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ABSTRACT 

 

Sociospatial Inequality:  A Multilevel and Geo-Spatial Study of Latino Poverty. 

(December 2011) 

Carlos Siordia,  B.A. University of Texas Pan-American; M.S.; Texas A&M University 

Co-Chairs of Advisory Committee,     Dr. Rogelio Saenz  
                                                                   Dr. Dudley L. Poston 

 

 

 Sociology at its core has always been interested in understanding how society 

works.  Previous studies on social stratification have sought to outline who gets what, 

when, and why.  This project introduces the where element to advance our understanding 

of how resource distribution affects life chances.   

The research question is: Does the percent of Latinos in the area of residence 

have an influence on Latino’s individual poverty over and above the influence on 

poverty of the person characteristics?  The study ascertains how micro-level inequality is 

influenced by macro-level attributes and explores how spatial non-stationarity plays a 

role in these mechanics.  This sociospatial inequality investigation will delineate how 

individual-level stratifying mechanisms are influenced by context-level structural 

attributes and how sociospatial non-stationary processes play a role in these mechanics.   

The dissertation is conceptually driven by Hubert M. Blalock’s 1970 theory on 

minority relationships.  Blalock posited the testable hypothesis that discrimination 

against oppressed groups increases when their population rises.  Using theoretical 



 iv 

propositions inspired by Blalock leads to the testing of the following two formal 

hypothesis: the multilevel hypothesis (H1) focuses on macro-level effects, I hypothesize 

that as the percent of Latinos/as in the area of residence increases, the odds of being in 

poverty will increase for Latinas/os; on the spatial hypothesis (H2), I hypothesize that the 

statistical association between percent Latina/o and percent poverty is spatially 

nonstationary. 

I find that H1 cannot be falsified.  The models reveal, as Blalock predicted, that as 

the percent of Latinos/as in the area of residence increases, the odds of being in poverty 

increase for Latinas/os (even after controlling for various level-1, level-2, and GWR-

level-2 factors).  I also find that H2 could not be falsified. I find that the statistical 

association between percent Latina/o and percent poverty is spatially nonstationary.   

My multilevel and spatial modeling investigation was unable to falsify Blalock’s 

minority group threat theory.  Hierarchical models indicate that as the percent of 

Latino/a increases, the likelihood of being in poverty for Latinas/os increases.  This 

statically significant relationship holds constant even after spatial nonstationarity level-2 

control factors are introduced.   
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CHAPTER I 

INTRODUCTION  

 

Research Overview  

“Inequality—the study of who gets what and why—has been 
at the heart of sociology since its inception.  However, this 

simple formula fails to acknowledge that where is also a 
fundamental component of resource distribution.”  

Lobao, Hooks, and Tickamyer 2007:1 
 

In September 2010 CBS News alerted our nation that the “ranks of the working-

age poor climbed to the highest level since the 1960s…leaving one in seven Americans 

in poverty.” (CBS News: 1) and four months later, in January 2011, they increased the 

alarmed by informing us that the “number of poor people in the U.S. is millions higher 

than previously known, with 1 in 6 Americans” struggling in poverty (CBS News: 2). 

The mass media message is clear: The USA is in financial trouble and many of us are 

suffering.  They conveyed this message by simply talking about the increasing number 

of people living in poverty.  They were not crying wolf.  The US is in financial and thus 

social trouble.  Social disequilibrium is affecting both ‘people’ and ‘places’ in different 

ways—they are suffering unequally.   

This dissertation seeks to answer how social inequality, as measured by poverty 

presence, differs by demographic characteristics and social context.  In particular, it  

dependence plays a role in social inequality and will experiment with the idea of spatial 
 
non-stationarity by introducing spatially-dependent coefficients in the final models. 

______________________________ 
This dissertation follows the style and format of American Sociological Review. 
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In short, the dissertation argues and gives quantitative support for the idea that 

both socioeconomic inequality and percent of minorities in a community rise and fall 

congruently because there are social structures that bind their movements.  I argue and 

theorize that the primary element perpetuating this positive relationship has to do with 

systematic discriminatory practices rooted in human nature and structuralized by biased 

informal interactions and formal organizations. We will now turn our attention to current 

poverty trends and a short discussion of why we should study poverty.  I will close with 

a ‘full disclosure’ statement.   

 

Poverty in the United States  

Despite many governmental and private initiatives, USA poverty levels have 

seesaw but have on average remained roughly the same over the last decades.  Economic 

recessions and booms have come and gone and social inequality has stubbornly retained 

its infamous but firm place in American society.  For example, data from the Annual 

Social and Economic Supplement (ASEC) created by the Current Population Survey 

(CPS) estimates that in 1980, about 13% of the US population lived at or below the 

poverty line and that by 2009; about 14% of them lived at or below the poverty line. The 

one percent difference in almost 30 years hides the fact that in 2009 there was a bigger 

population base—which means there are more people living in poverty than in 1980.  

The most recent U.S. Census Bureau report on poverty indicates there are 

statistically significant annual increases in the poverty rate from 2008 (13.2%) to 2009 

when the official poverty rate was at 14.3% (DeNavas-Walt, Proctor, & Smith: 2010).  
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The 2009 poverty rate was the highest since 1994 but lower than the first official poverty 

rate estimate in 1959 when the poverty rate was at 22.4%—in   absolute numbers, the 

2008 (39.8 million in-poverty) population increased to 43.6 million in 2009—the third 

consecutive annual increase (DeNavas-Walt, Proctor, & Smith: 2010).  The number of 

people in poverty in 2009 is the largest since poverty estimates were first published.      

The mainstream story portrayed in the media—by necessity of the medium—

oversimplifies the complexity of poverty trends by only telling audiences that we still 

have many people living in poverty.  Public media discourse is usually peppered with the 

idea that despite the many expensive efforts made over many years, poverty has not been 

eradicated.  It is true; poverty is prevalent in the USA.  For example, over the last three 

decades, the proportion of the population in poverty has fluctuated, but we are where we 

were 30 years ago and in absolute numbers worse off than we were over half a century 

ago.  While policy makers, media consumers, and academics abstractedly pounder the 

origins, mechanics, and consequences of inequality (i.e. poverty), people continue to 

enter, exit, and remain in poverty during their lifetime.  Intellectual explorations on the 

topic at times hide the real every-day pain experienced victims of sociospatial inequality.      

Minimalist national-level discussions on poverty are rarely complimented by 

non-academic complex forums that consider how inequality is simultaneously clustered 

along social and geographic dimensions.  What follows is a overview of these elements.   

Let us begin with the geospatial distribution of inequality—“geospatial” is short 

for geographical-space and “distribution of inequality” will be interchangeably used with 

sociospatial inequality.  Poverty concentrations have an uneven geographical 
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distribution.  For example, data from the ASES indicates the top thirteen states poorest 

states in 2009 contained about 28 million of the approximately 43 million poor.  States 

with the greatest number of people in poverty in order from greatest to least are: 

California, Texas, New York, Florida, Georgia, Illinois, North Carolina, Ohio, Arizona, 

Pennsylvania, Michigan, Tennessee, and Indiana.  That means that about two-thirds 

[(28÷43)×100≈65%] of the poor resided in about a quarter [(13÷51)×100≈26%]  of the 

51 contiguous “mainland” continental US states and Washington D.C.  It is clear, even at 

the state level, that poverty is geographically concentrated (as seen in Map 1 below).  

 

 

 
 
 

Map 1 
Percentage of People in Poverty in the Past 12 Months by State: 2009 
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Map 1 above (Source: Bishaw & Macartney 2010) visually displays the high 

geographic concentration of poverty in Southern states.  The statistics informing the map 

make it clear that states are afflicted unequally.  On a more theoretical topic, moving 

from a national to a state level discussion on the distribution of poverty offers 

substantive insight.  This investigation uses geographies that are much smaller than 

states.  Paying attention to “subnational inequality” is “important to social science 

understanding of stratification processes” (Lobao 2004: 1).  By doing so, I paint a more 

complete and complex picture of how sociospatial inequality operates in continental US.     

Poverty is not only geographically clustered; it also concentrates along detectable 

social dimensions.  For example, the “poverty rate of non-Hispanic Whites was lower 

than the poverty rates for other race groups” (DeNavas-Walt, Proctor, & Smith: 

2010:16).  Of the 43 million in poverty during the 2009 survey period, non-Latino-

Whites and Latinos/as accounted for 71% of all the poor (DeNavas-Walt, Proctor, & 

Smith: 2010).  Racial-Ethnic categorization schemes will be discussed in greater detailed 

later.   

My dissertation will focus on contrasting Latinos/as and Non-Latino-Whites.  

This makes the vast and complex enterprise more manageable.  All other Non-Latino-

Minority groups are important and unique in many ways.  This is the primary reason 

why they are not included in the discussion.  Each of them deserves and necessitates a 

detail contrast against the majority group.  Only the ‘Latinos versus non-Latino-Whites’ 

contrast will be included throughout the dissertation.      
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By using American Community Survey 2005-2009 5-year data, we can estimate 

the Latino population at 45,476,938 with about 9,765,064 of them having and income in 

the past 12 months below the poverty level.  The same data source estimates that about 

18,144,049 non-Latino-Whites (out of a base population of 198,415,102) had an income 

in the past 12 months below poverty level.  In short, within-group comparisons reveal 

that 21% [= (9,765,064÷45,476,938) × 100] of the Latino population is in poverty while 

only 9% [= (18,144,049÷198,415,105) × 100] of non-Latino-whites (i.e. the dominant 

group) is in poverty.  The label “dominant” is discussed in greater detail below.  

Thus far we have established that social inequality is present in the USA and that 

it is unequally distributed across geographies and groups of people.  So why study 

poverty?  

 

 Why Study Poverty?  

Answering the following question is a good starting point for this investigation: 

Why study poverty as a measure of social inequality?  More specifically: Why 

investigate the geographic and demographic concentration of inequality as measured by 

poverty status?  

The simplest response is that poverty affects everyone—the impoverished, 

fortunate, and wealthy alike.  When resource-inequality gaps increase, both beneficiaries 

and victims alike are exposed to the risk of social instability created by the 

disenfranchisement.  Because sociospatial inequality has the potential for unjustly and 

unevenly afflicting all members of society, it merits attention.    



 7 

Inequality affects all, but is it really an issue in post 2000 USA?  Yes, in truth, 

the gap between the rich and poor has never disappeared and is now rapidly increasing.  

For example, the wealthiest quintile in the US now holds about 84% of the wealth 

(Norton & Ariely 2011).  It is unfortunate that some investigations suggest individuals 

dramatically underestimate current levels of wealth inequality (Norton & Ariely 2011).   

There are those who argue that inequality is a product of America’s open-market 

capitalism. They argue that “capitalist from the dominant group are the major 

beneficiaries of prejudice and discrimination in a competitive capitalist economic 

system” (Becker 1971:21).  Others have responded that “stratification and inequality are 

not created by capitalism” and that “the existence of markets does not guarantee 

inequality” (Massey 2007:20).  Instead, they contend, free-market capitalism only 

enhances “the potential for stratification by increasing the total stock of material 

resources and multiplying the number of social categories across which they are 

distributed” (Massey 2007:23).  Inequality, in other words, has a greater potential for 

increasing in free-market capitalist economies because it allows for the concentration of 

surplus to more readily be spread across a larger set of social categories.  But, open-

market economies do not necessitate the presence of inequality.  

So, inequality affects us all and it is present in our society—but there is nothing 

in our socioeconomic structure that demands the existence of inequality.  Why then 

should anyone care about understanding poverty?  A key element in this discussion is 

the commonly held belief that great socioeconomic disparities are closely associated 

with the presence of unstable societies.  For example, some attribute current middle-
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eastern revolutions (as in Egypt and Libya) to the high level of inequality in the country.  

It could be argued that the proliferation of inequality renders all citizens at risk of subtle 

or forceful social, military, and/or psychological subjugation.  In other words, inequality 

is deeply interwoven with the social equilibrium necessary for self fulfillment.      

There are many reasons why we should expand our understanding on social 

inequality.  But in essence, the prevalence of poverty around the globe signals that as a 

species, Homo sapiens have not yet found a way to guarantee all their group members an 

equal set of life chances.  Our deliberate and/or unintentional social stratification 

mechanisms forbid most of us from being equals.   

If a democracy is at all possible, then a high level of equality in that society is a 

necessary condition.  The maintenance and proliferation of sociospatial inequality 

challenges the democratic axiom that all members are equal.  Poverty is the evidence of 

social injustice.  It merits attention and understanding.      

Despite potential cynicism, recent research has also found that individuals from 

different demographic backgrounds do “desire a more equal distribution of wealth than 

the status quo” (Norton & Ariely 2011:9).  Existing evidence even suggest that 

individuals have a greater concern for the less fortunate than the more fortunate (Harness 

& Rabin 2002).  If most individuals are interested in creating a more stable and equal 

world, then investigating poverty as a proxy measure is a worthwhile endeavor in 

advancing a noble cause.  If eradicating inequality is an impossibility, then 

understanding social stratification may at least offer the opportunity for its mitigation.   
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Significance 

Sociology at its core has always been a discipline primarily interested in 

understanding how society works—and how this knowledge can help improve our 

world.  Studies on social stratification have sought to outline who gets what, when, and 

why.  Until recent decades, some trailblazing researchers have ventured to include the 

where element in understanding how resource distribution affects life chances.   

This work is significant in several ways.  Primarily, it utilizes recent 

mathematical and software developments to address the question of how resources are 

distributed across individuals and how these dynamics vary by where they reside.  The 

project will delineate the geographic and demographic concentration of poverty.  By 

using advanced statistical techniques, the study ascertains how micro-level inequality is 

influenced by macro-level attributes and explores how spatial non-stationarity plays a 

role in these mechanics.    

The proposed work extends existing research and continues to apply appropriate 

statistical techniques in a multilevel logistic analysis of context level effects on 

individual-level poverty.  The crucial importance of my relatively recent data is that it 

assesses the almost universally accepted sociological idea that context affects 

individuals.   

Although this will be discussed in greater detail in the full dissertation, we should 

note the distinction between the socially constructed meaning given to certain spaces and 

the geographically defined space created my data limitations.  My discussion on 

sociospatial contexts refers to how geographically bounded areas capture a particular set 
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of structural dynamics.  My research pragmatically copes with the nesting limitations of 

secondary US Census Bureau microdata and investigates how poverty variance within 

individuals and areas capture the distribution of inequality. 

In summary, the proposed sociospatial inequality investigation will delineate 

how individual-level stratifying mechanisms are influenced by context-level structural 

attributes and sociospatial non-stationary processes.  In doing so, it will contribute to our 

knowledge of sociospatial inequality. 

 

Disclosure  

In the interest of full disclosure, and in the event that my personal life experience 

somehow biases this investigation, I would like to admit to my economically destitute 

childhood.  Many years ago, my parents filled our home with tenderness and their hands 

with calluses as they strived to meet our basic necessities.  My four brothers and I often 

wore shoes and clothes for longer than appropriate and rarely enjoyed the privilege of 

new expensive toys or the fast food experience many children crave. Our few family 

trips were confined to a 50-mile radius from our home in El Valley (the South most 

borderland area in Texas between Brownsville and Rio Grande).  In spite of the financial 

challenges my parents struggled with, our home was filled with warmth and security.    

 When I was a child, I knew the secret to happiness: Follow all the rules, and if 

you do, all your dreams will come true.  As this project will reveal, I think such a view is 

detached from the truth.  There are social structures beyond our individual control that 

systematically influence our ability to reach our personal goals.  We all face different 
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obstacles at different levels of severities. We are not on a level-playing field.  By 

indirectly tracing my psycho-emotional scars—born from what I perceive as unjust 

social inequality—we will travel through the sociological imagination to expand our 

understanding of social stratification.  Our discussion will focus on the technical as my 

wounded-child-self joins our journey.  Stay with me as I subtly and inadvertently reveal 

my wounds through a labyrinth of intellectual thought.   
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CHAPTER II 

LITERATURE REVIEW 

 

“When a person thinks, more than one generation’s 
passions and images think in him.”  

Novak 1972:32 
 

The main goal of this investigation is to theorize and investigate how and why 

hierarchical and sociogeographical factors are associated with the likelihood of being in 

poverty.  Existing research has established that there are various significant statistical 

associations between poverty and various micro- and macro-level demographic 

characteristics. There are two main research questions in this dissertation.   

The first and most important research question, which I will call the “multilevel” 

research question, is as follows:  

Does the percent of Latinos in the area of residence have an influence on 
individual poverty over and above the influence on poverty of the person 
characteristics?   
 

To answer this question, multilevel logistic models are explored with HLM 6.08 

software (Raudenbush, Bryk, and Congdon 2004b) using established socio-quantitative 

logic (see Raudenbush et. al. 2004b).  The second “sociospatial” and exploratory 

research question is:   

Is spatial non-stationarity an important element to account for when 
investigating poverty?   
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Geographically weighted regressions (GWRs) are explored using ArcGIS 10 software 

(ESRI 2011) and these spatial models are interpreted using existing geocomputational 

logic (Fotheringham, Brunsdon, and Charlton: 2002).   

I find hierarchical and geospatial modeling useful and in determining which 

factors are statistically significant in predicting individual-level poverty while 

accounting for local racial-ethnic concentration.  This chapter reviews the theory 

framing the “how” and “why” in interpretations and final explanations.  

In order to answer how and why context matters this enterprise must employ four 

quasi-truisms.  The prefix “quasi” is used because some elements of the assumptions are 

empirically testable and discussed in this dissertation.  I seek to reveal all untestable 

elements in the theoretical framework guiding the statistical models.  The main point is 

that the theory construction in this project necessitates both because they are crucial for 

understanding the ensuing sociospatial discourse on inequality.   

The first quasi-truism is that humans are spatial beings.  I believe individuals are 

most influenced by proximal events—proximal in the sense of time (i.e., distinct 

interactions) and geographic space (i.e., discrete physical location).  The term “distinct” 

is important because genuinely causal relations can only be obtained “between distinct 

thing or events” (Ball 1978:101).  For example (and in general), a murder down the 

street impacts us more than one that occurs 5,000 miles away.  Also, a one-day-old 

murder is more likely to affect us than one that occurred 5,000 years ago.  Our first and 

fundamental truism is that both time and physical space matters.  Geographer Waldo 

Tobler’s seminal first law of geography was written several decades ago: “everything is 
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related to everything else, but near things are more related than distant things” 

(1970:236).  Our first adage would argue that “near” should invoke both time and space.   

Secondly, I argue that human behavior is hierarchically influenced.  People are 

affected differently by distinct factors at diverse sociospatial-levels.  That is, individual 

level attributes do not exist in a sociospatial vacuum: Context matters!  Individual 

characteristics are more proximal but not necessarily more relevant than distant 

community level attributes—both matter equally but in different ways.  For example, 

educational achievement affects an individual’s economic potential as a function of their 

socioeconomic environment (having a Ph.D. in the middle of an abandoned desert is of 

little economic value).  In general, we could say that moderate levels of education are 

harshest on limiting money-making opportunities in job-deficient markets.  Thus, 

educational attainment at the individual-level affects earned income in ways that interact 

with local labor markets.  The point is that both individual- and context-level factors 

play different and significant roles in influencing behaviors. 

Our third quasi-truism is that inequality is in part a product of discrimination.  I 

posit that massive social disparities are not a necessary condition for the survival and 

evolutionary adaptation of our species.  The assumption is partially addressed in the 

following chapters—but in truth is necessary given available variables in the non-

longitudinal data set being used (causality is extrapolated and not directly tested).  The 

crucial point here is that I believe uneven distribution of individuals along 

socioeconomic-classes exists in part because class-categories (e.g., racial-ethnicity) 

exist. Neurophysiologically driven heuristics are filtered through prejudiced views that 
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lead humans to create discriminatory categories of people that are then used to unevenly 

distribute resources across these categories (Massey 2007). This non-pecuniary 

discrimination-driven process creates social inequality. 

The fourth and final quasi-truism is that poverty-status is a good proxy for 

measuring discrimination.  I will admit that this view paints individuals who are in-

poverty as victims of systematic discrimination. Since the dissertation focuses on the 

Latino/a racial-ethnic label, the broader argument is that finite social-power creates 

social stratification by various factors like racial-ethnic discrimination.  The goal of 

social stratification is to control (and concentrate) material and non-material resources.  

Racial-ethnic discrimination is a good tool for reaching this goal because it can exploit 

resources away from targeted groups.  Thus, poverty is (in part) a product of 

discrimination and a good proxy measure of it.       

This dissertation investigates which characteristics are associated with those who 

are relegated to the lower rungs of the American socioeconomic hierarchy and how 

geographic variability (i.e., the where element) plays a role in the distribution of 

resources.  This intricate objective requires a multifaceted statistical and theoretical 

approach.  Blalock’s (1970) theory—the testable hypothesis that discrimination 

increases when minority population rises (because their growth amplifies the dominant 

group’s fear against them)—is the cornerstone of this project and our starting point.   

After delineating Blalock’s work as our guiding theory, we will move on to 

outline the fundamental assumptions underlying the theory.  Subsequently, we will 

discuss social stratification, power, hierarchical influences, and sociogeographical space.  
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In brief, the literature review aims at framing our understanding of poverty as occurring 

in a social structure that systematically creates social categories, allocates people across 

them and then distributes resources unequally across the stratums.  

After introducing Blalock’s and Becker’s (1971) work on measuring and 

defining discrimination, we will discuss Gerhard E. Lenski’s seminal work in 1966 (I 

will be using the 1984 book edition) on the distributive processes that create and 

maintain social stratification.  Lenski’s work is an excellent source for defining the 

assumptions in our social stratification theory.  Lenski provides us with a philosophy of 

why individuals and their societies produce social hierarchies.  I will use his writings to 

frame why distributive processes are formed and will adapt three postulates to argue that 

both humans (as individuals) and societies (as their aggregation) are self-seeking units 

pursuing the maximization of their resources.  

The theoretical foundation will also be closely complimented with Douglas 

Massey’s 2007 book on social stratification in the American system.  Massey’s erudite 

writing will be instrumentalized to explain how social inequality is born, maintained, and 

expanded.  Massey’s ideas will help move our conversation to a more modern discourse 

by scaffolding our views along a more “objective” understanding of human racial-ethnic 

discrimination.  In this part of the chapter, we introduce human’s need (potentially an 

evolutionary trait) to categorize as being a key element in understanding the system that 

begets social strata.  By using a set of logical arguments, I will extend his views and 

argue that internal (i.e., physicalistic) dynamics are products of biological-materialism 



 17 

that contribute to the birth, sustenance, and proliferation of equality disequilibrium in 

our species.  

After discussing all these fundamental philosophies and resulting theoretical 

postulations, I move on to discuss the importance of having a critical sociospatial view 

of human behavior.  The closing sections of the chapter will discuss how social 

stratification theories on discrimination can benefit from introducing sociospatial 

elements.  In particular, I will discuss the idea of cross-level hierarchical-influences and 

then explain how spatial non-stationarity is related to this topic.  

   

Defining and Measuring Discrimination 

Over four decades ago, Huber M. Blalock Jr. (1970) formulated some 

empirically testable theoretical propositions on the topic of minority-group relations. The 

following sections will drill deep into the theoretical underlings of social inequality—the 

main topic of this project.  Blalock’s proposed methods for measuring and 

conceptualizing discrimination—the cornerstone of this dissertation—will now be 

introduced.  

The secondary data being used in this project has no variables on perceived 

discrimination.  Under such limitations, measuring discrimination, Blalock argues (and I 

concur), must be done indirectly.  This indirect measuring necessitates “a set of 

theoretical assumptions—many of which will be untestable—in order to link the notion 

of discrimination to actual measures” (Blalock 1970:15).  In my case, I assume poverty 

status is an adequate and appropriate measure of discrimination.  The indirectness of the 



 18 

measure requires a theory of social causation, a requirement that inconveniently 

entangles the measurement process with theoretical considerations.  Our literature 

review will untangle this convolution.     

Blalock beautifully ponders how intent operates in causal systems and concludes 

that when “we attempt to measure discrimination we usually obtain measures of 

inequality” (Blalock 1970:17 italics by original author).  My dissertation on social 

stratification is focused on measuring discrimination against Latinos/as.  Existing work 

supports the “relative group size-inequality hypothesis” (Saenz 1997:207) by showing 

that Latinos/as residing in communities with heavy co-ethnic concentrations have a labor 

market penalty (Bean and Tienda 1987; for early work on the Black population see 

Glenn 1964). I will be using poverty status as a proxy to inequality.  Thus, Latinos/as in 

poverty are seen as victims of inequality.  It is important to note that socioeconomic 

inequality is a resultant of discriminatory behavior and “of other factors as well” 

(Blalock 1970:17).  The “other factors” are beyond the scope of this study.  I do however 

acknowledge that social structures are an important component in determining life 

chances.   

