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ABSTRACT 

 

Particle Image Velocimetry Near the Leading Edge of a Sikorsky SSC-A09 Wing 

During Dynamic Stall. (December 2011) 

Rachel Renee Vannelli, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Rodney D. W. Bowersox 

 

Dynamic stall has proven to be a complex problem in helicopter aerodynamics 

because it limits the helicopter flight regime. Dynamic stall is characterized by drastic 

increases in lift and a delay of stall due to rapid pitching motions of aerodynamic 

surfaces. Prediction and control of dynamic stall requires an understanding of the leading 

edge flow structure. 

An investigation was conducted of dynamic stall near the leading edge of a large-

scale Sikorsky SSC-A09 airfoil, dynamically pitching about its quarter chord, under 

realistic helicopter flight conditions (M∞ = 0.1, k = 0.1, Rec = 1.0×106). A testing model 

with a chord of 0.46 m and a span of 2.13 m was designed and constructed for 

experimentation in the Dynamic Stall Facility at Texas A&M University. Particle image 

velocimetry data were recorded for the first 15% of the airfoil chord. Mean velocities, 

Reynolds stresses, and vorticity were computed. Analyses revealed that during the 

upstroke, stall onset is delayed in the leading edge region and the first indications of 

separation are observed at 18° angle of attack.  The edge of the boundary layer has been 

characterized for α = 18°. The roles of the Reynolds stresses and vorticity are examined. 
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NOMENCLATURE 

 

ARO Army Research Office 

c Chord length 

CCD Charge-coupled device 

CFD Computational Fluid Dynamics 

DSF Dynamic Stall Facility 

f Frequency of pitching motion [Hz] 

k Reduced frequency ( ∞= Ufcπ ) 

LDV Laser Doppler Velocimetry 

LSV Laser Speckle Velocimetry 

LSWT Low Speed Wind Tunnel 

M∞ Freestream Mach number 

OWN Oran W. Nicks 

PDI Point Diffraction Interferometry 

PID Proportional-Integral-Derivative 

PIV Particle Image Velocimetry 

PTV Particle Tracking Velocimetry 

Q Quality factor (signal to noise ratio in DaVis software) 

Re Reynolds number 

TAMU Texas A&M University 

u Instantaneous velocity component in the x-direction 
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'u  Fluctuating velocity component in the x-direction 

U Normalized mean velocity component in the x-direction (= ∞Uu ) 

U∞ Freestream velocity 

UAC United Aircraft Corporation 

v Instantaneous velocity component in the y-direction 

'v  Fluctuating velocity component in the y-direction 

V Normalized mean velocity component in the y-direction (= ∞Uv ) 

x, y, z Cartesian coordinates 

α Angle of attack 

α+ Non-dimensional pitch rate ( ∞= Ucα ) 

σu Reynolds averaged stream-wise normal stress ( 2'' ∞= Uuu ) 

σv Reynolds averaged vertical normal stress ( 2'' ∞= Uvv ) 

τxy Reynolds averaged shear stress ( 2'' ∞−= Uvu ) 

ωz z-component of vorticity ( yuxv ∂∂−∂∂= ) 
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1. INTRODUCTION 

 

This section provides an overview of the research conducted and analyzed in this 

thesis. Section 1.1 summarizes the practical motivation for examining the dynamic stall 

phenomenon. Section 1.2 provides a description of the research objectives for this study. 

In Section 1.3 a brief description of the research approach is given. The importance this 

research will have to the scientific community is discussed in Section 1.4. The 

introduction concludes with an overview of the topics that will be discussed throughout 

the remainder of this thesis. 

1.1 Motivation for Examining the Dynamic Stall Problem 

Forward flight is a defining phase of helicopter flight because of the manner in 

which forward motion is achieved (Ref. 1-3). Unlike in airplanes, forward flight is not 

achieved through axial thrust in the forward direction. Axial thrust is primarily in the 

vertical direction for a helicopter; therefore, in order to achieve forward flight the 

direction of the primary thrust vector must be altered. 

A simple force and moment balance is done for the helicopter; for forward flight 

a net force along the longitudinal axis is needed (Ref. 1-3). To achieve a net force in the 

longitudinal direction we alter the direction of the principal thrust vector so it has a 

longitudinal component not just a vertical one. The thrust vector is tilted forward 

allowing for forward motion.  To tilt the thrust vector the entire rotor must be tilted.  The  

____________ 
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helicopter fuselage plays no part in the thrust of a helicopter, including determining the 

direction of travel. Because rotors are equipped with various sets of hinges and possess 

the ability to bend and deform what is considered when discussing the rotor disc is 

actually called the tip-path plane. The tip-path plane is simply a plane that contains all 

rotor blade tips and sits above the helicopter. The fuselage is essentially a free-swinging 

pendulum attached to a rotor disc that is fixed in space according to aerodynamics. Rotor 

thrust is always perpendicular to the tip-path plane. By changing the tilt of the tip-path 

plane in the air the thrust vector tilts accordingly creating a thrust component in the 

direction of the tilt. The tilt must be great enough that the horizontal component of thrust 

is larger than the rotor H-force and sum of the various drags acting on the helicopter. H-

force is defined as the force in the rotor plane that is caused by a net drag imbalance on 

all the blade elements. 

Forward flight is different from vertical phases of helicopter flight in one primary 

way; local velocity distributions are different at each rotor blade (Ref. 1-3). Velocities at 

the tips of the advancing and retreating blades are compared in a quantity referred to as 

the tip-speed ratio. The resulting velocity difference is the net forward velocity. This is 

only true if the velocity at the tip of the advancing blade is greater than that of the 

retreating blade tip. Otherwise, the net velocity would be in the rearward direction. 

The reverse flow region is important to helicopters and critical for dynamic stall 

to occur. In the reverse flow region, the flow is going in the correct direction for the 

helicopter, but for the retreating blade the flow is reversed (Ref. 1-3). The air is actually 

impinging on the trailing edge of the blade and flowing toward the leading edge in this 
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region. This region is always circular in shape and tangential to the hub on the root end 

of the retreating blade. The greater the helicopter’s forward speed is, the larger the 

reverse flow region is. Modern helicopters traveling forward at maximum speed have a 

reverse flow region that can extend outward up to 45% of the way to the blade tip.  The 

size of the reverse flow region extends from the hub a fraction of the rotor blade 

equivalent to the tip-speed ratio. Dynamic stall occurs primarily in this reverse flow 

region. 

Dynamic stall is defined as the unsteady flow separation occurring on 

aerodynamic bodies, such as airfoils and wings, which execute rapid changes in angle of 

attack (Ref. 4). Dynamic stall is a complex aerodynamic occurrence observed on 

helicopter rotors, wind turbines, compressor blades, fighter aircraft, and several other 

aerodynamic surfaces that undergo rapid pitching motions. During dynamic stall, an 

aerodynamic surface experiences an increase in lift and a delay of flow separation and 

stall. This phenomenon has been a consistent challenge in the design of many aircraft, 

especially helicopters. Dynamic stall limits helicopters in the high speed flight regime 

and airplanes in the low speed flight regime. It has been suggested that developing 

methods to control dynamic stall would increase the flight envelope and maneuverability 

of aircraft. 

Dynamic stall in helicopters is often referred to as retreating blade stall, wherein 

during forward flight, retreating rotor blades experience flow reversal, air moving 

opposite the direction of blade motion (Refs. 1-3). As forward speed of a helicopter 

increases, the speed of the retreating blade decreases. To maintain level flight it is 
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necessary to equalize lift across the area of the rotor disc. During hover, a no lift region 

exists in the center of the rotor disc. During normal cruise this no lift region shifts to the 

side, positioning itself over the root of the retreating rotor blade. If the angle of attack of 

the rotor disc is constant the amount of lift generated by the advancing blade side of the 

rotor disc will be much greater than the lift generated by the smaller area, slower moving 

retreating blade side of the rotor disc. To achieve the necessary balance across the rotor 

disc rapid changes in angle of attack of the retreating rotor blade must occur.  The larger 

angles of attack of the retreating blade, coupled with the forward motion eventually lead 

to stall conditions.  

When critical airspeeds are reached, the angle of attack at the tip of the retreating 

rotor blade gets large enough to cause local dynamic stall (Refs. 1-3). Dynamic stall can 

be broken into two fundamental periodic oscillatory motions, pitching and plunging. 

Pitching is a periodic motion through a range of angles of attack. Plunging is a periodic 

translational motion in a direction perpendicular to the freestream flow field. During 

dynamic stall, strong vortices are shed from the leading edge. These result in a brief 

increase in lift. The vortices move rearward over the upper surface of the rotor blade. As 

the vortices pass over the trailing edge, a drastic decrease in lift occurs. As the tip angle 

increases stall begins to spread inboard and the rotor blade tip begins to experience 

vibrations and buffeting. As the stall region grows, the entire helicopter begins to pitch 

up and roll toward the retreating blade. 
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1.2 Research Objectives 

The Army Research Office (ARO) has proposed a study to examine the leading 

edge boundary layer physics just upstream of separation during the dynamic stall process 

for the high-lift Sikorsky SSC-A09 rotor section at realistic helicopter flight conditions.  

This objective can be broken up into three main goals.  First, construct a large-scale rotor 

blade. Experiment on this rotor blade by observing the flow field as the rotor blade 

rapidly pitches. Second, characterize the flow field at the leading edge and determine the 

angles of attack at which dynamic stall occurs.  Finally, analyze the leading edge 

boundary layer structure during the upstroke phase of the pitching process at a single 

dynamic stall angle. 

It was recommended by the Army Research Laboratory (Dr. Preston Martin) that 

we focus our effort at Mach 0.1, k = 0.1, and Rec = 1.0×106 as the boundary layer is 

thicker near the nose than at higher Mach numbers and thus easier to resolve. This Mach 

number is slightly lower than is typically observed in the helicopter flight regime of Mach 

0.2 to Mach 0.4. Additionally, at Mach 0.1 for a reduced frequency of 0.1, the required 

pitching frequency is 2.5 Hz, while at Mach 0.2 for a reduced frequency of 0.1, the 

required pitching frequency is 5.0 Hz. The DSF experiences considerably less vibration 

when operating at 2.5 Hz than 5.0 Hz, allowing for higher quality acquired data. In a 

companion study, higher Mach numbers were examined for a NACA 0012 wing section. 

1.3 Overview of the Research Approach 

To meet the scientific objective, a Sikorsky SSC-A09 rotor blade, or wing, was 

modeled and then manufactured at the Oran W. Nicks (OWN) Low Speed Wind Tunnel 
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(LSWT) machine shop. The pieces of the seven-foot wingspan SSC-A09 wing were 

assembled and prepared for testing. 

 Two systems were necessary for proper data acquisition in the OWN Low Speed 

Wind Tunnel. The first system was a hydraulic power unit coupled with a linear 

actuator, used to pitch the wing through a specified angle of attack range. The pitching 

range, 5 to 25 degrees, and frequency, 2.5 hertz, were determined using a reduced 

frequency of 0.1, as requested by the ARO, and the velocity at which the testing 

occurred, Mach 0.1; these are typical values of reduced frequency and Mach number for 

helicopter flight. A Particle Image Velocimetry (PIV) system was the second system 

required for data acquisition. A PIV laser illuminated seeding particles in the flow, 

which follow the flow over the pitching wing. A camera captured two images per 

pitching cycle.  The second image was taken after a slight, but specified time lapse. 

Approximately 1200 image pairs were obtained for each angle of attack of interest:  16, 

18, 20, 22, and 24 degrees.   

The image pairs were then processed and post-processed to characterize the flow 

field. Instantaneous velocity fields were generated for each image pair. The 

instantaneous velocity vector fields were then averaged and post-processed to determine 

mean velocities (u- and v-components), Reynolds stresses, and vorticities. 

1.4 Contribution to the Scientific Community 

Understanding of the leading edge flow structure is critical toward prediction and 

control of dynamic stall. Attaining this insight at realistic Reynolds numbers is beyond 

the resources of modern, high fidelity simulations. Recent advances in experimental 
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methods have enabled experimental exploration of dynamic stall. This thesis provides 

documentation of the flow field over the leading edge of a large-scale Sikorsky SSC-

A09 airfoil rapidly pitching and undergoing dynamic stall. Specifically, experimental 

data was gathered at realistic helicopter flight conditions (M∞ = 0.1, k = 0.1, Re = 1×106) 

for an airfoil largely unstudied in the dynamic stall regime but widely used in 

helicopters. Mean flow analyses were performed to characterize the flow field. This 

study is part of a larger program that includes a NACA 0012 wing tested under similar 

flow conditions. 

1.5 Thesis Overview 

The research discussed throughout this thesis is broken up into five remaining 

sections. Section 2 provides a summary of literature with a focus on experimental 

dynamic stall research. This literature review is organized chronologically to show the 

progress that has been made in research methods and what has been learned about the 

dynamic stall phenomenon. Experimental facilities are discussed in Section 3. These 

facilities include: the wind tunnel environment; the hydraulic system that drives pitching 

motion; and the rotor blade model. Section 4 focuses on data collection and reduction. 

Particle image velocimetry is discussed in detail – governing theory, image resolution, 

experimental implementation, and challenges encountered. Section 5 discusses the 

results generated from the data acquired in this study. Flow field average velocities and 

Reynolds stresses are examined for the angles of attack of interest. This thesis concludes 

with Section 6, which discusses the key elements of discovery throughout this study and 

future analysis that can expand the scope of dynamic stall research.  
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2. A CHRONOLOGICAL REVIEW OF DYNAMIC STALL LITERATURE 

 

Dynamic stall is a phenomenon commonly observed in helicopter rotors. It has 

been found to be a limiting factor of the helicopter flight envelope. Due to the unsteady 

nature of the phenomenon, as well as the potential to exploit it for added lift, dynamic 

stall has been a focus of research since the late 1960s. This section will focus on the 

progression of experimental dynamic stall research through the 2000s. 

Among the first aspects of dynamic stall research was studying the angle of 

attack, α, at various positions on the rotor disc. Paul Madden (Ref. 5) researched 

prediction of aerodynamic loading, particularly lift, on the rotor disc for high speed 

applications, via a numerical model. Special attention was paid to the reverse flow 

region on the retreating blade side of the rotor disc.  On the retreating blade portion of 

the rotor disc, the stall boundary was found to have expanded slightly ahead of the 

reverse flow region and to have contracted slightly behind the reverse flow region. 

F. O. Carta (Ref. 6) analyzed unsteady aerodynamic data obtained by the United 

Aircraft Research Laboratories for the Sikorsky Aircraft Division of the United Aircraft 

Corporation (UAC) to determine the susceptibility of helicopter rotor blades to 

experience a stall flutter instability. Stall flutter was categorized by Norman D. Ham 

(Ref. 7) to be a special case of dynamic stall. The UAC sponsored an extensive 

experimental investigation of a NACA 0012 airfoil oscillated in pitch about its quarter 

chord. The data was reduced to two quantities for comparison, aerodynamic damping 

parameter in pitch and reduced frequency, k. Carta determined that for mean incidence 
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angles below 9° measured damping parameter agreed with potential flow theory, while 

for mean incidence angles above 12° measured damping parameter departed from 

potential flow theory. Additionally, for low mean incidence angles the damping 

parameter increases linearly with reduced frequency, while for high mean incidence 

angles, the damping parameter initially increases with reduced frequency, then decreases 

to a negative level, then increases again. At high mean incidence angles, the damping 

parameter becoming negative is indicative of instability. In reference 4, Ham expands on 

the results generated by Carta, discussing pressure variation along the airfoil profile as 

well as pitching moment coefficient with respect to angle of attack. Dynamic stall, which 

begins at α = 20°, is related to a drop in the leading edge suction value. Loss of leading 

edge suction signals a delay in stall conditions. Ham concludes that stall of airfoil 

sections undergoing rapid high angle of attack changes is delayed well beyond the static 

stall angle and results in a large pressure disturbance that leads to high lift and large nose 

down pitching moment. The magnitude of the pitching moment is substantial enough to 

generate significant pitching displacement of the blade (in the nose down direction). 

Finally, dynamic stall of helicopter rotors can be separated into three major phases:  a 

delay in the loss of leading edge suction; a subsequent loss of leading edge suction with 

the formation of a large negative pressure disturbance that moves aft over the upper 

surface of the blade; complete, classic, upper surface separation. 

In 1968 Norman Ham and Melvin Garelick (Ref. 8) published the results of an 

experimental study of the effects of pitching rate and pitching axis location on an airfoil 

undergoing non-oscillatory pitching motion to a large angle of attack. Time varying 
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pressures were measured at specified blade span-wise locations on a 5 inch (0.13 m) 

chord, 42 inch (1.07 m) span model of a NACA 0012 airfoil section. The model pitched 

from 0° to 30° at rates varying from 2 to 20 radians per second. Testing was conducted 

at a chord Reynolds number, Rec, of 3.44×105. From pressure variations, dynamic lift 

and moment coefficients were calculated. Results indicated that at moderate to high 

pitching rates, intense vorticity shed from the wing leading edge after dynamic stall 

dominates aerodynamic loading. Additionally, it was concluded that oscillatory pitching 

motion experiences pitching moments that sustain the pitching motion for certain values 

of reduced frequency and mean pitching angle, resulting in the previously discussed 

phenomenon of stall flutter. Ham and Garelick verified that the peak aerodynamic 

loading values are greater for an airfoil undergoing dynamic stall than for the same 

airfoil under static conditions. Rate of change of angle of attack is the dominant factor 

for determining peak vortex induced lift and moment during dynamic stall when 

compared to the effects of pitch axis location and heaving velocity. 

