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ABSTRACT 

 

Modeling and Vibration Control with a Nanopositioning Magnetic-Levitation System. 

(December 2011) 

Young Ha Kim, 

B. Eng., Inha University, Incheon, Korea 

M. S., Pennsylvania State University 

Chair of Advisory Committee: Dr. Won-jong Kim 

 

This dissertation demonstrates that a magnetic-levitation (maglev) stage has the 

capabilities to control movements and reject vibration simultaneously. The mathematical 

model and vibration control scheme with a 6-degree-of-freedom (6-DOF) maglev stage 

for nanoscale positioning are developed for disturbance rejection. The derived full 

nonlinear dynamic equation of motions (EOMs) of the maglev stage include translational 

and rotational motions with differential kinematics. The derived EOMs and the magnetic 

forces are linearized to design a multivariable controller, a Linear Quadratic Gaussian 

with Loop Transfer Recovery (LQG/LTR), for vibration disturbance rejection in a multi-

input  multi-output  (MIMO)  system.  For  a  more  accurate  model,  the  dynamics  of  an  

optical table with a pneumatic passive isolation system is also considered. The model of 

the maglev stage with the optical table is validated by experiments. Dual-loop controllers 

are designed to minimize the influence of the vibration disturbance between the moving 

platen and the optical table in the x-, y-, and z-axes motions. The inner-loop compensator 



 iv

regulates the velocity to reject vibration disturbance and the outer-loop compensator 

tracks positioning commands. When the vibration disturbances of 10 to 100 Hz are 

applied, the vibration-reduction ratios are about 30 to 65 percent in horizontal motion 

and 20 to 45 percent in vertical motion. In addition, the vibration disturbances of 45.45 

Hz are attenuated by about 4 to 40 percent in angular motions. The vibration control 

schemes are effective in not only translational but rotational motions. In step responses, 

the vibration control schemes reduce the wandering range in the travel from the origin to 

another location. Positioning and tracking accuracies with the vibration controller are 

better than those without the vibration controller. In summary, these dual-loop control 

schemes with velocity feedback control improved the nanopositioning and 

vibration/disturbance rejection capabilities of a maglev system. 
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CHAPTER I 

 

INTRODUCTION 

 

 

1.1 Background and Motivation   

 

The importance of nanopositioning systems increases as nanotechnology 

research requires more precise positioning control and manipulation of material and 

devices in nanoscale. After the invention of the scanning tunneling microscope (STM) 

by the IBM Zurich researchers, Binning and Rohrer in 1981 [1], and later, the atomic-

force microscope (AFM) by Binning, Quate, and Gerber in 1986 [2], nanopositioning 

began to have practical importance in many areas such as microelectronics 

manufacturing, fiber optic component manufacturing technology, photonics, ultra-

precision machining and processing, molecular biology, and integrated-circuit 

manufacturing.  

 Many instruments are sensitive to mechanical vibration and acoustic noise. These 

vibrations can arise from sources like traffic, wind, earthquakes, human action, heating, 

ventilation and air conditioning equipment (HVAC), and production machinery both 

outside and inside a building. The vibration disturbances are major obstacles in 

nanotechnology. Advanced instruments and high-precision machines including AFMs, 

____________ 
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laser interferometers, and semiconductor photolithograph equipment are vibration-

sensitive and must be operated in a stable environment. Therefore, vibrations should be 

reduced in these types of machines. 

1.2 High-Precision Positioning Technologies 

 

High-precision positioning systems can be classified by the actuators utilized in 

nanopositioning systems. Following are three major categories: conventional motor- 

driven types, piezoelectric-driven types, and maglev types. This dissertation focuses on 

maglev systems. 

 

1.2.1 Conventional Motor-Driven Stages 

Conventional precision positioning platforms use crossed-axis stages driven by 

linear or rotary motor. These devices typically consist of a DC servomotor or stepper 

motor, a precision screw-and-nut set, and ball or roller bearings for guidance and 

suspension. Two representative examples of conventional motor-driven stages are shown 

in Fig. 1-1. 

DC motors provide smooth, continuous motion as well as high speed and 

submicron accuracy when used with an encoder. However, a DC motor requires constant 

power or an external brake to maintain position. In set-and-hold applications, it is not a 

good candidate due to energy inefficiency. It generates a significant amount of undesired 
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heat and requires feedback mechanisms to control  position and velocity.  The bulky DC 

motors often dither or oscillate around the position because of hysteresis.  

Unlike DC motors, a stepper motor has an inherent holding torque that can be 

used  to  maintain  the  position  of  devices  in  the  power-off  mode  for  a  period  time.  

Therefore, stepper motors provide inexpensive open-loop method to achieve relatively 

high accuracy. However, stepper motors do not provide smooth continuous motion and 

generate a significant amount of undesired heat. In addition, they are bulky and noisy. 

 

 

 

(a)                                                                   (b) 

Fig. 1-1. Griffin Motion LLC’s CXY-BS series stages are designed for factory 
automation and semiconductor processing equipment: (a) a brushless servo-motor-driven 

stage and (b) a stepper-motor-driven stage. The photographs can be obtained from the 
website at www.griffinmotion.com [3]. 
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1.2.2 Piezoelectric-Driven Stages 

These days, lead-zirconate-titanate (PZT) actuators are one of the most popular 

actuating mechanisms in ultra-high precision systems [4]. They use the piezoelectric 

effect, where certain crystalline materials change shape or dimension when electrostatic 

potential is applied.  

However, difficulties of the control of piezoelectric actuators are limited in 

bandwidth and resolution by actuator dynamics that includes creep, hysteretic 

nonlinearities, and vibrations. Closed-loop control is required to eliminate hysteresis and 

creep. An example of the positioning stage with closed-loop control is shown in Fig. 1-2. 

 

 

Fig. 1-2. Physik Instrumente (PI)’s P-915KHDS XY scanning stage is driven by four 
multilayer stack piezo actuators. The photograph can be obtained from the website at 

www.physikinstrumente.com [5]. 
 

All of the above problems can be overcome with the use of flexure-guided stages 

presented in Fig. 1-3. Flexure-guided stages restrict each axis of the stage to move in 
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only one direction. These stages effectively decouple the unwanted motions in the 

piezoactuator and produce pure linear translation [6, 7]. A flexure-guided stage driven 

by piezoelectric actuators exhibits subnanometer resolution. However, a very small 

motion range is another major disadvantage of the piezoelectric actuator. A flexure-

guided stage has a few to tens of micrometers of travel range.  

 

 

(a)                                                              (b) 

Fig. 1-3. (a) PI’s P-734 flexure nanopositioning stage with ultra-precise trajectory [8]. (b) 
Working principle of a flexure-guided XY piezo stage [9]. The photographs can be 

obtained from the website at www.physikinstrumente.com. 
 
 

To overcome the small travel range, stacking multiple piezoactuators that 

amplify the displacement have been developed in many ways. Nevertheless, due to the 

stress generated in piezoelectric slice and the position error in the end of stack, the 

length of a piezoelectric stack is limited. According to Masi [4], changing the thickness 

of a 10-mm-thick piece of PZT by 100 nm would require a potential of 2,670 V.   

A piezoelectric linear motor is an alternative solution of limitation of small range 

motion. Piezoelectric linear motors can be classified into two groups: resonant motors 
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(ultrasonic motors), and non-resonant motors (step motors). A piezoelectric step motor 

generally consists of several individual piezoelectric actuators and generates motion 

through succession of coordinated clamp/unclamp and expand/contract cycles. 

Theoretically, the travel range of a piezoelectric linear motor is unlimited. However, the 

limiting factors of a piezoelectric step motor are relatively small payload due to its 

friction-based working principle and slow movement at a speed of up to 10 mm/s [10]. 

An ultrasonic motor can produce velocity up to several hundred millimeters per second 

but has lower resolution.  

The stages driven by conventional motors or piezoelectric actuators are generally 

cross-axis stages and do not have capability in rotational motion inherently. Hexapod 

parallel-kinematic positioning systems in Fig. 1-4 were developed to generate a full 6-

DOF motion. They have a large travel range in translation and rotation. However, the 

best resolution of the hexapod is about 300 nm [11].  

 

 

Fig. 1-4. PI’s M-850 compact 6-axis-positioning system [12]. The photograph can be 
obtained from the website at www.physikinstrumente.com.  
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1.2.3 Maglev System and Its Advantages 

An ideal precision-positioning system should have the large range of motion, six 

DOFs, and nanometer positioning resolution because objects in nanoscale are required to 

be scanned, pushed or pulled, cut, picked, positioned, moved, oriented, indented, 

bended, twisted, assembled, and so on. 

Because crossed-axis stages driven by conventional motors or piezoelectric 

actuators cannot generate rotational motion, they require additional independent 

actuators for the small rotational motion. Those actuators make the system more 

complex and difficult to control in positioning. Besides, mechanical positioning systems 

suffer from friction especially when precision in the nanometer scale is required. Friction 

modeling has been studied by several research groups and various models have been 

proposed in the literature [13]. However, it is still difficult to find a proper friction model 

under nanoscale circumstance [14].   

A maglev positioning system is an excellent candidate for the ideal precision 

positioning system that has six DOFs, nanoscale resolution without any friction, 

hysteresis, creep, and backlash. In addition, because maglev technology does not require 

any lubricants or generate wear particles, it is suitable for clean-room or vacuum 

environments. 

Although maglev principles have been applied to the various areas such as 

maglev train, magnetic suspension, magnetic bearing, and so on, Slocum and Eisenhaure 

suggested the  first precision positioning system using magnetic levitation called as the 

Angstrom Resolution Measurement Machine (ARMM) [15]. Trumper modified the 
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original ARMM and developed a magnetic bearing X-Y stage system [16]. Williams, et 

al. introduced a one-main-axis maglev stage that uses electromagnetic force to control 

three rotational and two translational motions of a platen and a permanent-magnetic 

linear motor to control translational motion in one main axis. They demonstrated that an 

existing linear magnetic bearing has the capability for precision X-Y positioning at the 

level required for photolithography [17]. Several research groups developed multi-axis 

precision positioning devices using maglev technology since it has been demonstrated 

successfully for nanopositioning applications. Kim introduced a planar magnetically 

levitated stage [18]. This is the first stage that is capable of providing all the motions 

required for photolithography with only one moving part. Four permanent-magnet linear 

motors provide both suspension and driving force and levitate the platen without contact.  

Like other technologies, maglev systems also have drawbacks. They are open-

loop unstable and highly nonlinear systems because of nonlinear dependencies in 

position in electromagnetic forces and EOMs in six DOFs. However, those difficulties 

can be overcome by enhanced modeling of the system and applying advanced feedback 

control. 

 

1.3 Prior Arts of Vibration-Isolation Systems 

 

Vibration-isolation systems can be categorized as active or passive. The 

categorization depends on whether or not external power is required for the isolators to 
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perform their functions. Vibration criteria provide the standardization of vibration 

conditions in the precision manufacturing or nanotechnology. 

 

1.3.1 Vibration Criteria 

Vibration disturbance has the specific frequency range depending on sources. 

The frequencies of human-induced vibrations [19] are usually lower than 10 Hz, and 

depend on the speed of movement. The vibration frequencies caused by fans and motors 

are in the ranges of 10 to 100 Hz [20]. The vibration sensitivity of certain equipment and 

instrument used in the cutting-edge manufacturing technology and the research at a 

nanoscale has been a matter of serious concern. Each equipment or instrument 

manufacturer has provided requirements or recommendations for vibration 

environments. Subsequently, generic vibration criteria are essentially required in the 

sense that they meet the needs of all equipments within specifications provided by 

manufacturers.  

Standardizations of vibration conditions in the precision manufacturing or 

nanotechnology are proposed by several research groups. Ungar and Gordon [21, 22] 

developed  the  vibration-criterion  (VC)  curves  which  are  originally  known  as  the  Bolt  

Beranek & Newman Inc. (BBN) criteria. These curves commonly used in the design of 

facilities that house vibration-sensitive instruments and tools in the early 1980’s. They 

reviewed the curves in the context of the late 1990’s tools and process and proposed 

changes [23]. A generic criterion in common usage for nanotechnology, currently 

denoted NIST-A was developed in the early 1990’s for the Advanced Measurement 
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Laboratory at the U.S. National Institute of Standards and Technology (NIST) [24]. 

Criterion  VC-E  has  a  one-third  octave  band  rms  velocity  amplitude  of  125  micro-

inches/s at frequencies between 1 and 100 Hz. Criterion NIST-A has a one-third octave 

band  rms  displacement  amplitude  of  1  micro-inch  at  frequencies  between  1  and  20  Hz 

and a one third octave band rms velocity amplitude of 125 micro-inches/s at frequencies 

between 20 and 100 Hz. Rinvin [25] provided a systemic analysis of vibratory 

environments as well as principles and criteria of vibration isolation and the results were 

applied to determine requirements for vibration isolation of four high-precision pieces of 

apparatus for electronic production and numerous precision machine tools. 

However, the newest generation of photolithography tools imposes an additional 

requirement for the dynamic resistance properties of the tool’s support points. Amick, et 

al. [26] discussed the current scanner support criteria in terms of reacceptance spectra, 

and compared them with reacceptance measurements. Amick, et al. [27] presented an 

overview of vibration requirements of nanotechnology facilities, drawn from both the 

semiconductor world and that of precision metrology. 

Fraumeni, et al. [28] proposed to extend the vibration and noise criteria (VC & 

NC) for the use in nanotechnology facilities considering the higher level of sensitivity of 

new equipment without manufacturer’s vibration criteria. The new criteria were referred 

to as ‘VC-NT and NC-NT’ curves.  
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1.3.2 Passive Isolation 

Passive  isolators  do  not  require  any  external  power.  A  classical  approach  to  

vibration isolation used a passive system of springs and dampers. The spring resists the 

movement of the vibration because it exerts an opposing force proportional to its 

displacement.  A  damper  consists  of  a  piston  moving  through  a  viscous  fluid,  or  a  

conductor moving in a magnetic field as shown in Fig. 1-5. The damper removes kinetic 

energy and dissipates it as heat. However, the spring has a natural resonant frequency 

that depends on its spring constant k. If the frequency of vibration approaches this 

natural frequency, the spring becomes an amplifier. The spring-damper system does not 

work well with vibrations below about 10 Hz. 

 

Disturbance

Rigid Mass
M

Isolation 
System 
Responce
z

Spring
k
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Fig. 1-5. Passive vibration isolation system of spring and damper. 
 

Another traditional passive vibration isolation system is a passive pneumatic 

vibration isolator. It is popular for reducing vibration disturbance from the floor. Passive 

pneumatic vibration isolators are frequently used because of their simple structure and 

low cost, and they can easily support a range of loads by setting the appropriate air 
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pressure. Additionally, the pneumatic isolator rejects high-frequency vibration 

disturbance quite effectively owing to the high compressibility of compressed air. Some 

designs of the passive pneumatic vibration isolator use legs with air-filled chambers, an 

elastomeric diaphragm, and a piston. The chambers are pressurized so that the piston can 

support a range of loads. This configuration of the pneumatic vibration isolator is shown 

in Fig. 1-6.  

 
 

 

Fig. 1-6. (a) Diagram of pneumatic vibration isolator [29]. (b) Section view of pneumatic 

isolator I-2000 of Newport R  [30]. 
 

 
However, for this isolator, vibration disturbance is amplified at the low resonant 

frequency, which is normally less than 3 Hz [29, 31]. This resonant cannot be removed 

by passive isolators [32].  
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1.3.3 Active Isolation 

Active isolation system senses electrically and cancels vibration with actuators in 

real time. An actuator provides force or displacement to the system based on 

measurement of the response of the system using a feedback control system. The active 

isolation system has fundamental advantages over the passive isolation systems. Overall 

performance improvements are significant. 

Hence, many researchers developed various active isolations to improve the 

isolation performance. Piezoelectric actuators to carry active vibration isolation were 

employed in Mizutani, et al. [33] and El-Sinawi and Kashani [34]. Shaw [35] used the 

magnetostrictive actuator to develop the active vibration isolation system with adaptive 

control. However, the stroke of the piezoelectric and magnetostrictive actuators is only 

several dozens of micrometers, thus restricting the performance of the low-frequency 

isolation.  

The active control of  a pneumatic vibration isolator has recently been developed 

to suppress the vibration disturbance shown in Fig. 1-7 [32].  It improved the 

performance in the low-frequency range and the resonant peak of passive isolator is 

reduced effectively. The pneumatic drive can provide larger actuating stroke and lower 

magnetic field than piezoelectric and magnetostrictive actuators can.  

As demands of clean-room environments are increasing in the integrated-circuit 

production and research facilities in nanoscience, vapor of lubricant and dust due to 

mechanical friction and wear should be avoided. Hence, noncontact vibration isolation 

system is required in those facilities. 
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Fig. 1-7. TMC’s electro-damp® II active pneumatic vibration damping system [36]. The 
photograph can be obtained from the website at www.techmfg.com. 

 

The maglev system is the perfect noncontact vibration isolation that does not 

require lubricant [37]. The system consists of permanent magnets and electromagnets or 

coils. The maglev isolation system has a number of advantages that make it more 

suitable for a wide range of frequency of vibration problems. 

 

1.4 Overview of the Y-Shaped Maglev Stage 

 

An overview of the Y-shaped maglev nanopositioning system is given in this 

section. Mechanical design, fabrication, and assembly of the Y-shaped stage were done 

by Verma [38]. The Y-shaped stage shown in Fig. 1-8 has the horizontal travel range of 

5×5 mm. Its payload capacity exceeds 2 kg. The nominal power consumption per unit 

actuator is 135 mW. The unique advantages of this stage are small number of parts and 
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no mechanical restriction [39]. Fig. 1-9 shows three magnet pieces with six coils. A pair 

of coils share magnetic field of a magnet piece. One of them is placed on the bottom of a 

magnet piece and the other is on the side, in parallel. The coils are stationary and the 

magnet is attached to the platen that is a single moving part. Fig. 1-10 presents how each 

actuator unit generates force in two directions on each magnet. Proper combinations of 6 

actuator forces achieve forces and moments in all axes for 6-DOFs motion. The 

magnetic-field lines generated by the permanent magnet are shown in Fig. 1-11. The 

magnitude and directions of currents flowing through coils govern the forces exerted on 

the magnet following the Lorentz-force law. Due to the absence of any mechanical 

restriction among magnet pieces and coils, the moving platen has advantage to be 

replaced or to load and unload the objects.   

 

 

Fig. 1-8. The Y-shaped nanopositioning system [38]. 
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 Fig. 1-9. Exploded view of Y-shaped maglev stage [38]. 
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Fig. 1-10. Coordinate axes and directions of forces [38]. 

 

 

 

Fig. 1-11. Cross-sectional side view of the unit actuator [38]. 
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In order to measure the horizontal motion, a laser-interferometer system from 

Agilent is used. The beam from He-Ne laser head (5517D) is split into three ways by 

beam splitters (10701A, 10706A) and a beam bender (10707A). Three split-beams are 

reflected by three mirrors attached on the platen. Each split reflected beam from mirror 

goes through a laser interferometer (10706B) and reach laser receivers (10780C). Each 

laser-axis board (10897B) connected to a receiver measures the relative position of the 

attached mirror on the platen. From three laser-axis boards (10897B), we can measure 

the x- and y- positions and a rotational angle about the z-axis. Three capacitance probes 

(ADE 2810) located on the bottom of the platen are used for sensing vertical position. 

Each probe with a signal conditioning board (ADE 3800) measures the distance from the 

bottom surface of the platen as shown in Fig. 1-9. The average distance of three 

measurements is the vertical position of the platen. Rotational angles about the x- and y-

axes are converted from the distance differences among three probes.  

A VME (Versa Module Eurocard) chassis is used as a communication backbone 

among hardware boards. A VME PC (VMIC 7751) is a bus controller in the VME 

system.  A  Pentek  4284  DSP  board  acts  as  the  real-time  controller.  A  16-bit  data  

acquisition board (Pentek 6102) and three laser-axis boards are inserted in the VME 

chassis.  The DSP board has a TMS320C40 DSP by Texas Instruments.  It  takes care of 

all  computing tasks for real-time control.  It  obtains the position and velocity data from 

the laser-axis boards and the data acquisition boards. The DSP board takes user 

commands, applies control laws, and calculates the control outputs. Digital-to-analog 
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converters (DACs) on Pentek 6102 generate the output signals from the control 

commands. 

 

1.5 Dissertation Overview 

 

This dissertation consists of nine chapters. Background and motivation of the 

research presented were explained in the first chapter. A review of the prior art and the 

trends in nanopositioning technology in industry was also provided. Vibration criteria 

and importance of vibration isolation were introduced. Passive and active vibration 

isolation methods were briefly addressed. Advantages of maglev positioning systems 

were discussed in both positioning and vibration isolation. The overview of the Y-

shaped maglev stage, instrumentation, electromechanical design and sensing schemes 

were described for positioning and vibration control. The working principle of the 

maglev stage was also explained in Chapter I. 

Chapter II shows the full nonlinear dynamic model of the Y-shaped maglev stage 

that includes translational and rotational equations of motion with differential kinematics. 

Modal force and displacement transformation are also described between the stationary 

and the inertial coordinate systems.  

Chapter III discusses the LQG/LTR methodology and state space form of the Y-

shaped stage system. The design procedure of the LQG/LTR compensator is briefly 

introduced. The way to shape the target feedback loop and how to make the loop transfer 

function match to the target feedback loop shaping are suggested. To design the 
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LQG/LTR compensator for the maglev stage, the state space form is derived from the 

full nonlinear dynamic model and an LQG/LTR controller is designed to rejec vibration 

disturbance. The performance of the vibration rejection is shown in simulation. 

To derive a more accurate model of the maglev system, a dynamic model of the 

optical table is also considered in Chapter IV. The model of the maglev system with the 

optical table in vertical motion includes the pneumatic passive isolators. EOMs of the 

maglev system present the optical table and platen motions with damping and stiffness 

terms. A magnetic stiffness term is generated by linearization of the nonlinear magnetic 

force. The model is validated by comparing the responses between experiment and 

simulation. 

Chapter V introduces a dual-loop control scheme with velocity feedback for 

vibration-regulation. Stability of the controller is analyzed and the stable region of the 

controller gains is calculated. The feasibility of the dual-loop controller with velocity 

feedback is presented by showing the performance of the vibration-reduction 

performance in simulations and experiments. 

Chapter VI discusses about modeling of the maglev system with the optical table 

in horizontal motion. The procedure and methodology of modeling in the horizontal 

motion  is  similar  to  in  vertical  motion.  However,  the  stiffness  term  disappears  in  

horizontal EOMs.  