The integration of micro and macro approaches is difficult.  Theorizing about 

their bidirectional interaction is deeply challenging.  Translating “back and forth 

between the macro level, where groups are the units of analysis, and the micro level 

where the focus is on individuals” is complicated (Blalock 1970:21).  Following 

Blalock’s instructions, this quantitative investigation focuses “on individuals as units of 

analysis while using macro variables as indicators of exposure to different environmental 
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stimuli” (1970:26).  In particular, I use statistical models to predict individual-level 

likelihood of being in poverty after controlling for several individual-level factors and 

introducing social-environmental variables (e.g., percent Latinos/as in area of residence 

and spatial dependence in macro attributes).  The multilevel and geospatial investigation 

in effect test how “contextual effects” (Blalock 1970:26) affect individual-level 

attributes as they predict the status of being in poverty.  My work uses the 

“compositional hypothesis” that percent minority in an area “will tend to affect racial 

attitudes in a similar manner in all regions” which diminishes the need to postulate a 

region-specific contextual effect (Fossett and Kiecolt 1989: 822-823).  

A great amount of space is dedicated in this chapter to delineating the 

assumptions of how “individual goals, motives, and needs are major causal agents in 

social systems” (Blalock 1970:28).  For now, there are four main premises to my theory 

(as adapted from Blalock) that will suffice in advancing our understanding of the ethno-

racial discrimination-poverty link.  

Discrimination moves from the micro  to the macro  and back to the micro 

functions as follows.  The first premise is that “exposure to large numbers of minority 

members is a forcing variable that threatened individual members of the dominant 

group” (Blalock 1970:28 italics by original author).  In other words, exposure to large 

numbers of minority persons threatens individual members of the dominant group.  An 

idea introduced to academic literature more than sixty years ago by a Texan (Key 1949).  

The increased presence of minorities poses a political and economic threat. This is 
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particularly true for those who tend towards “individualistic thinking” instead of 

“structural thinking” (Bobo and Hutchings 1996). 

Secondly, “threats combine with personality variables to produce motivation to 

discriminate” (Blalock 1970:28).  Simply put, perceived threats produce discrimination.  

There are two possible main reasons why minority group threat occurs. Fear can arise 

amongst majority group members when they perceive minority-group members as 

posing either an economic or political threat. It is true that “different kinds of persons 

will not be similarly motivated by the minority percentage variable” (Blalock 1970:31).   

For example, majority group members with a high educational attainment may 

differ in their threat perceptions than their moderate level educated non-Latino-white 

counterparts.  Keep in mind that minority groups may be tempted to retaliate “against 

discrimination from others by returning the” discrimination, but this would be a mistake 

“since effective economic discrimination occurs against them” because “majorities have 

more balanced distribution of labor and capital than they do” (Becker 1971:32).  The 

point is that dominant-group members are framed as responding with discrimination 

when the local minority population is on the increase and the latter have few resources to 

resist.  

These “perceived competition and power threats” (Blalock 1970:29) are 

unmeasureable factors in my data.  I will simply combine the effects from the “fear of 

power threat” and the “fear of competition” to hypothesize a positive linear path through 

the “combined effect on motivation to discriminate” (Blalock 1970:30).  As shown in 
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Figure 1, I expect that as the percent of Latinos/as in an area of residence increases, fears 

towards them and thus discrimination against them will increase.     

 

 

 

 

 

 

 

 

 
Figure 1 

Minority Group Threat Theory: Combined Effect Graph 
 

 

Previous research has supported this theory.  For example, Rogelio Saenz (1997) 

used U.S. Census data to show that, “there is a positive relationship between the relative 

size of the Chicano population and the group’s poverty rate” (Saenz 1997:205). The 

positive association between discrimination and minority presence occurs because 

according to our third premise in the theory, “similarly motivated individuals interact 

with each other in such a way as to bring about concerted action leading to actual 

discrimination” (Blalock 1970:28).  And there is evidence that Latinos, in particular 

Mexicans, are seen as a threat to the “American way of life” (Saenz, Filoteo, Murga 

2007).  
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In the words of Herbert Blumer (1958), when historically advantaged group 

members perceive minority-group members are threatening their entitlements, they 

manifest their prejudice towards those minorities. Thus, if dominant group members 

respond similarly and consistently enough to structuralize their discriminatory behaviors, 

then their individual actions collectively constraint minority-group members threat level.   

This idea will be further validated as we move along our discussion on the nature 

of humans, their societies, and how these elements combine to create systemic and 

durable discriminatory distributive processes.   In passing, I would like the reader to be 

aware that there is an extensive literature on how contact works.  In the most general 

sense we should keep in mind that “since people discriminate little against those with 

whom they have only indirect [contact] in the market place, some direct contact must be 

necessary for the development of a desire to discriminate” (Becker 1971:154).   

The main argument—using Blalock as our theoretical touchstone—is that the 

increased presence of minorities raises the potential for contact and thus the likelihood 

for the desire to discriminate to escalate. It is also important to note that “contact has 

other dimensions besides numerical and economic importance; among them are 

intensity, duration,” and level (Becker 1971:155).  Early on, the “contact hypothesis” 

(Allport 1954) focused on how positive interactions improved intergroup relations.  

Recent work has continued this optimistic approach and found that contact is beneficial 

(Pettigrew and Tropp 2006)—although its benefits are weaker for minority status groups 

(Tropp and Pettigrew 2005).  Continuing with this positive outlook, some have even 

found that “the racial threat effect is significantly diminished in areas with greater multi-
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ethnic diversity” (DeFinal and Hannon 2009:373).  Clearly the influence of contact is 

complex. 

Contact with minorities could actually reduce perceived threat.  For example, in 

post-apartheid Africa, researchers found that “the more contact Whites have with Black 

people…the less likely they are to resist” policy interventions such as affirmative action 

(Dixon et. al. 2010:849).  The authors do make it clear that interventions challenging in-

group privilege are less susceptible to contact effects than those who pose little threat to 

current in-group power structure.   

Another example using a recent police coverage investigation that supports 

Blalock’s power-threat hypothesis finds “that Latino populations did not become 

threatening until they represented approximately a quarter of the precinct-level 

populations, at which point precincts significantly increased their levels of police 

deployment” (Kane 2003:289).  More recent work using census tract-level data in 

Miami-Dade County found that in highly segregated areas “the relative size of the Latino 

population is a predictor of fear of crime among white residents” (Eitle and Taylor 

2008:1102).   

The influence of contact is complex.  By using Blalock, I am only asserting “that 

structural barriers blocking minority upward mobility are more insurmountable in those 

areas where a given minority group accounts for a larger portion of the population” 

(Saenz 1997:207).  My research only focuses on the negative aspects arriving from the 

perceived threat by majority status members against minority status groups.  My data 

does not allow for sociopsychological testing. 
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Our fourth and final premise—in moving from the micro to macro and back—

states that “discriminatory behavior, when aggregated in some way, leads to” (Blalock 

1970:28) minorities being obstructed from resources.  As shown in Figure 2 below,  

 

 

 

 

 

aggregate discriminatory behavior harms minorities.  This occurs because the more 

minority individuals there are, the more “direct or potential competition with a given 

individual in the dominant group” (Blalock 1970:148). In the words of Becker; “tastes 

Figure 2 
Minority Group Threat Theory:  

Discrimination Producing System  
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for discrimination against non-whites vary directly with their proportion in a 

community” (1971:123).   

Recent work validates the idea that in-group cooperation varies positively with 

intergroup competition (Burton-Chelley, Ross-Gillespie, and West 2010).  The more 

“others” threaten us, the more we cooperate—and in the case of precondition prejudice, 

discrimination is born.  Consequently, large minority populations represent a threat that 

fuels the prevailing stratification system by allowing “the majority group to erect 

“formidable structural obstacles” (Saenz 1997:207). 

Fear of minorities occurs because dominant-group members are “linked” to 

minority-group members in five general ways that intertwine their means for achieving 

goals.  First, if minorities are serious economic or political competitors, then 

“discrimination may serve as a means of restricting or eliminating such competition” 

(Blalock 1970:41).  Next, minority avoidance could either help “achieve status objective 

or…reduce the likelihood of uncomfortable contact” (41).  Our third link posits that 

minorities may be exploited as a means toward status objectives and our fourth link 

outlines that shared-prejudice which is acted on can help obtain or consolidate political 

power.  Lastly, dominant-group members’ links to minority-groups members increase 

fear because psycho-emotional frustration may lead some toward direct aggression 

towards minorities.  In summary, I hypothesize that as the minority percentage increases 

discriminatory behavior will increase to handicap minorities.  

During the same time that Blalock (1970) was advancing his ideas, Gary S. 

Becker (1971) joined the academic literature on discrimination.  Early in his book, 
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Becker introduces the idea that discrimination in economic environments is “an 

expression of tastes or values” (1971:13)—where individuals have a “taste for 

discrimination” (Becker 1971:14).  This monograph operates from an economic 

framework that analyzes discrimination based on non-pecuniary considerations (see 

Becker 1971:153).   

Non-monetary factors like racial-ethnic categories are the only factors 

appropriate for measuring discriminatory behavior.  For example, an individual who 

offers a job to person A over person B because the latter does not meet basic educational 

requirements is not said to be discriminating.  The hiring entity is using a market-related 

category (i.e., education) to differentiate between the two applicants.  If instead, the 

supervisor were to select between two people purely on their racial-ethnic category, then 

we could assume they have a taste for discrimination.  I argue that “these tastes are the 

most important immediate cause of actual discrimination” (Becker 1971:153).  I focus 

on non-pecuniary discrimination by spotlighting the Latino/a racial-ethnic factor and my 

work embraces the idea that causality can only be understood through an “organism-

environment system” (Lickliter 2009) framework. 

 The bottom line is that the “necessary condition for effective discrimination 

against N is that N be an economic minority; a sufficient condition is that N be a 

numerical minority; a necessary and sufficient condition is that N be more of an 

economic minority than a numerical majority” (Becker 1971:27).  Since my analysis of 

discrimination uses a minority-majority framework and given that my dependent binary-

variable is poverty status, I believe “the concept of economic minorities is somewhat 
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more important here than that of numerical ones” (Becker 1971:27). Thus, a Latina who 

resides in a 80%-Latino/a concentrated community is still a minority because her 

economic status is more important than her numerical one.  

As mentioned earlier, the main goal of the research is to investigate how 

individuals differ as they are exposed to differing environmental stimuli by examining 

and describing how discrimination affects life chances—and how such associations vary 

by differing social habitats.  Thus far I have argued that economic inequality is a product 

of discrimination, that using poverty-status as a micro-level proxy to inequality is 

appropriate, and that percent-Latinos/as as macro-level factor adequately measures their 

minority threat against majority non-Latino-whites.  These are the fundamentals of how I 

will be testing Blalock’s minority group threat hypothesis. We now turn our attention to 

theorize why people discriminate.   

 

First Postulate: Human Nature  

My guiding theory (as adapted from Blalock) on how racial-ethnic discrimination 

systematically creates and maintains social inequality has many general assumptions on 

the nature of humans and society.  Before we begin our discussion on how an 

individual’s location along the social hierarchy alters his/her life chances, we must 

outline how (and briefly why) humans—and their ensuing societies—have the potential 

for stratifying individuals along resource varying positions. 

Lenski offers us three main postulates on a general theory of social stratification.  

We will be better equipped to understand Blalock’s discussion on discrimination and 
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economic outcomes if we outline how humans have the potential for stratifying others 

(and themselves) along various social categories.  We will first discuss the nature of 

humans.   

Our first postulate deals with the fundamental nature of humans.  Lenski posits 

that “man is a social being obliged by nature to live with others as a member of society” 

(1984:25 italics by original author).  This postulate is an axiom in sociology.  The idea is 

so basic to sociology, that it seems absurd to mention it as our fundamental proposition.  

There are, however, several reasons why the idea—that Homo sapiens are social 

beings—is important.   

Foremost, social hierarchies are impossible in a universe with a single inhabitant.  

In addition, a multi-inhabitant universe could only create differing social strata if 

inhabitant-interaction is present.  Thus, ordering groups/people along different categories 

that offer differential access to resources requires at least three elementary conditions: 

(1) habitat must contain others; (2) people must have the ability to interact with others; 

and (3) inhabitants must have a need to interact with others.  Our first proposition argues 

that our species dwells in a multi-inhabited universe where agents have both the ability 

and need to interact with others. 

The proposition does more than just subtly stating the necessary conditions for 

the creation of social agents.  Our first premise on human nature also incorporates a view 

that society shapes a person’s “character and personality in ways over which he has no 

control and of which he is often unaware” (Lenski 1984:26).  Over 200 years ago, Adam 

Smith wrote that by endowing humans with an original desire to both please and avert 
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offending their brethren, nature formed humans as social (1790).  In the words of Peter 

Berger, society “shapes our identity, our thoughts and our emotions”—to the point that 

the “structures of society become the structures of our own consciousness” (1963:121).  

These arguments gracefully introduce the idea that the aggregating mechanisms, by 

which individuals form a society, countereffect people in unique ways.   

Societal influence on individuals highlights an important two-way interaction 

between micro and macro units.  As per our previous logic, the potential for the 

formation of a society is present when the three fundamental conditions are met.  When 

individuals coalesce to form a macro-unit (i.e., society), the aggregating apparatus 

creates and contains the potential for the macro-unit to counter-influence the constitution 

of individuals.  In other words, micro units shape the formation of the macro, and the 

macro in turn reacts (through the aggregating system) to shape micro units in ways that 

would be otherwise impossible.  

For example, belonging to a minority group (e.g., being a Latino/a) increases the 

risk of having poor mental (e.g., depression) and physical health (e.g., contracting HIV) 

because marginalized statuses increase the chances of experiencing discrimination.  HIV 

is highly stigmatized and associated with marginalized groups and minorities who 

contract HIV are more likely to have experienced depression before contracting the virus 

(Gonzalez et. al. 2009).  Consequently, individual-group interactions lead marginalized 

individuals—who experience depression and contract HIV—to be at a higher risk of 

experiencing social isolation to the degree that it further increases their depression 

(Simoni et. al. 2011).   Thus, depression can be amplified in the micro-unit (i.e., minority 
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person) when the macro-context (i.e. society) pushes them into the isolating margins of 

society.  The cross-level interaction creates special outcomes for the individual.  

The sociological maxim, that humans are social beings obliged to form societies, 

assumes several sub-premises with various implications.  In the simplest of terms, the 

main argument is that human behavior does not exist in a vacuum.  Instead, our species 

transverses its existence in a universe filled with other people.  We each contribute to 

forming both our physical and social environments.  The sum of the parts, in turn, shapes 

our individual dispositions and proclivities.  Such is our first and most fundamental 

proposition on how social inequality is possible.       

These views primarily capture how nurture plays a role in human nature.  Our 

current discourse conveys the phenomena under discussion as if it existed in an abstract 

world where units navigate through intangibles to assert their micro boundaries and 

macro formations.  Such a metaphorical view could be unintentionally deceptive, 

because the framing of the discourse hides the fact that all these things are only possible 

in a material/physical world.  For example, when it comes to my discussion of space, we 

must understand that the “initial basis or foundation of social space is nature—natural or 

physical space” (Lefebvre 1991:402).  I believe the only things empirical sciences can 

investigate exist in matter—the physical world.   

Human nature is a physical phenomenon and all its interactions occur in a bio-

chemical world.  I embrace this physicalism and will thus turn our attention to discuss 

how human’s nurture interacts with our biological materialism (i.e. physical nature).    
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First Postulate Clarification: Biological Materialism  

In this section, I briefly disclose my epistemological views on the biological base 

of human nature: biological materialism.  While it is important to recognize the eminent 

role of biological materialism in understanding human behavior, it is beyond the main 

focus of this project.  The following section is only aimed at briefly clarifying that while 

the topic of human behavior in this dissertation is spoken of in non-material terms, the 

author is cognitively theorizing about such events as occurring in a yet immeasurable 

physical realm. 

This brief sub-section has three goals: (1) make it clear that the author believes 

all human behavior occurs in the physical world; (2) introduce the importance of having 

a sociobiological perspective; and (3) briefly explain how the material base does not 

necessarily equate to biological materialism.  All this is being mentioned because 

subsequent discussion on the meaning of the findings will include implications for 

sociobiological ideas.   

Ideas, feelings, memories, decisions, and other such human phenomena occur in 

the physical world.  Every human behavior is the result of a physical event (see Clark 

2010).  For example, many scientific studies on gene-environment interactions have 

found that properties of serotonin transporter genes can be moderated by environmental 

adversity/stress (Uher and McGuffin 2010).  Some investigations have even focused on 

how the serotonin transporter gene 5-HTTLPR and stress in the environment cause 

depression and have found that “an individual’s response to environmental insults is 

moderated by his or her genetic makeup” (Caspi et al. 2003:386).  More recent 
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investigations in this area have found that there is even a large heritable effect on 

preferences in consumer decision making (Simonson and Sela 2011).   

I belief all human behavior has the potential for being investigated in such a 

biological way.  For example, in studying social inequality with a focus on racial-ethnic 

factors, we could include a discussion on phenotypic plasticity.  Although this is not 

necessary for the development of my theory, we could simply highlight in passing that in 

“many organisms the same genotype can give rise to many different phenotypic variants 

whose appearance or behavior depends on its environmental setting” (Pérez, Alfonsi, 

and Muñoz 2010: 864).  Or in discussing our complex brain and neural networks, we 

could argue that they are more accessible to scientists than “the vast universe itself” 

(Wurzman and Giordano 2009: 369).  The point is that our growing technology and 

science will eventually allow us to investigate behavior using biological measures.   

The human nature we have been discussing operates in a bio-chemical world.  

There are no mystical entities playing a role in human behavior.  All sensing, 

information processing, and decision making of biological systems (e.g., humans) occurs 

in a physical world.  It is true that a full and adequate naturalistic account of human 

phenomena would have to include a discussion on how “concepts have no a priori 

connections to physical or functional concepts” (Levin 2008:402).  The debate would 

outline how biological products are imbued with meaning by social context—a truly 

worthwhile endeavor beyond the scope of this investigation.  

Agency and structure are important ideas in sociology that normally exclude a 

sociobiological discussion.  The two concepts are closely aligned with ideas of body and 
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mind.  Hobbes (1839) first introduced the term “agency” to sociology over 170 years 

ago.  The agency/structure debate remains unresolved because many still think of them 

as being “opposite natural kinds” (Fuchs 2001:24).  They are in fact variable devices 

observers use to explain human phenomenon.  As a proponent of biological materialism, 

I would contend the “mind” is not a phantom navigating within our physical body.  

There is no such thing as a ghost in the machine (see Feinberg 2009).  Nurturing (i.e., 

socialization) does not occur in a purely abstract world—our socialization occurs in a 

physical world.  For example, our psychological dispositions are formed and maintained 

in our biological body that inhabits a house, a climate, and so forth.  Non-physical 

human attributes are inherited relics from a time where talking about a “soul” in 

academia became frowned upon.  In its stead, mind/will became the operate word.  I 

argue neither is necessary or relevant for empirical investigation of physical events like 

human behavior.      

The main argument is that if nurture influences human behavior, it is because it 

interacts through and with nature (i.e., physical materialism) to alter the constitution of 

our biological being.  For example, when investigating how food consumption 

influences our biological constitution, research has found a poor diet can create the 

obesity that begets diabetes (see Lazar 2005; Jiménez-Corona et. al. 2010), and that in 

turn, a low-carbohydrate diets can help improve type-2 diabetes patients (Farrés et. al. 

2010).  In this example, nurturing towards poor diet develops negative physical 

conditions which are in turn only alterable through other eating behaviors—that is, 

nurture influences nature and vice-versa.      
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Thus far we have established the physicalism of all human phenomena.  Why 

does a sociobiological perspective matter?  Why mention biological materialism in an 

investigation of poverty (i.e., social stratification) while discussing human nature? 

On the first question, sociologists must learn to appreciate the fact that a “human 

being is a complex organism consisting of sixty trillion cells with six billion base pairs 

of DNA information” (Sakurada 2010:56).  The humans, we social scientists investigate 

in mainly non-biological means, are “dynamic systems carrying out 1016 (ten 

quadrillion) cell divisions through” their life-time (Sakurada 2010:56).  A human is a 

complex physical organism.  

Social scientists must join the discourse on how biology informs our 

understanding of human behavior.  All behaviors are in part produced by “micro-

geography of synaptic connections, cellular interactions and electrochemical flows that 

operate in a dispersed fashion and below the level of consciousness” (Papoulias and 

Callard 2010:35).  The sociobiological perspective matters.  My research demands that I 

mention biological materialism in the investigation of poverty because our biological 

constitution is the necessary material and eventual physical depository for whatever 

nature produces to influence human behavior.  

Human events must be investigated with a physicalistic philosophy that 

highlights the importance of sociobiology—the “systematic study of the biological basis 

of all social behavior” (Wilson 1975a:4).  Why is this discussion so rare in sociology? 

The simple answer is that biological determinism fell into disfavor from the social 

sciences many decades ago.  Many factors played a role.  One contributor to the 
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silencing of sociobiology was the rigidity/deterministic world view it creates.  I will now 

succinctly explain how the material base does not necessary equate to biological 

determinism. 

Discussions of biological determinism in sociology sometimes create an 

uncomforting view of human behavior as being fixed in an agency-void existence.  Such 

a concern is now more easily challenged by emerging findings in epigenetics—where 

genetic determinism is altered in meaning by the introduction of phenotypic plasticity 

(Pérez, Alfonsi, Muñoz 2010).  Epigenetic investigations seek to explain how individual-

environment interactions physiologically influence gene expression.  Epigeneticist study 

how gene activity is regulated within cells.  The field theorizes how and why “functional 

changes of genes” occur “without accompanying the sequence changes of DNA” 

(Sakurada 2010:61).   

For example, some research has found that both parent’s genes and their lived 

experiences influence their offspring’s makeup (Young 2008).  We now understand our 

DNA does not fully determine our biological constitution.  There is a deeper set of bio-

mechanics (epigenetics) that regulates the mode, time, and intensity of genetic 

expressions—all of which influences our biological material base.  This is because 

superimposed “upon the DNA sequence is a layer of heritable [epigenetic] information 

that we have only just begun to read and appreciate” (Bernstein, Meissner, and Lander 

2007:669).  

In short, the uncomforting fixity of biological determinism detested by some 

social scientists can now find some consolation in the fact that epigenetic studies offer us 
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a better understanding of how we have a previously unknown “plasticity in the face of 

ecological variation” (Scott-Phillips, Dickins, and West 2011:39).  Stored epigenetic 

chemical information shows us “how the genome is made manifest across a diverse array 

of developmental stages, tissue types, and disease states” (Bernstein, Meissner, and 

Lander 2007:669).  Our DNA is not our final destiny.  There is a deeper level of 

biological determination that influences our DNA’s influence on us.  Our epigenetic 

constitution interacts with the environment to influence, through an ordered chaos, the 

material base from which all human behavior flows.  

Although it is beyond the scope of this investigation, I believe both agency and 

structure (and how they interact) are important. Briefly defined, agency refers to the 

potential for randomness in human behavior—and structure as the habitat that both 

limits and fuels this fascinating randomness.  The mathematical philosophy of my 

stochastic models both assume and depend on the fundamental probability theory 

assumption that even if an initial condition is known, randomness is possible and certain 

outcomes have a higher probability of occurrence over others.  By making use of 

multilevel models, this project frames the discussion on poverty along a path that must 

render a clear view of how individual-level characteristics interact with structural-level 

attributes—as they relate to poverty status.   

Truth be told, “despite the great progress that has been made in the” rapidly 

developing area of epigenetics, it is “probably many years away from providing insights 

into the heritability of choice and judgment” (Simonson and Sela 2011:952).  The fact 

that existing research and theories limit us from talking about how (much less why) 



 37 

physical behavior operates in the biological base is not an acceptable excuse for not 

noting the importance of physicalism in sociology.  Progress in the is being advanced by 

recent theoretical, mathematical, and computational progress.  Our ability to instantiate 

the details of physicalism in all human behavior are now visible in the horizon.  This 

short discussion on biological materialism is crucial to our understanding of human 

nature. 

