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ABSTRACT 

 

Group Based Rigging of Realistically Feathered Wings. (December 2011) 

Heather Vernette Howard, B.A., Texas A&M University 

Chair of Advisory Committee: Prof. Tim McLaughlin 

 

 Digital birds are used in computer graphics to replace live animals both for the 

safety of the animal and to allow for more control over performance. The current 

treatment of avian wings in computer graphics is often over-simplified which results in a 

loss realism due to the incorrect form and motion of the feathers. This research attempts 

to address this problem by using the structure and motion of real bird anatomy to inform 

the creation of biologically accurate kinematic motion for wings. The hypothesis of this 

thesis is that a wing rig which follows biological accuracy will appear realistic in motion 

and facilitate efficient animation. This thesis describes the creation of a rig generation 

tool, called WingCreator, usable in 3D animation software to guide the construction of 

biologically accurate wings while maintaining a range of artistically-driven variability in 

form. The control system for the kinematic motion rig is designed to provide animators 

with intuitive control over wing behavior intended to result in efficient re-creation of 

realistic wing action including flapping and folding.  WingCreator was tested by two 

riggers and one animator to gain feedback on the tools efficacy. The user feedback 

indicates that the resulting rig provides a control system that facilitates efficient 

animation while maintaining artistic control over the wing. Users reported that realism, 
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however, could not be judged due to the numerous contributing outside factors, such as 

animation, lighting and texturing, that affect the perception of realism. WingCreator and 

its creation methodology is intended to be placed in the public domain for use by anyone 

and will add to the currently slim body of knowledge for creating realistic avian wings. 

Once placed in the public domain it is expected that this rig will be appropriated by 

animators who wish to create more accurate bird wing motion and by riggers who may 

use the biologically-driven methodology as a model for further exploration into 

depictions of other animals exhibiting complex form and structural motion behaviors.  
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CHAPTER I 

INTRODUCTION 

 

 In the use of computer graphics for visual effects, digital creatures are often used 

to replace animals. Sometimes they are used for ethical reasons: putting a live animal on 

a production set can be stressful to the animal or could cause possible harm to the 

animal, such as a scene where a horse needs to fall. There are also performance reasons: 

some animals cannot be trained to perform as well as others or act on cue, or the 

performance required is beyond the scope of a real animals ability, or perhaps the animal 

needed for the scene is endangered and therefore cannot be acquired to film. Sometimes 

the animal is a fantastical creature and doesn't even exist in real life, such as a gryphon.  

 While digital creatures provide benefits of safety and performance control 

relative to live animals, their use is not without fault. Digital creatures can sometimes 

look and move in ways that the audience perceives as unrealistic, particularly in live 

action movies where the digital creatures are see in comparison to real environments, 

actors and animals. 

 Within the kingdom of digital creatures computer generated (CG) avian creatures 

present a set of problems that are unique and challenging relative to their non-winged 

counterparts. Unrealistic representations of CG birds and creatures with bird-like wings 

are often the result of overly simplified approaches to addressing the biological 

 

____________ 

This thesis follows the style of ACM Transactions on Graphics. 



2 

 

 

complexity of avian wing structure and action. The skeletal structure of CG creatures 

and control over it, known as rigging in computer graphics terms, enables animators to 

articulate a digital character and create performances [Ford and Lehman 2002]. Effective 

rigging is essential to the look and movement of the character. For winged creatures in 

visual effects projects, where realism is key, rigging and control must have a strong 

connection to biological structure and action for the animator to be able to define a good, 

believable performance.  

 The primary contribution of this thesis is a tool that can be effectively used for 

rigging a range of avian wing structures and produces rigs that contribute to the 

animation of realistic wing look and behavior. Feathers play a large part of making a 

digital photo-real bird look believable and realistic. Wings have a wide range of motion, 

from outstretched soaring flight to folded tight against the body which can cause 

significant control and interpenetration problems for feathers. A deficiency with many 

previous approaches is simplification of the variety of feather form and action relative to 

the movement of the wing. This thesis takes an elegant procedural approach to feather 

placement, control, and definition of variations so that the resulting rig more closely 

resembles a real bird's wing. Another problem with many previous efforts has been that 

the resulting rigs only provide realistic appearance in one position- flying or folded. 

Many prior works include efforts to avoid the issue of wing folding entirely by 

employing visual tricks and cheats ranging from not showing the entire wing in frame, to 

strategical editorial cuts, and even render tricks that try to account for feather 

interpenetration resulting from movement from extended to folded wing poses [Hiebert 
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et al. 2006]. The rigging method developed for this thesis provides a single rig and 

control solution for animation that includes both outstretched and folded wings. In 

deference to visual effects production environments, the approach defined in this thesis 

also addresses the factors of art direct-ability and efficiency as considerations. Art direct-

ability is important because a rig that is too limited in its application to a variety of avian 

designs and performance requirements will constrain the creative capacity of animators.  

Efficiency is important because a rig with controls that are difficult to understand, or that 

impede quick definition of performances difficult to use will fail to be effective in a 

production environment where artist time is budgeted. 

 Most published work on the topic of CG avian wings has focused on feather 

generation, placement and rendering. Very little has been published on the control 

systems and animation of wings. This lack of available public, verifiable knowledge, and 

sometimes conflicting information, can make it difficult for anyone who is not currently 

in a production environment to attempt the creation of a CG bird wing that represents the 

contribution to the state of the art. To address this issue, this thesis uses user feedback 

and critique in an attempt to validate the thesis. Three Master of Science in Visualization 

students at Texas A&M University, two riggers and one animator, were chosen based on 

their experience in rigging and animation and asked to give feedback on the 

WingCreator tool. The riggers were tasked with using the system to build an avian rig, 

while the animator was asked to animate the resulting model to match the footage of a 

real bird. Their feedback on the usability of the system is provided in the Results 

sections of this thesis. Feedback from riggers and animators indicate that while it is 
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difficult to judge the effectiveness of realism in the rig, the resulting rig provides a 

control system that facilitates efficient animation while maintaining artistic control over 

the wing. 

 This project was developed to make a contribution to more realistic presentations 

of CG birds and bird-like creatures. Both the tool and examples of its use will be 

distributed through on-line computer graphics forums that feature similar, visual effects 

industry aligned, applications of rigging and animation techniques. It is the author’s 

intention to monitor feedback from potential users and hope that this contribution 

adopted by others and thus advances the art and science of creating more realistic 

computer graphics birds. 
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CHAPTER II 

BACKGROUND AND PRIOR WORK 

 

II.1 Realism and Fantasy 

 Computer graphics characters are often used to portray birds in film because they 

are put in situations no real bird would feasibly be in and asked to perform in ways that 

real birds do not naturally behave in and sometimes do not have the physical capability. 

For example: In Legend of the Guardians: The Owls of Ga'hoole the main character is a 

barn owl named Soren who has to fight to free his fellow owls, a situation no real owl 

would ever be in and thus have to give performances, such as fighting other owls to 

escape to freedom, talking and wearing armor. While the birds may be photo-real in 

style, their performance was unlike a real bird. This is the difference between something 

created for film that is photo-real vs. something created for scientific visualization. In a 

more scientific setting, the birds are limited to that which real birds can perform. Film is 

driven by the performance needed to tell a story and will stretch beyond the limits of a 

real bird. 

 

II.2 Animation 

 The first person a rig caters to is the animator, as the animator is the one who will 

be using the rig to create a performance with. To create a good rig for an animator it is 

essential to understand how animators like to work. “There is no better way to get 

animators to produce good work than by presenting a rig built by a character TD 
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(Technical Director) who understands how animators like to work” [Ford & Lehman 

2002]. A basic knowledge of the 12 Principles of Animation is very beneficial as well as 

understanding which ones apply specifically to the performance of realistic birds. 

  The 12 Principles of animation introduced by Walt Disney's animators Frank 

Thomas and Ollie Johnston in The Illusion of Life are a set of animation principles 

[Thomas and Johnston 1981]. These principles give the illusion that a character is alive, 

follows the laws of physics and adds appeal, both emotional and visual, to the character. 

While these rules were originally created to apply to traditional (hand drawn) animation, 

they were updated for use in computer animation by John Lasseter and while there is not 

universal agreement about the importance of each principle, the notions of the principles 

has become a standard to use for all animation [Lasseter 1987]. The principles and the 

reasons they apply to computer generated birds are:  

 Squash and stretch: The principle of how an object will squash and stretch 

when in motion. An object does not lose its volume when it does this and 

this can be seen in a wing when it opens and closes. The muscle in the 

wing squashes (closed) and stretches (open) and the feathers on top of that 

collapse into a smaller area (“squash”) and fan open (“stretch”). 

 Straight ahead action and pose to pose: These are two different 

approaches to animation. Straight ahead is successive drawing, frame by 

frame from one scene to the next whereas pose to pose is drawing out the 

key poses and then filling in between those key poses. Bird flight can be 

animated using either method. CG facilitates pose to pose animation 
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because the software can automatically interpolate between the key 

frames; however, often more work needs to be done to make the 

interpolation not look natural [Williams 2006]. 

 Follow through and overlapping action: Follow through is when parts of a 

body continue moving after the body has stopped and Overlapping action 

means that parts of a body move at different rates. For example: In birds 

these apply to the feathers dragging through the air, causing them to 

deform. Follow through would be when the main portion of the wing 

changes direction, that drag from the air causes the feathers to take a few 

frames to catch up to the main body and Overlapping Action would be the 

primary feathers moving at a different rate than the secondary feathers 

because of difference in flexibility of the feathers and location on the 

wing. 

 Arcs: Most movement made by living creatures move along arcs. Using 

arcs when animating a wing gives more realistic movement to the wing. 