Franklin Harris and Richard Pruyn (Ref. 9) gathered experimental data from full 

scale flight tests and model rotor tests to demonstrate the practical symptoms of blade 

stall. Harris and Pruyn undertook this study to address the contradictions present in blade 

stall at the time. Significant differences exist between full-scale test data and model rotor 

data. The complexity of the dynamic stall phenomenon is pointed out:  although 

boundary layer separation is necessary for stall by definition, in the dynamic case the 

separation may be the result of some other mechanism. Futhermore, it is suggested that 

the complexities of dynamic stall may be alleviated by approaching the problem 
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piecemeal, as separate occurrence of stall in each of three components – lift, drag, and 

pitching moment. The authors analyzed both their own test data and available, 

previously published data to ensure that their results would be unbiased. The validity of 

rotor model test data is questionable because Reynolds number effects are dependent 

upon scale. As compared to full scale rotors, models often experience more severe drag 

stall and may not experience lift stall symptoms. It was determined that lift stall 

decreases maximum speed capability by 23.15 m/s (45 knots) for conventional single 

rotor helicopters. Blade lift stall can be eliminated if the angle of attack of the blade 

sections increases without interruption through the third quadrant of the rotor disc. It is 

blade elastic twisting response to moment stall that causes the angle of attack increase 

interruption, which results in lift stall. 

Dynamic stall characteristics of four helicopter rotor blade airfoils were 

experimentally determined in a two-dimensional wind tunnel by Jaan Liiva and Franklyn 

Davenport in reference 10. Symmetrical and cambered airfoils of 11% and 6% thickness 

ratio – Vertol 23010-1.58 and 13006-.7 and NACA 0012 and 0006 – were oscillated in 

pitch about the quarter chord at a Mach number, Reynolds number, and reduced 

frequency that complement full scale values. Static and dynamic data were obtained and 

compared for each of the four airfoils in question. All four airfoils exhibited increases in 

the maximum normal force coefficient attained during pitch oscillation.  The dynamic 

increase in maximum normal force coefficient is highly dependent on Mach number. 

Near stall angles of attack, there were found to be regions of negative damping. 

Symmetrical airfoils featured a wider range and earlier inception of instability than their 
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cambered counterparts. The dynamic stall delay also reduced the average drag per 

pitching cycle. Finally, Liiva and Davenport identified simple equations for describing 

the experimental dynamic normal force coefficient as a function of only angle of attack 

and pitch rate. 

The largest aerodynamic loads experienced by helicopters occur during forward 

motion while the blades are undergoing stall. Dynamic stall differs from static stall 

considerably such that the aerodynamic loading is significantly greater than in the 

classical stall scenario. Wayne Johnson (Ref. 11) developed a computational model for 

determining the loads experienced by rotor blades undergoing dynamic stall and reverse 

flow conditions during forward flight. Dynamic stall was modeled by first calculating 

the blade motion, then computing aerodynamic quantities dependent upon the non-

dimensional rate of change of angle of attack. Reverse stall was comparatively easy to 

model, as reverse flow is essentially the same as conventional flow only in the opposite 

direction. The validity of the computations was verified by comparing the calculated 

results to experimental data. Johnson discussed the various effects of stall on blade pitch 

motions at several advance ratio ranges as well as the importance of dynamic stall. 

Dynamic stall is important because it results in initial lifts and moments that are much 

greater than their static stall counterparts. Additionally, the stalled area of the rotor disc 

is smaller due to the larger angle of attack at which stall occurs. Finally, he concluded 

that dynamic stall provides a means to alleviate the effects of stall on helicopter flight. 

By the early 1970s, dynamic stall had been the focal point of a great deal of 

research; however, the stall type and mechanism were still unknown. Lars Ericsson and 
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J. Peter Reding (Ref. 12) examined both turbulent trailing edge stall and leading edge 

laminar bubble bursting stall. The unsteady airfoil characteristics were derived for 

incompressible, quasi-steady flow theory. Time history was considered a single discrete 

event. Ericsson and Reding were able to conclude first that the dominant characteristic 

of both leading edge and trailing edge stall is accelerated flow due to the nonzero pitch 

rate. Second, a simple analytical theory made use of existing experimental static data to 

accurately predict dynamic stall characteristics at low frequencies. It is important to note 

that leading edge and trailing edge vortex interactions were not included in this study. 

Finally, the success of the application of the developed theory suggests that in the future 

it will be possible to fully model the dynamic stall phenomenon. 

An investigation was conducted by W. J. McCroskey and Richard K. Fisher, Jr. 

(Ref. 13) to examine the details of blade element airloads on retreating blades during 

stall. They tested a fully articulated, three-blade rotor model – at static, hover, and 

forward flight configurations – for measurements of the absolute pressure distribution, 

the boundary layer skin friction, the surface streamline direction, and the blade element 

angle of attack. The events that lead up to the retreating blade stall process were broken 

down into ten distinct stall onset events that build up over the rotor azimuth. Stall onset 

does not occur due to a singular breakdown of the local flow field. During forward 

flight, the flow field around a helicopter rotor blade is generally considered to be 

complex, unsteady, and three-dimensional. During the onset of retreating blade stall the 

three-dimensionality of the advancing blade flow field does not significantly affect the 

blade element airloads; therefore, unsteady, two-dimensional airfoils oscillating in pitch 
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produce similar force and moment measurements. The rate of change of angle of attack 

is one of the primary factors that distinguishes dynamic stall from static stall. 

Distinctions between lift stall and moment stall are due to the dynamic nature of the 

event, particularly the shedding of a vortex from the leading edge, which then passes 

over the airfoil in a finite time. Dynamic stall events are of a time dependent nature such 

that the stall mechanisms are increasingly dominated by dynamic vortex shedding. 

Empirical theories that existed at the time were incapable of accurately predicting the 

three-dimensional unsteady effects necessary for force and moment determination after 

the blade stalled completely. 

Reference 14 was the collaboration of Johnson and Ham to discuss the role of the 

leading edge laminar separation bubble and shed vortex in the dynamic stall process. 

The goal was to determine the origin of the delay in stall angle of attack during dynamic 

stall. The sequence of events leading up to dynamic stall was discussed from an 

experimental point of view, taking into account both three-dimensional, articulated rotor 

tests and two-dimensional fixed wing tests. A 12% thickness Joukowsky airfoil is used 

in this investigation. Understanding the leading edge laminar separation bubble and shed 

vortex would allow for increased capability to theoretically predict dynamic stall. It was 

determined that the angle of attack at which the separation bubble reattached and the 

angle at which the suction dropped indicating stall were nearly identical. The separation 

bubble has an effect on stall onset, but little effect on airfoil loads. The loads are due to 

the behavior of the intense vortex shed from the vicinity of the leading edge, which 

causes a suction peak that follows the motion of the vortex. Johnson and Ham proposed 
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that the possible origin of the dynamic stall delay is due to the leading edge bubble, 

specifically, the unsteady pressure gradient at the transition point of the bubble. More 

work would be needed to determine when in the dynamic stall process the leading edge 

laminar separation bubble and shed vortex are the dominating factors. Johnson and Ham 

pointed out the future importance of documenting, via flow visualization, the 

dynamically stalling process at the leading edge of an airfoil undergoing sinusoidal 

oscillations. 

A NACA 0012 model was oscillated over a range of incidence angles by Carta, 

G. L. Commerford, and R. G. Carlson (Ref. 15) to measure the unsteady lift and pitching 

moment experienced both in and out of the blade stall regime. The purpose of this study 

was to integrate available unsteady, two-dimensional airfoil test data into an existing 

rotor aeroelastic-variable inflow analysis. The model had a chord length of 5 inches 

(0.13 m) and a span of 4 inches (0.10 m). Lift and pitching moment curves versus angle 

of attack were produced for various mean incidence angles via experimental testing. 

Carta, Commerford, and Carlson determined that the nonsinusoidal response of an 

oscillating airfoil could be generated from sinusoidal data for the NACA 0012. Test data 

were used to predict the torsional response of full-scale and model-scale rotor blades.  

Reference 16 discusses another experimental study conducted on a NACA 0012 

in an unsteady, two-dimensional flow. This was among the first models to be of a larger 

scale, with a chord length of 4 feet (1.22 m), which was mounted vertically in a 7 foot by 

10 foot (2.13 m by 3.05 m) wind tunnel. An analysis was conducted of Reynolds 

number, oscillation amplitude, and reduced frequency effects on the dynamic stall 
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phenomenon. Pressure, hot-wire, and smoke flow visualization data were recorded 

during testing. The stall process was broken down into steps and the loading during each 

phase were discussed. Vortex shedding was present in all of the Reynolds numbers 

tested, however, the higher the Reynolds number, the more likely a leading edge 

pressure peak was to be maintained. Martin et al. determined that a low amplitude, high 

reduced frequency motion might not be an accurate representation of the dynamic stall 

phenomenon as it is experienced by helicopters. These first large-scale two-dimensional 

tests seemed to effectively simulate rotor blade stall. Based on hot-wire, pressure, and 

strain gage measurements, the angle of stall initiation decreased with increasing Re and 

the angle of maximum lift increased with increasing Re. The data indicated the presence 

of a short bubble during both the upstroke and the downstroke phase of oscillation. The 

peaking of the leading edge velocity was determined to be the surest indicator of stall 

onset. Increasing reduced frequency further delayed stall onset. Future tests would focus 

on the leading edge region of the airfoil. 

McCroskey, Carr, and McAlister (Ref. 17,18) studied the effects of leading edge 

geometries on dynamic stall and unsteady boundary layer separation on modified NACA 

0012 airfoils of 1.22 m chord and 2.0 m span. Leading edge modifications were 

completed by connecting attachments to a standard NACA 0012 that altered the nature 

of the separation bubble. The geometry alterations resulted in the production of three 

different types of stall. The vortex shedding event – the distinguishing feature of 

dynamic stall – was evident in all cases tested regardless of airfoil shape, boundary layer 

state, or Reynolds number. The first type of stall observed was trailing edge stall due to 
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gradual progression of flow reversal and separation of the boundary layer from the 

trailing edge forward to the leading edge. The second stall type, classified as leading 

edge stall, developed from the abrupt breakdown of the turbulent flow on the forward 

portion of the airfoil. The final stall type was a special form of leading edge stall caused 

by abrupt laminar separation bubble bursting at the leading edge. While vortex shedding 

is a feature of all oscillating airfoils, the effects of the vortex on dynamic loads is 

dependent upon freestream flow characteristics and airfoil geometry. This was the first 

study that pointed out that leading edge laminar separation bubble bursting was not the 

defining characteristic of dynamic stall, as had been previously assumed. 

R. W. Prouty (Ref. 19) assembled a survey of existing two-dimensional airfoil 

data to provide a basis for future airfoil development. The maximum static lift an airfoil 

is capable of producing corresponds to the type of stall that airfoil typically experiences. 

Reynolds number affects both the maximum lift and stall type, therefore airfoils with 

different chord lengths and tip speeds produce different results. Airfoils that experience 

leading edge and trailing edge stall have a higher maximum lift coefficient than those 

that experience thin airfoil stall. An airfoil that possesses forward camber, or a droop 

snoot, spreads out the negative pressure peak at the airfoil leading edge to aid in the 

prevention of laminar separation bubble bursting. Blunting the nose of an airfoil can 

produce a slight, but noticeable, increase in the maximum lift coefficient. Most 

successful high-lift airfoils have gentle changes in curvature at the nose. The Mach 

number range at which stall is likely to occur on helicopters is 0.25 to 0.5, due to local 

flow at the airfoil leading edge being supercritical. This can lead to an additional type of 
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stall known as shock stall, so named because the flow passes through a shockwave that 

increases the tendency for trailing edge stall. Favorable combinations of Mach number, 

Reynolds number, chord length, and angle of attack exist for each airfoil to operate at its 

maximum capacity. Airfoils with large maximum lift coefficients under static conditions 

will have large maximum lift coefficients under dynamic conditions. The dynamic stall 

overshoot seemed to be a fixed percentage of the static maximum lift coefficient. Drag 

divergence Mach number trends were provided for several airfoil profiles. It was found 

that aft camber lowered the drag divergence Mach number, while forward camber had 

minimal effect. Manners of alleviating pitching moment for multiple airfoil geometries 

were also briefly discussed.  

Ericsson and Reding (Ref. 20) discussed the inability to simulate full-scale 

reduced frequency without compromising the full-scale Reynolds and Mach number 

simulation. This fact drew into question an earlier analysis of dynamic stall. In order for 

any unsteady airfoil analysis to be successful two criteria must be met. First, in the 

dynamic case there is a large overshoot of lift coefficient and therefore pitching moment 

coefficient. The second criterion is that pitch oscillations of an already stalled airfoil can 

reattach flow during particular portions of the pitching cycle. It was hypothesized that 

these events are the result of dynamic improvements to the boundary layer. Rampwise 

and oscillatory angle of attack changes were both examined. The mathematical analysis 

was then compared to existing experimental and numerical data to determine how it 

needed to be further modified. It was concluded that available experimental and 

numerical data supported equivalence between improving boundary layer through pitch 
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rate induced effects and increasing Reynolds number. Additionally, oscillatory stall data 

for different oscillation centers and measured negative damping for plunging oscillations 

are indicative of the two mechanisms that exist for dynamic boundary layer 

improvement.  

To determine how harmonic velocity perturbations in the freestream affect 

dynamic stall, Pierce, Kunz, and Malone of reference 21 performed an experimental 

study of dynamic stall on a pitching rotor blade. Experimentation was conducted in a 

low speed wind tunnel modified with horizontal vanes to generate harmonic 

perturbations in the freestream speed via generating gusts of various frequencies. The 

blade model had a NACA 0012 airfoil profile with a 9 inch (0.23 m) chord and a 42 inch 

(1.07 m) span. A motor-crank-drive arm apparatus was used to articulate the model in 

the wind tunnel through a specific range of angles of attack. Moment data was acquired 

through an accelerometer and a strain gage bridge and filtered such that remaining 

moments would be due to the airloads alone. The work performed on the airfoil by the 

moment was also analyzed. It was concluded that varying the freestream velocity affects 

the unsteady aerodynamic moment of pitching airfoil oscillations in the vicinity of static 

stall conditions. For sinusoidal oscillations in angle of attack the aerodynamic work done 

on the airfoil by the freestream was not significantly affected by harmonic freestream 

variations. 

In 1981, McCroskey presented a lecture series (Ref. 22) about the dynamic stall 

problem, summarizing the primary physical features of dynamic stall and discussing 

some of the attempts that had been made over the years to predict it. The general feature 
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of dynamic stall is the delay of stall onset to angles of attack much greater than those 

observed in static stall. The flow structure was broken down for each event in the 

dynamic stall process. Initially, there is a thin, attached boundary layer.  This is followed 

by flow reversal within the boundary layer. The leading edge vortex is shed and begins 

to convect along the airfoil surface. As the vortex continues to move toward the trailing 

edge the maximum lift and moment occur, but decay rapidly as the vortex passes over 

the trailing edge. Secondary vortices may be shed until the flow reattaches at the leading 

edge. Lift, moment, and drag coefficients were plotted versus angle of attack for a 

typical airfoil at a specified Mach number and reduced frequency. Each point in the flow 

structure was marked on these plots. Pressure distributions as they varied with time were 

discussed. Pitch damping was named as the cause for stall flutter, which tends to occur 

when an airfoil is oscillating in and out of stall. Mean angle of attack shifts the lift and 

moment coefficient curves to lower or higher values depending upon if the damping is 

positive or negative. Stall is broken up into four regimes:  no stall, stall onset, light stall, 

and deep stall. In light stall, some of the features of classical static stall are evident, 

particularly loss of lift and increase in drag. Light stall is the regime where negative 

damping is most likely to occur. It is also especially sensitive to airfoil geometry, 

reduced frequency, maximum angle of attack, and Mach number. It is distinguished by 

the small scale of the interaction (on the order of airfoil thickness, less than for static 

stall). Deep stall is governed by vortex shedding and the passage of the vortex over the 

airfoil surface. This is where lift, moment, and drag coefficients far exceed the static 

values during an upstroke. Some airfoil and flow parameters are more influential on the 
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dynamic stall phenomenon than others. Airfoil shape, freestream Mach number (above 

0.2), reduced frequency, mean incidence angle, and motion amplitude all significantly 

affect dynamic stall.  Reynolds number and Mach number – at low Mach numbers – 

affect dynamic stall in less significant ways. At the time, it was largely unknown how 

motion type, three-dimensional effects, and wind tunnel effects might affect experiment 

dynamic stall data. Each of these parameters and their affects were discussed at length in 

the lecture series. McCroskey described the methods for calculating and predicting the 

quantities of interest during dynamic stall, including the discrete potential vortex 

approach, numerous zonal method approaches, calculations of the Navier-Stokes 

equations, and several empirical correlation approaches. Finally, McCroskey discussed 

that further knowledge is required in many aspects of the dynamic stall process to fully 

understand it. 

McCroskey, et al. (Ref. 23-26) conducted an experimental investigation of the 

dynamic stall characteristics of eight airfoils that were oscillated sinusoidally in pitch 

over numerous unsteady, two-dimensional flow conditions. The following eight airfoils 

were commonly used on helicopters but were not designed with dynamic stall 

considerations taken into account:  NACA 0012, Ames-01, Wortmann FX-098, Sikorsky 

SC-1095, Hughes HH-02, Vertol VR-7, NLR-1, and NLR-7301. The objective of this 

investigation was to observe the dynamic stall characteristics for various airfoils and use 

that data to fulfill the need for a standard dynamic stall database. For each airfoil, four 

static data sets and an average of 55 dynamic, unsteady data sets were acquired. Testing 

was performed in 2 m by 3 m atmospheric pressure wind tunnel. Freestream Mach 
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number ranged to 0.3. Airfoil models had 0.65 m chords, 2.0 m spans, and were 

sinusoidally pitched about the quarter chord. Variable parameters included mean angle 

of oscillation, amplitude of oscillation, and frequency of oscillation. Instantaneous 

pressure signals were processed then numerically integrated to determine the unsteady 

lift, moment, and pressure drag. Hot-wire and hot-film data were used to determine 

boundary layer characteristics. Vortex shedding and stall regimes were described as they 

were in reference 22, also authored by McCroskey. Abrupt changes in the moment 

coefficient were used as the criteria to define the stall regimes. It was determined that 

flow parameters play a much larger role in dynamic stall behavior than the airfoil 

geometry; however, noticeable differences in behavior due to geometry still occurred. It 

was determined that the more advanced helicopter airfoil geometries offered advantages 

when compared to the more classical NACA 0012 profile. For a given set of flow 

parameters, the airfoil that has the highest lift coefficient also has the lowest Mach drag 

divergence. Additionally, airfoils that exhibit favorable static stall characteristics also 

tend to exhibit favorable dynamic stall characteristics. Qualitative observational 

differences in dynamic stall from airfoil to airfoil diminish as the airfoil pitches deeper 

into the deep stall regime. As Mach number increased, all airfoils tested would stall from 

the leading edge regardless of each airfoil’s static stall behavior. Transonic flow 

phenomena in the retreating blade environment were stressed due to the development of 

a small supersonic bubble near the leading edge. This bubble was not necessarily 

accompanied by a shockwave. The importance of future work to accurately determine 
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and predict the rotor blade environment was emphasized for the successful improvement 

of rotor blade design. 