Given current limitations on the topic, why is the discussion of biological 

materialism necessary in discussing the nature of humans as it pertains to social 

stratification?  Understanding human behavior requires that we investigate micro-level 

events in context.  Society is the context.  Social habitat is deeply intertwined with the 

elements that constitute the individual.  Put more clearly, to properly understand 

behavior, we must investigate why and how it works (Scott-Phillips, Dickins, and West 

2011).  Investing how it works at the biological level is beyond the scope of this 

dissertation.  Some have even said that sociobiological views are no more than a “novel 

philosophical approach” to studying human behavior (Marks 1980: 28). However, it is 

important that we continue to think of all ensuing discussion in terms of how all 

concepts operate in the biological constitution of the person.    

Thus far we have established that Homo sapiens—by nature and nurture—are 

social creatures.  We will now turn our attention to why they are self-seeking units.      

 

 

 



 38 

Second Postulate: Self-Seeking Units 

Our first postulate explains that humans are social beings.  After important 

deliberation on how self-interest plays a role in the social creature, Lenski concludes that  

“when men are confronted with important decisions where they are obliged to choose 

between their own, or their group’s, interests and the interest of others, they nearly 

always choose” their own (1984:30 italics by original author).  The view, he accepts, is 

skeptical about the innate goodness of man.  In essence, our second postulate argues that 

individuals and their formed groups will seek their interest before others.  This is a key 

element in the logic of my analysis. 

Some have argued that the “presumption of individual-interest as the root of 

human behavior is a model derived from a classical evolutionary genetics” that was 

formulated and applied within a “culture of narcissism” (Marks 1980: 49, also see Lasch 

1979), and that such an approach glorifies ego and frames the social world in biological 

terms that lead to erroneous egocentric views.  More recent arguments have highlighted 

the fact that in academic discourse, “which holds dear enlightenment notions of an 

inexorable march to perfection,” the darker aspects of humans are treated as regrettable 

anomalies by pathologizing them as problematic behaviors and thereby “removing them 

from the ambit of normalcy” (Ak 2009: 726).   

Unfortunately, our cognitive dissonance does not eradicate the fact that 

“societies, like individuals, are basically self-seeking units” (Lenski 1984:42 italics by 

original author).  Some have even argued that society is but “a metaphor for multiple 

interest groups vying for” power (Kane 2003: 290; also see Chambliss and Seidman 
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1982).  Our second postulate on human nature also signals that “prohibition runs deep 

into the consciousness” of our species-being and even though we may be free to choose, 

what we” can choose from is already chosen; not specifically by anyone but by default 

and by virtue of what is discursively available” (Ball 1978:29). The unpleasant truth is 

that individuals, and the groups they create, are above all self-seeking units.  

While writing on this topic, Blalock reminds us that after having generalized 

“economic man” to that of “status-seeking man,” we must abstain from minimizing “the 

importance of other types of goals” and from assuming that status and economic factors 

constitute a single “master motive” (Blalock 1970:39).  Thus, even though I spend all 

my time talking about economic related outcomes, please keep in mind that there are 

other non-economic motives (e.g., sex) driving human behavior.   

Thinking of humans as selfish beings may be considered highly pessimistic by 

some, but Lenski points out that division of labor in complex societies hides the 

unsettling truth behind our second postulate.  For example, in the U.S., our highly 

bureaucratized existence easily veils our group- and individual-selfishness by limiting us 

from seldom seeing the consequences of our economic and political actions (Lenski 

1984:31).  In 2010, our labyrinthine U.S. political system became even more perplexing 

when the Supreme Court decided that for-economic-profit corporations were 

“individuals” protected under the First Amendment (Stevens 2010).   

Exercising power sparingly is desired and can be done by “securing consent” by 

“translating power into strategic action” that avoids “having to coerce recalcitrant 

bodies” (Wolin 1960: 33).   Our Supreme Court is an institution founded on the belief 
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that elites must rule of necessity through organized means.  Our aim at democracy is to 

create a representative government.  In our indirect democracy, this representative 

institution is necessary because “social order require[s]d explicit planning and 

organization” (Mosca 1939:47). 

The main point is that our intricate social organization leads most of us to only 

interpret successes and failures—in “objective” and “level-playing-field” markets—as 

the result of “impersonal forces, or forces so complex that the influence of any single 

individual” is negligible (Lenski 1984:31).   For example, and thinking of a conceptual 

billiard table: 

“…to skew the table is simultaneously to advantage and disadvantage 
players dependent upon their relation to the table and the moves they wish 
to make. It disturbs the equilibrium upon which the rules of the game may 
fairly be applied, by skewing the rules to the advantage of whosoever has 
management of the skewed table. Of course, only in pure games of skill or 
chance is it ever the case that games are played on a ‘level table’ or a 
‘level playing field’. Social games rarely if ever correspond to the ideal 
condition of pure games per se. The rules will not be as static and 
idealized as in chess or some other game but will instead be far more 
fragile, ambiguous, unclear, dependent upon interpretation, and subject 
either to reproduction or transformation dependent on the outcome of 
struggles to keep them the same or to change them this way or that” 
(Clegg 1989: 209).  
 

The main argument is that despite the many attempts to hide our unsettling selfishness, 

they persist.  Let us remember that to “assume that the absence of grievance equals 

genuine consensus is simply to rule out the possibility of false or manipulated consensus 

by definitional fiat” (Lukes 1974:24).  Our selfish drives operate in an unjustly 

imbalanced playing field.    



 41 

Humans and social groups as selfish agents have also been discussed from a 

biological perspective.  Some have even argued that humans are biologically 

programmed to be self-seeking units.  For example, Richard Dawkins argued several 

decades ago that some of our genes survived for millions of years in a highly 

competitive world and that if “you look at the way natural selections works, it seems to 

follow that anything that has evolved by natural selection should be selfish” (1976:4).    

More recent biologically oriented discussions framing our self-seeking nature 

have used variations of game theory to argue that “group selection is consistent with 

individuals maximizing their own long-run reproductive interests or those of close 

relatives” (Bergstrom 2002:85).  In clarifying that self-interest is not always in conflict 

with group-interest, some have contended that “individual self-interest is consistent with 

behavior that maximizes group success” in stable environments (Bergstrom 2002:68).  

This dissertation investigates poverty—a financial outcome of individual 

economic behavior in varying social structures.  Poverty is viewed as a byproduct of 

individual behavior as it navigates a stratified world.  Our second postulate simply 

disputes that both individuals and groups seek to meet their needs before those of others.  

Economic behavior has biological basics—at the very least is biological instantiated.   

Existing work argues that a desire for social status is biologically “innate” 

(Robson 2001).  Considering behaviors as influenced by genes (Lehmann and Rousset 

2010) is a radical proposition by some standards—and beyond the scope of this study.  

Suffice it to say that a discourse of humans and societies as selfish entities can be 
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advanced with social abstracts framed on biological materialism.  The prevalence and 

persistence of poverty is directly associated with existing self-seeking mechanisms. 

Thus far we have established that humans are social creatures and that both they 

and their groups are self-seeking units.   What other postulate is necessary for 

understanding the formation of social stratifying systems?  Our first two postulates are 

necessary but not sufficient.  We need a proposition that captures how humans have an 

insatiable appetite for resources.  We now turn our attention to discussing our species 

insatiability for limited material resources.       

 

Third Postulate: Insatiable Appetite for Finite Resources 

Thus far it has been established that humans are social creatures who first seek to 

meet their (or their group’s) self-interest.  The third postulate pertains to human’s strife 

for resources.  Objects of desire (i.e., resources) have both a utilitarian and status value.  

Shelter from the natural elements has utilitarian value.  Driving a multi-million dollar 

Lamborghini or Bugatti has status value.  In general, we could say those in poverty 

concentrate their efforts in attaining utilitarian resources while those out of poverty 

devote their attention to increasing their status symbols.   

There is a deleterious synergism between these resource-seeking movements: 

Utilitarian resource attainment if severely hindered by desire for status proliferation—

because the latter can only occur by exploiting others from their resources.  In simpler 

words, those with power seeking more status-wealth must do so at the expense of the 

weaker members pursuing basic utilitarian resources.  This leads to a vicious cycle that 
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can doom society towards a system that continually widens the gap between those in the 

top and the bottom.  

Lamentably, status striving leads demand to constantly exceed supply, because 

“those of lower status constantly strive to equal those of higher status and those of higher 

status always seek to preserve the difference” (Lenski 1984:31).  In other words, “have 

nots” want to become the “haves” (see Milanovic 2011) and the latter will do anything to 

retain their privileged status.  

Lenski points out there are a few abundant resources like oxygen to breathe, but 

most are in short supply and that unlike other species on earth, “man has an insatiable 

appetite for goods and services” (1984:31 italics by original author).  In sum, our species 

insatiable appetite for resources creates a perverse system of behaviors that ultimately 

makes satiation impossible.  As a consequence, our third and final postulate necessary 

for discussing Blalock’s theory of discrimination is then that humans have an insatiable 

appetite for resources.    

Our third fundamental view on human nature necessitates expansion.  My 

dissertation contributes to the existing literature by expanding on this last postulate.  In 

recent times, largely as a byproduct of the environmental movement, humans have 

begun to understand and accept the fact that material resources are finite.  This means 

that oxygen—or earth for that matter—need not last at infinitum.  Organisms have the 

power to affect their habitat in such a way that even the most fundamental elements are 

altered in self-harming ways.  Humans could collectively behave in such a way as to 

eradicate the existence of oxygen in earth.  
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  Expanding the third postulate to include that resources are finite requires that 

we pay heed to the two fundamental messages: first, all life on earth is interdependent; 

secondly, resources have a finite nature (Deesen 2009).  Thus, when you combine “the 

interdependence of all life on earth” with “the finite nature of the resources on which” 

interdependent life depends (Deesen 2009:70), you see that individual behavior 

reverberates across the web of our species’ existence.  Consequently and in light of 

bounded resources, human’s insatiable appetite for limited resources exacerbates social 

inequality—and thus the systematic structural-maintenance of poverty.   

 

Distributive Systems 

Using our three postulates, we would deduce that human nature can be 

summarized as follows:  Humans are social, self-seeking units, who are continually 

struggling for limited resources.  If the three postulates are acceptable, “then it follows 

logically that a struggle for rewards will be present in every human society” (Lenski 

1984:31-32 italics by original author).  That is, stratifying social structures may be 

unavoidable—which is why formal mitigation mechanisms are necessary. 

When thinking about the nature of society and how it operates as a structure that 

unevenly distributes resources, Lenski admonishes us to think “of distributive systems as 

reflecting simultaneously system needs and unit needs, with each often subverting the 

other” (1984:34 italics by original author).  In other words, limited resources are 

distributed along detectable mechanisms that unevenly feed the needs of both the group 
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and the individual.  Social inequality is created and grows when either special groups or 

individuals within a population hoard resources in the distributive system.        

The coordination of society in which distributive systems operate can be reduced 

to two basic elements.  The first goal is to create and maintain social harmony.  For 

example, we could argue that societies “are directed toward the maintenance of the 

political status quo within the group” (Lenski 1984:41 italics by original author).  I 

believe—and our recorded history could be said to support—that attaining perfect 

equilibrium in social harmony is impossible.  Thus, such a goal may be rephrased in 

more realistic terms as “the minimization of the rate of internal political change” (Lenski 

1984:44 italics by original author).  Thus, the first goal in the coordination of any group 

is to maximize social harmony.    

The coordination of society requires that harmony be maximize along with social 

resources.  More formally, the second element necessary in the coordination of a society 

is aimed at the “maximization of production and the resources on which production 

depends” (Lenski 1984:42 italics by original author).  Distributive processes must then 

navigate through an environment where social harmony and production are being 

maximized.   

The priority given to each of the two main societal goals differs by place and 

time, where “the goal of maximizing production has priority in relatively unstratified 

societies” and “the goal of minimizing political change has priority in societies in which 

power and privilege are monopolized by a few” (Lenski 1984:42 italics by original 

author).  I believe the U.S. fits the latter status because the increasing concentration of 
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power and privilege is birthing an American quasi-oligarchy that includes organizational 

entities.  Thus, our proliferating wealth accumulation by a few is forcing our society to 

first seek the minimization of internal conflict (i.e., harmony maximization) above all 

else.   

This discussion is important because prioritizing harmony over production 

affects our resource distributive system in an adverse way by clamping down on 

production and increasing formal and informal constraints against a revolt from those at 

the bottom.  Sadly, our rapid and sustained industrialization and technological revolution 

in a quasi-free market capitalist economy has “enabled an unprecedented increase in 

material well-being, dramatically widening the absolute distance between the top and the 

bottom of human social structures” (Massey 2007:4).  It was noted long ago that 

capitalism is a deeply geospatial project, that it has achieved its intended growth, even 

though we “cannot calculate at what price, but we know the means: by occupying space, 

by producing space” (Lefebvre 1976:21 italics by original author).  We will return below 

to the discussion of space.     

How then does our understanding of human nature and distributive systems 

inform our view of social stratification?  To answer this, we now turn our attention to 

how social, self-seeking, resource hungry beings—operating in a harmony, production 

maximizing environment that distributes resources differently across social stratums—

contribute to the creation of categorical inequality.   
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Categorical Inequality 

 Up to now, we have discussed the three fundamental postulates on the nature of 

humans and their societies and how these postulates operate in an environment where the 

two main goals of societal coordination take place.  My arguments up to now paint a 

picture of a social, selfish, insatiable resource seeking humans (or groups) who in 

combination with a desire to maximize sociopolitical harmony and production create 

structures that systematically distribute resources unequally.  In this section, we employ 

Douglas S. Massey’s (2007) theoretical perspectives to outline how uneven distribution 

of resources varies across different social categories and geographies.   

Poverty, the central topic of my dissertation, is being used as the dependent 

variable in all the statistical models as a proxy measure of inequality.  As mentioned 

earlier, those in poverty are thought of as being victims of social inequality.  These 

views assume that poverty is in part a byproduct of social stratification.   

What is social stratification?  In the words of Massey, social stratification is “the 

unequal distribution of people across social categories that are characterized by 

differential access to scarce resources” (2007:1).  For my project, I am arguing that 

poverty exist as a consequence of distributing people unequally across different resource 

access stratums.  Those who possess the correct combination of acquired and attained 

social attributes are relegated to advantaged (i.e., resource rich) social categories and 

their least fortunate counterparts are hurled towards the ever growing group of 

disadvantaged (i.e., resource poor group).  Historically, non-Latino-whites have been the 
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majority-status group in the U.S. and Latinos/as the structurally hindered minority-status 

group (see Acuna 1988).  

Before outlining Massey’s excellent modern appraisal of social stratification, we 

must first understand where he joins the discourse.  In general, social science can be said 

to bifurcate theory along structural or individual level explanations (see Poston et. al. 

2010; Saenz, Cready, and Morales 2007).  Delineating poverty causing mechanisms at 

the individual level usually confines researchers to explanations of how an individual’s 

attributes affects his/her life chances.  On the other hand, structural level causal 

explanations usually render theorists mute on how “agency” plays a role in economic 

outcomes.  

As a side note, if agency is free will and it is thought of as a sovereign entity that 

is completely disconnected from all external influence, then I think this “agency” is a 

myth.  I belief all ideas/emotions (i.e., biochemical events) are directly influenced by 

bio-material and social forces (for example, see Thaler and Sunstein 2008).   A full 

discussion of agency is beyond the scope of this investigation.  The term agency is 

however used in the dissertation and it is meant from the more sociobiological 

perspective. Agency is a species-level descriptive being used as a mentalistic and 

anthropomorphic symbol to describe neurobiological events (Thompson and Deer 1996; 

also see Williams 1966).  

There are three classical and mainstream social theories on poverty.  Amongst 

the oldest and based on individual-level economic views is the one advanced by Gary S. 

Becker in 1964.  Becker’s human capital theory frames poverty as a product of differing 
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investments on skills that directly influence labor market performance (i.e., poverty 

status). This “approach assumes that individual tastes, preferences, and abilities lead 

people to make differential investments in education and skill development” and that 

“differential investments ultimately translate into greater and lesser rewards in the labor 

market” (Poston et. al. 2010:142).  For example, if a person invests in formal education 

and attains a Ph.D., then she/he will be able to reap a high economic payback in the 

formal labor market.  

During the same time period, Oscar Lewis (1966) was developing what remains a 

controversial theory.  Lewis believed a culture of poverty could explain how people are 

socialized towards differing values and that culture is the primary factor determining a 

person’s ability to attain resources.  In essence, the “culture of poverty thesis suggests 

that people growing up poor are socialized to internalize values that prevent them from 

participating in the economic mainstream” and as a result are separated from the middle 

class—which perpetuates their impoverishment (Poston et. al. 2010:142).   

For example, a child who grows up in a poor family unit may have a detectable 

vernacular, way of dressing, walking, and values that lead him/her to stay away (or be 

pushed out) from advanced formal education.  The child’s behavior then lowers his/her 

chances of reaping benefits from the formal sector.  On this topic, Blalock wrote that 

socialization “affects the child’s behavior and value system, leading ultimately to social 

and economic inequalities” (1970:194).  In different words, multigenerational 

transference of money, status, and positions are influenced by “demographic processes 

because families influence subsequent generations through differential fertility and 
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survival, migration, and marriage patters” (Mare 2011:1).  The point is that the culture of 

poverty theory emphasizes values and neglects to expand on how structural 

disadvantages play a role in the connection between values and resources.   

Essentially, the poverty-culture perspective “argues that children of poor families 

are socialized into a culture of poverty with a set of values and beliefs that prevents them 

from recognizing and taking advantage of opportunities” (Lee, Singelmann, and Yom-

Tov 2008:517).  Others have eloquently argued that there are no specific values or 

cultural behaviors that create poverty (see Valentine 1968).  By advancing a more 

structural perspective, they reframe the causal path and explain “that children who grow 

up in poor families have less access to human capital, which makes them less 

competitive in the labor market and, in turn, more likely also to end up poor” (Lee, 

Singelmann, and Yom-Tov 2008:517).     

For example, a child born in a poor family unit is likely to reside in a poor 

neighborhood where they are ill-prepared by financially depleted schools.  Their 

inability to enter college because of limited financial resources and poor training then 

become insurmountable obstacles.  Because of existing social structures, and by no fault 

of their own, they were born in poverty and are very likely to remain in poverty for the 

rest of their lives.     

Within the framework of the structural perspective, Blau and Duncan (1967) 

advanced the status attainment approach for understanding poverty.  They pointed out 

that both achieved skills—which Becker only focused on—and ascribed characteristics 

are linked to life chances.  Educational attainment is one of many achieved 
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characteristics.  Skin color is one of many ascribed traits.  Both achieved and ascribed 

characteristics of individuals and their familie’s matter.  These factors are important in 

Massey’s explanation of social stratification.  According to Massey, categorical 

inequality is present because all “human societies have a social structure that divides 

people into categories based on a combination of achieved and ascribed traits” (Massey 

2007: 1).   

The main point is that both ascribed and achieved “factors are linked to outcomes 

such as income and occupation” (Poston et. al. 2010:142).  For example, person A may 

obtain a PhD while person b stops their formal education after he/she gets her/his high 

school diploma.  Assume for a moment that person A, who has a PhD, is a “detectable” 

minority who is not socially connected to resource-rich networks and person B comes 

from a wealthy family made up of majority-status group members.  It is possible that 

person A with his/her Ph.D. will end up making as much money during her/his lifetime 

as person B with his/her high school diploma will in his/her lifetime.  The main point is 

that achievements operate in a symbol saturated and stratified universe.  Ascribed 

characteristics matter.          

Human capital, culture of poverty, and status attainment all circle around 

individual and structural explanations of poverty.  Massey makes use of all these ideas in 

explaining categorical inequality.  Inequality is in part responsible for the creation, 

maintenance, and sometimes growth of poverty.  Inequality could be thought of 

metaphorically as the gap between social hierarchies.  More formally, inequality is “the 
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degree of variability in the dispersion of people among ranked social categories” 

(Massey 2007:2).   

Lamentably, and despite drastic social transformations over the last few 

thousands of years, inequality producing processes have been solidified by durable 

social stratification mechanics.  This is so because regardless of structure or agency 

factors, distributive processes persist.  There are two main mechanics for the 

maintenance of categorical inequality: 1) “the allocation of people to social categories”; 

and 2) “the institutionalization of practices that allocate resources unequally across these 

categories” (Massey 2007:6).  In simpler words, humans categorize each other and then 

resources are distributed unequally across those created categories.  For example, in 

majority “white” U.S. society, phenotypes at the “light” end of the spectrum have more 

access to resources than those towards the center “brown” or extreme “black” end (see 

Arce, Murguia, and Frisbie 1987; Frank, Redstone, and Lu 2010).       

It is also important to note that the above stratification perpetuating systems are 

fueled by exploitation and opportunity hoarding (Tilly 1998).  Both of these combine our 

self-seeking and insatiable resource appetite postulates. Tilly’s ideas expand our 

postulates with important details.  

In Durable Inequality, Charles Tilly (1998) explains that exploitation occurs 

when group X deforces resources produced by group Y.  The unjust appropriation of 

resources then obstructs group Y’s ability to maximize their investments.  A simple and 

calamitous example is slavery in the U.S.  From about 1619 until 1865, when the 13th 
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Amendment was passed, non-Latino-whites exploited (for a quarter of a millennia) the 

labor of African slaves to build their wealth (see Feagin 2006).   

Consequently, slaves’ ability to maximize their physical labor investments was 

obstructed by the laws (i.e., social structure) that protected slave holders. Their traumatic 

abuse was later “followed by discrimination and continued economic exploitation” 

(Meerman 2005:551).  Minorities’ overt economic discrimination diminished during the 

Civil Rights revolution.  Poverty then became a new tool in the development of their 

economic serfdom.   

The second component that solidifies categorical inequality is opportunity 

hoarding.  As adapted from Tilly’s definition, opportunity hoarding is enabled through a 

socially defined process of exclusion that allows group X to limit, either through obvious 

force or penalty infringement, group Y access to scarce resources. In other words, when 

given the chance, people (or groups) will hoard opportunities for themselves at the 

expense of others.  This view supports our earlier premise on the nature of humans.  

A sad example of opportunity hoarding comes from the story of current prisoner 

and former American stock broker Bernard Madoff.  His ponzi scheme defrauded 

thousands of investors from more than $60 billion dollars (Tresniowski 2011).  Madoff’s 

crimes also burdened his two sons, Andrew and Mark, with numerous civil lawsuits.  

While Andrew got away from it all, Mark Madoff wanted to continue working in the 

financial world.  His fight ended on Dec. 11, 2010.  After writing an e-mail to his wife, 

Mark “slipped a cord around his neck, tied it to a ceiling beam and hung himself” as his 
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2-year-old son slept in a nearby room (Tresniowski 2011:58).  Opportunity hoarding has 

deleterious consequences for both individuals and societies.    

It is important that we note that both exploitation and opportunity hoarding are 

supported through emulation and adaptation.  The latter two generalize the influence of 

the first two.   Adaptation occurs at the micro-level, where individual’s behaviors are 

oriented towards perceived ranked categories and emulation operates at a more 

macro/group-level, whereby  copies from group  or transfers the socially 

emulated distinctions from ith geographical location to jth place.   

Although the details of the following are beyond the scope of this study, it is 

worth noting that categorical inequality is only possible when the roots of social 

stratification are present—namely the ability to cognitively construct the elements that 

allow the boundarization of individuals into different groupings.  Heuristics, mental 

shortcuts (Read and Grushka-Cockayne 2011), are said to have evolved from the need to 

conserve energy. Some have argued that Homo economicus benefits and necessitates 

“adaptive rationality” (Haselton et. al.  2009) to survive complex physical and social 

environments.   

Categorization sustaining “rule of thumb” systems afford our species a fast 

decision making structure that affords us approximate solutions (Rozoff 1964).  They 

simultaneously render us weak to challenge the exploitation and opportunity hoarding 

that fuels the solidification of systemic stratification.  

We could also argue from the sociobiological perspective that humans are 

neurophysiologically wired “to construct general categories about the world in which we 
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live and then to use them to classify and evaluate the stimuli we encounter” (Massey 

2007:9).  A key point in this discussion is on how biology interacts with the social 

environment.  The bio-chemical creation of social categories in each individual unit is 

ultimately and physically expressed in social settings.  This occurs because group 

“identities and boundaries are negotiated through repeated interactions that establish 

working definitions of the categories in question” (Massey 2007:15).   