 Exaggeration: To exaggerate an action or performance beyond what can 

realistically happen. Often action traced from live action can be accurate 

but it can look stiff or mechanical. Exaggeration is “like a caricature of 

facial features, expressions, poses, attitudes and actions” and can help 

give more appeal. In birds this can be an exaggeration on how far the 

wrist is bending during a frame or two in order to enhance the action of a 

wing beat [Lightfoot 2004]. 
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II.3 Birds as Digital Characters 

 Within the realm of computer graphics birds, there are many uses of birds. Birds 

can be background characters, used to fill in the background of a scene. These 

background characters are only seen from afar and are therefore limited in performance 

and detail, sometimes so that only the profile is seen. These birds are out of the scope of 

interest for this project because for something seen only at a distance for a short amount 

of time does not need a great deal of complexity to it. The interest of this project is for 

what is sometimes referred to as a “hero character” - a character which is often seen 

close up, has a large amount of screen time, and a large range of performance (in the 

case wing behaviors) required. 

 

II.4 A Brief History of Birds in Film 

 CG avian creatures as characters have a long history in film and covering all of 

them would be difficult. I would like to touch on some of the more notable digital avian 

creatures and discuss relevant work in regard to the rig, feather motion, and challenges 

faced in each case. Also, while many films have had birds in them, not all of them are 

relevant. The following brief history discusses avian creatures that fit the scope of this 

thesis- those that are realistic and not heavily stylized. 

 

II.4.1 The Chronicles of Narnia: The Lion, the Witch and the Wardrobe (2005) 

 In The Chronicles of Narnia: The Lion, the Witch and the Wardrobe by Walt 

Disney Pictures with visual effects by Rhythm & Hues there are gryphons: half-lion 
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half-eagle creatures. (See Figure 1).  The gryphons have a small role overall but they are 

featured in shots, both flying and with wings folded, close up and full frame. This 

required that the gryphons be highly detailed and as anatomically accurate as a mythical 

creature can be. A big challenge to this was the look and actions of the feathers [Hiebert 

et al. 2006].  

 The feathers on the gryphons (coverts, and body feathers) were generated 

procedurally using Rhythm & Hues' in house fur software, except for two rows of flight 

feathers [Hiebert et al. 2006]. The implementation of feathers this way looked realistic 

for the gryphon when flying. However, the gryphon's performance required that he fold 

his wings. Rhythm & Hues' default set of tools worked well in general, with few 

interpenetrations perceptible; the problem came with the flight feathers.  

 In Rhythm & Hues' avian rig designs previous to the one used in Narnia, a spline 

along the trailing edge of the wing that the feathers pointed at was used to control the 

wing; this allowed the animator to have a lot of control with a minimum amount of 

control objects and worked well for flight motion. However, for wing folding, it caused 

the feathers to stack up incorrectly relative to the look and behavior of feathers on real 

birds. To solve this, the flight feathers were broken up into two separate groups of 

primary and secondary feathers with a separate spline to control each. It allowed the 

primaries and secondaries to stack up believably and an additional layer of control was 

added to allow the animator to control each feather individually and to clean up any 

feathers that were out of place or interpenetrating [Hiebert et al. 2006]. It works well for 
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wing folding on the two main groups and something similar could be applied further to 

the separate feather groups in the wing for a more photo-real bird wing. 

 

 

 

 

 

 

Figure 1. Gryphons from The Chronicles of Narnia: The Lion, the Witch, and the Wardrobe  

© 2005 Walt Disney Pictures. 

 

II.4.2 Harry Potter and the Prisoner of Azkaban (2004): Buckbeak  

 In the third Harry Potter movie, Harry Potter and the Prisoner of Azkaban by 

Warner Brothers Pictures with visual effects by Moving Picture Company (MPC), MPC 

developed highly detailed wings for the hippogriff, a mythical creature that is half horse 

half eagle, Buckbeak. He was in the film for about 10 minutes, and had several up close, 

full frame hero shots and, like the gryphons in Narnia, the hippogriff had performances 

with wings opened and folded. While published information on a bit vague on the 

production techniques used to make the wing, possibly due to the proprietary nature of 

the work, Buckbeak is a good example of a wing looking nearly photo-real when 

opened, but looking unrealistic when closed. (See Figure 2).  When closed it loses 

believability because of the way the feathers are overlapping; the different types of 
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feathers make angles to one another not found in a real birds wing or overlap incorrectly, 

causing the wings to look flat.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Buckbeak the hippogriff with wings open and folded from Harry Potter  

and the Prisoner of Azkaban © 2004 Warner Bros. Pictures. 

 

 Every feather on Buckbeak was created was modeled after a real feather in which 

it had geometry representing the central rib called the 'rachis' and filament like barbs and 

some feathers were even more detailed, using geometry to represent the little Velcro-like 

hooks holding the barbs together called 'barbules'. The feather models used depended on 

camera distance- the more detailed feather models were used for closeups and the less 

detailed ones were used for distance. A total of 16,500 feathers applied to the 

hippogriff's skin [Fordham 2004]. The feathers were driven by MPCs proprietary muscle 

system enabling skin jiggle. This allowed the feathers to move with the underlying 

musculature and skin for a more realistic look. The motion of the wings caused problems 

with the interaction of muscles and feathers. They needed a way for the feathers to stack 

up correctly when folding and to prevent intersection. The resulting rig prevented 
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penetrations of the flight feathers when folding, using a program that resolved 

intersections and compressed feathers against one another in the closed wing.  

  

 

II.4.3 Lord of the Rings trilogy (2001-2003): Gwaihir 

 For the movie Lord of The Rings: Fellowship of the Ring by New Line Cinema 

with visual effects by Weta Digital, Ltd. a large eagle named Gwaihir was scripted. He 

was a background character with relatively little screen time and the scenes he was in 

were short and from a distance or at night so little detail was required since it was not 

going to be visible in those conditions (See Figure 03). Unlike Buckbeak or the 

gryphons in Narnia, Gwaihir's performance never required him to fold his wings across 

his back; his performances were all aerial. “The fill eagle used for The Fellowship Of 

The Ring was a cheat – the bare minimum to final the shots [Aitken et al. 2004].” For 

The Return Of The King a much more detailed model was built because the eagle had a 

role requiring closer, more detailed shots. The feather setup for The Return of the King 

was done with layers differentiated types of feathers between “hero” feathers, feather 

code, and fur feathers. The hero feathers were nurbs patches and the animators could 

control them through the rig. The hair feathers were generated over a separate 

subdivision skin that was “like a sock around the original surface of the bird and was 

cleverly rigged not to interpenetrate the hero feathers when they moved [Aitken et al. 

2004].” Gwaihir is an example of the simplified approach often taken toward wings in 
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which there are two rows of feathers, and while this approach is adequate for the role of 

a background character, it may not be suitable for more detailed hero characters.  

 

 

 

 

 

 

 

Figure 3. Gwaihir the eagle from The Lord of the Rings: The Fellowship of  

the Ring © 2001 New Line Cinema [Aitken et al. 2004]. 

 

II.4.4 Clash of the Titans (2010): Pegasus 

 The focus of the published information available on Pegasus in Clash of the 

Titans by Warner Brothers Pictures with visual effects by Moving Picture Company 

(MPC) mainly focused on the treatment of the feathers and touches only briefly on the 

wing. The winged horses had several hundred shots in the film and ranged in detail from 

background characters to highly detailed, full frame hero shots. Each feather was 

procedurally created, or generated via an algorithm, as curves in three dimensions. The 

feathers were generated at rendertime and used MPC's “Furtility” fur/hair utility. This 

gave the feathers a fluffy look to them, as well as allowing the groom artist to use the 

same tools they already had for hair grooming. Feathers were automatically distributed 

across the wing, as well as individually placed and sculpted. Since the actual feathers 
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were created during render time a rig using simple NURBS (or 'Non-Uniform Rational 

Basis Spline') surface was substituted as proxy feathers in the wings for use by the 

animators. With this rig, additional animation and tweaks on the feathers could be done 

[Leaning and Fagnou 2010].  

 Like other films, the treatment of the wing and feather interaction overall was to 

place them as two main rows of feathers and procedurally generated the rest of the 

feathers in the wing, therefore when folding the wings tend stack up in an accordion 

fashion, very evenly. This gives the wings a very fluffy look, but also a slightly 

unrealistic overall. (See Figure 4). 

 

 

 

 

 

 

 

Figure 4. Clash of the Titans © 2010 Warner Bros. Pictures. 

 

II.4.5 Legend of the Guardians: The Owls of Ga'Hoole (2010) 

 The owls created by visual effects company Animal Logic in Legend of the 

Guardians by Warner Brothers Pictures were highly detailed since the owls were the 

main focus of the entire film. (See Figure 5). This required that the wings be able to 
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cover a wide range of performances such as flying, wing-folding, and anthropomorphic 

acting and and equally wide range of shots, from background to hero. 

 Much like real owls, the owls the Animal Logic owls without their feathers were 

skinny and chicken-like; all their volume and shape came from their feathers. The 

remiges, or main flight feathers, were connected to the wings and the animators had 

direct control over them; there were 24 in each wing. The animators had a lot of control 

over the wing and feathers: They had about 7 controls on each wing overall and another 

10 to 15 on the feathers. They could rotate and translate individual feathers as well as 

bend, curl and cup them to simulate the force of wind [Robertson 2010].  

 Body and wing covert feathers were procedurally generated and controlled by the 

character effects team. Animal Logic's effects team had to re-write their feather system, 

Quill, from the ground up. Guide hairs were hand-placed on the models and had 

parameters for each feather that defined the look of the feather, from length and width, to 

how smooth or uniform the feather is from the base to tip. 

Quill also added secondary motion such as wind effects on these feathers once animation 

and a first pass at simulation was in place [Robertson 2010].  