Chapter VII presents a vibration control methodology with velocity feedback in 

the horizontal motion. The stability analysis to determine gains of velocity feedback 

controller is performed. The frequency response of the transfer function between the 
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disturbance input and the position output is explained to show the feasibility of the 

vibration-reduction with various controller gains. The experimental results verify the 

performance of the controller with various frequencies of the vibration disturbance. The 

performance discrepancy between the simulation and experiment is also discussed. 

Chapter VIII discusses the vibration disturbances and step response analysis in 

six-axis motions. The performance of the vibration reduction of the dual-loop controllers 

is presented in not only translational but rotational motion. Trajectories with step 

responses in the x-y plane show the accuracy differences between with vibration control 

and without vibration control in position regulation and tracking.  

Chapter IX concludes this dissertation summarizing the achievements and 

contributions in this work. 

 

1.6 Dissertation Contributions 

 

The main contribution of this dissertation is to enhance the dynamic model of a 

6-DOF maglev stage and to develop the dual-loop control system for nanoscale 

positioning and vibration disturbance rejection with the maglev system. This dissertation 

presents the full nonlinear dynamic EOMs of the maglev stage including translational 

and rotational motions with differential kinematics for rotations. The derived nonlinear 

EOMs and the magnetic forces are linearized and the state-space representation of the 

maglev system is introduced to design robust control schemes rejecting disturbance in 
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the MIMO system. An LQG/LTR controller is designed to reject vibration disturbance in 

a MIMO system.  

To derive a more accurate model of the maglev system, a dynamic model of the 

optical table with a pneumatic passive vibration isolator is also considered. The stiffness 

and damping parameters of the optical table are obtained from an impulse response. The 

magnetic stiffness has been added by the linearization of the EOMs of the optical table 

and the platen in vertical motion. The enhanced model is validated by comparing 

between the simulations and the experiments. To test the performance in the vibration 

control, an unbalanced vibrating motor is designed for generating vibration disturbances.  

The dual-loop control system with velocity feedback makes it possible that the 

maglev system tracks positioning commands and rejects vibration disturbance 

simultaneously. The design procedures of the dual-loop control systems are introduced 

in vertical and horizontal motions. The inner-loop compensator regulating the velocity is 

developed for vibration rejection, and the outer-loop compensator is designed to position 

of the platen. The stabilizing regions of the gain values for vibration-rejecting 

compensators are analyzed. The capacitance probes as vertical motion sensors do not 

directly provide the velocity information. The velocity in vertical motion is obtained by 

differentiating the noisy position signals. A software low-pass filter is designed to 

prevent amplification of the high frequency noise of position signal by differentiation.  

The influence of the vibration disturbance acts on the optical table is analyzed by 

presenting the frequency response of the transfer function from the disturbance to the 

position output. The inner-loop compensators for velocity-regulation in the x-, y-, and z-
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axes attenuate the influence of the vibration disturbance up to 65% in horizontal motion 

and 45% in vertical motion within target frequency range in the experiments. 

The vibration control schemes synthesized in three-axis motions perform well in 

six-axis vibration reduction. The capabilities of the dual-loop controllers for position 

tracking and vibration rejection are demonstrated in six axes.  
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CHAPTER II 

 

DYNAMIC MODELING OF THE Y-SHAPED MAGLEV STAGE 

 

 

2.1 Dynamics of the Platen in Translational Motion 

 

The mass and moment of inertia of the platen were calculated by SolidworksTM. 

The mass matrix of the platen is 

 
0 0 0.2671 0 0

0 0 0 0.2671 0 kg.
0 0 0 0 0.2671

m
M m

m
 (2.1.1) 

Since the platen is magentically leviated with no contact, the palten is modeled as 

a pure mass system and the translational EOMs of the platen are  

 n n nMx f g  (2.1.2) 

where , , T
n x y zx , nf , and ng  are a position vector, force vector, and a gravity force 

based on the stationary frame. The stationary and body-fixed coordinates are presented 

in Fig. 2-1. However, the forces, 1 2 3 4 5 6, , , , , TF F F F F FF  shown in Fig. 1-10 

generated by actuators were calculated in the body-fixed frame.  The directions of force 

vectors are not aligned with the axes. Therefore, the transformation matrix between the 

body-fixed frame and stationary frame is required.  A direction cosine matrix (DCM) 
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derived by the Euler angles is a good method to describe the orientation between of the 

body-fixed frame and the stationary frame. 
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Fig. 2-1. The stationary and body-fixed coordinates system. 1n , 2n , and 3n  are basis 

vectors in the stationary frame, , ,s s sx y z . 1b , 2b , and 3b  are basis vectors in the body-

fixed frame , ,b b bx y z . , , and  are angles in the 3-2-1 Euler angle rotation 
sequence. 

 
 
2.2 Euler Angles (3-2-1)  

 

For rotation about the first axis ( 3n ) shown in Fig. 2-2, 



 26

 

cos sin 0
sin cos 0
0 0 1

b n . (2.2.1) 

 

1n

2n

3 3n b

2b

1b
 

Fig. 2-2. The stationary and the first rotated coordinates system. 1n , 2n , and 3n  are basis 

vectors in the stationary frame, , ,s s sx y z . 1b , 2b , and 3b  are basis vectors in the first 
rotated about the axis 3n .  

 

For next rotation about the second axis ( 2b ) shown in Fig. 2-3, 

 
cos 0 sin

0 1 0
sin 0 cos

b b  (2.2.2) 



 27

1b

3b

2 2b b

1b

3b

 

Fig. 2-3. The first rotated and the second rotated coordinates system. 1b , 2b , and 3b   are 

basis vectors in the first rotated frame, , ,x y z . 1b , 2b , and 3b  are basis vectors in the 
second rotated about the axis 2b .  

 

For the last rotation about the third axis ( 1b ) in shown in Fig. 2-4, 

 
1 0 0
0 cos sin
0 sin cos

b b . (2.2.3) 

To find the DCM, ( , , )C , 

, ,

  

1 0 0 cos 0 sin cos sin 0
   = 0 cos sin 0 1 0 sin cos 0

0 sin cos sin 0 cos 0 0 1

C

C C C

b n

n

n

 (2.2.4)
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Fig. 2-4. The second rotated and the body-fixed coordinates system. 1b , 2b , and 3b  are 

basis vectors in the second rotated frame, , ,x y z . 1b , 2b , and 3b  are basis vectors in 
the third rotated about the axis 1b .  

 

 

cos cos cos sin sin
sin sin cos cos sin sin sin sin cos cos sin cos
cos sin cos sin sin cos sin sin sin cos cos cos

b n  (2.2.5) 

 
cos cos cos sin sin

( , , ) sin sin cos cos sin sin sin sin cos cos sin cos
cos sin cos sin sin cos sin sin sin cos cos cos

C

 

  (2.2.6) 

1
cos cos sin sin cos cos sin cos sin cos sin sin

( , , ) cos sin sin sin sin cos cos cos sin sin sin cos
sin in cos cos cos

C
s

  (2.2.7) 

Because the DCM is an orthogonal matrix,  

 1( , , ) ( , , ) TC C . (2.2.8) 
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The modal force transformation matrix fT  and the DCM, ( , , ),C  based on 

three Euler rotation angles ( , , ), are required to perform the coordinate 

transformation of a vector in the stationary frame into a vector in the body-fixed frame. 

The dynamics of translational motion and modal forces transformation matrix 

becomes  

 
1

n b nM Cx f g  (2.2.9) 

 1
n f nM C Tx F g  (2.2.10) 

 
0 0 0 0 cos30 cos30
0 0 0 1 sin 30 sin 30
1 1 1 0 0 0

fT . (2.2.11) 

where, bf  is a force vector based on the body-fixed frame, and fT  is the modal force 

transformation matrix. 

 

2.3 Dynamics of the Platen in Rotational Motion 

 

 The monent of inertia of the platen is  

 6 2

340.37 0 0
0 340.37 0 10 kg-m
0 0 653.61

xx xy xz

yx yy yz

zx zy zz

I I I
I I I I

I I I
. (2.3.1) 

The fundamental equation of motion of a rotating body in an inertia frame is  

 I I  (2.3.2) 
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where  is an angular velocity vector and is a skew-symmetric matrix. A moment 

vector is defined as .   

In addition, the differential kinematics for rotational motion is required to 

calculate rotational angles.  The angular velocity of the body-fixed coordinate is 

 / 3 2 1

3 2 1       
B N n b n

b b b
 (2.3.3) 

where  

 3 1 3

1 2 3

sin cos
    sin cos sin cos cos
b b b

b b b
 (2.3.4) 

 2 2 3cos sin .b b b  (2.3.5) 

Therefore,  

 
/ 1 2 3 2 3 1

1 2 3

sin cos sin cos cos cos sin

       sin cos sin cos cos cos sin
B N b b b b b b

b b b
 (2.3.6) 

 
1

2

3

1 0 sin
0 cos cos sin .
0 sin cos cos

 (2.3.7) 

These differential equations are derived as 

 
1

2

3

1 sin tan cos tan
0 cos sin

sin cos0
cos cos

. (2.3.8) 

They  have  to  be  solved  simultaneously  with  the  equations  of  motion  for  rotation.  A  

modal moment transformation matrix T ,  
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3 3

1 2 2

1 1 1

0 0 0 0
0 0 0

0 0 0

l l
T l l l

l l l
 (2.3.9) 

is required between the moment vector and the forces F , and the moment vector 

becomes 

 
1 3 3

2 1 2 2

3 1 1 1

0 0 0 0
0 0 0

0 0 0

l l
l l l

l l l
F . (2.3.10) 

 

Finally, the full nonlinear equation of rotational motion of the platen is  

 1 1I I I T F . (2.3.11) 

The readings of the capacitance probes and the laser interferometer can be written in 

matrix form of the displacements and angles in the body-fixed frame. 

 

1 1

2 1

3 1

1 1

2 3 2

3 3 2

0 1 0 0 0
cos30 cos 60 0 0 0
cos30 cos 60 0 0 0

0 0 1 0 0
0 0 1 0
0 0 1 0

L l x
L l y
L l z
C d
C d d
C d d

, (2.3.12) 

where C1, C2, and C3 are displacements of the capacitance probes. L1, L2, and L3 are 

displacements of the plane mirrors. 

The lengths of physical dimensions in Fig. 2-5 are as follows:  

l1 : distance between the center of magnet 1 and the center of the platen  

= 0.050595 m; 



 32

l2: distance between the center of magnets 2 or 3 and the center of the platen 

along the x-axis = 0.0253 m; 

l3: distance between the center of magnets 2 or 3 and the center of the platen 

along the y-axis = 0.04382 m; 

d1: distance between the center of capacitance probe C1 and  the  origin  of  the  

stationary coordinated system along the x-axis = 0.01443 m; 

d2: distance between the center of capacitance probes C2 or C3 and the origin of 

the stationary coordinated system along the x-axis = 0.007215 m; 

d3: distance between the center of capacitance probes C2 or C3 and the origin of 

the stationary coordinated system along the y-axis = 0.012496 m. 

 

2L

1l

3d

2d

1C

2C

3C

3L

1L

x

y

1d

3d

3l

3l

2l

2F
5F

3F

6F

1F

4F

 

Fig. 2-5. Definitions of forces and distances of points of applications from the center of 

mass [38]. 
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2.4 Linearization of Dynamics of the Platen in Translational Motion 

 

 From (2.2.8)–(2.2.9), the dynamics of the platen in translation motion can be 

presented as 

 T
n b nM Cx f g , (2.4.1) 

where the subcript n or b indicates that the vector is based on the stationary or body-

fixed frame.  

 For linearization, let us set the perturbation equations 

 
0n n nx x x  (2.4.2) 

 0
T T TC C C  (2.4.3) 

 
0b b bf f f  (2.4.4) 

 
0n n ng g g  (2.4.5) 

where ng  is zero because ng  is a constant vector and subscript 0 means the values in the 

opertation points. 

 From (2.4.2)–(2.4.5), (2.4.1) can be expressed as 

 
0 0 00

T T
n n b b n nM C Cx x f f g g .  (2.4.6) 

For small-angle rotation, the DCM becomes 



 34

 

0 0

0 0

0 0

0 0

0 0

0 0

0

1 1 0 0 0 ( ) ( )
1 0 1 0 ( ) 0 ( )

1 0 0 1 ( ) ( ) 0

1 0
    1 0

1 0

    

T

T T

C

C C

 (2.4.7) 

 
0

0 .
0

TC  (2.4.8) 

After removing some terms cancelled at the operation point and higher-order 

terms, (2.4.6) becomes  

 
0 0

T T
n b bM C Cx f f . (2.4.9) 

From 
0 0 00 0T

n b nCx f g , we find 

 
00

0
0T

bC
mg

f . (2.4.10) 

The final linearized dynamic EOMs from (2.4.8)–(2.4.10) is 

 0

0

T
n b

mg
M C mgx f . (2.4.11) 
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2.5 Linearization of Dynamics of the Platen in Rotational Motion 

 

 The full nonlinear equation of rotational motion of the platen, (2.3.11), is  

 1 1I I I  (2.5.1) 

 (2.5.1) can be presented in another way, 

 1 2 3 1
1yy zz

xx xx

I I
I I

 (2.5.2) 

 2 1 3 2
1zz xx

yy yy

I I
I I

 (2.5.3) 

 3
xx yy

zz

I I
I 2 1 3

1 .
zzI

 (2.5.4) 

where, xxI and yyI  are identical because of the symmetry of the platen. 

 To linearize (2.5.2)–(2.5.4), we recall the differential kinematics for rotational 

motion, (2.3.7), 

 
1

2

3

1 0 sin
0 cos cos sin
0 sin cos cos

. (2.5.5) 

The time derivative of (2.5.5) becomes 

 

1

2

3

0 0 cos
0 sin sin sin cos cos
0 cos sin cos cos sin

1 0 sin
         0 cos cos sin

0 sin cos cos

 (2.5.6) 
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 To linearize the trigonometric function for small-angle perturbation, let us use the 

trigonometric identities, 

 
0

0 0

0 0

sin( ) sin( )
          sin cos cos sin
          sin cos

 (2.5.7) 

 
0

0 0

0 0

cos( ) cos( )
          cos cos sin sin
          cos sin ,

 (2.5.8) 

where 0  is the angle at an operation point and  is perturbation.  

 From (2.5.6)–(2.5.8) with assumption of small angle motion, the perturbation of 

terms in the left-hand side of (2.5.2)–(2.5.4) become 

 1

0

cos sin

    sin
 (2.5.9) 

 2

0 0 0

sin sin sin cos cos cos cos sin

    cos cos sin
 (2.5.10) 

 3

0 0 0

cos sin cos cos sin sin cos cos

    sin cos cos
 (2.5.11) 

To linearaze the terms in the right-hand side of (2.5.2)–(2.5.4) , we need an alternative 

form of (2.5.5), 

 1 sin  (2.5.12) 

 2 cos cos sin  (2.5.13) 

 3 sin cos cos . (2.5.14) 

To linearize the terms in right-hand side of (2.5.2)–(2.5.4),  
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 2 3 cos cos sin sin cos cos 0  (2.5.15) 

  1 3 sin sin cos cos 0  (2.5.16) 

 1 2 sin cos cos sin 0.   (2.5.17) 

From (2.5.9)–(2.5.11) and (2.5.15)–(2.5.17), the linearized (2.5.2)–(2.5.4) are 

 0 1
1sin
xxI

 (2.5.18) 

 0 0 0 2
1cos cos sin
yyI

 (2.5.19) 

 0 0 0 3
1sin cos cos .
zzI

 (2.5.20) 

If we put (2.5.18)–(2.5.20) in matrix form, 

 
0 1

0 0 0 2

0 0 0 3

1 0 0
1 0 sin

10 cos cos sin 0 0
0 sin cos cos

10 0

xx

yy

zz

I

I

I

. (2.5.21) 

An alternative matrix form is  

 

0 0 0 0

1
0 0

2

3
0 0

0 0

sin tan cos tan1

cos sin0

sin cos0
cos cos

xx yy zz

yy zz

yy zz

I I I

I I

I I

. (2.5.22) 

If we define 
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0 0 0 0

0 0
0

0 0

0 0

sin tan cos tan1

cos sin0

sin cos0
cos cos

xx yy zz

yy zz

yy zz

I I I

B
I I

I I

, (2.5.23) 

the linearized full dynamic equations of the platen in rotational motion is  

 0B  (2.5.24) 

where , ,  is the angular accelerations of the perturbed rotational angles. 

 

2.6 State-Space Representation of the Linearized Full Dynamics of the Platen 

  

 To present  the linearized translational and rotational EOMs as state-space form, 

the state variables and the input variables have to be defined.  

 Let us set x , y , z , x , y , z , , , , , , and  as state variables and 1F , 

2F , 3F , 4F , 5F , and 6F  as input variables. After then, the EOMs will be expand as state 

variables and input variables form. The translational EOMs, (2.4.11), become 

1

2
0 0

3
0 0

4
0 0

5

6

0 0 1 0 0 0 0 cos30 cos30
0 0 1 0 0 0 1 sin30 sin30
0 0 1 1 1 1 0 0 0 0

F
F

m x mg
F

m y mg
F

m z
F
F

  (2.6.1) 
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1

2
0 0 0 0 0 0

3
0 0 0 0 0

4
0 0 0 0 0

5

6

cos30 sin30 cos30 sin30
1 1 sin30 cos30 sin30 cos30

1 1 1 sin30 cos30 cos30 sin30 0

F
F

x g
F

y g
Fm

z
F
F

  (2.6.2) 

 ,
0

f

g
B gx F  (2.6.3) 

where 
0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

cos30 sin 30 cos30 sin 30
1 1 sin 30 cos30 sin 30 cos30 .

1 1 1 sin 30 cos30 cos30 sin 30
fB

m
 

  (2.6.4) 

The rotational EOMs, (2.5.24), becomes 

 

10 0 0 0

2
3 3

30 0
0 1 2 2

4
1 1 1

50 0

60 0

sin tan cos tan1

0 0 0 0
cos sin0 0 0 0

0 0 0
sin cos0

cos cos

xx yy zz

yy zz

yy zz

F
I I I F

l l
F

B T l l l
FI I

l l l
F
FI I

F

  (2.6.5) 

 mB F , (2.6.6) 

where
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1 0 0 3 2 0 0 1 0 0 1 0 0 1 0 0 1 0 0

1 0 2 0 2 0 1 0 1 0 1 0

1 0 2 0 2 0 1 0 1 0 1 0

0 0 0 0 0 0

s t s t c t c t c t c t

c c c s s s

s s s c c c
c c c c c c

yy xx yy zz zz zz zz

m
yy yy yy zz zz zz

yy yy yy zz zz zz

l l l l l l l
I I I I I I I

l l l l l lB
I I I I I I

l l l l l l
I I I I I I

.

  (2.6.7) 

From (2.6.3), (2.6.4), (2.6.6), and (2.6.7), 

 

0

f

m

g
Bd g
Bdt

x
F  (2.6.8) 

 The state-space representation of the combined EOMs of the translational and 

rotational motion is 

 

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0

x
y
z
x g
y g
zd

dt

1

3 6 2

3

3 6 4

5

6

0

.
0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

f

m

x
y
z
x F
y F
z B F

F
B F

F

 

  (2.6.9) 

Let the state matrix A, the input matrix B, and the output matrix C be 



 41

 

3 3 3 3 3 6

3 6 3 3

3 6 3 3 3 3

3 6 3 3 3 3 12 12

0 0
0 0

0 0 0 0
0 0 0

0 0
0 0 0

I
g

g
A

I

 (2.6.10) 

 

3 6

3 6

12 6

0

0
f

m

B
B

B

 (2.6.11) 

 3 3 3 3 3 6

3 6 3 3 3 3

0 0
.

0 0
I

C
I

 (2.6.12) 

Finally, we obtain the state-space form of the full dynamic EOMs, 

 A B
C

x x u
y = x

 (2.6.13) 

where ˆ , , , , , , , , , , ,
T

x y z x y zx , and 1 2 3 4 5 6, , , , , TF F F F F Fu . 
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CHAPTER III 

 

ADVANCED-CONTROL SYSTEM DESIGN 

 

 

3.1 Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR)  

Controller Design 

 

The LQG/LTR technique belongs to the class of the model-based compensator 

(MBC) [40, 41]. The LQG/LTR design method seeks the MIMO compensator ( )K s  so 

that stability robustness and performance specifications are satisfied as close as possible 

in a MIMO feedback loop shown in Fig. 3-1 [40].  

 

( )e s

Controller

( )G s
( )u s

Plant

( )r s
( )K s

( )y s

 

Fig. 3-1. The MIMO feedback loop. 
 

Consider the linear system 

 ( ) ( ) ( ) ( )t A t B t tx x u w  (3.1.1) 

 ( ) ( ) ( )t C t ty x v , (3.1.2) 
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where ( )tw and ( )tv are uncorrelated zero-mean white-Gaussian process and sensor 

noises with positive semidefinite covariance matrices fQ and fR . The esimator design 

yields 

 ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ) ( ))t A t B t H t t tx x u y r y  (3.1.3) 

 ˆ ˆ( ) ( )t C ty x  (3.1.4) 

 1( ) ( )  with  ( ) ( )G s C s B s sI A  (3.1.5) 

where ( )tx  is the state vector, ( )tr  is the reference signal, ( )ty  is the output vector, 

ˆ ( )tx  is the estimated state vector, ( )te  is  the  error  signal,  ˆ ( )ty  is the estimated output 

vector, A is the state matrix, B is the input matrix, C is the output matrix, G is  the  

feedback gain matrix, H is  the  Kalman-filter  gain  matrix,  and  I is the identify matrix. 

The structure of an LQG/LTR compensator,  

 1( )K s G sI A BG HC H  (3.1.6) 

is shown in Fig. 3-2. We assume that [A,B] is stabilizable, i.e. all unstable mode of (3.1.1) 

are controllable, and [A,C] is detectable, i.e. all unstable mode in (3.1.1) and (3.1.2) are 

observable. More detail tutorial for designing multivariable feedback control systems are 

presented in [40-46]. 

In the time domain, if we let ˆ ( ) nt Rx  denote the state vector of the compensator

( )K s , 

 ˆ ˆ( ) ( ) ( ) ( )t A BG HC t H tx x e  (3.1.7) 

 ˆ( ) ( )t G tu x  (3.1.8) 
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1sI A

B

C

I
( )e s ˆ( )x s ( )u s

( ): ControllerK s

H G

 

Fig. 3-2. The structure of an LQG/LTR compensator. 

