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ABSTRACT 

 

Managing Commodity Risks in Highway Contracts: Quantifying Premiums, Accounting 

for Correlations among Risk Factors, and Designing Optimal Price-Adjustment 

Contracts. (December 2011) 

Xue Zhou, B.M.S., Dalian University of Technology; 

M.S., Zhejiang University 

Chair of Advisory Committee: Dr. Ivan D. Damnjanovic 

 

It is a well-known fact that macro-economic conditions, such as prices of 

commodities (e.g. oil, cement and steel) affect the cost of construction projects. In a 

volatile market environment, highway agencies often pass such risk to contractors using 

fixed-price contracts. In turn, the contractors respond by adding premiums in bid prices. 

If the contractors overprice the risk, the price of fixed-price contract could exceed the 

price of the contract with adjustment clauses. Consequently, highway agencies have the 

opportunity to design a contract that not only reduces the future risk of exposure, but 

also reduces the initial contract price. 

 The main goal of this dissertation is to investigate the impact of commodity price 

risk on construction cost and the optimal risk hedging of such risks using price 

adjustment clauses. More specifically, the objective of the dissertation is to develop 

models that can help highway agencies manage commodity price risks. In this 

dissertation, a weighted least square regression model is used to estimate the risk 
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premium; both univariate and vector time series models are estimated and applied to 

simulate changes in commodity prices over time, including the effect of correlation;  

while the genetic algorithm is used as a solution approach to a multi-objective 

optimization formulation. The data set used in this dissertation consists of TxDOT 

bidding data, market-based data including New York Mercantile Exchange (NYMEX) 

future options data, and Engineering News-Record (ENR) material cost index data. The 

results of this dissertation suggest that the optimal risk mitigation actions are conditional 

on owners‘ risk preferences, correlation among the prices of commodities, and volatility 

of the market. 
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1. INTRODUCTION 

 

Project risk management plays an important role in development and 

management of projects (Olsson, 2008). Construction projects, much like any other 

engineering projects, exhibit many uncertain factors, both internal and external to the 

project environment (Jaafari, 2001; Rahman and Kumaraswamy, 2002). In order to 

assure that the project meets the target values, such as, initial capital expenditure, project 

managers need to carefully identify, assess, and analyze the factors and events that can 

cause deviations from the plans. 

Risks associated with the cost of delivery of capital projects are often correlated. 

This correlation can be observed from a project environment perspective, where risks 

associated with different work packages and unit bid items show correlations. In fact, the 

correlations often come from the factors or events that affect all work packages. For 

example, uncertain material prices may impact the costs of all work packages that 

include this type of material.  

 Project risks are typically managed using comprehensive strategies that include 

selection of delivery and contracting methods. Here, contracting method allows for 

allocation of the risks between the owner and the contractor. For example, projects can 

be delivered using lump-sum, unit-based, or reimbursable contracts which imply 

different risk allocation schemes. Further, contracts can be adjusted to reflect who is  

 

____________ 
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willing to take on specific risk factors and at what level. Here, these contracts are 

referred to as contracts with adjustment clauses that are triggered based on realization of 

certain pre-defined events. 

 Price adjustment clauses have been used by many public agencies to manage 

risks with volatile commodity prices. For example, Washington State Department of 

Transportation (WSDOT) applies the same trigger value of 10 percent for fuel cost 

adjustments as long as the projects meet certain requirements (e.g. projects longer than 

200 working days) (AASHTO, 2009). 

 How to quantify the effects of commodity price risk factor and develop optimal 

strategy to manage them is the topic of this dissertation. This section introduces the 

motivation for this dissertation, presents the goals and objectives, summarizes the 

contributions, and outlines the remainder of the dissertation. 

 

1.1 Background and Identified Problem 

Commodity prices, such as, asphalt, crude oil, cement and steel, have been 

identified as one of the most important risk factors affecting the cost of construction 

projects (Kangari, 1995; Zhi, 1995; Hastak and Shaked, 2000; Jaafari, 2001; Baloi and 

Price, 2003; Mendell, 2006). In fact, the escalation of commodity prices often results in 

significant financial hardships for unprepared contractors and owners. For example, in 

the mid-2000s, a number of highway contractors were affected by escalating material 

prices (the cost of liquid asphalt, cement, oil, and steel) (Gallagher and Riggs, 2006). 

Even though contractors observed materials cost increase in 2001-2003, they still failed 
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to adequately prepare for unexpected price increases in 2004-2005 (Mendell, 2006). 

 Construction cost is particularly sensitive to the cost of energy. Wilmot and 

Cheng (2003) identified the increase in the cost of petroleum products and construction 

machinery as the main cause of the rise in construction costs. For example, energy costs 

propagate through a number of construction activities from petroleum-derived products, 

machinery costs, to transportation costs. Thus, volatile prices of commodities including 

energy typically result in volatile costs of construction projects. 

Contractors rely on contingency plans to deal with volatile commodity prices. 

This holds true particularly for contracts where price adjustments are not permitted. 

When contractors cannot obtain firm price quotes from material suppliers for the 

duration of the project, they typically inflate the bid prices to protect their marginal 

profit against possible price increases (FHWA, 1980). In highway contracting, both 

locked-in unit prices and unit prices with adjustment clauses are currently being used. In 

fixed-price unit-based contracts, owners transfer the price increase risk to contractors, 

while in the unit-based contracts with price adjustments, owners accept such risk. If 

contractors overprice the risk, the prices of fixed-price contracts could exceed those of 

contracts with adjustment clauses. In fact, ―large‖ contingencies are often included in the 

initial estimates of bid items to hedge against the risk exposures (Gallagher and Riggs, 

2006). Consequently, it is of great importance for highway agencies to negotiate 

contracts that would optimally manage risk exposure. 

Starting from 1980s, the Federal Highway Administration (FHWA) of the U.S. 

Department of Transportation began to encourage state highway agencies to consider 
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price adjustment provisions to respond to price volatility of construction materials 

(FHWA, 1980). Adjustment clauses include both upward and downward adjustments for 

volatile prices of construction materials. For example, escalation clauses are triggered if 

the crude oil spot price exceeds a trigger barrier. These contracts are often referred to as 

knock-in options under trigger clauses in which a holder receives a payment conditional 

on the underlying prices reaching a certain trigger barrier. In theory, if such escalation 

clauses are added to the contracts, it is expected that the contractors will lower their bids. 

This is because a portion of the risk is transferred from the contractors to the highway 

agencies. For example, WSDOT reported that the Hot Mix Asphalt (HMA) and fuel 

escalation clause had improved competitive bidding climate (GNB, 2007). Price 

escalation lessened contractors' fear of increased prices, while in return WSDOT took on 

the risk of future material cost. WSDOT reported that it had obtained the bids that 

reflected the current market condition and excluded speculative pricing (GNB, 2007).  

Even though price adjustment clauses are being used by many highway agencies 

for a while (e.g., since 1980s), to the author‘s best knowledge, there are no studies that 

investigate the procedure to set the trigger values and account for the effect of 

correlations among commodity prices on unit bid prices. McGoldrick (2006) 

recommended that it was better for the owner to pay the actual increase in costs rather 

than pay a significant contingency included within the contract price, which might 

ultimately be higher than the cost of material increases. However, this result should be 

taken with caution since risk preference may contribute to the decision to go one way or 

the other. Thus, when risk and uncertainty from volatile markets result in overpriced 
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bids, the potential payoff of including adjustment clauses for highway agencies is high. 

The investigation of this phenomena and the development of optimal risk hedging 

strategies based on defining adjustment clauses is the main topic of this study. 

 

1.2 Research Goal and Objectives 

The overall goal of this research is to develop a comprehensive methodological 

framework to assess the effect of trigger values and correlations of commodity prices, 

and to determine the optimal risk hedging strategies using escalation clauses with trigger 

barriers. The developed framework accounts for correlations of commodity price risks 

when balancing the objectives from the perspective of the agency. The objectives 

pertaining to this larger goal are as follows: 

 Objective 1: Develop models that can be used to price bid items and estimate the 

average risk premiums due to commodity price risks. The developed models should 

consider the available data and factors influencing the unit bid prices; 

 Objective 2: Identify the correlations between risk factors (commodity prices) 

that affect unit bid prices in highway contracts. This relationship should reflect the 

changes of economic environment as it occurs in reality; 

 Objective 3: Develop forecasting models for commodity prices to account for 

historical changes in commodity prices. Univariate time series should fit the historical 

series independently, while vector time series should account for co-movement; and 
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 Objective 4: Formulate optimization models to determine the optimal hedging 

strategies. The multi-objective optimization formulation should take into account the 

effect of correlations among commodity risk factors, and the agencies‘ risk preferences. 

 

1.3 Research Contributions 

 This research contributes to the field of construction engineering and 

management in two major ways. The first way of contributing to the field is by 

developing the risk premium pricing model for highway construction projects when unit 

bid prices are significantly influenced by uncertain economic conditions, such as, 

volatile commodity prices. The second way of contributing to the field is by developing 

the optimal risk hedging model which is based on the agency‘s risk preferences and 

takes into account the effect of correlations between the risk factors. There are a number 

of benefits to the agencies from this study, for example, 1) assessing the risk premiums 

in their bids; 2) designing optimal risk hedging contracts with escalation clauses; and 3) 

evaluating the contracting consequences of different pavement designs such as material 

requirements.  

 

1.4 Study Limitations 

 The dissertation focuses on developing optimal risk hedging strategies for 

volatile prices of commodities (such as, crude oil, cement and steel). The limitations of 

this study are as follows: 

(1) It is based on  Texas Department of Transportation bidding data;  
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(2) It is focused on highway construction projects; 

(3) It considers unit cost types of contracts; 

(4) It is focused only on a limited number of unit bid items; 

(5) It only considers risks related to the prices of commodities; 

 

1.5 Dissertation Outline 

This dissertation is organized in eight sections. Following this section, in which 

the motivation, objectives, and contributions of this research are introduced, the next 

section presents an overview of the background literature, covering four related topics: 

construction cost forecasting, construction risk management, risk preference measures, 

and optimization and its solution methods. After that, Section 3 presents the overall 

methodology and the data sets used for developing the models. 

In Section 4, the methodological framework for pricing bid item and risk is 

presented. The discussion includes identifying risk factors for unit bid items, estimating 

the risk premiums due to the impact of changes in the commodity prices, and explaining 

how the risk premiums vary according to different barrier levels. 

Univariate and vector time series models for simulating commodity prices are 

presented in Section 5. The process for developing autoregressive integrated moving 

average (ARIMA) model and vector autoregressive moving average (VARMA) model is 

shown. The VARMA model is based on relaxing the independence in the assumption of 

ARIMA model. 
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The formulation and the solution approach to optimal risk hedging problem are 

presented in Section 6. This section presents the formulation for both single-objective 

and multi-objective optimization, and discusses the advantage of a multi-objective 

approach. 

Section 7 presents a case study for the models developed in the dissertation. The 

case study illustrates the overall process using data from real TxDOT projects, and 

discusses the implications of the results. 

Finally, Section 8 summarizes major findings and limitations, and presents the 

directions for future research work. 
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2. LITERATURE REVIEW 

 

 This section presents an overview of the background literature in four major 

areas pertaining to this dissertation: construction cost forecasting, construction risk 

management, measuring risk preferences, multi-objective optimization and its solution 

approach. In the first subsection, a general background on construction cost forecasting 

is introduced. In the second subsection, a brief review of construction risk management 

is presented. In the third subsection, the approaches for risk measures are reviewed, 

while in the fourth subsection, the most commonly-used methods for multi-objective 

optimization are identified. 

 

2.1 Construction Cost Forecasting 

 Regression methods have been extensively applied for forecasting future 

highway construction costs. For example, the models for predicting the unit cost of 

highway construction contracts in terms of dollars per mile have been developed by 

Hartgen and Talvitie (1995) and Stevens (1995), while Koppula (1981) and Hartgen et 

al. (1997) have developed models based on extrapolation of past trends in cost index 

movements. However, the validity of these models is mostly limited to the short term 

prediction. 

 Since 1970s, regression analysis has been used to use historical data to relate 

construction costs to the explanatory factors. Trost and Oberlender (2003) applied 

regression into cost estimating, while Lowe et al. (2006) described the development of 
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regression models to predict the construction cost of buildings by performing both 

forward and backward stepwise analysis. In 1990s, neural networks have appeared as an 

alternative for estimating construction cost (Kim et al., 2004). Emsley et al. (2002) used 

a neural networks model to predict total construction cost. Wilmot and Mei (2005) 

developed a neural network based procedure that can be used to estimate the escalation 

in the highway construction costs over time. Even though neural networks models have 

greater freedom to fit data than regression models (Wilmot and Mei, 2005), Emsley et al. 

(2002) reported that there was no significant difference in prediction accuracy between 

neural networks and regression models. 

 A number of risk factors affect the cost of construction projects. Kangari (1995) 

discussed risk factors as site access, availability of labor, equipment and material, 

productivity of labor (fatigue and safety) and equipment, defective designs, changes in 

work, safety, inflation, quality of work and others. Zhi (1995) identified risk factors for 

overseas construction projects as political situation, economical and financial situation, 

market fluctuations, law and regulations, labor, materials, equipments, and others. 

According to RS Means (2008), the cost of building construction varies based on a 

number of variables. In addition to quality, time, and productivity, the main factors 

affecting the costs include a) the size of project: the scope of work, and the type of 

construction project can have a significant impact on the cost. Economies of scale can 

reduce costs for large projects. Further, the risk of project complexity is usually 

attributed to the project size and long project durations; b) location: in dense urban areas, 

traffic and site storage limitations may increase costs. The projects located in a central 
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business district (CBD) often exhibit the cost that is higher than the projects in remote 

rural location; c) time of year for bidding; d) weather conditions, and others. Due to the 

availability of data, this dissertation only considers the risks from volatile prices of 

commodities. 

 To quantify the effect of the risk factors associated with oil market, Damnjanovic 

and Zhou (2009) developed a model that links the risk premium to both expected change 

and volatility in crude oil prices. The behavioral analysis provided evidence of the 

impact of fluctuated crude oil prices on unit bid prices without price adjustment clauses. 

This dissertation expands this line of research to include the effect of price movement of 

other commodities as well.  

 

2.2 Construction Risk Management 

 Probabilistic analysis, Monte Carlo and discrete-event simulation have been used 

to quantify risk and uncertainty in construction risk management. In probabilistic 

analysis, the mean and standard deviation of input variables are used as statistical 

measures of risk (Paek et al., 1993), while the Monte Carlo simulation, a form of 

stochastic simulation, is used to obtain the probability of project outcome by carrying 

out a number of samples depending on the degree of confidence required (Akintoye and 

MacLeod, 1997). In addition to these methods, there are other risk analysis methods 

used in the literature, such as, decision analysis (Ng and Bjornsson, 2004), subjective 

probability analysis (Akintoye and MacLeod, 1997), fuzzy logic methods (Kangari and 

Riggs, 1989; Dikmen et al., 2007), and formal risk management process (Tah and Carr, 
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2000; Carr and Tah, 2001). The objective of all these analyses is to quantify uncertainty 

in numerical terms. 

For specific measure of uncertainty, contractors assign specific risk premium 

(i.e., reward for taking on the risk). This risk premium strategy is often used in 

construction projects to determine contingency allowance and cover unforeseen 

eventualities (Akintoye and MacLeod, 1997; Kartam and Kartam, 2001). The premium 

placed on sources of risk depends on the risk exposure from the sources, the likelihood 

of occurrence, the experience of the contractor in dealing with the particular type of risk, 

and decision makers‘ risk attitude (Akintove and MacLeod, 1997; Kartam and Kartam, 

2001).  

To the author‘s best knowledge, there are no studies that investigate and quantify 

risks of contracting with escalation clauses, even though escalation clauses have been 

widely used as an approach for risk mitigation. Further, there are no published studies on 

how to set an optimal level of barriers given agencies‘ risk preferences and the budget 

levels. 

 

2.3 Risk Preference Measures 

 Risk measures are used to comprehend and compare the risk (e.g., the deviation 

from the expected value) and make decisions about the risk level willing to accept. Risk 

measures including variance (or standard deviation), Value-at-Risk (VaR), Conditional 

Value-at-Risk (CVaR) have been broadly used in the practice of portfolio optimization. 

Variance was the first proposed risk measure by Markowitz (1952) and is still the most 
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widely used measure of risk (Roman et al., 2007). VaR and CVaR are more commonly 

used and accepted, because they are concerned only with tails of the distribution 

(extremely unfavorable outcomes). They represent the mean shortfall at a specified 

confidence level (Mansini et al., 2007; Roman et al., 2007). 

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) can consider an 

arbitrarily defined percentile of potential losses. Both of these measures have been 

broadly applied in finance and corporate management. Value-at-Risk focuses on the tail 

of the distribution of unfavorable outcomes (losses), whereas Conditional Value-at-Risk 

focuses on the conditional expected losses given VaR (see Figure 2.1 [Sarykalin et al., 

2008]). For example, a decision-maker can set an event (amount of loss) that should not 

be exceeded, or exceeded only with a very small probability. For a specified probability 

level,  , the VaR   of a distribution is the lowest amount,  , such that with 

probability  , losses will not exceed  , whereas the CVaR   is the conditional 

expectation of losses greater than   (that is, CVaR measures the expected losses given a 

set of worst-case scenarios). VaR has a number of undesirable properties such as lack of 

sub-additivity, non-convexity, and non-smoothness (Palmquist et al., 1999). In contrast, 

CVaR is sub-additive and convex; moreover, it is a coherent measure of risk (i.e., risk 

measures that satisfy the four desirable properties that presented by Artzner et al. [1999], 

are called ―coherent‖). Furthermore, mean-risk bi-criteria optimization models, such as 

mean-CVaR models, where the expected return is maximized and some (scalar) risk 

measure is minimized, have been widely used for optimizing portfolios (Mansini et al., 

2007; Roman et al., 2007). 
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FIGURE 2.1 CVaR, VaR and deviation 

 

Based on the loss distribution shown in Figure 2.1, this dissertation defines two 

ways of quantifying losses: 1) ―expected loss‖, which measures the average loss of the 

whole distribution of simulated losses, and 2) ―unexpected loss‖, which represents the 

average of the losses greater than VaR. More details and discussions about these two 

defined losses will be shown in Section 6 and Section 7. 

The previous research in construction risk management have been limited only 

on Value-at-Risk (VaR) as a risk measure for decision makings on bid/no bid on 

portfolio management level (Caron et al., 2007); there are no construction risk 

management methods that considers Conditional Value at Risk as a measure for flexible 

decision makings to deal with economic risk factors, such as volatile commodity prices.  
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The agencies aim to minimize the initial cost of project, while accepting a 

tolerance level of risk. Hence, the optimization problems can be formulated as: 1) 

‗budget-unexpected loss‘ model, that is, the objective is to minimize the total budget cost 

at a given level of acceptable risk (which is represented as an extended application of 

mean-CVaR model); or 2) multi-objective, that is, minimizing both the budget (initial) 

cost and future the exposure. Due to their complexity, both of these optimization 

formulations require specialized solution algorithms. 

 

2.4 Multi-Objective Optimization and Solution Approach 

Multi-objective optimization is often used to solve the problems when project-

related decisions include multiple conflicting criteria simultaneously. This modeling 

approach is used when the utility functions are not well known prior to the optimization 

process. This implies that the objectives could not be combined into a single one. In 

other words, the problem must be treated as a multi-objective optimization problem 

(MOP) with non-commensurable objectives (Tamaki et al., 1996).  

In multi-objective optimization models, the Pareto optimal solutions are 

generated first, and then, decision makers make choices and specify their preference 

information. In other words, a set of Pareto-optimal solutions exist in the absence of 

preference information. The choice for the ―best‖ solution is then made based on higher-

level information which is non-technical, qualitative, and experience-driven. 

There are two goals in a multi-objective optimization: (1) convergence to the true 

Pareto-optimal front, and (2) maintenance of diversity among Pareto-optimal solutions 
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(Deb, 1999b). The multi-objective optimization aims to find the global Pareto-optimal 

frontier, representing the "best" possible objective values (Deb and Gupta, 2005). As it is 

important for a multi-objective optimization to find solutions near, or on the true Pareto 

optimal front, it is necessary to obtain solutions that are as diverse as possible. If 

majority of solutions are found in a small region near, or on the true Pareto-optimal 

front, the purpose of multi-objective optimization is not served, because in such cases, 

many interesting solutions with large trade-offs among the objectives may not be 

discovered. (Deb, 1999b)  

Genetic algorithms, a popular solution approach to multi-objective optimization 

problems, can be used to achieve the ―two goals‖ of multi-objective optimization. For 

example, the Nondominated Sorting Genetic Algorithm II (NSGA-II) has a superior 

mechanism in terms of finding a diverse set of solutions and in converging to the true 

Pareto-optimal set (Deb et al., 2002; Coello Coello, 2006). In the last decade, GA has 

been applied to construction industry problems as a robust approach for finding a near-

optimal solution (Al-Tabtabai and Alex, 1999; Zheng et al., 2004). The key advantage of 

GA when compared to conventional optimization methods is the ability to quickly solve 

difficult problems that are non-convex, integer, and non-continuous. In fact, 

optimization problems that involve risk measures are often non-convex. 

GA is a heuristic random search technique based on the concept of natural 

selection and natural genetics of a population. Evolutionary algorithms (such as, genetic 

algorithm) deal simultaneously with a set of possible solutions (the so-called population) 

which allows to find several members of the Pareto optimal set in a single run of the 
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algorithm (Coello Coello, 2006). Hence, it is a ―population-based‖ method of searching 

large combinatorial spaces to find the near-optimal combination (Tam et al. 2001). 

Three operators—selection, crossover, and mutation—are implemented to generate the 

offspring that are ready for the next cycle (Zheng et al., 2004). The application of GA in 

construction management include time-cost trade-off (Feng et al., 1997; Li and Love, 

1997), construction scheduling (Chan et al., 1996; Leu and Yang, 1999; Dawood and 

Sriprasert, 2006), resource leveling (Leu et al., 2000; Senouci and Eldin, 2004), labor 

use optimization (Tam et al., 2001), building portfolio management (Tong et al., 2001), 

reliability-based optimization (Deshpande et al., 2010), and others. 

 

2.5 Summary  

This section presents the literature review relevant to the overall objectives of the 

dissertation and introduces the necessary background to analyze risks associated with 

adjustment clauses in highway construction contracts. The literature review identifies a 

lack of methodology for investigating the optimal risk hedging strategies using 

contracting methods with escalation clauses. In the following section, the overall 

methodology for studying such structure is presented along with the data sets required 

for its implementation. 
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3. THE OVERALL METHODOLOGY AND DATA SETS 

 

 The overall methodology and the available data set for this study are presented in 

this section. The framework contains three main parts as shown in Figure 3.1: (1) a 

model to price the unit bid items and the risk premiums, including the contract design 

using an escalation clause where barrier level is considered as the decision variable; (2) 

the time series models used for simulating commodity prices; and (3) the multi-objective 

optimization model where agencies‘ risk preferences (e.g., willingness to take on the risk 

of price escalation) are specified using CVaR-based risk measures. The following 

sections present the details of these components along with the corresponding data sets. 

3.1 Objective 1 – Pricing Risk Premiums 

 As previously discussed, size, scope of work, and type of construction project 

have a significant impact on the cost. For example, economies of scale can reduce the 

cost for large projects, which results in lower unit bid prices for projects with large 

quantities. However, the longer the duration of the project, the higher risk premium may 

be included in the initial bid; since the contractors are concerned with the volatile prices 

of commodities over an extended period of time. 

 Changes in commodity prices can significantly affect the risk premiums added to 

unit bid prices. For example, in mid 2000s, an increase in commodity prices drove the 

increase in construction bid prices (Gallagher and Riggs, 2006; Barraza et al., 2000). 

Damnjanovic and Zhou (2009) showed that anticipated changes in oil prices (the  
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Figure 3.1 Research framework 
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2
0
 

difference between future and spot price) and the implied volatilities of oil prices 

significantly affected the prices of bid items for contracts without price adjustment 

clauses. The analysis linked the risk premium to both expected change and volatility in 

commodity prices (risk factors). Here the expected change represents the difference 

between future price and current price, while volatility measures variability or dispersion 

about a central tendency – a measure of the degree of price movement (Kotze, 2005). In 

fact, these two parameters (long-term drift rate and volatility) could be interpreted by a 

more formal representation of the market behavior of commodity prices from a 

stochastic modeling perspective (Trigeorgis, 2002). Hence, risk premium pricing 

depends on market behavior and the type of project and contract (i.e., escalation clause 

with trigger barrier level). 

3.2 Objective 1 – Escalation Clauses with Trigger Barriers 

 FHWA and state departments of transportation (DOTs) have historically used 

various price adjustment mechanisms in highway contracts. For example, many state 

DOTs have implemented price adjustments that apply for both upward and downward 

movement of prices. In fact, there has not been a consistent way that price adjustments 

are implemented. The result of a survey performed by an AASHTO subcommittee in the 

fall of 2009 (AASHTO, 2009) shows that the specifications of price adjustments vary for 

different materials (fuel, asphalt cement, steel, Portland cement, and others), trigger 

values (0 percent, 5 percent, 10 percent, 15 percent, 20 percent and others), and other 

essential features, such as, the maximum escalation limit and the definition of 
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controlling price index for adjustment. Hence, potential losses differ and must be 

computed according to specific contract provisions.  