 Animation style was also an issue due to the realistic look for the film. “We did 

some early tests that were a lot more cartoony: squash-and- stretch, bigger arcs, heavier 

anticipations, but as soon as we placed these owls in our realistic world, they didn't 

belong.” The realistic style of the movie made this animations style not fit, however, 

Animal Logic wanted to avoid making it “a documentary”, so it became a balancing act 
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using naturalistic animation for flying or walking, and using more traditional animation 

techniques for performances and talking [Desowitz 2010]. 

 

 

 

 

 

 

Figure 5. Legend of the Guardians: The Owls of Ga'Hoole © 2010 Warner Bros. Pictures. 

 

II.5 The Form and Motion of Real Birds: Morphology of Aves 

 Bird wings are very diverse because of the various modes of flight seen in birds. 

There are, in general, four wing shapes attributed to flying birds: long and narrow 

(soaring birds, like albatrosses), short and round (like in grouse which are good for quick 

takeoff and maneuvering), slim and un-slotted (like in falcons for speed), and 

intermediate dimension slotted wings (like in hawks for gliding ability) [Gill 1995]. 

Despite the great diversity in birds and their wings, they still have a common overall 

bone and feather structure which can be seen in most flighted birds [Sibley 2000]. 

 Bones: Bird wings are a modified forelimb, similar to the human arm: Scapula, 

humerus, radius and ulna, carpus and metacarpus, and the phalanges fused together 

forming the “hand”. (See Figure 6). The shoulder consists of the scapula (shoulder 

blade), coracoid (projecting part of the shoulder blade), and humerus (upper arm). The 
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humerus joins the radius and ulna (forearm) to form the elbow. The wrist bones, carpus 

and metacarpus are fused together forming the carpometacarpals and the digits (fingers) 

are fused together in three digits. The alula (thumb) is also known as the “bastard wing” 

and moves independently of the rest of the wing [Gill 1995]. Due to the similarities with 

a human arm and for simplicity, the terms used for a human arm (“wrist”, “elbow” and 

“shoulder”) will often be used throughout this work. 

 

 

 

  

 

 

 

 

 

 

Figure 06. Bird wing anatomy [Lucas and Stettenheim 1972]. 

 

Feathers: There are three main types of feathers: vaned feathers, down feathers and 

filoplumes. Filoplumes are hair like and monitor movement and position of adjacent 

vaned feathers. These feathers are distributed throughout the plumage and are normally 

not visible due to their small size. Down feathers have no rachis (or central shaft) and 

provide insulation to the bird. Down feathers lie under the vaned feathers and thus are 
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also usually not visible, except on baby birds whose vaned feathers have yet to grow in. 

Because of this, down feathers and filoplumes are not seen in computer graphics except 

for rare instances (like baby birds with down) and are not taken into consideration in this 

project.  

 Vaned feathers are the feathers that cover a bird’s body and have of a rigid center 

(rachis) and soft barbs on the side. There two different types of vaned feathers found in 

the wings: remiges and coverts. The remiges are the flight feathers and consist of the 

primaries, or outermost remiges, and secondaries, the innermost remiges [Gill 1995]. 

These feathers make up a large portion of the shape of the wing, so much so that the 

length and shapes of the primaries and secondaries are used as field marks to identify 

different species of birds [Sibley 2002]. Coverts are, as their name suggests, feathers that 

cover the wings. These feathers can visually be broken up into several groups. The 

arrangement of these feather groups is similar across all species of flighted birds even 

though the shape of individual feathers varies [Sibley 2002]. Often when trying to 

identify a bird by appearance, birdwatchers will use attributes of these feather groups 

(such as color and shape) to tell one bird from another. Within each group, feathers grow 

in orderly rows, overlapping like shingles on a roof, and plumage patters tend to follow 

the contours of these feather groups [Sibley 2000]. These feather groups are primaries, 

secondaries, greater primary coverts, greater secondary coverts, median secondary 

coverts, lesser secondary coverts, and alula [Sibley 2000]. (See Figure 7).  
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Figure 7. Bird feather groups [Sibley 2000]. 

 

  The main area of interest in this project is feathers in the wing that 

interact like venetian blinds or fans. These are the primaries, secondaries, alulas, and 

primary, secondary and median coverts. These feather groups are the main focus because 

they are the ones with the most movement and expression to them, making up the main 

body of the wing. They are often the feathers that are over-simplified which degrade the 

realism of the wings. Feathers such as the marginal covert feathers act more as scales 
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instead of fans or venetian blinds and have very little range of motion to them; their 

portrayal in film is often reasonably accurate and believable because of their simple 

nature and limited motion. There has also been previous work in this area such as in the 

papers by Seddon et al. [2008] and Weber and Goronwicz [2009]. Due to the fact that 

these feathers have a considerable amount of previous work on them and are often 

treated accurately in wings, unlike the main feather groups, they are considered outside 

of the scope of this project.  

 

II.6 Development of CG Birds: Feathers 

 There are numerous papers which discuss methods of creating realistic feather 

geometry, feather coats, and solving for interpenetration of feathers. While this does not 

relate specifically to rigging, these aspects have an impact on the realistic look of a bird. 

These could be used in conjunction with a wing rig in order to improve realism of the 

digital bird. The following are just a few representations of this work 

 Bangay [2007] presents a technique to place feather coats on an animated object. 

Bangay's method uses a vector field in the space surrounding the body of an object 

which then deforms feathers to align with those field lines. This results in feathers that 

are consistent when the object is animated and ensures that the feathers are aligned and 

do not inter-penetrate [Bangay 2007]. This method generates realistic feather coats for 

covert feathers, such as those on the body of the bird and lesser secondary coverts- 

feathers that act more like scales. For non-scale feathers such as the feathers in the wing 

of a bird, this method is inappropriate due to the motion of these feathers, which is vastly 
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different from that of scale-like feathers. This technique and the rig in this thesis project 

would complement one another; between them they cover the complete range feathers 

and feather motion in a bird. 

 Chen et al. [2002] offer a technique using a branching system to define realistic 

feathers. Different types of feathers can be approximated and different attributes can be 

changed by just altering the parameters in the system [Chen et al. 2002]. The strength of 

this system is that it can create a wide range of realistic feathers from these user given 

parameters, however, the downfall to this system is that these feathers are distributed 

across a bird in manner not biologically accurate to real birds causing the realism to be 

lost. A system like this used in conjunction with a feather generation program that 

follows how feathers grown on a real bird, much like the feather generation for the 

wings in this project, would lend itself to very realistic looking wings. 

 Seddon et al. [2008] describes a method of procedurally generating realistic 

feathers that allows them to be artistically groomed. They can be groomed on several 

attributes: splitting of feathers, scraggle (displacement of feathers), tangle (scraggle that 

accumulates down barbs), and clipping (cuts between the barbs.) This technique is 

similar to both Bangay [2007] and Chen et al. [2002] in that it is a method that focuses 

on the look of the individual feathers themselves and a method of generating and 

grooming a feather coat. Also similar to both methods, this method would complement a 

rig such as the one in this thesis project, helping to increase the realism on a CG bird 

through the implementation of realistic feathers and feather coats in addition to the 

realistic wing structure and feather movement resulting from this project. 
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 An intuitive approach to automatically generating feather coats is offered by 

Streit and Heidrich [2002]. This paper particularly addresses the range of colors and 

patterns in a feather coat and different types of feathers in a feather coat where previous 

methods generated only one type. Like Chen et al. [2002] this also focuses on the 

branching aspect of the feathers as a method of parametrization. While this method is 

useful for generating a wide range of feathers, the feathers generated do not increase 

realism; the resulting feathers look more stylized, very soft with an airbrushed quality to 

it and not quite realistic. 

 Goronwicz and Weber [2009], two animators from Dreamworks Animation, 

describe the method of making the feathers on Crane from Kung Fu Panda using 

implicit constraint surfaces. Their method focuses on creating feathers that will not 

penetrate and will result in visually smooth animation [Goronwicz and Weber 2009]. 

Both this paper and Bangay's address the motion of the feathers when animated as well 

as solving for interpenetration of feathers. Also similar to Bangay's paper this method 

could be used in conjunction with the rig presented in this thesis project to solve 

interpenetration issues on the feathers, creating a visually more appealing and realistic 

wing. 

 

II.7 Development of CG Birds: Production Environment 

 The production environment requires that the form is driven by an art director 

who is responding to the director's vision for a film. This necessitates choices about the 

strategy implemented when creating the rig for the film. Unlike the previous section 
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which discusses methods for solving problems on the rig itself, the example found here 

focuses more on past methods used in production and how to incorporate them into 

future work. 

 Hutchings [2007] offers a project to produce a fully modeled, textured and rigged 

bird wing that can fold, open and flap effectively. She describes various methods of 

modeling and rigging that have been utilized in past film and games and how they apply 

to her wing rig as well as offering a tutorial of how the rig was created. Much like 

previous methods, such as those used on Gwaihir in Lord of the Rings, her rig uses two 

main rows of feathers: remiges and coverts. The author bases the rig on a real bird’s 

wing and uses the same skeletal structure as a real bird in order to improve the realism in 

the wing [Hutchings 2007]. There are many similarities between Hutchings' project, and 

this thesis project such as the research of previous methods of bird wing rigging, creation 

of a methodology for wing rigging, and basing the rig off real bird anatomy to try and 

improve realistic bird motion. 

 

II.8 Development of CG Birds: Scientific Visualization 

 Rigging for film has different requirements than that of rigging for scientific 

visualization; the goal in rigging for film is that of facilitating performance requirements 

defined by the animators, whereas rigging for scientific purposes is to facilitate learning 

and hypothesis testing. This means that the rigs for the former generally are more art 

direct-able, and while based in realism, will often give the bird a range of motion and 

abilities that are not found in real birds, whereas rigs for the latter try to strictly adhere to 
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the motions and abilities of a real bird.  