In reference 27, Ericsson and Reding determined the importance of various 

unsteady flow mechanisms that affect dynamic stall. Many aerodynamic quantities, 

specifically airloads and accelerated flow effects, differ significantly depending on 

whether a lifting surface is undergoing pitching motions or plunging motions. Ericsson 

and Reding were among the first to mathematically differentiate, within their theoretical 

model, between the pitching and plunging motions that helicopter rotor blades 

experience. It was concluded that recent experimental results sufficiently proved the 

existence of a leading edge jet effect, which delays separation for pitching airfoils but 

promotes it for plunging airfoils. Recent experimental results also reconfirmed the 

dependence of dynamic stall on the dimensionless time rate of change of the angle of 

attack.  

An overview of the progress made in dynamic stall research over fifteen years, 

ending near 1985, was assembled by Lawrence Carr (Ref. 28, 29). A brief history of the 

discovery of dynamic stall was presented, as well as the problem it poses for not only 

rotorcraft, but also on fighter aircraft, wind turbines, jet engine compressor blades, and 

insect wings. An explanation of the dynamic stall process and the events that comprise it 

was given, focusing on the vortex shedding event. The various motions that result in a 

dynamic stall situation were discussed and described, including in-plane oscillation and 

the concept of pitch-plunge equivalence. The effects of amplitude, mean incidence 

angle, and frequency of motion, as well as the location of the pitching axis were 
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discussed. Mach number, Reynolds number, and three-dimensional effects are also 

significant on influencing the stall delay and airloading during dynamic stall. Carr 

pointed out that theoretical and computational modeling of dynamic stall was only 

beginning to become commonplace in the field due to its numerous complexities. Many 

modeling attempts had been made prior to 1985, but they lacked the detail necessary to 

accurately predict the resultant flow and/or airloads from dynamic stall. Carr completed 

his review of dynamic stall research by discussing the numerous studies that have been 

conducted on controlling the dynamic stall vortex. 

Up to this point in time, the fluid mechanical processes that produce the dynamic 

stall overshoot of static data had not been studied independent of the dynamic stall 

process as a whole. Ericsson and Reding, in reference 30, set out to use existing 

experimental data to analyze the events of dynamic stall individually and to illustrate the 

problems that result from using subscale test data to predict full scale characteristics. 

Rampwise angle of attack change can be broken into two components, a lag effect and 

change in angle of separation.  The lag effect produces no overshoot, but the change in 

separation angle of attack causes overshoot due to two effects, accelerated flow and the 

leading edge jet. Accelerated flow is related to the pressure gradient time history, while 

the leading edge jet is the result of the boundary layer being strengthened during the 

upstroke and weakened during the downstroke. The second fluid mechanical process is 

the spilling of the leading edge vortex. As the spilled vortex travels along the surface of 

the airfoil, the overshoot in load increases until a maximum overshoot is reached at 

approximately 0.7c. Oscillatory motion complicates the dynamic stall process such that 
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phase and frequency must be taken into account. Plunging effects can be related to 

pitching effects such that the leading edge jet effect is opposite from what is observed in 

pitching effects. This results in large differences in load values. Compressibility effects 

are largely important when it comes to airfoil stall characteristics and were also 

algebraically modeled. Each of these unsteady flow properties were modeled simply 

with relations to static data. 

In reference 31, Walker and Chou conducted small-scale experiments in which a 

NACA 0015 was rapidly pitched to high angles of attack to examine the initiation, 

development, and evolution of the flow around the characteristic dynamic stall vortex. 

Models were pitched about their quarter chords from 0° to 60° at multiple pitch rates and 

chord Reynolds numbers. Three experimental methods were used:  smoke-wire flow 

visualization; dynamic surface pressure measurements – to determine transient 

aerodynamic loads; and near-surface hot-film velocity magnitude measurements – to aid 

in understanding the relative strengths of passing vortices. The dynamic stall vortex 

forms near the leading edge and is the dominant flow field feature. The large 

aerodynamic loads that were measured are not generated by the vortex. They are instead 

the result of vorticity accumulating around the airfoil, including the vortex. Reynolds 

number and pitch rate were determined to have second order effects on the flow field for 

constant values of the non-dimensional pitch rate, α+, which is the dominant factor of the 

flow field. 

A stroboscopic schlieren system was used by Chandasekhara and Carr (Ref. 32, 

33) to study the compressibility effects on a dynamically stalled NACA 0012. 
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Freestream Mach number and reduced frequency and their effects on the dynamic stall 

vortex were observed. The experiments were small-scale (0.08 m chord) and conducted 

in the Compressible Dynamic Stall Facility, built and designed specifically for dynamic 

stall flow visualization studies. Mach number was varied from 0.15 to 0.45 and reduced 

frequency was varied from 0 to 0.1. A mean angle of attack of 10° was used throughout 

the study. The dynamic stall vortex was found to be present at all Mach numbers and 

reduced frequencies tested. The strength and formation angle of the vortex is Mach 

number dependent. The dynamic stall vortex can be held on the airfoil surface by 

increasing the reduced frequency. The effects of compressibility do not become 

significant until Mach 0.3 is reached or exceeded. Despite parameter variations, the 

vortex always convects at a constant velocity of 0.3U∞. The origin of the vortex was 

undeterminable and no shocks were visible near the leading edge for the tests conducted. 

Chandrasekhara used the stroboscopic schlieren flow visualization – used in the 

previous study – with Brydges (Ref. 34) to analyze the effects of amplitude on the 

dynamic stall vortex. Mean angle of attack, Mach number range, and reduced frequency 

range were consistent with the previous study (Ref. 32, 33). A NACA 0012 airfoil was 

once again used. Reynolds number ranged from 200,000 to 900,000. The airfoil 

oscillated through three different angle of attack ranges. It was determined that a shock 

is present over the upper surface of an oscillating airfoil for freestream Mach numbers of 

0.45 and above. The dynamic stall vortex will form at all amplitudes, regardless of 

compressibility effects. By increasing the amplitude of the oscillatory motion, it is 

possible to delay deep stall to higher angles of attack.  
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To determine the effects of compressibility, unsteadiness, and airfoil geometry 

on dynamic stall, Jeffrey Currier and K.-Y. Fung (Ref. 35, 36) examined two existing 

data sets. The data set generated by McCroskey et al. (Ref. 23), of the eight airfoils 

named above, and Lorber and Carta (Ref. 37), a data set for a Sikorsky SSC-A09. A 

suction peak analysis was conducted, through which it was determined that the peak 

suction values were approximately the same for all dynamic stall tests, on a single 

airfoil, above Mach 0.3. This was not the case for tests with freestream Mach values 

lower than 0.3, where suction peak varied with frequency, amplitude, and mean angle of 

oscillation. This suggested that stall onset is shock related for Mach-supercritical flows, 

even if the shock was not observable during testing. A boundary layer analysis was also 

conducted near the airfoil leading edge. This analysis was computational due to poor 

experimental resolution in the first 3% of the chord. This analysis took into account 

potential leading edge bubble bursting and transition effects. It was determined that the 

various airfoils in question showed different dependence on frequency. Increased 

unsteadiness does further delay the onset of stall to a higher angle of attack; however, it 

also promotes boundary layer separation. 

Once again, dynamic stall over an oscillating airfoil was studied in the 

Compressible Dynamic Stall Facility. In this study Carr et al.(Ref. 38) used a real-time, 

point diffraction, interferometry technique to obtain flow field data, rather than the 

stroboscopic schlieren system used previously (Ref. 32-34). The principles behind this 

interferometry technique, as well as the implementation of it, were described in detail. 

Both qualitative and quantitative analyses were completed of the interferograms 
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obtained. The interferograms represented constant density contours, which were used to 

calculate Mach number and pressure distributions about the airfoil leading edge. A 

comparison between the interferograms obtained in this study and the schlieren images 

obtained in references 32-34 showed strong agreement. This study demonstrated the 

successful implementation of the new interferometry technique. The dynamic stall 

vortex produced by an oscillating airfoil was once again observed; however, it was 

determined that the symmetric density imprint expected from a classical vortex was not 

present with the dynamic stall vortex. The interferograms obtained in this study were 

found to allow detailed pressure distribution analysis in the first 1% of the chord that had 

not been possible previously. 

Chandrasekhara (Ref. 39) conducted another flow visualization study of dynamic 

stall flow fields, in this case, the analysis technique used was laser Doppler velocimetry 

(LDV). This experimentation was also conducted in the Compressible Dynamic Stall 

Facility used in studies above (Ref. 32-34, 38). The LDV technique used allowed for the 

collection of 10,000 coincident samples of each the u- and v-velocity components for 

each channel. Phase locking was ensured via circuitry and the flow was seeded with 

1µm polystyrene latex particles. The experimental conditions experienced by the NACA 

0012 model follow: M∞ = 0.3, oscillation frequency = 21.6 Hz, k = 0.05. This was the 

first time velocity data had been obtained over an oscillating airfoil. The velocity data 

showed the formation of a separation bubble near the airfoil leading edge that would 

burst in the vicinity of where the dynamic stall vortex formed. Velocity profiles were 

found to change within a pitching cycle. Average velocity values were observed as high 
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as 1.6U∞ at M∞ = 0.3 and k = 0.05, while instantaneous velocities were observed as high 

as 1.8U∞. Circulation increased until the dynamic stall vortex began to convect rearward 

along the surface. 

J. Panda and K. B. M. Q. Zaman (Ref. 40) examined the flow field about a 

NACA 0012 airfoil sinusoidally oscillated from 5° to 25° angle of attack at reduced 

frequencies of 0 to 1.6 and chord Reynolds numbers of 22,000 and 44,000. The purpose 

of this study was to document the evolution and shedding of the dynamic stall vortex. 

This was a small-scale experiment carried out in a low speed wind tunnel with very low 

test section freestream turbulence intensity (< 0.1%). A hot-wire probe and smoke wire 

visualization were the data collection techniques used. Not only was the typical dynamic 

stall vortex observed forming near the leading edge of the airfoil, but so was an intense 

vortex of opposite vorticity that formed at the trailing edge just as the leading edge 

vortex was shed. These two vortices were observed, via flow visualization, to combine 

to form a “mushroom” shape as they convected away from the airfoil. The rebound after 

the drop in lift that accompanies the shedding of the leading edge dynamic stall vortex 

was determined to be caused by the passage of the trailing edge vortex. The fact that the 

flow field data was phase averaged allowed for unprecedented detail in dynamic stall 

flow field documentation. For reduced frequencies of 0.1 and below, the oscillating 

airfoil exhibits quasi-steady behavior; bluff body shedding is not suppressed by the 

dynamic stall vortex as it is for larger reduced frequencies. If the reduced frequency was 

too high, the dynamic stall vortex was shed prematurely or multiple dynamic stall 

vortices were present on the upper surface of the airfoil simultaneously. 
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The dynamic stall vortex continued to be the focus of experimentation 

throughout the 1990s. By the end of the decade, Ferrecchia et al. (Ref. 41) narrowed the 

focus further in an attempt to determine the cause of the dynamic stall vortex inception. 

Vorticity flux on a finite wing and a two-dimensional NACA 0012 aerofoil was 

investigated for ramp-up pitching motion for multiple non-dimensional pitch rates. 

Testing was conducted in a low speed wind tunnel with an octagonal cross section 

measuring 2.13 m by 1.62 m. Surface mounted pressure transducers were the primary 

data source, but flow visualization was conducted as well. Four motion types were 

investigated: static – no motion, ramp-up motion, ramp-down motion, and sinusoidal 

motion. All motion occurred about the quarter chord axis. Data presented was the 

average of four cycles of 8000 samples. For testing, U∞ = 50 m/s, Re = 1.5×106, and M∞ 

= 0.16. A theoretical explanation of vorticity flux was provided. The dynamic stall 

process was described on both lifting surfaces. Two concentrated sources of vorticity 

were observed over the forward portion of the aerofoil surface. These vorticity sources 

were studied for a large range of reduced pitch rates and it was concluded that the 

reduced pitch rate influences the quantity of vorticity that enters the flow.  

In 2005, Ekaterinaris, Chandrasekhara, and Platzer (Ref. 42) assembled an 

overview of recent advances that were made in the dynamic stall field. They addressed 

testing that was conducted at true reduced frequency and Mach number scaled 

conditions with geometrically scaled models. Because this was a scaled investigation, 

and reduced frequency and Mach number were successfully scaled, it was not possible to 

scale Reynolds number. Boundary layer trips were used in attempt to make up for this 
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issue. This research was made up of two phases:  identification of the mechanisms of 

dynamic stall onset; and attempts to control the dynamic stall phenomenon. Testing was 

conducted in the Compressible Dynamic Stall Facility that was used for over a decade of 

previous studies (Ref. 32-34, 38, 39). NACA 0012 airfoil models were pitched at an 

unsteady pitch rate, α+ of up to 0.03, while the Mach number and reduced frequency 

were varied from 0.2 to 0.4 and 0 to 0.1, respectively. PDI was the flow analysis method. 

PDI allowed, for the first time, for the visualization of intricate flow details, specifically, 

the separation bubble and local shock details in a subsonic freestream. Resulting 

pressure maps allowed for quantification of the compressible dynamic stall onset 

mechanisms and the pressure gradient behavior. Unsteady vorticity fields were derived 

from these quantities. The PDI images were explained to describe the mechanisms of 

dynamic stall onset. It was determined that flow control will require vorticity to be 

managed about the airfoil. A dynamically deforming leading edge modification was 

made to a NACA 0012 model in an attempt to manage vorticity and gain some measure 

of control over the dynamic stall vortex. A pulsating jet was also examined as a possible 

flow control method. Experimental and computational results for flow control were 

analyzed and compared. Both computationally and experimentally, it was possible to use 

a pulsating jet to maintain an elevated lift coefficient beyond the angle of attack at which 

separation typically occurs during dynamic stall. Dynamic stall was discussed on both 

thrust-producing, flapping airfoils and insect wings due to the increasing attention the 

topics had received over the previous few years. This investigation concluded with an 

emphasis on the increasing need for more sophisticated experimentation, data 
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acquisition, and flow control techniques. Computational models and experimentation 

methods were successfully developed for controlling the flow during the dynamic stall 

phenomenon. 

Over the course of the last 50 years dynamic stall research has been conducted 

using a variety of methods. The effects of several characteristics of dynamic stall have 

been studied at length. It has been determined that scale effects are crucial when 

studying dynamic stall, particularly the effects of Mach number and Reynolds number, 

which are difficult to simulate at small-scales. Airfoil shape has important effects on 

dynamic stall, including determining the maximum gain in lift that the airfoil 

experiences. Reduced frequency is important and was determined to be an effective 

quantity for comparison across scales. The leading edge flow structure controls the 

dynamic stall process, particularly the formation, shedding, and convection of a strong 

vortex. Excessive data exist for surface pressure, skin friction, lift, drag, pitching 

moment, and flow visualization for a representative number of airfoils, where the NACA 

0012 has received the most attention. The current database of dynamic stall data lacks 

leading edge velocity data at realistic flight conditions.  
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3. THE DYNAMIC STALL FACILITY AT TEXAS A&M UNIVERSITY 

 

Texas A&M University (TAMU) possesses an experimental facility, known as 

the dynamic stall facility (DSF), specifically designed, by Dr. Dipankar Sahoo (Ref. 43, 

44), for observing dynamic stall at realistic helicopter flight conditions. The DSF 

consists of wind tunnel test section area reducing inserts, a hydraulic actuation system to 

provide controlled periodic motion of the wing, and two wings, a NACA 0012 and a 

Sikorsky SSC-A09. 

3.1 Oran W. Nicks Wind Tunnel Facility 

Experimentation was conducted in the OWN Low Speed Wind Tunnel. The 

OWN LSWT has an octagonal test section of 3.05 m in width, 2.13 m in height, and 3.66 

m in length (10 ft × 7 ft × 12 ft) with a 0.30 m (1 ft) fillet in each corner. This test 

section provides a maximum Mach number of 0.25, or 85 m/s (200 mph). The OWN 

LSWT is a closed circuit tunnel with a circuit length of 120.70 m (396 ft). Vertical 

venting slots, 7.62 cm (3 in) in width, cut into the sidewalls at the test section exit to 

maintain near atmospheric static pressure. A diagram of the OWN LSWT can be seen in 

Figure 1. 

The DSF inserts reduce the cross-sectional area of the test section to 2.13 m by 

2.13 m (7 ft × 7 ft). This is accomplished by installing five flat panels, a support panel, 

an inlet panel, a diffuser panel, vortex generators, and fillets on each side of the wind 

tunnel. There is also a roof panel specific to the DSF. The inlet panels were installed 
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first, followed by two flat panels on each side of the wind tunnel. The next panel in the 

sequence to be inserted was the support panel, which has extra structural support that the 

wing model mounts to after the test section reduction is complete. The remaining three 

flat panels were inserted next, with the vertical vents on the fourth panel. During 

installation, the curved inlet panels bolted directly to the OWN LSWT walls. After each 

of the panels was in place, it was bolted loosely to the previous panel in the sequence. 