This study considers only upward price adjustments with trigger barriers for 

commodities. In fact, the trigger level is considered as a decision variable. The potential 

losses to a highway agency are then calculated if the simulated spot prices of 

commodities reach the trigger barrier at the beginning of any given payment period. The 

baseline level is set to be the initial spot price of the commodity when the bid is 

awarded. For example, options for the escalation clause are triggered if crude oil spot 

price exceeds a trigger barrier. These contracts are often referred to as knock-in options 

under trigger clauses in which holders receive a payment conditional on the underlying 

prices reaching a certain trigger barrier. In figure 3.2(a), when a trigger barrier, 1B ,
 
is 

exceeded at time 1t , the agency needs to reimburse the contractor the difference between 

the simulated spot prices and the initial spot prices of commodities for the work in the 

corresponding period. As the commodity price keeps increasing and exceeds the higher 

barrier levels, such as 2B  at time 2t , then barrier 2B  can be triggered according to the 

policy of the contract. This study only considers one barrier level in the life of project. 

Suppose that the loss is computed on a monthly basis. The aggregated loss to the owner 

when the project is finished is then shown in Equation 3.1: 
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where  = the coefficient that represents the relationship between the difference in the 

simulated spot price and the initial spot price of a commodity 0( )iS S and the unit bid 

price, UBP , for unit bid items; Qn = total quantity of the bid item; 
iS = simulated spot 

price of a commodity at the beginning of thi month; 0S = initial spot price of a 

commodity when the bid is awarded; iQn = percentage of (total) completed quantity at 

the end of thi month; r = risk-free interest rate; it = time periods for i  months; T = 

duration of the project; and m = number of months of duration. It should be noted that 

the value of   could be transformed from the coefficient, which describes the 

relationship between the expected change of commodity prices and the unit bid prices 

from the regression model. 

 The corresponding work-completed quantity during each month could be 

obtained from actual data. For modeling purposes, it is assumed to follow an S-shaped 

work progress curve (Figure 3.2[b]). A convenient way to represent a project is to 

measure the percentage of work completed based on the cost for each activity in the 

project (Barraza et al., 2000). In this study, the quantity of completed work for each 

month can be represented by the product of the percentage of project progress and the 

total quantity of work. More details about the escalation clauses and the relationship 

between the risk premiums and the barrier levels are provided and discussed in Section 

4. 
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Figure 3.2 Commodity spot price and project completed quantity percentage 

 

3.3 Objective 2 and 3 – Commodity Price Simulations 

 The study models the changes in commodity prices using time series. It is known 

that volatile commodity prices may be correlated, thus vector time series model might be 

also considered to allow for correlation and co-modeling of the series. The effect of 

correlations between commodity prices may yield different losses when pricing risk with 

adjustment clauses. The autoregressive integrated moving average (ARIMA) model and 

vector autoregressive moving average (VARMA) model are used for univariate and 

vector time series, respectively. 
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The ARIMA model, which is a commonly used statistical model in linear time 

series analysis (Box et al., 1994; Montgomery et al., 1998), has been historically applied 

to forecasting commodity prices (see Weiss, 2000; Morana, 2001; Buchananan et al., 

2001; Chinn et al., 2001; Contreras et al., 2003). This general stochastic model can be 

used to model commodity prices that have a long-term equilibrium level while short-

term variations are due to demand or supply shocks (Guzel, 2003). Many economic time 

series seemed to be well described by a combination of autoregressive and moving 

average parameters fitted to the series itself (Kinney, 1978). An ARIMA model analyzes 

and predicts a value in a univariate time series as a linear combination of its own past 

values, past errors, and current and past values of other time series (SAS Institute Inc., 

2010). When an ARIMA model includes other time series as input variables, the model 

is referred to as an ARIMAX model. This study does not consider other input variables, 

but only the past values of time series itself. 

In many applications where variables are related to each other, vector time series 

models are applied for making use of all relevant information in forecasting. The vector 

generation of the ARIMA model is called the vector autoregressive moving average 

(VARMA) model (Montgomery et al., 1998). This important extension from the 

univariate models to multivariate or vector AR and ARMA models (VAR; VARMA) 

were introduced by Quenouille (1957) and Tian and Box (1981). Analyzing and 

modeling the series jointly enables us to understand the dynamic relationships over time 

among the series and to improve the accuracy of forecasts for individual series 

(Clements and Hendry, 2008).  
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3.4 Objective 4 – Formulation of Optimization Models 

 Highway agencies seek optimal solutions that will not only minimize the initial 

project costs, but also minimize potential risk exposure during construction. Thus, the 

optimization problem involves two conflicting objectives: Objective 1—minimize the 

―unexpected losses‖ due to fluctuations in commodity prices if an escalation clause is 

added; and Objective 2—minimize the initial project cost (bidding cost), that is, 

minimize the risk premium. 

 As the optimal risk hedging problem considers two conflicting objectives (pay 

now in initial bid price versus pay later in the risk exposure during construction), a 

multi-objective optimization problem is formulated. In fact, multi-objective optimization 

is often applied to many engineering problems where the objectives under consideration 

conflict with each other. Optimizing a particular solution with respect to a single 

objective can result in unacceptable results with respect to the other objective. By 

comparison, a solution to a multi-objective problem is a set of solutions, each of which 

satisfies the objectives at the optimal level without being dominated by any other 

solution. This set of solutions, commonly used for comparing solutions in a multi-

objective optimization, is known as a Pareto optimum set. Pareto sets are often preferred 

to single solutions, as the final decision is left to a user who can conduct trade-offs 

(Konak et al., 2006). The corresponding set of objective values is termed as the Pareto 

front (Zheng et al., 2004). 
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3.5 Data Processing and Final Data Sets 

 The overall data set used in this dissertation study is shown in Figure 3.3. There 

are two major data sets requirements for the dissertation - ―data set 1‖ for simulating 

commodity prices, and ―data set 2‖ for pricing unit bids and risks. Details about the two 

main data sets are presented in the next two subsections. 

 

3.5.1 Data set 1 – Historical material price series 

 Historical material prices are obtained from Engineering News-Record (ENR) e-

journal and Infor‘s EAM Datastream crude oil spot price data. Specifically, ENR 

provides ―Material Cost Index‖ (2002-2006) data which consists of historical prices of 

cement, steel, and lumber. In order to keep them uniformly recorded, all the collected 

material prices are based on monthly data. An example time series of historical 

commodity prices is shown in Table 3.1.  

Table 3.1 Example for prices of commodities 

 
ENR material prices Datastream spot price futures price 

Date Cement  

($/ton) 

Steel  

($/cwt) 

Brent crude oil 

spot price 

($/barrel) 

Brent crude oil 3 

month future price 

($/barrel) 

May, 2003 83.17 25.89 25.86 26.86 

 

3.5.2 Data set 2 – Bidding data and futures options data 

 There are a number of risk factors contributing to increase in bid prices. Some of 

them may be hard to quantify as they are not recorded or available; however, some can 
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be collected and do relate to project risk factors. Having more variables increases the 

level of confidence in accepting or rejecting the hypotheses, and increases the level of 

significance of the estimates. The key variables in this sense are volatility and expected 

change in prices of construction materials. 

 However, data sets must be processed before they can be effectively used for 

modeling. The objective of the data processing is to synthesize the final data set 

specification for developing a model that can estimate bid prices based on two impact 

important variables: market-implied expected change (what market expects to occur to 

the prices) and volatility in commodity prices (how the prices are fluctuated). 



 

 

2
8
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Data processing for pricing unit bids and risks 
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 To generate needed data for pricing unit bids and risks, four distinct data sources 

with inflation-adjusted observations from 1998 to 2006 were pulled together: (1) Texas 

Department of Transportation (TxDOT) bidding data, (2) Datastream future and spot 

prices data for crude oil from Thomson Financial, (3) New York Mercantile Exchange 

(NYMEX) future options data for crude oil, and (4) Engineering News-Record (ENR) 

data for cement prices and steel prices.  

 The first data component (bid item data) contains the unit bid prices (lowest 

prices) for typical construction line items and other contracting parameters including 

quantity, project duration, total bid price, estimated total price by owner, bidding date, 

number of bidders, county in which the project is located, bidder, etc. The bid items data 

cover highway construction contracts awarded in Texas during 1998-2006. It includes 

four bid item categories and sixteen bid elements as defined in Highway Construction 

Index (HCI) developed by TxDOT (see Table A-1 in Appendix A).  

 The second data component containing spot prices and three month future prices 

of crude oil was obtained from Datastream produced by Thomson Financial and used to 

calculate market-implied expected change of the oil prices over three month period. The 

motivation for using three-month option was purely based on data set limitation. As 

future options are trading instruments, their price is based on supply and demand. In this 

context, options with shorter maturity date are more actively traded and their price is 

available for each trading date. This was not the case for futures option with long 

maturity. If consistent data for longer maturity options become available, the analysis 
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could be replicated. This change is represented using a difference between future and 

spot prices.  

 The third data component was used to estimate market-implied volatility of oil 

prices at the bidding time with future options data from NYMEX covering trade date, 

contract year and month, settle price, and strike price. This implied volatility represents a 

measure of how volatile prices of crude oil will be over a time period (Christensen and 

Prabhala, 1998). For example, if there is absolute certainty that the prices will increase 

or decrease for a specific amount over a considered time period, the volatility would 

equal zero, no uncertainty – no volatility. Further, it is important to note that implied 

volatility is a measure that is implied by the traders at NYMEX: the value of the option 

implies the expected volatility of the price of oil over a time period, or for the case used 

in this study, over three month period. The methodology to calculate implied volatility 

from the available data will be presented in subsection 3.5.2.1. Finally, the fourth data 

component – ENR journal data – includes historical prices of cement and steel prices 

from 1997 to 2006. Historical volatilities and expected changes are accordingly 

estimated: the expected change of cement and steel prices represents the difference 

between the price in the current period and the price in the previous period; the historical 

volatility will be presented in subsection 3.5.2.2. 

 

3.5.2.1 Implied volatility in crude oil prices 

 Market implied volatility which is embedded in the option‘s market price can be 

calculated using observed data of call options, or in the case of crude oil derivatives, 
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future call options. Implied volatility is widely interpreted as ―the market‘s‖ volatility 

forecast and is used in pricing options (Figlewski, 1997). A call option is a financial 

contract between two parties. The buyer of the option has the right, but not the obligation 

to buy an agreed quantity of a particular commodity from the seller of the option at a 

certain time (the expiration date) for a certain price (the strike price) (Stoll, 1969). The 

classic option pricing framework for valuing European call options on a non-dividend 

paying stock is developed by Black and Scholes (1973) and Merton (1973). A European 

option may be exercised only at the expiry date of the option, whereas an American 

option may be exercised at any time before the expiry date.  

 A useful property of the Black-Scholes option pricing model, shown in Equation 

3.2a, is that all the parameters except the volatility are directly observable from the 

market. Given the current price of a specific option contract along with the model‘s other 

parameters, the model can be solved backwards for the value of the volatility parameter 

implied by the current price of the option which is implied volatility of the option. 
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The value of a European call option, stock price, strike price, risk-free interest rate, time 

to expiration and volatility are denoted by , , , , ,C S X r T  , respectively. ( )N x  is the 

cumulative normal density function. 

 The widely used Black-Scholes option pricing model implies that underlying 

stochastic process for oil prices is geometric Brownian motion, a typical representation 

of a process in financial economics (Bernabe et al., 2004; Postali and Picchetti, 2006; 

Al-Harthy, 2007). A number of models were developed to represent uncertainty in oil 

prices including mean-reversion (Bessembinder et al., 1995; Baker et al., 1998) and 

mean-reversion with jumps (Pelet, 2003). While there is an active debate to what models 

can best fit the reality, Damnjanovic and Zhou (2009) adopted a standard geometric 

Brownian motion to specify the stochastic behavior of oil prices (the principle of 

parsimony is used as a guiding criterion); here, the drift rate tells the trend or the mean 

change in price of oil, while volatility reflects the variance of the price in period T. 

However, it is important to note that other models can be adopted to represent 

uncertainty in prices. 

 Even though there is no closed-form solution for implied volatility from the 

Black-Sholes model, a number of approximated solutions are reported in the literature. 

An approximation developed by Corrado and Miller (1996) - Equation 3.3 - is validated 

when stock prices deviate from discounted strike prices as discussed by Li (2005). Li 

also developed approximate solutions for implied volatility and provided a uniform 

framework for deriving the approximations. The approximation models include 
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classification based on a number of factors such as classification deep in- or out-of-the-

money calls. 
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 (3.3) 

where K  is the discounted strike price and the other variables are the same as used in 

Equation 3.2a. 

 The three month implied volatility is calculated using Equation 3.3, as the data 

support the assumptions used in the approximation. The approximation results are shown 

in Figure B-1 in Appendix B. This approximation yields implied volatility values that 

are nearly identical to the values from the actual Black-Scholes model when numerically 

solved. Please see details in Appendix B for formulas used in computing implied 

volatility.  

 While implied volatility is a forward-looking measure of likely future volatility 

conditions, historical volatility is a backward-looking measure of recent volatility 

conditions (Kawaller et al., 1994). Since the data for options and futures for cement and 

steel prices are not available, historical volatility is calculated and used instead of 

implied volatility for cement and steel prices. 

 

3.5.2.2 Historical volatility for cement and steel prices 

 In theoretical option pricing models, Black and Scholes derived their option 

valuation equation under the assumption that stock returns, ―log price relatives‖, 
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followed a logarithmic diffusion process in continuous time with a constant drift and 

volatility parameters, as shown in Equation 3.4: 

 
dS

dt dz
S

    (3.4) 

where dS S  is the instantaneous proportional change in the price of the underlying 

asset,  is the annual mean return,   is the volatility, dt  indicates an infinitesimal unit 

of time and dz  represents Brownian motion. Starting from an initial value 0S , the return 

over the period from 0 to T  is given by Equation 3.5: 

  0ln TR S S  (3.5) 

and R  has a Normal distribution, with 
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The standard historical volatility estimate (the most basic method) follows the following 

procedure. Historical volatility is typically computed as the standard deviation of the 

percentage price changes over a recent period (Kawaller et al., 1994). Consider a set of 

historical prices that follow the process defined in Equation 3.4:  0 1, , , TS S S . Then 

the log price relatives are computed, i.e., the percentage price changes expressed as 

continuously compounded rates: 

  1ln , for from1 tot t tR S S t T  (3.7) 

The estimate of the (constant) mean   of the tR  is the simple average: 
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The variance of the tR  is given by Equation 3.9: 
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Annualizing the variance by multiplying by N , the number of price observations in a 

year and taking the square root yields the volatility, 

 2Nv   (3.10) 

If the constant parameter diffusion model of Equation 3.4 is correct, the above procedure 

gives the best estimate of the volatility that can be obtained from the available price data. 

This estimate then becomes the forecast for the volatility going forward, over a time 

horizon of any length. Simply projecting observed past volatility into the future is a 

common way to make a forecast, but it is only one of several common methods, and 

need not be the most accurate (Figlewski, 1997). The calculated historical volatilities for 

cement and steel prices are shown in Appendix B. 

 

3.5.2.3 Variables for estimating risk premiums 

 As previously mentioned, two characteristic variables are considered for 

estimating risk premiums: (1) the market-implied expected change of commodity prices 

(the difference between three-month futures price and spot price for crude oil, or the 

difference between current price and the price in three months lags of cement and steel); 

and (2) duration-based volatility (three-month duration-based implied volatility for crude 
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oil prices, or duration-based historical volatility for cement and steel prices). The 

duration-based volatility represents a transformed testing variable defined as a product 

of contract duration and market-implied volatility. The motivation for specifying this 

―synthetic‖ variable lies in the fact that contract length affects the risk: The longer the 

contract duration, the more significant volatility becomes. For example, if the contract 

duration is short, even high volatility should not affect the prices as the contractor has 

fuel/materials available before the contract begins. On the other hand, the impact of 

volatility can be significant even for modest volatility measures for long-duration 

contracts (Damnjanovic and Zhou, 2009).  

 

3.5.2.4 Final specification of data set for pricing unit bids and risk 

 The unit bid price is considered as a dependent variable while total quantity, 

number of bidders, bidding date (in quarters of year), project location (city location or 

not), districts (a vector of districts in Texas), duration of project, volatility and expected 

change of prices of commodities (cement, steel and oil) are considered to be explanatory 

variables.  

 

3.6 Summary 

 This section presents the overall methodology and data sets for developing the 

models in this dissertation. Three main model parts are explained: (1) a model to price 

the unit bid items and the risks, including the contract design using escalation clauses 

with barrier levels; (2) the time series models used for simulating commodity prices; and 
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(3) the multi-objective optimization model. Data processing and two final data sets are 

also presented. Data set 2 (TxDOT bidding data) is used for unit bid price regression 

model and estimating ―build in‖ premiums. Data set 1 (monthly historical material 

prices) is used for identifying expected change and volatility of uncertain commodity 

prices, thus for simulating time series prices and for contracting optimizations. In the 

following section, the models for pricing unit bids and risks are presented. 
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4. PRICING UNIT BIDS AND AVERAGE RISK PREMIUMS 

 

 The highway construction cost showed a significant increase from 2003 to 2008. 

For example, compared to 1997, the purchasing power of the Texas Department of 

Transportation (TxDOT) has decreased considerably. A construction project in 2006 is 

valued two times more than a similar project in 1997 (Pandit et al., 2009). As the cost of 

materials and oil-based fuels has significantly increased over the same time period, it is 

evident that there is a direct relationship between the cost of construction and 

commodity prices (Gallagher and Riggs, 2006). In the mid-2000s, a number of highway 

contractors were influenced by escalating material prices (the cost of liquid asphalt, 

cement, fuel, and steel). In such settings, where the commodity market is volatile, the 

contractors are cautious when bidding on the jobs without adjustment clauses. As a 

result, the bids include even larger contingencies amplifying the volatility effect to the 

construction market. 

To determine optimal hedging of commodity risk using escalation clauses, it is 

essential to first determine the price of risk in these contracts. This section presents a 

link between the average risk premium and the expected change and volatility of 

commodity prices. The average risk premium here is the average amount of money that 

highway agencies pay to the contractors given the historical bidding information of 

highway projects. This section aims at explaining the relationship between the unit bid 

prices of selected control items and the risk factors (e.g., increase in commodity prices); 
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in other words, it aims to estimate the impact that volatile commodity prices have on the 

unit bid prices (i.e., risk premiums).  

The increase in cost of highway construction is largely a result of escalation in 

the cost of commodities, such as crude oil, steel and cement (Gallagher and Riggs, 2006; 

Mendell, 2006; GNB, 2007; FHWA, 2007). Highway construction depends on many 

products that are derived from crude oil. This implies that potential fuel price escalation 

can cause contractors to submit higher bid prices not only for materials derived from 

crude oil, but also for the work items that require significant use of fuel to power 

machinery (McFall, 2005; GNB, 2007). In addition to oil, price of steel significantly 

impacts the cost of construction. During 2004-2006, steel price rose significantly; sharp 

hikes to steel prices made concrete structures more competitive thus increasing the 

demand and the price of cement (McGoldrick, 2006).  

In this dissertation, oil, steel and cement prices are viewed as risk factors that 

impact unit bid prices of bid items. According to the result of a survey conducted by the 

American Association of State Highway and Transportation Officials (AASHTO) in 

2008, forty states out of fifty-two member departments used fuel price adjustment 

clauses; forty-two states used asphalt cement price adjustment clauses; fifteen states used 

steel price adjustment clauses; and three states used Portland cement price adjustment 

clauses (AASHTO, 2008a).  

 As mentioned in Section 3, based on the available data, the unit bid price is 

considered as a response variable while total quantity, number of bidders, bidding date 

(in quarters of year), project location (city location or not), districts (a vector of districts 
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in Texas), duration of project, volatility and expected change of commodity prices are 

considered to be explanatory variables. Explanatory variables are typically the variables 

representing the variation in the response variable. The final specification of data set 

used for pricing unit bids and risks is shown in Table 4.1. 

Table 4.1 Variables for pricing unit bids and risks  

No. Explanatory variable Unit Symbol 

1 Quantity C.Y.; L.F. Qn  

2 Number of bidders count N  

3 Bidding date (quarter of year) dummy T  

4 Location (district) dummy L  

5 City or not dummy C  

6 Duration-based volatility  dayvolatility 

VD  

(V for volatility; 

D for duration) 

7 Expected change $/bbl;$/ton;$/cwt 
;

;
oilFS
cementFS
steelFS

 

8 Unit bid price (response variable) $/quantity UBP  

 

4.1 Investigated Bid Items and Identified Risk Factors 

Most projects contain a small number of work items that together comprise a 

significant portion (e.g. 75 percent) of the total cost. In highway construction, the major 

items are typically Portland cement concrete pavement, structural concrete, structural 

steel, asphalt concrete pavement, and embankment (FHWA, 2004). Federal Highway 

Administrations‘ composite bid price index (FHWA CBPI), a popular construction cost 

index in the highway industry, reflects these items. The FHWA CBPI is composed of six 

indicator items: common excavation, to indicate the price trend for all roadway 
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excavation; Portland cement concrete pavement and bituminous concrete pavement, to 

indicate the price trend for all surfacing types; and reinforcing steel, structural steel, and 

structural concrete, to indicate the price trend for structures (FHWA, 2006). These items 

were identified by first observing which construction sections experience major 

expenditure, and then identifying the largest expenditure pay item expressed in unit costs 

in each section (Wilmot and Mei, 2005; Cheng and Wilmot, 2008). Further, a number of 

states track project costs for a number of selected bid items. For example, WSDOT 

tracks the cost of construction materials of seven typical construction bid items—

crushed surfacing, concrete pavement, structural concrete, hot mix asphalt, roadway 

excavation, steel reinforcing bar and structural steel (WSDOT, 2011).  

Based on the identified significant impact of the items on the cost of projects, 

seven control items shown in Table 4.2 are selected from a set of thirty-four control 

items used in the TxDOT‘s HCI (Appendix A). These control items are (1) roadway 

excavation; (2) roadway embankment; (3) flexible base; (4) hot mix asphaltic concrete; 

(5) continuous reinforced concrete pavement; (6) regular beams; and (7) retaining walls. 

For these seven control items, this dissertation considers the impact of three commodity 

risk factors (cement, steel, and oil). 
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Table 4.2 Selected items and risk factors 

Model Selected control item Identified risk factor 

1 Roadway excavation Oil price 

2 Roadway embankment Oil price 

3 Flexible base Oil price 

4 Hot mix asphaltic concrete Oil price 

5 Regular beams Steel price 

6 Continuous reinforced  

concrete pavement 

Cement price  

7 Retaining walls Cement price 

   

The method for matching the most significant risk factor to each control item is 

based on several steps. First, it considers the description of the each item by the 

AASHTO (2008b), as it is important to determine the contributing materials to each 

item. Second, if a control item uses more than one type of material, one can use 

correlation coefficients between the unit bid price and the commodity prices as a 

criterion to determine the most significant risk factor. 

Risk factors identified for each item are shown in Table 4.2. The justification, for 

considering the seven control items and the corresponding risk factors, is presented as 

below: 

4.1.1 Control items: excavation and embankment 

It is well known that the cost of highway construction is affected by the cost of 

crude oil. While this relationship is highly visible for construction items such as asphalt 

cement (a byproduct in the process of refining oil), the effects of the crude oil prices on 
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the cost of other construction items, such as concrete cement or construction operations, 

are less direct but equally important (Damnjanovic and Zhou, 2009). 

Excavation and embankment are identified among the most fuel intensive types 

of work, and therefore are susceptible to the changes in fuel prices (FHWA, 1980; 

FHWA, 2007; Damnjanovic and Zhou, 2009). Excavation and embankment which 

include excavating, hauling, placing, disposing and compacting materials require 

considerable usage of fuel. Thus, the costs of oil-based fuels significantly impact the 

costs of excavation and embankment (FHWA, 2007; Damnjanovic and Zhou, 2009). 

Increase in the cost of excavation and embankment has been dramatic since 2003. For 

example, the percentage of change in the cost of excavation in Texas during that period 

was estimated to be 47.2%.  

4.1.2 Control item: flexible base 

The cost of transporting granular materials for flexible bases represents a major 

factor in pavement construction costs. Pavement construction requires transportation of 

significant amount of aggregates to the construction site (Nash et al., 1995). In other 

words, it requires the use of equipment (e.g., trucks, rollers) for delivering base materials 

to the roadway, for hauling and placing flexible base, for compaction and rolling, and 

other processes. (Note that the cost of aggregate materials is also a major factor 

contributing the unit bid price of flexible base; however, due to data availability, crude 

oil price was a sole risk factor considered for flexible base control item.) 
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4.1.3 Control item: hot mix asphaltic concrete (HMAC) 

The increasing cost of crude oil has a direct effect on the cost of hot mix 

asphaltic concrete bid item. Asphalt prices are closely related to crude oil prices. As 

asphalt is a product derived from crude oil and HMAC work item deals with mixing, and 

placing asphalt concrete using fuel intensive machines, the crude oil price is considered 

as the most significant risk factor for HMAC. According to the state of Washington 

(FHWA, 2007), the costs of hot mix asphalt grew by 64.2 percent from 2003 to 2006, 

compared to 9.8 percent from 2000 to 2003. This to a large degree mimics the cost of 

crude oil. 

4.1.4 Control item: continuous reinforced concrete pavement (CRCP) 

Concrete pavement control item is one of the items that affect the highway 

construction cost. Steel and cement prices affect the cost of continuous reinforced 

concrete pavement as they represent the major material requirements. In this dissertation, 

the cement price is chosen as the most significant risk factor contributing to the cost of 

continuous reinforced concrete pavement control item. To identify which commodity 

price has the highest impact on this control item, a correlation analysis is conducted. The 

result is shown in Table 4.3. 

Table 4.3 Correlations between unit bid prices of CRCP and commodity prices 

 D  Qn  N  cementFS  oilFS  steelFS  

UBP  -0.446 -0.682 -0.163 0.127 0.055 0.082 
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The coefficient of correlation between the unit bid price of CRCP and the price of 

cement is 0.127 which shows that cement price is more correlated to the unit bid price of 

CRCP than both prices of crude oil and steel. In addition, contract duration, quantity and 

the number of bidders show negative correlations to the unit bid price of CRCP. 