 Wu and Popovic [2003] describe a physics-based method to synthesize bird flight 

in which the bird follows a specific trajectory. The authors rig the bird using an 

articulated skeleton with elastically deformable feathers and use joint torques and 

aerodynamic forces over time [Wu and Popovic 2003]. Wing beat motion is solved 

separately. All these calculations are put together to simulate realistic bird flight for 

different birds in scenarios such as landing, taking off, and rapidly descending [Wu and 

Popovic 2003]. This rig and resulting animation is highly realistic regarding the motion 

of the bird as a “living” creature as well as the biological motion of its wings and 

feathers. While the result is highly realistic, the resulting animation is a product of 

inputting variables such as wind, drag, and momentum which controls and animates the 

rig instead of an animator’s effort to produce a performance- there is very little artistic 

control over this and it would not be very feasible to use in film. 

 

II.9 Development of CG Birds: Videos and Tutorials 

 Not all techniques are published by Industry professionals. There are many 

techniques, tutorials, and videos produced by armature riggers and others on the internet. 

The internet community, especially in the field of computer graphics, is a valuable 

source of information because it hosts a great deal of readily available knowledge such 

as tutorials on techniques, videos of others works, and even useful tools that are 

available to download. While the net can be a great source of information, it can also be 

problematic because what is seen and claimed in these videos and tutorials cannot 
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always be validated or often contains no information on how the technique was 

implemented. Despite usually lacking detailed information, the following videos and 

tutorials have relevance to this project, often as an inspiration point for idea generation. 

 Addanki [2010] demonstrates a modular bird rig created in the 3D software 

program Maya. This rig is generated using several scripts written using Mel and Python 

[Addanki 2010]. The control system for the feathers in this video was the inspiration for 

the final method of control on the feathers for this thesis project; it allowed for flexibility 

to shape the wing as desired while maintained the realistic movement of the feathers 

themselves. What detracted from the realism in this rig, however, was the use of 

extraneous bones in the wings. While a real wing has three main rotation points in it- 

shoulder, elbow, and wrist - Addanki's rig has eight. This makes the wing very flexible 

and able to make smooth arcs, but breaks the realism of it because the wing becomes too 

flexible, almost cartoon-like. 

 Mike Paixao has written several tutorials, many of which are on his site at 

http://simpletofind.ca/. Most relevant to this project is a tutorial on how to set up a wing 

using a feather tool called Mfeather, found on Creativecrash.com [Paixao 2010]. While 

the resulting rig is not realistic at all in either form or motion, it has an amazing amount 

of flexibility in the control system. The movement of the feathers, in particular the 

splaying and folding of the feathers when the main joint control is manipulated inspired 

the high level feather control system for my thesis.  

 Jo Plaete has written a tool that procedurally generates and rigs feathers in a 

wing. This tool is created in Python, uses Actionscript to create the user interface, and 
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Vbscript [Plaete 2008]. The control system for this wing is similar to the one created by 

Addanki which affords the wing a great deal of control and flexibility. Also similar to 

Addanki's rig is that the wing uses an unrealistic bone structure, causing the wing to 

have non-realistic wing movement. Unlike Addanki's tool, this tool uses different layers 

of feathers that the program allows the user to switch between. This allows the user to 

control the feather behavior and add as many layers of feathers as needed.  
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CHAPTER III 

METHODOLOGY 

 

III.1 Scope of the Project 

 The main goal of this project is the creation of a tool that can be integrated into a 

3D software package which provides a work flow that is efficient and effective for both 

rigging and animation of realistic avian wing motion.  To accomplish this goal, the scope 

of the project is to covering the needs of artists that are specific to these two tasks and 

limited to a specific type of wing form and motion. Avian characters are so diverse, in 

anatomical variation and style of flight that it would be difficult for one project to cover 

that entire range in aves. Since this project focuses solely on one part of anatomy, avian 

wings, the methodology will therefore not cover a broader range of issues typically 

considered when dealing with a more comprehensive approach to character rigging. 

 The audience for this tool is artists dealing with rigging and animation issues 

common to the visual effects film industry. As such, biological realism must be balanced 

with artistic control. The rig must contribute to the creation of an animated performance 

which, in turn, contributes to storytelling. Thus, providing the capacity for purely 

biologically accurate movement will not be sufficient.  

 

The main ideas of this project are: 

 Control over feather placement: Feathers are laid out into groups as 

they would be on a real bird's wing. 
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 Management of feather interaction: Feathers move as they would on a 

real bird. Real bird’s wing feathers move like fans or venetian blinds, 

each feather stacking in a certain order allowing the bird to change the 

shape of the wing as it is opened and closed. Each feather group also 

interacts properly with the groups surrounding it. This is an important 

aspect to the realistic movement- it is more biologically accurate which 

facilitates natural movement and contributes to believability. 

 

III.1.1 Defining Realism 

 A digital characters looks, or design style, can be classified into three categories: 

primitive, abstract and naturalistic.  Primitive is a character that is simplified down to 

base characteristics and this style is often associated with the cartoon aesthetic. Abstract 

characters are those whose elements are, while plausible, proportioned or combined in 

ways not found in nature. Lastly, naturalistic characters are those which look and behave 

like a creature or person from the real world [McLaughlin, 2006, p. 5-6). This project 

focuses mainly on creatures that are naturalistic in style and excludes those which are 

primitive. Examples of these primitive style birds are Kevin in Pixar's Up (2009), Vlad 

from Blue Sky's Horton Hears a Who (2008), and the birds in Pixar's short For the Birds 

(2000). While abstract characters may be mentioned, such as Buckbeak the Hippogryph 

from Harry Potter and the Prisoner of Azkaban (2004), the main focus is on the wings 

of the character, which are naturalistic in style even if the overall character is abstract. 

 Even narrowing the scope to naturalistic birds, the range is still too broad.  Birds 
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have a great amount of diversity of form and have many different types of wings for 

different types of birds, even if the overall structure of the wings is the same. Different 

wings have different shapes; long and narrow for seagull, broad and round for monkey 

eagle for example. In the interest of time and workload, the scope is narrowed to the 

form and movement of one type of wing: broad hawk wings, more specifically red-tailed 

hawk.  

 

III.1.2 Feather Types Considered 

 Some parts of avian wings have been implemented successfully before, such as 

the body feathers on a bird and the covert feathers in the wing.  Some examples of such 

work can be seen in the papers Generating feather coats using Bezier curves [Streit and 

Heidrich 2002] and Animated feather coats using field lines [Bangay 2007]. These 

feathers do not have much range of motion and their placement over the wing is more 

like that of scales compared to the other feathers in the wing, which act as venetian 

blinds or fans. This project focuses on the feather groups in the wing that have not had as 

much prior work done on them, therefore this tool only focuses on feathers that act as 

venetian blinds or fans and disregards those that do not.  The following groups of 

feathers are built into the rig: 

 primaries,  

 secondaries,  

 primary coverts,  

 secondary coverts,  
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 median coverts, and  

 alula.   

Scapulars and lesser secondary coverts are not included because these feathers fall under 

the category of scale-like feathers.  

 

III.1.3 Ignoring Surfacing Issues 

 Lastly, texture and design of the feathers themselves also are not taken into 

consideration because the focus is on the rig itself and the movement and interactions of 

the feathers. Like scale-like feathers, there has been numerous works done on how to 

make effective and realistic looking feathers such as Modeling and rendering of realistic 

feathers [Chen et al. 2002] and Rendertime procedural feathers through blended guide 

meshes [Seddon et al. 2008]. 

 

III.2 The Importance of Form 

 A bird's wing without feathers is a stubby awkward looking thing that makes one 

think more of buffalo wings instead of flight. The feathers and the way they grow create 

the form and look of the bird. In order to create a realistic looking bird it follows that the 

form must be accurate.  

 The rigging tool is based around this concept of accuracy of form. A bird's 

feathers do not grow uniformly over its body; they grow in organized tracts and the 

resulting coat can flex, expand and contract. The biology of how and where the feathers 

grow is used as a basis for how the placement tool operates. The user has the capacity to 
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alter limb length, add more feathers in the wing to create a denser coat, and give the 

program different polygonal models to change the feathers. However, the user cannot 

redefine the underlying biology, such as adding more bones.  

 The user has control of how many feathers the program generated, but the 

program determines how the feathers are propagated over the wing based on the joint 

placement. Since the wing anatomy of all birds is mostly the same (barring some 

exceptions such as penguins or long winged birds) the user is not allowed to change the 

placement of any feather groups on the wing or how the feathers are propagated in any 

group. Individual feathers can be adjusted once they are generated (scaled in any 

direction or removing a feather entirely) but altering the placement of the feathers as 

individuals or a whole group will cause unexpected results or break the rig, therefore the 

user is not allowed to do so.   

 The wing generation program creates a control for automated wing folding. This 

automated wing fold is a control that will set the wing in a default folded pose; this helps 

to streamline animation by giving the animator a control to quickly put it in a commonly 

used pose. The default wing fold pose the program generates cannot be altered in the 

generation program, unlike the feathers which can be changed in number, however, the 

resulting pose can be used as a base and add animation on top of it or change it as 

needed once it is generated. 

 In summary, the user is provided control over three biologically-driven factors 

that can also have a significant artistic impact:  

 1. The number of feathers in each group; 
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 2. The length/proportion of the bones; 

 3. The shape of the feathers. 

 However, to preserve realism, the user is prohibited from altering these 

biologically-driven factors:  

 1. The number of bones; 

 2. Feather group placement; 

3. Base wing folded pose. 

 

III.3 The Importance of Motion 

 Even when the form is correct, if the wing movement is incorrect then the 

believability is still lost.  Two factors contribute to motion: the flexibility of the rig and 

the skill of the animator.  An artist who is skilled in the craft of animation when given a 

rig that is hard to use or created to be un-realistic will have a difficult time creating a 

realistic animation.  In creating the rig, a great deal of consideration is given to the 

motion of the feathers and the best way to give the animator control over that motion 

while still maintaining biological realism. 