 

Before designging a compensator, we set the target loop shape. The final goal of the 

LQG/LTR design is to make ( ) ( )G s K s  as close as possible to the target feedback loop 

(TFL), 1( )KFG s C sI A H . The first step to achieve this goal is to determine the 

filter gain matrix H .  The  desired  shape  of  the  TFL  is  shown  like  in  Fig.  3-3.  The  

crossover frequency of the maximun singular value should be greater than the highest 

frequency of the disturbances and the crossover frequency of the minimun singular value 

has to be smaller than the lowest noise frequency of the measurements. The larger 

magnitude of the TFL in the low-frequency induces better disturbance rejection, and the 

smaller magnitude of the TFL in the high-frequency makes better sensor noise rejection.  

 The noise covariant matrices, fQ  and fR , are treated as design knobs in the 

dynamic compensator design. Without loss of generality, let us choose T
fQ LL  and 

1
fR I . For target feedback loop shaping, it is suggested that 

11T TL C CA C  for 
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disturbance rejection in low-frequency, 
1T TL C CC  for noise rejection in high-

frequency, or 
1 11; ; T T

L HL L L CA B C CC  for both rejections [40]. 

 

( )KFG j

max ( )KFG

min ( )KFG

min ( )KFG

max ( )KFG

 

Fig. 3-3. Target feedback loop shaping. 

 

However, if the state matrix A is singular, we have to find another way to choose fQ . In 

many cases, fQ  may be determined by trials and errors based on experience and 

intuition. If fQ  and fR  are decided, the Kalman-filter gain matrix H is calculated by 

solving  the Kalman-filter Riccati equation, 

 10 T T
f f f f f fP A AP P C R CP Q  (3.1.9) 
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 1T
f fH P C R . (3.1.10) 

By tuning fQ  and fR , we can find a proper the Kalman-filter gain matrix to satisfy the 

TFL shape.  

After shaping the TFL, the only undetermined design parameter in ( )K s  is the 

control gain matrix G . This control gain matrix is computed by solving the cheap-

control LQR problem [40]. It is to find the control gain matrix that makes the following 

performance index as small as possible 

 
0

min T T
c cu

J x Q x u R u dt  (3.1.11) 

where T
cQ C C  is a positive semidefinite matrix, and 1

cR I  is a positive definite 

matrix. To calculate G for the LQG/LTR compensator, we solve the following control 

Riccati equation, 

 10 T T
c cPA A P PBR B P Q  (3.1.12) 

for 0 , then the computed control gain matrix G  becomes 

 1 T T
cG R B P B P . (3.1.13) 

The main result, the loop transfer recovery is as follows  

 
0

lim ( ) ( ) ( )KFG s K s G s . (3.1.14) 

This result implies that the loop transfer function, ( ) ( )G s K s  approximates the TFL 

( )KFG s  as  tends to zero. 

 



 47

3.2 State-Space Model and an LQG/LTR Compensator Design of the Y-Shaped 

Maglev Stage 

 

The  state  variables  of  the  platen  in  6  DOFs  can  be  chosen  as  its  positions,  

velocities, rotational angles, and rotational velocities in 6 axes as 

 , , , , , , , , , , ,
T

x y z x y z . (3.2.1) 

The x, y, and z are the displacement components in m, and ,x ,y  and z are the velocity 

components in m/s of the center of mass of the platen with respect to the origin of the 

stationary frame. The , , and  are the Euler angles in rad, and , ,  and  are the 

angular velocities in rad/s about the are x, y, and z axes of the stationary frame. 

The linearized full-state EOMs in state-space representation for perturbation in 

translation and rotational motions at an operation point are presented in (2.6.9)–(2.6.13). 

From the state-space form, we need to check the controllability and observability. Both 

the controllability matrix 2 1nB AB A B A B  and the observability matrix 

1n

C
CA

CA

 have full rank. Hence, the system is controllable and observable. 

To find a proper Kalman-filter gain matrix H, fQ  and fR should be determined. 

However, we cannot use the suggested way to determine fQ  and fR  in [40] because the 

state matrix A is not invertible. By trials and errors, fQ  and fR  are determined as 
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4 4 4 2 2 2

3 3 3 2 2 2

(5 10 ,5 10 ,5 10 ,1 10 ,1 10 ,1 10 ,

                 1 10 ,1 10 ,1 10 ,1 10 ,1 10 ,1 10 )
fQ diag

 (3.2.2) 

 6 63

1
1.5 10fR I . (3.2.3) 

From (3.2.2)–(3.2.3), the Kalman-filter Riccati equation (3.1.9) is solved and the 

Kalman-filter gain matrix H  is determined.  

 

13 15 17 4 18

13 14 4 15 17

15 14 13 13 16

8660 7.610 10 2.636 10 3.8956 10 9.924 10 6.016 10

7.610 10 8660 4.504 10 9.924 10 5.643 10 9.296 10

2.636 10 4.504 10 8660 9.405 10 9.244 10 3.630 10

10.55 1.855 10

H

12 11 13 12

12 14 12 13

13 13 12 13 12

13 4 13

1.345 10 6.352 10 9.810 2.581 10

2.501 10 10.547 8.217 10 9.810 2.865 10 4.087 10

4.616 10 1.780 10 3.873 4.706 10 9.228 10 2.391 10

3.896 10 9.924 10 9.405 10 16 17

4 15 13 16 15

18 17 16 17 15

15 7 13 12

1225 2.063 10 9.436 10

9.924 10 5.643 10 9.244 10 2.063 10 1225 5.694 10

6.016 10 9.296 10 3.630 10 9.436 10 5.694 10 1225

9.464 10 1.737 10 6.653 10 12.25 1.685 10 7. 13

7 12 13 13 12

14 15 13 14

357 10

1.734 10 6.839 10 2.513 10 2.369 10 12.25 7.014 10

3.017 10 1.370 -13 8.636 10 1.881 10 9.777 10 12.25e

  (3.2.4) 

The target feedback loop 1( )KFG s C sI A H  has the crossover frequency at 

1000 rad/s. It is designed to reduce the disturbances in the frequency less than 630 rad/s 

(100 Hz) of frequency in Fig. 3-4 because the range of mechanical vibration frequency is 

between 10 Hz and 100 Hz [20].  The shape of the singular values depends on H derived 

by fQ  and fR . 

 The cQ  and cR  matrices should be determined prior to compute the control gain  
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Fig. 3-4. Singular values of the designed target feedback loop. The dashed zone is the 
target frequency range to reject disturbance. 

 

matrix G . Let us,  

 1,1,1,0,0,0,1,1,1,0,0,0T
cQ C C diag  (3.2.5) 

 11
6 6 6 69 10cR I I . (3.2.6) 

From (3.2.7) and (3.2.8), we solve the control Riccati equation, (3,1,12) and determine 

the control gain matrix, G . 

The loop transfer function, ( ) ( )G s K s is well approximated to the TFL in Fig. 3-5. 

The crossover frequency of the loop is about 600 rad/s. The loop shape approaches the 

target loop as  tends to zero. Nevertheless, if  is  too small,  the control  gain becomes 

too large. It is possible to reach the limit of the control input capacity in a real system. 

Thus,  must be chosen carefully. 
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18 40 23

19 17 11

40 17 10 32

21 43 26 3

316228 2.514 10 4.162 10 1.975 10 2.4363 0

9.724 10 316228 1.937 10 2.436 3.914 10 0

4.326 10 2.500 10 316228 1.273 10 1.566 10 0

410.9 2.539 10 3.967 10 2.066 10 3.282 10

G

21 20 3 14

43 20 13 35

24 12 17

13 35 18

0

2.539 10 410.9 2.388 10 3.282 10 9.354 10 0

3.967 10 2.3882 10 410.9 1.141 10 1.366 10 0

1.145 10 0.1837 3.133 10 316228 4.299 10 0

0.1837 4.953 10 8.199 10 3.890 10 31622

29 06 16 21

6 16 38 21

8 0

0 0 0 0 0 316228

2.633 10 4.184 10 1.454 10 14.67 1.007 10 0

4.184 10 1.192 10 1.742 10 1.007 10 14.67 0

0 0 0 0 0 20.33

T

  (3.2.7) 

 After completing the design procedure of the LQG/LTR compensator, the 

simulation in the full nonlinear dynamics model (2.2.9) and (2.3.11) is conducted to 

verify the feasibility in the vibration rejection. The simulated vibration rejection 

performances in x-, y-, and z-axes were compared in Figs. 3.6 3.8 with the lead-lag 

positioning compensator that was designed not for vibration rejection but for positioning 

[38].  

The LQG/LTR compensator in the x- and y-axes attenuates about 10% more than 

the lead-lag compensator. In vertical motion, the vibration is reduced about 80% more 

by the LQG/LTR compensator than by a lead-lag compensator. The simulations provide 

the evidence of the feasibility of the LQG/LTR compensator for vibration. 
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Fig. 3-5. Singular values of the loop transfer function. The dashed zone is the target 
frequency range to reject disturbance. 

 

Fig. 3-6. Vibration rejection performances in the x-axis when vibration disturbance of 
15.5 Hz is applied. The solid line indicates that by an LQG/LTR compensator, and the 

dashed line indicates that by a lead-lag compensator. 
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Fig. 3-7. Vibration rejection performances in the y-axis when vibration disturbance of 
15.5 Hz is applied. The solid line indicates that by an LQG/LTR compensator, and the 

dashed line indicates that by a lead-lag compensator. 
 
 

 
Fig. 3-8. Vibration rejection performances in the z-axis when vibration disturbance of 
15.5 Hz is applied. The solid line indicates that by an LQG/LTR compensator, and the 

dashed line indicates that by a lead-lag compensator. 
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CHAPTER IV 

 

MODELING OF THE MAGLEV SYSTEM WITH THE OPTICAL TABLE IN 

VERTICAL MOTION 

 

 

4.1 Modeling of the Optical Table with Pneumatic Passive Vibration Isolators 

 

Pneumatic isolation tables like the optical table used in this research are widely 

used in semiconductor manufacturing, precision machine tools and precision 

measurement apparatuses. A pneumatic isolation table is supported by several air springs 

consisting of air-filled chambers, an elastomeric diaphragm and a piston [29]. Models of 

pneumatic vibration isolators are based on nonlinear models of pneumatic cylinders by 

Shearer [47]. These models include the enthalpy equations for the pneumatic chambers, 

a flow equation for the restrictor connecting the chambers, and the equation of motion 

for the piston supporting the payload. Harris and Crede [48] proposed a linear model of 

the pneumatic vibration isolator. The linearity of this model is obtained by assuming 

small payload displacements. A simpler linear model provide linear damping at all 

payload displacement amplitudes was derived by DeBra and Bryan [49].  

Although prior accurate models for pneumatic isolators were derived, they are 

too  complicated  to  apply  in  this  research.  Since  the  amplitude  of  displacement  by  
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vibration in nanotechnology application is very small, we simply represent the 

pneumatic isolation table as a mass-spring-damper system shown in Fig. 4-1.  

 

         
Optical table

m

k c Diaphragm model

Impluse excitation

 

Fig. 4-1. Mechanical model for pneumatic vibration isolator with diaphragm. 

 

To determine the stiffness and damping ratio, the impulse response of the optical 

table was measured with an accelerometer (PCB Piezotronics 356B18) in Fig. 4-2. The 

optical table is impacted by a rubber hamper of mass 595.8 g.  The generated motion is 

assumed a decaying sinusoid ntx Ae  where n  and  are the natural frequency and 

the damping ratio of the system.  

 1
2 1

2

ln( ) ( )n n d
x t t T
x

 (4.1.1) 

 22 1d n
dT

 (4.1.2) 
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(a) 

 

(b) 

Fig. 4-2. Impulse response of the optical table in the z-axis: (a) original (b) zoomed in 
dashed zone. 
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where 1 0.1455t s, 2 0.1685t s, 1 0.5843x m/s2, and 2 0.4024x m/s2. From 

equations (4.1.1)–(4.1.2), we determine the natural frequency, 1

1

273.663z
nz

k
m

 

rad/s, and  the damping ratio 1

1 1

0.0592554
2

z
z

z

c
m k

 in the z-axis. Therefore, the 

stiffness is 7
1 3.11548 10 N/m,zk  and the damping coefficient is

4
1 1.34917 10 N-s/mzc . 

 

4.2 Unbalanced Vibrating Motor 

 

A common source of such a sinusoidal force is unbalance in a rotating machine 

or rotor. Let us suppose that a rotating machine of mass m1, can be modeled as being 

mounted  on  a  spring  of  stiffness,  k1z, to a fixed support, and that there is viscous 

damping in the system, with a damping coefficient, c1z. 

Suppose that the unbalance can be represented by a mass mu at a distance e from 

the center of rotation. e is sometimes called the eccentricity. Let the angular speed of 

rotation of the rotor be . The system is illustrated in Figs. 4-3–4-4. 

The equation of motion is 

 

2 2

1 1 12 2 sin .u
d d dm m e t k c
dt dt dt

 (4.2.1) 

This can be written as:  

 2
1 1 1 sind um c k F m e t  (4.2.2) 
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Fig. 4-3. Unbalanced mass vibration generator. 
 

 

1zk 1zc

t

1 416 kg
Optical table
m

0.7028 kg
Unbalanced mass

um

0.01539 me

 

 

Fig. 4-4. Model of an unbalanced rotating machine. 
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4.3 Equations of Motion of the Maglev System with the Optical Table in 

Vertical Motion 

 

 Since  we  found  the  stiffness  (k1z) and damping coefficient (c1z) of the optical 

table and derived the vibration disturbance (Fdz) generated by an unbalanced rotor in the 

previous two sections, we can provide all governing EOMs of the maglev system with 

the optical table.  It is considered a two-mass problem as shown in Fig. 4-5.   

The  EOMs  of  the  platen  with  mass  (m2)  and  the  optical  table  with  mass  (m1) 

become 

 2 2, ,zm z F z i m g  (4.3.1) 

 1 1 1 1 , ,z z z dzm c k m g F z i F  (4.3.2) 

where the magnetic force ( , , )zF z i is a function of the distance between the magnet  and 

coil, and the current through the coils.  

The approximate quadratic polynomial fit is given by  

 
2

2 1 0( , , )zF z i z z i  (4.3.3) 

where 4
2 4.7418 10 ,  2

1 8.7132 10 , and 0 6.7712  [39]. 

 

4.4 Linearization of the Maglev System Model with the Optical Table 

 

The only nonlinear term in the EOMs is position dependences in the magnetic 

force. To linearize the equations, let set the perturbation equations 0z z z , 0 ,  
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( , , )zF z i
2zk

2m
z

1m

1zk 1zcdzF

ˆ
z vf k i

2m
z

1m

1zk 1zcdzF

 

Linearization

 

(a)                                                                (b) 

Fig. 4-5. (a) Nonlinear model of the maglev system. (b) Magnetic stiffness effect added 
in a linearized model. 

 

and 0i i i .  Subscript  0  means  values  at  an  operation  point.  The  variables  with  tilde  

are perturbation.  

Using Taylor-series expansion, (4.3.1) becomes 

 
2 0m z 0 0 0( , , )zz F z i

0 0 0 0 0 0

0 0 0

, , , ,

2
, ,

( , , ) ( , , )

( , , )                     +

z z

z i z i

z

z i

F z i F z iz
z

F z i i m g
i

(4.4.1) 

The linearized EOM of the platen in the z-axis is 

 
0 0 0 0 0 00 0 0

2
, , , ,, ,

z z z

z i z iz i

F F Fm z z i
z i

 (4.4.2) 
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where 
0 0 0

2 0 0 1 0
, ,

( , , ) 2z

z i

F z i z i
z

 (4.4.3) 

 
0 0 0

2 0 0 1 0
, ,

( , , ) 2z

z i

F z i z i  (4.4.4) 

 
0 0 0

2
2 0 0 1 0 0 0

, ,

( , , )z

z i

F z i z z
i

. (4.4.5) 

To determine the coefficients in (4.4.2), the value of 0i  should be found. At 

equilibrium point, the magnetic force should be balanced with the gravity in (4.4.6), 

 
2

0 0 0 2 0 0 1 0 0 0 0 2( , , ) .zF z i z z i m g  (4.4.6) 

Thus, the current at the operation point 0 0 250z µm is
  

 2
0 2

2 0 0 1 0 0 0

0.3995 Am gi
z z

. (4.4.7) 

Finally, the linearized EOM of the platen is  

 2 2z vm z k z k i  (4.4.8) 

where 2
2 2 0 0 1 02 3.38665 10zk z i  and 

2
2 0 0 1 0 0 0 6.5563vk z z . 

Simlary, the linearized EOM of the optical table with vibration disturbance 

becomes 

 1 1 1 2z z z v dzm c k k z k i F . (4.4.9) 
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The platen and the optical table are coupled by the magnetic stiffness as shown in 

(4.4.8)–(4.4.9). Therfore, the vibration disturbance generated on the optical table affects 

the motion of the platen although there is no mechanical contact between the platen and 

the optical table.  

 

4.5 Validation of the Linearized Model of the Maglev System in Vertical Motion 

 

Model validation is a crucial step in any modeling procedure, since a model is 

useless if it has not been confirmed with experiments. The model of the maglev system 

with the optical table should be validated by experiments. Therefore, the comparisons 

between the experimental and simulation results with vibration disturbance are presented 

in Figs. 4-6–4-7 before applying the vibration control schemes. The experimental data 

were acquired with the 15.9 Hz vibration disturbance generated by the unbalanced motor. 

The simulation data was obtained by Simulink integrated with MATLAB R . The 

Simulink block diagram is presented in Appendix B. 

While  the  position  controller  keeps  the  position  at  250  µm  in  the  z-axis, the 

motion of the platen with the vibration disturbance was measured and simulated. The 

same lead-lag position feedback controller designed by Verma [38] is applied to both 

experiment and simulation. The lead-lag compensator is  

 5 ( 57.47)( 6.271)( ) 2.32003 10
( 2103)P

s sD s
s s

. (4.4.10) 
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The position response is very similar in both experimented and simulated plots in Fig. 4-

6. The simulation shows the pure sinusoidal motion. But, there is a little difference in the 

experiment because of the unmodeled dynamics. The difference between the simulation 

and experiment is negligible level in this work. 

Fig. 4-7 presents the velocity response. Since the reading from the capacitive 

analog position sensors contains high-frequency noise, the velocity was obtained by 

differentiating the position data, the high-frequency noise was amplified. To compare 

without the high-frequency noise, the filtered experimental and simulated results are 

shown in Fig. 4-8. This low-pass filter has the pass band edge at 100 Hz. The filter 

transfer function is  

 
1 2 3

1 2 3

 0.0010592 0.0031775 +0.0031775 +0.038541( )
 2.5919 +2.2715 0.67117

z z zH z
z z z z

 (4.4.11) 

This pass band is only to show comparison the low-frequency motions between the 

simulations and the experiments. A real-time low-pass filter for velocity feedback 

control will be introduced in the next section. The velocity response is very similar in 

both filtered experimental and simulated plots in Fig. 4-8. There are still some higher-

frequency components than 15.9 Hz vibration. The magnitude and behavior of the 

experiment data is very similar with the simulation. The difference between the 

simulation and experiment in velocity response is also neglectable level in this work. 

Therefore, the linearized model of the maglev stage with the optical table is validated to 

use in the controller design. 
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(a) 

 

(b) 

Fig. 4-6. Relative position response of the optical table and the platen with vibration 
disturbance. (a) and (b) are simulated and experimented positions. 
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(a) 

  

(b) 

Fig. 4-7. Relative velocity between the optical table and the platen with vibration 
disturbance. (a) and (b) are simulated and experimented velocities. 
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Fig. 4-8. Filtered relative velocity between the optical table and the platen with vibration 
disturbance. (a) solid line is the simulation, and (b) the dotted line is filtered data of the 

experiment. 
 

 

4.6 Low-Pass Filter for Obtaining Velocity Data from Vertical Position Sensors 

 

Because the high frequency noise amplified by the differentiation is not desired, 

a software low-pass filter is implemented to measure the vertical velocity. Chebyshev 

type I approximation is used to design the low-pass filer. The third-order low-pass filter 

with the pass band edge of 400 Hz and the ripple factor of 0.01 is designed in Fig 4-9 

when the sampling rate is 5 kHz. If the pass band edge is too low, the phase lag is 

observed. If the pass band edge is too high, high-frequency noise is not filtered 

effectively. In the work, the pass band edge of 400 Hz is appropriate. The transfer 

function of the low-pass filter is 
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1 2 3

1 2 3

 0.038541 0.11562 +0.11562 +0.038541( )
 1.38589 +0.90333 0.20912

z z zH z
z z z z

. (4.4.12) 

The magnitude output of the filter is unity up to 400 Hz and the phase lag is less than 69º.  

To  reject  vibrations  the  filtered  velocity  signal  should  not  be  distorted  by  the  

filter up to 100 Hz. The phase lag of the filter at 100 Hz is 15.7º. This phase lag is 

sufficiently acceptable to use as a feedback control signal. The comparison between 

original and filtered velocity signals are shown in Fig. 4-10. The high-frequency noise is 

disappeared in filtered signal. The phase shift is observed in Fig. 4-10 (a) and (b), but it 

is ignorable.  This filter makes less sensitive to high-frequency noise and is validated to 

use in the interesting frequencies of 10 to 100 Hz. 

 

Fig. 4-9. A third-order Chebyshev Type I filter with the pass band edge of 400 Hz and 
the ripple factor of 0.01. 
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(a) 

 
(b) 

 
(c) 

 
Fig. 4-10. Comparison between the original (dotted line) and the filtered (solid line) 

velocity signals when the vibration disturbance of (a) 0 Hz, (b) 38.8 Hz, and (c) 66.4 Hz 
are applied in the experiments.   
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CHAPTER V 

 

VIBRATION CONTROL IN VERTICAL MOTION 

 

 

5.1 Transfer Function of the Maglev System in Vertical Motion 

 

To analyze the frequency response of the maglev system in the z-axis and to 

design the controllers, we take the Laplace transform of (4.4.8) with zero initial 

conditions. 

 2 2( ) ( ) ( ) ( )z vm z t k z t t k i tL L  (5.1.1) 

 
2

2 2

2 2

( ) ( ) ( )z v

z z

m s k ks Z s I s
k k

 (5.1.2) 

From the Laplace transform of (4.4.9), we obtain 

 1 1 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )z z z v dzm t c t k t k z t t k i t F tL L . (5.1.3) 

 2
1 1 1 2 2( ) ( ) ( ) ( )z z z z v dzm s c s k k s k Z s k I s F s  (5.1.4) 

If (5.1.2) is substituted to (5.1.4), we obtain following transfer function (TF). 