Once all of the flat panels were in place, they were bolted to the floor and the ceiling was 

inserted. The ceiling was then bolted to the top of the side panels and the panels were 

bolted together tightly. The diffuser panels were installed last, bolting directly to the 

diffuser section of the OWN LSWT as well as the last flat panel. Vortex generators were 

mounted on the diffuser panels to help lessen diffuser separation. Fillets were installed at 

the junction of the floor and both sidewalls, thus completing the reduction of the test 

section. Figure 2 shows the reduced wind tunnel test section; the vortex generators, 

fillets, diffuser section, and ceiling are not shown.  

The DSF inserts are composed of aluminum sheets mounted to steel frames. 

Looking downstream, two flat panels of the right wall contain glass windows for 

potential data collection. The fifth flat panel of the right wall contains the door for 

entering the reduced test section. The support panel on the left wall contains a small 

glass window for PIV data collection at the leading edge of the wing model. The ceiling 

also contains a glass window, centered over the leading edge near the mid-span of the 

wing, through which the PIV laser beams enter the wind tunnel. 
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The support panels bear and distribute the load of the pitching motion during 

experimentation. The aluminum sheets on these panels are removable for ease of wing 

model installation. The support structure in these panels is made up of two steel I-beam 

structures each made of a horizontal I-beam segment with two smaller I-beam segments 

welded to the center of the horizontal segment at a 45º angle. Tapered roller bearings 

housed in 20.32 cm by 20.32 cm by 10.16 cm (8 in × 8 in × 4 in) aluminum blocks bolt 

to the horizontal I-beam structure. A support panel with installed bearing blocks can be 

seen in Figure 3. 

3.2 Hydraulic Actuation Apparatus 

A Parker Fluid Power Systems “V-Pak” Hydraulic Power Unit – model number 

V828VPCHNX12612 – was used to drive the pitching motion of the wing model (Figure 

4). The hydraulic unit had a reservoir tank with an 80-gallon capacity. The pump flow 

rate was variable from 8 gallons per minute to 36 gallons per minute. The maximum 

pressure sustainable by the unit was 20.68 MPa (3000 psi). The hydraulic unit motor ran 

at 1800 rpm. The hydraulic power unit also featured three filters for maintaining oil 

quality by keeping it free of water and debris. A fill gauge displayed oil quantity, color, 

and temperature. During experimentation, an accumulator bladder supplied the linear 

actuator with Chevron Rykon AW ISO 46 hydraulic oil through the servo valve. 

The hydraulic power unit was connected to a linearly actuating hydraulic 

cylinder (see Figure 5). The linear actuator connected to the servo valve at two points, 

the actuator inlet and outlet. The inlet was located at the bottom of the actuator and the 

outlet was located at the top. The linear actuator was mounted to a base with a single 
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degree of freedom, rotation about the nominal center of the fully extended cylinder, to 

allow for motion through a wide range of angles of attack. The hydraulic servo valve, 

also manufactured by Parker, controlled the amount of hydraulic fluid in the linear 

actuator at any given time.  

The hydraulic servo valve operated through the use of a PID controller interface. 

RMCWin software (Ref. 45) was used with a modular RMC100 motion controller to 

achieve position and velocity control of the hydraulic cylinder. RMCWin allowed the 

user to define extend/retract limits of the actuator, extend/retract feed forward, and 

extend/retract acceleration feed. Proportional, integral, and differential gains were 

defined. Event Steps was used to construct a program to control the timing and speed of 

opening and closing of the servo valve and therefore the motion of the linear actuator. 

The Event Steps component of RMCWin was also used to send a 5 V signal to the 

Quantum Composer to trigger the laser pulses at a specified angle of attack. The 

Quantum Composer will be discussed in Section 4. 

The linear actuator induced a sinusoidal pitching motion in the wing model by 

coupling the sinusoidal motion of the linear actuator with the wing shaft via a moment 

arm. The moment arm is discussed further in the following section. The sinusoidal wave 

form the linear actuator follows can be seen in Figure 6. 

3.3  Sikorsky SSC-A09 Model 

The ARO requested that the focus of this investigation be the Sikorsky SSC-A09 

airfoil. This airfoil had been used previously in dynamic stall research by Lorber and 

Carta (Ref. 37) in 1987. Aside from those tests, the SSC-A09 remains largely untested in 
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the dynamic stall regimes. The SSC-A09 is a cambered, high-lift airfoil used as the tip of 

rotor blades found on versions of both Comanche and Black Hawk helicopters. 

Sikorsky provided the non-dimensional upper and lower surface coordinates at 

66 locations along the airfoil chord. These locations, which are provided in Table 1, 

were used to create a scatter plot from which sixth order polynomial trend lines were 

determined for both surfaces. These polynomial equations were used in SolidWorks 

(Ref. 46) to create a computer model of the future physical wind tunnel testing model. 

The computer model can be seen in Figure 7. The SolidWorks model was then divided 

into six pieces for machining manageability.  

The wind tunnel testing model has a chord length of 0.46 m (1.5 ft) and spans 

2.13 m (6 ft 11.75 in) and is composed of several individual pieces. This span allows for 

3.18 mm (1/8 in) clearance on each side of the model between the wing and the wind 

tunnel side wall. A steel 7.62 cm by 2.54 cm (3 in × 1 in) rectangular shaft runs along 

the airfoil quarter chord and serves as the support structure for the wing. The airfoil is 

made up of six aluminum pieces. The top portion of the airfoil is made up a 152.40 cm 

(5 ft) section, a 30.48 cm (1 ft) section, and a 29.85 cm (11.75 in) section. The bottom 

portion of the airfoil is comprised of a 121.92 cm (4 ft) section, a 45.72 cm (1.5 ft) 

section, and a 45.09 cm (1 ft 5.75 in) section. The six airfoil pieces can be seen in Figure 

9. The six airfoil pieces affix to the shaft with six 9.53 mm (3/8 in) dowel pins to ensure 

moment is transferred from the linear actuator to the airfoil. The ends of the inner top 

and bottom sections of the airfoil are vertically offset to maintain the strength and 

integrity of the wing model as a whole. The three top sections bolt to the three bottom 
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sections of the airfoil at 88 locations; 22 span-wise locations with 4 bolts along the 

chord. The two remaining pieces of the wing model are the gloves that connect the 

rectangular shaft to a circular shaft of 3.81 cm (1.5 in) necessary for the use of the DSF. 

The circular shaft was press fitted into the glove. To prevent slippage, 2 bolts and a 

perpendicular dowel pin passed through both the glove and the shaft. Figure 10 shows a 

close up of one of the gloves in the testing model. On each side, the circular shaft passes 

through the wind tunnel side panel and then through a bearing block. Lock collars on 

both sides of the bearing blocks prevent translational motion of the wing along its span 

axis. On the left side circular shaft, outside the wind tunnel test section, a moment arm is 

used to transfer the translational motion of the linear actuator, and create the sinusoidal 

pitching motion of the wing. The moment arm attached to the wing shaft through a 

torque transferring locking collar. A clevis attached the moment arm to the hydraulic 

cylinder. The moment arm can be seen alone in Figure 11 and in the testing setup in 

Figure 12. A secondary bearing block is used on the left side (looking upstream) circular 

shaft to prevent vibrational bending along the shaft. This bearing block is located on the 

outside of the moment arm connected to the linear actuator. 

Counter bored holes in the airfoil surfaces housed the 88 bolts and nuts that 

attached the top surface to the bottom surface. Due to the camber, the top portion of the 

airfoil was thicker than the bottom portion. For this reason, the bolts were inserted 

through the bottom surface, while the nuts were attached through the upper airfoil 

surface. After all of the airfoil pieces had been bolted together, it was necessary to fill 

the holes to achieve a smooth airfoil surface. This was accomplished by filling the holes 
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with wax until the nut and bolt heads were covered. The holes were then filled the 

remainder of the way with a two-part aluminum putty. After the putty had cured, the 

entire surface was sanded down, progressing from coarse to fine grain paper, to remove 

any machining imperfections and to achieve a smooth surface that would not trip the 

boundary layer. The surface was then cleaned of any aluminum dust that may have been 

left over from the sanding process and painted flat black to prevent any light reflections 

in the testing environment.  The assembly process was completed when the gloves with 

the circular shafts were attached to the rectangular shaft within the wing. Figure 13 

shows the completed testing model prior to insertion into the LSWT. A downstream 

view of the model after insertion into the OWN LSWT is shown in Figure 14. Figure 15 

and Figure 16 provide leading and trailing edge views of the wing while installed into 

the LSWT. The completed SSC-A09 large-scale testing model is summarized in Table 2. 

3.4 Wing Reference Frame and Angle of Attack Calibration Technique 

It was necessary to establish a reference frame in the three-dimensional flow 

field.  The origin was fixed at the quarter chord of the wing because the pitching motion 

rotates about this point. The x-axis points in the upstream direction, parallel to the flow 

direction, floor, ceiling, and sidewalls. The y-axis points vertically upward, 

perpendicular to the ceiling and floor, and parallel to the sidewalls. The z-axis completes 

the right coordinate system and lies along the quarter chord of wing. The data is two-

dimensional, collected at the z = 0 location, at the location of the laser sheet. Figure 17 

shows a diagram of the SSC-A09 rotor blade airfoil, non-dimensionalized by chord 

length, and the coordinate axes as described above. Also shown is the region of interest 
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for experimentation, namely the leading edge of the wing just before and at the onset of 

dynamic stall. The region of interest is the frame of the PIV data collected, which will be 

discussed in the following sections. 

It is important to note that the reference frame is fixed in space and does not 

pitch with the wing. The angle of attack is measured from the x-axis, which  passes 

through the quarter chord. If the leading edge of the wing is above the x-axis, the angle 

of attack is positive; if the leading edge of the wing is below the x-axis, the angle of 

attack is negative. Additionally, the flow direction is considered to be negative as air 

moves from leading edge to trailing edge.  

Calibration of the testing apparatus was required to relate the angle of attack of 

the SSC-A09 to the position of the linear actuator. Angle of attack was measured with an 

inclinometer, accurate to ± 0.1°, at a range of linear actuator positions. The linear 

actuator was set so the floor and ceiling were at 0°. There is a linear relationship between 

linear actuator position, measured in counts, and angle of attack of the wing in degrees. 

This relationship for the current study is shown in Figure 18. Angle of attack resolution 

is 46 counts per degree.  Thus, a count, as measured by the linear actuator, is a step of 

0.02 degrees. Angles of attack examined in testing – 16°, 18°, 20°, 22°, and 24° – were 

calculated using this relationship, then verified with the inclinometer. 
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4. DATA REDUCTION TECHNIQUES 

 

Data reduction requires that the raw image pairs be processed, via DaVis image 

processing software (Ref. 47), and then post-processed using in-house developed 

averaging software known as TAMUPIV. The post processed data is then put into a 

usable format with Tecplot 360 (Ref. 48). This section will discuss the process of 

reducing the data into understandable formats and meaningful quantities.  

4.1 Particle Image Velocimetry 

Flow visualization is the observance of the motion of fluid elements. Flow 

visualization is the most straightforward experimental method for making flow patterns 

visible. There are three basic methods of flow visualization:  surface flow visualization 

methods; particle tracer methods; and optical methods. Surface flow methods reveal the 

streamlines on the surface of a solid body. Particle tracer methods allow qualitative flow 

patterns to be observed and quantitative velocity measurements to be taken in the fluid 

around a solid body. Optical methods show changes in flow patterns through changes in 

the fluid’s refractive index. 

In this research, flow around a pitching wing is being observed.  The objective of 

this research is to quantify the mean velocities, Reynolds stresses, and vorticities of the 

flow that occurs during dynamic stall created by a pitching wing.   Particle image 

velocimetry is a particle tracer method of flow visualization that will allow this 

quantification.  
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4.1.1 Fundamental Principle of PIV 

Particle image velocimetry is a technique used to measure velocity in a plane. 

PIV allows instantaneous velocity measurements to be taken throughout the plane.  For 

this reason it is among the most commonly used methods of velocimetry today. In most 

applications of the PIV process, tracer particles are inserted into the flow and then 

illuminated, imaged, and processed to find the instantaneous velocity fields (Ref. 49). It 

is assumed that the tracer particles move with the flow of the fluid. PIV is based on the 

direct method of determining the fundamental scope of the velocity, displacement and 

time. 

A laser is used to illuminate a plane within the flow. This plane is most often 

perpendicular to the direction of the flow and parallel to the cross-section of the solid 

object within the flow. A laser is used because it can be pulsed at specific time intervals, 

allowing particle illumination only when capturing images. The tracer particles, also 

commonly referred to as seed, are illuminated with two short laser pulses. The laser light 

is scattered by the particles, and the scattered light is recorded on two frames on a 

charge-coupled device (CCD) camera. The CCD camera then stores the image pairs on a 

computer for further analysis at a later time. Because the images are taken in pairs with a 

known time increment between them, the displacement of the particles is used to 

calculate the velocity at multiple points within the plane of the flow. A diagram of a 

typical PIV system setup can be seen in Figure 19. 

There are several general features of PIV that make it a favorable process. One of 

the most important among these aspects is that the velocity measurement is gathered in a 
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non-intrusive manner. There are no probes required, such as those for gathering pressure 

or temperature measurements, which are used to calculate velocity fields in other 

methods. This makes PIV an employable method without disturbing the flow in the 

vicinity of the test area. Additionally, PIV is a whole field technique. This allows 

velocity to be determined at various points throughout the flow with a single system.  

Velocity measurements can only be obtained through evaluation of the PIV 

image recordings. Each of the digital recordings is divided into small sub-areas known 

as interrogation areas. The two images are then compared via a statistical auto-

correlation or cross-correlation. The local displacement vector for the seed particles of 

the first and second illumination images is determined. It is assumed that all of the 

particles within an interrogation area move homogeneously between the two 

illuminations. A two-component velocity vector, the local flow velocity in the plane of 

the light sheet, is calculated. This calculation is completed utilizing the known time 

delay between illuminations and the magnifications of the images. The interrogation, 

correlation, and velocity vector calculation process is typically completed multiple times 

for each image pair. The process begins with relatively large interrogation areas and is 

repeated for subsequently reduced interrogation areas. The larger the interrogation area 

is, the larger the sample of seed particles is and therefore, the higher the correlation 

coefficients are for the interrogation area. 

4.1.2 Resolution of PIV Results 

The resolution of PIV results is affected by several experimental factors. The 

prominent experimental factors include the intensity of the light scattered by the tracer 
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particles, as well as how numerous the particles are throughout the flow. These 

experimental factors determine what size interrogation areas can be reduced to. The 

higher the image resolution is, the smaller the interrogation areas can be, and the more 

accurate the instantaneous velocity vector fields will be. This also allows velocity 

vectors to be determined increasingly closer to the surface of the body disturbing the 

flow.  There is however, a point where increases in resolution can decrease the accuracy 

of the PIV results. For example, when interrogation areas get too small, and the 

correlation mesh becomes too fine, the ability to process the PIV recordings no longer 

exists. It becomes impossible to determine statistical tracer particle displacements when 

the interrogation area is only a few pixels square. The minimum interrogation area varies 

for each experimental scenario. 

The intensity of the light scattered by the particles influences the resolution of 

PIV images by affecting the contrast of the PIV recordings as well as the number of 

particles detected by the imaging camera. The intensity of the scattered particles is also a 

function of particle size and shape.  Therefore, image resolution is also a function of 

tracer particle size and shape.  For this reason choosing the correct scattering particles is 

a more effective method of changing the resolution than increasing the laser power. In 

many of the situations where PIV is used, the scattered light follows Mie’s scattering 

theory. Mie scattering applies to spherical particles that have diameters larger than the 

wavelength of the incident light. Scattered light intensity tends to increase with 

increasing particle diameter, increasing the image resolution. However, increasing 
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particle size decreases the accuracy with which the particles follow the flow, especially 

in gases, and increases the amount of noise in the recordings. 

The number of tracer particles per unit area in the image affects the distinction of 

the image. Three different particle densities can be qualitatively identified. Images of a 

low particle density are used to identify the individual particles during different 

illuminations. The process of tracking these individual particles is called particle 

tracking velocimetry (PTV). In medium density images individual particles are still 

distinguishable from one another. However, in the second image of a pair the individual 

particles cannot be paired. For this reason, statistical correlation methods must be used. 

This process is PIV. For cases characterized by high particle density, it is no longer 

possible to detect individual particles due to a large quantity of particle overlap. This 

case is referred to as laser speckle velocimetry (LSV). It is important to be aware that a 

higher seed density does not correspond to a higher resolution. When too much 

speckling, or particle overlap, occurs it is no longer possible to determine displacements 

of interrogation areas. Figure 20 shows three particle densities and the corresponding 

optical analysis technique to better understand how much seeding is needed in a PIV 

flow field. 

4.1.3. PIV in the DSF 

Illumination is provided by a New Wave Solo 120 XT Dual Head Nd:YAG Laser 

with frequency doubled to provide two pulses that are 532 nm in wavelength. An 

overview of the illumination system is provided in Figure 21. The laser has an available 

repetition rate of 15 Hz. Each of the laser heads has a maximum energy output of 152 mJ 
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at the 532 nm wavelength. The pulse width is 4 ns with a ±1 ns jitter.  The beams emerge 

with parallel polarization. The beams were then overlapped in space with a high energy 

polarizing 50/50 beam splitter that provides efficient narrow band polarization. This 

process provided two coincident beams. One beam had parallel polarization and one 

beam had perpendicular polarization. The laser and beam overlapping optics are shown 

in Figure 22. 

The laser system and corresponding optics mounted to the roof of the wind 

tunnel. The laser beams were guided into the wind tunnel test section using a series of 

mirrors and lenses. A 532 nm mirror was used to bend the beam approximately 90º. 