  

III.3.1 High-level and Low-level Control 

Control of the wing is broken up into two sets of controls, high-level and low-

level. Doing so makes the controls more intuitive and quicker to use. The high-level 

controls are the overall controls which allow the animator to very quickly pose the wing 

and feathers. These controls drive the joint movement, either through FK or IK motion, 
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for overall posing of the wing and also controls the overall spread of the feathers. Low-

level controls give a finer amount of control to the animator.  These controls adjust 

individual feather groups and feather curling/deformation. The high-level controls have a 

setting that controls the visibility of these low-level controls, this way they can be made 

visible when they are needed and invisible when they are not. This reduces visual clutter 

and confusion. 

 

III.3.2 Interpolation Between Poses 

 Interpolation is the calculation of intermediate values, in this case keyed poses, 

between two or more previously determined values [Ford & Lehman 2002]. In most 

common animation systems the default interpolation between keyed poses is a smooth 

interpolation, meaning that the action eases into a position and rotation and eases out of 

the next keyed position and rotation. Some animators may want to alter this default 

interpolation by breaking the tangency on the animation curves, creating a sharper or 

slower movement, especially on terrestrial creatures.  However, for flight animation 

where hard ground contacts are absent, this default smooth interpolation is appropriate.  

 

III.3.3 Representation of Physical Forces 

While most motion is biologically driven, controlled by the birds bone position 

and muscle movement, one important aspect of motion is that of dynamic forces such as 

wind force and air turbulence.  A similar approach to that used in The Legend of the 

Guardians is used for this project; wind force can be artistically controlled on the main 
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flight feathers and air turbulence is not given to the rig. The animator can artistically 

control the wind force on the main feathers via a control that curls the feathers. This 

allows the artist to create smooth and visually appealing arcs. Without this control the 

wings would look stiff, even if everything else in the wing moves in a realistic manner. 

The covert feathers have no such control because the force of the wind does not 

primarily affect them; they are more affected by wind turbulence on the bird because the 

covert feathers act as eddy-flaps that help to maintain lift [Ritchison 2010].  This effect 

of wind turbulence is better achieved through a simulation than it is through animation 

of the rig, so it has not been added into the rig itself. 

 

III.3.4 Range of Motion and Control Limitation 

 Setting limits on a characters controls defines the range of motion the character 

will work within. Locking or limiting a control prevents the user from possibly using the 

control in such a way that would impede rig function or give undesirable results. Limits 

can be set on a control by setting specific attributes (such as translation and rotation) to 

only function within a defined range or by locking the attribute entirely so that the user 

cannot alter it. For this project, range of motion is only limited in cases where it would 

break the rig entirely. This choice was made for several reasons: 

1. To accommodate extensibility: The rig is a general rig and does not 

have a specific character or set performance to tailor it to.  Due to this, it 

is impossible to predict what will be required of it or what performances 

will be needed; whether it is a fully realistic performance such as that of a 
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real bird, or an anthropomorphic performance such as that in The Legend 

of the Guardians.  

2. To accommodate artistry: The ability to have artistic control over the rig 

and allow for the use of traditional animation techniques.  

  

 Putting very little limit on the range of motion of the controls allows 

riggers to tailor the wing to their specific project.  The rigger can choose which controls 

to limit and which to allow instead of being forced to use an arbitrary range of motion 

that was chosen for the purposes of this project. Where control is limited or removed 

entirely, the specific reasons for why for each case are explained in the implementation 

section. 

  Traditional animation techniques, originally developed for hand-drawn 

animation, are used to enhance a character's performance, such as the case of the owls' 

anthropomorphic performances in The Legend of The Guardians. It is important to allow 

for the use of those traditional techniques within limits.  

Artists need rig controls that enable them to move past the motions and actions a 

real bird is capable of, yet still keep within the scope of possible the biological realism 

for many reasons. One such reason is visual clarity, such as in the case of “breaking” an 

elbow- or bending the joint, sometimes in a way that is anatomically incorrect- to make 

the movement of an arm swing look more natural [Williams 2001]. (See Figure 8). 
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Figure 8. Example of elbow breaking for swinging arms from  

The Animators Survival Kit [Williams 2001]. 

 

In the special case of Buckbeak the hippogriff in Harry Potter and the Prisoner of 

Azkaban the wings were able to be scaled in size. This was because when the wings 

unfolded they looked too small to hold the weight of the hipogriffs horse body in the air. 

The ability to control the size of the wings helped to increase believability even though 

avian wings do not grown and shrink in reality [Fordham 2004]. In other cases breaking 

the realism is needed for dramatic effect, visual clarity, or expressiveness such as in the 

Legend of the Guardians which required anthropomorphic performances of the owls 

such as speaking and gesturing [Desowitz 2010]. It is hard to determine where to draw 

the line between realism and artistic control and sometimes it must be determined on a 

case by case basis.  For this reason, the controls on this rig default to provide more 

flexibility rather than less.  Control is restricted or limited where an action would cause 

problems with the rig or look entirely unnatural (such as translation of a joint causing 

unbelievable stretching). 
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III.4 Results Analysis 

 The three main questions to answer based on the project goals are: 

 Does the rig program facilitate effective wing rig creation? 

 Does the rig program facilitate efficient animation? 

 Does the resulting rig give realistic look and movement to the wing and feathers? 

 

 In order to answer these questions, the research method for this project is that of 

qualitative research and observational usability testing. The focus of this rig is to 

improve the realism, but this begs the question of how is realism measured? The realism 

relies on many factors such that it would be difficult, if not impossible to measure a 

single factor, such as effect of a biologically accurate rig, by quantitative means. If it 

were possible to ignore factors such as lighting and texturing and only focus on the 

movement of the rig, there would still be two factors affecting it: the skill of the 

animator and the biological accuracy of the rig.  Even if the rig is completely 

biologically accurate and capable of perfect realistic movement, but in the hands of an 

artist who is unskilled in the craft of animation, the result will still be a loss in realism.  

 Due to this I've chosen using a qualitative method of analysis using participant 

observation and feedback which gives a more in-depth understanding of the 

effectiveness of the resulting rig. Three Master of Science in Visualization students at 

Texas A&M University, two riggers and one animator, were chosen based on having had 

prior experience in rigging and animation and asked to give feedback on WingCreator 

and the resulting rig. The small number of people who gave feedback was due to the 
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limited pool of students with experience in these fields, the method of contact, and also 

due to time constraints on the students. Prospective students were contacted in person to 

ask their participation. Possibly a better method of contact that may have generated more 

prospective student testers is a mass e-mail request for participation over the 

Visualization Lab’s list serve, which is sent to all students in the department . Other 

students were asked to participate but declined citing a lack of ability to devote the time 

needed to give adequate testing and feedback. A better method of contact, access to a 

larger pool of students with experience in these fields and lesser time constraints may 

have generated more participation in feedback for WingCreator. 

 To test the rig, the animators were asked to animate the rig to a short scene of a 

real bird to try and match the motion. The riggers were asked to test out the rig 

generation program and the rig. Both groups were then asked how they felt the rig and 

program performed, what its strengths and faults were, what they liked and disliked 

about it, how it could be improved, and their thoughts on the realism results and how 

they attempted to achieve realism using the rig. This feedback from participants gives 

empirical evidence to answer the three main questions regarding how well the rig 

succeeded in its goals and what could be done in the future to improve. 
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CHAPTER IV 

IMPLEMENTATION 

 

 The following section discusses aspects of how the WingCreator program and rig 

was implemented, including the software and programing language used, and detailed 

descriptions of the feather generation and control system build tool.  

 

IV.1 Implementation Environment 

 This project focuses on the supporting animations as would be used in the visual 

effects film industry. Therefore, one of the key components to implementation is use of 

the tool within 3D graphics software that is common in the industry and widely used. 

For this purpose, Autodesk's Maya 2011 was selected as the 3D animation software 

within which the tool was built. Maya has wide user base has been used on films such as 

Rango (2011), Star Trek (2009) and Shrek (2001) [Customer Showcase n.d.]. Maya is 

also available for multiple operating systems including Linux, Windows, and Mac. Maya 

uses a modular architecture, also known as node-based or hierarchical architecture, 

which is needed in order to implement the methods of joint driven and control driven 

components of the wings.  

 The Graphical User Interface (GUI) for WingCreator was created using QT 

Designer, a graphical program that is used to build user interfaces. This was chosen 

because not only is QT Designer is easy to use due to its drag and drop interface and 

automatic code generation, Autodesk has improved the QT integrated with Maya 2011 
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so that integrating a QT interface is simple, requiring only a few lines of code to do so 

[Maya 2011 Highlight 2010]. This makes it easier to use QT Designer to create a GUI 

that will work in Maya instead of having to learn how to write one from scratch using 

MEL or Python code.  

 Lastly, a code editor or text editor is needed. A regular text editor could be used 

for the task; however, a code editor that can recognize the programming language to 

highlight syntax makes the job easier. The program can be chosen solely on the 

preference of the person creating the rig; my preference is Notepad++ since it has syntax 

highlighting, and supports code folding (expanding and reducing sections of code in a 

document), and supports plug-ins such as the one I commonly used from 

creativecrash.com which allows it to recognize MEL script syntax as well as its native 

python programming syntax [Csaez 2008]. 

  The choice in programming language is based largely on what programming 

languages the software uses. Maya 2011, supports MEL (its own native language) and 

integrates python, so the choice is between those two languages. Python 3.1.3 was 

chosen to write the code instead of MEL for several reasons. First and foremost, Python 

is becoming the standard programming language used in the computer graphics industry 

and as such it can be used by a wide audience. Second, the python syntax is clean and 

easy to understand, making it a good language for novices as well as experts and it also 

is platform independent so it can be run on any operating system that has python 

installed.   
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IV.1.1 Software Terminology 

 The terminology across 3D graphics software is not standardized. For the 

purposes of this project, I use the following terminology which is common to Autodesk 

Maya 2011 and referenced from Inspired 3D character Setup [Ford and Lehman 2002]: 

 Forward Kinematics (FK) – Method of animating skeletons in which each bone 

is individually rotated.  