 
2

1 1 1 2( ) ( ) ( )
( ) ( )

v z z z
dz

z z

k m s c s k kZ s I s F s
s s

 (5.1.5) 

where  

 4 3 2
1 2 1 2 1 2 2 2 1 1 2 1 2( ) .z z z z z z z z zs m m s c m s k k m k m s c k s k k  (5.1.6) 
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 From (5.1.2), (5.1.5), and (5.1.6),  

 
2 2

2 2 2ˆ( ) ( ) ( )
( ) ( )

v z
dz

z z

k m s m s ks I s F s
s s

 (5.1.7) 

By combining (5.1.5) and (5.1.7), the system transfer functions in matrix form are  

 

2
1 1 1 2

2 2
2 2 2

11 12

21 22

( )( ) 1
( ) ( )( )

( ) ( ) ( )
          .

( ) ( ) ( )

v z z z

z dzv z

d

k m s c s k k I sZ s
s F ss k m s m s k

G s G s I s
G s G s F s

 (5.1.8) 

The equivalent block diagram of the transfer function is illustrated in Fig. 5-1. 

 

11 ( )G s

22 ( )G s

21 ( )G s

( )dzF s

( )I s
( ) ( ) ( )z s Z s s

( )Z s

( )s

12 ( )G s

 

Fig. 5-1. Equivalent block diagram of the motion of maglev system in the z-axis. 

 

From (5.1.5) and (5.1.7), the output ( ) ( ) ( )z s Z s s  is 

 11 21 12 22( ) ( ) ( ) ( ) ( ) ( ) ( )z dzs Z s s G G I s G G F s . (5.1.9) 

The block diagram from (5.1.9) with feedback control for positioning is presented in Fig. 
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5-2, where 11 21( ) ( ) ( )PG s G s G s  and 12 22( ) ( ) ( )dG s G s G s are a plant transfer 

function and a disturbance transfer function. 

 

zr
( )PD s

( )dzF s

( )I s( )ze s

( )dG s

( )PG s
( ) ( ) ( )z s Z s s

 

Fig. 5-2. Block diagram of a positioning feedback control of the maglev system. 
 
 

The transfer function from the reference ( )zr s  and the vibration disturbance 

( )dzF s  is  

 
( )( ) ( )( ) ( ) ( )

1 ( ) ( ) 1 ( ) ( )
dP P

z z dz
P P P P

G sD s G ss r s F s
D s G s D s G s

 (5.1.10) 

The loop transfer function of the maglev system becomes 

 

1 2
11 21

1

4 3
1 2 1 1 2 1 2

2
1 1 1 2 1 2 1 2

1 1 2 1 1 2 1 1 2
5

1 2 2 1 1 1 1 2 2 2 1
6

1 2 1

( )( )( ) ( )
( )

    +

      
                  

P P

v v z

v z z

v z z v z

z z z z z

s z s zD s G s a G G
s s p

ak m m s ak c m m z z s

ak k c z z m m z z s

ak k z z c z z s ak k z z
m m m c m p s k k m k m c m ps 4

3
1 2 2 1 2 1 1 1

2
2 1 1 1 1 2 1

    

         
z z z z

z z z z z

s

k k m p k c m p s

k k c p s k k p s

 

  (5.1.11) 
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4 7 3 10 2 12 13

6 5 4 8 3 8 2 11

869457.0 8.29471 10 6.4158 10 3.9676 10 2.23769 10
2134.68 139347.0 1.52981 10 1.75117 10 1.90583 1

( ) ( )
0P PD s s ss G s

s s s s
s

s s

  (5.1.12) 

The position controller is a lead-lag compensator that was designed by Verma [38], 

 1 2

1

( )( )( ) .
( )P

s z s zD s a
s s p

 (5.1.13) 

The parameter values in vertical motion are summarized in Table 5-1.  

 
Table 5-1. Parameter values in vertical motion 

 
Parameter Value Parameter Value 

1m  436 kg a  2.32003×105 

2m  0.267 kg vk  6.5563 N/A 
1z  6.271 1zk  3.11548×107 N/m 
2z  57.47 2 zk  338.665 N/m 
1p  2103 1zc  1.34917×104 N-s/m 

 

 

This lead-lag controller has phase margin of 70.1º at the crossover frequency of 

65.7 Hz. The Bode plots of the loop transfer function and the closed-loop system for 

vertical motion with the position controller are shown in Figs. 5-3–5-4. This lead-lag 

compensator is well designed for positioning if there is no vibration disturbance. A 10-

µm step response in vertical  motion is  shown in Fig.  5-5.  The rise time for this step is  

0.002 s, and it settles in 0.2667 s. However, this compensator was not designed for 

vibration disturbance rejection. Therefore, the influence of the vibration disturbance 

should be analyzed.  
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To analyze how the vibration is introduced in the position, the transfer function 

from the vibration disturbance dzF  to the position z  is presented as 

 
4

5 4
2 1 1 1 1 2 2 1 2 1 2 1

3
1 2 1 2 1 2 1 1 2 1 2 1 2

2
2 1 1

3
2 2 1

6
1 2

2 1 1 1 2 1 2 1 2

( )( )
( ) 1 ( ) ( )

    

        

     

dz

dz P P

z z v z z

z v z z z v

v z z z z z v v

m s m p s
m m

G ss
F s D s G s

m c m p s k m ak k m m c m p s

c ak k k m p k p m m ak m m z z s

ak k k c k p ac k z z ak m

s

m z z s

4 3

1 2 1 1 1 1 1 2 1 1 2

6 5 6 4 8 3 10 2 12 13

0.002294 4.823
2135 1.009 10 2.359 10 6.433 10 4.158 10 2.238 10

        + v z z v z z v z

s s
s

ak z k p k ak k c z z s ak k z z

s s s s s

  (5.1.14) 

where all parameter values in (5.1.13) is presented in Table 5-1. The frequency response 

of the transfer function,
( )
( )

z

dz

s
F s

, is shown in Fig. 5-6. The magnitude of the frequency 

response of the vibration in the range is required to be attenuate. The major sources of 

the vibration disturbance in the high-precision machine are fans and motors. The 

vibration caused by fans and motors is in the most interesting frequency range of 10 to 

100 Hz.  
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Fig. 5-3. Bode plot of the loop transfer function for vertical motion with the maglev 
system. 

 

 

Fig. 5-4. Bode plot of the closed-loop system for vertical motion with the maglev system. 
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Fig. 5-5. 10-µm step response in vertical motion. 
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5.2 Design of a Dual-Loop Control System in the z-Axis Motion 

 

5.2.1 Design of a Vibration Controller with Velocity Feedback in the z-Axis 

Motion 

Since the key objective of this research is to reject or to reduce the effects of the 

vibration disturbance on the moving platen, a dual-loop control system is designed. A 

compensator in the inner-loop that attenuates the disturbance output ( )dzF s  is necessary.  

Acceleration feedback and velocity feedback are well known as vibration control 

schemes [50-52]. These approaches are to increase the ability of the system in rejecting 

disturbances. An acceleration feedback increases the effective inertia of the system for 

disturbance rejection purposes. Acceleration feedback allows higher state feedback gains 

on the velocity and position loops to be employed without increasing the control loop 

bandwidths. This allows higher overall stiffness to be achieved. The effect is analogous 

to a mechanical inertia [52]. However, a reliable acceleration signal is necessary to apply 

an acceleration feedback. The acceleration signal can be obtained by twice 

differentiations from the position signal or accelerometer. Although a low-pass filter 

prevent the amplification of the noise, the signal distortion increases by twice filtering 

and differentiations. The accelerometer (PCB Piezotronics 356B18) has inherently a DC 

offset  and  drift  when  the  signal  conditioner’s  power  is  turned  on.  In  this  research,  two 

accelerometers are required to measure the relative acceleration between the optical table 

and the platen. The DC offset and drift in acceleration signal make difficulty to apply 
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acceleration feedback in nanoscale or microscale applications. Therefore, the velocity 

feedback is appropriate in the research. 

Now we compare two control schemes: a controller only with position feedback 

and  a  dual-loop  control  system  with  position  plus  velocity  feedback.  To  analyze  the  

ability of velocity feedback, an equivalent block diagram of control structure is shown in 

Fig. 5-7. A controller ( )PD s  acts as an outer-loop controller that controls the position of 

the platen. The lead-lag compensator suggested by Verma [38] is well designed as a  

position controller. Thus, a lead-lag compensator is used to the outer-loop controller

( )PD s . In addition, by comparing between vibration-reduction with and without the 

inner-loop controller, this compensator makes it easy to observe the effect of the inner-

loop controller. 

The other controller ( )VD s  acts as an inner-loop controller for velocity feedback. 

The inner-loop controller in Fig. 5-7 becomes a vibration controller. ( )VD s  could be a 

PID controller because a PID controller is one of the commonly used controllers in 

multi-loop control systems [53]: 

 
21( ) D P I

V P I D
K s K s KD s K K K s

s s
, (5.2.1) 

The inner closed-loop transfer function is considered as a new modified plant 

transfer function in Fig. 5-7, and ( )ING s  becomes 

 
( )( )

1 ( ) ( )
P

IN
V P

G sG s
sD s G s

 (5.2.2) 

From (5.1.8), (5.1.12), (5.2.1), and (5.2.2), the inner closed-loop TF is 
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  (5.2.3) 

where all parameter values in (5.2.3) is presented in Table 5-1. 
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Fig. 5-7. Block diagram of the model of maglev system with positioning with a cascade 

velocity-regulation loop. 
 

 

The inner closed-loop TF including a vibration controller should be stablized. 

Before we tune the control parameters, the stablizing region of the controller gains 

should be found.  
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 (5.2.4) 



 78

where  

 4 1 2 1 2D vd m m K k m m   (5.2.5) 

 3 1 2 1 1 2z D z v P vd c m K c k K k m m  (5.2.6) 

 2 1 2 1 1 2 1 2z v P z D z I v zd k m k K c K k K k k m m  (5.2.7) 

 1 1 1 1 2I z P z v z zd K c K k k c k  (5.2.8) 

 0 2 1I v z zd K k k k   (5.2.9) 

To determine its stability, the Routh-Hurwitz criterion is used.  

4 :s  4d  2d  0d  
3 :s  3d  1d  0 

2 :s  3 2 4 1

3

d d d d A
d

 3 0 4
0

3

0d d d d
d

 0
 

1 :s  1 3 0Ad d d B
A

 
0

 
0 

0 :s  0
0

0Bd A d
B

 0
 

0 

  

From the stability analysis, as long as KP, KD, and KI have positive values, the 

inner-loop is stable because the other constants in (5.2.4) are all positive values. 

However, the outer closed-loop has different stabilizing region of the control gains.  

The transfer function from the reference input to the position output is  

 
4 3 2

4 3 2 1 0
6 5 4 3 2

6 5 4 3 2 1 0

( ) ( )( )
( ) 1 ( ) ( )

          

P INz

z P IN

D s G ss
r s D s G s

a s a s a s a s a
d s d s d s d s d s d s d

 (5.2.10) 
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where  

 4 1 2va ak m m  (5.2.11) 

 3 1 1 2 1 2v za ak c m m z z  (5.2.12) 

 2 1 1 1 2 1 2 1 2v z za ak k c z z m m z z  (5.2.13) 

 1 1 1 2 1 1 2v z za ak k z z c z z  (5.2.14) 

 0 1 1 2 ,v za ak k z z  (5.2.15) 

and 

 6 1 2 1 2v Dd k m m K m m  (5.2.16) 

 5 1 2 1 1 1 2 1 2 1 2 1( )v P v z D zd k m m K k c p m m K c m m m p  (5.2.17) 

 4 1 1 2 1 1 2 1 1 1

2 1 2 1 2 1 2 1      
v z P v I v z z D

v z z z

d k c m m p K k m m K k k c p K

ak k m m k m c m p
 (5.2.18) 

 
3 1 1 1 1 1 2 1 1 1

1 1 2 1 2 1 2 1 2 1 1 2 1      
v z z P v z I v z D

v z z z z

d k k c p K k c m m p K k k p K

ak c m m z z k m p k c m m p
 (5.2.19) 

 
2 1 1 1 1 1 1 1 1 2

1 1 1 2 1 2 1 2       +
v z P v z z I z z z

v z z

d k k p K k k c p K c p k k

ak k c z z m m z z
 (5.2.20) 

 1 1 1 1 1 2 1 1 2 1 2 1( )v z I v z z z zd k k p K ak k z z c z z k k p  (5.2.21) 

 0 1 1 2v zd ak k z z  (5.2.22) 

For stability analysis of the transfer function, let the denominator of   
( )
( )

z

z

s
r s

 be ( )s , 

 6 5 4 3 2
6 5 4 3 2 1 0( )s d s d s d s d s d s d s d . (5.2.23) 



 80

If all roots of ( )s are in the left-half s-plane, the closed-loop transfer function 
( )
( )

z

z

s
r s

  is 

stable. To determine its stability, the Routh-Hurwitz criterion is applied. The same lead-

lag compensator ( )PD s  in (5.1.13) is used in (5.2.10).  
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According to the Routh-Hurwitz criterion, all roots of the polynomial are in the 

left-half s-plane if all the elements in the first column of the Routh array are of the same 

sign. Since vk  and DK  are all positive from (5.2.16), 6d  is positive with the positive 

value of KD. Therefore, 5d , A, C , E , F , and 6d  should be all positive for closed-loop 

stability. 
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Fig. 5-8 illustrates the stable region that is drawn by calculation iteration through

0 600DK , 0 650PK , and 0 100IK . the As shown in Fig. 5-8, the stable 

region decreases with increasing DK  and  the  derivative  gain  is  not  helpful  to  stabilize  

the system since the derivative control will reinforce the rapid change of the velocity. 

Thus, PI controller instead to the PID controller is appropriate as a velocity feedback 

controller. If the value of DK  is zero, the system is stable if 0PK  and 0IK . 

 

Fig. 5-8. The stabilizing region of , ,P I DK K K  values for a PID controller.  

 

The inner-loop controller should attenuate the effect of vibration disturbance. To 

observe how the vibration disturbance influences the output, the transfer function ( )dzF s  
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  (5.2.24) 

where 6d , 5d , 4d , 3d , 2d , 1d , and 0d  are same as (5.2.16)–(5.2.22) if 0,DK  and all 

parameter values in (5.2.24) is presented in Table 5-1. 

 If the KP = 100 and KI  = 0 with the lead-lag compenstorin (5.1.15),   

 
4 3

6 5 6 4 8 3 11 2 12 13

0.002294 4.823

2509 1.809 10 2.876 10 1.206 10 4.158 10 2.238 10
( )
( )

z

dz

s s

s s s s s s
s

F s

  (5.2.25) 

The frequency response of the 
( )
( )

z

dz

s
F s

 is shown in Fig. 5-9. The dashed line is without 

the velocity-regulation loop, and the solid line is with the velocity-regulation loop. The 
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magnitude of the transfer function 
( )
( )

z

dz

s
F s

 with vibration contoller is reduced in the 

region from 20 rad/s to 2000 rad/s.  It means that the velocity feedback control is 

effective to 3.18 Hz to 318 Hz of vibration disturbance.  

 

 

 

Fig. 5-9. Frequency responses of the transfer function 
( )
( )

z

dz

s
F s

 from vibration disturbance 

to position in the z-axis. The solid line indicates the response with a PID vibration 
control ( 100PK , 0IK , 0DK ), and the dotted line indicates that without the 

vibration control scheme. 
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Fig. 5-10 shows the zoomed frequency resposes from 10 Hz to 100 Hz of the  

transfer function 
( )
( )

z

dz

s
F s

 in Fig. 5-9. The magnitude with vibration controller is reduced 

by about 2.58 dB to 4.27 dB between 10 Hz and 100 Hz as shown in Fig. 5-10. The 

reduction of 20 to 45 percent of the vibration disturbance was achived experimentally.  

 

Fig. 5-10. Zoomed frequency responses of the transfer function 
( )
( )

z

dz

s
F s

 from vibration 

disturbance to position in the z-axis from 10 Hz to 100 Hz. The solid line indicates the 
response with a PID vibration control ( 100PK , 0IK , 0DK ), and the dotted line 

indicates that without the vibration control scheme. 

-180

-170

-160

-150

-140

-130

M
ag

ni
tu

de
 (d

B)

10
2

0

90

180

270

360

Ph
as

e 
(d

eg
)

Bode Diagram

Frequency  (rad/s)



 85

 

(a) 

 

(b) 

Fig. 5-11. (a) Magnitude reduction, and (b) reduction percentage of the magnitude of the 

transfer function 
( )
( )

z

dz

s
F s

 from 10 Hz to 100 Hz with a PID vibration control ( 100PK , 

0IK , 0DK ). The dashed line indicates the simulation and the circled line indicates 
the experiment. 
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The discrepancy between the simulation and experiment in Fig. 5-11 is caused by 

the unmodeled dynamics. Both the optical table and the platen have rolling and pitching 

motions about the x-axis and the y-axis. These rotaional vibrating motions are not 

considered in the dual-loop control system because the enhaced maglev stage model 

with the optical table in vertical motion is developed based on a single axis motion.  

As the proportional gain KP of the inner-loop increases, the reduction ratio 

increases. Theoretically, the reduction ratio will increases by as much as increasing KP. 

However, if  KP  is greater than 120, the crossover frequency of the loop TF is less than 

10 Hz and unwanted oscillation increases in the step response in Figs. 5-12 5-13. 

Therefore, the proper value of KP is 100 for both the stability and the reduction 

performance. 

 

Fig. 5-12. Frequency responses of the open-loop transfer function ( ) ( )P IND s G s  with 
various KP values in vertical motion. 
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Fig. 5-13. Experimented step response of 10 µm with KP = 120 in vertical motion. 
 

 

Fig. 5-14. Frequency responses of the open-loop transfer function ( ) ( )P IND s G s  with 
various KI values in vertical motion. 
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For the integral gain KI, the magnitude and the phase change of the TF 
( )
( )

z

dz

s
F s

 by 

increasing integral gain KI are ignorable unless KI is significantly increased. However, 

the magnitude slope of the open-loop TF at low frequency decreases by increasing KI in 

Fig 5-14. It means the rise time and the settling time increases. Hence, there is no 

advantage by the integral term that makes the system response slower. Therefore, the 

integral term is unnecessary.  Finally, the velocity regulating compensator becomes a 

proportional controller that has the gain KP = 100. 

 

5.2.2 Design of an Outer-Loop Controller in the z-Axis Motion 

By adding the inner-loop controller to regulate the velocity, a new Bode plot of 

the loop transfer function is shown in Fig. 5-15. By comparing between Fig. 5-3 and Fig. 

5-15, the loop transfer shape change is easily recognizable. The magnitude slope at low 

frequency is not changed, but the crossover frequency decreases to compare to the loop 

shape without the inner loop controller in Fig. 5-3. The comparison of step responses 

between two control systems is shown in Fig. 5-16. The crossover frequency is reduced 

from 335 rad/s to 210 rad/s. In addition, the rise time and the settling time decreases, and 

unwanted oscillation is observed in the real system in as shown Fig. 5-16. If the 

increased rise and settling times are not significantly important, the oscillation should be 

reduced by decreasing the value a of the lead-lag compensator designed in (5.1.13).  

The value a of the lead-lag compensator is reduced as one-sixth of the original 

value, 52.32003 10a . The crossover frequency is decreased to 97.6 rad/s in Fig. 5-17. 
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The oscillation decreases enough not to affect overall performance in a step response in 

Fig. 5-18.  

In  the  summary  of  the  design  of  the  dual-loop  control  system,  the  inner-loop  

compensator is 

 ( ) ,V PD s K  (5.2.26) 

and the outer-loop compensator is 

 1 2

1

( )( )( )
( )P

s z s zD s a
s s p

 (5.2.27) 

where, the values of KP, a, p1, z1, and z2 are 100, 3.8667×104, 2103, 57.47 and 6.271. 

 

 

 
Fig. 5-15. Bode plot of the loop transfer function for the z-axis motion with vibration 

controller. 
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Fig. 5-16. Comparison of step responses (a) with the outer- and inner-loop compensators 
(highly-oscillating solid line) and (b) with only the outer-loop compensator (dashed line) 

in experiments. 
 
 

 
Fig. 5-17. Closed-loop Bode plot with one-sixth times decreased value a of the lead-lag 
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Fig. 5-18. Comparison of step responses (a) with the inner-loop controller and the outer 
lead-lag compensator with one-sixth times decreased value a (solid line) and (b) only 

with the modified outer lead-lag compensator (dashed line) in experiments. 
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(a)                                        (b) 

 
Fig. 5-19. Position regulation at 250 µm with (a) a dual-loop and (b) a lead-lag 

controllers when vibration disturbance of 10.24 Hz is applied.  

 
(a)                                        (b) 

 
Fig. 5-20. Position regulation at 250 µm with (a) a dual-loop and (b) a lead-lag 

controllers when vibration disturbance of 31.64 Hz is applied. 
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(a)                                                (b) 

 
Fig. 5-21. Position regulation at 250 µm with (a) a dual-loop and (b) a lead-lag 

controllers when vibration disturbance of 51.02 Hz is applied. 

 
(a)                                              (b) 

 
Fig. 5-22. Position regulation at 250 µm with (a) a dual-loop and (b) a lead-lag 

controllers when vibration disturbance of 71.43 Hz is applied. 
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(a)                                     (b) 

 
Fig. 5-23.  Position regulation at 250 µm with (a) a dual-loop and (b) a lead-lag 

controllers when vibration disturbance of 80.65 Hz is applied. 
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CHAPTER VI 

 

MODELING OF THE MAGLEV SYSTEM WITH THE OPTICAL TABLE IN 

HORIZONTAL MOTION 

 

 

6.1 Equations of Motion of the Maglev System in Horizontal Axes 

 

As  shown  in  Fig.  6-1,  we  treat  the  maglev  system  as  a  two-mass  system  that  

includes two springs and two dampers. The vibration disturbance acts on the optical 

table and the magnetic force between the magnets of the moving platen and the coils is 

applied by controlling the current flow in the coil.  Governing equations of motion of the 

maglev system in horizontal motion become 

 2 , ,xm x F x i  (6.1.1) 

 2 , ,ym y F y i  (6.1.2) 

 1 1 1 , ,x x x dxm c k F x i F  (6.1.3) 

 1 1 1 , ,y y y dym c k F y i F  (6.1.4) 

where magnetic forces are 
2

2 1 0( , , )xF x i x x i  in the x-axis and  

 
2

2 1 0( , , )yF y i y y i
 
in the y-axis. 
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1yk 1yc

1xk

1xc

( , , )yF y i

2m

1m

( , , )xF x i
dxF

x

y

dyF

x

y

 

Fig. 6-1. Simplified model of the maglev system in horizontal motion. 

