ Bk is chosen after

some x′0 ∈ B0, . . . , x
′
k−1 ∈ Bk−1 have been chosen. If the node is not connected to

x′k−1 ans is instead connected to some x, then using arguments exactly the same as

aforementioned, it follows that p(x′k) = p(x)p(x, x′k) > p(x′k−1)p(x′k, x
′
k−1) > pmin.

The reason for the last inequality is given as follows. Because we have assumed the

statement for k − 1, it means that there is safe path till x′k−1 that is, at least, as

safe as going through x′0, x
′
1, . . . , x

′
k−1. Because we know that, due to Proposition

1, p(x′0, x
′
1, . . . , x

′
k−1)p(x′k, x

′
k−1) > omin, it follows that p(x′k−1)p(x′k, x

′
k−1) > pmin.

Hence the result is true for k if it is true for k−1. Thus, it follows that the statement

is true for N .

148

It is true with probability 1 that some x′0 ∈ B0, . . . , x
′
N ∈ BN will be chosen

in that order, and hence, it follows that the GRRT algorithm is probabilistically

complete, which is summed up as the following proposition.

Proposition 1.3. We have the same conditions as in Proposition 1. Given that there

is a safe feasible path, GRRT finds a feasible path with probability 1, and hence, it

is probabilistically complete.

The aforementioned results have been proven for a deterministic map. The ex-

tension to the case of map uncertainty is reasonably straightforward but is left out

here due to spatial constraints.

149

APPENDIX 2

ANALYSIS OF THE COLLISION AVOIDANCE AND DETECTION

ALGORITHM

Definition 2.1. Let Qk denote the configuration {q1, q2, . . . , q|A|} at time step k, where

qi is the configuration of the ith agent and A, denotes the set of all agents. Let

COLLISION(·) be a collision detector binary function for the whole configuration

of agents, i.e. Qk. Also let there be a binary function ALERT (·) over the Qk, for

alerting the agents of invasion of their corresponding alert zone.

Detailed definitions were covered in the previous section.

Assumption 2.1. Let β(·) be a decision operator for the agents, dictating the actions

in an event of possible collision. The action evasive action available to the decision

operator β(·), for resolving possible collision, do exist.

This assumption essentially states that if required a given agent can deviate

to a new landmark (i.e. other than its planned next landmark, lk), given some

conditions. Also there exist a nearby unoccupied1 landmark, lk
′

and there exists a

controller µ(·; lk′) which will take the agent from its current configuration to this new

landmark.

Assumption 2.2. Let collisionk(ai, aj) be a binary function which check for collision

between ai and aj at time step k. Given v(aj) = 0 (velocity of aj), the qik (con-

figuration of ai at time step k) and µik (the controller for ai at time step k), then

collisionk+1(ai, aj) can be calculated.

The configuration of ai after one time step can be computed. And based on

the predicted qik+1 for ai and given qjk+1 = qjk for aj, the collisionk+1(aj, aj) can be

computed based on predicted values.

Lemma 2.1. GivenALERT (Qk−1) was false, andALERT (Qk) is true then COLLISION(Qk)

is never true.
1by other agents

150

Proof. This essentially means that the collision zone and alert zone definitions

are such that 2.1 holds. The radius of collision zone is given by εti and that of

alert zone is denoted by rti , where ti is the agent-type of the ith agent. The relation

between εti and rti is given by:

vmax = max{vtimax}, (2.1)

rti = κvtimax, (2.2)

εti < rti − vmaxdt (2.3)

where κ is some constant. The vmax denotes the maximum of vtimax, i.e. the maximum

velocity of any agent. The maximum distance any agent can travel in one time step

is vmaxdt, hence if an agent is outside another agent’s alert zone, in one time step

it cannot penetrate both alert zone and collision zone in the same time step. So

if the εti is given then using Equation 2.3, rti can be designed using an appropriate

κ. Also κ allows design of rti such that no invasion of collision zone happens in

the next n time steps (n ≥ 1) also.

Lemma 2.2. Let µik denotes the control for ith agent at time step k. An agent with

current configuration qik for which µik = µ0, then qik+1 is collision free.

Proof. It states that an agent with stop action at time step k is collision free at

time step k+ 1. As this agent is stop, the only possibility of collision is from any of

the moving agents, but all moving agents outside alert zone of this agent will not

have possible collision due to 2.1. And agents within the alert zone will not have

collision with this stopped agent due to existence of evasive action as per 2.1.

Proposition 2.1. Given ALERT (Qk) is true, the decision operator β(·) (2.1) ensures

that COLLISION(Qk+1) is false.

Proof. The proof is constructed using the mathematical induction methodology.

Firstly it is proved that in a set of agents B′ (algorithm 5.2) for which alert has

151

been triggered, this statement holds for the highest priority agent ∈ B′. Then as-

suming this statement holds for the first m− 1 agents, it will be shown that it holds

for the mth agent also.

To prove that 2.1 is true for the highest priority agent in B′ in algorithm 5.2.

Let there be total of n agents and m agents for which alert is triggered (m ≤ n).