Therefore, the price of cement is selected to be the risk factor for this control item. 

4.1.5 Control item: retaining walls 

Retaining walls are considered as a part of concrete structures. Cement price is 

identified as the risk factor for retaining walls. The retaining walls control item deals 

with furnishing, constructing, and installing retaining walls. The required materials for 

this item are mainly aggregates and concrete cement.  

4.1.6 Control item: regular beams 

 Regular beams are considered as a part of steel structures. Table 4.4 shows that 

both steel price and cement price have considerable influence on the unit bid price (i.e., 

the corresponding correlation coefficients are 0.24 and 0.24, respectively). As cement 

price was selected for CRCP item, the price of steel is considered as the risk factor for 

regular beams item. 

Table 4.4 Correlations between unit bid prices of regular beams and commodity prices 

 D  Qn  N  steelFS  oilFS  cementFS  

UBP  -0.124 -0.266 -0.198 0.24 0.035 0.24 
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4.2 Average Risk Premium Estimation 

4.2.1 Regression model 

 This subsection presents development of regression models to determine the 

impact of risk factors on the unit bid prices. Based on the identified risk factor for each 

bid item, regression models are developed to price the unit bids and risk premiums. The 

models include project characteristics as explanatory variables in addition to commodity 

price variables used to estimate the risk premium. 

 Multiple linear regression models in this dissertation are based on weighed least 

square (WLS) estimation. The main advantage of WLS is its ability to deal with non-

constant error variance (Sheather, 2008). The basis of WLS implementation is illustrated 

as follows. Consider the straight linear regression model in Equation 4.1: 

 0 1  i i iY x e     (4.1) 

where the ie  has a mean 0 but the variance of 2 / iw , the weights iw  need to be taken 

into account when estimating the regression parameters 0  and 1 . This is achieved by 

considering the weighted version of the residual sum of squares in Equation 4.2: 

    
2 2

0

1 1

ˆ 
n n

i i wi i i i i

i i

WRSS w y y w y b b x
 

       (4.2) 

The values of 0b  and 1b  that minimize WRSS  are required to obtain the WLS estimates. 

The explanatory variables used in this regression model include project 

characteristics (quantity, number of bidders, bidding date, and location), and risk factor 

characteristics (duration-based volatility and expected change of commodity price). The 

response variable in the model is the unit bid price. The two risk factor variables — 
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duration-based volatility and expected change of commodity price — are added to 

estimate the risk premium. Let RUBP  represent the regressed unit bid price given 

duration-based volatility (VD ) and the expected (average) change of commodity price 

( FS ) from market data sets, while 0UBP  represent the regressed unit bid price where the 

change and the volatility of commodity prices are equal to zero, V   0, and FS  = 0 (this 

corresponds to the case where the prices are fixed and no premium is needed); then, the 

risk premium hidden in the unit bid price is estimated as 0RUBP UBP UBP   . Thus, 

the total risk premium is R UBP Qn   , where Qn  is the total quantity of bid item. It 

is important to note that the following regression model is not intended to predict future 

prices of the bid unit items, but to estimate average risk premium hidden in the bid price. 

Due to lack of data, the model ignores possible price manipulation due to unbalancing 

bids and other important explanatory variables such as contractor‘s size, construction 

market condition, and others. 

 

4.2.2 Steps for building model and validation 

 It is well known that a key step in any regression analysis is assessing the validity 

of the given model. The steps for developing and validating models follow the process 

presented below (Sheather, 2008): 

Step 1: Generate scatter plots, box plots and normal QQ plots to assess the 

distributions of variables 

Scatter plots show the general pattern between the two variables; Box plots and 

normal QQ plots can be used to further see the shape of the distribution of variables. 
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They are useful in the early stages of the analysis when exploring data before actually 

calculating a correlation coefficient or fitting a regression curve.  

Step 2: Transform data using Box-Cox methods if the variables show non-

normality and/or non-constant variance 

 When data needs to be transformed to address the problems such as nonnormality 

and non-constant variance, Box-Cox method is used to overcome these problems by 

identifying the most appropriate transformation. Box and Cox (1964) provided a general 

method for transforming strictly positive variables. The Box-Cox procedure aims to find 

a transformation that makes the transformed variable close to normally distributed. 

Admittedly, transformations do not perform well in every situation especially when 

important predictors which interact with other are not included in the model.  

Step 3: Re-check step 1 

This step aims to check the effect of transformation on the relationships between 

the new variables, that is, to see whether the strength of the linear relationship between 

the new variable is better than the linear relationship between the original un-

transformed ones.  

Step 4: Select variables based on backward method 

The ―best‖ model with a set of predictors should be chosen from a class of 

multiple regression models using a variable selection method. In general, the more 

predictor variables included in a model, the lower the bias of the predictions, but the 

higher the variance. Including too many predictors in a regression model is commonly 

referred to as over-fitting (Sheather, 2008). Backward elimination is used for the 



 49 

variable selection in this dissertation. The starting point is the model with all of the 

available variables. The partial-F tests are then used to determine if the ―worst‖ variable 

at each testing stage can be deleted. 

Step 5: Run regression model and estimate the parameters 

With all the final selected variables from the procedure of backward elimination 

included in the model, the output associated with fitting model shows all the coefficients 

for the variables and their significance. In other words, this step estimates the model 

parameters. 

Step 6: Model validation and regression diagnostics 

A comprehensive set of tests is used to validate regression models. These tests 

include plots of standardized residuals against each predictor, plots of fitted values, 

diagnostic plots, marginal model plots, added variable plots, and variance inflation factor 

(VIF) test. 1) A crucial assumption in any regression analysis is that the errors have 

constant variance. The regression models are considered valid when there is a random 

pattern from plots of the standardized residuals against each predictor, a straight line fit 

to fitted values of dependent variable, and normality of the errors from diagnostic plots 

(Sheather, 2008). 2) Marginal plots have a wider application than residual plots while 

added variable plots are used to assess the effect of each predictor variable on the 

response variable having adjusted for the effect of other predictor variables. 3) 

Validation of regression model also depends on no multicollinearity where VIF for each 

predictor should be less than five. When highly correlated predictor variables are 

included in a regression model, they are effectively carrying very similar information 
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about the response variable. Then, it is difficult for least squares to distinguish their 

separate effects on the response variable. 

The process for multiple linear regression models developed in this study is 

shown, explained, and discussed in Appendix C where the bid item ―excavation‖ is 

considered as an example. The same process is then repeated for the other six bid items.  

 

4.2.3 Results 

4.2.3.1 Item 1 – roadway excavation 

 The final model specification and parameter estimation results are shown in 

Equation 4.3 and Table 4.5, respectively. All the variables are statistically significant 

and show the expected signs (See the regression output 1 from statistical software R – 

Item 1 roadway excavation in Appendix C.). 
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The result of the regression analysis in Table 4.5 shows that the data support the 

claim that the market-implied change ( 4 ) and the volatility of prices ( 1 ) in crude oil 

market affect the unit prices of excavation for contracts without adjustment clauses 

(because the coefficients of these two variables are greater than zero). The model 

indicates that every 1 percent increase in duration-based implied volatility and the 

expected change (a difference between futures and spot prices of crude oil), will result in 

(on average) a 0.022 percent and 8.4 percent increase in unit bid prices of excavation, 

respectively.  
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TABLE 4.5 Model estimation value - excavation 

Parameter Estimated parameter 

value for excavation 

Parameter Estimated parameter 

value for excavation 

0  31.28 11( 7)d  0.773 

1  0.022 12 ( 9)d  0.766 

2  -0.218 13( 10)d  1.119 

3  -0.226 14( 11)d  1.231 

4  1.088 15( 12)d  1.139 

5    0.945 16( 16)d  0.79 

6  0.911 17 ( 18)d  0.787 

7 ( 1)d  0.871 18( 19)d  0.577 

8( 3)d  0.799 19 ( 21)d  1.26 

9 ( 4)d  1.27 20 ( 22)d  0.846 

10 ( 5)d  1.147   

 

In addition, Table 4.5 indicates the effect of project characteristics variables: 

every 1 percent increase in quantity and number of bidders of projects leads to a 0.218 

percent decrease and a 0.226 percent decrease respectively in the unit bid prices of 

excavation, which demonstrate that the larger quantity and the number of bidders reduce 

the unit bid prices; Quarters in which projects are let and the location of projects also 

affect the unit bid price of excavation. The unit bid prices in the quarter 1 of year are 

estimated to be approximately 5.7 percent lower than those in quarter 3 and quarter 4; 

the unit bid prices in quarter 2 is estimated to be approximately 9.3 percent lower than 

those in quarter 3 and quarter 4; Project location (i.e., Texas districts as discussed in 

Section 3), has a significant impact on the unit bid price of excavation. The unit bid price 

in d1, d3, d7, d9, d16, d18, d19 and d22 are estimated by the model to be 13.8 percent, 

22.5 percent, 25.7 percent, 26.7 percent, 23.6 percent, 24 percent, 55 percent and 16.7 
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percent respectively lower than those in the remaining districts in Texas; the unit bid 

prices in d4, d5, d10, d11, d12 and d21 are estimated by the model to be 23.9 percent, 

13.7 percent, 11.2 percent, 20.8 percent, 13 percent and 23.1 percent respectively higher 

than those in the remaining districts. (The twenty-five districts in Texas are shown in 

Table 4.6. The project location categorized in districts can also reflect the influence by 

city or rural.) 

Table 4.6 Twenty-five districts in Texas 

Variable District Variable District Variable District 

d1 Abilene d10 Dallas d19 Pharr 

d2 Amarillo d11 El Paso d20 San Angelo 

d3 Atlanta d12 Fort Worth d21 San Antonio 

d4 Austin d13 Houston d22 Tyler 

d5 Beaumont d14 Laredo d23 Waco 

d6 Brownwood d15 Lubbock d24 Wichita Falls 

d7 Bryan d16 Lufkin d25 Yoakum 

d8 Childress d17 Odessa   

d9 Corpus Christi d18 Paris   

 

Considering the model estimation in Table 4.5 and an example contract structure 

of excavation item let in 2004 in Lubbock (Texas) shown in Table 4.7, the total risk 

premium without adjustment clauses can be estimated using Equation 4.3. RUBP , the 

regressed unit bid price given input values of both duration-based implied volatility VD  

and expected change of crude oil prices oilFS , is 1.384 ($/CY); 0UBP , the regressed 

unit bid price given 0.0005 0V    and 0oilFS  , is 0.995 ($/CY). V  is set to be 
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approximately zero because implied volatility of crude oil prices will never be zero. 

Thus the risk premium in unit bid price accounting for expected change and volatility of 

crude oil price is UBP =
0RUBP UBP = $0.389 / CY  and then total risk premium 

without any adjustment is R = $613,248UBP Quantity    (13 percent of total bid 

price). 

TABLE 4.7 Parameters for an excavation bid 

T  L  
V  D  

(day) 
Qn  

(C.Y.) 

N  

 

oilFS  
($/bbl) 

12/07/04 Lubbock (d15) 0.5018 860 1576453 4 2.11 

 

4.2.3.2 Item 2 – roadway embankment 

 The final model specification for this control item is shown in Equation 4.4 and 

Table 4.8. All the variables are statistically significant and of the expected signs (See the 

regression output 2 from statistical software R – Item 2 roadway embankment in 

Appendix C). The result of regression analysis shows that the data support the claim that 

market-implied change of prices in crude oil market affect the unit price of embankment 

for contracts without adjustment clauses. The model indicates that every 1 percent 

increase in the expected change (a difference between futures and spot prices of crude 

oil), will result in (on average) a 9.43 percent increase in unit bid prices of embankment. 
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TABLE 4.8 Model estimation value - embankment 

Parameter Estimated parameter 

value for excavation 

Parameter Estimated parameter 

value for excavation 

0  31.218 6 ( 10)d  1.182 

1  -0.215 7 ( 11)d  1.315 

2  -0.158 8( 19)d  0.533 

3  1.099 9 ( 21)d  0.87 

4 ( 4)d
 1.16 10 ( 24)d  1.288 

5( 5)d  1.323   

 

Considering the model estimation in Table 4.8 and an example contract structure 

of embankment item let in 2004 in Lubbock (Texas) as shown in Table 4.9, the total risk 

premium without adjustment clauses can be estimated using Equation 4.4. RUBP , the 

regressed unit bid price given input values of the expected change of oil price oilFS , is 

1.608 ($/CY); 0UBP , the regressed unit bid price given 0oilFS  , is 1.317 ($/CY). Thus 

the risk premium in unit bid price accounting for expected change of steel price is 

UBP = 0RUBP UBP = 0.29  $/CY  and then total risk premium without any 

adjustment is R = $259,598UBP Quantity    (10 percent of original bid price). 

TABLE 4.9 Parameters for an embankment bid 

T  L  D  
(day) 

Qn  

(C.Y.) 

N  oilFS  
($/bbl) 

12/07/04  Lubbock(d15) 860 893,984 4 2.11 

 

When compared to excavation item, the effect of oil price (risk factor) on the unit 

bid prices of embankment is less. However, for project with large quantity, the effect is 
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still substantial as shown in the example above where the risk premium is estimated to 

be $259,598. Thus, an escalation clause should be considered to assess the benefits of 

taking on the future risk while getting a lower risk premium for the bids. 

 

4.2.3.3 Item 3 – flexible base 

 The final model specification for this control item is shown in Equation 4.5 and 

Table 4.10. All the variables are statistically significant and of the correct expected signs 

(See the regression output 3 from statistical software R – Item 3 flexible base in 

Appendix C). The result of regression analysis shows that the market-implied change in 

crude oil prices affects the unit prices of flexible base for contracts without adjustment 

clauses at a 0.1 significance level. Although the quantities of projects and numbers of 

bidders affect the unit bid prices of flexible base more significantly (i.e., p-value is 

smaller), the impact (coefficients of estimates) of these two parameters is less than the 

effect of crude oil price on the unit bid price. The model indicates that every 1 percent 

increase in the expected change (a difference between futures and spot prices of crude 

oil), will result in (on average) a 7.85 percent increase. 
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TABLE 4.10 Model estimation value - flexible base 

Parameter Estimated parameter 

value for excavation 

Parameter Estimated parameter 

value for excavation 

0  52.353 9 ( 10)d  1.24 

1  -0.131 10( 13)d  1.309 

2  -0.097 11( 16)d  1.209 

3  1.081 12( 18)d  1.165 

4  0.929 13( 19)d  0.651 

5  0.947 14 ( 20)d  0.783 

6 ( 5)d  1.694 15( 22)d  1.256 

7 ( 7)d  1.164 16 ( 24)d  1.184 

8( 9)d  1.262   

 

Considering the model estimation in Table 4.10 and an example contract 

structure of flexible base item let in 2005 as shown in Table 4.11, the total risk premium 

without adjustment clauses can be estimated using Equation 4.5. RUBP , the regressed 

unit bid price given input values of expected change of crude oil price oilFS , is 13.52 

($/CY); 0UBP , the regressed unit bid price given 0FS  , is 12.2 ($/CY). Thus the risk 

premium in unit bid price accounting for expected change of price is 

UBP = 0RUBP UBP =1.32  $/CY  and then total risk premium without any adjustment 

is R = $26,116UBP Quantity    (6.8 percent of original bid price). 

TABLE 4.11 Parameters for a flexible base bid 

T  L  D   
(day) 

Qn   
(C.Y.) 

N  oilFS  
($/bbl) 

05/11/05 Cass (d3) 196 19,776 3 1.32 
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Compared to the effect of crude oil price on excavation and embankment, the 

effect on flexible base is not that significant. This might be due to the factor that was not 

considered in the model – the cost of aggregate material used for the flexible base item. 

 

4.2.3.4 Item 4 - hot mix asphaltic concrete (HMAC) 

 The final model specification for this control item is shown in Equation 4.6 and 

Table 4.12. All the variables are statistically significant and of the correct expected signs 

(See the regression output 4 from statistical software R – Item 4 HMAC in Appendix 

C.). The result of regression analysis shows that the market-implied change in crude oil 

prices affects the unit price of HMAC for contracts without escalation clause 

significantly. The model indicates that every 1 percent increase in the expected change 

(a difference between futures and spot prices of crude oil), will result in (on average) a 

9.37 percent increase in unit bid prices of HMAC. 
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TABLE 4.12 Model estimation value - HMAC 

Parameter Estimated parameter 

value for excavation 

Parameter Estimated parameter 

value for excavation 

0  81.78 
8( 8)d  1.251 

1  -0.124 
9 ( 11)d  1.11 

2  -0.109 
10( 14)d  1.112 

3  1.099 
11( 15)d  1.3 

4 ( 2)d  1.146 
12( 16)d  1.148 

5( 4)d
 

0.891 
13( 19)d    0.803 

6 ( 5)d  1.141 
14 ( 22)d  1.053 

7 ( 6)d  1.122   

 

Considering the model estimation in Table 4.12 and an example contract 

structure of HMAC item let in 2004 in Lubbock (Texas) as shown in Table 4.13, the 

total risk premium without adjustment clauses can be estimated using Equation 4.6. 

RUBP , the regressed unit bid price given input values of expected change of oil price 

oilFS , is 25.93 ($/CY); 0UBP , the regressed unit bid price given 0oilFS  , is 21.24 

($/CY). Thus the risk premium in unit bid price accounting for expected change of steel 

price is UBP = 0RUBP UBP = 4.68  $/CY  and then total risk premium without any 

adjustment is R = $604,387UBP Quantity    (22 percent of original bid price). 

TABLE 4.13 Parameters for an HMAC bid 

T  L  
Qn   

(C.Y.) 
N  oilFS  

($/bbl) 

12/07/04  Lubbock (d15) 129,083 4 2.11 
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The estimated risk premium indicates that the effect of crude oil price on the unit 

price of HMAC (which is directly related to asphalt price) is more significant than the 

effect on the unit bid price of excavation or flexible base. Thus, an escalation clause of 

this control item should be considered to assess the benefits of taking on the future risk 

while getting a lower risk premium for the bids (it is noted that the adjustment clause 

should be for asphalt price if the asphalt prices are available and show to be the most 

correlated risk factor with the unit bid price of HMAC). 

 

4.2.3.5 Item 5 - Regular beams 

 The model specification for this control item is shown in Equation 4.7 and Table 

4.14. All the variables are statistically significant and of the correct expected signs (See 

the regression output 5 from statistical software R – Item 5 regular beams in Appendix 

C.). The result of regression analysis shows that the data supports the claim that 

expected change (the observation of change in current and previous period) and 

historical volatility of steel prices affect the unit prices of regular beams for contracts 

without escalation clauses. The model indicates that every 1 percent increase in duration-

based historical volatility and the expected change in steel price, will result in (on 

average) a 0.114 percent and 9.8 percent increase in unit bid prices of regular beams, 

respectively. 
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TABLE 4.14   Model estimation value - regular beams 

Parameter Estimated parameter 

value for excavation 

Parameter Estimated parameter 

value for excavation 

0  83.346 4  1.103 

1  0.114 5( 2)d  1.188 

2  -0.1 6 ( 15)d  1.465 

3  -0.126 6 ( 24)d  1.168 

 Considering the model estimation in Table 4.14 and an example contract 

structure of regular beams item let in 2004 in Lubbock (Texas) as shown in Table 4.15, 

the total risk premium without adjustment clauses can be estimated using Equation 4.7. 

RUBP , the regressed unit bid price given input values of duration-based historical 

volatility VD  and expected change of steel price steelFS , is 64.66 ($/LF); 0UBP , the 

regressed unit bid price given 0.0005 0V    and 0steelFS  , is 32.98 ($/LF). Thus the 

risk premium in unit bid price accounting for the expected change of steel price is 

UBP = 0RUBP UBP =31.68  $/LF  and then the total risk premium without adjustment 

clause is R = $780611UBP Quantity    (30.2 percent of original bid price). 

 

TABLE 4.15 Parameters for a regular beams bid 

T  L  
V  D  

(day) 
Qn   

(L.F.) 
N  steelFS  

($/cwt) 

12/07/04 Lubbock (d15) 0.1095 680 24,642 4 0.6 

 

 The risk premium due to fluctuating steel price without escalation clause is 

estimated as 30.2 percent of the unit bid price. Thus, an adjustment clause concerning 
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steel price must be considered to assess the benefits of taking on the future risk while 

getting a lower risk premium for the bids. 

4.2.3.6 Item 6 - Continued reinforced concrete pavement (CRCP) 

 The model specification for this control item is shown in Equation 4.8 and Table 

4.16. All the variables are statistically significant and of the expected signs (See the 

regression output 6 from statistical software R – Item 6 CRCP in Appendix C.). The 

result of regression analysis shows that the data supports the claim that expected change 

(the observation of change in current and previous period) and historical volatility of 

cement prices affect the unit prices of continuous reinforced concrete pavement for 

contracts without adjustment clauses. The model indicates that every 1 percent increase 

in the expected change in cement price, will result in (on average) a 14.8 percent 

increase in unit bid prices of the control item. 
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TABLE 4.16 Model estimation value - CRCP 

Parameter Estimated parameter 

value for excavation 

Parameter Estimated parameter 

value for excavation 

0  388.775 
6 ( 10)d  0.89 

1  -0.057 
7 ( 11)d  0.812 

2  -0.135 
8( 12)d  0.856 

3  -0.098 
9 ( 13)d  0.687 

4  
1.16 

10( 19)d  0.769 

5( 5)d  0.832   
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Considering the model estimation in Table 4.16 and an example contract 

structure of CRCP item let in 2004 in Lubbock (Texas) as shown in Table 4.17, the total 

risk premium without adjustment clauses can be estimated using Equation 4.8. RUBP , 

the regressed unit bid price given input values of expected change of cement price 

cementFS , is 62.53 ($/CY); 0UBP , the regressed unit bid price given 0cementFS  , is 

51.18 ($/CY). Thus the risk premium in unit bid price accounting for expected change of 

cement price is UBP = 0RUBP UBP = 11.35  $/CY  and then total risk premium 

without any adjustment is R = $881523UBP Quantity    (10.5 percent of original bid 

price). 

 

TABLE 4.17 Parameters for a CRCP bid 

T  L  D   
(Day) 

Qn   
(C.Y.) 

N  cementFS  
($/ton) 

12/07/04 Lubbock (d15) 680 77,641 4 1.35 

 

As observed from the correlation coefficient matrix and the regression output, the 

cement prices can play an important role in determining the risk premium of continuous 

reinforced concrete pavement. It is also noted that the positive correlation coefficients 

between the unit bid price and steel price and the oil price indicate that a part of the risk 

premium can be affected by the fluctuating steel and oil prices. Thus, an escalation 

clause can be considered to assess the benefits of taking on the future risk while getting a 

lower risk premium for the bids. 
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4.2.3.7 Item 7 - Retaining wall 

 The regression model for item 7 - retaining wall is shown in Appendix C. All the 

variables are statistically significant and of the expected signs, except the expected 

change of cement price ( cementFS ) which is not significant. 

 The regression output shows that the expected change of cement price does not 

significantly affect the unit bid price of retaining walls. This result may be due to issues 

including the following: 1) the missing important explanatory variables that have not 

been included in the model; 2) the interactions among the explanatory variables. For 

example, the effect of the change in cement price on unit bid price of retaining walls is 

overwhelmed by the duration-based volatility of cement price, where the expected 

changes and the volatilities are often related; or 3) bidding strategies, such as, 

unbalancing bids which consider retaining walls as the small item. According to the 

TxDOT bidding data, retaining walls item is also not always included in a project. This 

control item is not considered in the following analysis. 

 

4.3 Escalation Clause and Trigger Barrier 

As previously discussed, price adjustment clauses can be viewed as an approach 

to manage the cost risk where trigger barriers specify the amount of future risk agencies 

are willing to take. This is in accordance with the result of a survey performed by a 

subcommittee of AASHTO in the fall of 2009 (AASHTO, 2009), where the 

specifications of price adjustments vary for different materials (fuel, asphalt cement, 

steel, Portland cement, and others), and trigger values. 
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 This dissertation considers the contract with an escalation clause triggered by a 

priori defined barrier level. For example, an escalation clause can be triggered by an 

increase in commodity prices of 5 percent. Even when transportation agencies utilize 

price adjustments, the trigger levels are only arbitrarily defined and are not considered 

from the risk analysis perspective. For example, the Washington State Department of 

Transportation (WSDOT) applies the same trigger value of 10 percent for fuel cost 

adjustments as long as the projects meet certain requirements (e.g., projects longer than 

200 working days) (AASHTO, 2009). Developing a model that can be used to determine 

the optimal level of escalation triggers given agencies‘ risk preferences is one of the 

objectives of this dissertation.  

 

4.4 Risk Premium as Function to Barrier Levels 

 Trigger barriers affect both the risk premiums included in the initial estimate bids 

and the possible future losses to the agency. Figure 4.1 shows this phenomenon. By 

simulating commodity prices for a predetermined level of barrier, one can identify how 

losses and risk premiums are affected by the barrier levels. Contractors build-in the risk 

premiums by measuring the exposure (i.e., potential losses). As shown in Figure 4.1, the 

potential loss to the contractor is the largest if escalation clause is not allowed, which 

causes the contractor to include the 100% risk premium (point A) estimated in this 

Section; the potential losses will be zero if the trigger barrier of the escalation clause is 

0%, which means that there is no need for the contractor to add any risk premium in the 
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bids (point B). Hence the relationship between the risk premium and the trigger barrier 

for other than extreme conditions (i.e. B = 0 or B = 100%) needs to be investigated. 