 

 The  stiffness  ( 1xk , 1yk )  and  the  damping   coefficients  ( 1xc , 1yc ) of the 

optical table in the x- and y-axes are determined by the same method introduced in 

Chapter IV.  The impulse responses of the optical table in the x- and y-axis are shown in 

Figs. 6-2 6-3. From equations (4.1.1) (4.1.2), the stiffness and the damping coefficient 

in the x-axis are calculated as 6
1 4.65305 10xk  N/m and 3

1 4.84471 10xc  N-s/m, 

and the stiffness and the damping coefficient in the y-axis are 6
1 1.89438 10yk  N/m 

and 3
1 7.7105613 10yc  N-s/m.  
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(a) 

 

(b) 

Fig. 6-2. Impulse response of the optical table in the x-axis: (a) original (b) zoomed in 
dashed zone. 
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(a) 

 

(b)   

Fig. 6-3. Impulse response of the optical table in the y-axis: (a) original (b) zoomed in 
dashed zone. 
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6.2 Linearization of Nonlinear Equations of Motion and Magnetic Force in the 

x-Axis 

 

As in vertical motion, the only nonlinear term in the EOMs is position 

dependences in the magnetic force in Fig. 6-4. To linearize the EOMs in the x-axis, let 

set the perturbation equations 0x x x , 0 , and 0i i i . Constants 0x , 0 , and 

0i  means the values at an operation point. The variables with circumflexes are 

perturbation. Using Taylor series expansion, (6.1.1) becomes 

2 0m x 0 0 0( , , )xx F x i
0 0 0 0 0 0

0 0 0

, , , ,

, ,

( , , ) ( , , )

( , , )                     +

x x

x i x i

x

x i

F x i F x ix
x

F x i i
i

 (6.2.1) 

The linearized EOM of the platen in the x-axis is 

 
0 0 0 0 0 00 0 0

2
, , , ,, ,

x x x

x i x ix i

F F Fm x x i
x i

 (6.2.2) 

where 

 
0 0 0

2 0 0 1 0
, ,

( , , ) 2x

x i

F x i x i
x

 (6.2.3) 

 
0 0 0

2 0 0 1 0
, ,

( , , ) 2x

x i

F x i x i  (6.2.4) 

 
0 0 0

2
2 0 0 1 0 0 0

, ,

( , , ) .x

x i

F x i x x
i

 (6.2.5) 
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1xk

1xc

( , , )F x i

x

2m1mdxF

 

 

Fig. 6-4. Model of the maglev system in the x-axis. 

 

To determine the coefficients in (6.2.2), the value of 0i  should be found. At the 

equilibrium point, the magnetic force is 

2
0 0, 0 2 0 0 1 0 0 0 0( , ) 0

xMF x i x x i . 

Thus, the current, 0i , at the operation point 0 0 0x  is  

 0 0i  (6.2.6) 

where  4
2 1.3031 10 , 2

1 2.7161 10 , and 0 2.2050 [39].  

Finally, the linearized equation of motion of the platen in the x-axis is  

 2 hxm x k i  (6.2.7) 

where 2
2 0 0 1 0 0 0hxk x x . 

Similary, the linearized EOM of the optical table with vibration disturbance in 
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the x-axis becomes  

 1 1 1x x hx dxm c k k i F . (6.2.8) 

To verify the model of the maglev system with the magnetic stiffness in the x-

axis, (6.2.7)–(6.2.8), the comparison between the experimental and simulation results 

with vibration disturbance is presented in Fig. 6-5 before applying the vibration control 

schemes.  

The relative differences of the positions and velocities between the optical table 

and the platen are shown in Fig. 6-5 (a)–(d). The simulated position is very close to the 

experimented result. The magnitude of the relative velocity is little larger and noisy in 

the experimented data. The velocity data were acquired by the numerical differentiation 

from the position data in the laser-axis board. The high-frequency components of the 

position data are amplified by the differentiation. Except for the high-frequency 

components, the simulated velocity results are very similar to the experiments. Therefore, 

the linearized model of the platen with the optical table in the x-axis is well 

approximated. 
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(a) 

 

 

(b) 
 

Fig. 6-5. The relative position and velocity between the optical table and the platen with 
vibration disturbance in the x-axis. (a) Simulated position, and (b) experimented 

position. (c) Simulated velocity, and (d) experimented velocity. 
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(c) 

 
(d) 

 
Fig. 6-5. Continued. 
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6.3 Linearization of Nonlinear Equations of Motion and Magnetic Force in the 

y-Axis 

 

Linearization in the y-axis is almost the same in the x-axis except for y and  

replacing x and . To linearize the EOMs in the y-axis, let set the perturbation equations 

0y y y , 0 , and 0i i i in Fig. 6-6. Constants 0y , 0 , and 0i  mean the 

values  at  an  operation  point.  The  variables  with  circumflexes  are  perturbation.  Using  

Taylor series expansion, (6.1.2) becomes 

2 0m y 0 0 0( , , )yy F y i
0 0 0 0 0 0

0 0 0

, , , ,

, ,

( , , ) ( , , )

( , , )
                     +

y y

y i y i

y

y i

F y i F y i
y

y

F y i
i

i

 (6.3.1) 

 

 

1yk

1yc

( , , )F y i

y

2m1mdyF

 
 

Fig. 6-6. Model of the maglev system  in the y-axis. 
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The linearized EOM of the platen in the y-axis is 

 
0 0 0 0 0 0 0 0 0

2
, , , , , ,

y y y

y i y i y i

F F F
m y y i

y i
 (6.3.2) 

where 
0 0 0

2 0 0 1 0
, ,

( , , )
2y

y i

F y i
y i

y
 (6.3.3) 

 
0 0 0

2 0 0 1 0
, ,

( , , )
2y

y i

F y i
y i  (6.3.4) 

 
0 0 0

2
2 0 0 1 0 0 0

, ,

( , , )
.y

y i

F y i
y y

i
 (6.3.5) 

To  determine  the  constant  values  of  (6.3.2)  –  (6.3.5),  the  value  of  0i  should be 

found.  At the equilibrium point, the magnetic force is 

2
0 0 0 2 0 0 1 0 0 0 0( , , ) 0yF y i y y i . 

Thus, the current, 0i , at the operation point 0 0 0y  is  

 0 0i  (6.3.6) 

where  4
2 1.3031 10 , 2

1 2.7161 10 , and 0 2.2050 [39].  

Finally, the linearized equation of motion of the platen in the y-axis is  

 2 hym y k i  (6.3.7) 

where 2
2 0 0 1 0 0 0hyk y y . 

Similary, the linearized EOM of the optical table with vibration disturbance in  
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(a) 

 
(b) 

 
Fig. 6-7. The relative position and velocity between the optical table and the platen with 
vibration disturbance in y-axis. (a) Simulated position, and (b) experimented position. (c) 

Simulated velocity, and (d) experimented velocity. 
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(c) 

 
(d) 

 
Fig. 6-7. Continued. 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10-4

y v-
v (m

/s
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10-4

Time (s)

y v-
v (m

/s
)



 108

the y-axis becomes  

 1 1 1y y hy dym c k k i F . (6.3.8) 

Likely in the z- and x-axes, the model of the maglev system with the magnetic 

stiffness in the y-axis, (6.3.7) (6.3.8) are also verified. Fig. 6-7 shows the comparison 

between the experimental and simulation results with vibration disturbance. 

The simulated position is very close to the experimented result. The magnitude of 

the relative velocity in the y-axis is little larger and noisy in the experimented data by the 

same reason mentioned in the x-axis model that high-frequency components of the 

position data is amplified by the differentiation. Except for the high-frequency 

components, the simulated velocity results are very similar to the experiments. Therefore, 

the linearized model of the platen with the optical table in the y-axis is validated. 
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CHAPTER VII 

  

VIBRATION CONTROL IN HORIZONTAL MOTION 

 

 

7.1 Transfer Function of the Maglev System in the x-Axis Motion 

 

We take the Laplace transform of (6.2.7) with zero initial conditions. 

 2 ( ) ( )hxm x t k i tL L  (7.1.1) 

 2
2 ( ) ( )hxm s X s k I s  (7.1.2) 

 2
2

( ) ( )hxkX s I s
m s

 (7.1.3) 

From the Laplace transform of (6.2.8), we obtain 

 1 1 1( ) ( ) ( ) ( ) ( )x x hx dxm t c t k t k i t F tL L . (7.1.4) 

 2
1 1 1 ( ) ( ) ( )x x hx dxm s c s k H s k I s F s  (7.1.5) 

 
2 2

1 1 1 1 1 1

1( ) ( ) ( )hx
dx

x x x x

kH s I s F s
m s c s k m s c s k

 (7.1.6) 

By combining (7.1.3) and (7.1.6), the system transfer functions in matrix form in the x-

axis is  
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2
2

2 2
1 1 1 1 1 1

11 12

21 22

0
( )( )

1 ( )( )

( ) ( ) ( )
           .

( ) ( ) ( )

hx

hx dx

x x x x

dx

k
m s I sX s

k F sH s
m s c s k m s c s k

G s G s I s
G s G s F s

 (7.1.7) 

 The equivalent block diagram of the transfer function is illustrated in Fig. 7-1. 

 

11 ( )G s

22 ( )G s

21 ( )G s

( )dxF s

( )I s
( ) ( ) ( )x s X s H s

( )X s

( )H s

 

Fig. 7-1. Equivalent block diagram of the motion of maglev system in the x-axis. 

 

From (7.1.11), the output ( ) ( ) ( )x s X s H s  is 

 11 21 22( ) ( ) ( ) ( ) ( ) ( )x dxs X s H s G G I s G F s . (7.1.8) 

The block diagram from (7.1.12) with feedback control for positioning is presented in 

Fig. 7-2, where 11 21( ) ( ) ( )PG s G s G s  is a plant transfer function, and the vibration 

disturbance acts as an output disturbance. 

The transfer function from the reference ( )xr s  and the vibration disturbance ( )dxF s  is  

 22( ) ( ) ( )( ) ( ) ( ).
1 ( ) ( ) 1 ( ) ( )

P P
x x dx

P P P P

D s G s G ss r s F s
D s G s D s G s

 (7.1.9) 
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xr
( )PD s

( )dxF s

( )I s( )xe s ( ) ( ) ( )x s X s H s

22 ( )G s

( )PG s

 

Fig. 7-2. Block diagram of a positioning feedback control of maglev system. 

 

The loop transfer function of the maglev system becomes 

1 2
11 21

1

4 3
1 2 1 1 2 1 1 2 2

2
1 1 2 1 1 2 1 2

1 1 2 1 1 2

( )( )( ) ( )
( )

                         

                       

                       

P P

hx hx x

hx x x

hx x

s z s zD s G s a G G
s s p

ak m m s ak c m m z m m z s

ak k z z c m m z z s

ak k z z c z z s ak1 1 2
5 4 3

2 1 1 1 2
6

1 2

6 4 8 3 10 2 11 12

6 5 4

1 2 1

6

1

3

1 1

6.0923 10 7.9484 10 1.3276 10 4.3486 10 4.1099 10
4016.9 12399.0 2.13 10

x hx

x x x x

k z z
m c m p s m k c p s km m s

s s s s
s s s

m p s

s

(7.1.10) 

where all parameter values in (7.1.15) are presented in Table 7-1. 

 
Table 7-1. Parameter values in horizontal motion 

 
Parameter Value Parameter Value 

1m  436 kg h hx hyk k k  2.205 N/A 

2m  0.267 kg 1xk  4.65305×106 N/m 

1z  10.91 1yk  1.89438×106 N/m 

2z  116.6 1xc  4.84471×103 N-s/m 

1p  4014 1yc  7.71056×103 N-s/m 
a  7.3726×105   
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The position controller is a lead-lag compensator that was designed by Verma [38],  

 1 2

1

( )( )( ) .
( )P

s z s zD s a
s s p

 (7.1.11) 

The Bode plots of the loop transfer function and the closed-loop system are 

shown in Figs. 7-3 7-4. The controller was designed with phase margin of 69.7º at the 

109.5 Hz. This lead-lag compensator’s rise time and settling time are around 3 ms and 

35 ms in a step response. The percentage overshoot is less than 35% with no steady-state 

error. However, in the nanotechnology, the influence by the vibration disturbance is not 

negligible.  

 

Fig. 7-3. Bode plot of the loop transfer function for the x-axis motion with maglev 
system. 

 

-100

-50

0

50

100

150

200

M
ag

ni
tu

de
 (d

B)

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

-270

-225

-180

-135

-90

Ph
as

e 
(d

eg
)

Bode Diagram
Gm = -36.5 dB (at 36.2 rad/s) ,  Pm = 69.7 deg (at 688 rad/s)

Frequency  (rad/s)



 113

 

Fig. 7-4. Bode plot of the closed-loop system for the x-axis motion with maglev system.  

  

To analyze how the vibration induce in the position, the transfer function from 

the vibration disturbance dxF  to the position x  is presented as 

 

5 4
1 2 1 2 1 1 2 2 1 1 1

3
1 1 2 1 1 2 1 2

2
1 1 1 2

4 3
2 2 1

6
1

1 2 1 2

1 1 2 1 1

2

1 2 1

( )
( )

      

            

                   

x

dx x h x x

hx x x hx

hx x x

hx x x x hx

s
F s c m m m p s ak m m m k c p s

ak c k m p ak m m z z s

ak ak c z z m m z z s

ak k

m s m p

z

s
m m

z c z z s ak k z z

s

4 3

6 5 6 4 8 3 10

2

2 11 12

0.002294 9.206
4017 6.105 10 7.97 10 1.328 10 4.349 10 4.11 10

s s
s s s s s s

 

  (7.1.12) 

where all parameter values in (7.1.17) are presented in Table 7-1. 
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 The frequency response of the transfer function, 
( )
( )

x

dx

s
F s

 is shown in Fig. 7-5. The 

magnitude of the frequency response of the vibration in the range is required to be 

attenuate. The vibration frequency caused by fans and motors is the most interesting 

frequency range of 10 to 100 Hz.  

 

Fig. 7-5. Frequency response of the transfer function 
( )
( )

x

dx

s
F s

. The dashed zone indicates 

the target frequency to be attenuated. 
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7.2 Design of a Dual-Loop Control System in the x-Axis Motion 

 

7.2.1 Design of a Vibration Controller with Velocity Feedback in the x-Axis 

Motion 

Since the key objective of this research is to reject or to reduce the effects of the 

vibration  disturbance  on  the  moving  platen,  a  dual-loop  control  system  with  an  

additional cascade velocity-regulating loop for direct current control is designed in Fig. 

7-6. An outer controller ( )PD s  acts as an outer-loop controller that controls the position 

of the platen. The other controller ( )VD s  acts as an inner-loop controller that controls 

more  rapidly  changing  parameter,  velocity.  In  addition,  it  requires  a  velocity  

measurement. The inner-loop controller becomes a vibration controller in Fig. 7-6.  

The inner closed-loop transfer function is considered as a new modified plant 

transfer function in Fig. 7-6, and ING  becomes 

 
( )( )

1 ( ) ( )
P

IN
V P

G sG s
sD s G s

. (7.2.1) 

To design the inner loop controller, one of the commonly used controllers in classical 

control systems is applied. Let us the vibration controller be 

 
2

( ) D P I
V

K s K s KD s
s

. (7.2.2) 
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xr
( )PD s

( )PI s

: inner loop TFING

( )Vxe s

( )xe s

( ) ( ) ( )x s X s H s

( ) ( ) ( )x s X s H s

s

( )vI s
( )xs s

( )VD s

( )dxF s

( )I s

22 ( )G s

( )PG s

0Vxr

 
 

Fig. 7-6. Block diagram of the model of maglev system with positioning with a cascade 
velocity-regulation loop. 

 
 

From (7.1.7), (7.2.1) and (7.2.2), the modified plant TF is 

 
2

1 2 1 1
3

1 2 1 2 1 1 2 1 2

2
1 2 1 1 1 2

1 1

4

1

( )( )
1 ( ) ( )

( )

                

                       

P
IN

V P

hx x hx x hx

D hx D x hx x P hx

x D x hx P x hx I hx

hx I x P x I x hx

G sG s
sD s G s

k m m s c k s k k
m m K k m m K c k c m K k m m s

k m K k k K c k K k m m s

k K c K k s K k k

s . (7.2.3) 

where all parameter values in (7.2.3) are presented in Table 7-1. The modifited plant TF 

including a vibration controller should be stablized. The design parameters of the 

controller should be well tune. Before we determine the control parameters, the 

stablizing region of the controller gains need to be found.  

The characteristic equation of the modified TF becomes 



 117

 

4 3 2
4 3 2 1 0

3
1 2 1 2 1 1 2 1 2

2
1 2 1 1 1 2

1 1 1

4

0

  =

                

                       

D hx D x hx x P hx

x D x hx P x hx I hx

hx I x P x I x hx

d s d s d s d s d

m m K k m m K c k c m K k m m s

k m K k k K c k K k m m s

s

k K c K k s K k k

. (7.2.4) 

where, 4 1 2 1 2D hxd m m K k m m  (7.2.5) 

 3 1 1 2 1 2D x hx x P hxd K c k c m K k m m  (7.2.6) 

 2 1 2 1 1 1 2x D x hx P x hx I hxd k m K k k K c k K k m m  (7.2.7) 

 1 1 1hx I x P xd k K c K k  (7.2.8) 

 0 1I x hxd K k k  (7.2.9) 

For determining its stability, the Routh-Hurwitz criterion is used.  

 

4 :s  4d  2d  0d  

3 :s  3d  1d  0 

2 :s  3 2 4 1

3

d d d d A
d

 3 0 4
0

3

0d d d d
d

 0
 

1 :s  1 3 0Ad d d B
A

 
0

 
0 

0 :s  0
0

0Bd A d
B

 0
 

0 

 

From the stability analysis, as long as KP, KD, and KI have positive values, the inner loop 

is stable because the other constants in (7.2.4) are all positive values. However, the entire 
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system  combinded  with  inner  and  outer  loops  has  different  stabilizing  region  of  the  

control gains.  

The transfer function from the reference to postion output is  

 
4 3 2

4 3 2 1 0
6 5 4 3 2

6 5 4 3 2 1 0

( ) ( ) ( )
( ) 1 ( ) ( )

          

x P IN

x P IN

s D s G s
r s D s G s

a s a s a s a s a
d s d s d s d s d s d s d

 (7.2.10) 

where,  

 4 1 2hxa ak m m  (7.2.11) 

 3 1 1 2 1 2hx xa ak c m m z z  (7.2.12) 

 2 1 1 1 2 1 2 1 2hx x xa ak k c z z m m z z  (7.2.13) 

 1 1 2 1 1 21 hx x xa ak k z z c z z  (7.2.14) 

 0 1 1 2hx xa ak k z z  (7.2.15) 

, and 

 6 1 2 1 2hx Dd k m m K m m  (7.2.16) 

 5 1 2 1 1 1 2 1 2 1 2 1( )hx P hx x D xd k m m K k c p m m K c m m m p  (7.2.17) 

 4 1 1 1 2 1 2

1 1 1 1 2 1 2 1 2 1

( )

      
hx x P hx I

hx x x D hx x x

d k c p m m K k m m K

k k c p K ak m m k m c m p
 (7.2.18) 

 
3 1 1 1 1 1 2 1 1 1

1 1 1 2 2 1 2 1 2 1

( )

       ( ) ( )
hx x x P hx x I hx D

hx x x

d k k c p K k c m m p K k k p K

ak c m z z m z z k m p
 (7.2.19) 

 
2 1 1 1 1 1 1 1 1 2

1 2 1 2

( )

      ( )
x hx P hx x x I hx x xd k k p K k k c p K ak k c z z

z z m m
 (7.2.20) 



 119

 1 1 1 1 1 2 1 1 2( )x hx I hx x xd k k p K ak k z z c z z  (7.2.21) 

 0 1 1 2x hxd ak k z z  (7.2.22) 

where all parameter values in (7.2.11) (7.2.22) are presented in Table 7-1. 

For stability analysis of the transfer function, let the denominator of 
( )
( )

x

x

s
r s

 be  

 6 5 4 3 2
6 5 4 3 2 1 0( )s d s d s d s d s d s d s d . (7.2.23) 

If all roots of ( )s are in the left-half s-plane, the closed-loop transfer function 
( )
( )

x

x

s
r s

 is 

stable. To determinr its stability, the Routh-Hurwitz criterion is applied. The same lead-

lag compensator ( )PD s  in (7.1.15) is used to (7.2.10).  
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According to the Routh-Hurwitz criterion, all roots of the polynomial in the left-

half s-plane  if  all  the  elements  in  the  first  column  of  the  Routh  array  are  of  the  same  

sign. Since hk  and DK  are all positive from (7.2.16), 6d  is positive with the positive 

value of KD. Therefore, 5d , A, C , E , F , and 6d  should be all positive for closed-loop 

stability. 

Fig. 7-7 illustrates the stable region that is drawn by calculation iteration through

0 100DK , 0 1000PK , and 0 100IK . As shown in Fig. 7-7, the stable region 

decreases with increasing DK  and the derivative gain is not helpful to stabilize the 

system since the derivative control will reinforce the rapid change of the velocity. Thus, 

PI controller instead to the PID controller is appropriate as a velocity feedback 

controller. If the value of DK  is zero, the system is stable if 0PK  and 0IK . 