 Inverse kinematics (IK) – Method of animating skeletons in which the 

computer solves the bending of a joint based on the position of one target object 

(usually an IK handle).  

 Constraint – A direct connection of attributes on one object to the corresponding 

attributes of another object. 

◦ Orient constraint – Connects the orientation (rotation) attributes. 

◦ Point constraint – Connects the position (translation) attributes. 

◦ Parent constraint – Connects all attributes (translation, rotation, and scale.) 

◦ Aim constraint – Connects the aim vector of one object to follow a target 

object. 

◦ Pole vector constraint – Connects the pole vector of an IK handle. 

 Blendshapes – Also known as morph targets, a "deformed" or end target version 

of a mesh is stored as a series of vertex positions. During animation the vertices 

are then interpolated between the original and target mesh. 

 Keyframe (Key) – A frame at which an important change in an attribute (such as 

scale, translation, etc.) are saved to preserve and define the movement in an 
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animated object or character. 

 Set Driven Keys – A single attribute is set up to control (“drive”) one or more 

other attributes.  

 Parenting – Different from parent constraining, parenting is the process of 

attaching a node above another node in a hierarchy. 

 Node: The representation of an object or set of objects in which all information 

for that object or objects is referenced.  

◦ Null Node: A node containing no objects. Known in Maya as a “group” and 

referred to from here on as a “group node” so as not to cause confusion when 

referring to a group of feathers instead of a node. 

 

IV.2 Skeletal Setup 

 Like any animal, the structural foundation for movement is the bones and this is 

also true of most biologically based rigs. Following the anatomy of a real bird, three 

digital bones were used to represent the main bones in a bird’s wing (humerus, 

radius/ulna, and bones making up the manus.) Other bird rigs have used more bones in 

the wing in order to give it flexibility when flapping, however, these can also make the 

wing look unnatural, bending in too many places such as seen in the rig by Subbu 

Addanki [Addanki 2010].  

 To maintain the proportions of a real bird, an image of a Red -Tailed Hawk is 

overlaid with an X-ray of Red-Tailed hawk bones so that the bone position within the 

wing was visible as a guide. (See Figure 9). The image is imported into Maya 2011 and 
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used as a guide because it allowed identification of where the joints for the rig needed to 

be placed. For joint placement, the user places locators at the rotation points of the joints 

(shoulder, elbow, wrist and tip of the hand) then the program will take the XYZ 

locations of those locators and build the virtual bones between them. (See Figure 10). 

 

 

 

 

 

 

 

 

Figure 9. Red-Tailed Hawk image and X-Ray. 

 

 

 

 

 

 

 

Figure 10. Resulting combined photos and skeleton. 

 

IV.3 Feather Generation 

 The feathers of main concern were the primaries and secondaries (remiges). 
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These feathers had the widest range of motion and were the most expressive, so these 

were the feathers that were focused on first. Once a generation and motion system was 

created for these feathers, the same or similar code could be used to for generating the 

other feather groups and creation motion system for them. 

 Often when creating a wing in CG the rigger will hand place the feather 

geometry in the wing, such as was done for Pegasus in Clash of the Titans. Hand placing 

feathers in a wing can be time consuming. Procedurally generating the feathers over the 

wing can be much more efficient. The underlying anatomy is the same for nearly all 

birds. This makes it possible to write a script to procedurally generate those feathers for 

each group. The feathers in a bird’s wing are not all the same, but within each group the 

feathers are the same shape so a single geometry for each group can be used as a base 

from which others can be generated. This means that the program requires a right and 

left version feather geometry for all six feather groups (excluding the tertiary feathers, 

which were similar enough for both right and left that only one geometry was needed). 

Using a Red-Tailed hawk as a base provided the number of wing feathers used for the 

initial feather generation: 10 primaries, 13 secondaries [Proctor and Lynch 1993]. 

 Several functions are required to determine feather generation for any group of 

feathers: a function to generate feathers from the start to the end position of the feather 

group, fanning function of the group, and scaling function of the group.  

 Start to end function: Feathers in a group are positioned in between two 

locators which represent the start and end positions of a bone in a real bird. These 

two locators are the “start” and “end” positions of a feather group. If the feathers 
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are, for example, the secondary feathers, these feathers begin at the elbow on the 

anterior side of the ulna and end at the wrist. The function takes in the start and 

end locator's XYZ coordinates. It then divides the distance between those two 

locators by the number of feathers the user has entered for the group and places 

the feathers incrementally between those two locators. (See Figure 11). 

 

  

 

 

 

 

 

Figure 11. Start and end placement. 

 

 Fanning function: Fanning is the amount of rotation an individual feather 

receives based on its position in the wing. Since feathers grow in a fan shape, 

each feather had to have a specific rotation to make that overall fan shape. (See 

Figure 12). Since the number of feathers was variable depending on the user 

input, a function needed to be generated that controlled the rotation of the 

feathers dynamically. In order to do this, feathers are generated in place and 

then manually rotated them into position based on the Red-Tailed hawk's 

feathers in the image. The rotation values for each feather were input into a 
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Microsoft Excel spreadsheet where a graph was generated from them. A trend 

line was added through those points resulting in a function for the group. The 

best fit of the trend line through the points varied between feather groups but 

was often a 1
st
 or 2

nd
 degree polynomial.  

 

 

 

 

 

 

Figure 12. Fanning function results. 

 

 Scaling function: Similar to the fanning function, the scaling function is the 

amount of scaling an individual feather receives based on its position in the wing. 

(See Figure 13).The scaling function is derived the exact same way as the 

rotation function is- through manual scaling to the picture, then inputting the 

values into Excel and generating a function. The best fit of the trend line through 

the points varied between feather groups but was often a 5
th

 degree polynomial. 

One problem that came up was that the feathers had a tendency to “explode”- 

they started scaling exponentially regardless of the function. This was caused by 

not having enough significant digits in the function.  
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Figure 13. Scaling function results. 

 

For example, the scaling function for primary feathers, where y is the resulting scale and 

x is the given number of a feather, is:  

y = 0.688533 + 0.242191(x) – 0.153958 (x
2
) + 0.041241(x

3
)  

– 0.00439272(x
4
) + 0.000156154(x

5
)  

When the function only had 4 significant digits, the feathers exploded- precision is 

important. 

 Once the start and end positions, scaling function, and fanning functions are 

determined for a group of feathers, any amount of feathers can be specified and the 

resulting shape will be the same. (See Figure 14).In the program, a separate function for 

each feather group was created instead of trying to make one function to generate all the 

feathers. This was done because each group of feathers had special considerations taken 

to it, therefore one generateAllFeathers function would be difficult to implement since it 

would have to take in each consideration and special case for each group. It makes the 

code much cleaner and easier to read when the feather generation functions are separate 

for each group. Primaries and Secondaries were created first, and the rest of the feather 
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generation functions were based off those two groups. The different considerations for 

the rest of the feather groups are as follows: 

 Secondary coverts: In reference to the secondary feathers, the placement for the 

secondary coverts is shifted dorsally so that they lay on top of the secondaries. 

They have the same shape as secondaries, therefore the secondaries rotation and 

scale functions are used, but the scale is multiplied by 2/3 to make them 

proportionally correct based on the Red-Tailed Hawk image. 

◦ Tertials: Tertials are a special case. Since some references list them as part 

of secondaries, and others list them as apart from them, artistic license is 

taken with the tertials and they are considered for the purposes of this project 

to be part of secondaries. Tertials on a real bird wrap around the base of the 

elbow. To achieve this effect for the rig the tertial feathers as a group have a 

start position at the elbow and end positions at 1/20
th

 the length of the 

humerus. This measurement is an approximation of the tertial feathers from 

the reference images of the Red-Tailed Hawk. The scale and rotation 

functions are derived in the same manner as the other feather groups. 

 Primary coverts: Similar to the secondary coverts, these were also shifted 

dorsally to lie above the primaries, and use the same primary rotation and 2/3 

primary scale function.  

 Median coverts: Similar to secondary coverts in placement, they were shifted 

dorsally to lie above the secondary coverts. The overall shape of the group is 

different than the secondary coverts and thus got their own scale and rotation 
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functions. 

 Alula: The alula is attached to a bird’s pollex, or “thumb” [Proctor and Lynch 

1993]. Due to this, the function for start and end was shortened because the 

pollex is not the same length as the manus. It is approximated at 1/3 the length 

for the purposes of this project, so the feathers only generate from the wrist to 1/3 

the distance to the tip of the manus. The number of alula feathers is hard-coded at 

3 since birds usually have only three alula [Proctor and Lynch 1993]. It also has 

its own scale and rotation functions. 

 

 

 

 

 

 

 

 
Figure 14. All feathers generated in wing. 

 

One thing that is common to all feathers, regardless of group, is that they need to be 

rotated slightly around the shaft of the feather (Z axis as seen in Figure 15) so that they 

overlap like real feathers instead of interpenetrating. The rotation used to get this slight 

overlap is 5.0 degrees along the Z-axis. 



50 

 

 

 

 

 

 

  

Figure 15. Rotation axes of a feather. 

 

IV.4 Controls 

IV.4.1  Feather Controls - Initial Approach 

 Feather controls are based on the idea that the feather groups in a bird's wing 

work similar to that of a fan. Originally, the feathers in a given group were individually 

orient constrained to a controller that, when translated, manipulated the spread and angle 

of the feathers. All feathers for that group were put into a group node and the group node 

parent constrained to the joint so it would follow the movements of the joint. (See 

Figure 16). 