 

 

 

 

 

 

 

 

Figure 4.1 Risk premiums and barrier levels 

The relationship between the average losses and barrier levels from a simulation 

study is shown in Figure 4.2. The barrier level for prices of crude oil was varied between 

0 and 1. The losses were simulated using sample size of 100,000 paths. The result shows 

that the average losses decrease smoothly as the barrier level increases. In addition, the 

losses are not too sensitive at boundaries. This can be concluded from the slope of the 

losses vs. barriers. It can be seen that the barrier<0.2 or barrier>0.8 is less steep than the 

slop for 0.2<barrier<0.8.  
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Figure 4.2 The relationship between average loss and barrier level 

 

Based on the observation from Figure 4.2, the risk premium is assumed to be 

linearly proportional to the total risk premium, where the proportion is set by the barrier 

level. That is, Risk Premium barrier×Total Risk Premium , where 0 barrier 1  . The 

higher barrier level, the less average losses the owner would take. From the perspective 

of the contractor, the higher the barrier level, the higher the risk premium it should 

include in the bid, and vice versa. This relationship between the risk premium and the 

barrier level is shown in Figure 4.3.  
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Figure 4.3 The assumed relationship between risk premiums and barrier levels 

 

 The risk premium estimated for the models in this Section considers no 

adjustment clause. This is equivalent to setting the barrier level to positive infinity. 

However, volatile commodity prices would not increase to positive infinity. It is 

reasonable to expect that the barrier captures market conditions if it ranges from 0 

percent to 100 percent, where the barrier of a 100 percent reflects a 100 increase from 

the initial price of a commodity.  

 

4.5 Summary 

This section describes how commodity prices impact the unit bid prices. Cement, 

steel and oil prices are selected to be the key risk factors for typical highway 

construction bid items. The first subsection explains the motivation for selecting the 

seven bid items and a process for identifying the most significant risk factor for each bid 

item. The second subsection presents the developed regression models, the steps for 
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building models and validating them, and the discussion about the estimation results. 

The last two subsections propose how to determine risk premiums for different barrier 

levels in contracts that allow for escalation. All of these risk premiums estimated for 

each control item are considered as the input parameters for optimization problems. The 

optimization problems are also based on the commodity prices, which are modeled in the 

next section. 
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5. UNIVARIATE AND VECTOR TIME SERIES MODELS 

 

 This section introduces two types of models that represent movements in 

commodity prices - autoregressive integrated moving average (ARIMA) model and 

vector autoregressive moving average (VARMA) model. In the first subsection, ARIMA 

model is presented and estimated using available data sets; in the second subsection, the 

correlation between the prices of commodities that are considered are presented; then, in 

the third subsection, VARMA model is developed and discussed. 

 Time series modeling of commodity prices has been a widely-used modeling 

approach in the econometric field (Myers, 1994; Contreras, 2003; Tuan, 2010). The 

series data have a natural temporal ordering. A time series model makes use of this 

natural ordering of time so that predicted values can be expressed in terms of their past 

levels. Time series models can capture all the features of commodity price series, such 

as, high volatilities, stochastic trends, and co-movements in commodity price series 

(Myers, 1994). Thus, time series models discussed in this section aim at capturing 

stochastic trends in prices of commodities (i.e., oil, steel and cement). 

 

5.1 ARIMA Model 

ARIMA models are typically used to predict values in univariate time series as a 

linear combination of their past values, past errors, and the current and past values of 

other time series (SAS Institute Inc., 2010). The model structure with more details is 

explained next. 
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The general idea behind ARIMA models is the synthesis of forecasting functions 

on the basis of discounted past observations. Consider an ARIMA (p, d, q) where (1) p 

indicates the order of the autoregressive (AR) part (AR part of the model indicates that 

the future values are weighted averages of the current and past series); (2) d indicates the 

amount of differencing; and (3) q indicates the order of the moving average (MA) part 

(MA represents the lagged forecast error part, which shows how current and past random 

shocks will affect the future values of series) where the difference linear operator is 

defined as 1t t tY Y Y     (Clements and Hendry, 2008). Autoregressive Moving Average 

Model - ARMA (p, q) - has the general form: 

 0 1 1 2 2 1 1 2 2t t t p t p t t t q t qY Y Y Y                          (5.1) 

where tY  = response variable at time t; 1 2, , ,t t t pY Y Y    = response variable at time lags 

-1, - 2, , -t t t p , respectively; t = error term at time t; 1 2, , ,t t t q     = errors in 

previous time periods that are incorporated in the response tY . (Nochai and Nochai, 

2006)  

 The ARIMA model is particularly useful when little knowledge is available on 

the underlying data generating process, or when there is no satisfactory explanatory 

model that relates the prediction variable to other explanatory variables (Zhang, 2003). 

The advantage of the ARIMA model is that it easily allows to add terms to random walk 

model to correct the model for autocorrelation in the residuals, if it is necessary, such as, 

adding lags of the differenced series and/or lags of the forecast errors to the prediction 

equation (random walk model predicts the first difference of the series to be constant). 
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 Although ARIMA models are quite flexible at representing different types of 

time series (i.e., AR, MA, ARMA), the major limitation lies in the pre-assumed linear 

form of the model. That is, a linear correlation structure is assumed among the time 

series values and therefore no nonlinear patterns can be captured by the ARIMA model. 

The approximation of linear models to complex real-world problem is not always 

satisfactory (Zhang, 2003). 

 

5.1.1 Steps for building ARIMA model 

Building an ARIMA model consists of two iterative steps: 1) model 

identification, and 2) model estimation and diagnostic check (Montgomery et al., 1998; 

SAS Institute Inc., 2010) 

Step 1: Model identification 

The first step of developing ARIMA is to identify the model structure. In this 

step, one needs to specify the response series and identify the candidate models. To 

determine whether the series is stationary, the sample autocorrelation function plot 

(ACF) should be considered. ACF measures how strongly time series lags are correlated 

with each other. If the series is not stationary, it can often be converted to a stationary 

series by differencing, that is, the original series is replaced by a series of differences. 

An ARMA model is then specified for the differenced series. 

Step 2: Model estimation and model diagnostic check 

The next step is to estimate the parameters for a tentative model. One needs to 

check for the model adequacy by considering the properties of residuals. The residuals 
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from an ARIMA model should be normally distributed and random. To check the 

residuals, one can use a number of tests including the following two: 

a) Tests for white noise residuals that indicate whether the residual series 

contains additional information that might be used by a more complex model; and 

b) Plots of ACF and partial autocorrelation function (PACF) of the residuals that 

show if the residuals are truly random. 

 

5.1.2 Model identification, estimation and diagnostic check 

5.1.2.1 Cement price model 

Step 1: Model identification 

Figure 5.1 contains a time series of historical cement prices. The cement price 

shows gradually increasing trend during 1997-2004, followed by a sharp increase during 

2004-2007. There are a number of studies investigating the factors that might have 

caused such phenomenon (ABARE, 2005; FHWA, 2007). 
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Figure 5.1 Historical cement price 

 

A panel of autocorrelation function plots is used for the series‘ autocorrelation 

and trend analysis. The panel in Figure 5.2 contains: (1) the time series plot of the series; 

(2) the sample autocorrelation function plot (ACF); (3) the sample partial autocorrelation 

function plot (PACF); and (4) the sample inverse autocorrelation function plot (IACF).  
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Figure 5.2 Correlation analysis of cement price 

 

These autocorrelation function plots show the degree of correlation with the past values 

of the series as a function of the number of periods in the past (that is, the lag) at which 

the correlation is computed. By examining the plots, the series can be checked whether it 

is stationary or nonstationary. First, the ACF plot, shows the autocorrelation between a 

time series and lags of itself. Second, the PACF plot, shows the partial autocorrelation 

between the series and lags of itself. The PACF may intuitively be thought of as the 

sample autocorrelation of time series with the effects of the intervening observations 

eliminated. This is because a partial autocorrelation is the amount of correlation between 

a variable and a lag of itself that is not explained by correlations at all lower-order-lags, 

that is, the correlation between observations tY  and t pY   after removing the linear 
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relationship of all observations between tY  and t pY  . Third, the IACF plot, is useful for 

detecting over-differencing. If the data have been over-differenced, the IACF looks like 

ACF from a nonstationary process (SAS Institute Inc., 2010). The correct amount of 

differencing is the lowest order of differencing that yields a time series which fluctuates 

around a well-defined mean value and whose ACF plot decrease fairly rapidly to zero. 

However, if the series is ―over-differenced‖ by an unnecessary higher order, then over-

differencing may introduce unnecessary correlations into the model and cause the loss of 

information.   

The ACF plot in Figure 5.2 indicates that the cement price series is nonstationary 

since the ACF decreases very slowly. The autocorrelations are significant for a large 

number of lags. However, the autocorrelations at lags 2 and for higher lags may be due 

to the propagation of the autocorrelation at lag 1. This is confirmed by the PACF plot in 

Figure 5.2. Note that the PACF plot has a significant spike only at lag 1, meaning that all 

the higher-order autocorrelations are effectively explained by the lag-1 autocorrelation. 

Before estimation, the cement price series should be transformed to a stationary 

series. This can be done by taking the difference of the series from one period to the next 

and then analyzing the differenced series. The residual series for an ARMA model must 

be stationary which means both the expected values of the series and the autocovariance 

functions are independent of time.  

The next step in identification stage is the check for the white noise. This is an 

approximate statistical test of the hypothesis that none of the autocorrelations in the 

series, up to a given lag, are significantly different from zero. If this is true for all lags, 
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then there is no information in the series to model, and no ARIMA model is needed. In 

other words, if the series is white noise, then it is a purely random process (SAS Institute 

Inc., 2010).  

The 2  test statistics for the residuals series in Table 5.1 indicate that the 

residuals are not uncorrelated (white noise). The autocorrelations are checked in groups 

of six. Table 5.1 shows that the white noise (no-autocorrelation) hypothesis is rejected at 

a high level of significance (the p-values are all less than 0.0001). This means that the 

series is nonstationary and it needs to be transformed to a stationary series by 

differencing.  

 

Table 5.1 IDENTIFY statement check for white noise - cement price 

Autocorrelation check for white noise 

Lag Chi- 

Square 

DF Pr> 

ChiSq 
Autocorrelations 

1-6 553.16 6 <.0001 0.956 0.912 0.870 0.833 0.797 0.760 

7-12 865.84 12 <.0001 0.720 0.677 0.638 0.603 0.572 0.540 

13-18 1024.77 18 <.0001 0.508 0.475 0.443 0.416 0.388 0.366 

19-24 1102.71 24 <.0001 0.346 0.324 0.303 0.284 0.264 0.244 

 

Since the series is nonstationary, the next step is to transform it to a stationary 

series by differencing. That is, instead of modeling the cement price series itself, the 

change in the cement price is modeled from one period to the next. If the period of 

differencing is set as 1, the autocorrelation plots for the differenced series are shown in 

Figure 5.3. 
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Figure 5.3 Correlation analysis of the change in cement price 

 

The autocorrelation shown in Figure 5.3 decreases rapidly which indicates that 

the change in the cement price is now a stationary time series. The test for the white 

noise, shown in Table 5.2, indicates that the change in cement price is not autocorrelated 

(since the null hypothesis of no autocorrelation could not be rejected according to the p-

values in Table 5.2). Thus, a random walk with a drift (ARIMA[0,1,0]) model is a good 

candidate model to fit to the series. The model has also been confirmed to be the best 

model by both the tentative order selection (The ARIMA procedure in SAS has 

diagnostic options to help tentatively identfy the orders of ARIMA processes) and the 

time series forecasting system in SAS (The Time Series Forecasting System provides a 

variety of tools for identifying potential forecasting models and for choosing the best 
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fitting model, such as, the Series Viewer and Model Viewer). The order identification 

diagnostics in Table D-1 [Appendix D] gives the recommendations that an ARIMA 

(0,1,0) would be the best choice for a tentative model for cement price series based on 

5% significance level. 

Table 5.2 IDENTIFY statement check for white noise – differenced cement price 

Autocorrelation check for white noise 

Period(s) of differencing=1 

Lag Chi- 

Square 

DF Pr> 

ChiSq 
Autocorrelations 

1-6 10.77 6 0.0957 0.156 0.068 -0.094 0.021 0.048 0.213 

7-12 20.90 12 0.0518 0.152 0.109 -0.022 0.008 0.108 0.172 

13-18 26.05 18 0.0986 0.108 0.118  0.033 0.081 0.055 0.031 

19-24 29.94 24 0.1868 -0.076 -0.031 -0.009 0.054 0.001 0.128 

 

 

Step 2: Model estimation and model diagnostic check 

A random walk with the drift model is considered to predict the change in 

cement prices as an average change over one time period plus a random error. Table 5.3 

shows the parameter estimates for this model specification. The mean term is labeled 

―MU‖; and its estimated value is 0.17882. 

 

Table 5.3 Estimated model for cement price 

Conditional least squares estimation (Period(s) of differencing=1) 

Parameter Estimate Standard 

error 

T value Approx 

Pr > |t| 

MU 0.17882 0.03177 5.63 <.0001 

 



 79 

 The diagnostic check of residual is shown in Figure D-1 and Figure D-2 in 

Appendix D. The residual and white noise test plots show that the hypothesis - the 

residuals are uncorrelated- cannot be rejected. As discussed before, even though the 

normality plot has a slight departure from normality, the model is still confirmed to be 

the best model by both the tentative order selection and the time series forecasting 

system in SAS. Thus, the model for cement price is identified as a ―random walk with 

drift – ARIMA (0,1,0)‖. This model is specified as: 

 10.17882t t tY Y     (5.2) 

 

5.1.2.2 Steel price 

Step 1: Model identification 

Figure 5.4 shows a time series of historical steel prices. Steel prices were highly 

volatile during 1997-2004, followed by a price spike from 2004 to 2007. The factors for 

the price increase include increase in material costs, a weak U.S. dollar, strong global 

demand, higher energy cost, the global consolidation of the steel industry, and others 

(ABARE, 2005; FHWA, 2007). 
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Figure 5.4 Historical steel price 

 

Figure 5.5 shows the correlation analysis panel with time series plot of the series, 

the sample autocorrelation function plot (ACF) and the sample partial autocorrelation 

function plot (PACF). The ACF plot indicates that the steel price series is nonstationary 

since the ACF decreases very slowly. 
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Figure 5.5  Correlation analysis of steel price 

 

Table 5.4 shows that the white noise hypothesis is rejected with p-value less than 

0.0001. Since the series is non-stationary, it needs to be transformed to a stationary one 

by differencing. If the period of differencing is set as 1, one can obtain the 

autocorrelation plots for the differenced series as shown in Figure 5.6. 

Table 5.4 IDENTIFY statement check for white noise - steel price 

Autocorrelation check for white noise 

Lag Chi- 

Square 

DF Pr> 

ChiSq 
Autocorrelations 

1-6 545.33 6 <.0001 0.960 0.912 0.867 0.825 0.783 0.742 

7-12 831.93 12 <.0001 0.703 0.664 0.622 0.579 0.531 0.482 

13-18 934.28 18 <.0001 0.433 0.391 0.355 0.326 0.299 0.268 

19-24 955.20 24 <.0001 0.233 0.195 0.156 0.123 0.088 0.053 
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Figure 5.6 Correlation analysis of the change in steel price 

 

The autocorrelation shown in Figure 5.6 decreases rapidly but PACF plot still 

indicates autoregression of lag 1. The check for white noise as shown in Table 5.5 

indicates that the change in steel price might be slightly autocorrelated (p-value for the 

first six lags is 0.0607). The autocorrelations in Table 5.5 are corresponding to the lags 

shown in the first column of the table. For example, the autocorrealtions for lag 1, lag 2, 

lag 3, lag 4, lag 5, lag 6, are 0.261, 0.113, 0.050, 0.112, -0.041 and 0.028, respectively. 

Furthermore, the result from automatic best model selection process suggests the AR(1) 

model. The model has also been confirmed to be the most suited model by both the 

tentative order selection and the time series forecasting system in SAS. For example, 

after the series is differenced, the order identification diagnostics in Table D-2 
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[Appendix D] gives the recommendations that an ARIMA (1,1,0) would be a good 

choice for a tentative model for steel price series based on 5% significance level. 

 

Table 5.5 IDENTIFY statement check for white noise – differenced steel price 

Autocorrelation check for white noise 

Period(s) of differencing = 1 

Lag Chi- 

Square 

DF Pr> 

ChiSq 
Autocorrelations 

1-6 12.06 6 0.0607 0.261 0.113 0.050 0.112 -0.041 0.028 

7-12 19.12 12 0.0857 0.095 0.091 0.132 0.121 0.064 0.025 

13-18 20.41 18 0.3102 -0.007 0.003 -0.057 -0.035 0.011 0.067 

19-24 35.88 24 0.0564 0.216 0.149 0.064 0.015 -0.070 -0.166 

 

Step 2: Model estimation and model diagnostic check 

An AR(1) model predicts the change in steel prices as an average change of one 

time period, plus some fraction of the previous change, plus a random error. Table 5.6 

shows the parameter estimates and the goodness-of-fit statistics for this model. The 

mean term is labeled MU; and its estimated value is 0.1087. The autoregressive 

parameter is labeled ―AR1,1‖; this is the coefficient of the lagged value of the change in 

steel price, and its estimate is 0.26583. 
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Table 5.6 Final parameter estimates for AR(1) model - steel price 

Conditional least squares estimation 

Parameter Estimate Standard 

Error 

T 

value 

Approx 

Pr > |t| 

Lag 

MU 0.10870 0.05813 1.87 0.0640 0 

AR1,1 0.26583 0.09005 2.95 0.0038 1 

Correlations of parameter estimates 

Parameter MU AR1,1 

MU 1.000 -0.018 

AR1,1 -0.018 1.000 

 

Autocorrelation check of residuals 

Lag Chi- 

Square 

DF Pr> 

ChiSq 

Autocorrelations 

1-6 3.20 5 0.6697 -0.011 0.036 -0.012 0.127 -0.088 0.014 

7-12 6.31 11 0.8518 0.073 0.041 0.090 0.086 0.033 0.014 

13-18 7.10 17 0.9822 -0.022 0.014 -0.062 -0.030 0.007 0.017 

19-24 18.06 23 0.7543 0.188 0.091 0.018 0.020 -0.037 -0.170 

 

In Table 5.6, the autocorrelation check of residuals shows that the test statistics 

does not reject the no-autocorrelation hypothesis (because the p-values are large). This 

implies that the residuals are the white noise, and so the AR(1) model is an adequate 

model representation. There is no need to further develop more complex models as the 

benefits are minimal. A more visual diagnostic check of the residuals is shown in Figure 

D-3 and Figure D-4 [Appendix D].  

Thus, the model identified for steel price is a ―differenced first-order 

autoregressive model - IAR (1,1)‖ with the model equation stated below: 

 1 1 20.1087 0.26583( )t t t t tY Y Y Y         (5.3) 
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which is equivalent to:  

 1 20.1087 1.26583 0.26583t t t tY Y Y       (5.4) 

 

5.1.2.3 Crude oil price 

Step 1: Model identification 

Figure 5.7 shows a time series of historical oil prices. Global oil price has been 

rising rapidly. Increased global consumption of fuels as well as limited crude oil 

production, and speculative demand has all contributed to this increase in oil price 

(ABARE, 2005; Xie et al., 2006; FHWA, 2007).  

 

 

Figure 5.7 Historical oil price 
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Figure 5.8 shows the correlation analysis panel with time series plot of the series, 

the sample autocorrelation function plot (ACF) and the sample partial autocorrelation 

function plot (PACF). The ACF plot indicates that the oil price series is nonstationary 

since the ACF decreases very slowly. 

 

 

Figure 5.8 Correlation analysis of oil price 

 

Table 5.7 shows that the white noise hypothesis is rejected as the p-value is less 

than 0.0001. Since the series is nonstationary, it needs to be transformed into a stationary 

one by differencing. If the period of differencing is set as 1, the autocorrelation plots for 

the differenced series are shown in Figure 5.9. 
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Table 5.7 IDENTIFY statement check for white noise - oil price 

Autocorrelation check for white noise 

Lag Chi- 

Square 

DF Pr> 

ChiSq 
Autocorrelations 

1-6 599.96 6 <.0001 0.967 0.936 0.912 0.883 0.845 0.803 

7-12 963.17 12 <.0001 0.765 0.726 0.688 0.660 0.625 0.581 

13-18 1131.87 18 <.0001 0.538 0.502 0.466 0.425 0.385 0.349 

19-24 1187.71 24 <.0001 0.317 0.292 0.262 0.230 0.200 0.176 

 

 

Figure 5.9 Correlation analysis of the change in oil price 

 

Afer differencing, the autocorrelations shown in Figure 5.9 decrease rapidly. In 

addition, the check for white noise (Table 5.8) show low level of significance for lags. 

The results of estimates for ―first-differenced‖ model I(1) is shown in Table 5.9. 
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Table 5.8 IDENTIFY statement check for white noise – differenced oil price 

Autocorrelation check for white noise 

(Period(s) of differencing=1) 

Lag Chi- 

Square 

DF Pr> 

ChiSq 
Autocorrelations 

1-6 8.29 6 0.2174 0.022 -0.206 0.006 -0.090 0.123 -0.025 

7-12 22.89 12 0.0287 0.005 -0.060 -0.078 0.252 0.162 0.105 

13-18 29.61 18 0.0415 -0.163 -0.131 0.001 -0.049 0.022 -0.050 

19-24 35.29 24 0.0643 -0.041 0.042 0.019 0.109 -0.141 -0.051 

 

Table 5.9 Estimated I(1) model for oil price 

Conditional least squares estimation 

Parameter Estimate Standard 

error 

T value Approx 

Pr > |t| 

MU 0.32714 0.27405 1.19 0.2350 

 

However, the IDENTIFY statement plots in Figure 5.8 suggest a mixed 

autoregressive and moving-average model, which adds both an autoregressive term and 

a moving-average term to the I(1) model. This model has also been confirmed to be the 

best model by both the tentative order selection and the time series forecasting system in 

SAS. For example, after the series is differenced, the order identification diagnostics in 

Table D-3 (Appendix D) recommends that the ARIMA(1,1,1) as the best choice for a 

tentative model for oil price series based on 5% significance level. Thus ARMA(1,1) 

model for the change in oil price is estimated next.  
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Step 2: Model estimation and model diagnostic check 

The ARIMA(1,1,1) model predicts the change in oil price as an average change, 

plus some fraction of the previous change, and plus a random error, and plus some 

fraction of the random error in the preceding period. Table 5.10 shows the parameter 

estimates and the goodness-of-fit statistics. The mean term is labeled MU; and its 

estimated value is 0.3257. The autoregressive parameter is labeled "AR1,1"; this is the 

coefficient of the lagged value of the change in oil price and its estimate is -0.63244. The 

moving-average parameter estimate, labeled ―MA1,1‖, is ―-0.80513‖. Both the moving-

average and the autoregressive parameters have significant t values.  

 

Table 5.10 Final parameter estimates for ARIMA (1,1,1) model 

Conditional least squares estimation 

Parameter Estimate Standard 

error 

T 

value 

Approx 

Pr > |t| 

Lag 

MU 0.32570 0.29829 1.09 0.2772 0 

MA1,1 -0.80513 0.16142 -4.99 <.0001 1 

AR1,1 -0.63244 0.20901 -3.03 0.0031 1 

Correlations of parameter estimates 

Parameter MA1,1 AR1,1 

MU 0.001 0.002 

MA1,1 1.000 0.938 

Autocorrelation check of residuals 

Lag Chi- 

Square 

DF Pr> 

ChiSq 

Autocorrelations 

1-6 4.91 4 0.2966 -0.092 -0.115 -0.027 -0.073 0.108 -0.015 

7-12 19.86 10 0.0306 -0.013 -0.021 -0.109 0.269 0.086 0.143 
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Table 5.10 Continued 

Autocorrelation check of residuals 

Lag Chi- 

Square 

DF Pr> 

ChiSq 

Autocorrelations 

13-18 25.77 16 0.0573 -0.183 -0.088 -0.016 -0.031 0.012 -0.028 

19-24 34.13 22 0.0477 -0.057 0.066 -0.023 0.144 -0.165 -0.011 

 

In Table 5.10, the autocorrelation check of residuals shows that the test statistics 

does not reject the no-autocorrelation hypothesis. This means the residuals are white 

noise, and so the ARIMA(1,1,1) model is an adequate model. The visual diagnostic 

check of residual is shown in Figure D-5 and Figure D-6 [Appendix D]. The residual and 

white noise test plots show that one cannot reject the hypothesis that the residuals are 

uncorrelated. The normality plots also show no departure from normality. The t values 

provide significance tests for the parameter estimates and indicate whether some terms 

in the model might be unnecessary. In this case, the t value for the AR and MA 

parameters are highly significant, but the t value for MU indicates that the mean term 

adds little to the model. 

Thus, it is concluded that the ARIMA(1,1,1) model is adequate model 

representation for changes in crude oil price. Thus, the model identified for oil price is a 

―A 'mixed' model - ARIMA (1,1,1)‖ with the model equation shown below: 

 1 1 2 10.3257 0.63244( ) 0.80513t t t t t tY Y Y Y            (5.5) 

Which is equivalent to: 

 1 2 10.3257 0.36756 0.63244 0.80513t t t t tY Y Y          (5.6) 
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5.2 Correlations between Commodity Prices 

Commodity prices are often correlated. For example, sharp oil price movements 

are likely to disturb aggregate economic activity including the supply/demand 

relationship for other commodities (Xie et al., 2006). For example, energy represents 

about 50 percent of the production costs of cement, so any increase in the energy cost 

will affect the cement manufacturing. (The significant increase in fuel costs had 

increased not only the manufacturing price but also the cost of distribution [McGoldrick, 

2006])  Also, steel production is energy intensive. The correlations between commodity 

prices can be supported by Table 5.11.  