Regardless of location on the multidimensional social hierarchy continuum, we 

can say all people “actively participate in the construction of the boundaries and 

identities that define” our system of stratification (Massey 2007:16).  This means that 

there is hope for change.  A change that can only occur when we understand how 

“power” underlies everything we have been talking about.  We now turn our attention to 

how power operates in distributive processes to create categorical inequality.   

 

Power in the Distribution of Resources  

Before discussing sociological space we must briefly highlight how power is a 

subtle but crucial topic in our discussion on the distribution of resources.  Sociology is 

interested in understanding power—a fleeting concept that seems to resist being defined.  

Our postulates above argue that humans are social, motivated by self-interest, and that 

the objects of their desire are in short supply.  These elements function in an 

environment where humans create categories and distribute resources unequally.    

These social, self-interested agents pursuing limited resources create self-seeking 

societies interested in maintaining their existence.  How does resource distribution 
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function under such circumstances?  The answer is deceptively simple: Resources are 

distributed on the basis of power.  

What is power?  Weber (1947) defined power as the ability of one person (or 

group) to carry out their will over another.  Lenski argues, and I agree, that “power will 

determine the distribution of nearly all of the surplus possessed by a society” (1984:44 

italics by original author).  From the classical pluralist model, power can be defined as 

“A has power over B to the extent that he/she can get B to do something B would not 

otherwise do” (Dahl 1957: 202-203).  The point is that power equals control.    

Explaining the distribution of resources only requires that we determine the 

distribution of power.  The pattern of distribution can lead us to discover the causes of a 

given social power structure.  Although this will be discussed in latter sections, it is 

important to note the “geometry of power,” the idea that power itself always has a 

physical and abstract geometric form—that is, social power is geographical (D. B. 

Massey 2005 and 2009).  Some have even written on how geographies are recreated to 

resist global hegemony (e.g., Katz 2006) and how laws have spatial impacts in 

communities (see Wunneburger, Olivares, Maghelal 2008). All these ideas have recently 

been revived to full rigor from academic interest that lead to a “rematerialization” of 

human geography—a discourse on the way in which the material and the social 

intertwine and interact to influence the creation and maintenance of power (Bakker and 

Bridge 2006:5).   

Sociospatial stratification, in terms of categorical inequality, could argue that 

social hierarchies result: 
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…whenever those in power enact policies and practices to give certain 
groups more access to markets than others; offer competitive advantages 
to certain classes of people within markets, invest more in the human 
capital of certain groups than others; and systematically channel social and 
cultural capital to certain categories of people  (Massey 2007:23). 
   

Consequently, large patterns of discrimination can lead to systematic investment that 

shapes “the geography and built environment” in such a way as to create socially and 

spatially discriminatory” processes (Soja 2010:x).  

My discussion on power is short but suffices in answering the following: How 

does race and ethnicity play a role in power as it determines the distribution of 

resources?  Lenski uncomplicated the answer by untangling the mechanics between 

status groups and distributive process.  He explains that when membership in a racial or 

ethnic group “begins to have an appreciable influence on men’s access to important 

rewards which are in short supply,” then it becomes necessary to consider them a class 

or status group (Lenski 1984:396).   

Calling racial-ethnic groups classes means “that they are groups of people who 

stand in common position with respect to some attribute which functions as a resource in 

the distributive process” (Lenski 1984:396).  My dissertation uses this logic in singling 

out the contrast between non-Latino-whites and Latinos/as.  In my view, Latinas/os are a 

group whose “common position” in the American social structure relegates them to the 

lower echelons.  This means that, in general, Latinos/as are not part of the mainstream 

classes.  Even those who are highly educated and wealthy must first prove themselves to 

the dominant class as an unthreatening element.    
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The “Latino/a” label is prominent in our American inequality because 

stratification of racialized groups is salient in the minds of U.S. members because “the 

very struggle to reduce this form of inequality has often had the effect of increasing 

men’s awareness of it” (Lenski 1984:402).  The label is ambiguous because the core 

group may be easily detectable (e.g., a bilingual Mexican-origin 3rd generation Tejano), 

while the outer boundaries are more porous (e.g., a mono-English Spain-born 

Californio). In other words, the Latina/o umbrella term includes many individuals who 

may not have a deep affinity with the group.  The label, at best, is a way of recognizing 

U.S. residents who have an affiliation/ancestry with a Spanish-speaking culture/group.   

A discussion on power and ethnicity is important because people should be 

aware that some groups may be seeking a parallel social existence—where they retain 

their language and various cultural practices while participating in America’s democracy 

(i.e., cultural pluralism).  Some have argued that minority assimilation to mainstream 

culture is (and should be) the ultimate goal of any minority group (see Chavez 1991). 

Such a philosophy posits that in order for a group to attain social harmony, all members 

must become culturally similar to one another by holding the same values (which are 

attained by developing a similar culture).  Thus, the term assimilation is used in positive 

terms to signal how new group members move from their undesirable habits towards 

embracing the sacred mainstream values.  This theoretical stance is problematic (see 

Johnson 1997; Telles, Ortiz, Moore 2008).  This view hides the formal and informal way 

power operates to force (potentially unjustifiable) duplication.  
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In simple terms, talking in terms of assimilation is a polite way of hiding the 

dangerous fact that minorities are “coming into the game after it has already begun, after 

the rules and standards have already been set, and having to prove oneself according to 

those rules and standards” (Young 1990:164).  Minorities must adapt to an existing 

game that disadvantages them from the outset.  This occurs because assimilation in 

effect “perpetuates cultural imperialism by allowing norms expressing the point of view 

and experience of privileged groups to appear neutral and universal” (Young 1990:165).   

The main point is that “the aim of assimilation is to unite people around a 

common good, but the common good is often defined in a way that fulfills the interest of 

perspectives of the dominant groups” (Piatelli 2009:4).  The hostile “downside of an 

inclusivity based on assimilation denies the reality of oppression and blinds privileged 

groups to their own group specificity, thereby resulting in exclusive versus inclusive 

environments” (Piatelli 2009: 4, italics by original author).  Assimilation in the United 

States is oppression because it fosters an exclusive social environment.  Minority-status 

groups like Latinos/as are thus made victims under such socio-political and -economic 

regimes.   

Racial struggles in the U.S. have heightened the sense of racial/ethnic identity.  

Any real reduction in the degree of status group inequality need not be psycho-

emotionally connected to the salience of racial/ethnic group labels.  The bottom line is 

that racial-ethnic categories still matter and Latinos/as are a social class.  Understanding 

how Latinas/os are systematically distributed along the U.S. social hierarchy is important 

since their group salience is likely to increase as their population continues to proliferate.            
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Power is complex and a full discussion elsewhere is warranted, because eloquent 

words remind us that to legitimate the power of the established “is an appeal to a justice 

transcending any one man or group” while protecting the “present interests of the 

established” is but “an excuse for enforcement of the order from which they so notably 

benefit” (Novak 1972: 30).  Criticizing current forms of power is easy.  Understanding 

where depart from the humane to the discriminatory is much harder.      

How do all these matters come into play with geosocial space?  By geosocial I 

only mean geographical social space. From a geospatially conscious perspective, we 

could highlight that the geographic distribution of power “affects society and social life 

just as much as social processes shape the spatiality or specific geography” of any 

habitat (Soja 2010:5).  Lefebvre’s words vitally capture how power saturates space in the 

following passage:  

It would be mistaken in this connection to picture a hierarchical scale 
stretching between two poles, with the unified will of political power at 
one extreme and the actual dispersion of differentiated elements at the 
other. For everything (the 'whole') weighs down on the lower or ‘micro’ 
level, on the local and the localizable—in short, on the sphere of everyday 
life. Everything (the 'whole') also depends on this level: exploitation and 
domination, protection and—inseparably—repression. The basis and 
foundation of the 'whole' is dissociation and separation, maintained as 
such by the will above… (1991:366). 
 

The power that frames inequality is spatial and has both abstract and material 

consequences that alter societies and their physical environments. We now turn our 

attention to how power, through spatial non-stationarity, influences the distribution of 

individuals along the American social hierarchy.      
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 Spatiality of Time and Space  

Before we begin discussing spatial non-stationarity (i.e. the fact that near things 

influence each other more than distant things), there are several things that require our 

attention.  In this section, I will be introducing how space is socially constructed, what 

sociospacial factor I am referring to in my investigation, and why including a space 

element in any sociological investigation is important.  

Critical spatial thinking, at its roots, arises “from the belief that we are just as 

much spatial as temporal beings” (Soja 2010:16 italics by original author).  A quest for 

descriptive, analytic, and global geospatial knowledge could be termed “spatiology” 

(Lefebvre 1991:404).  The spatiological view would advance on the premise that our 

existential spatiality and temporality are essential and equally powerful in explaining 

human behavior—that they are “interwoven in a mutually formative relation” (Soja 

2010:16).  That is, in talking about human behavior we are talking about space.  We 

must note how “space and place are different aspects of a unity—that is, two facets of a 

dialectical process just as the wave and particle aspect of matter is assumed in quantum 

physics” (Merrifield 1993:527).  Human behavior has a bidirectional relationship with 

both physical and abstract space.   

For example, living in Antarctica—where they have long periods of no sunlight 

and freezing weather—has both anatomical and psychological effects.  Our physical 

habitat directly influences our behavior by providing material potential—if you want to 

swim you need a body of water.  Our environment can also be altered to suit our needs—

deforestation in early times helped build our cities and has kept us warm.  The bottom 
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line is that social space is important and its hegemony operates at the micro, meso, and 

macro level.  We could say “its effects may be observed on all planes and in all 

interconnections between them” (Lefebvre 1991:412). 

The spatiality of time and space within our species is simply based on the fact 

that we are temporal beings (see Heidegger 1962; Massey 1992: and Laclau 1990 for the 

non-temporality of space-time).  By temporal I mean that we are most influenced by 

what is most immediate—in time and space.  This is because our “biography defines our 

individual lived time” which makes us irreversibly contemporary and unavoidably 

temporary (Soja 2010:15).   

The most proximal social behavior work, related to this topic, comes from 

economics.  Many years ago, economist began to talk about the intertemporally 

inconsistent preferences of individuals in their consumption (Goldman 1979; Ryder and 

Heal 1973) and intergenerational altruism (Phelps and Pollak 1968).  The idea is simple 

to understand, people’s behavior is differentially influenced by the pass, present, and 

future.  Each time element exerts both a different degree and type of influence.   

Humans are affected by all three time frames, but “when considering trade-offs 

between two future moments, present-biased preferences give stronger relative weight to 

the earlier moment as it gets closer” (O'Donoghue and Rabin 1999:103).  Put differently, 

humans are more influenced by what is most immediate.  Our species is biased towards 

preferring the present; we have present-biased preference. We are more likely to pursue 

immediate gratification even if it jeopardizes our future well-being.  Both our immediate 

physical environment and time-interactions matter more than distant spaces and 
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transactions.  This is why “the distribution of space is an outgrowth of social structure” 

(Baldassare 1978:31). 

Robert E. Park, gave his ASA presidential address and told his audience: 

It is because social relations are so frequently and so inevitably correlated 
with spatial relations; because physical distances so frequently are, or 
seem to be, the indexes of social distances, that statistics have any 
significance whatever for sociology. And this is true, finally, because it is 
only as social and psychical facts can be reduced to, or correlated with, 
spatial facts that they can be measured at all (1926:18).  
 

This is why including a study of space is necessary.  Investigations on social phenomena 

that neglect the significance of “spatial facts” make sociology less significant.  An 

analysis of space must supplement all social demographic analyses.  My investigation 

explores how sociospatial factors play a role in the prediction of poverty status.   

Almost a century after Park shared his wisdom, most social science research 

primarily gives attention to “social processes and social consciousness as they develop 

over time” rather than focusing on spatial developments (Soja 2010:2).  That is, most 

investigations only focus on the events that unfold around geographical space—they do 

not seek to understand if and how the distribution of events over space matters.  A focus 

on the geographical distribution of events has “been treated as a kind of fixed 

background, a physically formed environment that, to be sure, has some influence on our 

lives but remains external to the social world” (Soja 2010:2).  Such a theoretical 

approach privileges “time” over “space’ and powerfully shapes the sociological 

imagination by limiting its implications (as Park long ago warned us).  

Space and time, along with their “socially constructed extension as geography 

and history,” are most fundamental “qualities of the physical and social worlds in which 
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we live” (Soja 2010:15).  Time is a term being used as a substitute for a more complex 

concept.  By time, I mean to invoke how distinct transactions are cognitively linked to 

create a continuum that shapes our identities and thus how we navigate the social world.  

Which is why Soja tells us that it “is over time that we also create our collective selves, 

construct the societies and cultures, polities and economies within which our individual 

experiences are expressed and inscribed” (2010:15). 

Henri Lefebvre deals with, amongst other things, developing and “orientation” 

towards our understating of the production of social space (1970:423).  In Donald 

Nicholson-Smith’s 1991 translation, Lefebvre writes that social space is a social product 

(1970:26).  He admits the proposition borders on being tautological and requires a detail 

explanation.  A full discussion on this matter is beyond the scope of the current project.  

Instead, I will simply delineate and adapt Lefebvre’s ideas.   

Social space, as explained by Lefebvre, is indistinguishable mental and physical 

space.  Thus “such a social space is constituted neither by a collection of things or an 

aggregate of (sensory) data, nor by a void packed like a parcel with various contents, and 

that it is irreducible to a ‘form’ imposed upon phenomena, upon things, upon physical 

materiality” (Lefebvre 1991:27).  In simpler words, our physical space is filtered by our 

morphing mental constitutions and our neurophysiologic self is a part of the material 

habitat.  

In this project, I too argue that social space is socially created.  The productive 

process of space is defined by how individual members interact with each other and their 

physical environment, and how these interactions transform the process over time.  This 
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assumes that if “space is produced, if there is a productive process, then we are dealing 

with history” (Lefebvre 1991:46, italics by original author).  The U.S. has had a history 

(i.e. a high quantity of distinct transactions) were “many social groups” have been 

“excluded from markets as a matter of both formal policy and informal practice” 

(Massey 2007:23).  Our social space is riddled with inequalities.  

Unequal distribution of resources by social statuses and geographical locations 

amplifies the inequality gap.  Social inequality has unjust “consequential geographies” 

(see Soja 2010).  Consequential geographies are “the outcome of social and political 

processes,” and “are also a dynamic force affecting these processes in significant ways” 

(Soja 2010:2)—they are the spatial expression of stratification.  For example, poorly 

resourced environments (e.g. deep-poverty counties or low-agricultural rural areas) 

hinder individual’s life chances above and beyond their attained and ascribed 

characteristics.  Toxic environments (e.g., high-crime communities or chemically 

hazardous waste depositories) can even threaten quality of life beyond the effects of the 

micro- or macro-social elements. 

There are two overlapping and interactive elements to sociospatial inequality.   

The first, at a macrogeographical level, “results from the external creation of unjust 

geographies through boundary making and the political organization of space” (Soja 

2010:8).  The second, at a microgeographical level, factor in sociospatial inequality 

results when “unjust geographies arise endogenously or internally from the distributional 

inequalities created through discriminatory decision making by individuals, firms, and 
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institutions” (Soja 2010: 9).  In effect, inequality is geo-localized either through formal 

(e.g. policy driven boundaries) or informal (e.g., racially biased behavior) means.    

Our discussion can be complimented by the extensive work of many others.  For 

example, a few years ago Lefebvre wrote: 

Every space is already in place before the appearance in it of actors; these 
actors are collective as well as individual subjects inasmuch as the 
individuals are always members of groups or classes seeking to 
appropriate the space in question.  This pre-existence of space conditions 
the subject’s presence, action and discourse, his competence and 
performance; yet the subject’s presence, action and discourse, at the same 
time as they presuppose this space, also negate it. The subject experiences 
space as an obstacle, as a resistant ‘objectality’ at times as implacably hard 
as concrete wall, being not only extremely difficult to modify in any way 
but also hedged about by Draconian rules prohibiting any attempt at such 
modification.  Thus the texture of space affords opportunities not only to 
social acts with no particular place in it and no particular link with it, but 
also to a spatial practice that it does indeed determine, namely its 
collective and individual use: a sequence of acts which embody a 
signifying practice even if they cannot be reduced to such a practice” 
(1991:57, italics by original author).  
 

The point is that sociogeographies are important because it “is within space that time 

consumes or devours living beings, thus giving reality to sacrifice, pleasure to pain” 

(Lefebvre 1991:57).  Non-spatiological investigations on inequality are thus, as Park 

argued many decades ago, less sociologically relevant than their counterparts that 

include a sociospatial element. 

It is important to note that an appropriate spatiological study is not “directed at 

space itself, nor does it construct models, typologies or prototypes of spaces; rather, it 

offers and exposition of the production of space” (Lefebvre 1991:405, italics by original 

author).  In my study, the sociospatial exploratory component is meant to capture what 

could be considered a science of space or “spatio-analysis” that stresses “the use of 
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space, its qualitative properties” where a critique of established knowledge/knowing is 

the essential goal (Lefebvre 1991:405).  In other words, when I say that minority 

concentration in the area of residence matters, in actuality I am saying that the historical 

processes that have culminated to form the existing social and physical environment 

matter when trying to understand how individual level attributes are statistically 

associated with the likelihood of being in poverty. 

The formation of social categories used in the distribution of resources plays a 

role not only in the social and cognitive spheres, “social boundaries can be made to 

conform to geographic boundaries through” (Massey 2007: 18-19) systematic processes 

that make social differentiating more efficient and effective (see Massey 2005).  

Consequently, inequality is facilitated by investing or disinvesting in either geographic 

places or groups of people (see Massey and Denton 1993).  The overlapping of social 

and spatial boundaries increases the efficiency of stratifying systems.  

The core argument in this discussion is that everything that is social “is 

simultaneously and inherently spatial, just as everything spatial, at least with regard to 

the human world, is simultaneously and inherently socialized” (Soja 2010:5-6)—which 

is why the sociospatial element is included in my investigation.  

In this section we established that space is socially constructed and the many 

reasons why social demographic investigation should incorporate a spatiological 

component into analyses.  We have also defined spatial non-stationarity throughout the 

chapter as the fact that near things influence each other more than distant ones.  We now 

turn our attention to a more formal discussion of the topic.  
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 Spatial Non-Stationarity  

The idea of “stationary process” was discussed long ago, in 1954, by University 

of Cambridge statistician Peter Whittle.  He was amongst the pioneers who observed that 

new estimation techniques were necessary to model non-stationary fields. In discussing 

one-plus dimensional fields, he pointed out that spatial processes have statistical 

dependence that extends in all directions (Whittle 1954).   

Several decades earlier, E. G. Ravenstein wrote on the pattern of migration flows 

(1876, 1885, 1889).  His work dealt with migration movements as a function of distance.  

Others later adopted his approach and even termed more abstract investigations of 

movements as “social physics” (Zipf 1946).  To be sure, modeling spatial dependence 

has been at the forefront of sociological thought for many generations. For example, 

early work focusing on Mexican-Americans and their income differential also controlled 

for region in order to account for “definite regional differences in terms of wages, dollar 

value, and possible hiring practices” (Poston and Alvírez 1973:701). 

By invoking Waldo Tobler’s (1970) first law of geography that “everything is 

related to everything else, but near things are more related than distant things,” I argue 

that investigating poverty requires we expand our understanding of how social 

phenomenon disintegrates as a function of geographical distance.  In more statistical 

terms, my theory is that spatial non-stationarity is necessary because it can help us 

explicitly investigate how space plays a role in the modeling process.  The concept is 

meant to convey how statistical associations are “not fixed over space” (Brunsdon, 

Fotheringham, and Charlton 1998:431).   
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A more technical and full discussion on how regression coefficients are functions 

of their geospatial locations will be given in the methods chapter of this dissertation.  

The explanations will focus on delineating how variation of each of the elements of β 

over space operates. By using geographically weighed regressions, I employ the use of a 

“nonparametric estimate of  ” (Brunsdon, Fotheringham, and Charlton 1998:432) 

to capture the space function.            

The core question in spatiology is: How and why does an area attribute vary from 

one place to another?  In my project I ask: How is racial-ethnic concentration spatially 

dependent when predicting poverty levels?  A necessary proposition in such an endeavor 

is that statistically significant sociospatial variations are casually related.  Thus, the 

“central problem in locational or distributional studies” is to “describe and account for 

significant features of the distribution” (Duncan, Cuzzort, and Duncan 1961:21).  My 

project undertakes this endeavor.     

The main goal in Chapter II was to theorize how and why hierarchical and 

sociogeographical factors are associated with the likelihood of being in poverty. 

Subsequent chapters explore data for support of the proposed theory by answering the 

following two questions:   

Does the percent of Latinos in the area of residence have an influence on 
individual poverty over and above the influence on poverty of the person 
characteristics?   
 

and,  

Is spatial non-stationarity an important element to account for when 
investigating poverty?   
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At the micro-level, the hypothesis being assumed is that Latinos/as have greater odds of 

being in poverty than their non-Latino-white counterparts. The questions more formally 

stated in hypothesis form are: 

At the macro-level, I hypothesize that as the percent of Latinos/as in the 
area of residence increases, the odds of being in poverty will increase for 
Latinas/os. 
 

and within the exploratory question,  

I hypothesized that the statistical association between percent Latina/o 
and percent poverty is spatially non-stationary. In particular, I expect 
positive GWR coefficients in historically saturated Latino/a areas and 
negative betas in economically-healthy new destinations.     
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CHAPTER III 

METHODOLOGY  

 

“It is because social relations are so frequently and so inevitably 
correlated with spatial relations…that statistics have any 

significance whatever for sociology.”  
Park 1926:18 

 
 

The quantitative methods employed in the analysis of secondary data will now be 

discussed.  This chapter outlines and explains the various models used to investigate 

Blalock’s group threat theory.  It offers a detail discussion on the implications of using 

quantitative analysis, with ACS data, given our selected sample and variables.  After 

discussing the source and quality of my ACS data, I deliberate details of the final sample 

being used in study—at which point detail logic of my dependent and independent 

variables is given.    

The models will be introduced in the same order they are given in Chapter IV.  I 

first give a general rationale for using hierarchical Bayesian statistics.  I then explain the 

random-coefficient equation before introducing the full pre-GWR intercepts-and-slopes-

as-outcomes model.  At this point, I motivated the use of spatial models by arguing the 

existence of spatial non-stationarity and how geographically weighted regressions are 

capable of capturing such phenomenon.  While discussing the exploratory spatial 

analysis, I present some of the challenges facing spatiology.   

After both the pre-GWR multilevel and spatial models are discussed, I move on 

to explain the creation of my exploratory hybrid multi-geospatial model.  It is here that 
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the final hybrid-HLM model is given.  The hybrid model is the main focus of my 

dissertation. I conclude Chapter III by reminding the reader of my two formal 

hypotheses under investigation and how their working can be refined in more technical 

terms to capture the various forms of modeling being employed in my work.  

 

Quantitative Analyses 

Before discussing the data, sample, variables, and models, we must briefly point 

out some implications when using quantitative social research.  As a quantitative social 

demographer I employ the use of statistics.  In doing so, I partake of the many implicit 

assumptions found in probability theory.  In particular, my models view human 

phenomenon as evolving in a stochastic process.  This means that I believe probability 

distributions can capture the indeterminacy of human behavior.  The statistical 

techniques used in this project work on the axiom given in the stochastic process 

assumption—that even if an initial condition is known, there are many possible 

destinations and some paths may have a higher probability of selection over others. In 

terms of human behavior, my use of statistics means that I believe we cannot predict 

future behavior with certainty, but we can “attach probabilities to the various possible 

future states” (Bartholomew 1967:1). 

All my statistical models assume a Bernoulli scheme on a Markov chain.  

Markov chain refers to a system that moves from one state to another in a chain-like 

fashion.  This statistical philosophy can only be applied to a stochastic process where the 

next state depends only on the current state and not on the past.  A Bernoulli process is 
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necessary when modeling a binary dependent variable—because it helps measure a 

discrete-time stochastic process that only uses two values (i.e., 0 and 1).  My multilevel 

dependent variable of poverty status only has two conditions: 1=in poverty, and 0=not 

in-poverty.  The Bernoulli process assumes that past outcomes provide no information 

about future outcomes.  The process of estimating probabilities in my logistic model is 

thus memoryless.  

In addition to assuming that next states do not depend of past states (the Markov 

chain assumption), the Bernoulli scheme further assumes that the next state is even 

independent of the current state. These philosophies on stochastic processes underlie the 

probabilistic laws structuring the legitimacy of my statistical techniques.  Sociology 

adapted the use of stochastic models from the natural sciences.   