 

 

 

 

 

 

 

 

Figure 16. Initial approach- feather groups before and after translation of control. 
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This solution gave the desired control over the spread of the feathers, but caused several 

problems: 

1. It was difficult to use. The control over the spread of feathers was too indirect; 

since the controller was not connected to or near any feathers but instead hovered 

away from the wing it was difficult to judge what direction and how far the 

controller needed to be moved to get the desired spread or fold. 

2. It did not allow feathers groups to work together. One feather group would move 

entirely independent of the others, such as in the case of the gap seen between the 

primary and secondary feather groups when the wrist was bent, seen in Figure 

17. 

 

 

 

 

 

 

 

 

Figure 17. Feather groups splitting, showing gap between primaries and secondaries. 
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IV.4.2 Feather Sub-controls 

 The second approach, and the one that is used for the rig, is influenced by the 

modular bird rig created by Subbu Addanki [2010]. Addanki's rig uses controls between 

feather groups to manipulate the spread of the feathers. For the rig in this project there 

are two controls for each group, one at the each end of the group, that control the spread 

of the feathers. Instead of orient constraining each feather to the one control, each 

feather is given a weighted percentage based on its position in the wing, and orient 

constrained to both controls based on that percentage. For example if feather 5 is in the 

center of the wing, it would be constrained 50% to control A and 50% to control B, 

whereas Feather 2 may be closer to A, so it would be 90% to A and 10% to B. (See 

Figure 18). This is what causes the fanning motion of the feathers in a group between 

each control. 

 

 

 

Figure 18. Feather low-level controls. 

 

 The feathers are contained in a group node with its origin at the wrist. The group 
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node is then parent constrained to the joint that corresponds to where the feathers 

originate (e.g. secondaries grow from the ulna, so they are parented to the joint that 

corresponds to the ulna.) This setup allows the feathers in a group to follow the 

movement of the joint they are parented to, resulting in the feathers appearing to be 

attached to the bone and muscle like on a real bird. 

 

IV.4.3 Feather Main Controls 

 The sub-controls for each group gave the needed flexibility and control, but 

animating all the controls for all the feather groups in order to animate the wing is 

tedious and inefficient. To address this problem, three higher level wing controls were 

added that provide adjustment of large sections of the wing very quickly. These three 

controls adjust the span of the feathers in the wing as a whole: 

1. Tip control - controls the distal end of the wing; 

2. Middle control - controls the midpoint of the wing;  

3. End control - controls the portion of the wing nearest the body. 

 Each of the sub controls was then parented one of the three high level controls 

based which control it was closest to given its position in the wing. (See Figure 19). An 

attribute using set driven keys to control the visibility of the sub-controls was added to 

the main spread controls. The animators can turn off the sub-controls when they are not 

needed, which makes the control system easier to use and less confusing. 
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Figure 19. Feather main controls. 

 

IV.4.4 IK and FK Setup 

 Control over the motion system is broken into two parallel control systems: IK 

and FK. This allows the animator flexibility to switch between IK mode and FK mode, 

depending on which they prefer to use or the requirements of the performance they are 

trying to create. For the two systems to work on one rig, three separate joint hierarchies 

are required; one for the FK, one for IK, and one as a transition. The IK and FK provide 

two separate solutions to the configuration of the bones. The transition joint hierarchy it 

can match either the FK solution or IK solutions or blend progressively between them, 

allowing the animator to switch modes as needed. (See Figure 20). The feather group 

nodes as well as the stand-in geometry is parent constrained to this transitional hierarchy 

so that the feathers and geometry will always move correctly whether the rig is in IK 

mode or FK mode- the tip and mid wing controls are constrained to the wrist joint and 

the end control to the elbow joint. In order for the wing to transition between the 
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hierarchies, each joint in the IK and FK skeletons are orient constrained to the 

corresponding joint in the transition skeleton.  

 For the IK setup, an IK rotate plane solver, a node that uses an algorithm in the 

software to calculate the joint angles based on the user's manipulation of the IK solvers 

parts, is used. This solver connects from the shoulder to the wrist, and when the handle 

at the wrist is translated solver calculates the joint angles between the wrist and shoulder. 

The controller for the wing is placed at the wrist and the IK handle is point constrained 

to the controller. The wrist joint of the IK joint chain is then orient constrained to the 

wrist control. Point constraining the IK to the control allows the user to be able to 

manipulate the position of the entire wing by translating the wrist control, while orient 

constraining the wrist join allows manipulation of the wrist by rotating the control. Since 

the three main feather controls are connected to the transition joins, they will follow the 

actions of the joints and spread or fold when the wrist control is moved. 

  

 

 

 

 

 

 

Figure 20. IK (lower white), FK (upper white), and transitional (green) hierarchies. 
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 Sometimes when working with IK solvers, the IK will flip 180 degrees. This is 

due to an the fact that there are an infinite number of solutions for the joints based on the 

start and end positions of the IK, so to limit those numbers to a single solution a pole 

vector, which is an axis that defines which plane the joints will lie in, is used as a 

method of selecting a plane for the joints [Ford and Lehman 2002]. To prevent the IK 

from flipping, the IK's pole vector is pole constrained to a control located behind the 

elbow. This pole control must be located in the same plane as the joints and far enough 

behind the elbow that it does not interfere with the wing; if it is too close the control is 

difficult for the animator to find because it can get mixed up with character geometry or 

other controls. Manipulation of the pole control can change the pole vector for the IK 

and help position the wing in IK mode.  

 For the FK setup, a control was created for the shoulder, wrist, and elbow and 

placed at each joint. The corresponding joints are then orient constrained to the controls. 

Once the IK and FK setups were complete, an attribute called IK FK switch is added the 

shoulder and uses set driven keys to change the influence of the orient control; if the 

switch is set to 1 then the skeleton orients with the IK skeleton, if it is set to 0 it orients 

with the FK skeleton. The last step is to use set driven keys to alternate the visibility of 

the IK and FK controls with IKFK switch; when IKFK switch is set to 1 (IK mode) the 

visibility on the FK controls is 0 (not visible), and vice versa. This keeps the controls 

clean so that the controls not in use are not seen and thus not obstructing the view or 

getting in the animators way. (See Figure 21). 
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Figure 21. IK control setup and FK control setup. 

 

IV.4.5 Automated Folding 

 The fold control is created as a set driven key control. An attribute is added to the 

Shoulder control called AutoWingfold with a minimum value of 0 and maximum of 10. 

This will allow the user to dial in a value and the wing folds that percentage (e.g. 

AutoWingfold is set to 4 and the wing folds 40% of the way) and using a scale from 0 to 

10 allows for easier controlling the AutoWingfold attribute since the user can dial in 

whole integers instead of decimals.  

 The null groups that were parented above each control (major and sub feather 

controls, FK and IK controls) when it was created will be used for the automated 

folding. Using these null groups above the controls, the wing is rotated into the desired 

folded position and the X, Y, and Z rotations recorded for each. Keys are set on each 

control's group node at 0 for AutoWingfold value of 0, this sets the default wing position 

to be open. For AutoWingfold value 10, keys are set on each control's group node at the 

position recorded previously. If the keys were to be set on the controls themselves 



58 

 

 

instead of the group node above the controls Maya would lock those controls and not 

allow the animator to animate that control later; putting the keys on the null node keeps 

the controls animatable. It's also beneficial since the animation is on the node above the 

control, the animator can manipulate the controls and change the position of the wing 

and feathers even when the AutoWingfold is keyed in. 

 

IV.4.6  Locking and Limiting 

 The last step in the program is to lock and limit any controls that should not be 

altered during animation.  The following are the controls that are locked or limited and 

the reasoning for doing so: 

 The FK controls are locked in order to prevent translation. Translation of these 

controls would cause the bones to stretch undesirably and cause problems with 

the rig. 

 The feather controls, high level and sub level, are locked to prevent translation. 

Translation of these controls would cause the controls to be pulled off the wing. 

 The Feather flex and pole vector controls are locked in rotation. Rotating the 

control does nothing and is therefore locked to prevent confusion for the 

extraneous control. 

 The FK, shoulder, wrist, High level feather controls, low level feather controls, 

feather flex, and pole vector controls all have the scale locked. Scaling these 

controls can cause problems with the rig such as the controls scaling, but not the 

rest of the rig, or the joints scaling but not the feathers.  
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 The IK, FK and transitional joint hierarchies and IK handles have the visibility 

turned off. This hides them from the animator so that they cannot be selected and 

accidentally animated and also reduces the visual clutter so that the animator 

only sees what they need in order to animate.  

 The low level feather controls and feather flex controls have the visibility locked. 

The visibility on these is controlled through the attributes Group Controls and 

Flex Controls so visibility on individual controls is not needed. 

 The feather flex is limited to 1.3 units in the positive or negative Y direction (e.g. 

up and down). This is the only control on the rig that is limited as opposed to 

locked due to the fact that the feathers for the feather flex are driven by 

blendshapes. Dialing in the blend shape over 1.3 causes the feathers to not only 

flex, but start to deform and stretch. The limit is set at 1.3 units in order to 

prevent the feathers from deforming. 

 

IV.5 The Python Script 

 The python script for WingCreator program can be found in full form with 

annotations in Appendix A. The program code can be run by copying and pasting into 

the script editor of Maya 2011. The following digital objects are required in the Maya 

file in order for the program to run:  

 Feather geometry: L_PrimaryBase, L_SecondaryBase, L_PrimaryCovertsBase, 

L_SecondaryCovertsBase, L_MedianCovertsBase, L_AlulaBase, 
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R__PrimaryBase, R_SecondaryBase, R_PrimaryCovertsBase, 

R_SecondaryCovertsBase, R_MedianCovertsBase, R_AlulaBase, TertialBase  

◦ A right feather geometry and left feather geometry of all feathers for each 

group, centered with the tip of the quill at the origin and pointing down the 

positive Z axis. Only the tertial doesn't need a right and a left due to it being 

nearly symmetrical. 