Let a1 = amax(B′) denote the highest priority agent (with q1
k as its configuration at

time step k) in B′ with agents in its alert zone denoted by S1
1 and let the next

agent priority wise as a2 (with S1
2) and so on. The algorithms signals other agents in

a1’s alert zone to stop. And in case of probable collision with any of these agents

in the alert zone in the next time step, a1 should take an evasive action, which

exists as per 2.1. For all other agents who are moving are /∈ S1
1 , as 2.1 is true the

collisionk+1(a1, aj) = false,∀aj /∈ S1
1 as per 2.1. Hence q1

k+1 is collision free, given

that q1
k is collision free.

Let this be true for m− 1 agents, i.e. {q1
k+1, q

2
k+1, . . . , q

m−1
k+1 } is collision free, now

to prove that qmk+1 is also collision free. Either am is stopped or moving. If am is

stopped it will be collision free in the next time step as per 2.2. If am is moving,

means it was not in the alert zone of any of the moving higher priority agents (i.e.

Pm < Pi,∀ai ∈ B′) as all the higher priority agents are collision free. And for all

other agents which are outside am’s alert zone will ensure collision free time step

k+ 1 for am as per 2.1 and for agents in the alert zone who are stopped, as per 2.1

the qmk+1 of mth agent will be collision free.

Hence the full configuration Qk+1 for all the agents are collision free in the next

time step.

152

VITA

Name: Sandip Kumar

Address: Department of Aerospace Engineering,
H.R. Bright Building, Rm. 701, Ross St. - TAMU 3141,
Texas A&M University,
College Station, TX - 77843 - 3141

Email: to.sandip@gmail.com

Education: B. Tech., Mechanical Engineering,
Indian Institute of Technology,
Kharagpur, India, 2000 - 2004

Ph.D., Aerospace Engineering,
Texas A&M University,
College Station, TX, USA, 2007 - 2011

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	 Introduction
	Motivation
	Problem Statement
	Problem 1
	Problem 2

	Previous Work
	Related Work : Stochastic/ Uncertain Maps
	Related Work : Process Uncertainty in Dynamical Models
	Summary

	Dissertation Contributions
	Contribution 1 : Generalized PRM (GPRM) & Generalized RRT (GRRT)
	Contribution 2 : Adaptive GPRM (AGPRM)
	Contribution 3 : Multi-agent AGPRM (MAGPRM)

	Dissertation Overview

	 Overview of Technical Approach
	Markov Decision Process
	Sequential Decision Making
	MDP

	Dynamic Programming
	The Basic Problem
	Dynamic Programming Algorithm
	Principle of Optimality
	Dynamic Programming (DP)

	Configuration Space
	Sampling-Based Motion Planning Algorithm
	Randomized Sampling Based Motion Planners
	Probabilistic Roadmaps (PRM)
	Preprocessing Phase
	Query Phase

	Rapidly Exploring Random Trees(RRT)

	 Generalized Sampling-Based Motion Planners
	Introduction
	Solution Approach : Problem 1
	Generalized Sampling-Based Motion Planners
	Model
	GPRM
	GRRT

	Numerical Experiments
	Fully Actuated Point Robot
	Nonholonomic Unicycle Robot

	Conclusion

	 Adaptive Sampling for Generalized Sampling-Based Motion Planners
	Introduction
	Generalized Sampling Based Methods
	Hierarchical Methods and Generalized Probabilistic Roadmaps (GPRM)
	Algorithm GPRM

	Adaptive Sampling
	Adaptive Sampling Details
	Identification of Start and Goal Clouds
	Identification of other clouds
	Sampling good landmarks
	Identifying Weak Link / Links in a Low Probability Connected Path

	Results and Discussion
	Point Dynamics Robot
	 n - Link Manipulator
	5-Link Manipulator
	8-Link Manipulator

	Conclusions

	 Multi-Agent Problem
	Introduction
	Characteristics of Multi-Agent System (MAS)
	Formal Description
	Models to tackle MAS
	Coordination Problem
	Multiple Traveling Salesman Problem (MTSP)
	Problem Statement

	A Class of The Multi-Agent Problems
	A Class of Multi-Agent Problems in Presence of Uncertainty

	Solution Approach : Problem 2
	Routing Problem as MTSP
	Definitions
	General
	Controls

	Solution of MTSP
	Solving Multi-Agent Systems in Presence of Uncertainty
	Multi-Agent GPRM (MAGPRM) Algorithm
	Probability of Success for MAGPRM

	Inter-Agent Collision Avoidance
	Definitions
	General
	Collision Zone
	Alert Zone
	Controls

	The Algorithm

	Results and Discussion
	Vehicle Models Used
	Nonholonomic Unicyle robot
	Simplified 3D helicopter robot

	Homogeneous Agents
	Heterogeneous Agents

	Conclusion

	 Conclusion and Future Directions
	Contributions
	Contribution 1 : Generalized PRM (GPRM) & Generalized RRT (GRRT)
	Contribution 2 : Adaptive GPRM (AGPRM)
	Contribution 3 : Multi-agent AGPRM (MAGPRM)

	Future Directions

	REFERENCES
	 Analysis of Generalized Sampling-based Motion Planners
	 Analysis of the Collision avoidance and detection algorithm
	VITA