 
Fig. 7-7. The stabilizing region of , ,P I DK K K  values for a PID controller in the x-axis.  
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The inner-loop controller should attenuate the effect of vibration disturbance. To 

observe how the vibration disturbance influences the output, the transfer function ( )dxF s  

from the disturbance to the output ( )x s  need to be analyzed.  It is presented as 

22

6 5
1 2

4

1 2 1 2 1 2 1

4
1 2

3
2 1

1 1 2 1 1 1 2

1 1 2 1 1 1 1

1 2 1 1 2 1

( ) ( )
( ) 1 ( ) ( ) ( )

         

   

      

x

dx P p v

x P hx

x P hx x hx I P

I x hx x P hx

I hx hx

s G s
F s G s D s sD s

m m s c m K k m m m m p s

k m K c k c m p k K a p K m m s

K a c k k m p K k k c p

K k m m p ak m m z z

m s p s

3

2

2
1 1 1 1 1 1 2 1 2 1 2

1 1 1

4 3

1 2 1 1 2 1 1 2

6 5 4 3 2
6 5 4

1

3 2 0

2

1

         

            

         

hx I x I x P x x

hx I x x x x hx

s

k K a k K c K k p ac z z a m m z z s

k K k p ak z z ac z z s ak k z z

d s d s d s d s d s d s d
m s p s

 

  (7.2.24) 

where, 6d , 5d , 4d , 3d , 2d , 1d , and 0d  are  same  as  (7.2.16)  –  (7.2.22)  if  0DK , and 

all parameter values in (7.2.24) are presented in Table 7-1. 

 

 If the KP = 300 and KI  = 0 with the lead-lag compenstor in (7.1.15),   

 
4 3

6 5 6 4 8 3 9 2 11 12

0.0022936 9.2063

5141.3 7.292 10 3.77 10 8.415 10 1.972 10 1.864 10
( )
( )

x

dx

s s

s s s s s s
s

F s

  (7.2.25) 
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The frequency response of the 
( )
( )

x

dx

s
F s

 is shown in Fig. 7-8. The dashed line is without 

the velocity-regulation loop, and the solid line is with the velocity-regulation loop. The 

magnitude of the transfer function 
( )
( )

x

dx

s
F s

 with vibration contoller is reduced in the 

region from 30 rad/s to 3000 rad/s.  It means that the velocity feedback control is 

effective to 4.77 Hz to 477 Hz of vibration disturbance.  

 

 

 

Fig. 7-8. Frequency responses of the transfer function from vibration disturbance to 
position in the x-axis. The solid line indicates the response with PI vibration control 

( 300PK , 0IK ), and the dotted line indicates without the vibration control scheme. 
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Fig. 7-9 shows the zoomed frequency resposes from 10 Hz to 100 Hz of the the 

transfer function 
( )
( )

x

dx

s
F s

 in Fig. 7-8. The magnitude with vibration controller is reduced 

about 3.3 dB to 8.7 dB between 10 Hz and 100 Hz in Fig. 7-10. The negative difference 

means the reduction of the influence by the vibration disturbance. The real differeces 

with the experiments and simulations in this frequency range is presented in Fig. 7-10. 

The parabolic trend of the reduction through the given frequency range in the experiment 

is very similar with the simulation.  

 

 

Fig. 7-9. Zoomed frequency responses of the transfer function from vibration 
disturbance to position in the x-axis from 10 Hz to 100 Hz. The solid line indicates the 
response with a proportional vibration control ( 300PK , 0IK ), and the dotted line 

indicates that without the vibration control scheme. 
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(a) 

 

(b) 

Fig. 7-10. (a) Magnitude reduction, and (b) reduction percentage of the magnitude in the 

frequency responses of the transfer function 
( )
( )

x

dx

s
F s

 from 10 Hz to 100 Hz with a PID 

vibration control ( 300PK , 0IK , 0DK ). The dashed line indicates the response in 
the simulation and the circled line indicates the experiment. 

10
1

10
2

-12

-10

-8

-6

-4

-2

0

R
ed

uc
tio

n 
(d

B
)

Frequency (Hz)

10
1

10
2

0

10

20

30

40

50

60

70

80

90

100

R
ed

uc
tio

n 
R

at
io

 (%
)

Frequency (Hz)



 125

The reduction ratio is various through the applied frequency range. As the 

proportional gain KP is increasing, the reduction ratio is also increasing. Theoretically, 

the reduction ratio will be increased by as much as increasing KP.  However,  if   PK  is 

greater than 600, the system loses the stability in experiment. For both the stability and 

the reduction performance, the proper value of KP is 300. 

For the integral gain KI, the magnitude change by increasing integral gain KI is 

very small on the aspect of the TF 
( )
( )

x

dx

s
F s

. Also, the phase shape does not change unless 

KI significantly increases.  However, the magnitude slope of the open-loop TF at low 

frequency decreases by increasing KI in Fig 7-11. It means the rise time and the settling 

time increases.  The KI in the inner-loop compensator does not affect in the steady-state 

error and the final value by the disturbance in the closed-loop system in Fig 7-12. The 

steady-state errors for a unit-step input in closed-loop (7.2.10) by the final value theorem 

is  

 0

0
0

( ) 1( ) lim ( ) lim ( ) ( ) 1 lim 1 0
( )

x

t t s
P

s ae e t r t y t s
r s s d

 (7.2.26) 

where 0 0 1 1 2hx xa d ak k z z .  For  the  disturbance  TF  
( )
( )

x

dx

s
F s

, the final value for a unit-

step input is 
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4 3

2 1

0

6 5 4 3 20
6 5 4 3 2 1 0

0

( ) 1( ) lim ( ) lim
( )

          lim

0          0

x
x xt s

dx

s

st s
F s s

d s d s d s d s d s d s
m

d
s p s

d

. (7.2.27) 

 

Fig. 7-11. Frequency responses of the open-loop transfer function ( ) ( )P IND s G s  with 
various KI values. 

 

 

Hence, there is no advantage by the integral term that makes the system response 

slower. Therefore, the integral term is unnecessary. Finally, the velocity-regulating 

compensator becomes a proportional controller that has the gain KP = 300. 
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Fig. 7-12. Frequency responses of the inner-loop transfer function ( ) ( )V PsD s G s  with 
various KI values. 

 
 

7.2.2 Design of the Outer-Loop Controller in the x-Axis Motion 

 By adding the inner loop controller to regulate the velocity, the open-loop TF  is 

changed in Fig. 7-13.  The overall magnitude is shifted downward to compare to the loop 

shape without the inner-loop controller in Fig. 7-3. The roll-off of the magnitude is 

changed from 60 dB/decade to 40 dB/decade at lower frequency. The crossover 

frequency is reduced from 688 rad/s to 90.8 rad/s. Hence, the rise time and the settling 

time decreases. The comparison of step responses between two systems is shown in Fig. 

7-14. The rise time and the settling time can decrease by increasing the gain in the outer 
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observed  in  the  real  system  in  Fig.  7-15.  If  the  rise  time  and  settling  time  are  not  

significant, the lead-lag compensator designed in the previous work does not need to be 

modified. 

In  summary  of  the  design  of  the  dual-loop  control  system,  the  inner-loop  

compensator is 

 ( ) ,V PD s K  (7.2.28) 

and the outer-loop compensator is 

 1 2

1

( )( )( ) .
( )P

s p s pD s a
s s z

 (7.2.29) 

 

 

Fig. 7-13. Closed-loop Bode plot for the x-axis motion of maglev system with vibration 
controller. 
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Fig. 7-14. Comparison of step responses (a) with a dual-loop compensator (solid line) 

and (b) with only an outer-loop compensator (dashed line) in experiments. 
 

 
Fig. 7-15. Comparison of step responses (a) with the inner-loop controller and the outer 
lead-lag compensator with five times increased value a (solid line) and (b) only with the 

original modified outer lead-lag compensator (dashed line) in experiments. 
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7.3 Design of a Dual-Loop Control System in the y-Axis Motion 

 

7.3.1 Design of a Vibration Controller with Velocity Feedback in y-Axis Motion 

The dynamics of the maglev stage in the y-axis is identical to the motion in the x-

axis except the values of the stiffness and the damping coefficient of the optical table. 

The same control system for vibration control is used in the y-axis motion. Hence, the 

stability analysis and design procedure of the controllers for the y-axis motion are 

skipped in this section. Some important transfer functions and figures are briefly 

presented in the following. 

The transfer functions of the EOMs in the y-axis are presented in (7.3.1) and 

(7.3.2), 

 2
2

( ) ( )hyk
Y s I s

m s
 (7.3.1) 

 
2 2

1 1 1 1 1 1

1( ) ( ) ( ).hy
dy

y y y y

k
P s I s F s

m s c s k m s c s k
 (7.3.2) 

By combining (7.3.1) and (7.3.2), the system transfer functions in matrix form in the y-

axis is  

 

2
2

2 2
1 1 1 1 1 1

11 12

21 22

0
( )( )

1 ( )( )

( ) ( ) ( )
           .

( ) ( ) ( )

hy

hy dy

y y y y

dy

k
m s I sY s

k F sP s
m s c s k m s c s k

G s G s I s
G s G s F s

 (7.3.3) 
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yr
( )PD s

( )PI s

: inner loop TFING

( )Vye s

( )ye s

( ) ( ) ( )y s Y s P s

s

( )vI s
( )ys s

( )VD s

( )dyF s

( )I s

22 ( )G s

( )PG s

0Vyr

( ) ( ) ( )y s Y s P s

 

Fig. 7-16. Block diagram of the model of maglev system with positioning with a cascade 
velocity-regulation loop in the y-axis. 

 

The inner closed-loop transfer function is considered as a new modified plant 

transfer function in Fig. 7-16, and ( )ING s  becomes 

 
( )( )

1 ( ) ( )
P

IN
V P

G sG s
sD s G s

. (7.3.4) 

For the vibration controller, we discussed how to design the vibration controller as a 

proportional controller in the previous two sections. The same type of controller is used 

in the y-axis motion. It is presented as    

 ( )V PD s K . (7.3.5) 

The modified plant TF the in y-axis is 
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1 2 1 1
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1 2 1 2 1 2 1 2 1 1

2 4

4 2 6

4
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( )( )
1 ( ) ( )

( )

3.747 14.78 1.439 10
1128 8276 4.317 10

P
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V P
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sD s G s

k m m s c k s k k
m m c m K k m m s k m K c k s k K k s

s s
s s s

s

s

 

  (7.3.6) 

where all parameter values in (7.3.6) are presented in Table 7-1 and 300PK . 

The transfer function from the reference input to the postion output is  

 
4 3 2

4 3 2 1 0
6 5 4 3 2

6 5 4 3 2 1 0

( ) ( ) ( )
( ) 1 ( ) ( )

          

y P IN

y P IN

s D s G s
r s D s G s

a s a s a s a s a
d s d s d s d s d s d s d

 (7.3.7) 

where  

 4 1 2hya ak m m  (7.3.8) 

 3 1 1 2 1 2hy ya ak c m m z z  (7.3.9) 

 2 1 1 1 2 1 2 1 2hy y ya ak k c z z m m z z  (7.3.10) 

 1 1 2 1 1 21 hy y ya ak k z z c z z  (7.3.11) 

 0 1 1 2hy ya ak k z z  (7.3.12) 

and 

 6 1 2d m m  (7.3.13) 

 5 1 2 1 2 1 2 1hy P yd k m m K c m m m p  (7.3.14) 
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 4 1 1 1 2 1 2 1 2 1 2 1( )hy y P hy y yd k c p m m K ak m m k m c m p  (7.3.15) 

 3 1 1 1 1 1 1 2 2 1 2 1 2 1( ) ( )hy y y P hy y yd k k c p K ak c m z z m z z k m p  (7.3.16) 

 2 1 1 1 1 1 2 1 2 1 2( ) ( )y hy P hy y yd k k p K ak k c z z z z m m  (7.3.17) 

 1 1 1 2 1 1 2( )hy y yd ak k z z c z z  (7.3.18) 

 0 1 1 2y hyd ak k z z  (7.3.19) 

where all parameter values in (7.3.8) (7.3.19) are presented in Table 7-1. 

To observe how the vibration disturbance influences the output in the y-axis, the 

transfer function ( )dyF s  from the disturbance to the output ( )y s  is presented as 

 

22
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1 2 1 2 1 2 1 2 1
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1 2 1 1 2 1 1 1 2
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1 1 2 1 1 1
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k k

p s
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1 1 1 1 1 2 1 2 1 2
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6 5 4 3 2
6

4 3
2 1

5 4 3 2 1 0

            

         

y P y y

hy y y y hy

K k p ac z z a m m z z s

k a k z z c z z s ak k z z

d s d s d s d s d s d s
m s s

d
p

  (7.3.20) 

If KP = 300 and KI  = 0 with the lead-lag compenstor in (7.1.15), 
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4 3

6 5 6 4 8 3 10 2 12 13

0.002294 9.206

5142 7.302 10 4.051 10 3.659 10 1.545 10 1.526 10

( )
( )

y

dy

s s

s s s s s s

s
F s

  (7.3.21) 

where all parameter values in (7.3.21) are presented in Table 7-1. To observe how to the 

vibration disturbance influence to the output, the frequency response of the 
( )
( )

y

dy

s
F s

 is 

shown in Fig. 7-17. The dashed line is without the velocity-regulation loop and the solid 

line is with the velocity regulation loop. Fig.7-18 shows the zoomed frequency responses 

from 10 Hz to 100 Hz of the transfer function 
( )
( )

y

dy

s
F s

 in Fig. 7-17. The magnitude 

response is shifted downward effectively from 10 Hz to 100 Hz like in the x-axis. 

The magnitude difference by the vibration controller is presented in Fig. 7-19. 

The parabolic reduction ratio through the frequency in the experiment is a little better at 

lower frequency but is worse at higher frequency.  Theoretically, EOMs in the x- and  y-

axes motions are identical except the stiffness and the damping coefficient of the optical 

table. In Fig. 7-19, experimental results in the y-axis are much different with the 

simulation unlike in the x-axis. The unmodeled dynamics in the y-axis makes this 

difference. The maglev stage is not located in the center on the top surface of the optical 

table. The unbalanced vibrating motor is also placed at a corner of the optical table. 

When the vibration generator is turned on, it shakes the optical table in not only the 

translational axis but the rotational axis. Although the vibrating motor generates in 

rolling, pitching, and yawing motions, the rotational motion of the optical table is not 

considered in the model of the maglev stage with the optical table.  
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Fig. 7-17. Frequency responses of the transfer function from vibration disturbance to the 
position in the y-axis. The solid line indicates the response with a PID vibration control 

( 300PK , 0IK , 0DK ), and the dotted line indicates that without the vibration 
control scheme. 

 

 
Fig. 7-18. Zoomed frequency responses of the transfer function from vibration 

disturbance to the position in the y-axis from 10 Hz to 100 Hz. The solid line indicates 
the response with a PID vibration control ( 300PK , 0IK , 0DK ), and the dotted 

line indicates that without the vibration control scheme. 
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(a) 

 

(b) 

Fig. 7-19. (a) Magnitude reduction, and (b) reduction percentage of the magnitude in the 

frequency responses of the transfer function 
( )
( )

y

dy

s
F s

 from 10 Hz to 100 Hz with a PID 

vibration control ( 300PK , 0IK , 0DK ). The dashed line indicates the response in 
the simulation and the circled line indicates the experiment. 
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For the disturbance reduction, as much as the proportional gain KP increases in 

the y-axis motion, the reduction ratio also increases. However, if PK  is greater than 600, 

the system loses the stability in experiment. For both the stability and the reduction 

performance, the proper value of KP  is 300.  

 

7.3.2 Design of an Outer-Loop Controller in the y-Axis Motion 

The open-loop TF with the velocity-regulating compensator in the y-axis is 

shown in Fig. 7-20.  The roll-offs at low frequency, crossover frequency, and the loop 

shape in the y-axis motion is  almost same as those in the x-axis motion. The crossover 

frequency is reduced from 688 rad/s to 90.8 rad/s by adding the inner loop compensator. 

It makes that the rise time and the settling time decrease. The comparison of the step 

responses between the two systems is shown in Fig. 7-21. Although the rise and the 

settling time can be reduced by increasing the value a of the lead-lag compensator in the 

outer-loop, if the a value is too high, it generates unwanted oscillation as shown in Fig. 

7-22. 

Therefore, if the increased the rise and settling times are insignificant, the lead-

lag compensator does not need to be modified. If we summarize the design of the dual-

loop control system, the inner-loop compensator and the outer-loop compensator are 

exactly the same as those presented in the x-axis motion (7.2.28) and (7.2.29). 
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Fig. 7-20. Closed-loop Bode plot for the y-axis motion of maglev system with vibration 
controller. 

 
 

 

Fig. 7-21. Comparison of step responses (a) with outer- and inner-loop compensators 
(solid line) and (b) with only outer-loop compensator (dashed line) in experiments. 
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Fig. 7-22. Comparison of step responses (a) with the inner-loop controller and the outer 
lead-lag compensator with the five times higher a value (solid line) and (b) only with the 

not modified outer lead-lag compensator (dashed line) in experiments. 
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(a)                                          (b) 

 
(c)                                          (d) 

 
Fig. 7-23.  Position regulation at the origin with (a) a dual-loop controller and (b) a lead-

lag controller in the x-axis, and with (c) a dual-loop controller and (d) a lead-lag 
controller in the y-axis when vibration disturbance of 11.96 Hz is applied. 
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(a)                                          (b) 

 
(c)                                          (d) 

 
Fig. 7-24. Position regulation at the origin with (a) a dual-loop controller and (b) a lead-

lag controller in the x-axis, and with (c) a dual-loop controller and (d) a lead-lag 
controller in the y-axis when vibration disturbance of 30.86 Hz is applied. 
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(a)                                          (b) 

 
(c)                                          (d) 

 
Fig. 7-25. Position regulation at the origin with (a) a dual-loop controller and (b) a lead-

lag controller in the x-axis, and with (c) a dual-loop controller and (d) a lead-lag 
controller in the y-axis when vibration disturbance of 50 Hz is applied.  
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(a)                                          (b) 

 
(c)                                          (d) 

 
Fig. 7-26. Position regulation at the origin with (a) a dual-loop controller and (b) a lead-

lag controller in the x-axis, and with (c) a dual-loop controller and (d) a lead-lag 
controller in the y-axis when vibration disturbance of 68 Hz is applied. 

 

0 0.1 0.2 0.3 0.4
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 10

-6

Time (s)

x-
 (m

)

0 0.1 0.2 0.3 0.4
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 10

-6

Time (s)
x-

 (m
)

0 0.1 0.2 0.3 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10-6

Time (s)

y-
 (m

)

0 0.1 0.2 0.3 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10-6

Time (s)

y-
 (m

)



 144

 
(a)                                          (b) 

 
(c)                                          (d) 

 
Fig. 7-27. Position regulation at the origin with (a) a dual-loop controller and (b) a lead-

lag controller in the x-axis, and with (c) a dual-loop controller and (d) a lead-lag 
controller in the y-axis when vibration disturbance of 80.65 Hz is applied.  
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(a)                                          (b) 

 
(c)                                          (d) 

 
Fig. 7-28. Position regulation at the origin with (a) a dual-loop controller and (b) a lead-

lag controller in the x-axis, and with (c) a dual-loop controller and (d) a lead-lag 
controller in the y-axis when vibration disturbance of 92.59 Hz is applied. 
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CHAPTER VIII 

  

SIX-AXIS MOTION OF THE MAGLEV SYSTEM WITH VIBRATION 

CONTROL 

 

 

8.1  Vibration Disturbances in Six-Axis Motions 

 

The disturbance of the unbalanced vibrating motor acts not in a single axis 

independently but in all six axes. The motor shaft is aligned to the y-axis, and the 

unbalanced mass rotates about the y-axis. The vibrating motor is designed to generate 

vibrations in the x- and z-axes. However, the unbalanced mass is tilted and not 

perpendicular to the y-axis. Therefore, the unbalanced motor also generates vibrations in 

the y-axis. In addition, the vibrating motor is placed at a corner of the optical table. If the 

vibrating motor shakes the optical table at a corner, the optical table oscillates in not 

only translational but rotational motions. The disturbance forces , ,dx dy dzF F F  and 

torques , ,d d d  are generated by the vibrating motor as shown in Fig. 8-1. These 

disturbance torques generate rotational vibration disturbances on the optical table. In 

future work, additional modeling of the optical table with pneumatic isolators is required 

in rotational motion for the rotational vibration control. In addition, the rotational 

stiffness 1 1 1, ,k k k  and damping coefficients 1 1 1, ,c c c  should be determined. 
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However, the additional rotational modeling of the optical table is not considered and 

these rotational coefficients are not determined in this dissertation. Vibration controllers 

are designed for only translational vibrations in this work. Nevertheless, the vibration 

reduction effectiveness in six-axis motion with the translational vibration controllers is 

discussed in this chapter.  
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Fig. 8-1. The vibration disturbances generated by the disturbance forces and torques with 
the vibrating motor. 
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The angular position controllers for -, -, and -axes regulate rotational angles. 

These controllers designed by Verma [38] are 

 ( 57.47)( 6.271)( ) ( ) 295.658
( 2103)

s sD s D s
s s

 (8.1.1) 

 ( 116.6)( 10.91)( ) 1804.1
( 4014)

s sD s
s s

. (8.1.2) 

In addition, positioning and tracking performance with the vibration control is also 

evaluated with step responses.  

 

8.2  Step-Response Analysis with Vibration Disturbances in Six-Axis Motions 

 

Fig. 8-2 shows the differences of step responses between with vibration control 

and without vibration control in the x-, y-, and z-axes when the vibration disturbance of 

21.19 Hz is applied.  As explained in designing the vibration control systems in the 

previous chapters, the step responses with vibration control have longer rise and settling 

times, but the overshoot is less than that without vibration control. The vibration 

reduction ratios in the x-, y-, and z-axes are 55.2%, 58.7%, and 29.9% in Fig. 8-2. These 

ratios are very similar with the values in Figs. 7-11, 7-19, and 5-11.  

The trajectories of the platen in the x-y plane show that the platen with the 

vibration control exhibits more accurate position regulation at the origin before departing 

to the other place in Fig. 8-3(a). During the travel from the origin to the other place with 

vibration control, some oscillations are observed but it does not leave the dotted area in 

Fig. 8-3. However, the trajectories of the platen without the vibration control are more 
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perturbed before leaving the origin and go cross the dotted zone during the travel in Fig. 

8-3(b). Therefore, the performances in positioning and tracking with vibration control 

are better than that without vibration control except the rise and settling times. 

The step inputs in the translational motion induce the rotational motion because 

of the coupling between axes. The angular responses are observed in Fig. 8-4. The 

magnitudes of the oscillations in angular positions with vibration control are tiny smaller 

those that without vibration control. The reduction ratios in rotational angles , , are 

14.1%, 24.3%, and 9.4% in steady state, respectively. These reduction ratios are 

insignificant compared to translational motion. Nonetheless, the vibration controllers are 

effective in not only translational but rotational motions. However, the peak value with 

vibration control in the pitching motion is larger than that without vibration control. 

It is not a matter of the performance of the vibration control system but a matter of the 

time that a step input starts. 