Table 5.11 shows the Pearson correlation and partial correlation, with p-values 

under the null hypothesis of zero correlation between prices of commodities. Pearson‘s 

correlation coefficient between the two variables is defined as the covariance of the two 

variables divided by the product of their standard deviations, while partial correlation 

measures the degree of association between two variables with the effect of a set of 

controlling variables removed, that is, the amount of correlation between two variables 

which is not explained by their mutual correlations with a specified set of other 

variables. 

All the correlation coefficients show a strong positive and significant 

relationship. As one commodity price increases, the prices of the other two increase as 

well. For example, the coefficients of correlation and partial correlation between the 

prices of crude oil and steel is 0.87 and 0.77, respectively. 

 



 92 

Table 5.11 Pearson correlation coefficients and partial correlation coefficients 

Pearson correlation coefficients (N=120) 

 Steel Oil 

Cement 0.82706 

(<.0001) 

0.91995 

(<.0001) 

Steel 1.00000 0.87206 

(<.0001) 

Pearson partial correlation coefficients (N=120) 

 Steel Oil 

Cement 0.75762 

(<.0001) 

0.61542 

(<.0001) 

Steel 1.00000 0.76641 

(<.0001) 
 

 

In a univariate model (such as, ARIMA), estimation is conducted individually for 

each commodity price. In other words, the effect of correlation among the commodity 

prices as shown in Table 5.11 is ignored. Multivariate model (such as, VARMA), where 

a single model is fitted using historical time series of all commodities, is needed to 

account for the significant effect of correlation. The multivariate model incorporates all 

information, and estimates the dynamic interactions among multiple time series of 

commodity prices (Kamarianakis and Prastacos, 2003). For example, the risk can be 

significantly underestimated, if the prices of commodities show dependence on each 

other. Variance increases rapidly as the correlation among the risk factor (i.e., 

commodity price) increases. 
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5.3 VARMA Model 

As the previous subsection shows, the effect of correlations could not be ignored 

when developing forecasting models. As reported in literature, many commodity prices 

share a tendency to move together over time, or are expected to move together in the 

long run to equilibrium (Myers, 1994; Ghosh et al., 1999; Tuan, 2010). The co-

movement can be due to (1) supply and demand shocks to any commodity that spill over 

into other related commodities causing a group of commodity prices to move together; 

(2) common macroeconomic shocks; and (3) market speculation and overreaction that 

cause spillovers between commodity markets (Myers, 1994). In the case where variables 

are related to each other, vector time series models are better representation than 

univariate model (e.g., ARIMA). 

 

5.3.1 Steps for building VARMA model 

This subsection provides the steps for building a VARMA model and discusses 

how the model considers the cross- and auto-correlations among and in the series. 

Step 1: Tentative order selection 

As in bulding an ARIMA model, the VARMA model selection procedure is 

based on diagnostics to help tentatively identfy the orders of a VARMA (p, q) process. 

Here, the minimum information criterion (MINIC) method is used (SAS Institute Inc., 

2010), and can suggest various associated AR and MA orders. 
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Step 2: Unit root and cointegration tests 

For situations where the stationarity of the time series is in question, the 

VARMAX procedure provides: a) Dickey-Fuller tests for the nonstationarity of each 

series to aid in determining the presence of unit roots, and b) Johansen cointegration test 

between series to aid in determining the presence of cointegration. If the stationarity 

condition is not satisfied, a differenced model or an error correction model might be 

more appropriate. 

To formalize the co-movement among the commodity prices, cointegration needs 

to consider both the short-term and long-run dynamics in a multivariate system (Tuan, 

2010). Even though individual variables may not be stationary, linear combination of 

them can be stationary when the variables are cointegrated. The long-term cointegrating 

vector implies that although short run prices vary, they would revert to their long-term 

equilibrium (Ardeni, 1989; Tuan, 2010).  

Step 3: Model estimation and model diagnostic check 

Based on the cointegration, the error correction model is then estimated to 

account for dynamic adjustments for long-run and short-run relationships among the 

series. Error-correcting allows long-run components of the variables to follow 

equilibrium constraints while the short-run components have a flexible dynamic 

specification (Engle and Granger, 1987). The error correction form of a cointegrated 

system has the advantage of separating the cointegration long-run or equilibrium 

relations from the short-term dynamics (Lutkepohl and Claessen, 1997).  
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 The model checks and residual analysis include F test for AR and ARCH 

disturbance, and normality tests. 

 

5.3.2 Model estimation and diagnostic check 

Step 1: Tentative order selection 

As previously mentioned, commodity prices co-vary. Figure 5.10 shows time 

series of historical cement, steel and oil prices from 1997 to 2006. Oil, steel and cement 

prices all increased sharply during the period from 2004 to 2006. Crude oil market 

experienced a surge in the price of crude oil from late 1998 to 2006. The price of cement 

tracks the growth in oil prices, as the production of cement is a highly fuel-intensive 

process (FHWA, 2007); in 2004, steel prices escalated and even exceeded the peak 

levels when the steel supply was tight. 

A VAR model with AR order 2 is suggested according to the result of tentative 

order selection, as well as the partial autoregression matrices, the partial cross-

correlation matrices, and the partial canonical correlations (see Figure E-1, Figure E-2, 

Figure E-3, Figure E-4 with explanations in Appendix E). 
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Figure 5.10 Plot of multiple time series 

 

Step 2: Unit root and cointegration tests 

Table 5.12 shows the output for Dickey-Fuller tests for the nonstationarity of 

each series based on the null hypothesis that there is a unit root for individual series (that 

is, series is non-stationary). In Dickey-Fuller tests, three types of models are specified. 

These are zero-mean, single-mean and trend models. In Table 5.12, ―Rho‖ and ―Tau‖ 

represent the test statistics for unit rooting testing with their corresponding p-values. The 

p-values display that all series have a unit root, that is, non-stationary could not be 

rejected.  
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Table 5.12 Unit root tests 

Dickey-Fuller unit root tests 

Variable Type Rho Pr < Rho Tau Pr < Tau 

Cement Zero Mean 0.26 0.7440 4.37 0.9999 

 Single Mean 1.76 0.9964 1.92 0.9998 

 Trend 1.75 0.9996 0.61 0.9995 

Steel Zero Mean 0.46 0.7946 1.92 0.9866 

 Single Mean 1.73 0.9962 0.93 0.9956 

 Trend -0.88 0.9890 -0.36 0.9878 

Oil Zero Mean 0.96 0.9040 1.00 0.9161 

 Single Mean -0.47 0.9283 -0.22 0.9315 

 Trend -9.96 0.4223 -2.37 0.3946 

 

The Johansen cointegration rank test in Table 5.13 shows that the series are 

integrated at order 1. The null hypothesis is that the number (rank) of cointegrating 

vectors is less than or equal to r against the alternative hypothesis. For example, the first 

row tests rank r = 0 against r > 0; the second row tests r = 1 against r > 1. The last two 

columns in Table 5.13 explain the cointegration rank test with integrated order 1. The 

results indicate that there is a cointegrated relationship with cointegration rank 1 at the 

5% significance level because the test statistic of 9.2489 is smaller than the critical value 

of 12.21. There is no evidence that the series are integrated order 2 at the 5% 

significance level (by looking at the row associated with r=1 and comparing the test 

statistic value and critical value pairs such as (81.58186, 12.21) and (5.81509, 4.14)). 

The cointegration relationship among the vector time series indicates that they are of 

long-run equilibrium. 
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Table 5.13 Cointegration rank test 

Cointegration rank test for I(2) 

r\k-r-s 3 2 1 Trace 

of I(1) 

5% CV of 

I(1) 

0 189.63469 101.66136 39.65366 42.0797 24.08 

1  81.58186 5.81509 9.2489 12.21 

2   3.21875 0.7712 4.14 

5% CV I(2) 24.08000 12.21000 4.14000   

 

Step 3: Model estimation and model diagnostic check 

Based on the observation that the time series are cointegrated with rank 1, a 

VECM(2) form is fitted to the data. Further explanations are provided in Appendix E: 

Figure E-5 shows the estimates of the long-run parameter and the adjustment coefficient; 

Figure E-6 shows the parameter estimates and their significance. 

The VECM(2) model fits the data well according to the diagnostic checks in 

Figure E-7 and Figure E-8. (Further statement and explanation are provided in Appendix 

E.) Table 5.14 provides the VAR(2) representation (the fitted series and forecast trend 

plots are shown in Figure E-9 [Appendix E]). 

Table 5.14 Infinite order AR representation 

Infinite order AR representation 

 

Lag Variable Cement Steel Oil 

1 Cement 1.02744 -0.02631 -0.00404 

 Steel 0.15799 1.23130 -0.02996 

 Oil 0.81295 0.94063 1.04051 

2 Cement -0.03876 0.06105 0.00700 

 Steel -0.16181 -0.21958 0.03096 

 Oil -0.81131 -0.94565 -0.04093 
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The VECM(2) form in Table 5.14 can be rewritten as the following second-order 

vector autoregressive model below. It explains the relationship between the commodity 

prices, and how they affect each other. For example, the cement price at time t  is 

determined by the sum of: (1) positive components: cement price at time lag 1t   and  

oil price at time 2t  ; (2) negative components: steel and oil price at time 1t  , and 

cement and steel price at time 2t  ; and (3) the error term. 

 

1 2

1.0274 0.0263 0.004 0.0388 0.0611 0.007

0.158 1.2313 0.03 0.1618 0.2196 0.031

0.813 0.9406 1.0405 0.8113 0.9457 0.0409
t

t t t

cement cement cement

steel steel steel

oil oil oil



 

   

     

  

       
       
       

 

(5.7) 

 

5.4 Summary 

 This section introduces two main time series models for simulating (forecasting) 

commodity prices. This simulation is used for determining the optimal level of trigger 

barrier in escalation contracts. In the first subsection, univariate time series model is 

discussed and estimated; in the second subsection, the strong positive correlations 

between commodity prices are identified and presented. This implies that the 

correlations of commodity prices could not be ignored when developing optimal risk 

hedging strategies. Finally, in the third subsection, vector time series model is developed 

to address the concerns about the effect of correlations. Next section formulates and 

presents the multi-objective optimization problem, along with the solution methods. 

 



 100 

6. MULTI-OBJECTIVE AND SINGLE-OBJECTIVE OPTIMIZATION 

 

 This section presents both a single-objective and a multi-objective optimization 

models that could assist highway agencies in developing optimal risk hedging strategies 

using escalation clauses with barriers. The principle difference between a single-

objective and multi-objective optimization is outlined in the first subsection. The 

formulation of optimization models is presented in the second subsection, followed by a 

discussion about the optimization solution methods, such as genetic algorithm, in the 

third subsection. 

 The optimal risk hedging problem considers two conflicting objectives, that is, 

pay now in the initial bid price that is inflated for the risk premium versus pay later in 

the risk exposure during construction. Barrier levels for commodity prices that are 

considered as decision variables, balance between these two objectives.  

 There are two general approaches to address this optimization problem. The first 

approach moves one of these two objectives to the constraint set, which needs to be pre-

established. This method can be rather arbitrary. In this case, an optimization method 

would return a single solution rather than a set of solutions that can be examined for 

trade-offs.  

 However, decision makers often prefer a set of good solutions that consider 

multiple objectives simultaneously. This is the second approach. For that, an entire 

Pareto optimal solution set is determined, where the solutions are nondominated with 

respect to each other. The Pareto optimal solution sets are often preferred to single 
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solutions since the final solution left to the decision-maker is to make the tradeoff 

(Konak et al., 2006). Thus, the optimization problem in this study can be approached in 

the following two ways: (1) Minimize risk premium by tolerating potential future losses; 

or (2) Minimize both the risk premium and the future exposure loss, and conduct 

tradeoff afterwards. The former is known as a single-objective optimization problem 

with loss constraints, while the latter is known as a multi-objective optimization 

problem.  

 

6.1 Single-Objective and Multi-Objective Optimization 

 The fundamental difference between single-objective and multi-objective 

optimization problems is that the solution in single-objective optimization is the single 

optimum solution, whereas in multi-objective optimization, a number of optimal 

solutions arise because of the trade-offs between the conflicting objectives (Deb, 2001).  

 Single-objective optimization in this study is considered as a degenerate case of 

the multi-objective formulation (Deb, 2001). From the author‘s perspective, this is not 

only because its outcome has just one decision solution, but also due to the subjective 

nature of the constraint before the search algorithm is initiated. Consider a single-

objective optimization case - ―minimize risk premium by tolerating potential future 

losses‖. The upper bound on the tolerance level of risk exposure (e.g., the maximum loss 

that the agency would like to afford) is required. However, if the upper bound is not 

chosen appropriately, the feasible set might be empty, that is, there may be no solution to 

the corresponding single-objective optimization problem for a pre-determined tolerance 
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level. Thus, a suitable range of values for the input parameter should be known 

beforehand in order to avoid this situation.  

 The principle for the multi-objective optimization procedure is shown in Figure 

6.1 (Deb, 2001). It consists of two steps: 

 Step 1: Find multiple trade-off optimal solutions with a wide range of values for 

objectives 

 Each trade-off solution corresponds to a specific order of importance of the 

objectives. For example, an agency sets a two-objective optimization problem – 

minimize both the initial project cost and the future risk exposure. Then, a chosen 

algorithm is used to solve this optimization problem, resulting in a set of optimal 

solutions. Thus, the task of step 1 is to find as many different trade-off solutions as 

possible; 

 Step 2: Choose one of the obtained solutions using higher-level information 

 Once a well distributed set of trade-off solutions is found, in step 2 one needs to 

choose a solution. For example, since the result from step 1 gives a set of optimal 

solutions according to different levels of initial project cost and risk exposure, the 

agency‘s risk preference, which represents the attitude to taking on risk, will act as the 

higher-level information. This information is used to evaluate and compare each of the 

obtained trade-off solutions. This higher-level information helps the agency choose one 

optimal solution at a specific level of risk exposure and the corresponding initial project 

cost.  
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Figure 6.1 Schematic of a multi-objective optimization procedure 

 

In the case of multi-objective optimization, there exists a set of Pareto-optimal solutions 

or nondominated solutions (Srinivas and Deb, 1994). Nondominated solutions imply that 

there is no solution which is the ―best‖ among the solution set in terms of all the 

objectives. The choice of the ―best‖ solution requires higher-level information which is 

non-technical, qualitative and experience-driven from a practical perspective. In this 

dissertation, the prior knowledge or decision-makers‘ subjective selection would be the 

agencies‘ specified risk preferences in terms of their tolerance levels of risk exposure in 

the future if escalation clause is added. 
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6.2 Formulation of Optimization Models 

 Due to the previously identified issues, the dissertation suggests using multi-

objective optimization for optimal hedging of commodity cost risks, that is, ―make a 

trade-off between the risk premium minimization and the future exposure loss 

minimization‖. The primary purpose of this subsection is to formulate this problem. 

 The multi-objective optimization problem has two conflicting objectives to be 

minimized: Objective 1—minimize the ―unexpected losses‖ (see the definition in 

subsection 2.3) due to fluctuations in commodity prices if an escalation clause is added; 

and Objective 2—minimize the initial project cost (bidding cost), that is, minimizing the 

risk premium that is added by contractors. The formulation of optimization on both 

control-item level and project level are shown as follows. 

6.2.1 Control-item level 

 The multi-objective optimization formulation on control item-level is stated as in 

Equation 6.1: 

 

( ) ( )
 1:  minimize ( ) ( ) ( ) 1, ,

( )

 2 :  minimize ( )

            subject to 

m m
m m m

m

m m

L U

F x S x
Obj f x x CVaR x m M

N F x

Obj g x x ERP

x x x

    

 

 

 (6.1) 

where x represents the decision variable – barrier level; x is restricted to be within a 

lower bound Lx  and a upper bound Ux ; M stands for the number of control items; N 

represents the number of scenarios for simulation; mERP  represents the estimated risk 

premium for control item m (a constant calculated using the regression model discussed 

in Section 4) that is included in the unit bid without adding escalation clause; ( )F x  



 105 

counts the number of the simulated losses greater than VaR; ( )S x is the sum of losses 

greater than VaR. 

As shown in objective 1, ( )f x  represents the ―unexpected loss‖ which is a 

product of ( )CVaR x  (i.e., expected loss over distribution tail) and the probability of loss 

greater than VaR - (x) . Here, ( )CVaR x  and ( )x  are both dependent on the barrier 

level x. The motivation for specifying such a new ―synthetic‖ objective function lies in 

the fact that ―unexpected loss‖ characterizes both the conditional risk exposure and the 

probability that this risk realizes (losses exceed VaR).   

 To highway agencies, minimizing an initial project budget is equivalent to 

minimizing a risk premium, as the risk premium directly depends on the barrier of the 

escalation clause. It is assumed that the risk premium is linearly and positively related to 

the trigger barrier (see Section 4). The higher the barrier level (percentage of crude oil 

spot price is higher than the initial spot price), the lower the risk that the owner takes, 

and vice versa. The barrier is constrained from 0 percent to 100 percent, where the 

highest barrier is assumed to be a 100 percent increase from the initial price. Note that 

owner‘s risk preference regarding both the initial setting of VaR and the risk tolerance 

levels of ―unexpected loss‖ affect the result of the decision variable (barrier level) in this 

multi-objective optimization problem. 

 Additionally, a single-objective optimization formulation on a control-item level 

is presented in Equation 6.2.  
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where all the functions and parameters in Equation 6.2 are the same with Equation 6.1, 

except TL is the maximum loss tolerance pre-determined by an agency. The comparison 

between the results of both single-objective and multi-objective optimization will be 

discussed in Section 7 using a case study data. 

6.2.2 Project level 

 Firstly, the multi-objective optimization formulation on the project level with 

only one single barrier level for all the control items is stated as in Equation 6.3: 

 

( ) ( )
 1:  minimize ( ) ( ) ( )

( )

 2 :  minimize ( )

            subject to L U

F x S x
Obj f x x CVaR x

N F x

Obj g x x TRP

x x x

   

 

 

 (6.3) 

where TRP is the total risk premium for the project; all the other functions and 

parameters in Equation 6.3 are the same as the ones in  Equation 6.1, except that they are 

on the project level, that is, the simulated losses for the project is the sum of the losses 

for each control item. Then, ( )F x  and ( )S x  count the number of the project losses 

greater than ―project VaR‖ (the predetermined VaR for the project); ( )S x is the sum of 

project losses greater than ―project VaR‖. 

 Secondly, the multi-objective optimization formulation on project level with 

multiple barrier levels for different risk factors is stated as in Equation 6.4: 
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  (6.4) 

where the decision variables ix  represents the optimal barrier level for a risk factor (i.e., 

price of a commodity); I stands for the number of risk factors that are considered in the 

optimization; ( )ig x  represents the sum of the risk premium for each control item; all the 

other functions and parameters in Equation 6.4 are the same with the ones in Equation 

6.3. 

 

6.3 Solving Multi-Objective Optimization Problems  

 General multi-objective optimization problem (MOP) solution methods range 

from classical approaches to population based techniques. Most classical (i.e., point-by-

point) algorithms, such as, direct and gradient-based methods, use a deterministic 

procedure in approaching the optimum solution, there are some common difficulties 

with most classical techniques, such as, the convergence to an optimal solution depends 

on the chosen initial solution. In addition, since nonlinearities and complex interactions 

among problem variables often exist in real-world problems, the search space usually 

contains more than one optimal solution. While solving these problems, when classical 

methods get attracted to any of the locally optimal solutions, there is no escape (Deb, 

2001).  



 108 

  To solve MOP in an acceptable timeframe, evolutionary algorithms were 

developed. Evolutionary algorithm (EA) is a class of stochastic optimization methods 

that simulate the process of natural evolution. The origins of EAs for solving MOP can 

be traced back to the late 1950s (Veldhuizen and Lamont, 2000). Since the 1970s, 

several evolutionary methodologies have been proposed, mainly genetic algorithms, 

evolutionary programming, and evolution strategies. These algorithms have been proven 

to be a general, robust and powerful search mechanism. EAs are especially suited well to 

multi-objective optimization problem as they are able to capture multiple Pareto-optimal 

solutions in a single simulation run. Also, they can easily deal with concave Pareto 

fronts (Zitzler, 1999; Coello Coello, 2006). Other stochastic optimization techniques can 

also be used to generate the Pareto set (such as, ant colony optimization). However, 

these solutions very often do not guarantee to identify the optimal trade-offs (Abraham 

and Jain, 2005). 

 Genetic algorithms (GAs) have been the most popular EA approach to multi-

objective design and optimization problems (Deb, 1999a; Konak et al., 2006). GA has 

been identified to outperform conventional optimization methods especially when 

applied to difficult real-world optimization problems with non-convex, discontinuous, 

and multi-modal solutions spaces (Zheng et al., 2004).  

 The multi-objective model is evaluated using the ―gamultiobj‖ toolbox in Matlab. 

The multi-objective GA function ―gamultiobj‖ uses a controlled elitist genetic algorithm 

(a variant of NSGA-II [Srinivas and Deb, 1994]). An elitist GA always favors 

―individuals‖ with better fitness value (rank) whereas, a controlled elitist GA favors 
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―individuals‖ that can help increase the diversity of the population even if they have a 

lower fitness value. It is very important to maintain the diversity of population for 

convergence to an optimal Pareto front. This is done by controlling the elite members of 

the population as the algorithm progresses (MathWorks, 2011). The NSGA-II has 

become a benchmark against which other multi-objective evolutionary algorithms are 

compared to (Coello Coello, 2006), and it is implemented in this dissertation.  

 

6.4 Effect of Correlations on Optimal Hedging of Commodity Risks 

 Strong correlations between commodity prices have been observed in Section 5. 

Since the volatile commodity prices influence the future losses, the effect of the 

correlations on optimal hedging of commodity cost risks (such as, the impact on 

choosing optimal barrier level for escalation clause) should be investigated. This will be 

approached by comparing the optimization results under two situations: 1) univariate, 

and 2) vector representation of commodity prices. It is noted that the formulation of the 

multi-objective optimization remains the same, the only difference is in the change of 

commodity pricing models (e.g., ARIMA vs. VARMA). 

 

6.5 Summary 

 This section presents the formulation and solutions approach to both a single-

objective and a multi-objective optimization model. Genetic algorithm is considered as 

the approach to optimization problems. The principles of the difference between single-

objective and multi-objective optimizations are discussed. While the formulations of 
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optimization are presented, the genetic algorithm application to multi-objective 

optimization is discussed. Next section presents a case study based on a real highway 

construction project in Texas to show agencies the optimal hedging strategies dealing 

with commodity price risks.  



 111 

7. CASE STUDY 

 

This section presents a case study to illustrate the overall methodology. The case 

study is based on an actual TxDOT project let in 2004. The project is described in the 

first subsection. The analysis of the effects of different contract specifications on the risk 

premium and the future exposure is presented in the second subsection. This includes 

project characteristics data, contract specifications, and bid data for all control items. 

Finally, in the third subsection, the optimal risk hedging strategies for commodity prices 

are formulated and discussed. This includes implementation of both multi-objective and 

single-objective optimization models, and the consideration of the effect of correlations 

between risk factors (i.e., commodity prices).  

 

7.1 Project Description 

This TxDOT project was let in 2004. The bidding information and project 

characteristics is collected using thirty-four control items TxDOT reports in the 

database. The aggregation of bid data was done using project unique contract control-

section-job (CCSJ) number. This project CCSJ number was 038001064 and the project 

was located in Lubbock (northwest part of Texas as highlighted in Figure 7.1). The 

selected lowest bid contractor was Granite Construction Company.  

The project was to convert a non-freeway road to a freeway type of road. The 

major characteristics of the project are summarized in Table 7.1. This project was large 
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in that the total bid was $200 million and it lasts over two years. The project consists of 

nineteen control items which are listed in Table 7.2.  