 Locators: L_Wing_1, L_Wing_2, L_Wing_3, L_Wing_4, R_Wing_1, R_Wing_2, 

R_Wing_3, R_Wing_4  

◦ These correspond to the shoulder joint, elbow joint, wrist joint, and the tip of 

the hand (not tip of the feathers) respectively. 

 Controls: CONBASE, BoxConBase, ArrowConBase, MainConBase, 

MoveAllConBase, and SubConBase with parented controls Wing_Flex_1 and 

Wing_Flex_2. 

 Blendshapes: L_Primary_BLND, L_Secondary_BLND, R_Primary_BLND, 

R_Secondary_BLND  

◦ Blendshapes must be derived from the feather geometry (for example 

L_Primary_BLND must be derived from L_PrimaryBase) and must NOT 

have history deleted. Deleting the history breaks the blendshape, causing it to 

shift position to the origin when keyed in. 
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CHAPTER V 

RESULTS 

 

 To evaluate the effectiveness of WingCreator, two riggers and one animator were 

asked to critique them. Their critique and suggestions, discussed below in regards to how 

they relate to the goals of the project, can be used to improve WingCreator by possible 

implementation of these suggestions in future work. 

 

V.1 Realism 

 In regards to realism, both riggers and animators found it difficult to critique on 

due to the fact that realism is hard to quantify.  When one rigger was asked whether he 

felt that using biologically accurate feather groupings on the wing helped increase the 

realism he stated that he was unable to judge without the wing being animated. They 

may have felt unable to comment on the realism, however, they did state that using 

feather groups gave the rig very good artistic control over the wing and enabled them to 

shape the wing into visually interesting curves. 

 Similarly, it was difficult to judge the realism of the folded wing. The stand-in 

geometry for the bird was modeled as one piece of geometry and modeled in a flying 

position, however, a bird folds its wings usually when it's perched. The folded wing 

looked visually appealing, but since the bird body was in a flying position and not a 

perching position it was impossible to judge if the folded wing is realistic. 

 While realism may be hard to define and could not be commented on very well 
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by the testers, they were able to give much more in depth commentary on other aspects 

of the rig including bug fixes, program use, form and control. 

 

V.2 Effectiveness for Riggers 

V2.1 Bug Fixes 

Most of the problems, or “bugs” that the riggers encountered when running the 

WingCreator program were small and would be simple to fix: 

• The program cannot run from the command line. It currently only runs when 

copy and pasted into the script editor.  The riggers find this tedious and would like it to 

be able to run from command line by placing the python and UI files into the Maya 

Scripts directory. 

• One rigger had a problem with the User Interface appearing off screen when the 

program is first run.  The program needs to have the start position defined so that this is 

avoided. 

• The program will sometimes not generate one side of the motion system for the 

wing when the user has changed from generating feathers on the opposite side. This is 

most likely due to a variable not being properly saved or passed to a function. 

• The AutoWingfold control has rotation problems when interpolating between the 

open and closed positions.  The interpolation should be linear, going directly from the 

open to the closed position, but in the middle the wing twists and rotates approximately 

60 degrees around the Y axis before rotating back and settling in the closed position.  

This is likely due to a problem called Gimbal lock.  Gimbal lock is the loss of one degree 



63 

 

 

of freedom when the two of the three rotation axes are rotated in such a way that they 

end up parallel and reduce the control to two-dimensions. 

 However, there is one large bug fixe that is more difficult to solve: the feathers 

on the wing tend to interpenetrate each other. There were several suggestions from the 

riggers on what could be causing this problem.  One of the suggestions is that because 

the default geometry in the Maya scene file is made with planes instead of polygons this 

is causing part of the problem. Planes, unlike polygons, do not have any thickness so 

when they overlay one another they tend to disappear, making it appear as if there is 

more interpenetration than would normally occur with geometry that has thickness. 

Another suggestion is that the rotation point for the covert feather groups is placed in 

such a way as to cause the feathers to rotate downward when the group is manipulated, 

causing interpenetration. More research needs to be done to resolve the major inter-

penetrations. 

 

V2.2 Rig Efficiency and Form 

 Most of the critique on the program was positive.  The riggers liked the 

generation of the wing and the ability to change the number of feathers in separate 

groups.  The readMe file included with the program was descriptive enough that it 

enabled them to be able to use the program without much difficulty. The riggers also 

suggested to add a description of the AutoWingfold control, describing it as a set driven 

key that has an input value from 0-10 so that is it is not confused with other controls that 

are binary which only have a 0  (false) or 1 (true) input value. Most riggers do not know 
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the feather structure of a bird’s wing, so the riggers found the wing diagram image 

included with the files was very useful. It was also suggested that the program have a 

button that clears the created feathers so that the user does not have to click undo in the 

software or manually delete them, which can be time consuming. If this could be broken 

up so that it could delete specific groups, it may also help the riggers understand which 

feather groups are which without having to rely heavily on the diagram. 

 

V.3 Effectiveness for Animators 

V.3.1 Form and Motion 

 The riggers and animators both appreciated the layering of the feather groups. 

They felt that it gave good artistic control and gave them the ability to create visually 

appealing wing shapes. Similarly, the feather flex control was also highly lauded. The 

animator felt that while the wings with feather groups were able to create appealing wing 

shapes, when the feather curl was added to this it made the wing shape look very smooth 

and natural. The feather flex enabled the animator to make beautiful arcs and curves in 

the wing when matching the animation of real bird. The one suggestion I received 

regarding form was to also add this feather flex to the covert feathers as well in order to 

make the wing even smoother. Currently the covert feathers do not flex with the 

primaries and secondaries.   

 

V.3.2 Artistic Control 

 The control system had the most critiques on it, positive and negative. Overall 
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both animators and riggers liked the high-level controls, finding them to be intuitive and 

easy to use, however the low-level controls they felt were lacking. Low-level controls 

were somewhat confusing and counter intuitive. The main critique of the low-level 

controls is that they are confusing and counter intuitive.  They were difficult to use 

because the arrows looked too similar to one another.  It was suggested that these arrow 

controls have a different shape, change them so that they are more visible and don't 

overlap one another. Another suggestion is that the low-level controls should work more 

like the high-level controls: have three controls that adjust the beginning, middle and end 

of the group. 

 The animator liked the IK control, finding that this control enabled efficient 

posing of the wing.  She has a dislike for FK control, finding that FK control is counter 

intuitive. In the case of the FK on the bird wing are three controls to pose the wing and 

therefore three controls to manipulate into position and adjust the interpolation of in the 

graph editor. With the IK there was only one control which minimized the amount of 

work and was easier to adjust into position so she felt IK was more appropriate to use. 

 Another suggestion for the controls was to add more control over the 

blendshapes.  Currently the blendshapes control the right and left sides of a group.  One 

of the riggers suggested that there be a control for the middle of the group as well, 

allowing for more flexibility over the shape of the wing. He felt that there should be 

more ability to control the wing, even if it is not necessarily realistic because this would 

allow animators to be able to have more flexibility in what they can do and the shapes 

they can achieve.   
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 Finally, both riggers and animators suggested that the controls be visually 

different.  Currently the controls are all one color and therefore when animating it can be 

hard to differentiate between right and left controls.  It would be more efficient if the 

controls for the left and right were different colors, making them easy to differentiate 

from one another. 
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CHAPTER VI 

FUTURE WORK 

 

 The main area of future work for this thesis is that of implementing some of the 

feedback from the riggers and animator before putting this work out of public 

consumption. Suggestions such as those mentioned in the Bug Fix section would need to 

be addressed in order to make the tool as functional as possible before offering this tool 

for the public. 

 Other future work addresses that of extending the tool beyond its current limited 

range.  WingCreator currently only creates broad winged birds like a Red-Tailed Hawk.  

One area of interest would extend WingCreator such that it would be capable of creating 

other wing shapes, such as long and narrow or wide and short. This would require 

creating different mathematical functions for the different types of wings.  Similarly, the 

program could be extended to include long winged birds such as an albatross.  These 

birds have two extra groups of feathers called the humeral and humeral coverts that 

would need to be accounted for by the program [Sibley 2002]. The animator that 

reviewed the rig suggested that more automation would also extend and improve the 

functionality of the rig.  Currently the only automation is the automatic wing fold.  Other 

automatic animation and poses could include something like a flap cycle or flap cycle 

poses. 

 Lastly, the tool could be more than just for rigging the wings of a bird. It could be 

part of a series of tools that facilitate the creation of a complete bird rig. Feather groups 
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such as the scapulars were omitted because they interacted with the body of the bird, 

causing them not move unlike fans or blinds.  These groups could be accounted for in a 

more complete bird rig and would allow users to make not only biologically accurate 

wings, but also biologically accurate full birds. 
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CHAPTER VII 

CONCLUSION 

 

 While the level of realism from this method of wing rigging could not be 

determined, feedback from the riggers and animator indicated that the WingCreator rig 

tool is useful for riggers and animators. It creates biologically accurate rigs with realistic 

wing form and motion that facilitate efficient animation. The resulting rig has an 

intuitive control system and a high level of artistic variability for the animator making it 

a good option for those in the film industry. Future work could also help to expand this 

tool beyond its current limitations to make it even more versatile, adding in more 

automation, different types of wing shapes, and even extending the tool to include a full 

bird rig. 

 Once placed in the public domain, this tool will be of use to artists who are 

interested in creating more biologically accurate bird wing forms and motion. The 

methodology of the tools creation will also add to the currently slim body of knowledge 

for creating realistic avian wings.  
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APPENDIX A 

 

The Python code for WingCreator tool is included as a separate file. 
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