When  the  vibration  disturbance  of  45.45  Hz  is  applied,  the  differences  of  step  

responses between with vibration control and without vibration control in x-, y-, and z-

axes are shown Fig. 8-5. As in Fig. 8-2, the step responses with vibration control have 

longer rise and settling times, but the overshoot is less than that without vibration control. 

The vibration reduction ratios in the x-, y-, and z-axes are 68.4%, 59.8%, and 47.1%, 

respectively. The vibration reduction schemes with vibration disturbance of 45.45 Hz 

work better than with vibration disturbance of 21.19 Hz because the reduction ratio is 

various through the frequency as shown in Figs. 5-11, 7-10, and 7-19.  
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(a)                                  (b) 
 

Fig. 8-2. The step responses of the maglev stage (a) with and (b) without vibration 
control in the x-, y- and z-axes when the vibration disturbance of 21.19 Hz is applied.  
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(a)                                                  (b) 
 

Fig. 8-3. The trajectories of the platen (a) with and (b) without vibration control in the x-
y plane when the vibration disturbance of 21.19 Hz is applied. 
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(a)                                  (b) 
 

Fig. 8-4. The angular responses of the maglev stage (a) with and (b) without vibration 
control with step responses in the x-, y- and z-axes when the vibration disturbance of 

21.19 Hz is applied. 
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The trajectories of the platen in the x-y plane shows that the platen with vibration 

control exhibits much more accurate position regulation at the origin before departing to 

the other position when larger vibration disturbance is applied in Fig. 8-6. During the 

travel from the origin to another location with vibration control, wandering motions are 

observed. The dotted area in Fig. 8-6 indicates the wandering range of the platen during 

the travel. The wandering range with vibration control is much smaller than that without 

vibration control. Hence, positioning and tracking accuracies with vibration control are 

better than those without vibration control except the rise and settling times. 

Fig. 8-7 shows the angular responses that are induced by the step inputs in the  

translational motions. The magnitudes of the oscillations in angular positions with 

vibration control are smaller than without vibration control. The reduction ratios in 

rotational angles , , are 17.5%, 40.7%, and 3.7% in steady state, respectively. The 

reduction ratio in pitching angle  increases significantly with vibration disturbance 

of 45.45 Hz but the reduction ratio in yawing  motion decreases a lot. These 

rotational vibration reduction is caused by combining the translational vibration 

controllers and the angular position controllers. The coupling motions between axes are 

reduced the translational vibration controllers when the angular position controller 

regulate the angles. The vibration control schemes with vibration disturbance of 45.45 

Hz are still effective in not only translational but rotational motions.  
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(a)                                     (b) 
 

Fig. 8-5. The step responses of the maglev stage (a) with and (b) without vibration 
control in the x-, y- and z-axes when the vibration disturbance of 45.45 Hz is applied.  
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(a)                                                         (b) 
 

Fig. 8-6. The trajectories of the platen (a) with and (b) without vibration control in the x-
y plane when the vibration disturbance of 45.45 Hz is applied. 
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(a)                                     (b) 
 

Fig. 8-7. The angular responses of the maglev stage (a) with and (b) without vibration 
control with step responses in the x-, y- and z-axes when the vibration disturbance of 

45.45 Hz is applied. 
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CHAPTER IX 

  

CONCLUSIONS AND SUGGESTIONS OF FUTURE WORK 

 

 

9.1  Summary 

 

The maglev positioning system is an excellent candidate for the precision 

positioning that has six DOFs, nanoscale resolution without any friction, hysteresis, 

creep and backlash. Because the maglev technology does not require any lubricants or 

generate wear particles, it is suitable for clean-room or vacuum environments. In 

addition, advanced instruments or high-precision machines used the nanotechnology are 

vibration-sensitive and must be operated in a stable environment. The vibration 

disturbances are major obstacles in nanotechnology. Therefore, vibration control systems 

are required.  

By the present day, maglev systems have been developed for both servo 

applications to control movement and suspension purposes to reject vibration 

disturbances. This dissertation demonstrated that the maglev stage has capabilities to 

control movements and to reject vibration simultaneously.  

 The previously developed linearized model did not include the nonlinearity of the 

rotational motion and the differential kinematics. To design advanced control schemes, a 

more accurate model of the plant is required. Therefore, the full 6-DOF nonlinear 
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dynamic and differential kinematic equations were derived. These equations consider 

full rotational motion with kinematic equations and coupling among rotational motion. 

To design robust control schemes in the MIMO system, the derived nonlinear 

EOMs and the magnetic forces are linearized and the state-space representation is 

introduced. An LQG/LTR controller is designed to reject vibration disturbance in a 

MIMO system.  

Since the vibrations of the stationary coils on the optical table affect the magnetic 

force acting on the platen, adding the model of the optical table is required in the 

enhanced dynamic model. The optical table with pneumatic passive isolators is assumed 

as a mass-spring-damper system. The impulse response of the optical table was 

measured and the stiffness and the damping coefficient were determined. The enhanced 

model was validated by the comparing the simulation and experimental results.    

 To generate the vibration disturbance that has a specific frequency component, 

an unbalanced mass vibration generator was developed. By changing the eccentricity of 

the unbalanced mass and the input voltage in the motor, the vibration disturbance can be 

generated at a specific frequency. 

 The enhanced nonlinear EOMs and the magnetic forces were linearized. The 

magnetic stiffness term is added in the linearized model of vertical motion. For velocity 

feedback control, velocity in vertical motion is obtained by differentiating the noisy 

position signal from the capacitance probes. A software low-pass filter is designed to 

prevent amplification of the high frequency noise of a position signal by differentiation. 
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However, in lateral motion, the laser interferometry provides less noisy and high-

resolution measurements of the position and velocity.  

The dual-loop control system with velocity feedback makes it possible that the 

maglev system tracks positioning commands and rejects vibration disturbance 

simultaneously. The design procedures of the dual-loop control system are introduced in 

vertical and horizontal motions. The inner-loop compensator regulating the velocity is 

developed for vibration rejection, and the outer-loop compensator is designed for 

positioning of the platen. 

The dynamic models of the maglev stage in the x- and y-axes are identical except 

for the stiffnesses and the damping coefficients. The same type of controller was applied 

in both the x- and y-axes motions.  

The stability analysis to determine the control parameters was carried out. To 

analyze the effect of the vibration rejection of the inner-loop compensator, the frequency 

analysis of the transfer function between the vibration disturbance and position has 

shown the magnitude changes depend on the controller gains in specific frequency range.  

The dual-loop controllers designed independently for the x-, y-, and z-axes were 

applied in the six-axis motion. The step responses in the x-, y-, and z-axes were shown to 

evaluate the performance of vibration reduction as well as positioning and tracking 

accuracy.  
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9.2  Conclusions 

 

The full 6-DOF nonlinear dynamic and differential kinematic equations with the 

coupling among rotational motions were derived and linearized to design an LQG/LTR 

robust controller.  The crossover frequency of the singular values of the open loop with 

the LQG/LTR was about 100 Hz. The controller attenuates a vibration disturbance of 

15.5 Hz to 10% and 80% in the horizontal and vertical motions in simulation.  

To model the maglev stage with the optical table including the pneumatic passive 

vibration isolators, the simulation results of the model were well matched with the 

experimental results. However, unmodeled motions were observed in experiments, but 

these were negligible in this work. 

The dual-loop controllers with velocity feedback were verified in a vibration 

disturbance environment. The inner-loop controller initially suggested to be a PID 

controller was finalized as a proportional controller. In experiments, the inner-loop 

controllers with 300PK  and 100PK  in horizontal and vertical motions attenuated 

vibration disturbances by up to 65% and 45% in horizontal and vertical motions.  

However, the performance of the vibration controller varied through the frequency 

ranges. 

In six-axis motion, the performance of vibration reduction of the dual-loop 

controllers applied in the translational motion was almost the same as that in the single 

axis motion. The vibration reduction in rotational motions was insignificant unlike that 

in translation motions. However, the vibration controllers were effective in not only 
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translation but rotational motions.  The reduction ratios with vibration control when the 

vibration disturbance of 45.45 Hz was applied were 17.5%, 40.7%, and 3.7% in rolling, 

pitching, and yawing motions, respectively. 

In step responses, the vibration control schemes reduced the wandering range in 

the travel from the origin to another location. Positioning and tracking accuracies with 

vibration controller were better than those without vibration controller. 

In summary, these dual-loop control schemes with velocity feedback control 

improved the nanopositioning capability and vibration disturbance rejection in a maglev 

system.  

 

9.3  Suggestions of Future Work 

 

Although I tried to obtain the best possible performance in vibration rejections, 

there are certain issues that could not be addressed due to limitations in resources or time.  

 At  present,  an  LQG/LTR  controller  was  not  implemented  and  tested  in  

the real system, yet. The estimated states are divergent because the Kalman-filter 

gain matrix is not appropriate in the real system. The noise covariance matrices 

should be chosen in proper way in the future. 

 For rotational vibration control, if additional modeling of the optical table 

 with pneumatic isolators in rotational motion was developed and the rotational 

stiffness and damping coefficients were determined, rotational dual-loop 

controllers could be designed to attenuate the rotational vibration disturbances. 



 162

The dual-loop controllers can be designed by the similar ways in translational 

motion. 

 Acceleration feedback control has advantage to disturbance rejection if 

reliable acceleration signal could be obtain. Appropriate accelerometers with 

better resolution and measurement range provide the reliable acceleration signal. 

The acceleration signals from two accelerometers makes possible the maglev 

stage be applied to more various applications such as a microgravity vibration 

isolator in the space. The rotation and translation of platen can be controlled in 

not only the stationary frame but the body-fixed frame.  
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APPENDIX A 

 

MATLAB R  CODES 

 

 

A.1 To Design an LQG/LTR Controller 

m=0.267; 
Ix=340.37e-6; 
Iy=Ix; 
Iz=653.61e-6; 
g=9.81; 
I1=Ix;I2=Iy;I3=Iz; 
I=diag([I1,I2,I3]); 
   
l1=0.050595; 
l2=l1*0.5; 
l3=l1*cos(30/180*pi); 
  
a2=4.7418e4; 
a1=-8.7132e2; 
a0=6.7712; 
  
b2=1.3031e4; 
b1=-2.7161e2; 
b0=2.2050; 
  
c30=cos(pi*30/180); 
s30=sin(pi*30/180); 
   
% reference Input 
z0=250e-6 
y0=0; 
x0=0; 
  
kv=a2*z0^2+a1*z0+a0; 
kh=b2*x0^2+b1*x0+b0; 
kvh=[kv,kv,kv,kh,kh,kh]; 



 172

Kvh=diag(kvh); 
  
psi0=10e-6; 
theta0=10e-6; 
phi0=10e-6; 
  
DCM0=[     1,-phi0,theta0; 
        phi0,    1, -psi0; 
     -theta0, psi0,     1] 
 
B0=[1/I1, sin(psi0)*tan(theta0)/I2, cos(psi0)*tan(theta0)/I3; 
       0,             cos(psi0)/I2,            -sin(psi0)/I3; 
       0, sin(psi0)/cos(theta0)/I2, cos(psi0)/cos(theta0)/I3] 
  
kv=a2*z0^2+a1*z0+z0; 
kh=b2*x0^2+b1*x0+b0; 
  
M=m*eye(3); 
M_inv=inv(M); 
I=[Ix 0 0;0 Iy 0;0 0 Iz]; 
I_inv=inv(I); 
  
Tfm=[0,  0,  0,   0, c30, -c30; 
    0,  0,  0,  -1, s30,  s30; 
    1,  1,  1,   0,   0,    0; 
    0, l3,-l3,   0,   0,    0;  
  -l1, l2, l2,   0,   0,    0; 
    0,  0,  0, -l1, -l1,  -l1] 
  
Tfmi=Tfm 
Tfmi=Tfm 
  
T_f=Tfmi(1:3,:); 
T_m=Tfmi(4:6,:); 
 
B1=1/m*DCM0; 
B2=B0; 
    
%--------------------------------------------------------------- 
% States:  
%  x, y, z, dz,dy,dz,   psi,         theta, phi, dpsi,dtheta, dphi 
%--------------------------------------------------------------- 
  
A=[ 
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   0, 0, 0, 1, 0, 0,      0,        0,       0, 0, 0, 0; % x 
   0, 0, 0, 0, 1, 0,      0,        0,       0, 0, 0, 0; % y 
   0, 0, 0, 0, 0, 1,      0,        0,       0, 0, 0, 0; % z 
   0, 0, 0, 0, 0, 0,      0,        g,  g*psi0, 0, 0, 0; % dx 
   0, 0, 0, 0, 0, 0,     -g,        0,g*theta0, 0, 0, 0; % dy 
   0, 0, 0, 0, 0, 0,-g*psi0,-g*theta0,       0, 0, 0, 0; % dz 
   0, 0, 0, 0, 0, 0,      0,        0,       0, 1, 0, 0; % psi 
   0, 0, 0, 0, 0, 0,      0,        0,       0, 0, 1, 0; % theta 
   0, 0, 0, 0, 0, 0,      0,        0,       0, 0, 0, 1; % phi 
   0, 0, 0, 0, 0, 0,      0,        0,       0, 0, 0, 0; % dpsi 
   0, 0, 0, 0, 0, 0,      0,        0,       0, 0, 0, 0; % dtheta 
   0, 0, 0, 0, 0, 0,      0,        0,       0, 0, 0, 0];% dphi 
  
B=[zeros(3,6); 
   B1, zeros(3,3); 
   zeros(3,6); 
   zeros(3,3), B2]; 
C=eye(12); 
D=zeros(12,6); 
  
C=[eye(3), zeros(3,9); 
    zeros(3,6),eye(3,3),zeros(3,3)] 
D=zeros(6,6) 
  
rank(ctrb(A,B)) 
rank(obsv(A,C)) 
  
qp=5e4*ones(1,3) 
qv=1e-2*ones(1,3) 
qt=1e3*ones(1,3) 
qw=1e-1*ones(1,3) 
  
qf=[qp qv qt qw] 
Qf=diag(qf) 
  
  
mu=1.5e3; 
  
[Hft,Sf,ef]=lqr(A',C',Qf,eye(6)/mu) 
H=Hft' 
w=logspace(-2,4,1000) 
 
figure(1) 
sigma(A,H,C, zeros(6,6),w) 
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grid on 
% hold on 
  
rho=1e-11 
Q=C'*C 
R=eye(6)*rho 
  
[G,S,e]=lqr(A,B,Q,R) 
  
Gs=ss(A,B,C,zeros(size(C,1),size(B,2))) 
  
Ks=ss((A-B*G-H*C),H,G,zeros(size(G,1),size(H,2))) 
  
% GKs=series(Ks,Gs) 
GKs=Gs*Ks 
figure(2) 
sigma(GKs,w) 
grid on 
 
 
 
A.2 To Design a Low-Pass Filter 

[zx,px,kx] = cheby1(3,0.01,400/2.5e3,'low'); 
[sos,g] = zp2sos(zx,px,kx);         % Convert to SOS form 
Hd = dfilt.df2tsos(sos,g);          % Create a dfilt object 
  
figure(1) 
h = fvtool(Hd)                      % Plot magnitude response 
set(h,'Analysis','freq')     
[b,a]= cheby1(3,0.01,400/2.5e3,'low') 
  
Ts=1/5e3; 
H=tf(b,a,Ts) 
  
w=logspace(2,4.210,1000); 
  
figure(2) 
g=bodeplot(H,w) 
setoptions(g,'FreqUnits','Hz','PhaseVisible','on') 
grid on 
 

 



 175

 
 

Fi
g.

 B
-1

. S
im

ul
in

k 
bl

oc
k 

di
ag

ra
m

 fo
r L

Q
G

/L
TR

 c
on

tro
l 

A
PP

EN
D

IX
 B

 

 

SI
M

U
LI

N
K

 B
LO

C
K

 D
IA

G
R

A
M

S 

 



 176

 

Fi
g.

 B
-2

. S
im

ul
in

k 
bl

oc
k 

di
ag

ra
m

 o
f t

he
 m

ag
le

v 
st

ag
e 

m
od

el
 w

ith
 th

e 
op

tic
al

 ta
bl

e 
in

 v
er

tic
al

 m
ot

io
n 



 177

 

Fi
g.

 B
-3

. S
im

ul
in

k 
bl

oc
k 

di
ag

ra
m

 o
f t

he
 m

ag
le

v 
st

ag
e 

m
od

el
 w

ith
 th

e 
op

tic
al

 ta
bl

e 
in

 x
-a

xi
s 

m
ot

io
n 



 178

 

Fi
g.

 B
-4

. S
im

ul
in

k 
bl

oc
k 

di
ag

ra
m

 o
f t

he
 m

ag
le

v 
st

ag
e 

m
od

el
 w

ith
 th

e 
op

tic
al

 ta
bl

e 
in

 y
-a

xi
s 

m
ot

io
n 



 179

APPENDIX C 

 

C CODES 

 

 

C.1 For Model Validation in the x-, y-, and z-Axes 

void c_int01() 
{          
 unsigned long D1reading; 
 long ADreading, ADreading1, ADreading2, ADreadingA, 
ADreadingB,ADreadingC,ADreadingD; 
 long vel_x_platen1,vel_x_platen2; 
 int i; 
 float z_mea,Kp,Ki,Kpz,Kiz; 
        
/*----------------------------------*/  
 tr_low(); 
  
 /**(unsigned int *)DA_FIFO_D1=(((unsigned int)((0.0)*6553.4)) 
<<16) & 0xffff0000 ;   /* timer test of interrupt */ 
 *(unsigned long int *)0xb0300003=0x0041; 
 raw_x_pos  = (*(long int *)0xb0300048 << 16) & 0xffff0000;     
 raw_y1_pos = (*(long int *)0xb0310048 << 16) & 0xffff0000;   
 raw_y2_pos = (*(long int *)0xb0320048 << 16) & 0xffff0000; 
  
 raw_x_vel  = (*(long int *)0xb030004e << 16) & 0xffff0000;   
    raw_y1_vel = (*(long int *)0xb031004e << 16) & 0xffff0000;   
    raw_y2_vel = (*(long int *)0xb032004e << 16) & 0xffff0000;     
  
 tr_high(); 
 raw_x_pos  |= ((*(long int *)0xb0300048 >> 16) & 0x0000ffff);     
 raw_y1_pos |= ((*(long int *)0xb0310048 >> 16) & 0x0000ffff);   
 raw_y2_pos |= ((*(long int *)0xb0320048 >> 16) & 0x0000ffff); 
  
    raw_x_vel  |= ((*(long int *)0xb030004e >> 16) & 0x0000ffff);     
    raw_y1_vel |= ((*(long int *)0xb031004e >> 16) & 0x0000ffff);   
    raw_y2_vel |= ((*(long int *)0xb032004e >> 16) & 0x0000ffff);   
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 x_pos=raw_x_pos*6.1815119987e-10;        /* METERS-BIT approx 
0.625 nm */ 
 y1_pos=raw_y1_pos*6.1815119987e-10; 
 y2_pos=raw_y2_pos*6.1815119987e-10; 
  
 x_vel = raw_x_vel * 3.77292037e-7;    /* 
lamda/(F*2^22*100ns)= 3.77292037e-7, */      
         
 y1_vel= raw_y1_vel* 3.77292037e-7;       /* where lamda is a laser 
wavelength (632.991 nm) */ 
    y2_vel= raw_y2_vel* 3.77292037e-7;       /* F = 4 for plane mirror optics */ 
  
 
  
 /* ------------------------------*/ 
 
 tr_low();       
                                                
/*--------------------------------------------------*/    
 ADreading=*(unsigned long int *)AD_FIFO_A1; 
  
 ADreading1 = ADreading & 0x0000ffff; /* Channel A1 */   /* 
capacitance probe 1 */ 
 ADreading2 = ADreading & 0xffff0000;    /* Channel A2 */   /* 
acceleration x in the platen */ 
 ADreading2 = (ADreading2 >> 16);  
   
 if(ADreading1 & 0x8000) ADreading1 = ADreading1 | 0xffff0000;     
    z_pos1=ADreading1*7.629627369e-9+250e-6; 
 
/*--------------------------------------------------*/                                     
 ADreading=*(unsigned long int *)AD_FIFO_B1; 
  
 ADreading1 = ADreading & 0x0000ffff; /* Channel B1 */   /* 
capacitance probe 2 */ 
 ADreading2 = ADreading & 0xffff0000;    /* Channel B2 */   /* 
acceleration y in the platen */ 
 ADreading2 = (ADreading2 >> 16);  
   
 if(ADreading1 & 0x8000) ADreading1 = ADreading1 | 0xffff0000;     
    z_pos2=ADreading1*7.629627369e-9+250e-6; 
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/*--------------------------------------------------*/                                                   
 ADreading=*(unsigned long int *)AD_FIFO_C1; 
   
 ADreading1 = ADreading & 0x0000ffff; /* Channel C1 */   /* 
capacitance probe 3 */ 
 ADreading2 = ADreading & 0xffff0000;    /* Channel C2 */   /* 
acceleration z in the platen */ 
 ADreading2 = (ADreading2 >> 16);  
   
 if(ADreading1 & 0x8000) ADreading1 = ADreading1 | 0xffff0000;     
    z_pos3=ADreading1*7.629627369e-9+250e-6; 
 
/*--------------------------------------------------*/       
 ADreading=*(unsigned long int *)AD_FIFO_D1; 
   
 ADreading1 = ADreading & 0x0000ffff; /* Channel D1 */   /* 
acceleration x in the OPT table */ 
 ADreading2 = ADreading & 0xffff0000;    /* Channel D2 */   /* 
acceleration z in the OPT table */ 
 ADreading2 = (ADreading2 >> 16);  
   
 /***************************************/    
  
 /*NEW STAGE (begin)*/    
 /*L1 = y2_pos, L2 = y1_pos, L3 = x_pos*/ 
  
 xr = -(      0*y2_pos + 0.5774*y1_pos - 0.5774*x_pos); 
 yr = -(-0.6667*y2_pos + 0.3333*y1_pos + 0.3333*x_pos); 
 hr =  ( 6.5928*y2_pos + 6.5928*y1_pos + 6.5928*x_pos); 
  
 zr =      0.333333*z_pos1 + 0.333333*z_pos2 + 0.333333*z_pos3;             
 sr = 1000*(      0*z_pos1 + 0.0400*z_pos2 - 0.0400*z_pos3); 
 tr = 1000*(-0.0462*z_pos1 + 0.0231*z_pos2 + 0.0231*z_pos3);  
  
 xr_dot = -(      0*y2_vel + 0.5774*y1_vel - 0.5774*x_vel); 
 yr_dot = -(-0.6667*y2_vel + 0.3333*y1_vel + 0.3333*x_vel); 
 hr_dot =  ( 6.5928*y2_vel + 6.5928*y1_vel + 6.5928*x_vel); 
 