 

Figure 7.1 Project location in Texas 

 

Table 7.1 Project description (1) 

Letting 

date 

County Duration 

(day) 

Number of 

bidders 

Roadway Total bid Length 

(mi) 

12/07/2004 Lubbock 860 4 US 82 $191,404,376 4.277 
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Table 7.2 Project description (2) – control items 

Control item Item Item Description Quantity Unit Bid 

price 

ROADWAY EXCAVATION 

 

01100501 EXCAVATION (RDWY) 1576453 CY 3 

01100503 EXCAVATION (SPECIAL) 500 CY 20 

ROADWAY EMBANKMENT 

 

01320506 EMBANK (DENS CONT)(TY 

B)(CL 3) 

893984 CY 3 

01320512 EMBANK (DENS CONT)(TY 

D)(CL 3) 

350223 CY 3 

01320521 EMBANK (ORD COMP)(TY 

C)(CL 3) 

1008 CY 20 

01320546 EMBANK (TY D)(ORD 

COMP)(RANDALL CLAY) 

9430 CY 5 

01320547 EMBANK (TY D)(DC)(SGMP) 16977 CY 5 

SURFACE TREATMENT 

ASPHALT 
03160862 ASPH (AC-20-5TR) 29330 GAL 1.5 

SURFACE TREATMENT 

AGGREGATE 
03160774 AGGR (TY PB GR7) 559 CY 80 

HOT MIX ASPHALTIC 

CONCRETE 

 

31460786 HOT MIX (TY D)(SURF)(PG 70-

28) 

1481 TON 50 

31460787 HOT MIX (TY B)(BASE)(PG 70-

28) 

129083 TON 40 

CONTINUOUS 

REINFORCED CONCRETE 

PAVEMENT 

 

03600503 CONC PAV (CONT REINF HY 

STL)(8 ") 

47162.17 CY 121.51 

03600505 CONC PAV (CONT REINF HY 

STL)(10") 

77640.66 CY 107.99 

CLASS A CONCRETE 04200582 CL A CONC (ENCASEMENT) 56 CY 150 
CLASS C CONCRETE 04200559 CL C CONC (FLUME) 36.6 CY 800 

04200692 CL C CONC (ABUT)(HPC) 2257 CY 600 

04200693 CL C CONC (BENT)(HPC) 5877.5 CY 650 

CLASS S CONCRETE 04200518 CL S CONC (SLAB) 208.2 CY 500 

04200520 CL S CONC (SHEAR KEY) 75.7 CY 150 

04200747 CL S CONC (SLAB) (HPC) 1485.6 CY 500 

BRIDGE RAIL(RIGID) 04500505 RAIL (TY T501) 22439.7 LF 27 

04500506 RAIL (TY T502) 900 LF 27 

04500531 RAIL (TY C411)(MOD) 7068.9 LF 150 

04500538 RAIL (TY T501)(MOD) 4614 LF 32 

04500683 RAIL (TY PR1) 57 LF 60 

04500695 RAIL (TY C411) 852.4 LF 130 

04500702 RAIL (PEDESTRIAN)(SPL) 2732.8 LF 250 

04500719 RAIL (TY T4) 142 LF 100 

04500828 RAIL (CONC WALL RAIL) 2442 LF 85 

BRIDGE SLAB 04220504 REINF CONC SLAB (HPC)(CL S) 399811 SF 12 

METAL FOR STRUCTURES 04420502 STRUCT STL-HS 7226100 LB 1.3 

04420646 STR STL (ARMOR JOINT)(SPL) 46537 LB 2.5 

04420654 STR STL (ARMOR JT) 

(SPL)(SIDEWALK) 

1560 LB 5 

04420664 STR STL (SCUPPER) 684 LB 2.5 

REGULAR BEAMS 04250507 PRESTR CONC BEAM (TY IV) 24641.99 LF 105 

04250594 PRESTR CONC U-BEAM (U40) 7849.48 LF 240 

04250598 PRESTR CONC BEAM (U54) 1583.57 LF 240 

BOX BEAMS 04250520 PRESTR CONC BOX BEAM (4 B 

20) 

720.09 LF 125 
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Table 7.2 Continued 

Control item Item Item Description Quantity Unit Bid 

price 

 04250543 PRESTR CONC BOX BEAM (4 B 

40) 

1995.12 LF 240 

DRILLED SHAFTS 04160503 DRILL SHAFT (18 ") 2442 LF 50 

04160504 DRILL SHAFT (30 IN) 4654 LF 70 

04160506 DRILL SHAFT (36 IN) 16707 LF 90 

04160508 DRILL SHAFT (48 IN) 1866 LF 150 

04160509 DRILL SHAFT (54 IN) 374 LF 180 

04160510 DRILL SHAFT (60 IN) 76 LF 210 

04160514 DRILL SHAFT (NON-

REINF)(12IN)(SIGN MTS) 

70 LF 50 

04160515 DRILL SHAFT (24 IN)(SIGN 

MTS) 

10 LF 100 

04160517 DRILL SHAFT (36 IN)(SIGN 

MTS) 

500 LF 150 

04160519 DRILL SHAFT (48 IN)(SIGN 

MTS) 

17 LF 300 

04160520 DRILL SHAFT (54 IN)(SIGN 

MTS) 

301 LF 350 

04160521 DRILL SHAFT (24 IN) 936 LF 60 

04160524 DRILL SHAFT (60 IN)(HIGH 

MAST POLE) 

448 LF 400 

CORRUGATED METAL PIPE 04600503 CMP (GAL STL 18 IN) 581 LF 25 

REINFORCED CONCRETE 

PIPE 

04640503 RC PIPE (CL III)(18 ") 244 LF 40 

04640505 RC PIPE (CL III)(24 ") 14237 LF 50 

04640507 RC PIPE (CL III)(30 IN) 1495 LF 70 

04640509 RC PIPE (CL III)(36 IN) 1350 LF 90 

04640510 RC PIPE (CL III)(42 IN) 865 LF 130 

04640511 RC PIPE (CL III)(48 IN) 196 LF 150 

04640520 RC PIPE (CL IV)(24 IN) 835 LF 60 

CONCRETE REPAIR 04320501 RIPRAP (CONC)(CL B) 33.2 CY 400 

04320517 RIPRAP (CONC)(CL B)(DITCH 

LINING) 

4783.7 CY 300 

04320524 RIPRAP (CONC)(CL B)(4 IN) 1324 CY 300 

04320529 RIPRAP (CONC)(CL B)(5 IN) 1718 CY 350 

RETAINING WALLS 04230501 RETAINING WALL (MSE) 145743 SF 25 

04230511 RETAINING WALL (SOIL 

NAILED) 

14954 SF 35 

04230523 RETAINING WALL (TIEBACK) 244282 SF 43.25 

 

 As described in the project description, the duration of the project (shown in 

Table 7.1) and quantities of the highlighted control items (shown in the fourth column of 

Table 7.2) to be investigated are comparably large. Also as observed from the historical 

time series in Figure 5.11, all the investigated commodity prices (cement, steel, and oil 

prices) were volatile and forecasted to keep increasing when the project was let. In fact, 
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as the contract length affects the risk, i.e., the longer the contract duration, the more 

significant volatility becomes, both contract duration and indicated market-volatilities of 

commodity prices likely affected unit bid prices. Hence, TxDOT could have used the 

escalation clauses on the specific control items to reduce the premium and take on the 

risk. This case study aims to investigate what would have happened if they did, and what 

should have been the optimal strategy, of course, only using the information that was 

available at that time. 

The five bid items (highlighted in Table 7.2) of this project are chosen for the 

analysis. The cost of these five control items accounts for 30.26 percent of the total cost 

of the project.  

Currently TxDOT does not allow for the adjustment clauses. Based on the 

models developed in Section 4, the risk premiums are calculated and shown in Table 7.3. 

The estimated risk premiums in Table 7.3 come from the estimation results in subsection 

4.2.3. The total risk premium for these five bid items was estimated to be $3,139,367. 

Value at Risk for each item to compute ―unexpected loss‖ in this study is arbitrarily 

specified (this should be specified by agencies according to their higher-level 

information, such as risk preferences).  
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Table 7.3 Five selected items for the case study 

Control item Quantity Unit bid 

price 

Risk factor Calculated 

risk premium 

Excavation 1576453 3 Oil price $613,248 

Embankment 893984 3 Oil price $259,598 

Hot mix asphaltic concrete 129083 40 Oil price $604,387 

Continuous reinforced 

concrete pavement 

77640.66 107.99 Cement price $881,523 

Regular beams 24641.99 105 Steel price $780,611 

 

7.2 Effect of Barriers on Risk Premium and Future Exposure 

 Let‘s consider the excavation control item. The contractor added approximately 

$610,000 (based on the model) in anticipation of the changes in oil prices. If TxDOT 

decided to allow for escalation clauses and select ―Barrier level = x‖, then the question is 

what losses should be expected in the future. This can be investigated by simulating oil 

prices. 

 Figure 7.2 shows the interactions among losses, premiums and barrier levels. 

Based on the estimated coefficient in subsection 4.2.3.1, every 1 percent increase in the 

expected change will result in (on average) an 8.4 percent increase in unit bid prices of 

excavation. Then, with simulating the future spot price of oil, the ―expected losses‖ (the 

average loss of the whole distribution of simulated losses) given different levels of 

barriers can be simulated for excavation item. Further, the ―unexpected losses‖ (a 

product of CVaR  and the probability of loss greater than VaR, that is, the average of the 
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losses greater than VaR) can be obtained as well, if a VaR level is pre-determined. As 

indicated by Figure 7.2, 1) the ―unexpected loss‖ accounts for the most part of the losses, 

since it focuses on the worst cases of the ―expected losses‖; 2) there is an optimal barrier 

for risk hedging given the risk preferences of the agency, that balances between initial 

cost and the future exposure. Hence, at the time of letting, TxDOT should have 

evaluated the effectiveness of adding escalation clauses with barrier levels, based on the 

information available at that time. 
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Figure 7.2 The effect of barriers on risk premium and exposure 
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7.3 Optimal Risk Hedging 

 Given the information in Table 7.3, the case study further investigates the 

following: (1) The losses for different control items and barrier levels, from both 

independent-risk and correlated-risk perspectives; (2) The optimal solution sets for 

control items, if they are optimized independently (i.e., optimizing the barrier levels for 

each control item, and simulating the commodity prices using ARIMA models); and (3) 

The overall optimal solution set from project-level perspective that considers correlated 

risks and optimizes the barriers on the project-level (i.e., optimizing the total project 

risks including the premiums for each item, and simulating commodity prices using 

VARMA model). 

7.3.1 Control item-level analysis 

 The simulated ―expected losses‖ and the independent optimal solution set for 

each item are shown at first. The ―expected losses‖ (if escalation clauses are added) are 

simulated based on univariate time series (TS) forecasting for each control item. The 

sample of simulation for ―expected losses‖ is 100,000. If escalation clauses with triggers 

are added, the objective 1 and objective 2 of the multi-objective optimization are 

―minimize the ‗unexpected loss‘‖ and ―minimize the trigger barrier (that is, to minimize 

the risk premium of the bids)‖, respectively. The parameters for multi-objective 

optimization in this section are: Sample=10,000, population size=60, Pareto front 

fraction=0.7. Additionally, the results of single-objective optimization problem, as 

discussed in Section 6, are presented to show why they are claimed as degenerative 

cases. 
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7.3.1.1 Excavation 

The ―expected losses‖ simulation for excavation based on oil prices forecasted 

using univariate TS (ARIMA) is shown in Figure 7.3. 
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Figure 7.3 ―Expected losses‖ for excavation 

Figure 7.3 shows that the average loss converges to zero if the barrier level is 

greater than 50 percent. This also implies that there is no need for the agency to set the 

barrier over 50 percent if the optimization for control items is considered individually.  

The result of multi-objective optimization for excavation with simulated oil 

prices based on univariate time series (ARIMA) is shown in Figure 7.4. 



 120 

 

Figure 7.4 Pareto front for excavation (1) 

 

The results shown in Figure 7.4 correspond to the overall optimal contracting strategy, 

where a Pareto front is associated with the decision variable – the barrier level x . For 

example, the decision-making at the point E corresponds to setting a trigger barrier level 

of 40 percent now (that is, the owner would probably pay 40 percent of the total risk 

premium now) while accepting a future ―unexpected loss‖ of $80,000. Furthermore, it 

can be observed that as the cost of risk premium increases, the ‗unexpected loss‘ 

(product of beta and CVaR) decreases, and vice versa. Further discussion about the 

implications of the Pareto front will be presented in the subsection 7.4. 

7.3.1.2 Embankment and hot mix asphaltic concrete (HMAC) 

As excavation, embankment and HMAC control items have the same risk factor 

– oil price, the optimization results of embankment and HMAC are similar to the results 
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for excavation control item. The ―expected losses‖ simulations and the Pareto front for 

embankment are shown in Figure F-1 and Figure F-2 (Appendix F); The ―expected 

losses‖ simulations and the Pareto front for HMAC are shown in Figure F-3 and Figure 

F-4 (Appendix F). 

7.3.1.3 Continuous reinforced concrete pavement (CRCP) 

The ―expected losses‖ simulation for CRCP based on cement prices forecasted 

using univariate TS (ARIMA) is shown in Figure 7.5. 
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Figure 7.5 ―Expected losses‖ for CRCP 

  

 Figure 7.5 shows that the simulated prices of steel will not increase to the level 

which is 25 percent higher than the original price. This is because the simulated losses 
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become to be zero for the barriers which are greater than 25 percent. This may be 

because of the fact that cement price has experienced lower level of volatility compared 

to oil price. If the trigger barrier is set at 25 percent, then the TxDOT would have 

significantly reduced the risk premium, and at the same time, would not have been 

exposed to the loss during the construction.  

The Pareto fronts of multi-objective optimization for CRCP control item with 

simulated cement prices based on univariate TS are shown in Figure 7.6. 

 

Figure 7.6 Pareto front for CRCP 

 

 Figure 7.6 also indicate the same trend as Figure 7.5. The ―unexpected losses‖ 

converge to zero if the trigger barrier is set at 25 percent.  
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7.3.1.4 Regular beams 

The ―expected losses‖ simulation for regular beams based on steel prices 

forecasted using univariate TS (ARIMA) is shown in Figure 7.7. 
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Figure 7.7 ―Expected losses‖ for regular beams 

 

 Figure 7.7 shows that the average losses converge to zero if the barrier level is 

set to be over 70 percent, while Figure 7.8 shows the Pareto front for multi-objective 

optimization based on simulated steel prices using univariate time series. The front 

indicates that the ―unexpected loss‖ would approach to zero if the barrier level is set to 

be around or over 70 percent. However, the Pareto front with barrier levels at 50 percent 

would be a ―better‖ choice for risk hedging. This is not only because adding an 
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escalation clause with barriers considerably reduces the initial cost (setting a barrier 

level at 50 percent reduces the risk premium for about 50 percent), but also because of 

the maximum ―unexpected losses‖ are only $10,000. 

 

Figure 7.8 Pareto front for regular beams 

 

 The results of single-objective optimization are shown below in Table 7.4.  

Parameters for single-objective optimization use the default setting in the ―ga‖ solver of 

optimization tool in Matlab (Mathworks, 2011). As discussed in Section 6, single-

objective optimization requires prior knowledge about the constraint – the tolerance 

level of "unexpected loss" in this case. Again, this information is the subjective decision 

by TxDOT according to their risk preferences; however, in this example, the constraints 

are specified beforehand. Thus, if the upper bound is not chosen appropriately, the 
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obtained feasible set might be empty. The result for each item shown in Table 7.4 is just 

a point solution from the Pareto front of multi-objective optimization as shown above. 

Table 7.4 Optimal barriers of single-objective optimization for individual control items 

Control item Tolerance of 

"unexpected loss" ($) 

Optimal barrier 

Excavation  300,000 31.2% 

Embankment  200,000 31% 

HMAC  200,000 37.5% 

CRCP  800,000 28% 

Regular beams  40,000 30.4% 

 

7.3.2 Project-level discussion 

 Since the risks among all control items may be correlated, it is more realistic to 

conduct the multi-objective optimization on the project-level. The optimizations with a 

single barrier level for all control item (decision variable) and the optimization with 

multiple barrier levels for each control items are both discussed and compared next. 

 If TxDOT sets only one barrier for all the prices of commodities, then Figure 7.9 

presents the overall optimal solution sets from the project perspective. The total risk 

premium ($3,139,367) is assumed to be the sum of the premium of individual control 

item as shown in the fifth column of Table 7.3. The Value-at-Risk ($2,500,000) used in 

the optimization is considered as the sum of VaRs of each control item. 
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Figure 7.9 Pareto fronts on the project level – single barrier 

  

Figure 7.9 further shows that the overall potential risk exposure of this project is 

considerably under-estimated if the commodity prices are forecasted independently. The 

effect of correlation between the prices of commodities was captured using the vector TS 

model developed in Section 5. It can be observed from Figure 7.9 that setting a 

conservative barrier level of approximate 45 percent corresponds to taking close-to-zero 

―unexpected loss‖ under the univariate TS model, but a $4,500,000 under the vector TS 

model. 

 While the example above investigates the optimal solutions with a single barrier 

level (decision variable) for all control items of the project, the project-level optimal 
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solution sets with multiple barriers may provide better strategy as shown in Figure 7.10. 

The result indicates that optimization with multiple barriers can considerably reduces 

both the risk premium of the total project and the risk exposure during construction. For 

example, in Figure 7.10, if different escalation clauses are set for different commodities, 

taking on the risk of ―unexpected loss‖ of $1,000,000 will require the agency to pay a 

risk premium of $1,000,000; TxDOT has to pay only $2,000,000 for the risk premium 

for close-to-zero "unexpected loss", compared to a risk premium of $2,700,000 based on 

―one barrier for all items‖ policy. Thus, it is suggested that TxDOT considers the multi-

objective optimization with multiple barriers to hedge against the risks of volatile prices 

of commodities. 

                                                                                                                       

 

Figure 7.10 Pareto fronts on the project level – multiple barriers 



 128 

 It should be noted that all the Pareto fronts obtained above, either on control-item 

level or on project level, are associated with "unexpected loss"; the Pareto fronts 

associated with "CVaR" are presented in Appendix F, from Figure F-5 to Figure F-11. 

7.3.3 Major findings 

 The major findings for this case study are summarized as follows:  

 1) For control items (excavation, embankment and hot mix asphaltic concrete) 

having the same risk factor - oil price, the optimization results based on the ARIMA 

models indicate that the trigger barrier setting around or just over 50 percent for oil 

prices will result in close-to-zero average and "unexpected losses". This means agencies 

can save half of the risk premium while taking on a close-to-zero risk;  

 2) Due to the comparably small volatility of cement price, the "unexpected 

losses" of regular beams are close to zero for the trigger barriers over 25 percent based 

on the ARIMA model. This means, for the control items (e.g. CRCP), where cement 

price is identified as the most significant risk factor, adding an escalation clause with 

trigger barriers of 25 percent will reduce the bids while taking on a level of risk which is 

considerably lower.  

 3) The effect of correlations (between prices of commodities) should not be 

ignored. The potential risk exposure of the project is considerably under-estimated if the 

commodity prices are forecasted independently. 

 4) It is essential to consider multi-objective optimization with multiple barrier 

levels using the vector time series model when making optimal decisions to hedge 
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against the risks from volatile prices of commodities. This is because the solutions from 

multi-variate optimization can considerably reduce the total cost of a project. 

 

7.4 Implications 

 The developed models have a wide applicability for TxDOT. Following are some 

of the key insights from the models, using Figure 7.11 for excavation as an example. 

 

 

Figure 7.11 Pareto front for excavation (2) 

 

TxDOT should be aware that an owner‘s risk preference affects the choice of 

contracting. The resulting multi-objective optimization problem considers a number of 
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corner of the Pareto front, for example, the optimal solutions with ―unexpected loss‖ 

greater than $800,000 and a trigger barrier less than 20 percent (the optimal frontier to 

the right side of point F); for a ―risk averse‖ posture, the owner should consider optimal 

solutions in the upper-left corner of the Pareto front, for example, the optimal solutions 

with a trigger barrier greater than 35 percent and ―unexpected loss‖ less than $200,000 

(the optimal frontier to the left side of point C); and for a ―risk neutral‖ attitude, the 

middle part should be considered.  

If a decision-maker receives the bids in the ―non-optimal‖ area (area above the 

Pareto front), then this implies that it would pay an excessive risk premium for the 

corresponding unexpected risk exposure level, or the model has over-estimated the 

unexpected risk exposure at the chosen barrier level. For example, consider point A. The 

corresponding ―unexpected loss‖ is $200,000; the owner should realize that for that 

amount of exposure, the optimal trigger barrier is not 40 percent (point A) but 35 percent 

(point C). Alternatively, the agencies should keep the 40 percent barrier level, but pay 

only $80,000 (point E). 

The area below the Pareto front indicates a set of unfeasible solutions given that 

the cost of risk is determined by the premium pricing model developed in this research. 

Still, the agency could receive the bids that enter the unfeasible region. What that means 

is that the contractor has lowered the premium in comparison with the overall 

construction market. For example, if the owner chooses a trigger barrier of 40 percent 

but receives the bid that corresponds to point D, this implies that the contractor has 

discounted the risk premium from $245,300 (point E) to $184,000 (point D) (the 
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calculated risk premium for excavation is $613,248) while the agency still takes on a less 

unexpected loss of $80,000 (point E). 

 

7.5 Summary 

 This section illustrates the overall methodology using a real TxDOT project data. 

The first subsection provides the main description of this project, including the project 

characteristics and the bidding information. It also suggests TxDOT that the escalation 

clause should be considered for this project. The second subsection discusses the effect 

of barrier levels on risk premiums and the future exposures. The third subsection 

presents the whole process of the optimal risk hedging of commodity prices, both on the 

control-item level and the project-level. It includes the risk premium estimation, the 

discussion about the observations and major findings from both multi-objective and 

single-objective optimization. The fourth subsection shows the implications. In the 

following section, a summary of the research findings is presented.  
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8. SUMMARY AND RECOMMENDATIONS FOR FUTURE STUDY 

 

 This section summarizes major findings, discusses limitations, and suggests 

direction for further study. The section is organized in two subsections. In the first 

subsection, a summary of the dissertation work is presented, while in the second 

subsection, the limitations of developed methodology are presented, and the directions 

for future work are suggested.   

 

8.1 Summary 

 This dissertation investigates risk premiums for commodity prices in highway 

construction contracts and develops optimal risk hedging model based on agencies‘ risk 

preferences. More specifically, the objective of the model is to provide an optimal way 

to manage commodity-based risk in contracting using an escalation clause with trigger 

barriers. Such an escalation clause can be used to specify the amount of risk the agency 

would like to be exposed to during construction via the barrier levels. In other words, it 

allows balancing between (1) initial payment in the form of risk premium before a 

contract begins, and (2) future risk exposure during construction. The developed 

framework also accounts for correlations of commodity risks when balancing the 

objectives. 

 The optimal risk mitigation actions are conditional on the owner‘s risk 

preferences specified using CVaR-based measures (―unexpected losses‖). The solution 

approach to the problem is based on a multi-objective optimization formulation (or a 
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single-objective degenerate case) and genetic algorithms as a solution approach. The key 

insights of this study are as follows: (1) trade project cost now for possible cost exposure 

later by using escalation clause contracts with trigger barriers; (2) use CVaR-based 

―unexpected loss‖ to specify an agency‘s risk preferences; and (3) specify the 

appropriate level of VaR at the beginning and utilize the Pareto optimal set to determine 

the acceptable trade-offs. 

 The overall methodology framework contains three main topics. The first topic is 

to develop a model to price the unit bid item and the risk. It is essential to determine the 

price of risk in order to determine optimal risk hedging strategies. Section 4 explains the 

relationship between the unit bid prices of selected control items and the risk factors - 

cement price, steel price and oil prices, as well as estimates the impact volatile 

commodity price have on the unit bid prices (i.e., risk premiums). Weighted least square 

regression models are conducted to price the risk for unit bid prices. 

 The second topic is about the contract design using escalation clauses with 

barrier levels. The relationship between risk premiums and pre-defined barriers is 

investigated in Section 4. Different prior-defined barrier levels directly influence the 

future "unexpected losses". The losses are based on simulated commodity prices. Section 

5 provides time series models for simulating commodity prices, including both ARIMA 

model and VARMA model that accounts for the correlation effects.  

 Finally, the third topic of this dissertation is the multi-objective optimization 

where agencies‘ risk preferences (e.g., willingness to take on the risk) are specified using 
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risk measures. Section 6 discusses both the single-objective and multi-objective 

optimization formulation for developing optimal risk hedging strategies.  

 

8.2 Directions for Future Research 

While this dissertation work has presented a comprehensive methodological 

framework to determine the optimal risk hedging, it is by no means perfect. The 

presented model would benefit from more data. Firstly, if the data become available, one 

can develop Pareto fronts applicable to their markets. Secondly, the risk premium 

estimation analysis with more explanatory variables, such as, the size of contractor, 

would be more convincing and yield the results that would have higher statistical 

significance. If the data covering the chosen barrier levels and corresponding bids 

become available, the barrier levels can be used as an independent variable in the 

regression models, to see its effect on the unit bid prices. 

Some identified problems requiring further research are presented next. Firstly, 

the relationship between risk premiums and trigger barriers is assumed to be linearly 

related in this dissertation. More research work is needed to demonstrate or investigate 

this relationship. Secondly, on a portfolio level, the developed methodology framework 

can be used to support further analysis of managing cost risks in a multi-project 

environment. For example, strategies associated with diversifying risk retention and 

transferring policies for minimizing project portfolio risks can be investigated.  
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APPENDIX A  

TXDOT BIDDING DATA 

Table A-1  HCI Item Definition 

Category Element Control Item Unit 

Earthwork 
Excavation Roadway Excavation CY 

Embankment Roadway Embankment CY 

Subgrade and 

base course 

Lime treated subgrade or base Lime Ton 

Lime Treatment CY 

Plant Mix CY 

Cement treated subgrade or base Cement Ton 

Cement Treatment CY 

Cement Trt Plant Mix CY 

Asphalt treated base or foundation course Asph. Trt. Plant Mix Ton 

Flexible base Flexible Base CY 

Surfacing 

Surface treatment Surface Treatment Asphalt Gal 

Surface Treatment Aggregate CY 

Bituminous mixtures Hot Mix Asphaltic Concrete Ton 

Concrete pavement Continuous Reinforced 

Concrete Pavement 

CY 

Jointed Reinforced concrete 

Pavement 

CY 

Jointed Non-reinforced 

Concrete Pavement 

CY 

Structures 

Structural concrete Class A Concrete CY 

Class C Concrete CY 

Class S Concrete CY 

Bridge Rail (Rigid) LF 

Bridge Slab SF 

Metal for structures Metal for Structures LB 

Precast prestressed conc structural members Regular Beams LF 

Box Beams LF 

Foundations Concrete Piling LF 

Steel H Piling LF 

Drilled Shafts LF 

Drainage Reinforced Concrete Pipe LF 

Corrugated Metal Pipe LF 

Reinforced Concrete 

Pipe(Sewer) 

LF 

Concrete Box Culvert LF 

Concrete Box Sewer LF 

Riprap Concrete Riprap CY 

Retaining walls Retaining Walls SF 

 

 



 153 

APPENDIX B   

VOLATILITY OF COMMODITY PRICES 

 

 This appendix contains the computed implied volatility of crude oil prices, and 

historical volatilities of cement and steel prices. The formulas in the literature for 

calculating implied volatility of crude oil prices are listed, followed by the result and 

discussion about how the best formula is chosen. 