Some have argued that the laws governing natural/material events do not apply to 

human behavior and that “to treat human beings as subject to ‘laws’ seems to be 

depriving them of freedom of choice” (Bartholomew 1967:5).  It has been pointed out 

that social phenomena are too complex “by saying that social situations are far too 

complicated to allow mathematical study and that to ignore this fact is to be led into 

dangerous over-simplification” (Bartholomew 1967:6)—a warning that should be 

engraved in the minds of quantitative researchers.   

I agree with those who point out that it “is precisely because man is a free agent 

that his behavior is unpredictable and hence must be described in probabilistic terms” 

(Bartholomew 1967:5).  The truth is “that there is no alternative to simplification,” 

because the basic limiting factor is not the mathematical or software apparatus available 
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but “the ability of the human mind to grasp a complex situation” (Bartholomew 1967:6). 

The legitimate use of stochastic models in social sciences has been around for several 

decades (see Coleman 1964; Kemeny and Snell 1962).  Stochastic models of social 

phenomena have many functions.   

My focus will be on giving insight into understanding poverty as a proxy to 

inequality (a product of discrimination).  This means that my research could be 

characterized by some as being “pure” science.  Pure science, because, as Melvin 

(1927:198) told us long ago: “He who would collect and classify sociological facts and 

draw consequential deductions there from cannot be too much concerned about their 

immediate application.”  In truth, most social scientists seek discovery of facts as ends in 

themselves (Tyndall 1901).  Stemming from current antinomies in the field, “scientific 

knowledge is at once theoretical and empirical, pure and applied, objective and 

subjective, exact and estimative, democratic (open for all to confirm) and elitist (experts 

alone confirm), limitless and limited (to certain domains of knowledge)” (Gieryn 

1983:792).  From these views, I approach my study as a pure scientist with the 

understanding of the power it has for application. 

Keep in mind that the “suggestion that mathematical methods may lead to the 

manipulation of social systems is often viewed with misgivings by sociologists and 

others who have a concern for individual freedom,” a problem that arises “whenever 

new knowledge places power in the hands of its discoverers”—because it “can be used 

for good or ill” (Bartholomew 1967:4).  My worthwhile project then is to search for 

general probabilities/solutions with the use of stochastic models.  Some have argued that 
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no model is perfect, but some are useful (Box 1987).  Most of what I have stated above 

is given with the intent of disclosing all the “imperfections” (Freedman 2008) in my 

quantitative research.  I am, in effect, admitting to the arguably high level of detachment 

my enterprise has from daily life.  However, I feel justified (and think it a worthwhile 

endeavor) to quantitatively investigate complex human behavior, because in the end, all 

the centuries of social sciences have only developed investigative techniques that require 

us all to be “content with approximation” (Bartholomew 1967:7).   

 

Source of Secondary Data  

My quantitative social demography analysis is conducted using a Public Use 

Microdata Sample (PUMS) from the American Community Survey (ACS) administered 

by the U.S. Census Bureau during the 2005-2007 survey time-period.  The term “time-

period” is a Census term used to highlight the fact that responses are collected during the 

whole time period and not only in one or two months during each of the target years.  

There is substantial documentation available on the ACS methodology elsewhere 

(Census 2008). 

The ACS is an ongoing yearly survey that helps the U.S. government allocate 

more than hundreds of billions of dollars in federal and state funds every year.  For 

example, in fiscal year “2008, 184 federal domestic assistance programs used ACS-

related datasets to help guide the distribution of $416 billion, 29 percent of all federal 

assistance” and about $389 billion (69%) of all federal grant funding (Reamer 2010:1). 

Its’ primary purpose is to help the U.S. Congress determine funding and policies for a 
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wide variety of federal programs (Census 2009b).  The randomly selected national 

sample has extensive documentation available (Census 3).  The microdata being used in 

this research includes several population characteristics.  The main benefit of microdata 

is that it allows researchers the flexibility to prepare customized variables for the 

formation of tabulations and regressions. 

The data source has an acceptable level of validity and reliability.  Perhaps a 

short history of its inception and subsequent creation will help the reader contextualize 

the data source.  Almost three decades ago, and after deciding that a “rolling sample 

design” (Kish 1981) was more appropriate for detailed demographic data than the 

decennial format, the U.S. Census Bureau was authorized (but not funded) in 1985 and 

again in the early 1990s to use the method.   

Several years after the rolling sample design idea was introduced, the U.S. 

Census Bureau received Congressional funding to proceed.  The Bureau selected one of 

three tested “rolling sample design prototypes” (Alexander 1993).  The main benefit of a 

rolling sample, it argued, is that for less money, it creates more up-to-date estimates on 

key demographic characteristics of the population.  A recent report validated the 

government’s effort to be more cost-effective by concluding that the “nation receives a 

very substantial return on its investment in ACS-related datasets” (Reamer 2010:1).   

A national evaluation on the reliability of ACS estimates, compared to decennial 

estimates, is yet to be given (Citro and Kalton 2007; Diffendal, Petroni, and Williams 

2004; Salvo and Lobo 2006; Salvo, Lobo and Love 2003).  To be sure, “if the ACS is to 

serve as a superior replacement for the decennial census and a model for local data 
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collection in the 21st century, increases in sample size and follow-up are crucial,” 

especially for areas with low mail response (Salvo, Lobo, Willet, and Alvarez 2007:17 

italics given by original author). 

The project was first tested in 2005 and entered full implementation (i.e., the 

inclusion of group quarters in the sampling universe) by 2006.  Please note that no 

“group quarter” data is used in my analysis and that there are limitations in the ACS 

because of its statistical and demographic measurement processes that employ controls 

from the Population Estimates Program in the Bureau (see Hogan 2008).  Although a 

detailed discussion on these matters is beyond the scope of the current project, it will 

suffice to say that the ACS’s use of the 2000 Census Master Address File challenges the 

idea that the housing unit stock is nationally representative (see Swanson 2006).  There 

are also discussions on how “place of residence” complicates the sample (see National 

Research Council 2006).  The many challenges and opportunities were noted since 

before its full inception (see Alexander and Wetrogan 2000). 

After several years of implementation, the Bureau compiled single-year files to 

create three-year period data—and has more recently created five-year files.  Each 

single- and multi-year file has benefits and drawbacks.  One-year estimates have no 

survey instrument consistency problems (e.g., questions or format changes).  They, 

however, only offer small samples that can only be used to estimate population 

demographics of large geographies like nation and states.   

Three-year samples are three times as big and have the ability to estimate much 

smaller geographies like counties.  The data collected over 36 months is less current than 
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the 1-year data but more current than the 5-year file.  There are some problems with 

using three-year files.  The main one is that questions and survey formats have changed 

over the years.  Consequently, all multi-year files require public data users to understand 

how (if at all) questions are compatible across years—which are why comparisons 

across ACS survey years must be made with caution (see Hogan 2000). 

Five-year estimates are the largest and are useable at the track level—please refer 

to the above cited work on the covariance inflation factor issues with small geography 

estimates using ACS data.  The consistency of the variables being used in this research 

(e.g., the race question) is most turbulent in this five-year file.  There are more recent 3-

year files, but the 2005-2007 survey time-period is consistent on all the questions I am 

using to create my variables.  The main reason why I am using the 2005-2007 file is 

because in 2008 the ACS changed the format of the survey instrument and some of the 

key questions.  In particular, the race and ethnic questions seem to have altered the way 

many respondents identified themselves.  Thus, I have chosen the 2005-2007 three-year 

data because it affords a large sample and variable consistency.   

 

Public Use Microdata Sample        

Prominent social science research has used Census Public Use Microdata Sample 

(PUMS) files to investigate poverty through a multilevel framework (Cotter 2002; 

DiPrete and Forristan 1994).  As a reminder, my project uses the 2005-2007 ACS Public 

Use Microdata Sample (ACS 05-07 PUMS).  PUMS files allow researchers like me—

who are in the public domain—to access individual-level data (i.e., micro-level data).  
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The three-year file being used is capable of creating population estimates for areas with 

as little as 20,000 people.  The details for the custom estimates I create at the PUMA 

level are given below. Understanding the ACS data file requires some technical 

explanations.  Extensive PUMS documentation is available elsewhere (Census 2009a).   

One-year ACS PUMS files give analysts access to a 1% sample.  A one-year file 

represents about 40% of the internally available data with some minor alterations on 

sensitive variables.  Unlike the decennial census in which the sample represented 

approximately 1 in 6 households (i.e., 17% of the population), the ACS represents 

approximately 1-in-40 households (i.e., 2.5% of the full U.S. population) within a given 

year-period.  This is approximately 1.3 million housing unit records and about 3 million 

person records (this excludes group quarter records).  As explained above, the ACS 

provides the public with one-, three-, and five-year PUMS files.  The three-year 2005-

2007 PUMS file contains the same sample found in each of the 1-year files for the years: 

2005, 2006, 2007.   

The ACS 2005-2007 PUMS file being used in this research contains 3% of the 

housing units during the 2005-2007 survey time-period.  For the sake of clarity, I am 

using the three year file because it is the most appropriate for my research. The three-

year file is more precise than the one-year files and more stable than the five-year file.  

The instability present in the five-year file has to do with all the changes on the format of 

the survey and the questions in the survey.  That is, the five-year file aggregates 

individuals across five years—even though they responded to slightly different survey 

instruments and questions.  The three-year file being used here allows for the analyses of 
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individual-level characteristics while accounting for PUMA attributes (i.e., contextual 

effects). 

Because of confidentiality requirements by federal law, the ACS protects the 

microdata in various ways.  PUMS files have a very unique way of being created—they 

follow clear federal laws—it has to do with protecting survey participants’ personal 

information.  The confidentiality of respondents is protected though a series of statistical 

and administrative processes.  The publicly released microdata is “disguised” enough to 

protect individuals and at the same time allow the information to be current, useful, and 

valuable to public users.   

Of the methods employed to insure respondent confidentiality, limiting the 

ability of public users to geographically locate respondents is one of them.  The U.S. 

Census Bureau protects the identity of individuals by introducing small demographic 

alterations to the sample and only allowing their physical location (at the time of taking 

the survey) to be detected in geographical polygons with at least 100,000 people or 

more.  Consequently, Public Use Microdata Areas (PUMAs) are the smallest geographic 

unit available for nesting individuals when using PUMS.   

We will now turn our attention to delineating the PUMA geography.  

 

Public Use Microdata Areas       

Figure 3 below displays where PUMAs are located on the Census geographic 

hierarchy.  A PUMA is a statistical geographic area defined by the U.S. Census Bureau 
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Figure 3 
Location of Public Use Microdata Area in the Census Geography Hierarchy 

 

 

for public dissemination.  Statistical areas are defined by the Bureau, state, regional, or 

local authorities, and include small geographies like census tracts.  Statistical areas, in 

general, experience less boundary changes than do legal areas because they are designed 

to have stable geographic boundaries.  Since the ACS does not update previously 

released estimates to reflect subsequent boundary changes, PUMS data can be used to 

address such a limitation. ACS PUMA boundaries are identical to those in the 2000 5% 

census sample (see Ruggles et al. 2010).  

It is important to note that the primary purpose of statistical areas is to tabulate 

and present census data (U.S. Census Bureau 2009a).  The PUMA polygons being used 
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in the analysis are not theory driven—they are driven by quantitative considerations and 

laws.  To be sure, PUMAs are “units specially delineated for statistical purposes” 

(Duncan 1957:27).  In a sense, their creation is driven by geometry and population 

concentration.  The technique is unable to embrace complex socio-theoretical 

propositions.   

For example, PUMA boundary creation does not take into account social 

process—even though “the spatial is socially constituted” and social space itself “is 

created out of the vast intricacies,” incredible complexities, and through “networks of 

relations at” the micro-, meso-, and macro-level (Massey 2007:80).  PUMA boundaries 

ignore such dynamics.  Consequently PUMA boundaries are, for the most part, without 

social meaning and could thus be argued to be politically insignificant.   

Micro-level data from the Bureau is however governed by such geographical 

limitations—which is why I use “context” or “area effects” instead of talking about 

“community” (Selnick 1996) influences on x-individual-level factors as they relate to 

poverty.  Note that that PUMAs are special, non-overlapping areas that partition states.  

Since states governments do influence the formation of the PUMA boundaries, they hold 

some (although ambiguous) meaning too many users.   

These sample driven Census geographies do have several detectable 

characteristics.  All U.S. Census Bureau geographies are built on the block geographic 

element.  PUMA polygons are nested within states, cover the entire U.S., contain at least 

100,000 persons per unit, are built on counties, census tracts, and are contiguous.  The 
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Census provides maps showing how PUMAs overlap with other geographies (U.S. 

Census Bureau 6). 

My project uses ACS 2005-2007 three-year PUMS that only allows me to nest 

individuals into PUMA polygons.  I want to reiterate this so that the reader has a clear 

understanding once the discussion gets more complex: individuals are nested in PUMAs.  

The dissertation extends existing research by applying appropriate statistical techniques 

in a multilevel logistic analysis of context level effects on individual-level poverty.  By 

nesting micro-level data in macro-level PUMA polygons, my investigation into 

sociospatial inequality delineates how individual-level stratifying mechanisms are 

influenced by context-level structural attributes.  I also explore how sociospatial non-

stationary processes are statistically associated with these relationships.  

There are many limitations associated with using PUMAs as nesting polygons for 

people included in my analysis.  This is primarily due to the ambiguous nature of the 

polygon—as explained above.  This topic is fully discussed is the section below where 

we discuss the challenges spatiology faces.  It is important to note that I am using micro-

level demographic characteristics in the level-one equation.  Subsequently, I aggregate 

those same characteristics from the same subjects to produce macro-level attributes (e.g., 

percent of Latinos in area of residence).  This means that when I attempt “to explain 

individual-level dependent variables using combinations of individual- and group-level 

independent variables” (Blalock 1984), I must employ relatively new theoretical 

frameworks.   
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Please keep in mind that this government-created data does not reveal “unofficial 

behavior” like criminal activity—and the various “social-organizational processes that 

lie behind neighborhood demography” (Raudenbush and Sampson: 1999:2).  This point 

is important because I presume “collective aspects of community life” (including deviant 

behavior) all contribute to the social processes constituting the neighborhood (see Mayer 

and Jenks 1989).  My data and polygons do not fully capture this collective process. 

These are theoretical and methodological issues that need attention and more proper 

forms of data.    

Existing research and theories on how the micro interacts with the macro have 

existed for over five decades (see Blau 1960; Davis 1961; Robinson 1950).  Sociologists 

have been dealing with this issue for many generations.  According to Blalock (1984) 

when dealing with “contextual-effects models,” we must pay attention to the following:  

a) the proper choice of contextual unit, 
 

b) situations involving either nested or overlapping contexts, 
 

c) the causal ordering of micro- and macro-level variables and how this 
relates to the question of self-selection, and  
 

d) the nature of the specification problems that may arise whenever group 
means are used as indicators of the “true” contextual variables thought to 
belong to the correctly specified model (Pg. 335). 

 
 

Unfortunately, these issues can only be tackled with a great deal of conceptual 

ambiguity.  In my case: 

a) My data forces me to choose the PUMA polygon as the “proper” contextual unit.  
The drawbacks are explained in the challenges in spatiology section below.   
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b) I believe contextual social processes are overlapping and are thus attempting to 
account for this by developing a hybrid multilevel logistic model that accounts 
for spatial non-stationarity.  More technically, I believe the PUMA polygon 
boundaries I use are highly inadequate in correctly capturing “community 
nodes.”  This is why a spatial model is employed—(more on this below).  
   

c) As explained in my literature section, I believe the micro precedes the macro-
formations.  I have not, nor will I, discussed self-selection at length.  Self-
selection deals with, among other things, how individuals select their context 
once their micro-level attribute is in existence.  For example, a Latino who is in-
poverty may be more likely to seek out residency in communities with other 
Latinos who are also economically deprived because of financial necessity (i.e., 
cheap rent) or choice.  In this example, the micro preceded the macro. Self-
selection is complex and my data renders me with little room for exploring the 
phenomena.    
 

d) My multilevel models do use means to estimate parameters and control for any 
potential statistical heterogeneity—but not for highly localized social 
heterogeneity.  The latter is accounted for with a spatial model.  The estimates 
produced by the latter are then used as data to account for local social 
heterogeneity.   
 

In order for me to argue that “individual-effect variables should be introduced 

before contextual-effect variables” I must “specified the direction of the causation 

between the two” (Blalock 1984:368).  This is my primary argument in this regard: I 

propose that the contextual-effect variables employed in this study (e.g., percent Latino) 

have not been continuously operative throughout my subject’s life.  To put it differently, 

context is fluid and is thus a dynamic factor influencing and being influenced by the 

individuals who inhabit the environment. This is why I first introduce individual-level 

effects, and then account for how the produced PUMA-level attribute interacts with the 

micro-level factor.    

Figure 4 below may help with clarification.  The figure displays how macro and 

micro interactions are conceptualized.  Some social science research only models effects 
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within context-level units (the blue line in Figure 3) between time-1 and time-2 (i.e., 

and ).  These are macro-only-level investigations.  Other sociologists investigate 

associations within individual-level units (the red line in Figure 3) from and .  These 

are micro-only-level investigations. 

  Sociology was created as an academic discipline to understand how context 

interacts with the individual (all the black lines in Figure 3).  These could be called 

micro- and macro-level investigations. In my multilevel models, I first introduce the 

attributes of “individual X at ” and then introduce “context ” at level-2.  By doing 

this, I am ignoring the effects “context ” on individual X at .  The model then 

privileges the theoretical effects of individual X at  on “context ” (the micro to macro 

interaction) and then explains the macro-level effects as if  context  is influencing 

individual X at  (the macro to micro at ).  

This approach is used because I belief co-ethnic distributions in area of residence 

become more volatile in larger geographies.  As argued before, humans are temporal; 

they perceive their context in the most immediate form (e.g., their local community). I 

belief micro-level context fluctuations have less perception equilibrium, followed by 

meso-level perceptions, and macro-level perceptions of community, which have the 

most stability.  Thus, I argue that the micro precedes the macro—because individual 

level characteristics are more immediate than macro-level attributes.  It may be that self-

selection becomes a factor in latter ages—when economic resources are available and 

social tastes are more settled. 
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Despite these challenges, some have argued that “the presence of conceptually 

similar dependent variables at both levels increases the likelihood of conceptually 

similar explanatory processes and structures at both levels” (Liska 1990:299).  Linking 

the micro to the macro seeks to remedy the problems created by only-macro research 

approaches that are distant from individual action and by only-micro approaches which 

neglect the influence of context (Sampson 1988 and 1991).  In truth, capturing “system 

behavior” (Coleman 1986) remains a complicated goal. 

When discussing theoretical complexities of this nature, it is important to 

understand that the micro and macro “are temporary poles bracketing a continuum, with 

social entities moving along this continuum over time” (Fuchs 2001).  The micro and 

macro are not distinct elements.  Linking them does not require building a conceptual 

Context  Context  

Individual X at  Individual X at  

MicrotoMacro  

MacrotoMacro  

MicrotoMicro  

Figure 4 
Theoretical Hierarchical Causality System 
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bridge between them; rather, it requires an understanding of how people navigate along 

the multidimensional continuum they bracket.  These are all worthwhile topics but 

beyond the scope of the current study.  It is important to keep in mind that it “is not the 

geographic focus of a study that determines the applicability and value of the findings, 

but rather the quality of the data gathered, the quality of the analyses of that data, and the 

insight generated from the study” (Besser 2002:8).   

On a more technical note, the U.S. Census Bureau releases PUMA geography 

related information by using a combination of numeric or alphanumeric codes—by using 

a geocode system.  I use this geocode system to link micro-level observations (with their 

id number) to their PUMA of residence.  The system is also important when linking 

PUMA level measure s to polygons in ArcGIS.  I use Topological Integrated Geographic 

Encoding Referencing (TIGER) Shapefiles from the Census to conduct all my mapping 

and spatial analysis.  In brief, a shapefile is a popular geospatial vector data format used 

in geographic information system (GIS) related software.  In general, shapefiles provide 

open specification for data interoperability. More technically, they spatially describe 

geometries by using points, polylines, and polygons.  Full details on “.shp” files are 

made available elsewhere (ESRI Shapefile Technical Description 1998) and a broader 

explanation of how geographies are released through U.S. Census Bureau TIGER/Line 

Shapefiles is also available (U.S. Census Bureau 2007).   

A TIGER shapefile is an extract from the Census Bureau’s Master Address File 

(MAF) database that contains selected geographic and cartographic information.  The 

MAF/TIGER database is useful when mapping PUMS data in PUMA polygons using 
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any form of Geographic Information System (GIS) software (in my case ArcGIS).  My 

2007 TIGER/Line Shapefiles contain the geographic boundaries as of January 1, 2007, 

that includes a Census 2000 vintage geography.  It is beyond the scope of this study to 

explain how the Boundary and Annexation Survey (BAS) has made some alterations to 

the boundaries.  Suffice it to say that my PUMA polygons are representative of the data 

being used in the analysis.   

Before moving on to discuss the sample being used, it is important that the reader 

understand that even though “PUMAs are not ideal, they represent a scale falling 

somewhere between large MSAs and counties” and are customarily used (McCall 

2000:420).   

 

Sample 

In this section, I outline the logic for sample selection.  The research will only 

include “reference” persons—age 20 to 64—who currently reside in one of the mainland 

contiguous states (and DC).  The main reason why states like Alaska and Hawaii are 

excluded in the sample is because the spatial models require that all polygons a cohesive 

area with no geographically empty spaces.  Using non-geographically connected states 

like the ones mentioned above would prohibit the use of spatial models. 

The sample only includes Latinos/as, single-race non-Latino-blacks, and single-

race non-Latino-whites (for a detail discussion on the demography of race and ethnicity 

see Saenz and Morales 2005).  These categories are discussed below.  “Reference 

person” is a Census technical term used to label the variable that can identify the 
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relationship of an individual within the house unit to the person responding in the 

survey.  There are several “modes” of participation with the survey (Census 2009c), but 

for the most part, the reference person is the only survey respondent directly engaged 

with answering the survey questions for themselves and all other household members.  

My primary micro-level variable of interest is individuals’ racial-ethnic identity.  

Since reference persons are the ones who are actually participating in the survey—all 

others are likely given their racial-ethnic labeling by the reference person and are thus 

not directly connected with the primary variables of interest: race and ethnicity. I use 

ethnicity along with race because previous research has found that “people with specific 

ethnic self-conceptions” use different self-images in the course of interaction with others 

(Saenz and Aguirre 1991:17).  Because self-identification on both the race and ethnic 

variable matter so deeply, I only use reference persons in my sample.  More technically, 

if a micro-unit has a “00” value on the relationship (REL) variable, they are retained in 

the sample and all others are deleted.  This technique is prevalent in existing research 

(e.g., Garcia 2008).   

Individuals between the ages of 20 and 64 are selected into the sample because 

this age range best captures the time when a person is more likely to enter and exit the 

labor market.  That is, the age range captures most of the working-age reference person 

population in the microdata.  In addition to this age selection, only reference persons 

who reside in one of the mainland states and DC are included in the sample.  The main 

reason for this decision is that my spatial models require that polygons be adjacent to 

one another.  All the above decisions lead to a sample that contains 2,526,896 
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individual-level units (i.e., reference people) who are nested across 2,054 context-level 

units (i.e., PUMAs).  

 

Level-1 HLM Dependent Variable   

My dependent binary variable is poverty status. I am predicting the likelihood of 

being in poverty. My measurement follows existing academic standards (see Garcia 

2008; Poston et. al. 2010; Saenz 1997).  Poverty in the ACS is calculated using standards 

specified by the Office of Management and Budget (OMB) in their Statistical Policy 

Directive 14 (U. S. Census Bureau 4).  The original poverty thresholds were first 

developed back in 1963 by Mollie Orshansky of the Social Security Administration 

(Orshansky 1965). The official measure uses money income before taxes and does not 

include capital gains or noncash benefits like food stamps.  The Census calculates a 

family’s total income and compares it to the dollar value thresholds set in the directive 

(see Bishaw and Macartney 2010).  The Census then uses the thresholds, which vary by 

family size and composition, to assign a poverty status.    