   
 
  /* 3rd order Cheby1 filter passband edge at 400Hz  */ 
 b1=  0.038540528; 
 b2= 0.11562158; 
 b3= 0.11562158; 
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 b4= 0.038540528; 
  
 a2= -1.385891309; 
 a3=  0.903331647; 
 a4= -0.2091161133;                                 
                               
                               
 zr_filtered= b1*zr + b2*zr1 + b3*zr2 + b4*zr3 - a2*zr1_filtered - a3*zr2_filtered  
          -a4*zr3_filtered; 
 zr_dot= (zr_filtered-zr1_filtered)/dt; 
         
 z_dot1= (z_pos1_old-z_pos1)/dt; 
 z_dot2= (z_pos2_old-z_pos2)/dt; 
 z_dot3= (z_pos3_old-z_pos3)/dt; 
 
 /*NEW STAGE (end)*/  
  
                 
 /* controller */ 
 if (controller_flag == 1){ 
   
  er0x=xc-xr; 
  er0y=yc-yr; 
  er0h=hc-hr; 
   
  er0z=zc-zr;     
  er0s=sc-sr; 
  er0t=tc-tr; 
  
  er0vx=0-xr_dot; 
  er0vy=0-yr_dot; 
   
   
  /*HORIZONTAL CONTROLLERS*/ 
  
       u0x = 1.42714428*u1x - 0.427144284*u2x + 532803.041*er0x + -
1052163.01*er1x + 519386.739*er2x; 
  u0y = 1.42714428*u1y - 0.427144284*u2y + 532803.041*er0y + 
-1052163.01*er1y + 519386.739*er2y; 
  u0h = 1.44808411*u1h - 0.44808411*u2h + 
(1769.3670617300*er0h + -3507.66909111000*er1h + 1738.3639498700*er2h); 
    
        u0z = 1.65658873*u1z - 0.65658873*u2z + 232004.55154669*er0z + -
461593.23257734*er1z + 229591.41122804*er2z; 
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  u0s = 1.65658873*u1s - 0.65658873*u2s + 
0.5*(295.66660049*er0s + -588.25441560*er1s + 292.59129447*er2s); 
  u0t = 1.65658873*u1t - 0.65658873*u2t + 
0.5*(295.66660049*er0t + -588.25441560*er1t + 292.59129447*er2t); 
   
 
  /*Force Transformation */ 
  f1=u0z*0.3333 + u0s*0      - u0t*13.1765;        
  f2=u0z*0.3333 + u0s*11.4112 + u0t*6.5883; 
  f3=u0z*0.3333 - u0s*11.4112 + u0t*6.5883; 
   
  f4=    0*u0x - 0.6667*u0y - 6.5883*u0h; 
  f5= 0.5774*u0x + 0.3333*u0y - 6.5883*u0h; 
  f6=-0.5774*u0x + 0.3333*u0y - 6.5883*u0h; 
                 
  /*6.3507 N/A is force constant (0.157463) */  
  /*5.4 N/A is force constant (0.18518) */ 
  i1=0.18518*f1;    
  i2=0.18518*f2; 
  i3=0.18518*f3;         
   
   
  /* Considering the force to current conversion function of gap 
between magnet and coil  
         */  
  gap1 = 31e-4 - y2_pos; 
  gap2 = 31e-4 - y1_pos; 
  gap3 = 31e-4 - x_pos; 
   
  f2i1 = 1.41/(0.01469*gap1*gap1 - 0.3062*gap1 + 2.487); 
  f2i2 = 1.41/(0.01469*gap2*gap2 - 0.3062*gap2 + 2.487); 
  f2i3 = 1.41/(0.01469*gap3*gap3 - 0.3062*gap3 + 2.487); 
 
   
  i4 = -f2i3*f6; 
  i5 =  f2i1*f4; 
  i6 =  f2i2*f5; 
 
   
  /* Converion to DA voltage and limiting the maximum value 
(i2v=2)  */ 
  v1=i1*i2v;   
  if ((v1+vn1)>=2.5)  v1=2.4-vn1; 
  if ((v1+vn1)<=-2.5) v1=-2.4-vn1; 
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  v2=i2*i2v;  
  if ((v2+vn2)>=2.5)  v2=2.4-vn2; 
  if ((v2+vn2)<=-2.5) v2=-2.4-vn2; 
  v3=i3*i2v; 
  if ((v3+vn3)>=2.5)  v3=2.4-vn3; 
  if ((v3+vn3)<=-2.5) v3=-2.4-vn3; 
   
  v4=i4*i2v;     
   
  if (v4>=4)  v4=4; 
  if (v4<=-4) v4=-4; 
  v5=i5*i2v; 
  if (v5>=4)  v5=4; 
  if (v5<=-4) v5=-4; 
  v6=i6*i2v; 
  if (v6>=4)  v6=4; 
  if (v6<=-4) v6=-4;   
 
 } 
     
 tr_low();                                    
   
 if(flag_d2a==1) {      
  *(unsigned int *)DA_FIFO_A1=(((unsigned 
int)((v1+vn1)*6553.4)) <<16) & 0xffff0000 ;  /*6553.4=32767/5  */ 
  *(unsigned int *)DA_FIFO_B1=(((unsigned 
int)((v2+vn2)*6553.4)) <<16) & 0xffff0000; 
  *(unsigned int *)DA_FIFO_C1=(((unsigned 
int)((v3+vn3)*6553.4)) <<16) & 0xffff0000; 
   
  *(unsigned int *)DA_FIFO_A2=(((unsigned 
int)((prevA2+v5*hstart)*-6553.4)) <<16) & 0xffff0000; 
  *(unsigned int *)DA_FIFO_B2=(((unsigned 
int)((prevB2+v6*hstart)*-6553.4)) <<16) & 0xffff0000; 
  *(unsigned int *)DA_FIFO_C2=(((unsigned 
int)((prevC2+v4*hstart)*-6553.4*-1)) <<16) & 0xffff0000; 
 }         
    
                     
 /* Set int_count for snap */ 
 if ((snap_begin==1) & (snap_enable==1)) {  
  int_count++; 
 }    
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/*------------*/  
/* For vibration control, u3z, er3z, ea3z, ea2z, ea1z, and ea0z were added */ 
/* For vibration control, u3z, er3z, ea3z, ea2z, ea1z, and ea0z were added */ 
 u3z=u2z;  
 u2z=u1z; 
 u1z=u0z; 
  
 er3z=er2z;  
 er2z=er1z; 
 er1z=er0z;  
  
 u2s=u1s; 
 u1s=u0s; 
 er2s=er1s; 
 er1s=er0s; 
  
 u2t=u1t; 
 u1t=u0t; 
 er2t=er1t; 
 er1t=er0t; 
  
 u3x=u2x; 
 u2x=u1x; 
 u1x=u0x;   
  
 er3x=er2x; 
 er2x=er1x; 
 er1x=er0x; 
  
 u3y=u2y; 
 u2y=u1y; 
 u1y=u0y;   
                    
 er3y=er2y; 
 er2y=er1y; 
 er1y=er0y;  
  
  
 u2h=u1h; 
 u1h=u0h; 
 er2h=er1h; 
 er1h=er0h; 
   
 display=1; 
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 MX_Int_Clr= 0x20000029;      
  
 /**(unsigned int *)DA_FIFO_D1=(((unsigned int)((1.0)*6553.4)) 
<<16) & 0xffff0000 ;   /* timer test */ 
 *(unsigned int *)MX_Int_Clr=0x0; 
} 
 
 
C.2 For Overall Vibration Control 

void c_int01() 
{          
 unsigned long D1reading; 
 long ADreading, ADreading1, ADreading2, ADreadingA, 
DreadingB,ADreadingC,ADreadingD; 
 long vel_x_platen1,vel_x_platen2; 
 int i; 
 float z_mea,Kp,Ki,Kpz,Kiz,abs_eraz; 
 float dt,b1,b2,b3,b4,a2,a3,a4;   /* coefficients if Chebyshev Low pass filter 
equation.*/ 
  
 dt=200e-6;  /* 200 ms = 1/5kHz : Time for one loop  
 tr_low(); 
 
 *(unsigned long int *)0xb0300003=0x0041; 
 raw_x_pos  = (*(long int *)0xb0300048 << 16) & 0xffff0000;     
 raw_y1_pos = (*(long int *)0xb0310048 << 16) & 0xffff0000;   
 raw_y2_pos = (*(long int *)0xb0320048 << 16) & 0xffff0000; 
  
 raw_x_vel  = (*(long int *)0xb030004e << 16) & 0xffff0000;   
     raw_y1_vel = (*(long int *)0xb031004e << 16) & 0xffff0000;   
     raw_y2_vel = (*(long int *)0xb032004e << 16) & 0xffff0000;     
  
 tr_high(); 
 raw_x_pos  |= ((*(long int *)0xb0300048 >> 16) & 0x0000ffff);     
 raw_y1_pos |= ((*(long int *)0xb0310048 >> 16) & 0x0000ffff);   
 raw_y2_pos |= ((*(long int *)0xb0320048 >> 16) & 0x0000ffff); 
  
   raw_x_vel  |= ((*(long int *)0xb030004e >> 16) & 0x0000ffff);     
  raw_y1_vel |= ((*(long int *)0xb031004e >> 16) & 0x0000ffff);   
  raw_y2_vel |= ((*(long int *)0xb032004e >> 16) & 0x0000ffff);   
      
 x_pos=raw_x_pos*6.1815119987e-10;        /* METERS-BIT approx 0.625 nm */ 
 y1_pos=raw_y1_pos*6.1815119987e-10; 
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 y2_pos=raw_y2_pos*6.1815119987e-10; 
  
 x_vel = raw_x_vel * 3.77292037e-7;     
     /* lamda/(F*2^22*100ns)= 3.77292037e-7, */
               
 y1_vel= raw_y1_vel* 3.77292037e-7; 
    /* where lamda is a laser wavelength (632.991 nm) */ 
     y2_vel= raw_y2_vel* 3.77292037e-7;       /* F = 4 for plane mirror optics */ 
  
 
 tr_low();       
                                                
 ADreading=*(unsigned long int *)AD_FIFO_A1; 
 ADreading1 = ADreading & 0x0000ffff;/* Channel A1  capacitance probe 1 */ 
  
   
 if(ADreading1 & 0x8000) ADreading1 = ADreading1 | 0xffff0000;     
 z_pos1=ADreading1*7.629627369e-9+250e-6; 
                                    
 ADreading=*(unsigned long int *)AD_FIFO_B1; 
 ADreading1 = ADreading & 0x0000ffff; /* Channel B1 capacitance probe 2 */ 
 
 if(ADreading1 & 0x8000) ADreading1 = ADreading1 | 0xffff0000;     
  z_pos2=ADreading1*7.629627369e-9+250e-6; 
 
 ADreading=*(unsigned long int *)AD_FIFO_C1; 
 ADreading1 = ADreading & 0x0000ffff; /* Channel C1 capacitance probe 3 */ 
 
 if(ADreading1 & 0x8000) ADreading1 = ADreading1 | 0xffff0000;     
  z_pos3=ADreading1*7.629627369e-9+250e-6; 
 
 
 /*NEW STAGE (begin)*/    
 /*L1 = y2_pos, L2 = y1_pos, L3 = x_pos*/ 
  
 xr = -(      0*y2_pos + 0.5774*y1_pos - 0.5774*x_pos); 
 yr = -(-0.6667*y2_pos + 0.3333*y1_pos + 0.3333*x_pos); 
 hr =  ( 6.5928*y2_pos + 6.5928*y1_pos + 6.5928*x_pos); 
  
 zr =      0.333333*z_pos1 + 0.333333*z_pos2 + 0.333333*z_pos3;             
 sr = 1000*(      0*z_pos1 + 0.0400*z_pos2 - 0.0400*z_pos3); 
 tr = 1000*(-0.0462*z_pos1 + 0.0231*z_pos2 + 0.0231*z_pos3);  
 xr_dot = -(      0*y2_vel + 0.5774*y1_vel - 0.5774*x_vel); 
 yr_dot = -(-0.6667*y2_vel + 0.3333*y1_vel + 0.3333*x_vel); 
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 hr_dot =  ( 6.5928*y2_vel + 6.5928*y1_vel + 6.5928*x_vel); 
 
       
 sr_dot = 1000*(      0*z_pos1 + 0.0400*z_pos2 - 0.0400*z_pos3); 
 tr_dot = 1000*(-0.0462*z_pos1 + 0.0231*z_pos2 + 0.0231*z_pos3);  
 
   
 /* 3rd order Cheby1 filter passband edge at 400Hz  */ 
 b1=  0.038540528; 
 b2= 0.11562158; 
 b3= 0.11562158; 
 b4= 0.038540528; 
  
 a2= -1.385891309; 
 a3=  0.903331647; 
 a4= -0.2091161133;                                 
                               
                               
 zr_filtered= b1*zr + b2*zr1 + b3*zr2 + b4*zr3 - a2*zr1_filtered - a3*zr2_filtered  
          -a4*zr3_filtered; 
 zr_dot= (zr_filtered-zr1_filtered)/dt; 
         
 z_dot1= (z_pos1_old-z_pos1)/dt; 
 z_dot2= (z_pos2_old-z_pos2)/dt; 
 z_dot3= (z_pos3_old-z_pos3)/dt; 
         
   
 /*NEW STAGE (end)*/  
  
 /* controller */ 
 if (controller_flag == 1){ 
   
 er0x=xc-xr; 
 er0y=yc-yr; 
 er0h=hc-hr; 
   
 er0z=zc-zr;     
 er0s=sc-sr; 
 er0t=tc-tr; 
   
 er0vx=0-xr_dot; 
 er0vy=0-yr_dot; 
 er0vz=0-zr_dot; 
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 /*HORIZONTAL CONTROLLERS*/ 
 
 if (xc<=0){ 
  
 u0x = 1.42714428*u1x - 0.427144284*u2x + 532803.041*er0x + -
1052163.01*er1x  
  + 519386.739*er2x; 
  u0y = 1.42714428*u1y - 0.427144284*u2y + 532803.041*er0y + -
1052163.01*er1y 
   + 519386.739*er2y; 
       u0h = 1.44808411*u1h - 0.44808411*u2h + (1769.3670617300*er0h +  
 -3507.66909111000*er1h + 1738.3639498700*er2h); 
         
       u0z = 1.652482855*u1z - 0.652482855*u2z + 192913.035*er0z + -
383379.5985*er1z  
 + 190469.3265*er2z; 
 u0s = 1.65658873*u1s - 0.65658873*u2s + 0.5*(295.66660049*er0s + -
588.25441560*er1s  
 + 292.59129447*er2s); 
  
 u0t = 1.65658873*u1t - 0.65658873*u2t + 0.5*(295.66660049*er0t + -
588.25441560*er1t  
 + 292.59129447*er2t); 
 
       } 
       
 else { 
 
 Kp=300; 
 Ki=0; 
    
 u0x = 1.42714428*u1x - 0.427144284*u2x + 532803.041*er0x + -
1052163.01*er1x  
  + 519386.739*er2x; 
 u0x = u0x + (Kp+0.1e-3*Ki)*er0vx + (-1.42714428*Kp+Ki*0.572855716e-
4)*er1vx 
   + (0.427144284*Kp + Ki*(-0.427144284e-4))*er2vx; 
    
 u0y = 1.42714428*u1y - 0.427144284*u2y + 532803.041*er0y + -
1052163.01*er1y  
  + 519386.739*er2y; 
 u0y = u0y + (Kp+0.1e-3*Ki)*er0vy + (-1.42714428*Kp+Ki*0.572855716e-
4)*er1vy  
  + (0.427144284*Kp + Ki*(-0.427144284e-4))*er2vy; 
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 u0h = 1.44808411*u1h - 0.44808411*u2h + (1769.3670617300*er0h +  
  -3507.66909111*er1h + 1738.36394987*er2h); 
             
 Kpz=100; 
 Kiz=0;  
  
 u0z = 1.652482855*u1z - 0.652482855*u2z + 0.6*(192913.035*er0z + -
383379.5985*er1z 
   + 190469.3265*er2z); 
 u0z = u0z + (0.0001*Kiz + Kpz)*er0vz + (0.0000347517144*Kiz - 
1.652482856*Kpz)*er1vz  
  + (0.652482856*Kpz - 0.0000652482856*Kiz)*er2vz; 
    
 u0s = 1.65658873*u1s - 0.65658873*u2s + 0.5*(295.66660049*er0s + -
588.25441560*er1s  
  + 292.59129447*er2s); 
 u0t = 1.65658873*u1t - 0.65658873*u2t + 0.5*(295.66660049*er0t + -
588.25441560*er1t  
  + 292.59129447*er2t); 
       }      
 
  
/*Force Transformation */ 
 f1=u0z*0.3333 + u0s*0      - u0t*13.1765;        
 f2=u0z*0.3333 + u0s*11.4112 + u0t*6.5883; 
 f3=u0z*0.3333 - u0s*11.4112 + u0t*6.5883; 
   
 f4=          0*u0x - 0.6667*u0y - 6.5883*u0h; 
 f5= 0.5774*u0x + 0.3333*u0y - 6.5883*u0h; 
 f6=-0.5774*u0x + 0.3333*u0y - 6.5883*u0h; 
                 
 /*6.3507 N/A is force constant (0.157463) */  
 /*5.4 N/A is force constant (0.18518) */ 
 i1=0.18518*f1;    
 i2=0.18518*f2; 
 i3=0.18518*f3;         
   
/* Considering the force to current conversion function of gap between magnet and coil 
        */  
 gap1 = 31e-4 - y2_pos; 
 gap2 = 31e-4 - y1_pos; 
 gap3 = 31e-4 - x_pos; 
   
 f2i1 = 1.41/(0.01469*gap1*gap1 - 0.3062*gap1 + 2.487); 
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 f2i2 = 1.41/(0.01469*gap2*gap2 - 0.3062*gap2 + 2.487); 
 f2i3 = 1.41/(0.01469*gap3*gap3 - 0.3062*gap3 + 2.487); 
 
 i4 = -f2i3*f6; 
 i5 =  f2i1*f4; 
 i6 =  f2i2*f5; 
/* Converion to DA voltage and limiting the maximum value (i2v=2)  */ 
 v1=i1*i2v;   
 if ((v1+vn1)>=2.5)  v1=2.4-vn1; 
 if ((v1+vn1)<=-2.5) v1=-2.4-vn1; 
 v2=i2*i2v;  
 if ((v2+vn2)>=2.5)  v2=2.4-vn2; 
 if ((v2+vn2)<=-2.5) v2=-2.4-vn2; 
 v3=i3*i2v; 
 if ((v3+vn3)>=2.5)  v3=2.4-vn3; 
 if ((v3+vn3)<=-2.5) v3=-2.4-vn3; 
   
 v4=i4*i2v;     
   
 if (v4>=4)  v4=4; 
 if (v4<=-4) v4=-4; 
 v5=i5*i2v; 
 if (v5>=4)  v5=4; 
 if (v5<=-4) v5=-4; 
 v6=i6*i2v; 
 if (v6>=4)  v6=4; 
 if (v6<=-4) v6=-4;   
 
 } 
     
 tr_low();                                    
   
 if(flag_d2a==1) {      
  *(unsigned int *)DA_FIFO_A1=(((unsigned int)((v1+vn1)*6553.4)) 
<<16) & 0xffff0000 ; 
  *(unsigned int *)DA_FIFO_B1=(((unsigned int)((v2+vn2)*6553.4)) 
<<16) & 0xffff0000; 
  *(unsigned int *)DA_FIFO_C1=(((unsigned int)((v3+vn3)*6553.4)) 
<<16) & 0xffff0000; 
   
  *(unsigned int *)DA_FIFO_A2=(((unsigned int)((prevA2+v5*hstart)*-
6553.4)) <<16) & 0xffff0000; 
  *(unsigned int *)DA_FIFO_B2=(((unsigned int)((prevB2+v6*hstart)*-
6553.4)) <<16) & 0xffff0000; 
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  *(unsigned int *)DA_FIFO_C2=(((unsigned int)((prevC2+v4*hstart)*-
6553.4*-1)) <<16) & 0xffff0000; 
 }         
                     
 /* Set int_count for snap */ 
 if ((snap_begin==1) & (snap_enable==1)) {  
  int_count++; 
 }    
  
/* For vibration control, u3z, er3z, ea3z, ea2z, ea1z, and ea0z were added */ 
 u2s=u1s; 
 u1s=u0s; 
 er2s=er1s; 
 er1s=er0s; 
 u2t=u1t; 
 u1t=u0t; 
  
 er2t=er1t; 
 er1t=er0t;7 
  
 u3x=u2x; 
 u2x=u1x; 
 u1x=u0x;    
  
 u3y=u2y; 
 u2y=u1y; 
 u1y=u0y;   
  
 u3z=u2z;   
 u2z=u1z; 
 u1z=u0z; 
  
 er3x=er2x; 
 er2x=er1x; 
 er1x=er0x; 
  
 er3y=er2y; 
 er2y=er1y; 
 er1y=er0y;  
 er3z=er2z;  
 er2z=er1z; 
 er1z=er0z;  
 
    zr3=zr2; 
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 zr2=zr1; 
 zr1=zr;  
     
 zr3_filtered=zr2_filtered; 
 zr2_filtered=zr1_filtered; 
 zr1_filtered=zr_filtered; 
  
 zr3_dot=zr2_dot; 
 zr2_dot=zr1_dot; 
 zr1_dot=zr_dot; 
  
 z_pos1_old=z_pos1; 
 z_pos2_old=z_pos2; 
 z_pos3_old=z_pos3; 
  
 er3vx=er2vx; 
 er2vx=er1vx; 
 er1vx=er0vx; 
  
 er3vy=er2vy; 
 er2vy=er1vy; 
 er1vy=er0vy; 
  
 er3vz=er2vz; 
 er2vz=er1vz; 
 er1vz=er0vz;  
  
 er3az=er2az; 
 er2az=er1az; 
 er1az=er0az; 
  
 u2h=u1h; 
 u1h=u0h; 
 er2h=er1h; 
 er1h=er0h; 
   
 display=1; 
 MX_Int_Clr= 0x20000029;      
 *(unsigned int *)MX_Int_Clr=0x0; 
} 
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