 

Table B-1  Formulas for computing implied volatility in the literature 
Formula Equation assumption conclusion 

1 2 C

T S


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3 32
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Implied volatilities have been calculated from all the 6 formulas in Table B-1 for 

3 months‘ call option. Formula 5 is not used because it is far less accurate than formula 4. 

It turns out that formula 4 yields implied volatilities approximation that are nearly 

identical to the ones directly calculated from Black-Scholes model. The comparison is 
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based on estimation error (the difference between the real volatility and estimated 

volatility). A more detailed calculation shows that the estimation error by formula 4 on 

average is 0.00668 less than that by formula 6. Note that average true volatility is about 

39.1%. Thus formula 4 is on average about 1.71% more accurate than formula 6. Thus 

formula 4 is chosen as the best formula for calculating implied volatility of crude oil 

prices. 

 

 

Figure B-1  Implied volatility of 3 mo's call option from Equation 4 and Black Scholes  

 

Table B-2 Implied volatility of 3 month call option in 1998-2006 

 1998 1999 2000 2001 2002 2003 2004 2005 2006 

Jan 0.4421 0.6483 0.2983 0.4300 0.4550 0.3560 0.3600 0.4039 0.1483 

Feb 0.5631 0.6527 0.2297 0.3545 0.4492 0.4299 0.3574 0.4079 0.3256 

Mar 0.6214 0.7500 0.2951 0.4470 0.4394 0.4824 0.3555 0.3942 0.2935 

Apr 0.5876 0.5538 0.3888 0.4102 0.3904 0.4280 0.3982 0.3893 0.2612 

May 0.4268 0.5390 0.2698 0.2771 0.3778 0.3614 0.3872 0.3672 0.2802 

Jun 0.7257 0.5420 0.2714 0.2293 0.3931 0.3536 0.4430 0.3790 0.2854 

Jul 0.5818 0.3793 0.3042 0.3672 0.3288 0.3321 0.3864 0.3540 0.2817 

Aug 0.5638 0.3417 0.3062 0.2952 0.3322 0.3248 0.3454 0.3301 0.2507 

Sep 0.5751 0.3741 0.3059 0.4122 0.3820 0.3317 0.3969 0.4158 0.3149 
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Oct 0.5615 0.3442 0.4117 0.5537 0.3192 0.2889 0.4356 0.3687 0.3148 

Nov 0.6775 0.2852 0.2893 0.5443 0.4052 0.3751 0.5613 0.3794 0.2686 

Dec 0.7510 0.2636 0.4507 0.5812 0.3263 0.3630 0.5018 0.3525 0.2234 
 

Table B-3 Historical volatility of cement prices in 1998-2006 

 

1998 1999 2000 2001 2002 2003 2004 2005 2006 

Jan 0.0105 0.0126 0.0139 0.0134 0.0110 0.0108 0.0072 0.0117 0.0159 

Feb 0.0106 0.0127 0.0139 0.0134 0.0110 0.0108 0.0072 0.0117 0.0156 

Mar 0.0096 0.0127 0.0139 0.0134 0.0110 0.0108 0.0073 0.0120 0.0162 

Apr 0.0102 0.0123 0.0146 0.0119 0.0108 0.0112 0.0101 0.0118 0.0180 

May 0.0102 0.0173 0.0085 0.0107 0.0111 0.0109 0.0105 0.0098 0.0192 

Jun 0.0134 0.0145 0.0085 0.0107 0.0126 0.0108 0.0105 0.0119 0.0165 

Jul 0.0125 0.0144 0.0085 0.0108 0.0125 0.0107 0.0105 0.0118 0.0214 

Aug 0.0116 0.0144 0.0086 0.0153 0.0078 0.0107 0.0112 0.0130 0.0224 

Sep 0.0110 0.0147 0.0081 0.0153 0.0078 0.0108 0.0111 0.0125 0.0224 

Oct 0.0114 0.0145 0.0082 0.0154 0.0101 0.0078 0.0117 0.0158 0.0229 

Nov 0.0125 0.0138 0.0134 0.0108 0.0109 0.0072 0.0115 0.0158 0.0231 

Dec 0.0125 0.0140 0.0134 0.0109 0.0109 0.0072 0.0121 0.0158 0.0229 
 

Table B-4 Historical volatility of steel prices in 1998-2006 

 

1998 1999 2000 2001 2002 2003 2004 2005 2006 

Jan 0.0387 0.0337 0.0369 0.0262 0.0172 0.0343 0.0306 0.1085 0.0625 

Feb 0.0394 0.0337 0.0407 0.0171 0.0170 0.0343 0.0517 0.1096 0.0623 

Mar 0.0361 0.0385 0.0328 0.0171 0.0213 0.0366 0.0776 0.0993 0.0642 

Apr 0.0226 0.0371 0.0329 0.0229 0.0328 0.0279 0.0903 0.0930 0.0571 

May 0.0216 0.0345 0.0314 0.0234 0.0322 0.0300 0.0944 0.0883 0.0577 

Jun 0.0223 0.0343 0.0306 0.0195 0.0325 0.0294 0.0924 0.0882 0.0575 

Jul 0.0215 0.0336 0.0314 0.0195 0.0326 0.0295 0.0922 0.0908 0.0539 

Aug 0.0205 0.0332 0.0314 0.0188 0.0330 0.0293 0.0903 0.0929 0.0477 

Sep 0.0227 0.0282 0.0314 0.0180 0.0329 0.0296 0.0889 0.0904 0.0483 

Oct 0.0327 0.0375 0.0246 0.0175 0.0348 0.0275 0.0892 0.0932 0.0458 

Nov 0.0341 0.0371 0.0260 0.0169 0.0346 0.0286 0.1063 0.0800 0.0395 

Dec 0.0337 0.0369 0.0262 0.0171 0.0343 0.0306 0.1095 0.0633 0.0393 
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APPENDIX C   

MULTIPLE LINEAR REGRESSION PROCESS 

 

Step 1-1: Scatter plot for response variable and explanatory variables 

 Figure C-1 shows a scatter plot matrix of the response variable and four predictor 

variables while the other independent variables are dummy variables. The response 

variable and four predictor variables are each highly skewed. In addition, the predictors 

do not appear to be linearly related. Thus, we need to consider transformations of the 

response and the four predictor variables. 

 
Figure C-1 A scatter plot matrix of untransformed data 

 Step 1-2: Box plots, normal QQ plots 
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 Figure C-2 contains box plots, normal QQ plots and Gaussian kernel density 

estimates for the untransformed data. It is evident from Figure C-2 that the distributions 

of unit bid price, duration-based implied volatility, quantity and number of bidders are 

skewed. On the other hand the distribution of the difference of futures and spot prices is 

consistent with a normal distribution. 
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Figure C-2 Box plots, normal QQ-plots and kernel density estimates of 

untransformed data 

 Step 2: Data transformation using Box-Cox 

 Box-Cox method is considered to overcome problems due to nonlinearity. Given 

below is the ouput from R using Approach 1 which is the same as mentioned in model 

development I: 

Output from R using Approach 1 

                     Est.Power Std.Err. Wald(Power=0) Wald(Power=1) 

durationiv      0.0149    0.0135        1.0971          -72.7692 

quantity         0.0270    0.0051        5.3326          -192.0118 

bidders         -0.0299    0.0387       -0.7740          -26.6420 

oilFS              1.0924    0.0213       51.3745           4.3442 

                                                            LRT  df  p.value 

LR test, all lambda equal 0   2615.186   4       0 

LR test, all lambda equal 1 34050.849   4       0 

 

 Using the Box-Cox method to transform the predictor variables toward normality 

results in taking natural logarithms of duration-based volatility, quantity and number of 
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bidders while the difference between futures and spot prices of crude oil untransformed. 

Figure C-3 contains an inverse response plot which provides the closest fit of power of 

unit bid price is 0.06. The estimated optimal value 0.06 can be rounded to 0 which 

corresponds to natural logrithm transformation of unit bid price. 

 

Figure C-3  Inverse response plot 

 Given below is the ouput from R using Approach 2 which is the same as 

mentioned in model development I: 

Output from R using Approach 2 

                Est.Power Std.Err. Wald(Power=0) Wald(Power=1) 

bidprice      -0.3436   0.0166      -20.7121       -80.9886 

durationiv    0.0132   0.0136        0.9708        -72.6233 

quantity       0.0108   0.0046        2.3432        -214.8733 

bidders       -0.0385   0.0386       -0.9971        -26.8801 

oilFS            1.0953   0.0212       51.6852           4.4951 

                                                           LRT  df   p.value 

LR test, all lambda equal 0   3078.454  5       0 
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LR test, all lambda equal 1 44038.086  5       0 

 

 The estimated power for bid price is -0.34 which could also be rounded to 0. 

Thus, the two approaches agree in that they suggest that each variable be transformed 

using the log transformation except the difference between futures and spot prices of 

crude oil.  

 

 Step 3: Re-check step 1 

 Figure C-4 shows a scatter plot matrix of the log transformed response and some 

predictor variables (except the expected change of crude oil prices and dummy 

variables). The pairwise  relationships in Figure C-4 are much more linear than those in 

Figure C-1. Their joint distributions are roughly ellipsoidal. 

 
Figure C-4 Scatter plot matrix of transformed data 
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 Figure C-5 contains the plots of the transformed version. It is evident that the log 

transformations have dramatically reduced skewness and produced variables which are 

more consistent with normally distributed data.  
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Figure C-5 Box plots, normal QQ-plots and kernel density estimates of transformed data 

 

 Step 4: Variable selection 

We next consider a multiple linear regression model based on the log 

transformed data, namely, 

 0 1 2 3

4 5 7 8 31

log( ) log( . .) log( ) log( )

(oilFS) 1 3 1 24

bidprice duration i v quantity bidders

quarter quarter district district

   

    

    

    
 (C-1) 

Backward elimination based on Bayesian information criterion (BIC) is chosen as the 

variable selection method which aims to choose the subset of the predictors that is ―best‖ 
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in a given sense. BIC is based on likelihood theory when both the predictors and the 

response are normally distributed. The smaller the value of BIC, the better the model. 

BIC penalizes complex models more heavily than Akaike‘s information criterion (AIC), 

thus it favors simpler model than AIC. Given below are the variable selection results 

from backward AIC and backward BIC and regression results based on these two 

methods: 

 

Output from R: Backward selection based on AIC 

Final Step:  AIC=-3807.27 

lnbidprice ~ lndurationiv + lnquantity + lnbidders + oilFS + city + quarter1 + quarter2 + quarter3 

+ d1 + d3 + d4 + d5 + d7 + d9 + d10 + d11 + d12 + d13 + d15 + d16 + d18 + d19 + d20 + d21 + 

d22 + d24 

               Df Sum of Sq    RSS     AIC 

<none>                      2455.6 -3807.3 

- d20           1      0.99 2456.6 -3807.2 

- lndurationiv  1      1.08 2456.7 -3807.0 

- city          1      1.25 2456.9 -3806.6 

- d24           1      1.70 2457.3 -3805.7 

- d1            1      1.74 2457.3 -3805.6 

- d15           1      2.39 2458.0 -3804.2 

- quarter3      1      2.50 2458.1 -3804.0 

- d22           1      3.65 2459.3 -3801.6 

- d13           1      4.04 2459.7 -3800.8 

- quarter1      1      6.28 2461.9 -3796.1 

- d3            1      6.42 2462.0 -3795.8 

- d5            1      7.54 2463.1 -3793.4 

- d16           1      8.89 2464.5 -3790.6 

- d18           1     10.97 2466.6 -3786.2 

- d9            1     10.99 2466.6 -3786.2 

- d11           1     11.15 2466.8 -3785.8 

- d7            1     13.14 2468.7 -3781.6 

- d10           1     13.55 2469.2 -3780.8 

- quarter2      1     14.02 2469.6 -3779.8 

- d12           1     15.32 2470.9 -3777.1 

- d21           1     29.65 2485.3 -3747.1 

- oilFS  1     34.06 2489.7 -3738.0 

- d4            1     37.07 2492.7 -3731.7 

- lnbidders     1     74.99 2530.6 -3653.5 

- d19           1     76.41 2532.0 -3650.6 

- lnquantity    1   1607.38 4063.0 -1202.4 

 

Regression output from R: based on backward AIC 

lm(formula = lnbidprice ~ lndurationiv + lnquantity + lnbidders + oilFS + city + quarter1 + 

quarter2 + quarter3 + d1 + d3 + d4 + d5 + d7 + d9 + d10 + d11 + d12 + d13 + d15 + d16 + d18 + 

d19 + d20 + d21 + d22 + d24, weights = lnmoreone) 
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Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)   3.445399   0.051758  66.568  < 2e-16 *** 

lndurationiv  0.016432   0.010923   1.504 0.132571     

lnquantity   -0.216448   0.003728 -58.061  < 2e-16 *** 

lnbidders    -0.228927   0.018254 -12.541  < 2e-16 *** 

oilFS         0.082075   0.009711   8.452  < 2e-16 *** 

city         -0.036307   0.022417  -1.620 0.105372     

quarter1     -0.086909   0.023948  -3.629 0.000287 *** 

quarter2     -0.123396   0.022757  -5.422 6.15e-08 *** 

quarter3     -0.049714   0.021701  -2.291 0.022013 *   

d1           -0.091818   0.048087  -1.909 0.056264 .   

d3           -0.175428   0.047827  -3.668 0.000247 *** 

d4            0.290475   0.032943   8.818  < 2e-16 *** 

d5            0.193940   0.048785   3.975 7.12e-05 *** 

d7           -0.215560   0.041065  -5.249 1.59e-07 *** 

d9           -0.217982   0.045399  -4.801 1.62e-06 *** 

d10           0.182584   0.034255   5.330 1.02e-07 *** 

d11           0.279387   0.057776   4.836 1.37e-06 *** 

d12           0.182338   0.032170   5.668 1.52e-08 *** 

d13           0.092582   0.031790   2.912 0.003603 **  

d15           0.121878   0.054436   2.239 0.025205 *   

d16          -0.180485   0.041810  -4.317 1.61e-05 *** 

d18          -0.196530   0.040981  -4.796 1.67e-06 *** 

d19          -0.507028   0.040053 -12.659  < 2e-16 *** 

d20           0.096070   0.066515   1.444 0.148702     

d21           0.271065   0.034372   7.886 3.78e-15 *** 

d22          -0.120908   0.043705  -2.766 0.005687 **  

d24           0.100337   0.053210   1.886 0.059396 .   

--- 

Signif. codes:  0 ‗***‘ 0.001 ‗**‘ 0.01 ‗*‘ 0.05 ‗.‘ 0.1 ‗ ‘ 1  

 

Residual standard error: 0.6905 on 5150 degrees of freedom 

Multiple R-squared: 0.5251,     Adjusted R-squared: 0.5227  

F-statistic:   219 on 26 and 5150 DF,  p-value: < 2.2e-16 

 

Output from R: Backward selection based on BIC 

Final Step:  AIC=-3664.69 

lnbidprice ~ lnquantity + lnbidders + oilFS + quarter1 + quarter2 + d1 + d3 + d4 + d5 + d7 + d9 

+ d10 + d11 + d12 + d16 + d18 + d19 + d21 + d22 

 

              Df Sum of Sq    RSS     AIC 

<none>                     2467.8 -3664.7 

- quarter1     1      4.14 2471.9 -3664.6 

- d5           1      4.16 2471.9 -3664.5 
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- d1           1      4.26 2472.0 -3664.3 

- d11          1      7.24 2475.0 -3658.1 

- d10          1      7.37 2475.1 -3657.8 

- d22          1      7.85 2475.6 -3656.8 

- d12          1      9.34 2477.1 -3653.7 

- d3           1     11.73 2479.5 -3648.7 

- quarter2     1     12.50 2480.2 -3647.1 

- d16          1     16.83 2484.6 -3638.1 

- d18          1     17.69 2485.4 -3636.3 

- d9           1     18.01 2485.8 -3635.6 

- d7           1     21.31 2489.1 -3628.7 

- d21          1     24.88 2492.6 -3621.3 

- d4           1     28.33 2496.1 -3614.1 

- oilFS       1     38.13 2505.9 -3593.9 

- lnbidders    1     74.12 2541.9 -3520.0 

- d19          1    101.47 2569.2 -3464.6 

- lnquantity   1   2174.40 4642.2  -402.1 

 

Regression output from R: based on backward BIC 

lm(formula = lnbidprice ~ lnquantity + lnbidders + oilFS + quarter1 + quarter2 + d1 + d3 + d4 + 

d5 + d7 + d9 + d10 + d11 + d12 + d16 + d18 + d19 + d21 + d22, weights = lnmoreone) 

Residuals: 

     Min       1Q   Median       3Q      Max  

-4.59275 -0.41300  0.01789  0.43063  2.89643  

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)  3.495122   0.038035  91.891  < 2e-16 *** 

lnquantity  -0.213586   0.003169 -67.409  < 2e-16 *** 

lnbidders   -0.222449   0.017874 -12.445  < 2e-16 *** 

oilFS           0.086026   0.009637   8.927  < 2e-16 *** 

quarter1    -0.057923   0.019694  -2.941 0.003285 **  

quarter2    -0.093361   0.018269  -5.110 3.33e-07 *** 

d1          -0.137889   0.046241  -2.982 0.002877 **  

d3          -0.227941   0.046043  -4.951 7.63e-07 *** 

d4           0.230013   0.029893   7.695 1.69e-14 *** 

d5           0.137935   0.046799   2.947 0.003219 **  

d7          -0.259426   0.038871  -6.674 2.75e-11 *** 

d9          -0.266644   0.043470  -6.134 9.21e-10 *** 

d10          0.112088   0.028570   3.923 8.85e-05 *** 

d11          0.212189   0.054537   3.891 0.000101 *** 

d12          0.129248   0.029253   4.418 1.02e-05 *** 

d16         -0.234910   0.039615  -5.930 3.23e-09 *** 

d18         -0.234095   0.038505  -6.080 1.29e-09 *** 

d19         -0.550830   0.037827 -14.562  < 2e-16 *** 

d21          0.228133   0.031639   7.210 6.38e-13 *** 

d22         -0.168556   0.041627  -4.049 5.21e-05 *** 
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--- 

Signif. codes:  0 ‗***‘ 0.001 ‗**‘ 0.01 ‗*‘ 0.05 ‗.‘ 0.1 ‗ ‘ 1  

Residual standard error: 0.6918 on 5157 degrees of freedom 

Multiple R-squared: 0.5227,     Adjusted R-squared: 0.521  

F-statistic: 297.3 on 19 and 5157 DF,  p-value: < 2.2e-16 

 Step 5: Regression model and output 

It is shown that BIC penalizes complex models more heavily than AIC, thus it 

results in simpler model than AIC. Duration-based volatility is chosen by AIC, but not 

by BIC. Backward elimination with BIC chooses the statistically significant predictors 

as follows: quantity, number of bidders, the difference between futures and spot prices, 

quarter 1 and quarter 2 of the year, 14 districts in Texas which are Abilene, Atlanta, 

Austin, Beaumont, Bryan, Corpus Christi, Dallas, El Paso, Fort Worth, Lufkin, Paris, 

Pharr, San Antonio and Tyler. If duration-based volatility is included, the regression 

output is as below, and the regression equation for excavation with some log 

transformed variables is shown in Equation C-2. 

 

Regression output from R 

lm(formula = lnbidprice ~ lndurationiv + lnquantity + lnbidders + oilFS + quarter1 + quarter2 + 

d1 + d3 + d4 + d5 + d7 + d9 + d10 + d11 + d12 + d16 + d18 + d19 + d21 + d22, weights = 

lnmoreone) 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)   3.443017   0.047437  72.580  < 2e-16 *** 

lndurationiv  0.021663   0.010878   1.991 0.046485 *   

lnquantity   -0.217740   0.003719 -58.547  < 2e-16 *** 

lnbidders    -0.226191   0.017922 -12.621  < 2e-16 *** 

oilFS            0.084194   0.009698   8.682  < 2e-16 *** 

quarter1     -0.057363   0.019712  -2.910 0.003629 **  

quarter2     -0.093401   0.018281  -5.109 3.35e-07 *** 

d1           -0.137831   0.046270  -2.979 0.002907 **  

d3           -0.225298   0.046091  -4.888 1.05e-06 *** 

d4            0.238731   0.030212   7.902 3.34e-15 *** 

d5            0.137290   0.046829   2.932 0.003386 **  

d7           -0.256516   0.038925  -6.590 4.84e-11 *** 

d9           -0.266986   0.043497  -6.138 8.98e-10 *** 

d10           0.111703   0.028591   3.907 9.47e-05 *** 

d11           0.208297   0.054606   3.815 0.000138 *** 

d12           0.130083   0.029273   4.444 9.02e-06 *** 

d16          -0.235662   0.039641  -5.945 2.95e-09 *** 

d18          -0.240427   0.038654  -6.220 5.37e-10 *** 

d19          -0.549740   0.037855 -14.522  < 2e-16 *** 

d21           0.230702   0.031643   7.291 3.55e-13 *** 

d22          -0.167120   0.041658  -4.012 6.11e-05 *** 

--- 
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Signif. codes:  0 ‗***‘ 0.001 ‗**‘ 0.01 ‗*‘ 0.05 ‗.‘ 0.1 ‗ ‘ 1  

Residual standard error: 0.6922 on 5157 degrees of freedom 

Multiple R-Squared: 0.5236,     Adjusted R-squared: 0.5217  

F-statistic: 283.4 on 20 and 5157 DF,  p-value: < 2.2e-16 
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(C-2) 

 Step 6: Model validation and regression diagnostics 

 After fitting a model, the associated regression diagnostics should be examined. 

The random pattern in Figure C-6 indicates that the model in Equation C-2 is a valid 

model for the unit bid price. The plot of transformed unit bid price against the fitted 

values in Figure C-7 provides further evidence that the model in Equation C-2 is a valid 

model because the straight line fit to this plot provides a reasonable fit. 

 



 169 

 
Figure C-6  Plots of residuals 
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Figure C-7  A plot of transformed unit bid price against fitted values with a straight line 

added 

 Figure C-8 shows the diagnostic plots for the model. There is almost a straight 

line in the normal QQ plot. There are no outliers identified from Figure C-8. These plots 

further confirm that the model is a valid model for the data.  
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Figure C-8 Diagnostic plots from R 

 For model fit assessment, marginal model plots shown in Figure C-9 allow for 

the comparison of the fitted model with a nonparametric model fit with loess. The 

nonparametric estimates of each pair-wise relationship are marked as solid curves, while 

the smooths of the fitted values are marked as dashed curves. The two curves in each 

plot match very well thus providing further evidence that the model is a valid model. 
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Figure C-9  Marginal model plots 

 Added variable plots from Figure C-10 below enable us to visually assess the 

effect of each predictor, having adjusted for the effects of the other predictors. It tells 

that the variable duration-based implied volatility is not that highly significant as the 

other independent variables.  
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Figure C-10  Added-variable plots 

 The output from R below gives the correlations between all the independent 

variables in model 1. Notice none of them is greater than 0.7, thus there is no problem 

for highly correlated independent variables.  