Then a plano-convex cylindrical lens with a focal length of 150 mm was used in 

conjunction with a plano-concave cylindrical lens that has a focal length of 50 mm to 

create a laser sheet. These two lenses were mounted with their flat surfaces touching. A 

spherical focusing lens with a focal length of 1500 mm was used to focus the beam so 

that the waist was located just above the test section model. A detailed view of the 

sheeting optics described above can be seen in Figure 23. The thickness of the laser 

sheet was less than 1.0 mm.  

Vibrations occur when the wind tunnel runs at high speeds. To stabilize the laser 

beams, two 10.2 cm x 10.2 cm (4 in x 4 in) I-beams were used. The two I-beams run 

perpendicular to the direction of freestream and span across the top of the wind tunnel 

test section. They were supported by the wind tunnel’s concrete roof. Rubber pads were 

used between the I-beams and the concrete to isolate the optics from the vibrations of the 

wind tunnel. For further prevention of vibration and to ensure the I-beams and optics 
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would not vibrate out of place C-clamps and sand bags were used to hold the I-beams in 

place. This setup was proven to be an effective method of obtaining a stable laser beam 

(Ref. 43).   

Data were acquired with a Cooke Corporation pco.1600 Camera. The pco.1600 

camera is a high dynamic range (14-bit), thermoelectrically cooled (to -20°C) interline 

transfer CCD camera with a 1600 x 1200 pixel array resolution. The camera had a Nikon 

f-mount for lenses. The f-number was set to 8. An exposure time of 5.3 µs and trigger 

delay time of 10 µs is used. The interline transfer rate is sufficient for delays down to 

300 ns. The camera frame grabbing software was pco.CamWare version 2.19 (Ref. 50). 

A Nikon 70 – 300 mm lens was used to focus the camera onto the illuminated particles.   

The camera mounted to an H-shaped stand made of aluminum rails. The camera 

mounted on an extension bar, which in turn attached to the middle rail using a mounting 

plate. The camera was supported by a telephoto lens support mounted to two micrometer 

driven translational mounts, mounted parallel and perpendicular to the extension bar. 

This entire assembly attached to the extension bar. Mounting the camera on the 

extension bar allowed movement in the direction perpendicular to the flow, parallel to 

the z-axis. For a wide-angle view the camera was moved away from the test section, 

while for zoomed in, high resolution data, it was moved inward, closer to the test section 

wall. The mounting plate could slide on the middle rail to provide movement of the 

camera parallel to the direction of flow. A rotational degree of freedom was provided in 

the telephoto lens support, which could be rotated freely and secured at an appropriate 
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angle of rotation. Thus, the camera had three degrees of freedom for alignment. The 

camera setup during experimentation is shown in Figure 24 and Figure 25. 

The synchronization of the camera trigger, laser Q-switch, and laser flash lamps 

to the wing motion is controlled by a Quantum Composer Model 9618 pulse generator 

according to the signal output by the hydraulic actuator control box. The Quantum 

Composer ensures that the pitching motion of the airfoil, the laser sheet and the camera 

are phase locked to allow image acquisition at particular, specified angles of attack. The 

pulse generator has 8 channels with 100 ns resolution (jitter < 5 ns). The Quantum 

Composer can be seen in Figure 26. A 5 V signal, sent by RMCWin, at a specified angle 

of attack triggers the phase locked laser pulses and image capturing. Raw PIV image 

pairs acquired with this system can be seen in Figure 27 and Figure 28. Due to the 

complexity of the experimentation systems, extensive step-by-step instructions for 

operating the wing pitching system and PIV system are provided in Appendix B. 

The wind tunnel is seeded by a MDG Max 5000 Fog generator using MDG 

neutral fluid, mineral oil for this investigation. The fog generator has a fog output of 

10,000 ft3/min. Fluid consumption is 2.5 L/hr at 40 psi at full volume.  The reservoir 

capacity is 0.66 US gallons. It produces pure white particles of 0.5 to 0.7 µm in 

diameter. The particles are inserted into the flow downstream of the wing on the left side 

of the test section (looking upstream). Following Menon and Lai (Ref. 51), the mineral 

oil particles used in this investigation have a 3dB frequency response of approximately 

85 kHz (0.75 µm particles). The seed density was selected such that the resulting 
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velocity vector density was nearly 100% via real time processing. However, the density 

was maintained below extreme levels such that the focus was not blurred. 

4.1.4 Challenges of PIV 

Bright laser reflections from a solid surface interfere with the Mie scattering 

signal from the small seed particles. The seed particles in this experimentation vary in 

size from approximately 0.5 to 0.75 µm. An additional complication caused by the 

reflection of the laser sheet by the surface is called image blooming.  In this situation 

neighboring pixels are saturated with excess charges producing a white band in the 

image. A balance in the laser power is required optimize the amount of light scattered by 

the particles and minimize the amount of blooming occurring in the image. 

To address these reflection issues, sections of the leading edge of the airfoil were 

replaced with optically transmitting materials. In some of past experimentation (Ref. 43, 

44), on the NACA 0012 model, a 10.2 cm by 2.54 cm (4.0 in × 1.0 in) section of the 

airfoil leading edge was machined from Plexiglas. The Plexiglas was polished to a clear 

transmitting surface with Buehler Brand polishing compound (20 µ-in, followed by 5 µ-

in). Because the purpose of this insert was to minimize laser sheet reflections, the 

portion of the wing underneath the Plexiglas was painted flat black so that laser sheet 

would not reflect back (Ref. 32). The laser energy that was not transmitted by the 

Plexiglas still masked the data below approximately 1.5 mm. To further reduce the data 

masking the Plexiglas was coated with a fluorescent (Rhodamine) paint capable of 

absorbing up to 99% of the incoming light at 532 nm and emitting the light at 

approximately 590 nm. A second benefit was that the emitted light was diffuse, 
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compared to the specular laser reflection. The airfoil was painted black approximately to 

minimize additional light reflections.  

In more recent experiments with the NACA 0012, the Plexiglas insert was no 

longer used. A glass insert with an anti-reflective coating was used for data collection. 

This insert proved to reduce reflections in raw data images as compared to the Plexiglas 

insert. While the glass insert was antireflective on its outer surface, some of the 

transmitted light would reflect off of internal surfaces of the glass and mask data along 

the airfoil surface.  

A similar light-transmitting insert was made for the Sikorsky SSC-A09 model as 

well. This insert was made of Lexan.  The Lexan insert is nominally 2.54 cm by 7.62 cm 

(1 in × 3 in) in size. This insert was polished to a transparent surface. It fit snugly into 

the groove in the airfoil leading edge. 

In the data acquired for this study, it was discovered that no light-transmitting 

insert was necessary. By painting the inserts flat black as well, reflections were reduced 

even further. Data collection has been achieved as close as 0.1 mm from wing surface. 

4.1.5 Data Reduction Process 

Each PIV sample consists of two images, labeled image A and image B 

respective to time. Nominally, 1000-2000 image pairs, or samples, were acquired at each 

angle of attack to ensure statistical convergence of the mean and second order statistics. 

These images were processed according to the following description. 

Velocity fields were created by calculating the displacements of particle groups 

from image A to image B in the image pairs. These calculations were done using 
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LaVision DaVis data analysis software. A four-step adaptive correlation calculation 

using successive interrogation area sizes of 128×128, 64×64, 32×32, and 16×16 pixels 

respectively with a 50% overlap was performed. Two passes were done at each 

interrogation window size. A mask was applied prior to processing to prevent the 

software from completing calculations within the airfoil profile. High accuracy mode 

was enabled for final passes. 

In order to enhance the intensity of correlation peaks relative to random noise, a 

signal-to-noise ratio filter was used to delete all vectors with a signal-to-noise ratio of 

1.0 or less. A post-processing filter was used to remove groups with less than 5 

consistent vectors. An interpolation function was enabled to fill in any empty spaces 

within the image. A smoothing function was also used.  

This PIV data reduction process resulted in vector data for each sample. This 

data could be viewed as vector fields or could be exported into numerical data files of u- 

and v-velocity component magnitudes and directions at x and y locations.  

4.2 Image Post-Processing 

PIV image processing is made up of multiple steps. Processing the raw data with 

DaVis provided instantaneous velocity data for each sample. To gain a comprehensive 

understanding of the flow field, time-averaged quantities were compared, rather than 

instantaneous quantities. Time-averaging is the first step in image post-processing. 

To obtain time-averaged quantities, a post-processing code called TAMUPIV 

was used. The mean velocity components and the fluctuating velocity components were 

calculated by TAMUPIV. Additionally, TAMUPIV was also used to calculate mean 
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Reynolds stresses and vorticities at each angle of attack. TAMUPIV required the input 

of the chord length in meters (0.45), the freestream velocity in meters per second 

(nominally 35), the time separation between images (20 µs), the number of pixels per 

millimeter in the images (approximately 17), and the number of images to average. The 

number of images was approximately 350 for the downstroke portion of the pitching 

motion and 1000 for upstroke portion of the pitching motion. The number of samples 

was different for the upstroke and the downstroke because all downstroke flow fields 

were expected to show full leading edge separation; therefore, the upstroke was the 

focus of this study. After the calculations were completed, the output quantities were 

written to a data file for further use. 

Post-processing also involves normalizing the time-averaged quantities 

calculated by TAMUPIV.  Normalization was completed in Tecplot. The mean velocity 

components were normalized by simply dividing by the freestream velocity, nominally 

35 m/s. The fluctuating velocity components alone were not of particular practical 

interest. The fluctuating velocity components comprise the Reynolds stresses, σu, σv, and 

τxy, which are more practical quantities for comparison. Mean Reynolds stresses were 

normalized by U∞
2. Mean vorticities were used for boundary layer insight and were 

normalized by the chord length and freestream velocity. Tecplot was then used to create 

visual representations of the normalized, time-averaged numerical data. Final data 

exhibits a velocity vector approximately every ½ mm. 
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5. RESULTS FOR M∞ = 0.1 AND k = 0.1 

 

The testing matrix for the SSC-A09 wing can be seen in Table 3.  Three cases 

were tested wherein data was acquired.  Case III is the focus of this study and will be 

discussed throughout Sections 5 and 6 because, of the three cases studied, it provides the 

most comprehensive understanding of dynamic stall on the SSC-A09. Case I is static 

data taken during a mechanical test of the SSC-A09 model in the wind tunnel for the 

first time. This data provided a basis for comparison. Case II is dynamic data where the 

angle of attack range for oscillations was 0° to 20°. The data acquired in Case II were 

used to determine what the angles of attack of interest would be for Case III. Through 

Case II it was determined that the angle of attack oscillation range needed to be changed 

to effectively observe dynamic stall.  

This chapter first discusses an extensive PIV processing parameter study that was 

done in DaVis to determine the best settings for consistent PIV processing results. The 

discussion of the dynamic stall flow field is broken up into two parts, the upstroke and 

the downstroke. For both motions, mean velocity fields and Reynolds stresses are 

discussed for all angles of attack of interest. For the upstroke, vorticity is also discussed 

for 16°, 18°, and 20°. For 18° a boundary layer analysis was performed for the upstroke 

phase of oscillation. 
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5.1 PIV Processing Parameter Study 

LaVision’s DaVis software offered many options for PIV data processing that 

had not been available in our previously used PIV processing software. For this reason, 

it was necessary to determine how changing various parameters in DaVis affected the 

instantaneous and mean flow fields. DaVis also offered significantly faster processing, 

which allowed for numerous parameters and their effects to be investigated. Parameters 

studied include interrogation window shapes, sizes, and percentage overlap, as well as 

the number of passes completed at that window size. DaVis offered velocity vector post-

processing options such as smoothing, vector deletion depending on signal to noise ratio, 

and interpolation, that were also investigated. The processing study was conducted at an 

angle of attack of 16°. When further investigation was required, data acquired at 18° 

angle of attack was used.  All parameter studies were conducted on upstroke data where 

the flow was attached.  

The shape of the interrogation window was found to largely affect the resulting 

instantaneous and mean velocity fields. The available interrogation area shapes are 

square, circle, 2:1 ellipse, 4:1 ellipse, and adaptive window shape. Multiple orientations 

of the ellipse were available for both elliptical window options – the semi-major axis 

could run north-south, east-west, northwest-southeast, or northeast-southwest. It was 

determined  that the square shaped window could not get close enough to the surface of 

the wing, particularly at the leading edge, and nearly 50 pixels of data were not 

resolvable. The circular window allowed for resolution of data closer to the wing surface 

near the quarter chord, but had poorer resolution at and upstream of the leading edge. 
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The elliptical windows of both sizes provided holes in the data due to the curvature of 

the wing surface. Ellipses of different orientations were required to resolve the leading 

edge and downstream of the leading edge. Adaptive windows uses different window 

shapes at various locations in the image. The window shape that provides the most 

vectors with the best signal to noise ratio is the shape chosen at that location by the 

adaptive PIV process. For this reason, it was determined that adaptive window shapes 

would be used for the reduction of data. 

Interrogation window size also largely affects the mean flow fields. Window size 

is dependent on the time separation between image A and image B. As the flow 

accelerates around the wing’s leading edge, it can reach great enough speeds that 

correlation cannot be successfully achieved because the particles move out of the 

interrogation window. For the data acquired in Case III, it was determined that a window 

size of 128×128 pixels was an appropriate initial pass size and 16×16 pixels was an 

appropriate final pass size. 

Percentage of window overlap can provide additional consistency among vectors 

because more vectors are generated when the overlap percentage is larger. The 350 

image pairs for 16° upstroke were processed with overlap percentages of 25%, 50%, and 

75%. While only 25% overlap is not commonly used in PIV data processing, it was 

included in this study to better see the effects of changing overlap percentage. When 

adjusting the overlap percentage from 25% to 50%, there were several noticeable 

differences in the mean flow fields, particularly the considerably smaller number of 

vectors obtained. When comparing 50% overlap to 75% overlap, it was determined that 
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contour plots of the mean velocities were nearly identical. There was no noticeable gain 

in precision as was seen when adjusting from 25% to 50%. An overlap percentage of 

50% was chosen as a final processing parameter. 

The final multi-pass parameter to adjust was the number of passes completed for 

each interrogation window size. The data was processed for 1 pass, 2 passes, and 3 

passes at each interrogation window size. Similarly to the overlap percentage, adjusting 

the number of passes at each of the four interrogation window sizes from 1 to 2 caused 

increased consistency in vectors. This aided in the resolution of the flow at the leading 

edge. When increasing the number of passes from 2 to 3, there was no discernable 

difference between the mean flow fields; however, the processing took nearly twice as 

long. It was determined that 2 passes at each interrogation window size provided slightly 

better resolution without adding a considerable amount of processing time. 

The vector post-processing parameter study began with studying the effects of 

smoothing. Smoothing was turned on and off for 350 image pairs at both 16° and 18° 

angle of attack. It was determined that smoothing helped slightly to resolve the flow at 

the leading edge. Additionally, the freestream flow vectors were more consistent with 

the smoothing parameter turned on. For these reasons smoothing was used when during 

the final processing of the PIV data.  

Vector deletion and the resulting effects were investigated next. Vectors could be 

deleted for two reasons in DaVis. First, a vector could be deleted if it did not have an 

appropriate signal to noise ratio – DaVis calls this the quality factor, Q. The threshold of 

acceptable values for Q was set by the analyst. To determine appropriate values of Q to 
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test, histograms were generated for all angles of attack that showed the vector intensity 

at the mean velocities. Through these, it was possible to determine that Q is a highly 

sensitive parameter, and changing it even slightly can eliminate hundreds or thousands 

of vectors. Appropriate Q values for this case were determined to be 0.9 and 1.0; 

therefore, data was processed at both values and compared. Increasing the threshold to 

1.0 from 0.9 was found to eliminate vectors that were inconsistent. This allowed for 

greater resolution near the leading edge and increased the resolution near the wing 

surface. The second method of vector deletion was also intended to reduce 

inconsistencies in the flow by deleting vectors based on the group of vectors it was 

located in. By removing groups with fewer than 5 vectors it was possible to even further 

resolve the vector field near the leading edge. For these reasons, vectors were deleted if 

they possessed a Q < 1.0 or were in a group of less than 5 vectors.  

After studying the effects of vector deletion, the effects of the interpolation 

option on the mean flow field were assessed. The interpolation option can drastically 

affect PIV data analysis. While interpolation increases the vector density for an image, it 

also obtains the extra vectors mathematically based on the surrounding vectors. The 

surrounding vectors may not produce an accurate representation of what is happening in 

the flow at that point. If it is the instantaneous flow field that is of interest, interpolation 

should not be used, but within the mean flow field interpolation provides data with 

higher levels of precision. Interpolation, when coupled with the vector deletion 

parameters described above, provided greater resolution of the mean flow field about the 
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leading edge.  These two parameters helped to clarify what was physically occurring at 

the leading edge.  

Through studying the effects of these processing parameters, it was possible to 

resolve data to within 1.0 mm of the wing surface. Additionally, physical phenomena 

were identifiable within the flow. The previously difficult to resolve leading edge region 

and upstream of the leading edge region were resolvable. A summary of the results of 

the processing parameter study is given in Table 4. Some representative data contours 

for U and τxy are provided in Appendix C. 

5.2 Upstroke – Airfoil Pitching Up Motion 

The SSC-A09 wing was pitching about its quarter chord, sinusoildally oscillating 

from 5° to 25° angle of attack. Throughout oscillations, the flow field is the most 

interesting during the pitching up motion. It is during the upstroke that the significant 

delays in stall characteristics are observed. For this reason, the upstroke will be 

discussed first. Also, this is the reason excess data was acquired for an angle of attack of 

18°. The mean velocity components and the Reynolds stresses throughout the flow field 

will be discussed in detail for 16°, 18°, 20°, 22°, and 24°. 

It is important to note that while the overall average data for 18° showed that the 

flow was attached in the field of view, there were several instantaneous images that 

showed partial separation in the field of view. The instantaneous images that showed full 

attachment were averaged independently from the instantaneous images that showed 

partial separation. If the non-dimensional u-velocity was less than 0.9 at x/c ≥ 0.12 and 

y/c ≥ 0.09 – on the reference frame shown in Figure 17 – the flow was considered 
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separated for that sample.  Separate mean velocity fields, Reynolds stresses, vorticity 

fields, and vector fields were obtained for 18° overall, 18° fully attached flow, and 18° 

partially separated flow. For an angle of attack of 18°, the flow was found to be partially 

separated in this field of view for 10.1% of the images acquired. 