The poverty thresholds do not vary geographically and as such do not account for 

the relative cost of living.  The thresholds are however annually updated for inflation 

using the Consumer Price Index (CPI-U).  For example, in 2007 a household with four 

people (where two are related children under 18 years of age) had a poverty threshold of 

$21,027.  If hypothetical household A has a combined income of $22,000 per year, then 

they are not in poverty.  Simply put, if a family’s total income is less than the family’s 
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poverty threshold, then both the individual and the family are labeled as being in 

poverty.   

On a more survey methodology note, since people respond throughout the year in 

ACS data, income items specify periods covering the last 12 months.  Thus, the poverty 

threshold is determined by multiplying the base-year poverty thresholds by the monthly 

inflation factor based on the 12 monthly CPIs and the base-year CPI (U.S. Census 2). 

Note that poverty status is not determined for the following people: institutionalized, in 

group quarters, in college dormitories, and unrelated individuals under 15 years old.  

Consequently, these groups of individuals are excluded from the numerator and 

denominator when calculating poverty rates. 

The binary categorization of “in poverty” versus “not in poverty” only allows the 

estimation of a poverty proportion.  The problem is that proportions only capture the 

amount of people living below the poverty threshold.  Using an income-to-poverty ratio 

is more sophisticated because it measures depth of poverty (DeNavas, Bernadette, Smith 

2010: 18).  The classical ratio measure of poverty commonly uses a 1.0 level, which 

indicates the person is at or below 100% of poverty.   

Extensive research has been conducted on the measurement of poverty (Citro and 

Michael 1995) and to the development of experimental measures (see Garner and Betson 

2010; Short 2011; Provencher 2011). Many criticisms on the current measure of poverty 

have led several researchers to argue that using a 1.5 ratio represents a more realistic 

view of poverty that accounts for the cost of living found across geographical variability.   

The 1.5 ratio can be thought of as grouping individuals that are near, at, or in deep 
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poverty.  Research using this approach has been done at the macro level (see Jargowsky 

and Bane 1991; Timberlake 2007) and micro level (Wertheimer 1999; Garcia 2008; 

Seccombe 2000).  If we take this approach, 2009 data shows that while the Latino/a 

population had 33% of their group at a 1.5 income-to-poverty ratio, non-Latino-Whites 

only had 13% of their group at or below 1.5 ratio (DeNavas, Bernadette, Smith 2010: 

Pg.18).   

By using poverty ratios, we can see the fact that Latinos were three times more 

likely to be near, at, or in deep poverty than their Non-Latino-White counterparts.  It is 

clear, even with a crude racial-ethnic categorization scheme and different poverty ratios 

that poverty is demographically concentrated in minorities.  A core argument in this 

dissertation is that social stratification is occurring across geographic and demographic 

dimensions—and that persistent and deep concentrations of poverty are detectable.  Not 

all people are suffering equally in North America.     

As outlined earlier, the ratio captures ‘depth’ of poverty.  The ratio is computed 

using the poverty threshold discussed above. For example, a household with two people 

under the age of 65 and with one related child under the age of 18 has a 2006 threshold 

of $13,896.  This family unit would need this amount of money to provide for food and 

all other basic sustenance requirements.  Let us assume this hypothetical family unit of 

three had a combined yearly income of $30,000.  To obtain the poverty ratio one would 

divide $30,000 by $13,896.  This division would yield a quotient of 2.158.  To obtain the 

final poverty ratio one multiplies the quotient by 100 and get a rounded number of 216.  
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Thus, the family unit would be said to have an annual income that is more than twice 

their assigned poverty threshold.  

My research uses the ratio of income to poverty as the dependent variable.  In the 

ACS PUMS, persons’ poverty status is given with the variable: POVPIP.  The percent of 

poverty status value ranges from 0 to 501. Following existing research (Poston et. al. 

2010), reference persons with a POVPIP score ranging from 0 to 99 will have a “1” in 

my in-poverty dependent variable.  More technically, reference persons with a poverty 

statistic of less than 100 (i.e., if POVPIP <= 100 then in poverty) are given a “1” on my 

dependent variable and all others a zero.   

Poverty is a hypothetical and abstract variable that researchers use.  I use poverty 

as an “intervening variable in the analysis” (Blalock 1970:144) for measuring 

discriminatory behavior.  Poverty is an instrumental abstract construct that is believed to 

capture a “real” condition some humans experience.  As such, poverty cannot be 

observed directly.  Poverty can only be measured indirectly by means of money related 

indicators.  This “unobservable construct” is a latent variable (see Bollen 2002).  I can 

only infer the existence of poverty (i.e., socioeconomic deprivation) by the properties of 

monetary variables like personal income.  Traits like hair color exist among people; 

constructs on the other hand exist in the minds of researchers (Loevinger 1957:642).   

Such a technique weakens the “relative deprivation” premise (see Sen 1981; 

Duclos and Gregoire 2002).   Relative measures are most “commonly used by 

researchers in Europe” who “define poverty as a condition of comparative disadvantage, 

to be assessed against some relative, shifting, and evolving standard of living” (Iceland 
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2003:501).  Some have argued that comparing poverty across distributions may involve 

‘‘different standards of minimum necessities’’ (Sen 1981:21) and ‘‘that absolute 

deprivation in terms of a person’s capabilities relates to relative deprivation in terms of 

commodities, income and resources’’ (Sen 1984:326).  Although solutions to this 

problem have been given (see Foster, Greer, and Thorbecke 1984), they have not led to 

an academic consensus opting out of the classical form of measuring poverty (i.e., with 

an individuals’ personal or household income).   

In ratio terms, people in poverty will have a ratio below 1.0 with respect to 

income to poverty—they have no income above their assigned poverty threshold. The 

multilevel logistic equation models the likelihood of having a 1 (i.e. of being in poverty) 

versus being out of poverty (having a zero on the dependent variable)—the reference 

category.  The spatial model uses percent in poverty by PUMA as the dependent variable 

and will be further discussed in the GWR section below.     

 

Level-1 HLM Independent Variable   

The racial-ethnic category of Latino/a is my independent variable of interest. As 

stated above, the sample includes reference persons in the mainland from the three most 

common racial-ethnic groups: Latinos/as, non-Latino-blacks, and non-Latino-whites.  

My interpretation will focus on contrasting how Latinos differ in their odds of being in 

poverty when compared to non-Latino-whites.  Consequently, non-Latino-whites will 

the reference category in both racial-ethnic variables in the multilevel equations.     
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The fabrication of these arbitrary labels is restricted by the available identity 

variables in the data.  They represent only what the reader infers from their creation.  In 

my analysis, I consider these racial-ethnic categories adequate proxies for capturing the 

respondents’ social identity within their communities.  This self-perceived status is of 

the utmost interest since it pertains to my investigation of how majority-group members 

respond to minority-group people—and ultimately influence (in part) their life chances.   

The ACS, as required by OMB, collects on five race categories and allows a 

“Some Other Race” category (for a detail discussion on race see Appendix B in Grieco 

2009).  The 2007 survey includes 15 separate response categories and 3 write in areas.  

Respondents who only selected one race are referred to as “single race” or “only one 

race” population.  My reference person sample only comes from this single race 

population.    

The OMB defines Hispanic or Latino as “a person of Cuban, Mexican, Puerto 

Rican, South or Central American, or other Spanish culture or origin regardless of race” 

and the 2007 questionnaire includes the following “Hispanic origin” response categories:  

a) No, Not Spanish/Hispanic/Latino 
b) Yes, Mexican, Mexican Am., Chicano  
c) Yes, Puerto Rican 
d) Yes, Cuban and  
e) Yes, other Spanish/Hispanic/Latino. 

 

The “Hispanic” label is a much contested category (see Aguirre and Turner 2011; Idler 

2007; Priestley 2007) since the umbrella term includes a very identity-fluid group of 

people (see Rodriguez 2000).  I have thus decided to use the label Latino/a.  
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The three groups in the sample are then coded by first considering their Latino 

status and then their single-race.  In the ACS PUMS file, the Latino variable is HISP and 

the race variable is RAC1P.  If the reference person has a value greater or equal to “1” 

on HISP then he/she is coded as being Latina/o—that is, they have a one on the dummy 

Latino factor in the multilevel model.  If the unit has a zero on HISP and a “1” on 

RAC1P then she/he has a “1” on the non-Latino-white binary label.  If a person is not 

Latino and has a “1” on RAC1P then he/she has a one on the binary non-Latino-white 

variable, and if they have a “2” on RAC1P, then they have a one on the non-Latino-

black dummy factor.  Just to be clear, my sample then includes all origin-type Latinos of 

all races and only uses single-race non-Latino-blacks and -whites.  Consequently, Non-

Latino other-than-black or –white (e.g., non-Latino Native-American) and non-Latino 

multiracial (e.g., non-Latino black-and-white) respondents are excluded from the 

analysis—they make up a relatively small part of the full microdata sample.    

 

Level-1 HLM Covariates   

I include several covariates in the various models.  My main micro-level 

independent variable is Latino status.  There are various micro-level controls introduced 

in the hierarchical logistic model.  Aside from coding Latino status, I isolate non-Latino-

Blacks by introducing their status at level-1.  Both Latinos and non-Latino-Blacks (here 

after only referred to as black) are compared to non-Latino-Whites (here after only 

referred to as white).  As stated previously, my study will only focus on comparing 

Latinos versus non-Latino-Whites.   
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Research has shown that minorities are more likely to be in poverty.  I am not 

testing this hypothesis—rather, it is taken as a given.  The primary hypothesis under 

investigation is how the minority-concentration at the macro level influences this racial-

ethnic variable as it relates to the likelihood of being in poverty.  That is, this research 

analyses the extent to which a reference person racial-ethnic characteristic is affected by 

the Latino/a-concentration in their PUMA of residence, above and beyond the effects of 

the individual socio-economic and other demographic characteristics.    

Time in the U.S. has previously been found to have an influence on earnings 

(e.g., McManus, Gould, and Welch 1983).  Others have introduced similar factors to 

account for experience in the United States (e.g.,Van Hook, Brown, and Kwenda 2004), 

I however, am accounting for age at time of arrival because I belief immigrants are 

equally influence by their home-land experiences. By combining AGEP (person’s age) 

and the YOEP (a person’s year of entry) variables, I also account for individuals’ 

nativity status and age at time of entry to the U.S. by including an “age at time of 

immigration” variable.  Those with a zero on this variable are native born and all others 

immigrants, with the number representing their age at time of entry to the U.S.   

I will statistically control it using two variables, because language has been 

consistently shown to be an important predictor of earnings in previous studies (e.g., 

Poston 1994, McManus, Gould, and Welch 1983).  I use the ENG (English speaking 

ability) ACS PUMS variable.  Language is measured by creating three categories: Only 

speaks English, bilingual (speaks English very well, well and another language), and 

mono-other (speaks English not-well or not at all).  The only-English group (i.e., mono-
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lingual) will be the reference category. I will thus compare bilinguals and no-English to 

only-English speakers.   

Education is a key factor in predicting poverty status.  Researchers continue to 

find that increases in formal education reduced the odds of being in poverty (Awan et al. 

2011).  Others have also shown that accounting for the context of that education matters 

(e. g. Van Zandt and Wunneburger 2010:292).  I accounted for it by using the SCHL 

(educational attainment) microdata factor. Only one binary factor is created for the sake 

of simplicity and because it attains the desired goals—to control for how education 

influences the odds of being in poverty.  If a reference person has at least a high school 

diploma (and beyond), they get a “1” on the education variable and those with less than 

this level of educational attainment get a value of “0”.   

Several other covariates are introduced.  By using AGEP (person’s age), I also 

control for age with an interval variable.  Younger people are expected to have higher 

odds of being in poverty.  Current work continues to validate the expectation that males 

are less likely to be in poverty than females (Awan et al. 2011).  Consequently, I 

statistically control for it by using the SEX (whether male or female) variable (males=1).  

I too expect males should have lower odds of being in poverty.   

Existing work paints a clear picture when it comes to marital status. Married 

individuals tend towards being “healthier, work more, and earn more” than those who 

are not married (Poston 1994:487).  Because others have found that non-married families 

are more socioeconomically fragile than married ones (Hummer and Hamilton 2010), I 

use the MAR (marital status) variable to code those who are married as “1” and all 



 100 

others (never married, divorced, separated, widowed) as “0”.  Those who are married 

should have a lower likelihood of being in poverty.  

If a person has ever served in the military they get a “1” on the related binary 

variable—I use the MIL (military service) variable in PUMS.  Military experience may 

also be introduced in the models.  The military experience variable may be more relevant 

for the native-born male group and may have selectivity for less educated people.  

Others have included military experience variables because individuals with military 

experience “tend to do better socioeconomically than those who have not served” 

(Poston 1994:488).  I expect those with some military experience to have lower odds of 

being in poverty.  Lastly, I use the DS (disability status) variable to account for a 

person’s disability status—if a person has a disability, he/she gets a value of “1” while 

those without a disability are assigned a “0”.  Those with a disability should be more at 

risk of being in poverty.  

 

Level-2 HLM and Geographically Weighed Regression Covariates   

Because previous research has shown that when it comes to investigating 

poverty, “contextual factors” matter and need to be included in any analysis (see Cotter 

2002; Garcia 2008; Poston et. al. 2010),  I include several macro-level controls.  In truth, 

“sociologists have a stake in place no matter what they analyze” (Gieryn 2000:463)—

which is why “recent methodological advancements have merely encouraged and 

brought refinement to the expanding body of spatially oriented population research” 

(Voss 2007:457).   
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Similar to what others have done (see Lewin, Stier, and Caspi-Dror 2006) I am 

using multilevel models in HLM to analyze the extent to which reference-person poverty 

is affected by PUMA of residence attributes, above and beyond the effect of  

individuals’ socio-economic and demographic characteristics.  Following existing 

research that uses macro-level controls (e.g., Fontenot et. al. 2010; Poston et. al. 2010), 

and accounts for racial-ethnic composition (Moller, Alderson, and Nielsen 2009), at the 

PUMA-level, in the pre-GWR multilevel model I introduce three factors: 

a. Percent of Latinas/os in PUMA 
b. Percent of blacks in PUMA 
c. Percent of individuals, over the age of 25, with a bachelors education and 

beyond in PUMA. 
 

The post-GWR “hybrid-multilevel” model adds the following: 

d. Latino GWR coefficient in PUMA 
e. Black GWR coefficient in PUMA 
f. Bachelors education and beyond GWR coefficient in PUMA. 

  

The latter will be made clearer as we move into the subsequent sections explaining the 

spatial modeling theory and techniques.  

I will focus on investigating if and how “percent Latina/o in PUMA of residence” 

influences the statistical association between the Latino individual-level status and the 

likelihood of being in poverty.  My interest is on how this socio-environmental attribute 

interacts with the micro-level Latino status.  I account for the racial-ethnic composition 

of place because recent investigations concluded that racial diversity is a key 

determinant in shaping the spatial form of a community as it relates to poverty (e. g. 
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Dwyer 2010). The cross-level interaction between Latino status and percent Latino is the 

main element under investigation.    

Percent black is introduced to fully control for the level of minority concentration 

in the area of the respondent residence.  This is due to the fact that high levels of 

minorities are closely associated with high levels of poverty.  Percent of individuals with 

a “high” education (i.e., BA and beyond) is used as a proxy to account for local 

socioeconomic structures (see McCall 2000).  Controlling for “local” labor market 

conditions allows me the ability to theorize that I am considering how local monetary 

opportunities influence an individual’s characteristics as it related to the likelihood of 

being in poverty.  

I would like to mention in passing that no “standard” variables, at either level-1 

or level-2, will be centered.  Standard variables are percent Latino, black, and BA-plus.  

Only GWR shifted coefficient factors are centered on their grand mean.  This will be 

discussed in greater detail in the next chapter.  The main point is that with non-GWR 

variables, I am avoiding this technique with regular variables because “centering around 

the group mean amounts to fitting a different model from that obtained by centering 

around the grand mean or by using the raw scores” (Kreft, de Leeuw, and Aiken 1995).  

Explaining how centered variables alter the meaning of the gammas is probability not in 

the best interest of our current enterprise.  Consequently, none of my raw variables at 

any level are ever centered.  

We no turn our attention to a deeper explanation of multilevel modeling.  
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Generalized Hierarchical Linear Modeling 

The use, appropriateness, and desirability of multilevel models in sociology have 

been discussed at length elsewhere (Skrondal and Rabe-Hesketh, 2004; Snijders and 

Bosker, 1999; Goldstein, 1995; Hox, 1995; Di Prete and Forristal, 1994).  Hierarchical 

Bayesian models of poverty have been shown to be of great benefit (e.g., Fabrizi, 

Ferrante, Pacei, and Trivisano 2011).  The fundamental premise behind the use of 

hierarchical and spatial models is that human societies in general arrange themselves 

into nested hierarchies (see Moellering and Tobler 1972).    All this helps explain why, 

when it comes to racial inequality, racially shaped hierarchies account in part for 

neighborhood inequality (Sampson and Sharkey 2008). 

In general, hierarchical models allow researchers to account for context using 

correct error measurements.  Almost two decades ago, Scott and Holt (1982) explained 

that “intra-unit correlation” seriously under-estimates the variability of estimates with 

ordinary least square techniques that result in false-positives.  More technically, multi-

level models “represent a considerable improvement over single-level models estimated 

by ordinary-least squares” because “ML models allow relationships to vary in time and 

space according to context” (Jones 1991:148).  In this section, I describe the statistical 

approach being employed in the analyses.   

A driving motivation behind this investigation is that most seminal work on poverty 

has been lacking in one respect: the appropriate recognition and modeling of hierarchical 

data.  If social context matters and I think it does, then accounting for individuals’ socio-

environmental influences is not only important but necessary. In reality, once “you know 
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that hierarchies exist, you see them everywhere” (Kreft, de Leeuw, & van der Leeden 

1994).  More generally, my basic “argument is that through its opportunity structure, the 

place of residence affects the ability of households to raise their economic status and 

avoid falling into poverty, above and beyond the human resources and work behavior of 

its residents” (Lewin, Stier, and Caspi-Dror 2006:178).  My research operates from this 

academic world view.   

In this research, I nest individuals in their PUMA of residence at the time of 

survey participation.  Clustering reference persons by PUMA make classical regression 

techniques inappropriate since individuals are contextually dependent by PUMA. This 

dependency could potentially bias my standard errors leading me to conclude false 

significance (Hox 1995).  Since my theoretical position is that people are hierarchically 

influenced, I must employ models that account for this interesting dimension.  

The existing literature has already made the case for how traditional “one-layer” 

statistical techniques lead to biased parameter estimates and deflated standard errors 

(Kreft and de Leeuw 1998; Snijders and Bosker 1999).  The substantive part of the 

argument is that hierarchical statistical models allow for the decomposition of the total 

variance of the dependent variable in both the between- and within-contexts (Flaherty 

2010).   

My proposed research will use HLM software to specify and investigate a 

hierarchical Bayesian logistic model that accounts for the multi-dimensional human 

experience.  There are many advantages to using HLM (Kreft, de Leeuw, and van der 

Leeden 1994) and recent advances in the software have further solidified the benefits 
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(Bryk and Raudenbush 1992).  It has been convincingly argued that “true multilevel 

statistical tools provide advantage over traditional methods, such as allowing for random 

intercepts and coefficients” (Flaherty 2010).   

When modeling individual-level data while accounting for context, HLM is the 

preferred method of analysis (Raudenbush and Bryk, 2002).  The user friendly software 

estimates equations that help explain cross-level statistical associations (Poston and 

Duan 2000).  As explained elsewhere (see Poston 2002) the technique accounts for the 

fact that individuals are dependent at the context level.  Classical ordinary least square 

regressions assume both micro- and macro-level factors come from simple random 

samples (Arnold 1992).  

In a metaphorical sense, the technique runs a single regression for each level-2 

unit and combines (using averages) them to calculate the given “population-average” 

estimates.  The individual regressions by nesting unit are the “within-PUMA” equations.  

The subsequent use of their resulting intercepts and coefficients are the “across-PUMA” 

equations.  The variance around each parameter at level-1 is taken into account in the 

regression at level-2 (Arnold 1992).  In short, both intra-PUMA and inter-PUMA 

coefficients have their own error measurements where “maximum likelihood and 

generalized least squares estimation procedures are used to generate the HLM 

coefficients and variances” (Poston 2002). 

On a more technical note, since I have more than 100 level-2 units (i.e., 2,054), I 

will be interpreting the coefficients with “robust standard errors” in the HLM outputs 

(Mass and Hox 2004a; Mass and Hox 2004b).  In simple terms, the use of HLM 
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software empowers my research by giving me the ability to understand how the micro-

level Latino status is on average associated with the likelihood of being in poverty 

across and within PUMAs, as I control for the various macro-level factors.   

 
Multilevel Logistic Models 

This section outlines the procedural and my final multilevel models.  All HLM 

models require that the researcher first determine if there is in fact any statistically 

significant variation in the binary poverty-status dependent variable occurring between 

the 2,054 level-2 nesting units.  Having significant variation of the dependent variable 

across PUMAs reduces the model to a classical model (Gelman and Hill 2007: 

Raudenbush and Bryk 2002).   

Decomposing the variability into between and within PUMAs requires that we 

calculate the “intra-class” correlation coefficients (ICC).  I first execute the following 

simple two-level random intercept model: 

 

 

 

 

 

 

The results show that the level-2 variance (i.e., ) has a value of 0.425 with a 

statistically significant chi-square value of 94,208 9(p-value=0.000).  This means that I 

can accept the null-hypothesis and can safely conclude that there are significant 
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differences among the 2,054 PUMA’s average log-odds of being in poverty.  The intra-

class correlation coefficient (ICC)—representing the proportion of the variance in 

poverty-status between PUMAS—can be calculated for linear multilevel models 

(according to Guo and Zhao 2000) as follow:  

 

 

 

and according to Snijders and Bosker (1999), and Long (1997), a proper substitute to 

calculate ICC for a nonlinear multilevel modes is (also see Li 2005:208):  

 

 

 

which in my case is  

  

 

 

and computes to 0.115163 (*100=11.5%).  ICC can range from 0 to 1 (or in percent form 

from 1% to 100%) with higher values representing a stronger clustering effect of the 

dependent variable.   
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In my case, this means that about 11% of the variance in poverty occurs between 

PUMAS.  As per Hox (2002), ICC is “the proportion of the variance explained by the 

grouping structure in the population” (p. 15).   In a broad sense, ICC is the average 

relation between individual’s poverty statuses within their PUMA. Barcikowski (1981) 

showed that the type I error rate could be inflated when a very small ICC (e.g., .01) 

occurred.  My 0.11 ICC is sufficiently strong to conclude that I do not have a Type-I 

error and I think this between-PUMA variance on poverty status may be due to the fact 

that poverty is so deeply concentrated in a few PUMAs.   

After concluding that a multilevel analysis of poverty is both statistically 

appropriate and necessary, I move away from the “unconditional model” (i.e., the 

baseline model above) to a “conditional model” where I first introduce all the level-1 

factors and then add the PUMA-level controls.  Here is the individual-level structural 

part of the HLM full-model logistic equation with no PUMA-level controls: 

 

 

 

 

 

 

where  is the predicted log-odds of being in poverty (which can be 

interpretable with “percent change” numbers by converting population-average 

estimate, through the exponentiation of the coefficient, to odds ratio);  
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i and j refer to the ith reference person in jth PUMA; 

 is the intercept in jth PUMA; 

 through  are the eleven average slopes for Nativity, Bilingual, 

MonoOther, Age, Male, Disable, Married, Served, HSplus, Latino, and NL-Black 

variables, in jth PUMA; and  

 is the error term for the ith reference person in jth PUMA.  

I will first discuss an HLM model where no level-2 control variables are 

introduced.  The above model reveals the simple form of the level-1 (i.e., individual-

level) equation being used in the first HLM model.  After discussing the outcomes of 

this simple model, I will then introduce the “pre-GWR” hierarchical model.  This second 

model will have the same level-1 structure and introduces three level-2 (i.e., PUMA-

level) factors into the equation.  The introduction of PUMA-level factors would add on 

to the equation above and render the following complex level-2 equation (written in 

more HLM friendly terms):  

 

 

 

 

Subsequent betas 2 through 10 continue until you get to  
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where  is the “king” intercept of the full model; 

 is the intercept by percent Latinos; 

 is the intercept by percent Non-Latino-Blacks; 

 is the intercept by percent with a BA and beyond; 

 (kth ranging from 1-11) are the direct effects of the individual-level factor; 

 are the indirect effects of percent Latino on the micro level association; 

 are the indirect effects of percent NL-Black on the micro level association; 

 are the indirect effects of percent with BA-plus on the micro level 

association; 

and where  is the error measurement for all intercepts (no other Taus are 

included so that cross level interactions are assumed to be similar across all 

PUMAs).  