 

Output from R: Correlations between the predictors 

                      lndurationiv lnquantity lnbidders    oilFS      quarter1  quarter2 

lndurationiv        1.000         0.526         0.057       0.077        -0.036   -0.013 

lnquantity           0.526         1.000         0.028      -0.008        -0.029   -0.018 

lnbidders            0.057         0.028         1.000      -0.138         0.068   -0.011 

oilFS                  0.077        -0.008        -0.138       1.000        -0.124    0.085 

quarter1            -0.036        -0.029          0.068      -0.124        1.000   -0.294 

quarter2            -0.013        -0.018         -0.011       0.085       -0.294    1.000 

d1                     -0.019        -0.029         -0.066      -0.011       -0.020   -0.011 

d3                     -0.032        -0.031          0.005      -0.009        0.004    0.001 

d4                     -0.130        -0.008          0.098       0.003       -0.018    0.019 

d5                     -0.009        -0.028         -0.038      -0.001        0.036   -0.009 

d7                     -0.063        -0.060          0.003      -0.037       -0.010   -0.022 
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d9                      0.014         0.000         -0.005      -0.008        0.002    0.006 

d10                    0.039         0.031          0.143       0.033         0.010   -0.051 

d11                    0.050         0.032         -0.070      -0.001       -0.006    0.020 

d12                   -0.024        -0.050          0.121      -0.016       -0.002   -0.010 

d16                   -0.022        -0.071          0.004       0.002       -0.003    0.008 

d18                    0.042        -0.060         -0.005       0.010       -0.022   -0.008 

d19                    0.045         0.127         -0.155      -0.031        0.039    0.002 

d21                    0.081         0.073          0.117       0.014        0.004   -0.011 

d22                   -0.012        -0.017          0.035       0.006        0.002    0.041 

                             d1       d3       d4       d5       d7        d9      d10     d11      d12 

lndurationiv     -0.019 -0.032 -0.130 -0.009 -0.063  0.014  0.039  0.050 -0.024 

lnquantity        -0.029 -0.031 -0.008 -0.028 -0.060  0.000  0.031  0.032 -0.050 

lnbidders         -0.066  0.005  0.098 -0.038  0.003 -0.005  0.143 -0.070  0.121 

oilFS                -0.011 -0.009  0.003 -0.001 -0.037 -0.008  0.033 -0.001 -0.016 

quarter1           -0.020  0.004 -0.018  0.036 -0.010  0.002  0.010 -0.006 -0.002 

quarter2           -0.011  0.001  0.019 -0.009 -0.022  0.006 -0.051  0.020 -0.010 

d1                     1.000 -0.032 -0.052 -0.032 -0.039 -0.034 -0.056 -0.028 -0.054 

d3                    -0.032  1.000 -0.050 -0.031 -0.037 -0.033 -0.053 -0.027 -0.051 

d4                    -0.052 -0.050  1.000 -0.050 -0.061 -0.054 -0.088 -0.044 -0.085 

d5                    -0.032 -0.031 -0.050  1.000 -0.037 -0.033 -0.054 -0.027 -0.052 

d7                    -0.039 -0.037 -0.061 -0.037  1.000 -0.040 -0.065 -0.033 -0.063 

d9                    -0.034 -0.033 -0.054 -0.033 -0.040  1.000 -0.057 -0.029 -0.055 

d10                  -0.056 -0.053 -0.088 -0.054 -0.065 -0.057  1.000 -0.047 -0.091 

d11                  -0.028 -0.027 -0.044 -0.027 -0.033 -0.029 -0.047  1.000 -0.045 

d12                  -0.054 -0.051 -0.085 -0.052 -0.063 -0.055 -0.091 -0.045  1.000 

d16                  -0.038 -0.036 -0.060 -0.036 -0.044 -0.039 -0.064 -0.032 -0.061 

d18                  -0.039 -0.038 -0.062 -0.038 -0.046 -0.040 -0.066 -0.033 -0.064 

d19                  -0.044 -0.042 -0.070 -0.043 -0.052 -0.046 -0.075 -0.037 -0.072 

d21                  -0.048 -0.046 -0.076 -0.046 -0.056 -0.049 -0.081 -0.041 -0.078 

d22                  -0.035 -0.033 -0.055 -0.034 -0.041 -0.036 -0.059 -0.029 -0.057 

                              d16      d18      d19     d21     d22 

lndurationiv         -0.022  0.042  0.045  0.081 -0.012 

lnquantity            -0.071 -0.060  0.127  0.073 -0.017 

lnbidders              0.004 -0.005 -0.155  0.117  0.035 

oilFS                    0.002  0.010 -0.031  0.014  0.006 

quarter1               -0.003 -0.022  0.039  0.004  0.002 

quarter2                0.008 -0.008  0.002 -0.011  0.041 

d1                        -0.038 -0.039 -0.044 -0.048 -0.035 

d3                        -0.036 -0.038 -0.042 -0.046 -0.033 

d4                        -0.060 -0.062 -0.070 -0.076 -0.055 

d5                        -0.036 -0.038 -0.043 -0.046 -0.034 

d7                        -0.044 -0.046 -0.052 -0.056 -0.041 

d9                        -0.039 -0.040 -0.046 -0.049 -0.036 

d10                      -0.064 -0.066 -0.075 -0.081 -0.059 

d11                      -0.032 -0.033 -0.037 -0.041 -0.029 

d12                      -0.061 -0.064 -0.072 -0.078 -0.057 

d16                       1.000 -0.045 -0.051 -0.055 -0.040 

d18                      -0.045  1.000 -0.053 -0.057 -0.041 
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d19                      -0.051 -0.053  1.000 -0.064 -0.047 

d21                      -0.055 -0.057 -0.064  1.000 -0.047 

d22                      -0.040 -0.041 -0.047 -0.047  1.000 

 

 Table C-1 shows that there is no VIF greater than 5, thus there is no evidence of 

multicollinearity and thus the associated regression coefficients are well estimated. 

Table C-1  VIF test 

Variable symbol Qn  N  VD  oilFS  
1T  2T  

VIF 1.44 1.17  1.46 1.06 1.12 1.11 

   

Regression output 1 from R – Item 1 roadway excavation 

lm(formula = lnbidprice ~ lndurationiv + lnquantity + lnbidders + oilFS + quarter1 + quarter2 + 
d1 + d3 + d4 + d5 + d7 + d9 + d10 + d11 + d12 + d16 + d18 + d19 + d21 + d22, weights = 
lnmoreone) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)   3.443017   0.047437  72.580  < 2e-16 *** 
lndurationiv  0.021663   0.010878   1.991 0.046485 *   
lnquantity   -0.217740   0.003719 -58.547  < 2e-16 *** 
lnbidders    -0.226191   0.017922 -12.621  < 2e-16 *** 
oilFS              0.084194   0.009698   8.682  < 2e-16 *** 
quarter1     -0.057363   0.019712  -2.910 0.003629 **  
quarter2     -0.093401   0.018281  -5.109 3.35e-07 *** 
d1           -0.137831   0.046270  -2.979 0.002907 **  
d3           -0.225298   0.046091  -4.888 1.05e-06 *** 
d4            0.238731   0.030212   7.902 3.34e-15 *** 
d5            0.137290   0.046829   2.932 0.003386 **  
d7           -0.256516   0.038925  -6.590 4.84e-11 *** 
d9           -0.266986   0.043497  -6.138 8.98e-10 *** 
d10           0.111703   0.028591   3.907 9.47e-05 *** 
d11           0.208297   0.054606   3.815 0.000138 *** 
d12           0.130083   0.029273   4.444 9.02e-06 *** 
d16          -0.235662   0.039641  -5.945 2.95e-09 *** 
d18          -0.240427   0.038654  -6.220 5.37e-10 *** 
d19          -0.549740   0.037855 -14.522  < 2e-16 *** 
d21           0.230702   0.031643   7.291 3.55e-13 *** 
d22          -0.167120   0.041658  -4.012 6.11e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.6922 on 5157 degrees of freedom 
Multiple R-Squared: 0.5236,     Adjusted R-squared: 0.5217  
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F-statistic: 283.4 on 20 and 5157 DF,  p-value: < 2.2e-16 

 

Regression output 2 from R – Item 2 roadway embankment 

lm(formula = lnbidprice ~ lndurationiv + lnquantity + lnbidders + oilFS + d4 + d5 + d10 + d11 + 
d19 + d21 + d24, weights = lnmoreone) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)   3.398554   0.054036  62.894  < 2e-16 *** 
lndurationiv  0.030186   0.013345   2.262   0.0237 *   
lnquantity   -0.221569   0.004603 -48.139  < 2e-16 *** 
lnbidders    -0.179334   0.020827  -8.611  < 2e-16 *** 
oilFS         0.026496   0.005866   4.517 6.44e-06 *** 
d4            0.159101   0.034077   4.669 3.11e-06 *** 
d5            0.273954   0.052102   5.258 1.52e-07 *** 
d10           0.170406   0.030915   5.512 3.74e-08 *** 
d11           0.261466   0.063348   4.127 3.73e-05 *** 
d19          -0.649760   0.045623 -14.242  < 2e-16 *** 
d21          -0.145095   0.038982  -3.722   0.0002 *** 
d24           0.263631   0.058008   4.545 5.64e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.7969 on 4723 degrees of freedom 
Multiple R-squared: 0.4504,     Adjusted R-squared: 0.4491  
F-statistic: 351.9 on 11 and 4723 DF,  p-value: < 2.2e-16 

 

Regression output 3 from R – Item 3 flexible base 

lm(formula = lnbidprice ~ lnquantity + lnbidders + oilFS +  quarter1 + quarter2 + d5 + d7 + d9 + 
d10 + d13 + d16 + d18 + d19 + d20 + d22, weights = lnmoreone) 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  4.006707   0.039729 100.852  < 2e-16 *** 
lnquantity  -0.131916   0.003542 -37.243  < 2e-16 *** 
lnbidders   -0.122044   0.016483  -7.404 1.64e-13 *** 
oilFS            0.007963   0.004619   1.724  0.08481 .   
quarter1    -0.085556   0.018217  -4.696 2.75e-06 *** 
quarter2    -0.048778   0.017213  -2.834  0.00463 **  
d5           0.523574   0.052220  10.026  < 2e-16 *** 
d7           0.143547   0.024829   5.781 8.05e-09 *** 



 177 

d9           0.222671   0.035699   6.237 4.97e-10 *** 
d10          0.222995   0.038431   5.802 7.11e-09 *** 
d13          0.249893   0.042021   5.947 3.00e-09 *** 
d16          0.181547   0.032923   5.514 3.75e-08 *** 
d18          0.153311   0.030984   4.948 7.85e-07 *** 
d19         -0.452601   0.033127 -13.663  < 2e-16 *** 
d20         -0.261683   0.056640  -4.620 3.97e-06 *** 
d22          0.213198   0.039146   5.446 5.50e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.5377 on 3533 degrees of freedom 
Multiple R-squared: 0.4006,     Adjusted R-squared: 0.3981  
F-statistic: 157.4 on 15 and 3533 DF,  p-value: < 2.2e-16 
 

Regression output 4 from R – Item 4 HMAC 

 
lm(formula = lnbidprice ~ lnquantity + lnbidders + oilFS + quarter1 + d2 + d4 + d5 + d6 + d8 + 
d11 + d14 + d15 + d16 + d19 + d22, weights = lnmoreone) 
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)    4.439502   0.017967 247.099  < 2e-16 *** 
lnquantity    -0.125377   0.001677 -74.743  < 2e-16 *** 
lnbidders     -0.125336   0.007369 -17.008  < 2e-16 *** 
oilFS              0.015740   0.002116   7.437 1.13e-13 *** 
quarter1      -0.032372   0.007696  -4.206 2.62e-05 *** 
d2             0.137415   0.020089   6.840 8.45e-12 *** 
d4            -0.109398   0.010744 -10.182  < 2e-16 *** 
d5             0.140972   0.020906   6.743 1.65e-11 *** 
d6             0.104600   0.027243   3.840 0.000124 *** 
d8             0.217247   0.027779   7.821 5.89e-15 *** 
d11            0.100755   0.024535   4.107 4.05e-05 *** 
d14            0.101270   0.027232   3.719 0.000201 *** 
d15            0.265093   0.031920   8.305  < 2e-16 *** 
d16            0.145954   0.016359   8.922  < 2e-16 *** 
d19           -0.225863   0.018493 -12.213  < 2e-16 *** 
d22            0.060857   0.014770   4.120 3.82e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.3819 on 8428 degrees of freedom 
Multiple R-squared: 0.4419,     Adjusted R-squared: 0.4409  
F-statistic: 444.8 on 15 and 8428 DF,  p-value: < 2.2e-16 
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Regression output 5 from R – Item 5 regular beams 

lm(formula = lnbidprice ~ lndurationsteelhv + lnquantity + lnbidders + steelFS + d2 + d15 + d24, 
weights = lnmoreone) 
 
Coefficients: 
                   Estimate Std. Error t value Pr(>|t|)     
(Intercept)        4.423065   0.047972  92.201  < 2e-16 *** 
lndurationsteelhv  0.114010   0.009822  11.607  < 2e-16 *** 
lnquantity        -0.099652   0.006374 -15.634  < 2e-16 *** 
lnbidders         -0.126318   0.017582  -7.184 1.01e-12 *** 
steelFS           0.097699   0.014918   6.549 7.67e-11 *** 
d2                 0.171923   0.056570   3.039  0.00241 **  
d15                0.382221   0.124235   3.077  0.00213 **  
d24                0.155129   0.048748   3.182  0.00149 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.4088 on 1675 degrees of freedom 
Multiple R-squared: 0.2347,     Adjusted R-squared: 0.2315  
F-statistic: 73.38 on 7 and 1675 DF,  p-value: < 2.2e-16 

 

 

Regression output 6 from R – Item 6 CRCP 

lm(formula = lnbidprice ~ lnduration + cementFS + lnquantity + lnbidders + d5 + d10 + d11 + 
d12 + d13 + d19, weights = lnmoreone) 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  5.962821   0.093860  63.529  < 2e-16 *** 
lnduration  -0.057216   0.016945  -3.377 0.000766 *** 
cementFS   0.147692   0.031878   4.633 4.14e-06 *** 
lnquantity  -0.134569   0.006082 -22.127  < 2e-16 *** 
lnbidders   -0.097646   0.027684  -3.527 0.000441 *** 
d5          -0.184005   0.066445  -2.769 0.005735 **  
d10         -0.116521   0.034214  -3.406 0.000690 *** 
d11         -0.207599   0.054071  -3.839 0.000132 *** 
d12         -0.155797   0.036525  -4.265 2.21e-05 *** 
d13         -0.375442   0.030702 -12.229  < 2e-16 *** 
d19         -0.262584   0.079353  -3.309 0.000974 *** 
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--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.4322 on 890 degrees of freedom 
Multiple R-squared: 0.5627,     Adjusted R-squared: 0.5578  
F-statistic: 114.5 on 10 and 890 DF,  p-value: < 2.2e-16 
 
 

Regression output 7 from R – Item 7 retaining wall 

 
lm(formula = lnbidprice ~ lndurationcementhv + lnquantity + lnbidders + cementFS + d1 + d8 + 
d19, weights = lnmoreone) 
 
Coefficients: 
                            Estimate Std. Error t value Pr(>|t|)     
(Intercept)         3.60153    0.08421  42.767  < 2e-16 *** 
lndurationcementhv  0.13921    0.01916   7.266 6.87e-13 *** 
lnquantity         -0.10460    0.00897 -11.661  < 2e-16 *** 
lnbidders          -0.08518    0.03150  -2.704  0.00696 **  
cementFS          0.02623    0.04274   0.614  0.53956     
d1                 -0.26597    0.09816  -2.709  0.00684 **  
d8                 -0.28460    0.10173  -2.798  0.00524 **  
d19               -0.21716    0.08120  -2.674  0.00759 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.6362 on 1138 degrees of freedom 
Multiple R-squared: 0.1371,     Adjusted R-squared: 0.1318  
F-statistic: 25.83 on 7 and 1138 DF,  p-value: < 2.2e-16 
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APPENDIX D   

AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODEL 

 

 

Table D-1 Tentative Order Selection by ESACF Option - cement price 

ARMA(p+d,q) Tentative Order Selection Tests 

 

--ESACF-- 

p+d q 

1 0 

(5% Significance Level) 

 

Table D-2 Tentative Order Selection by SCAN and MINIC Option - steel price 

Minimum Table Value: BIC(1,0) = -1.53415 

ARMA(p+d,q) Tentative Order Selection Tests 

---------SCAN-------- 

p+d q BIC 

1 0 -1.53415 

(5% Significance Level) 

 

Table D-3 Tentative Order Selection by SCAN Option - oil price 

ARMA(p+d,q) Tentative Order Selection Tests 

---------SCAN-------- 

p+d q BIC 

1 1 2.227354 

(5% Significance Level) 
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Figure D-1  White Noise Check of Residuals for the model of cement price 

 

Figure D-2 Normality Check of Residuals for the model of cement price 
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Figure D-3  White Noise Check of Residuals for the model of steel price 

 

Figure D-4 Normality Check of Residuals for the model of steel price 



 183 

 

Figure D-5  White Noise Check of Residuals for the model of oil price 

 

Figure D-6 Normality Check of Residuals for the model of oil price 
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APPENDIX E   

VECTOR AUTOREGRESSIVE MOVING AVERAGE (VARMA) MODEL 

 

 This appendix provides supplement computed materials supporting the 

developed VARMA model in Section 5. 

 

Step 1: Tentative order selection 

Figure E-1 gives the result of tentative order selection suggesting the VAR model 

with AR order 2 and no MA term according to the smallest value of AICC. 

 
                          Minimum Information Criterion Based on AICC 
 
 Lag            MA 0           MA 1           MA 2           MA 3           MA 4           MA 5 
 
 AR 0      8.1986197      7.6733172       7.586941      7.4491416      7.4044994      7.3762644 
 AR 1      -1.535598      -1.502097      -1.524127      -1.475135      -1.397069      -1.284298 
 AR 2      -1.560388      -1.551874       -1.42439      -1.420295      -1.346016      -1.239576 
 AR 3      -1.479959      -1.461403      -1.355284      -1.328222      -1.198507      -1.136581 
 AR 4      -1.433103      -1.442941      -1.290802      -1.168553      -1.001633      -1.026524 
 AR 5      -1.313427      -1.380836      -1.210052      -1.033199      -0.846832      -0.862312 

Figure E-1  Result of MIMIC method 

Figure E-2 shows again that the model can be obtained by an AR order m=2 

since partial autoregression matrices are insignificant after lag 2 with respect to two 

standard errors. 

 
                       Schematic Representation of Partial Autoregression 
                       Variable/ 
                       Lag          1      2      3      4      5      6 
 
                       CEMENT       +..    ...    ...    ...    ..-    ... 
                       STEEL        .+.    .-+    -..    ...    ..-    ... 
                       OIL          ..+    ...    -..    ...    ...    ... 
 
                                   + is > 2*std error,  - is < 
                                   -2*std error,  . is between 

Figure E-2 Partial Autoregression Matrices 

The partial cross-correlation matrices in Figure E-3 are insignificant after lag 2 

with respect to two standard errors. This indicates again that an AR order of m=2 can be 

an appropriate choice. 
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                             Partial Cross Correlations by Variable 
 
               Variable        Lag          CEMENT           STEEL             OIL 
 
               CEMENT            1         0.84643        -0.10121         0.06048 
                                 2        -0.03811        -0.10462         0.03682 
                                 3         0.01664        -0.18347        -0.15591 
                                 4         0.04475         0.06515         0.03064 
                                 5         0.05447         0.06002         0.02778 
                                 6         0.01730        -0.14354         0.08643 
               STEEL             1        -0.04895         0.91512         0.01581 
                                 2         0.00289        -0.27550        -0.15767 
                                 3         0.11428        -0.01940         0.05928 
                                 4        -0.01433         0.03595        -0.07773 
                                 5         0.02863         0.06480        -0.02765 
                                 6         0.01457         0.13353        -0.00392 
               OIL               1         0.05680         0.06316         0.93964 
                                 2         0.03860         0.27196        -0.00834 
                                 3        -0.07130         0.06062         0.09738 
                                 4        -0.00898        -0.02800        -0.05860 
                                 5        -0.15005        -0.24998        -0.06832 
                                 6         0.00948         0.05669        -0.12928 
 
 
                                   Schematic Representation of 
                                   Partial Cross Correlations 
                       Variable/ 
                       Lag          1      2      3      4      5      6 
 
                       CEMENT       +..    ...    ...    ...    ...    ... 
                       STEEL        .+.    .-.    ...    ...    ...    ... 
                       OIL          ..+    .+.    ...    ...    .-.    ... 
 
                                   + is > 2*std error,  - is < 
                                   -2*std error,  . is between 

Figure E-3 Partial Cross Correlation 

Figure E-4 shows that after lag m=2, the partial canonical correlations are 

insignificant with respect to the 0.05 significance level, indicating again that an AR 

order of m=2 can be an appropriate choice. 

                                  Partial Canonical Correlations 
 
      Lag    Correlation1    Correlation2    Correlation3        DF    Chi-Square    Pr > ChiSq 
 
        1         0.96950         0.96350         0.76961         9        292.81        <.0001 
        2         0.41403         0.13594         0.01185         9         22.43        0.0076 
        3         0.26888         0.13622         0.05082         9         10.93        0.2804 
        4         0.10922         0.08183         0.01999         9          2.21        0.9878 
        5         0.31716         0.04530         0.01252         9         11.82        0.2235 
        6         0.23448         0.10425         0.02445         9          7.57        0.5775 

Figure E-4 Partial Canonical Correlations 
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Step 3: Model Estimation and Model Diagnostic Check 

                                      The VARMAX Procedure 
 
                       Type of Model                              VECM(2) 
                       Estimation Method    Maximum Likelihood Estimation 
                       Cointegrated Rank                                1 
 
 
                                    Long-Run Parameter Beta 
                                     Estimates When RANK=1 
 
                                    Variable               1 
 
                                    CEMENT           1.00000 
                                    STEEL           -3.06727 
                                    OIL             -0.26142 
 
 
                                     Adjustment Coefficient 
                                        Alpha Estimates 
                                          When RANK=1 
 
                                    Variable               1 
 
                                    CEMENT          -0.01133 
                                    STEEL           -0.00382 
                                    OIL              0.00164 
 

Figure E-5 Parameter Estimates 

                                    Model Parameter Estimates 
 
                                             Standard 
  Equation   Parameter        Estimate          Error   t Value   Pr > |t|   Variable 
 
  D_CEMENT   AR1_1_1          -0.01133        0.00188                        CEMENT(t-1) 
             AR1_1_2           0.03474        0.00578                        STEEL(t-1) 
             AR1_1_3           0.00296        0.00049                        OIL(t-1) 
             AR2_1_1           0.03876        0.09163      0.42     0.6731   D_CEMENT(t-1) 
             AR2_1_2          -0.06105        0.06490     -0.94     0.3489   D_STEEL(t-1) 
             AR2_1_3          -0.00700        0.01009     -0.69     0.4894   D_OIL(t-1) 
  D_STEEL    AR1_2_1          -0.00382        0.00264                        CEMENT(t-1) 
             AR1_2_2           0.01173        0.00810                        STEEL(t-1) 
             AR1_2_3           0.00100        0.00069                        OIL(t-1) 
             AR2_2_1           0.16181        0.12843      1.26     0.2103   D_CEMENT(t-1) 
             AR2_2_2           0.21958        0.09097      2.41     0.0174   D_STEEL(t-1) 
             AR2_2_3          -0.03096        0.01414     -2.19     0.0306   D_OIL(t-1) 
  D_OIL      AR1_3_1           0.00164        0.01726                        CEMENT(t-1) 
             AR1_3_2          -0.00502        0.05293                        STEEL(t-1) 
             AR1_3_3          -0.00043        0.00451                        OIL(t-1) 
             AR2_3_1           0.81131        0.83908      0.97     0.3357   D_CEMENT(t-1) 
             AR2_3_2           0.94565        0.59433      1.59     0.1144   D_STEEL(t-1) 
             AR2_3_3           0.04093        0.09236      0.44     0.6585   D_OIL(t-1) 

Figure E-6 Parameter Estimates Continued 

Figure E-7 shows the innovation covariance matrix estimates, the various 

information criteria results, and the tests for white noise residuals. The residuals do not 
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have very significant correlations at lag 2 or lag 3. These results show that a VECM(2) 

model fits well with the data. 

                                      The VARMAX Procedure 
 
                                   Covariances of Innovations 
 
                    Variable          CEMENT           STEEL             OIL 
 
                    CEMENT           0.10275         0.00882        -0.11830 
                    STEEL            0.00882         0.20185        -0.10131 
                    OIL             -0.11830        -0.10131         8.61578 
 
 
                                          Information 
                                            Criteria 
 
                                        AICC    -1.53614 
 
 
                               Schematic Representation of Cross 
                                   Correlations of Residuals 
                   Variable/ 
                   Lag          0      1      2      3      4      5      6 
 
                   CEMENT       +..    ...    ...    -..    ...    ...    ... 
                   STEEL        .+.    ...    ...    ...    ...    ...    ... 
                   OIL          ..+    ...    ..-    ...    .+.    ...    ... 
 
                    + is > 2*std error,  - is < -2*std error,  . is between 
 
 
                                   Portmanteau Test for Cross 
                                    Correlations of Residuals 
                          Up To 
                          Lag            DF    Chi-Square    Pr > ChiSq 
 
                                3         9         26.39        0.0018 
                                4        18         40.21        0.0020 
                                5        27         50.88        0.0036 
                                6        36         58.90        0.0094 

Figure E-7 Diagnostic Checks 

Figure E-8 describes how well each univariate equation fits the data. The 

residuals for cement and steel are off from the normality. There are no AR effects on 

other residuals. Except the residuals for oil, there are no ARCH effects on other 

residuals. 
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                                      The VARMAX Procedure 
 
                               Univariate Model ANOVA Diagnostics 
 
                                                 Standard 
                   Variable      R-Square       Deviation    F Value    Pr > F 
 
                   CEMENT          0.1443         0.32055       3.78    0.0034 
                   STEEL           0.1317         0.44927       3.40    0.0068 
                   OIL             0.0275         2.93527       0.63    0.6743 
 
 
                            Univariate Model White Noise Diagnostics 
 
                              Durbin            Normality                  ARCH 
            Variable          Watson    Chi-Square    Pr > ChiSq    F Value    Pr > F 
 
            CEMENT           1.99249         22.04        <.0001       0.18    0.6731 
            STEEL            1.96865        116.60        <.0001      26.09    <.0001 
            OIL              2.00441         11.37        0.0034       0.02    0.8756 
 
 
                                Univariate Model AR Diagnostics 
 
                     AR1                  AR2                  AR3                  AR4 
  Variable    F Value    Pr > F    F Value    Pr > F    F Value    Pr > F    F Value    Pr > F 
 
  CEMENT         0.00    0.9748       0.11    0.8980       1.75    0.1607       1.69    0.1570 
  STEEL          0.01    0.9155       0.45    0.6418       0.30    0.8285       0.48    0.7469 
  OIL            0.01    0.9255       2.80    0.0651       1.83    0.1462       2.53    0.0449 

Figure E-8 Diagnostic Checks Continued 
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(a) 
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(b) 
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(c)  

Figure E-9 The fitted time series and the forecast trend plots 
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APPENDIX F   

LOSS SIMULATIONS BASED ON UNIVARIATE TIME SERIES MODEL AND 

VECTOR TIME SERIES MODEL 
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Figure F-1 ―Expected losses‖ for embankment 
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Figure F-2 Pareto front for embankment 
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Figure F-3 ―Expected losses‖ for HMAC 
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Figure F-4 Pareto front for HMAC 

 

Figure F-5 Pareto front for excavation (associated with CVaR) 

 



 195 

 

Figure F-6 Pareto front for embankment (associated with CVaR) 

 

Figure F-7 Pareto front for HMAC (associated with CVaR) 
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Figure F-8 Pareto front for regular beam (associated with CVaR) 

 

Figure F-9 Pareto front for CRCP (associated with CVaR) 
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Figure F-10 Pareto front on project level (associated with CVaR) - single barrier 

 

 

Figure F-11 Pareto front on project level (associated with CVaR) - multiple barriers
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