Similar circumstances were observable for an angle of attack of 20°. For 20°, 

however, the average of all the images acquired showed total separation from the wing 

leading edge. The instantaneous samples were once again sorted for independent post-

processing. The samples were either categorized as fully separated or partially attached. 

Separation was again determined based on the non-dimensional u-velocity component. 

The sample was considered partially attached if the normalized u-velocity component 

was greater than 1.2 at x/c ≤ 0.22 and y/c = 0.09. At 20° angle of attack, the flow was 

determined to be partially attached for 7.3% of the samples acquired.  

5.2.1 Mean Velocity Flow Field 

Contours of the mean velocity components about the leading edge region of the 

SSC-A09 wing during the upstroke are shown in Figure 29 to Figure 46 for 16° to 24° 

angle of attack. Insight into the flow field about the wing that can be drawn from these 

velocity contours are discussed in this section. 

At 16° angle of attack there is delay of stall condition onset due to dynamic stall. 

The static stall angle of attack for a Sikorsky SSC-A09 is approximately 16.5° at our 

flow conditions (Ref. 52); in the U-velocity contour shown in Figure 29, it is apparent 

that the flow remains attached at the leading edge at 16°. This figure shows the 

magnitude of the U in the first 13% of the chord length. The change in magnitude of U 
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can be seen as the flow accelerates around the leading edge of the wing.  The maximum 

velocity reached is nearly 3.0U∞ at 1% to 2% of the chord. The magnitude of U then 

begins to slow down as it follows the curvature of the wing surface. U is slightly 

negative below the leading edge of the airfoil due to the flow above the location of the 

stagnation point turning to follow the curvature of the airfoil. As expected, moving 

outward, away from the wing surface, U decreases as it approaches the freestream 

velocity. The mean velocity in the y-direction for 16° angle of attack is shown in Figure 

30. V is greatest in magnitude at the leading edge where the flow must turn to follow the 

wing surface. When V is nearly zero, the flow is parallel to the freestream velocity, 

which is observable at 6% of the chord.  

At 18° angle of attack, three pairs of velocity contours were generated. Figure 31, 

Figure 33, and Figure 35 show the mean velocity component in the x-direction for all 

samples acquired, samples acquired showing full attachment in the field of view 

observed, and samples acquired showing partial separation in the field of view observed, 

respectively. Figure 32, Figure 34, and Figure 36 show the mean velocity in the y-

direction for these three conditions. Overall, in the majority of samples acquired at 18°, 

the flow was shown to be attached. It is important to point out that this is past the static 

stall angle of approximately 16° mentioned previously. U increases about the leading 

edge of the wing, following the surface curvature, until it reaches its maximum along the 

surface at between 2% and 3% of the chord. The maximum velocity observed is again 

approximately 3.0U∞. Downstream of this chord location, the velocity slowly decreases 

until separation occurs at a location outside the investigated field of view. At locations 



 61 

increasingly farther outward, away from the wing surface, U decreases in magnitude. 

The maximum magnitude of mean velocity in the y-direction is observable at the leading 

edge, as the vectors follow the curvature of the wing surface. There are no significant 

differences between the overall mean velocity contours and the velocity contours of the 

fully attached samples, mean velocity magnitudes showed changes on the order of 0.1U∞ 

or less. There are significant differences between contours in these two cases as 

compared to the partially separated flow. For the partially separated flow, U shows a 

small wedge of 0.75U∞ or less is visible from 10% of the chord and rearward. This 

wedge appears to be approaching from the trailing edge and has velocities of nearly zero 

near the wing surface. Downstream of 8% of the chord the flow does not follow the 

curvature of the wing surface, it follows the edge of the separation wedge. The velocity 

contour in the y-direction does not show a considerable change magnitude of V at the 

locations of the separation wedge observed in the U contours. This is due to the small 

magnitudes of V at these locations regardless of separation.  

Three pairs of velocity contours were also generated for an angle of attack of 20°. 

Because the overall flow was fully separated for 20°, the additional two pairs of velocity 

contours are for the mean of the instantaneous velocity samples showing full separation 

from the leading edge and instantaneous velocity samples showing partial attachment in 

the field of view investigated. U and V contours for all the samples acquired at 20° 

upstroke are shown in Figure 37and Figure 38. Figure 39 and Figure 40 show the 

average velocities of the samples acquired that showed full separation from the leading 

edge. Figure 41 and Figure 42 show the average velocities of the instantaneous velocity 
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samples that showed only partial separation. The overall mean velocities clearly show 

the separation from the leading edge of the airfoil. Along the entire surface of the airfoil, 

U is less than 0.75U∞. U increases along the edge of the separation wedge until the 

freestream velocity is matched at a location outside this field of view. Within this field 

of view the maximum U, 2.5U∞, occurs at 10% of the chord and at a y/c location of 0.17. 

In the separation wedge, there is a clear reverse flow region where U near the wing 

surface is positive (opposite the freestream flow). The separation wedge is also clearly 

visible in the overall V contour. The maximum magnitude of V, 2.0U∞, occurs just 

upstream of the leading edge, where the flow is changing direction to get to the upper 

surface of the wing. Along the edge of the separation wedge the magnitude of V 

decreases moving farther outward. Within the separation wedge, a region is observable 

where V points inward toward the wing surface. There are no significant differences 

between the overall average velocity contours and the fully separated average velocity 

contours. This is expected because 92.7% of the samples acquired were fully separated. 

There are two significant differences observable between the overall average velocity 

contours and the partially attached average velocity contours. First, the separation wedge 

has moved downstream by 3% of the chord to x/c = 0.22. Second, the contours 

themselves are much more jagged in appearance. The magnitudes of both U and V are 

consistent across all three contour pairs.  

The flow field is fully separated at angles of attack of 22° and 24°. For this 

reason, the mean velocity contours for these two angles are very similar. In all four 

contours (Figure 43-Figure 46) the separation wedge is clearly visible. The U contours 
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for both angles of attack feature the reverse flow region. The maximum magnitude U 

occurs at 7% of the chord for both angles of attack; however, the maximum U is greater 

for 22° than it is for 24° by 0.5U∞. For both angles of attack the maximum magnitude of 

V occurs at the leading edge, where the flow is turning to follow the shape of the 

separation wedge. 

5.2.2 Reynolds Stresses 

This section describes the contours of the three Reynolds stresses, σu, σv, and τxy, 

during the pitching up motion of the wing at 16°, 18°, 20°, 22°, and 24°. For all angles of 

attack investigated the normal and shear Reynolds stresses are only found within the 

separated area or shear layer.  Reynolds stresses for each angle of attack, during the 

upstroke, can be seen in Figure 47-Figure 73. 

For an angle of attack of 16°, the flow remains attached throughout the field of 

view used in this study, during the upstroke. As expected, the Reynolds stresses in this 

case are only found along the surface of the wing in the shear layer. The averaged 

stream-wise normal Reynolds stress appears primarily at the leading edge, but can also 

be seen along the airfoil surface, downstream from 8% of the chord on (Figure 47). The 

maximum σu is 0.6 along the surface of the wing within the first 1% of the chord. The 

vertical normal Reynolds stress also appears primarily at the leading edge, but can also 

be observed downstream of 9% of the chord. For 16° upstroke, the maximum σv is 0.75 

at the leading edge (Figure 48). The Reynolds shear stress, τxy, is found only at the wing 

leading edge and has a maximum value of 0.45 (Figure 49). 
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As discussed previously, 3 sets of contours were generated for 18° angle of 

attack. Differences are more noticeable between the contours sets in the average 

Reynolds stress contours than in the velocity contours discussed above. In the overall 

contours, the Reynolds stresses are observable primarily at the wing leading edge 

(Figure 50, Figure 51 and Figure 52). The stream-wise normal Reynolds stress is also 

observable downstream of 8% of the chord (Figure 50). Slight thickening of the shear 

layer is visible at the edge of the field of view. For the average of the attached samples, 

the thickening of the shear layer toward the edge of the field of view, in the stream-wise 

normal stress contour, is no longer evident (Figure 53). The vertical normal stress and 

shear stress are only observable at the leading edge of the wing (Figure 54 and Figure 

55). There is shear stress data at the rear of the field of view that is being masked by the 

high stresses at the leading edge in the contours shown. For the average of the 10.1% of 

partially separated images there are indicators of the thickening of the shear layer and 

separation onset in all three Reynolds stress contours. According to the σu contour, the 

shear layer begins to thicken at 6% of the chord (Figure 56). The σv contour shows 

thickening of the shear layer starting at 10% of the chord (Figure 57). Figure 58 shows 

the Reynolds shear stress contour, τxy, which shows shear layer thickening beginning at 

9% of the chord. 

Three sets of Reynolds stress contours were also generated for 20° angle of 

attack. Because 92.7% of the instantaneous samples were attached, the overall averages 

(Figure 59, Figure 60, and Figure 61) and the fully separated averages (Figure 62, Figure 

63, and Figure 64) are very similar and will be discussed as a single set of contours. The 
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stream-wise normal stress contour shows the separated region and emphasizes the shear 

layer. The shear layer clearly begins at the leading edge and follows a nearly constant 

slope up and to the left (downstream). A peak in σu can be seen in the first 4% of the 

chord, within the shear layer. The vertical normal stress contour shows the shear layer 

curving around the leading edge of the SSC-A09 wing. The maximum value of σv is 

found at the leading edge. The shear stress is observable curving around the upper 

portion of the leading edge and throughout the shear layer and separated region. The 

maximum shear stress occurs at 3% of the chord. The average stress contours generated 

from the partially attached instantaneous samples at 20° angle of attack are particularly 

interesting. These contours show the point of separation. The stream-wise normal stress 

shows the shear layer at the leading edge becomes unattached at 4% of the chord (Figure 

65). σu peaks at 7% of the chord. Figure 66 shows the vertical normal stress and the 

onset of separation at 4% of the chord. The Reynolds shear stress is shown in Figure 67. 

Once again at 4% of the airfoil chord, the transition of the shear layer from attached to 

separated is evident.  

At 22° and 24° the flow is fully separated and the Reynolds stresses are confined 

to the separated region and shear layer. The Reynolds stress contours for these angles 

can be seen in Figure 68-Figure 73. In all contours, the maximum stress is located in the 

first 5% of the chord. Both the vertical normal stresses and the shear stresses wrap 

around the front of the leading edge.  
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5.2.3 Vorticity Analysis for α = 16°, 18°, and 20° 

A vorticity analysis was conducted for 16°, 18°, and 20° angle of attack during 

the upstroke motion of the wing. The generated contours for non-dimensional mean 

vorticity at these angles of attack can be seen in Figure 74 through Figure 80.  

At the angles of attack that show significant attachment, 16° and 18°, there is a 

large positive vorticity that wraps around the airfoil leading edge. Once again, 18° and 

20° data were analyzed in three sets, as described previously. From 16° to 18° there is a 

noticeable thickening of the vorticity along the wing surface in the field of view. At 18° 

when comparing all three set averages, the positive vorticity region is smallest for the 

fully attached samples and largest for the partially separated samples. A drastic increase 

in vorticity is observable in the separation onset region.  

At 20°, positive vorticity is largest along the outer edge of the separated region 

near the leading edge in all three analysis sets. The overall data and the fully separated 

data agree well due to the 92.7% of samples the two sets have in common. For these two 

sets, the vorticity is greatest near the leading edge and decreases in magnitude as you 

move outward – away from the wing suface – and further downstream. Several vortices 

are visible throughout the separated region of the 7.3% of samples that showed partial 

attachment.  This contour also shows indications of a small vortex near the separation 

point. This vortical structure is highlighted in Figure 80. 

5.2.4 Boundary Layer Analysis for α = 18° 

Streamline and vector field data were generated for 16°, 18°, and 20° angle of 

attack to provide further insight into the boundary layer. These data can be seen in 
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Figure 81-Figure 97. It was only possible to resolve the upper edge of the boundary layer 

for 18° angle of attack during the upstroke phase of the pitching motion. The velocity 

vectors and streamlines for 18° angle of attack, upstroke are shown in Figure 83-Figure 

91. Zoomed in views of velocity vectors along the rear portion of the leading edge 

region – from 6.5% to 15% of the airfoil chord – provide a better understanding of what 

happens to the velocity as the airfoil surface is approached.  

Figure 85 shows the boundary layer vectors for the overall mean data acquired at 

18°. As expected, the velocity vectors decrease in magnitude as they approach the airfoil 

surface within the boundary layer. Figure 88 exhibits a similar decrease in velocity 

vector magnitude approaching the airfoil surface within the boundary layer. This figure 

shows the boundary layer mean velocity vectors for the samples taken at 18° that 

showed full attachment within the field of view. The decrease in boundary layer velocity 

vector magnitude is smaller in this case than in the mean of all the acquired data. Figure 

91 shows a zoomed-in view of the boundary layer and first indications of separation 

onset for the 10.1% of samples with observable separation. Here, the decrease in 

velocity vector magnitude is much more significant as the separated region is 

approached. The mean velocity in the separated region is between 0 and 0.1 times the 

freestream velocity. For this subset of samples, the direction of the velocity vectors has 

also changed, because of the separation region. It is also observable in this data subset 

that as you move downstream from the leading edge toward the edge of the field of 

view, the velocity vectors decrease in magnitude until a minimum is reached in the 
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separated region. The state of the boundary layer remains unknown as the flow 

accelerates around the leading edge. 

5.3 Downstroke – Airfoil Pitching Down Motion 

During the sinusoidal pitching down about the quarter chord, the flow field was 

observed for 16°, 20°, 22°, and 24° angle of attack. At all angles of attack, the flow field 

was fully separated during the downstroke. For this reason, the downstroke can be 

discussed as a whole, rather than for each angle of attack. Significantly less data was 

acquired during this portion of oscillation; only approximately 350 images per angle of 

attack, rather than the approximately 1025 that were acquired per angle during the 

upstroke. Additionally, no data was recorded for 18° angle of attack during the 

downstroke due to time restrictions in the LSWT testing environment. 

5.3.1 Mean Velocity Flow Field 

Once again the mean velocity flow field was broken up into components, U and 

V, for each angle of attack. The contours of the mean velocity components can be seen 

from Figure 98 to Figure 105. All angles of attack clearly showed separated regions 

beginning at the leading edge. The reverse flow region near the surface of the wing was 

also apparent at all angles of attack in the stream-wise velocity component contours. The 

vertical velocity component contours identify the area of peak V as the leading edge. The 

magnitude of the peak velocity component in the y-direction is approximately 1.2U∞ for 

all four angles of attack investigated. 
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5.3.2 Reynolds Stresses 

The Reynolds stresses are also fairly consistent for 16°, 20°, 22°, and 24° during 

the downstroke phase of the pitching motion. The shear layer and separated region is 

clearly identifiable for each angle of attack in σu, σv, and τxy. Reynolds stress contours for 

the downstroke motion are provided in Figure 106-Figure 117. The stream-wise normal 

stress contours for all four angles are very similar and are shown in Figure 106, Figure 

109, Figure 112, and Figure 115. They all show the shear layer beginning on the upper 

surface of the leading edge region. The location of maximum stream-wise normal stress 

changes with angle of attack. As angle of attack increases, the location of maximum 

stream-wise normal stress moves upstream along the wing surface. The location of peak 

σu is in the first 4% of the airfoil chord at all angles of attack observed. The magnitude of 

the peak σu is between 0.1 and 0.2 for these four angles of attack. The average vertical 

normal Reynolds stress contours are very similar to one another and are shown in Figure 

107, Figure 110, Figure 113, and Figure 116. For all four angles of attack the shear layer 

begins on the upper surface of the leading edge region. The location of the maximum 

vertical normal stress also changes with angle of attack. As angle of attack increases, the 

location of peak σv moves upstream. Once again, the maximum σv is located upstream of 

4% of the airfoil chord for all angles of attack investigated. The maximum value of the 

vertical normal stress is between 0.075 and 0.085 for these angles of attack. The trends 

that were observed in σu and σv can also be observed in τxy, as shown in Figure 108, 

Figure 111, Figure 114, and Figure 117. The location of the maximum Reynolds shear 
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stress is upstream of 4% chord for these for angles of attack. The peak value of τxy ranges 

between 0.5 and 0.7 for these cases.  

5.4 Uncertainty Analysis 

Uncertainty estimates were made for angle of attack, position, mean velocity, 

Reynolds stresses, and vorticity for 18° and 20° angle of attack at three locations – near 

the leading edge, near the edge of the field of view downstream of the leading edge, and 

in the freestream. Uncertainties can be found in Table 5 and Table 6. The angle of attack 

uncertainty was determined based on the uncertainty of the inclinometer used to measure 

angle of attack. Uncertainty in position was determined based on the location of the 

airfoil edge. Statistical uncertainty was determined using methods described by Benedict 

and Gould (Ref. 53). Uncertainty estimates were generated for both 18° and 20° angle of 

attack during the upstroke, because the number of PIV samples acquired at 18° was 

nominally double the number acquired at 20°. This uncertainty analysis accounts only 

for random statistical error.  
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6. CONCLUSIONS AND FUTURE WORK 

 

An investigation has been conducted of the leading edge flow during dynamic 

stall on a pitching Sikorsky SSC-A09 wing. The testing model was constructed 

specifically for use in the TAMU DSF. The wing was oscillated sinusoidally from 5° to 

25° angle of attack at a frequency of 2.5 Hz using a hydraulic actuation apparatus. The 

Mach and Reynolds numbers of testing were 0.1 and 1.0×106, respectively. PIV data 

were taken at 16°, 18°, 20°, 22°, and 24° during the upstroke and downstroke phases of 

oscillation. The image pairs acquired during testing were processed and post-processed 

to determine mean flow field characteristics. A PIV processing parameter study was 

carried out to determine the best settings in DaVis PIV analysis software for resolving 

data on a pitching airfoil. Velocity components and Reynolds stresses were analyzed. 