Before explaining the final hybrid-multilevel model we must discuss the 

geographically weighted regression approach, why spatial modeling is necessary, and 

reminder the reader of what spatial non-stationarity is and how it is at the core of this 

discourse.    

 

Spatial Modeling  

Geographically weighted regression (GWR) is a modeling technique used to 

explore spatial non-stationarity (Brunsdon, Fotheringham, and Charlton 1998).  As 

discussed before, spatially stationary phenomenon is one that has no influence on 

neighboring entities (for a more detailed discussion on the topic see Charlton, 
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Fotheringham, and Brunsdon 1997).  A discourse on spatial autocorrelation, a form of 

spatial dependence often exhibited in geographical data, has been ongoing for several 

decades.  The ideas were formally introduced during the 1950s (Geary 1954, Moran 

1950) and mathematically solidified a few years later  (see Cliff 1975, Cliff and Ord 

1969, 1973, 1981). 

What is spatial nonstationarity?  An example may help define the abstract.  In a 

rough sense, the legality of same-sex marriage in Iowa is spatially stationary as it 

pertains to the influence such a law has on the geographically adjacent states of Illinois, 

Minnesota, Wisconsin, Missouri, Nebraska, and South Dakota.  Since none of the 

neighboring states have made same-sex marriage legal, we could argue that Iowa’s state 

law has had no spatial effect on its geographically neighboring entities.  We could say 

that spatial homogeneity is present at the state-level with regards to legalization of same-

sex.   

Spatial homogeneity assumes “that all members of the population have the same 

chance of affecting and being affected by each other” (Strang and Tuma 1993:615).  

From our example, we expect Illinois and Nebraska to be affected in the same way by 

Iowa’s state law: no influence is expected since same-sex marriae remains illegal in both 

states. In more technical terms, we could say attribute-X in point-C has the same effect 

(or lack thereof) on points A, O, and N—hence the geographical association between the 

points is irrelevant.     

Unfortunately, most social phenomena are not spatially stationary.  Spatial 

homogeneity is rarely (if ever) present in social processes.  This is because in general, 
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members of human populations have different chances of being affected and affecting  

each other.  For example, the loud music my next door neighbor plays affects me more 

than the loud music being played twenty blocks away or that was played twenty years 

ago.  The main point is that “statistical issues in spatial analysis of a response 

variable”—were the “focus on the almost ubiquitous phenomenon that two 

measurements taken from geographically close locations are often more similar than 

measurements from more widely separated locations” (Beale et. al. 2010:247).  Both 

social context and geographical location matter.  

These beliefs stem from the view that interdependence of data at different 

geographic locations exist because “movement of people, goods, information, and the 

like over space makes what happens in one location influence what happens at the other 

places” (Namboodiri 1991:222).  This means that “spatial probability models can be 

used for providing a convenient summary description of a geographic pattern” 

(Namboodiri 1991:219).   

PUMA interdependence is present because what happens in one affects other 

PUMAs as a function of distance.  This interdependence is theoretically grounded on 

three points first given by Morenoff, Sampson, and Raudenbush (2001:522).  They are 

here adapted as follows: 

1. The artificial boundary of PUMAs in part creates interdependence. 

2. Clusters of poverty concentrations create PUMA interdependence. 

3. Poverty is based on social interaction and is thus subject to diffusion 

processes.  
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The good news is that “the concept of spatial autocorrelation has been developed 

to deal with the tendency toward interdependence among spatial data” (Namboodiri 

1991:221).  This builds on the view that one “of the main reasons for studying 

demography is that population structure and change are intertwined with social, 

economic, and political structures and changes, and the study of demography is essential 

to understanding these linkages” (Namboodiri 1991:1). My GWR models account for the 

PUMA interdependence (i.e., spatial autocorrelation).  

Human’s temporality creates spatially heterogeneity by allowing our influences 

(and ability to affect others) to vary as a function of physical space and time. This is why 

individuals who are physically near each other influence each other more than distant 

ones.  In most (if not all) instances, members in human populations have different 

chances of affecting and being affected by each other—and the same can be said of their 

aggregated macro-level boundarized attributes (i.e., polygons with group attributes).  

My main argument on spatial processes is that the statistical association between 

PUMA- poverty and percent of Latinos in that PUMA is spatial non-stationarity.  In 

other words, I am arguing that there are areas of the country where the statistical 

association will be positive and other areas where the increase presence of Latinos will 

be statistically associated with lower poverty PUMA poverty rates.  In simpler terms, I 

am arguing that my level-2 factors are spatially non-stationary as they relate to poverty 

status and consequently need to be explored using GWR.   

The “main characteristic of GWR is that it allows regression coefficients to vary 

across space, and so the values of the parameters can vary between locations” (Mateu 
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2010:453).  GWR accounts for spatial non-stationarity—“a condition in which a single 

global model cannot explain the relationship between some sets of variables” (Brunsdon, 

Fotheringham, and Charlton 1996:281)—as is my case where a local model would not 

suffice.  GWR allows me to explore “spatial nonstationarity by calibrating a multiple 

regression model which allows different relationships to exist at different” (Leung, Mei, 

Zhang 2000:9) geographical points (by PUMAs) across the mainland.  My GWR will 

account for the poverty-Latino statistical spatial non-stationarity.   

Geographers have used multilevel modeling to account for space variation (e.g., 

Jones 1991).  Many more statistical geographers however argue for the use of 

geographically weighted regression approach to account for spatial heterogeneity (e.g., 

Ali, Partridge, and Olfert 2007; Fotheringham 1997; Fotheringham, Charlton, and 

Brusdon 1996).  GWR’s reliability as a spatial predictor has been shown (Harris, 

Brunsdon, and Fotheringham 2011) and a discussion on the various statistical methods 

for exploring varying coefficient models can be found elsewhere (e.g., Fan and Zhang 

2008; Fotheringham, Charlton, and Brunsdon 1997).    

More specifically, the GWR approach has been used and shown to have value 

when investigating poverty (see Deller 2010; Longley and Tobon 2004).  For example, 

research on county-level poverty data shows that spatial autocorrelation may be present 

and admonishes “social scientists to examine spatial autocorrelation in their data and to 

explicitly correct for spatial externalities” (Voss, Long, and Hammer 2006:369).  Recent 

work on poverty and obesity in Taiwan concluded “GWR revealed that there were local 

variations in the poverty-obesity relationship and that poverty was only significantly 
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associated with obesity in less-developed areas” (Wen, Chen, and Tsai 2010:257).  

Clearly GWR can help us better understand the spatial non-stationarity nature of 

poverty. 

GWR has also been used to explore racial-ethnic related topics.  For example, 

researchers have even found that race and ethnicity are significantly related to cancer 

risks in Florida by using GWR and have pointed out that using such a technique is 

important because “conventional regression can hide important local variations in 

statistical relationships relevant to environmental justice analysis” (Gilbert and 

Chakraborty 2011:273).  The social “environmental-racial order” matter because when it 

comes to inequality it affects “the distribution of material wealth, rights, and privileges” 

(Wilsem 2007: 236).   

By including a “spatial” element in the dissertation, I acknowledge the obvious 

and logical observation that socio-spatial environments influence each other as a 

function of geographical distance.  The framing of human behavior through a 

multileveler’s prism requires that the reearcher ponder, discuss, and investigate if and 

how attributes in nesting units (i.e., PUMAs) spatially influence each other.  When 

possible, GWR “should be used for regional scale spatial analysis because it is able to 

account for local effects and shows geographical variation in the strength of the 

relationship” (Ogneva-Himmelberger, Pearsall, and Rakshit 2009:478). 

Several decades ago we were eloquently informed that “whether or not the 

investigator initially lays emphasis on [spatial] variation,” his/her study of spatially non-

stationary phenomenon (like poverty) would be rendered “incomplete unless at some 
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point this source of variation is explicitly taken into account” (Duncan, Cuzzort, Duncan 

1961:Pg.102).  My dissertation pays heed to their advice and explores this topic using a 

geographically weighted regression in ArcGIS. Maps throughout this dissertation are 

created using ArcMap with ArcGIS® software by ESRI. ArcGIS® and ArcMap™ are 

the intellectual property of ESRI and are used herein under license [Copyright © ESRI, 

all rights reserved] (for more information about ESRI® software, please visit 

www.esri.com). 

Existing research and theory highlights how human behavior varies by physical 

space (Fotheringham, Stewart, and Brunsdon 1999).  Some social scientists argue that 

most quantitative analyses assume statistical estimates to be stationary over geographical 

space.  As a consequence, such models only produce and review global estimates.  This 

“global approach” could unfortunately mislead researchers into believing that to 

investigate statistical relationships with a single parameter estimate is sufficient.   

Traditional non-spatially conscious research implicitly assumes that the nature of 

statistical-relationships under investigation is the same for all points within the entire 

study area.  Under such a view, that would mean that the influence of percent of Latinos 

in the area of residence on neighboring PUMAs does not exist, and is thus 

inconsequential.  Our multilevel models suggest otherwise and capture this variation.  

About 11% of the micro-level poverty status variable is explained between-PUMAs.  

The polygons do capture something about poverty.   

Implicit in this is my belief that poverty is spatially non-stationarity.  I am 

arguing that PUMA poverty concentrations are spatially non-stationary because 

http://www.esri.com/�
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polygon-attributes of neighboring PUMAs are more influential than the influence 

exerted by those polygon-attributes found in distant PUMAs.  For example, a South 

Texas PUMA with 50% of its residence in poverty will affect and be affected more by 

the economic conditions of other neighboring South PUMAs than Chicago-PUMAs. In 

this example, Chicago-PUMAs may have a similar level of poverty as in the Texas-

PUMAs.  The difference is that Chicago-PUMAs are geographically distant and thus 

exert a lower level of influence than other geographically proximal Texas-PUMAs.          

The multilevel models do not, however, account for how neighboring PUMA 

attributes influence each other.  That is, even though HLM helps us account for PUMA 

level influences, it does not take into account how spatial non-stationarity is playing a 

role.  If a relationships exhibits spatial non-stationarity (as poverty and Latino 

concentration do), then social scientists must account for local estimates, because, as 

stated earlier, local forms of spatial modeling provide evidence on the nature of spatial 

variations in relationships.  That is, they (e.g., GWR) expand our understanding on the 

spatial distribution of local relationships. 

My main argument is that the statistical relationship between poverty and Latino 

concentration varies by geographic space and that their spatially dependent (i.e., local-

associations) should be investigated.  In sum, my GWR model posits that concentration 

of poverty varies by space—that the social process is spatially non-stationary.  

Consequently, a global/single parameter estimation technique of the relationship 

between percent Latinos in PUMA and the poverty status requires the use of a local-
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parameter modeling technique like GWR—otherwise the global parameters may be very 

misleading locally.  

 

Challenges in Spatiology   

Before outlining our final GWR model, we must understand the challenges 

spatiology faces. When discussing the formation of space and the measuring of such 

phenomenon, it is appropriate to quote Lefebvre at length:  

“Social relations, which are concrete abstractions, have no real existence 
save in and through space. Their underpinning is spatial. In each particular 
case, the connection between this underpinning and the particular case, the 
connection between this underpinning and the relations it supports call for 
analysis. Such an analysis must imply and explain a genesis and constitute 
a critique of those institutions, substitutions, transpositions, 
metaphorizations, anaphorizations, and so forth, that have transformed the 
space under considerations” (1991:404).  

 

When dealing with the spatiality of social space, spatiologist must address how to 

measure “the degree of areal concentration of a sub-population with respect to the total 

population of which it is a part” (Duncan, Cuzzort, and Duncan 1961:8).  Spatiology 

must undertake the task of explaining how inferences about statistical relationships 

drawn from areal data must be understood.  Robinson long ago warned us about the 

aggregation problem (1950).  Inferring individual level relationships from macro-level 

correlations is inappropriate.  

The view that time, space, and matter are “inextricably connected” has imbue all 

things spatial with a sense of primordiality that heavily influences most spatial analysis 

(Soja 1989:79).  At the core of the spatial argument in this dissertation is the idea that 
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although space “in itself may be primordially given,” its organization and meaning “is a 

product of social translation, transformation, and experience” (Soja 1989:79-80).  

When Soja describes his “socio-spatial dialectic” construct, he explains that 

“social and spatial relations are dialectically inter-reactive, interdependent; that social 

relations of production are both space-forming and space-contingent” (1989:81).  The 

socio-spatial dialectic view is premised on Lefebvre’s argument that “space and the 

political organization of space express social relationships but also react back upon 

them” (1970:25).  In other words, “the spatiality of whatever subject you are looking at 

is viewed as shaping social relations and societal development just as much as social 

processes configure and give meaning to the human geographies or spatialities in which 

we live” (Soja 2010:4). This fundamental idea, that social and spatial dimensions of 

human life mutually influence each other, is what motivates the use of a spatial model in 

this project.   

The obstacle with these theories is that any empirical investigation must first deal 

with “the difficulty in finding an appropriate measure” of community (Becker 

1971:123).  We could, for example, ask: “is an individual’s discrimination determined 

primarily by the relative number of non-whites working with him in the same plant or by 

their relative numbers in his community, county, state, region, or some more 

complicated sociogeographical area” (Becker 1971:123)?   If we find this to be true, we 

could then argue that “tastes for discrimination … are positively associated with the 

percentage of non-whites” in each geographical unit (Becker 1971:123).   
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A full discussion of the modifiable areal unit problem (MAUP) is beyond the 

scope of this study, but the main point researchers in this field have given is that using 

smaller geographic units could eventually lead to “reduction ad absurdum” (Duncan, 

Cuzzort, and Duncan 1961:35).  Earlier on the issue of scale, others concluded that in 

geographical investigations, “every change in scale will bring about the statement of a 

new problem, and there is no basis for presuming that associations existing at one scale 

will also exist at another” (McCarty, Hook, and Knos 1956:16).  Hence, evaluations of 

the results “depend a good deal on the investigator’s judgment as to the plausibility of 

the assumptions underlying the model” (Duncan, Cuzzort, and Duncan 1961:73). 

PUMAs, like many other Census created polygons, were “devised for purposes 

other than the specific ones of the investigator” (Duncan, Cuzzort, and  Duncan 1961:33) 

.  PUMAs are thus merely instrumental devices.  The meaning of the polygon character 

is imposed by me the investigator. As a student of areal structure, I “must take into 

account the discrepancy between [my] hypothetical constructs and [my] actual results 

which [are] generated by the necessity of working with systems of areal units for which 

data are available” (Duncan, Cuzzort, and Duncan 1961:99).  I do not lay emphasis on 

the shapes of PUMA polygons.   

It is thus “important to realize how the meaning of an areal datum involving 

comparison of area units depend on the attitude taken toward areal units” (Duncan, 

Cuzzort, and Duncan 1961:50).  In effect, researchers need to answer: What element 

entered into the determination of the polygon boundaries? The answer depends on how 

“areal units represent a subdivision of the total territory” (Duncan, Cuzzort, and Duncan 
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1961:50) or the full territory and not a sample.  In my case, PUMAs are not 

conceptualized as communities and include the full mainland territory.    

In truth, given that the data is cross-sectional, the complex modeling being 

employed can only serve to describe statistical relationships between models.  As a 

reminder, given the literature review in the previous chapter, we can conclude that 

humans in superordinate positions act to preserve their position (Blalock 1970:191).  I 

argue that in the United States, non-Latino-whites are in superordinate position vis-à-vis 

minorities.  My main hypothesis is driven by the theory that in the U.S., non-Latino-

whites will act towards minorities in such a manner as to preserve their privileged 

position (Blalock 1970:191).  In effect, I am arguing that “certain independent variables” 

like the percent of minorities in PUMA of residence can lead to discrimination by 

superordinate groups “which in turn produces inequalities” (Blalock 1970:18).  This 

“successful discrimination” occurs “by reducing the effectiveness of minority 

competition, usually does away with the need for further discrimination” (Blalock 

1970:148).  

There are “instances where the so-called “minority” may be in a numerical 

majority” and in such cases, it is assumed that they remain “in a subordinate position and 

that it has been set apart on the basis of racial and or ethnic characteristics” (Blalock 

1970:145).  For example, Latinos/as are the majority groups in South Texas PUMAs.  In 

such instances, I am assuming “the degree of discrimination is close to some maximum 

level because it is perceived as necessary to prevent intimacy” and this will create “a 

very weak association with minority percentage because of the lack of variation in the 
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dependent variable” (Blalock 1970:146).  Thus, in South Texas poverty is extremely 

high because Latinos are discriminated against at a maximum.   

The truth is “that the perspective of the investigator conditions the selection of 

data and choice of analytical framework in studies of areal differentiation” (Duncan, 

Cuzzort, and Duncan 1961:21).  In my study, “areal units are merely instrumental 

devices for classifying areal data and facilitating their analysis” (Duncan, Cuzzort, and 

Duncan 1961:24).  This is in stark contrast to investigations were the geographic “unit 

character is inherent and not imposed by the investigator”   (Duncan, Cuzzort, and 

Duncan 1961:24).   

This dissertation is nesting individuals in different geometrical polygons.  It then 

estimates an attribute of importance for that polygon (i.e., percent minority in area).  The 

subtle goal in this is to develop a synthetic movement.  In longitudinal data, the 

movement tracks an individual as his/her characteristics vary (or not).  When such data 

is unavailable, then nesting renders a proxy measure of movement.    

Let us now turn our attention to the actual GWR model being employed.  

 

Geographically Weighted Regression Model 

GWR models are estimated using ArcGIS 10 (ESRI 2011).  To be clear, these 

models are being used in an exploratory manner.  The use of spatial cluster analysis in 

sociology has been present for over two decades (e.g., Anselin 1980; Anselin and Rey 

2002, 2010 ).  The intent is to validate/explore if/how statistical variations over space 

exist when it comes to measuring the statistical association between poverty rates and 
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Latino concentrations. Existing work validates “the importance of specifying known 

spatial effects in order to accommodate local context” (Ali, Partridge, and Olfert 

2007:517).  By using GWR, this sociospatial investigation on inequality (as measured by 

poverty) estimates parameters by using a weighted function based on geographical 

distance so that “near” locations have a greater influence on the estimate.  

My units of analysis in the spatial model are PUMAs.  The 2,054 PUMAs being 

used make up the U.S. mainland and the District of Columbia.  All the variables in the 

model are created using the same ACS 2005-2007 IPUMS data described above.  The 

universe is all individuals in the microdata. PUMA estimates were created using the 

person weight variable PWGTP in the microdata file. Thus, numerators contain the 

population of interest and denominators include them and all other people.  For example, 

when calculating for the percent of Latinos/as, I develop the weighted estimate for their 

population in PUMA-x (i.e., the numerator) and then develop the estimate for the full 

population of all the people in PUMA-x (i.e., the denominator) and divide the first by the 

latter estimate. This means that all my PUMA-level attributes are nationally 

representative of the U.S. mainland for the 2005-2007 survey-period.  

 My dependent variable in the GWR model is percent of non-group quarter 

people (with a poverty score) in poverty by PUMA.  Including group-quarter populations 

is complicated and their population is minute relative to the full sample.  The 

independent variable of interest is percent of Latinos/as in a given PUMA.  I control for 

percent of non-Latino-blacks to account for the minority population in the area of 

residence (Latinos/as and non-Latino-blacks make up most of the minorities in almost all 
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PUMAs).  The percent of individuals with a bachelor’s degree and beyond is also 

controlled for as a proxy for local market wellbeing.  

Moving on to a more technical discussion of the GWR model, in OLS, error 

terms are generally assumed to be independent normally distributed random variables 

with zero means and constant variance.  This model in its unconstrained form is not 

implementable for investigating spatial processes because the number of parameters 

increases with the number of observations.  We need a technique for estimating a 

parameter “drift” (Leung, Mei, and Zhang 2000).  Brunsdon et al (1996; 1997) and 

Fotheringham et al (1997a, 1997b) have suggested a geographically weighted regression 

(GWR) technique.  In which the parameters are estimated by a weighted least squares 

procedure.  As mentioned earlier, the weighting system is dependent on the location of 

PUMAs within their geographical space.  In effect, I use spatial weights that have an 

adaptive distance decay function. 

As a reminder from our earlier discussion, GWR allows local rather than global 

parameters to be estimated. The GWR model captures the heterogenic nature of poverty 

by allowing the equation to “alter over space to reflect the structure within the data” 

(Brunsdon, Fotheringham, and Charlton 1996:281). The typical output from a GWR 

model is a set of parameters that can be mapped in the geographic space to represent 

nonstationarity.  That is, each PUMA is given a coefficient value (on other values like p-

values) on each of the variables being used on the equation.  I use these GWR created-

values (i.e., beta coefficients for each PUMA) to map how each of the variables is 

associated with the percentage in-poverty in the PUMA dependent variable. I use 
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ArcGIS (in particular ArcMap) to map all the findings from my spatial nonstationarity 

investigation.   

Compared with other methods, the GWR technique in ArcGIS appears to be a 

relatively simple but useful geographically oriented method to explore spatial 

nonstationarity. Based on the GWR model, not only can variation of the parameters be 

explored, but significance of the variation can also be tested.   

Before outlining the final GWR model, the reader must be aware that these 

exploratory techniques are at the forefront of statistical science.  Inferences from spatial 

modeling are still being debated (Anselin 2005; Ripley 1981; 1988).  Specialist in the 

field have pointed out that in “order to carry out statistical inference, a notion of a 

superpopulation or spatial random process is required” where the we would have to 

assume the existence “of a stochastic process that may generate many possible spatial 

patterns” and where the main objective of the analysis would be “to characterize the 

spatial process by means of the observed spatial pattern” (Anselin 2005:255).   

From a certain point of view, we could argue that “GWR analysis serves as an 

exploratory geographic analysis tool to detect local anomalies” (Qiu and Wu 2010:80).  

This is why a recent investigation concluded “that the ecological importance of 

regression coefficients cannot be evaluated with confidence irrespective of whether 

spatially explicit modeling is used or not” (Bini et al. 2009:193).  Consequently, 

researchers should always be “explicit about the uncertainty of models and more 

cautious in their interpretation” (Bini et al. 2009:193). 
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Since I use PUMAs as spatial units that “are contiguous and exhaust the space” 

under investigation, the “notion of interpolation is impractical” and we would most 

benefit from understanding spatial prediction as extrapolation (i.e., to infer/project from 

know data to unknown area), where model estimates from observed spatial patterns 

could be applied “to another set of spatial units, outside the observed set, or for a 

different time period (Anselin 2005:255).  P-values are then given to stay within existing 

statistical protocols—but are ambiguous since my 2,054 PUMAs in effect reflect the full 

universe under observation.  

The GWR model being employed was developed by Brunsdon, Fotheringham, 

and Charlton (1996).  In order to better understand our final GWR, we will start by 

describing a basic ordinary least square (OLS) linear regression model.  If the standard 

regression equation in my investigation of poverty is given by: 

 

 

  

where   is the percent in poverty at PUMA i, 

  is a constant term (i.e., the intercept), and 

 measures the relationship between the independent variable  and y for the 

set of i  locations (i.e., PUMAs), and  

  is the error associated with PUMA i. 
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The above equation “results in one parameter estimate for each variable 

included” (Cahill & Mulligan 2007).  With GWR in ArcGIS we can estimate local 

parameters instead of estimating single parameters for each variable. By estimating a 

parameter for each data location (i.e. PUMA) in the mainland contiguous U.S., the GWR 

equation would only alter the above equation as follows: 

 

 

 

where  is the constant term for the corresponding explanatory variable at 

PUMA i, and 

 is the value of the parameter for the corresponding explanatory variable at  

point i, and where 

 is  and where C is the index set of locations of n 

observations (i.e., PUMAs). 

In the GWR model, a continuos surface of parameter values is estimated under 

the assumption that locations nearer to i  will have more influence on the estimation of 

the parameter  for that location (Fotheringham, Brunsdon, and Charlton 2000).  In 

short, GWR asumes parameters are functions of the locations on which the observations 

are obtained (Brunsdon et. al., 1996; Fotheringham, Brunsdon, and Charlton, 2002; 

Fotheringham et. al., 2001).  My final GWR using PUMA polygons with all the 

independent variables (in simple form) is:  
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Before concluding this section and giving the final post-GWR hierarchical 

hybrid-model, I want to disclose the important but yet under examined “bandwidth” 

detail in the modeling of spatial processes with GWR. The distance function being use to 

create the spatial weights uses a band-width to determine the polygons exerting an 

influence on the parameter estimation.  I explored different alternatives for selecting a 

bandwidth.  In particular, I explored a Local Moran’s I cluster analysis, and multiple 

mile-distances and number of neighbors techniques to increase the R2. 