Usable data were acquired to within 1.0 mm of the wing surface.  

6.1 Conclusions 

Several conclusions can be drawn from the velocity component contours taken 

during the upstroke and downstroke phases of pitching motion. For a SSC-A09 airfoil, 

the flow remains fully attached in the first 14% of the chord at 16° angle of attack. A 

maximum velocity of approximately 3.0U∞ is reached parallel to the freestream as the 

flow accelerates around the leading edge of the airfoil. The location of this maximum 

with respect to chord moves downstream as angle of attack increases from 16° to 18°. 

The first indications of separation during the upstroke are seen at 18° angle of attack. 
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This shows a delay in stall onset compared to the static stall angle of 16.5° (Ref. 52). At 

18°, the flow shows at least partial separation before 14% of the chord 10.1% of the 

time. By 20° angle of attack the flow is fully separated 92.7% of the time. It is at 20° that 

reverse flow is first observable on the surface of the SSC-A09 airfoil in the separated 

region. Once the flow field has fully separated over the airfoil, the flow field remains 

largely the same, and there is no significant difference between 22° and 24° angle of 

attack.  

The analysis of Reynolds stresses during the upstroke also allowed for several 

conclusions to be drawn. If the flow is attached then the shear layer runs along the airfoil 

surface, and both normal and shear Reynolds stresses appear only in the shear layer. This 

was seen at 16° angle of attack. Peak Reynolds stresses occur at the leading edge of the 

airfoil. It is currently uncertain if this is a physical flow phenomenon or the result of 

challenges in PIV data processing. If the flow is separated, the shear layer forms the 

boundary between the inviscid flow outside the separated region and the separated 

region. This was observed for 22° and 24° angle of attack. The Reynolds stresses 

provided the most insight into the location of the separation point, which was observable 

at 20° angle of attack in the 7.3% of data at that angle that showed only partial 

separation.  

Vorticity data was analyzed for the three angles of attack that showed attachment 

during the upstroke phase of the airfoil pitching motion. A vorticity analysis was 

conducted to provide insight into the boundary layer characterization. Increased vorticity 

precedes separation and stall onset. This was observable for 16° and 18° angle of attack. 
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The vorticity region expanded and the vorticity magnitude increased as stall was 

approached. While the flow is attached, the vorticity is present along the wing surface. 

At 20° angle of attack, the vorticity was no longer attached to the surface, but followed 

the boundary of the separated region. For the samples that showed partial attachment at 

20°, several vortices were observable, including a vortex downstream of the leading 

edge near the point of separation. 

The edge of the boundary layer was resolvable only for 18° angle of attack due to 

the field of view of the data acquired. The magnitude of the mean flow velocity vectors 

was found to decrease as the airfoil surface was approached, after the edge of the 

boundary layer had been crossed. The velocity vector profile was observed just before 

separation onset. The magnitude of the velocity vectors decreases as you move from 

leading edge downstream to the edge of the field of view along the airfoil surface. More 

data points in the boundary layer are required to do a detailed boundary layer analysis at 

other angles of attack. Currently, we only have approximately 5 data points in the 

boundary layer. 

The most important conclusion that can be drawn from this study of upstroke 

data for dynamic stall is the 18° data. Because such a small percentage of samples 

acquired at 18° showed separation onset, it can be said that separation is incipient in 

leading edge region at 18° angle of attack. Data were not previously available when 

separation was imminent, but had not yet occurred. Providing boundary layer velocity 

data to the CFD community will allow model verification and validation.  
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It was observed that the downstroke data were pointedly similar across the range 

of angles of attack. Dynamic stall flow reattachment does not occur until an angle of 

attack below those studied in this investigation. The average velocity fields showed 

separation and reversed flow. The Reynolds stresses appeared only in the shear layer and 

separated region. The shear layer again formed the boundary between the separated flow 

region and the inviscid outside flow.  

6.2 Future Work 

There is a great deal of future research that can be conducted with the SSC-A09 

model constructed for this study. Among the most important research that should be 

conducted is a detailed study of the flow field from 17° through 21° angle of attack. The 

angle of attack resolution could be finer, in increments of ½ degrees instead of the 2 

degree increments used in this study. Additionally, the data acquired was of too large a 

field of view to conduct a detailed study of the boundary layer. It is important to acquire 

new data of the first 5-7% of the airfoil chord in order to do this. These additions to the 

research would provide a better understanding of the angle at which dynamic stall 

becomes the dominant flow phenomenon. A larger field of view would also be useful to 

gain a better understanding of the flow over the entirety of the airfoil chord. This would 

be useful because separation occurs at lower angles of attack outside of our current field 

of view. 

This study was only conducted at Mach 0.1 and a reduced frequency of 0.1. It 

would be of future interest to study dynamic stall on the SSC-A09 at other Mach 

numbers within the appropriate range for helicopters, Mach 0.2-0.4, where at higher 
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Mach numbers, the stall process changes fundamentally. Additionally, helicopters often 

experience reduced frequencies ranging as low as 0.05. Adding an additional reduced 

frequency to the study would be of great value. 
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APPENDIX A 

FIGURES AND TABLES 

 

 
Figure 1. OWN LSWT schematic 

 
 

 
Figure 2. Reduced LSWT test section (7 ft × 7 ft) – looking downstream 
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Figure 3. Wing support panel 

 
 

 
Figure 4. Hydraulic power unit 
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Figure 5. Linearly actuating hydraulic cylinder 

 
 

 
Figure 6. Example of wing motion following sine wave form from RMCWin 
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Figure 7. SolidWorks model of SSC-A09 assembly 

 
 

 
Figure 8. Exploded view of SSC-A09 SolidWorks model (bottom up) 
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Figure 9. SSC-A09 wing model sections 

 
 

 
Figure 10. Glove connecting rectangular shaft to circular shaft 
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Figure 11. Moment arm 

 
 

 
Figure 12. Moment arm attached to linear actuator and cylindrical shaft 
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Figure 13. SSC-A09 wind tunnel testing model 

 
 

 
Figure 14. SSC-A09 model installed in OWN LSWT 
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Figure 15. Leading edge view of SSC-A09 wing installed in OWN LSWT 

 
 

 
Figure 16. Trailing edge view of SSC-A09 wing installed in OWN LSWT 
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Figure 17. Coordinate frame for non-dimensional SSC-A09 profile and experimental region of 

interest 
 
 

 
Figure 18. Calibration of wing angle of attack 
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Figure 19. Fundamental experimental setup for PIV in a wind tunnel (Ref. 49) 

 
 

 
 

Figure 20. Particle densities for various optical flow analysis methods (Ref. 49) 
 
 

(a) Low density (PTV) (c) High density (LSV) (b) Medium density 
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Figure 21. Optical system for PIV testing in the DSF 

 
 

 
Figure 22. Close-up view of laser and beam overlapping optics 
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Figure 23. Close-up view of beam bending and sheeting optics 
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Figure 24. Experimental camera setup 
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Figure 25. Close-up view of experimental setup for PIV camera 

 
 

 
Figure 26. Quantum Composer connected to laser, camera, and motion controller 
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Figure 27. Sample raw PIV image pair for α = 18° upstroke:  Image A (top) and Image B (bottom) 

taken 20 µs apart 

Reflection 

Separated 
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Wing 
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Figure 28. Sample raw PIV image pair for α = 20° upstroke:  Image A (top) and Image B (bottom) 

taken 20 µs apart 
 

Vortices 
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Figure 29. Normalized mean velocity component in the x-direction for α = 16°, upstroke 

 
Figure 30. Normalized mean velocity component in the y-direction for α = 16°, upstroke 
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Figure 31. Normalized mean velocity component in the x-direction for α = 18°, upstroke 

 
Figure 32. Normalized mean velocity component in the y-direction for α = 18°, upstroke 
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Figure 33. Normalized mean velocity component in the x-direction for α = 18°, upstroke, fully 

attached flow 

 
Figure 34. Normalized mean velocity component in the y-direction for α = 18°, upstroke, fully 

attached flow 
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Figure 35. Normalized mean velocity component in the x-direction for α = 18°, upstroke, partially 

separated flow 

 
Figure 36. Normalized mean velocity component in the y-direction for α = 18°, upstroke, partially 

separated flow 
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Figure 37. Normalized mean velocity component in the x-direction for α = 20°, upstroke 

 
Figure 38. Normalized mean velocity component in the y-direction for α = 20°, upstroke 

 



 115 

 
Figure 39. Normalized mean velocity component in the x-direction for α = 20°, upstroke, fully 

separated flow 

 
Figure 40. Normalized mean velocity component in the y-direction for α = 20°, upstroke, fully 

separated flow 
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Figure 41. Normalized mean velocity component in the x-direction for α = 20°, upstroke, partially 

attached flow 

 
Figure 42. Normalized mean velocity component in the y-direction for α = 20°, upstroke, partially 

attached flow 
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Figure 43. Normalized mean velocity component in the x-direction for α = 22°, upstroke 

 
Figure 44. Normalized mean velocity component in the y-direction for α = 22°, upstroke 
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Figure 45. Normalized mean velocity component in the x-direction for α = 24°, upstroke 

 
Figure 46. Normalized mean velocity component in the y-direction for α = 24°, upstroke 
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Figure 47. σu for α = 16°, upstroke 

 
Figure 48. σv for α = 16°, upstroke 
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Figure 49. τxy for α = 16°, upstroke 

 
Figure 50. σu for α = 18°, upstroke 
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Figure 51. σv for α = 18°, upstroke 

 
Figure 52. τxy for α = 18°, upstroke 
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Figure 53. σu for α = 18°, upstroke, fully attached flow 

 
Figure 54. σv for α = 18°, upstroke, fully attached flow 
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Figure 55. τxy for α = 18°, upstroke, fully attached flow 

 
Figure 56. σu for α = 18°, upstroke, partially separated flow 
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Figure 57. σv for α = 18°, upstroke, partially separated flow 

 
Figure 58. τxy for α = 18°, upstroke, partially separated flow 
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Figure 59. σu for α = 20°, upstroke 

 
Figure 60. σv for α = 20°, upstroke 
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Figure 61. τxy for α = 20°, upstroke 

 
Figure 62. σu for α = 20°, upstroke, fully separated flow 
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Figure 63. σv for α = 20°, upstroke, fully separated flow 

 
Figure 64. τxy for α = 20°, upstroke, fully separated flow 
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Figure 65. σu for α = 20°, upstroke, partially attached flow 

 
Figure 66. σv for α = 20°, upstroke, partially attached flow 
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point 

Separation 
point 
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Figure 67. τxy for α = 20°, upstroke, partially attached flow 

 
Figure 68. σu for α = 22°, upstroke 

Separation 
point 
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Figure 69. σv for α = 22°, upstroke 

 
Figure 70. τxy for α = 22°, upstroke 
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Figure 71. σu for α = 24°, upstroke 

 
Figure 72. σv for α = 24°, upstroke 
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Figure 73. τxy for α = 24°, upstroke 

 
Figure 74. Vorticity (ωz) at α = 16°, upstroke 
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Figure 75. Vorticity (ωz) at α = 18°, upstroke, overall 

 
Figure 76. Vorticity (ωz) at α = 18°, upstroke, fully attached 
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Figure 77. Vorticity (ωz) at α = 18°, upstroke, partially separated 

 
Figure 78. Vorticity (ωz) at α = 20°, upstroke, overall 
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Figure 79. Vorticity (ωz) at α = 20°, upstroke, fully separated 

 
Figure 80. Vorticity (ωz) at α = 20°, upstroke, partially attached 

Vortical 
structure 
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Figure 81. Streamlines for α = 16°, upstroke, over U-velocity contour 

 
Figure 82. Velocity vectors for α = 16°, upstroke, over U-velocity contour 
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Figure 83. Streamlines for α = 18°, upstroke, over U-velocity contour 

 
Figure 84. Vectors for α = 18°, upstroke, over U-velocity contour 
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Figure 85. Zoom of boundary layer vectors for α = 18°, upstroke, over U-velocity contour 

 
Figure 86. Streamlines for α = 18°, upstroke, fully attached, over U-velocity contour 
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Figure 87. Vectors for α = 18°, upstroke, fully attached, over U-velocity contour 

 
Figure 88. Zoom of boundary layer vectors for α = 18°, upstroke, fully attached, over U-velocity 

contour 
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Figure 89. Streamlines for α = 18°, upstroke, partially separated, over U-velocity contour 

 
Figure 90. Vectors for α = 18°, upstroke, partially separated, over U-velocity contour 
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Figure 91. Zoom of boundary layer vectors for α = 18°, upstroke, partially separated, over U-

velocity contour 

 
Figure 92. Streamlines for α = 20°, upstroke, over U-velocity contour 
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Figure 93. Vectors for α = 20°, upstroke, over U-velocity contour 

 
Figure 94. Streamlines for α = 20°, upstroke, fully separated, over U-velocity contour 
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Figure 95. Vectors for α = 20°, upstroke, fully separated, over U-velocity contour 

 
Figure 96. Streamlines for α = 20°, upstroke, partially attached, over U-velocity contour 
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Figure 97. Vectors for α = 20°, upstroke, partially attached, over U-velocity contour 

 
Figure 98. Normalized mean velocity component in the x-direction for α = 16°, downstroke 
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Figure 99.  Normalized mean velocity component in the y-direction for α = 16°, downstroke 

 
Figure 100. Normalized mean velocity component in the x-direction for α = 20°, downstroke 
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Figure 101. Normalized mean velocity component in the y-direction for α = 20°, downstroke 

 
Figure 102. Normalized mean velocity component in the x-direction for α = 22°, downstroke 
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Figure 103. Normalized mean velocity component in the y-direction for α = 22°, downstroke 

 
Figure 104. Normalized mean velocity component in the x-direction for α = 24°, downstroke 
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Figure 105. Normalized mean velocity component in the y-direction for α = 24°, downstroke 

 
Figure 106. σu for α = 16°, downstroke 
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Figure 107. σv for α = 16°, downstroke 

 
Figure 108. τxy for α = 16°, downstroke 
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Figure 109. σu for α = 20°, downstroke 

 
Figure 110. σv for α = 20°, downstroke 
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Figure 111. τxy for α = 20°, downstroke 

 
Figure 112. σu for α = 22°, downstroke 
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Figure 113. σv for α = 22°, downstroke 

 
Figure 114. τxy for α = 22°, downstroke 
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Figure 115. σu for α = 24°, downstroke 

 
Figure 116. σv for α = 24°, downstroke 
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Figure 117. τxy for α = 24°, downstroke 

 
 

Table 1. Upper and Lower Surface Coordinates of Sikorsky SSC-A09 Airfoil, Normalized by Chord 
x/c Coordinate y/c upper Coordinate y/c lower Coordinate 

0.000000 0.000000 0.000000 
0.000199 0.002000 -0.001454 
0.000798 0.003946 -0.002869 
0.001994 0.006482 -0.004573 
0.002991 0.008029 -0.005446 
0.004487 0.009868 -0.006445 
0.006979 0.012392 -0.007703 
0.009970 0.014921 -0.008877 
0.015952 0.019076 -0.010704 
0.021934 0.022500 -0.012175 
0.027916 0.025445 -0.013447 
0.033898 0.028039 -0.014588 
0.039881 0.030369 -0.015631 
0.045863 0.032494 -0.016594 
0.051845 0.034449 -0.017487 
0.057827 0.036249 -0.018314 
0.067797 0.038903 -0.019568 
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Table 1. Continued 
x/c Coordinate y/c upper Coordinate y/c lower Coordinate 

0.077767 0.041143 -0.020691 
0.087737 0.043016 -0.021706 
0.097707 0.044583 -0.022638 
0.112663 0.046504 -0.023910 
0.127618 0.048054 -0.025064 
0.142573 0.049345 -0.026124 
0.157529 0.050444 -0.027104 
0.172485 0.051385 -0.028013 
0.187440 0.052184 -0.028853 
0.202395 0.052860 -0.029628 
0.217350 0.053427 -0.030339 
0.232305 0.053911 -0.030988 
0.247261 0.054322 -0.031579 
0.277171 0.054958 -0.032594 
0.307082 0.055369 -0.033402 
0.336992 0.055564 -0.034007 
0.376873 0.055494 -0.034506 
0.416754 0.055039 -0.034637 
0.436694 0.054663 -0.034558 
0.456635 0.054182 -0.034376 
0.476575 0.053595 -0.034087 
0.496515 0.052899 -0.033683 
0.516456 0.052093 -0.033165 
0.536396 0.051176 -0.032532 
0.556336 0.050149 -0.031790 
0.576277 0.049009 -0.030949 
0.596217 0.047755 -0.030018 
0.616157 0.046381 -0.029002 
0.636097 0.044875 -0.027904 
0.656039 0.043220 -0.026720 
0.675979 0.041391 -0.025448 
0.695919 0.039368 -0.024088 
0.715860 0.037140 -0.022642 
0.735800 0.034719 -0.021121 
0.755740 0.032138 -0.019540 
0.775680 0.029445 -0.017918 
0.795621 0.026681 -0.016272 
0.815561 0.023871 -0.014617 
0.835501 0.021012 -0.012957 
0.855442 0.018089 -0.011289 
0.875382 0.015093 -0.009598 
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Table 1. Continued 
x/c Coordinate y/c upper Coordinate y/c lower Coordinate 

0.895323 0.012051 -0.007863 
0.915264 0.009046 -0.006081 
0.935204 0.006229 -0.004290 
0.955144 0.003849 -0.002610 
0.975084 0.002288 -0.001325 
0.985055 0.001987 -0.000992 
0.995025 0.002135 -0.000863 
1.000000 0.002408 -0.000803 
0.000000 0.000000 0.000000 

 
 

Table 2. SSC-A09 Testing Model Specifications 
Parameter SI Units Imperial Units 

Chord Length 0.46 m 18 in 
Span 2.13 m 6 ft 11 ¾ in 

Mass/Weight 81.6 kg 180 lbf 
Mass Moment of Inertia, about c/4 521.1 N-m 4612 in-lb 

 
 

Table 3. Testing Matrix 

Case M∞ Rec (×106) α (°) k f (Hz) Data Acquired at 
αa 

I 0.1 1.0 Static 0 N/A 0-20 
II 0.1 1.0 α = 10±10sin(2πft) 0.1 2.5 12-18 
III 0.1 1.0 α = 15±10sin(2πft) 0.1 2.5 16-24b 

a2.0° increments 
bNo downstroke data acquired for α = 18° 

 
 

Table 4. Results of PIV Processing Parameter Study 
Parameter Most Effective Setting 

Window size (in pixels) 128×128  64×64  32×32  16×16 
Window shape Adaptive 

Overlap 50% 
Number of passes at each window size 2 

Smoothing On 
Delete vectors Q < 1.0 

Remove groups with < 5 vectors 
Interpolate On (Fill-up empty spaces) 
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Table 5. Uncertainty Estimates for α = 18° 
Parameter Uncertainty 

 @ x/c = 0.21,  
y/c =0.095  

@ x/c = 0.14,  
y/c = 0.095 

@ x/c = 0.24,  
y/c = 0.17 

α (°) 0.1 0.1 0.1 
x, y 0.5% 0.5% 0.5% 
U, V 0.5% 1.0% 0.5% 

'','' vvuu  2.5% 2.5% 2.5% 

''vu  5% 5% 5% 
 
 

Table 6. Uncertainty Estimates for α = 20° 
Parameter Uncertainty 

 @ x/c = 0.23, 
y/c = 0.1 

@ x/c = 0.14,  
y/c = 0.1 

@ x/c = 0.21,  
y/c = 0.175 

α (°) 0.1 0.1 0.1 
x, y 0.5% 0.5% 0.5% 
U, V 1.5% 1.5% 0.5% 

'','' vvuu  3% 3% 2.5% 

''vu  8% 8% 5% 
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APPENDIX B 

DSF OPERATING INSTRUCTIONS 

 

B.1 Google Chat 

Google Chat is used for communication between the two computer users 

operating the computers for pitching the wing and data collection, as these two 

computers are located on opposite sides of the low speed wind tunnel. 

B.1.1 Google Chat Usernames and Passwords 

 For wing driving computer (near side of wind tunnel): 

  DSF.TAMU@gmail.com 

  Password:  WeAreSahoo3.0 

 For data collecting computer (far side of wind tunnel): 

  NAL.TAMU@gmail.com 

  Password:  AirSoxOne 

B.1.2 Communication Procedure 

 DSF – choose appropriate event step settings (file) 

  Give angle and upstroke/downstroke to NAL 

 NAL – Create folder 

  Tell DSF how much seeding (in seconds) to put into flow 

 DSF – Add seeding 
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  Give OK to take images 

 NAL – take desired number of batches of images (typically 3-4) 

  Notify DSF when all images have been captured 

 Repeat for each angle for upstroke and downstroke. 

B.2 General Checklist 

• Photograph installation process. 

• Empty hydraulic oil (Chevron Rykon ISO 46) from unit. 

• Move blue bolt box to wind tunnel ready room. 

• Install 7×7 foot wind tunnel test section.  For instructions see Sahoo’s 

Dissertation (Ref. 43). 

• Move hydraulic unit to ready room. 

o Leave linear actuator attached to hydraulic unit (disconnect from 

wing) and move upstairs together. 

o Once upstairs, refill with hydraulic oil. 

• Move wing driving computer station to ready room (on near side of tunnel by 

hydraulic unit). 

• Move PIV data collection computer to ready room (on far side of tunnel). 

• Insert wing prior to inserting side panels. 
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• Move optics system to tunnel. 

• Connect hydraulic unit to power (480 V). 

• Make connections according to following sections. 

• Make sure cracks/gaps in wind tunnel test section are sealed with aluminum 

tape. 

B. 3 Hydraulic System 

• Hydraulic Servo Valve connected to Control Box 

• Computer connected to Control Box (DB15 wire) 

• Servo Valve on tank to Power Supply 

• Control Box to Power Supply 

• Accumulator Valve is perpendicular to flow direction 

• Check all fittings are tight 

• Power on 

• Run motor (warm-up) for 30 minutes at low pressure 

• Set the pressure to 2000 psi (black knob) 

• After testing is complete for the day turn pressure back down to minimum and 

turn off hydraulic unit 

B.4 RMC100 Instrumentation Circuit 

• “+ out 0” on bottom of RMC100 (red connector) goes to positive terminal of 

the 5 Volt power supply. 
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• “– out 0” on bottom of RMC100 (black connector) goes to positive (red) 

alligator clip attached to BNC cable. 

• Negative terminal of the 5 Volt power supply goes to negative (black) 

alligator attached to BNC cable. 

• The above BNC goes to EXT/GATE of quantum composer. 

• Set the power supply voltage to 5.000 V. 

B.5 Quantum Composer (settings for SSC-A09 testing conducted in R. 

Vannelli’s M.S. Thesis) 

•  Connections 

o T1   FL1 (Flash Lamp 1) 

o T2   FL2 (Flash Lamp 2) 

o T4   QS2 (Q-switch 2) 

o T8   QS1 (Q-switch 1) 

o T6   Camera (pco.1600) 

B.5.1 For Static Data 

• Global mode  –  CONTINUOUS 

• External triggering  –  OFF 

• Change delay time as necessary 

o Delay time changes based on flow field time separation of particles in 

desired field of view. 
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B.5.2 For Dynamic Data 

• Global settings 

o Mode  – BURST 

 #/pulse = 1 

o Ext in  –  TRIGGERED 

o Trig  –  RISING EDGE 

• T1 

o Gate  –  DISABLED 

o Channel   –  ENABLED 

o Sync   –  T0 

o Delay   –  0 µs 

o Width   –  20 µs 

o Mode   –  NORMAL 

o Wait   –  0 PULSES 

o Polarity   –  ACTIVE HIGH 

o Amplitude  –  5.0 Volts 

o Mux   –  1 

• T2 

o Gate  –  DISABLED 

o Channel   –  ENABLED 

o Sync   –  T1 

o Delay   –  20 µs 
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o Width   –  20 µs 

o Mode   –  NORMAL 

o Wait   –  0 PULSES 

o Polarity   –  ACTIVE HIGH 

o Amplitude  –  5.0 Volts 

o Mux   –  10 

• T4 

o Gate  –  DISABLED 

o Channel   –  ENABLED 

o Sync   –  T1 

o Delay   –  220 µs 

o Width   –  20 µs 

o Mode   –  NORMAL 

o Wait   –  0 PULSES 

o Polarity   –  ACTIVE HIGH 

o Amplitude  –  5.0 Volts 

o Mux   –  1000 

• T8 

o Gate  –  DISABLED 

o Channel   –  ENABLED 

o Sync   –  T1 

o Delay   –  200 µs 
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o Width   –  20 µs 

o Mode   –  NORMAL 

o Wait   –  0 PULSES 

o Polarity   –  ACTIVE HIGH 

o Amplitude  –  5.0 Volts 

o Mux   –  1000 0000 

• T6 

o Gate  –  DISABLED 

o Channel   –  ENABLED 

o Sync   –  T1 

o Delay   –  180 µs 

o Width   –  20 µs 

o Mode   –  NORMAL 

o Wait   –  0 PULSES 

o Polarity   –  ACTIVE HIGH 

o Amplitude  –  5.0 V 

o Mux   –  10 0000 

B.6 CamWare 2.19 (settings for SSC-A09 testing conducted in R. Vannelli’s 

M.S. Thesis) 

• Camera Control 

o External Exp. Start 

 Exposure   –   5.3 µs 
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 Delay   – 10 µs 

o Sensor (Misc.) 

 ADC Converter  –  2 

o Recording 

 Mode   –  SEQUENCE 

 Acquire   –  AUTO 

 NO TIMESTAMP 

• To SAVE – EXPORT RECORDER, SPLIT double shutter images 

B.7 Testing Environment and RMCWin 

B.7.1 General RMCWin Commands 

• G  –  Step to command value position 

• E  –  Execute 

• K  –  Kill 

• O  –  Override/Open command  (takes linear actuator to highest 

position) 

B.7.2 Calibration Instructions  

 Need to calibrate for each wing at each tunnel entry. 

1. Open the MS Excel file “Calibration 06-2010.” 

2. Measure the height of the wind tunnel test section. 

a. Divide this number by 2 and input into cell B12. 
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b. When trailing edge of wing is at this height, the angle of attack is zero 

degrees. 

c. Attempt to achieve this height using the “G” command and note the 

number of counts of the linear actuator in the Excel file in cell B13. 

3. Using the “G” command in RMCWin, go to linear actuator counts of 

approximately 100, and 200 to 1400 in steps of 200. (100, 200, 400, 600, …, 

1400). 

a. At each step note the Y position of the trailing edge in the Excel file 

provided. 

4. Excel will calculate the value of DY and the angle. 

5. Plot counts vs. angle of attack and line fit the data points in Excel. 

a. This line fit gives you the equation:  

. 

6. Input this slope into the Excel worksheet in cell B14. 

7. Plot angle of attack vs. counts and line fit the data points. 

a. This line fit gives you the equation:   

. 

8. Put this new slope in cell B15 and zero_alpha in B16 to compute the fitted 

angle of attack and the error. 

 

OR 
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1. Zero out the inclinometer on the wind tunnel floor, just below the wing 

leading edge. 

2. Using the “G” command in RMCWin, go to linear actuator counts of 

approximately 100, and 200 to 1400 in steps of 200. (100, 200, 400, 600, …, 

1400). 

a. At each step measure the angle of attack of the wing with the 

inclinometer. 

i. For the NACA 0012 – remove the Plexiglas insert and 

measure the angle along the flat surface that runs along the 

wing chord. 

ii. For the SSC-A09 – measure on one of the gloves at either end 

of the wing. 

3. Plot counts vs. angle of attack and line fit the data points in Excel. 

a. This line fit gives you the equation: 

. 

4. Input this slope into the Excel worksheet in cell B14. 

5. Plot angle of attack vs. counts and line fit the data points. 

a. This line fit gives you the equation:  

. 

6. Put this new slope in cell B15 and zero_alpha in B16 to compute the fitted 

angle of attack and the error. 

7. Verify the angles of attack for the testing angles using the same inclinometer. 
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B.7.3 Recording Testing Conditions 

1. Open the file labeled “Test Condition 06-2010” in MS Excel. 

a. Type over the old conditions listed in this file. 

2. Record the wind tunnel run. 

3. Record the date and time. 

4. Record the temperature in °F. 

5. Record the measured freestream velocity, lowest count position and 

amplitude, in counts, of the sine wave the wing travels through. 

6. Acquire data file from the wind tunnel staff. – Make sure they are aware you 

are going to want the data file BEFORE testing begins.  

B.7.4 Wing Operating Instructions 

1. Open RMCWin from Start menu. 

2. Open “4 JUNE 2010.bd1” (found in “ARO Wing Testing 2010_June 11-

June16” folder). 

a. Click “P” button at top of RMCWin window to set parameters. 

3. Calibrate the linear actuator. 

a. Run the open loop command (“O”). Go to the lowest position of the 

cylinder (0). Note the count.  

b. Go to the maximum position (1500). Run in open loop with “O” 

COMMAND. Note the count.  
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c. Input those values in the calibration window (ToolsPosition/Scale 

Offset Calibration-Axis0). Click “Apply” and the software is 

calibrated. 

4. Open Event Steps Editor (in Tools menu). 

a. Open appropriate file for angle of attack and up/downstroke (find:  

“ARO Wing Testing 2010_June 11-June16/RMCWin Files”). 

i. Number following AOA is the flapping angle of attack. 

ii. Number following TRIG is at what degree the camera and 

laser are triggered. 

b. Edit the Event Steps files in RMCWin to appropriate counts. 

i. Change minimum number of counts (Column 4, Row 5).  

Should be the number of counts that equals the highest angle 

in the pitching range. 

ii. Change amplitude of motion (Column 5, Row 5). Number of 

counts at lowest angle in pitching range minus number of 

counts at highest angle in pitching range divided by 2. 

iii. Change angle triggering values (Row 9, Columns: 200, 201, 

203, 205). Input number of counts equal to the angle of attack 

for the angle at which the laser should trigger.  

c. Load the module (click button 2nd from the right). 

5. In RMCWin in COMMAND box (bottom left of RMCWin window). 
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a. COMMAND VALUE 4 200 

COMMAND  E   E 

                              ↑            ↑  

                                   (AXIS0) (AXIS1) 

i. AXIS0 operates the linear actuator. 

ii. AXIS1 triggers the laser and camera. 

6. “E” must be entered for both axes. 

7. Save a plot and data file of the wing motion (target vs. actual position). 

-- Only have to save the plot file, the raw data file is embedded in it. 

a. Save these files in the folder titled “RMCWin Data.” 

b. Organize by date and label with angle of attack, trigger angle, and up 

or down stroke.  Sample:  AOA10TRIG15UP . 

8. Repeat steps 4-7 for each angle of attack.   

a. RMCWin will update in real time when you load the module, causing 

the wing to alter its behavior without the need to retype “E” in the 

COMMAND line. 

9. Type “K” in the COMMAND line to “kill” all action. 

NOTES: 

• For each trigger angle of attack there is a separate event steps file (for both 

upstrokes and downstrokes). 

• Double check the frequency before loading the module.  The hydraulic 

actuator will follow your command even if the frequency you input is much 
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to high (should be 2.5 Hz, 250 in column 5 cell 4 for Mach 0.1 testing 

regime). 

o Approximate Mach/Frequency correlations for reduced frequency, k = 

0.1: 

 M∞ = 0.1, f = 2.5 Hz 

 M∞ = 0.2, f = 5.0 Hz 

 M∞ = 0.3, f = 7.5 Hz 

 M∞ = 0.4, f = 10.0 Hz 

• If laser/camera are not triggering check the count in columns 200-205. 

o At high angles of attack and frequencies the wing may not reach the 

count. 

 This should not be a problem when operating at Mach 0.1. 
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APPENDIX C 

PROCESSING PARAMETER AND FILTER STUDY CONTOURS 

 

The following figures show some of the results of the processing parameter study 

discussed in Section 5.1. These figures are meant only to provide insight into why the 

parameters listed in Table 4 were chosen. The following images represent a four step 

correlation process down to a final interrogation area size of 16×16 pixels with a 50% 

overlap. Only U-velocity and Reynolds shear stress data for attached cases are provided. 

The U-velocity contours are all shown on a single color scale; the τxy contours are all 

shown on a single, different color scale. 
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Figure C-1. U for α = 16° upstroke, square interrogation window, no post-processing 

 

 
Figure C-2. U for α = 16° upstroke, circular interrogation window, no post-processing 
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Figure C-3. U for α = 16° upstroke, 2:1 elliptical interrogation window, no post-processing 

 

 
Figure C-4. U for α = 16° upstroke, adaptive interrogation window, no post-processing 
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Figure C-5. U for α = 16° upstroke, adaptive interrogation window, smoothing on 

 
Figure C-6. U for α = 16° upstroke, adaptive interrogation window, smoothing and interpolation on 
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Figure C-7. U for α = 16° upstroke, adaptive interrogation window, 2 passes at each window size, 

smoothing and interpolation on 

 
Figure C-8. U for α = 18° upstroke, adaptive interrogation window, smoothing and interpolation on 
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Figure C-9. U for α = 18° upstroke, adaptive interrogation window, smoothing and interpolation on, 

delete if Q < 0.9, remove groups with < 3 vectors 

 
Figure C-10. U for α = 18° upstroke, adaptive interrogation window, smoothing and interpolation 

on, delete if Q < 1.0, remove groups with < 5 vectors 
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Figure C-11. τxy for α = 16° upstroke, square interrogation window, no post-processing 

 
Figure C-12. τxy for α = 16° upstroke, circular interrogation window, no post-processing 
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Figure C-13. τxy for α = 16° upstroke, 2:1 elliptical interrogation window, no post-processing 

 
Figure C-14. τxy for α = 16° upstroke, adaptive interrogation window, no post-processing 
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Figure C-15. τxy for α = 16° upstroke, adaptive interrogation window, smoothing on 

 
Figure C-16. τxy for α = 16° upstroke, adaptive interrogation window, smoothing and interpolation 

on 
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Figure C-17. τxy for α = 16° upstroke, adaptive interrogation window, 2 passes at each window size, 

smoothing and interpolation on 

 
Figure C-18. τxy for α = 18° upstroke, adaptive interrogation window, smoothing and interpolation 

on 
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Figure C-19. τxy for α = 18° upstroke, adaptive interrogation window, smoothing and interpolation 

on, delete if Q < 0.9, remove groups with < 3 vectors 

 
Figure C-20. τxy for α = 18° upstroke, adaptive interrogation window, smoothing and interpolation 

on, delete if Q < 1.0, remove groups with < 5 vectors 
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The following figures show the U-velocities and Reynolds shear stresses 

generated with TAMUPIV during a post-processing filter study. All of these figures are 

data for α = 16° during the upstroke phase of the pitching motion, shown with one color 

scale for velocity and another for Reynolds shear stress. A filtering factor of 2.0σ was 

used for the final data processing. All results shown in Appendix A use this filtering 

factor. 

 

 

 
Figure C-21. U contour for α = 16°, upstroke, with a filtering factor of 1.0σ 
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Figure C-22. U contour for α = 16°, upstroke, with a filtering factor of 2.0σ 

 
Figure C-23. U contour for α = 16°, upstroke, with a filtering factor of 3.0σ 
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Figure C-24. τxy contour for α = 16°, upstroke, with a filtering factor of 1.0σ 

 
Figure C-25. τxy contour for α = 16°, upstroke, with a filtering factor of 2.0σ 
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Figure C-26. τxy contour for α = 16°, upstroke, with a filtering factor of 3.0σ 
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