A large bandwidth can produce parameters with little spatial variation.  On the 

other hand, a small one can produce large local variation (i.e., exaggerated variance).  

There is no existing standard for selecting a bandwidth when using PUMAs.  Hence, I 

am justified in exploring different alternatives.  After extensive exploration, I decided to 

use an adaptive kernel with a neighbor bandwidth that minimizes the Akaike 

Information Criterion (AIC) (for details, see Fotheringham, Brunsdon, and Charlton 

2002).  Roughly defined, a “kernel” is a weighting function used in the estimation of our 

GWR model. Kernel widths are necessary when using non-parametric estimation 

techniques like GWR.  In the simplest of words, the kernel specifies the number of data 

points in the local sample used to estimate the GWR parameters.  
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The second formal hypothesis under investigation, leads me to expect that the 

geographically weighted statistical association between percent poor and percent of 

Latinos in PUMA-of-residence will have a detectable and statistically significant spatial 

pattern.  In particular, I expect “regions” (i.e., mid-East) with low-Latino concentrations 

will have a negative statistical association with percent in poverty and that regions (i.e., 

Southwest) with high-Latino concentrations will have a positive GWR statistical 

associations between percent in-poverty and Latino concentration.   

 

 
Hierarchical and Geospatial Hybrid Modeling  

The final HLM hybrid-model combines the results from my GWR outputs with 

my HLM model.  After exploring a pre-GWR multilevel model, I fit a spatial model 

then use the from this GWR model as data in my final HLM-hybrid equation.  The 

reason for this is to account for spatial non-stationarity.  The hybrid model then accounts 

for contextual factors and their spatial non-stationarity as they relate to the poverty 

factor (i.e., the dependent variable).   

It is not very common to develop regression models using estimate variables.  I 

have yet to find a single study that develops a multilevel model using GWR estimates at 

level-2.  This dissertation is the first, to my knowledge, that incorporates user-friendly 

statistical software like HLM and ArcGIS and combines their use.   

A proximal technique I have found is something coined as “two-stage” 

modeling, where researchers first fit a model and then use the estimate from the model 

as data in another regression (Gelman 2005).  The special issue on “Multilevel Modeling 



 130 

for Large Clusters” in the journal Political Analysis (Volume 13, Issue 4), in 2005 

contains the various articles using this two-stage approach.  The most similar work 

introduces a “spatial lag” variable in an HLM model to account for spatial dependence at 

level-2 (Morenoff, Sampson, and Raudenbush 2001).  Only “unit-specific” estimates are 

given with the approach and thus results are somewhat difficult to consume. None of 

these works employ the use of GWR.  Thus, without such blazed paths, I am relegated to 

both the benefits and burdens afforded to the use of new approaches.      

Including GWR estimates in the final HLM-hybrid has ambiguous implications 

for the interpretation of the results.  In particular, my introduction of the spatial 

estimates in the HLM model does not account for the errors associated with the GWR 

model fit.  However, as I explained earlier, the level-2 area in my spatial analysis is the 

full geographic universe under investigation and not a sample from it.  Hence, I have 

crudely concluded that not introducing the GWR error term in the HLM hybrid-model is 

statistically tolerable.  The current hybrid approach is thus methodological acceptable.   

In practical terms, I take the GWR coefficients and treat them as data in 

the hybrid-multilevel model.  The spatial models produce a value for each of the 

PUMA polygons for each of the variables in the model.  I take these values as 

GWR-Level-2 PUMA-attributes that show spatial non-stationarity and insert them 

into the level-2 data used in the final hierarchical model.  For example, PUMA 

values for  are inserted into the level-2 equation to control for the 

spatial non-stationarity of the percent-Latinos with the poverty outcome.   

 



 131 

Multi-Geospatial Hybrid Models  

Here are my final hybrid models controlling for spatial dependence in a 

hybrid multilevel logistic model. The final “post-GWR” multilevel hybrid model 

looks the same at level-1 as given before and level-2 is expanded as follows: 

 

 

 

until 

 

 

 

 

where LatCoef  is the GWR coefficient for the PUMA-level association  

between percent in-poverty and percent Latino, 

BlackCoef  is the GWR coefficient for the PUMA-level association  

between percent in-poverty and percent non-Latino-black, and  

BACoef  is the GWR coefficient for the PUMA-level association  

between percent in-poverty and percent with a bachelors degree and  

beyond. 

This is how the values produced by the GWR equation are used as data in 

the hybrid HLM final model.  The main cross-level statistical association in our 

discussion will remain focused on the association between the level-1 Latino 
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status and the level-2 Latino concentration. As a reminder, the two hypotheses 

under investigation are (with minor extensions to include our methodological 

discussion): 

At the macro-level, I hypothesize that as the percent of Latinos/as in the 
area of residence increases, the odds of being in poverty will increase for 
Latinas/os—even after controlling for various level-1, level-2, and GWR-
level-2 factors. 
 

and within the exploratory question,  

I hypothesized that the statistical association between percent Latina/o 
and percent poverty is spatially non-stationary. In particular, I expect my 
exploratory analysis to show that the association between percent in-
poverty and percent-Latino is positively correlated in areas where Latinos 
have been historically concentrated and negatively associated in 
economically-healthy new Latino-destinations.     
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CHAPTER IV 

ANALYSES  

 

“The potential exists, of course, for substantively meaningful      
spatial effects in many of the phenomena studied by social scientists...       

such models can make important contributions to our understanding 
of how events in one area can transcend geographic boundaries          

to influence outcomes in other areas”  
Tolnay, Deane, and Beck 1996:812 

 

Analyses of the different models are presented in this chapter.  I begin by 

discussing the descriptive statistics in all the models.  Subsequently, we move on to 

discuss the findings of the pre-GWR hierarchical model with no level-2 controls and 

then the results when said controls are introduced. In the latter model, we will discuss 

how hypotheis-1 (H1) is supported.  After this is done, we explore how the GWR results 

give support to hypothesis-2 (H2).  Finally, we investigate how the post-GWR multilevel 

hybrid logistic model continues to validate H1.      

 

Descriptive Statistics 

This section delineates the descriptive statistics for the sample used in multilevel 

models. Table 1 below displays the descriptive statistics for the sample being used in all 

HLM models.  The table provides the following figures for each of the individual-level 

variables: the mean, standard deviation, minimum, and maximum values.  From the 

table, we see that amongst all (Latinos, black, and white) the 2,526,896 reference  
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Table 1 
Level-1 HLM Descriptive Statistics:  

Micro-Level Variable Mean, Standard Deviation, and Extreme Values  
 

Variable Mean Std. Dev. Minimum Maximum 
Level-1 
  HLM Dependent Variable 

Poverty 100 
 

 
 

0.10 

 
 

0.30 

 
 

0 

 
 

1 

Level-1 
  HLM Independent Variables 

    

Latinos 0.11 0.31 0 1 
Non-Latino-Blacks 0.10 0.30 0 1 

Non-Latino-Whites (reference) 0.79 0.41 0 1 
 
Level-1 
 HLM Control Variable 

Age at Immigration 

 
 
 

2.99 

 
 
 

7.65 

 
 
 

0 

 
 
 

66 
     

Bilingual 0.10 0.30 0 1 
Mono-Other 0.03 0.17 0 1 

 
Age (years) 

 
45.18 

 
11.75 

 
20 

 
65 

     
Male 0.57 0.49 0 1 

     
Disable 0.14 0.35 0 1 

     
Married 0.58 0.49 0 1 

     
Served 0.15 0.35 0 1 

     
High School Plus 0.90 0.30 0 1 
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persons in the U.S. mainland (at level-1), about one-tenth of them are in poverty (i.e., 

below the 100% poverty line).  The minimum and maximum values on the “poverty 

100” variable indicate its binary coding.    

In Table 1, we see that Latinos (of all races) and non-Latino-blacks (hereafter 

only referred to as blacks) make up about one-tenth of the persons in the micro-level 

sample.  Non-Latino-whites (hereafter only referred to as whites) are the reference 

category.  A background investigation on the sample shows a clear picture of how 

poverty rates are distributed in the full sample and the three sub-groups.  In the full 

sample, there are 98 people in poverty for every 1,000 reference persons.  Whites only 

have 75 in poverty for every 1000 of their group, compared to Latinos at 173 and with 

blacks at 203 being in poverty—for every 1000 people within each their racial-ethnic 

group.  

The table also illustrates that on average the sample was 3 years of age at time of 

arrival (native born are 0 in this variable).  Please note that this value is heavily skew by 

massive amount of people with a zero (i.e., who are native) in the sample.  Further 

investigation on this variable shows that 87% of all individuals in the sample are native-

born.  Reference persons are on average 45 years of age. About 57% of them are male, 

14% have some form of disability, 58% are married, and about 15% have served in the 

military at some point in their lifetime.  Approximately 90% of them have a high school 

degree and beyond. 

When it comes to language, 10% are bilingual and 3% are mono-other (i.e., 

speak very little or no English).  This means that about 87% of the reference persons 
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only speak English—they are mono-English (the reference category).  Unfortunately, the 

bilingual variable offers little insight on the details of bilingualism, because most of the 

bilinguals are whites.  From our variable, we cannot know if the person speaks Spanish, 

Polish, or German—aside from speaking English well, or very well.  Consequently, the 

bilingual variable only informs us that the individual can speak English and another 

language.  

Table 2 below presents all the multilevel level-2 and GWR descriptive statistics.  

For the GWR sample, we see that from the 2,058 PUMAs about 12% of their population 

is in poverty (i.e., at a poverty ratio of 100 or below).  For both HLM and GWR samples, 

Latinos made up, on average, 14% of the PUMA population and blacks 13%. Further 

investigation also revealed that on average the PUMAs had a 66% percent of whites (the 

racial-ethnic reference category in both GWR and HLM  models).  When it comes to 

formal educational attainment, on average, 19% of the population had a bachelor’s 

degree and beyond.   

Table 2 demonstrates that the same HLM level-2 variables used in the pre-GWR 

multilevel equation are introduced in the GWR spatial analysis.  Results from the GWR 

equation are discussed at length below.  After being executed in ArcGIS, the GWR 

equation creates coefficient values for all PUMA polygons and for each of the three 

independent variables in the equation.  The values reflect the beta values for each of the 

variables as they are associated with ith PUMA polygon.  

The GWR raw coefficient variables display the values as produced by the 

equation.  As can be seen, the minimum values indicate that there are PUMAs where the 
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statistical relationship between x-variable (e.g., percent Latinos at -1.21) and the percent 

in poverty is negative.  Inserting these negative values, however, creates convergence 

problems in HLM.   

 

Table 2 
Level-2 HLM and GWR Descriptive Statistics 

 
Variable Mean Std. Dev. Minimum Maximum 

GWR Dependent Variable   
Percent in Poverty 

 
 

Level-2 HLM Control Variables 
                   and 
GWR Independent Variables 

 
0.12 

 
0.06 

 
0.01 

 
0.41 

Percent Latinos 0.14 0.18 0 0.98 
Percent  Non-Latino-Blacks 0.13 0.17 0 0.98 

Percent with a BA and beyond 
 
 

GWR Raw Coefficients Variables 

0.19 0.1 0.02 0.68 

Raw GWR Latino Coefficient 0.14 0.24 -1.21 0.83 
Raw GWR NL-Black Coefficient 0.23 0.16 -0.66 0.94 

Raw GWR BA+ Coefficient 
 
 

HLM Level-2 GWR Control 
Variables 

-0.19 0.17 -0.83 0.17 

Shifted GWR Latino Coefficient 1.35 0.24 0 2.04 
Shifted GWR NL-Black Coefficient 0.89 0.16 0 1.60 

Shifted GWR BA+ Coefficient 0.64 0.17 0 1.00 
     

PUMA Square Miles 1,517 4,375 1.34 92,749 
PUMA Perimeter 160 180 6.57 1,546 

PUMA Total Population 144,419 39,134 85,853 394,346 
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 In order to account for the nonstationarity value of the PUMA, these raw outputs 

were shifted to start at zero.  The shifted scales are used in the final hybrid model and are 

centered on their grand mean.  GWR factors are centered for two main reasons.  The first 

is that their scales have been shifted. The second is that GWR coefficients are only 

introduced as controls for spatial nonstationarity and their interpretation is not the main 

focus of the dissertation.  

In the case of the raw Latino GWR coefficient, the lowest value is -1.2094.  In 

order to shift this value to start at zero, I subtract -1.2094 from all the raw Latino GWR 

values and then take their absolute value (to avoid negative numbers).  This creates a 

scale that ranges from 0.000 to 2.0428.  Thus, on average, PUMAs have a 1.35 value on 

this shift GWR Latino coefficient.  Note that within the shifted scale, the raw GWR 

coefficient value of zero is between 1.2095 and 1.2091, in which 1.2095 and above 

signals a positive association between the percent-Latino independent variable and the 

percent-poverty dependent variable, and in which 1.2091 and below indicate a negative 

association.   

Consequently, we could interpret the 1.35 as indicating that on average, there is a 

positive relationship between percent-Latino and percent-poverty within PUMAs.  A 

positive association signals that as the percent of Latinos increases, the percent of 

reference persons in-poverty increases—holding all else constant.  The PUMAs that 

contain a negative association are of particular interest in this research because they 

signal the instances when the PUMA-level attribute is associated with lower levels of 

PUMA-poverty.  
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In the case of the black variable, the lowest value is -0.6599.  When shifted, the 

black scale goes from 0.00 to 1.60—with an average PUMA having a 0.89 value on this 

scale.  The raw GWR coefficient value of zero on this shifted scale is between 0.6604 

and 0.6595, in which 0.6604 and above signals a positive association between the 

percent black and percent-poverty, and in which 0.6595 and below indicate a negative 

association.  We could thus interpret the mean as indicating that on average (0.89), there 

is a positive association between percent black and percent in poverty within PUMAs.  

This spatially weighted positive association indicates that as the percent of blacks 

increases the percent of reference persons in poverty decreases—net of all other effects.   

The lowest GWR coefficient value for BA-plus is -0.8317.  When shifted, the 

BA-plus scale ranges from 0.00 to 1.00 and the average PUMA contains a 0.64 on this 

scale. The shifted BA-plus scale contains a zero between 0.8328 and 0.8315, in which 

where 0.8328 and above signals a positive association between the percent with a BA 

and beyond and percent-poverty, and in which 0.8315 and below indicate a negative 

association.  Since on average, PUMAs have a value of 0.64 on this variable, we could 

say the most prevalent spatially weighted statistical association is negative.  This means 

that for most of the U.S. mainland, the increase in the percent of people with a 

bachelor’s degree and beyond is accompanied by a decrease probability of poverty—

ceteris paribus.    

Before moving on to discuss the findings in the pre-GWR multilevel model, 

please note in passing that the average PUMA contains about 1,517 square miles, has a 

160 mile polygon perimeter, and about 144,419 people per unit. 
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Pre-GWR Multilevel Logistic Model 

We will now turn our attention to our pre-GWR HLM model.  Before moving on 

the technical discussion of the model and findings, it is important to note that all the 

hierarchical models I use with my HLM 6.0 software have many of the same 

assumptions: 

a) they assume that all function forms are linear at each level; 

b) that level-1 residuals are normally distributed; 

c) and level-2 random effects have a multivariate normal distribution; 

d) with regards to homoscedasticity, that level-1 residual variance is 

constant 

e) on independence, that level-1 and level-2 residuals are uncorrelated 

f) and finally, that observations at the highest level (i.e., PUMA’s 

attributers) are independent from each other   

After several diagnostic tests, I find that all the assumptions from a through e are 

sufficiently met for both of my HLM models.  

 The crux of my dissertation lies with the fact that I think most multilevel models 

violate the f assumption by not accounting for the spatial nonstationarity in the higher 

order units.  Throughout this project, I have made the argument that my PUMAs are not 

independent from each other.  This violates assumption f.  In particular, I argue that 

PUMA-level characteristics are spatially dependent.  Regarding theory, I propose that 

not unless polygon independence is ascertained, all social scientist using nesting units 
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with multilevel models should assume that assumption f is being violated and that a 

statistical or data solution should be sought.   

Although important, a full discussion on how temporal and spatial diffusion play 

a role in creating inter-PUMA dependence is beyond the scope of this study. I note in 

passing that existing research does tackle this issue (see Land and Deane 1992; Land, 

Deane, and Blau 1991).  My investigation explores spatial diffusion, but frames it in 

terms that are best suited for a discussion that captures how diffusion occurs over time 

(i.e., temporal diffusion). The differences between spatial and temporal diffusion 

mechanics and processes matter.   

For example, researchers on this topic have found that time can bind diffusion 

patterns “by limiting the paths through which risks and resources flow”—in more 

conceptual terms, we could say that like “switches on a railroad track,” timing has the 

ability to influence “network flow to particular subsets of the network” (Moddy 

2002:43).  In terms of inequality, we could say that resource distribution is affected by 

both time and temporal diffusion systems.   

For example, economic resource flows could be affected by one’s place within 

one’s social network.  Using Figure 5 below, if subject A is economically afflicted by an 

event, subject E within the network may be less likely to feel the effects compared to 

subject B.  Individuals’ resource equilibrium is also affected in relation to the time when 

the external effect enters the network.  Extending our hypothetical example above, we 

could find an event where even though subject B is more proximal to A’s economic 

downturn, B’s current strong economic liquidity will make him/her less susceptible to 
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the negative vibe in the network (introduced by A) than the effect it will have on distant 

subject E because the latter is financially challenged after a recent family economic 

devastation.     

These arguments primarily point out that “when predicting social outcomes, we 

are better served by integrating the insights of the social capital and social networks 

literatures” because “the most promising bridge is to combine the structure of networks 

with the content of social capital to better understand social reality” (Moody and Paxton 

2009:1500).  This worthwhile and necessary endeavor is beyond the scope of the current 

study. 

 

Figure 5 
Simple Hypothetical Social Network 

 

 

 After discussing how my PUMA-level attributes are spatially dependent, we can 

now turn our attention to our first multilevel logistic model. Using the HLM format of 

summarizing the specified model in equation format, our first multilevel logistic model 
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is as follows, at level-1 (i.e., the individual-level), with the binary poverty status 

dependent variable, no centered factors, no weighting, and a Bernoulli distribution, the 

random-coefficient model (see Hofmann 1997) is as follows: 

 

 

 

 

. 

 

where  in the respondents age at time of entry to the 

U.S. (native born have a “0” on this variable); 

 is bilingual speaking status (fluent in English and some other 

language have a “1” in this variable); 

 captures low English speaking ability (those with a “1” in this 

variable speak English very little or not at all), the reference category for both 

language variable is mono-English (people who only speak English);  

is an interval variable capturing the respondents age; 

controls for the respondent’s sex type (females have a “0” in this 

variable); 

accounts for an individual’s disability status (persons with 

disability have a “1”); 
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shows marital status (never married, divorced, separated, widowed 

individuals are in the reference category); 

is the military service control (if never served in military then has a 

“0”); 

the educational binary variable (where “1” means person has a 

high school education and beyond); 

the primary micro-level variable of interest (all Latinos—such as 

Mexicans, Puerto Ricans, Cubans, Salvadorians, etc.—of all races have a “1” in 

this variable); and finally,  

wich controls for ethnic-racial status (if non-Latino and of single-

black race, then person has a “1” in this factor), the reference category for the 

racial-ethnic variables is non-Latino-white (individuals who do not identify as 

having a Latino ethnicity and who are of a single- and white-race). 

And where level-2 is: 

 

 

 

 

and where the betas continue until you reach 

 

. 
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Table 3 
Results from the Pre-GWR Multilevel Logistic Model with No Level-2 Controls 

 
Variable Gamma % Change P-Value  Odds Ratio Logit Coef Std. 

Error 
 

Intercept 
 

 
 

-20.2% 
 

0.000 
  

0.798 
 

-0.226 
 

0.018 
 
Independent 
Variable 
 

Latino 
 

Control Variables 
 

 
 
 

 

 
 
 

32.4% 

 
 
 

0.000 

  
 
 

1.324 

 
 
 

0.28 

 
 
 

0.014 

Non-Latino-Black  90.9% 0.000  1.908 0.646 0.011 
 

Age at 
Immigration 

 
 

 
1.1% 

 
0.000 

  
1.011 

 
0.011 

 
0.000 

 
Bilingual 

 
 

 
10.8% 

 
0.000 

  
1.108 

 
0.102 

 
0.013 

 
Mono-Other 

 
 

 
70.5% 

 
0.000 

  
1.705 

 
0.533 

 
0.019 

 
Age 

 
 

 
-3.7% 

 
0.000 

  
0.963 

 
-0.037 

 
0.000 

 
Male 

 
 

 
-41.9% 

 
0.000 

  
0.581 

 
-0.542 

 
0.006 

 
Disable 

 
 

 
276.8% 

 
0.000 

  
3.768 

 
1.326 

 
0.007 

 
Married 

 
 

 
-70.0% 

 
0.000 

  
0.299 

 
-1.204 

 
0.009 

 
Served 

 
 

 
-10.4% 

 
0.000 

  
0.896 

 
-0.109 

 
0.011 

 
High School Plus 

 

 
 

 
-63.3% 

 
0.000 

  
0.367 

 
-1.002 

 
0.008 

 

Our random coefficient model outputs (above) indicate that our variance 

component for  is 0.21816 (p-value 0.000).  Table 3 displays the population-average 

outputs with robust standard errors (more on this below).  From the table, we see that 

Latinos have 33% greater likelihood of being in poverty than their white counterparts.  

Blacks have a 91% greater likelihood of being in poverty than whites.  Both  and 
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 confirm customary findings: minorities are more at risk of being in poverty than 

their non-minority counterparts.  

From Table 3, we can also see that as age at time of immigration increases, the 

odds of being in poverty increase.  Bilinguals and mono-others are also more likely to be 

in poverty than mono-English speakers.  As age increases the odds of being in poverty 

are reduced and males, married people, those who have served, or have a high school 

education and beyond are also less likely to be in poverty. Disable people are almost 3 

times more likely to be in poverty than non-disable respondents. 

The random coefficient model has shown above that all level-1 variables are 

statistically significant and operating as expected.  In our second HLM pre-GWR model 

we introduce level-2 variables.  This intercepts-and-slopes-as-outcomes model (see 

Hofmann 1997), sets the residual parameter variance (tau) to zero for all level-1 

coefficients except the intercept —where  signals that a residual parameter is 

included in the equation. Please note that the random level-1 coefficient reliability 

estimate for  is 0.903 and has  variance component of 0.13052 (p-value 0.000).  

Keeping the exact same level-1 part of the equation given above, we now have, at level-

2 (i.e., the PUMA-level), the following: 
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where  is the intercept where all level-2 predictors equal zero; 

 is the change in the intercept for a one-unit change in “percent-Latino” (first-order 

effect).  Similar interpretations can be given to  and  by simply exchanging 

the level-2 factor.   

 is the variance (i.e., ) for each PUMA mean around the average level-1 variable 

(this is the variance component). is our only random effect; 

 is the slope of the association between the level-1 factor “age at immigration” and 

the binary dependent variable of poverty status—where all level-1 and level-2 

factors equal zero.  In conceptual terms, we can explain that  is the average 

regression slope relating “age at immigration” to poverty-status for PUMAs 

where all level- 1 and level-2 predictors=0.  This is also a first-order effect which 

is commonly referred to as the “direct effect.”  Thus, can be interpreted as the 

direct effect of the individual’s characteristic as it relates to their odds of being in 
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poverty—holding all other level-1 and level-2 factors at zero. By simply 

substituting the level-1 independent variable given above, similar interpretations 

can be given for  through ;  

 is the change on the level-1 statistical slope for every one-unit increase on the level-2 

factor.  That is,  is the change on the “age at immigration” variable for a one-

unit change on the “percent Latino” factor.  Explained differently,  captures 

how the regression slopes, between “age at immigration” and poverty-status, are 

moderated by the “percent Latino” macro-variable.  This is our first of 30 cross-

level interactions. Here again, we can simply substitute the level-1 independent 

variable “age at immigration” (e.g., with “male”) and offer comparable 

interpretations for  through ; 

 is the change in slope , on the “age at immigration” level-1 variable, for a one-unit 

change on the “percent non-Latino-black” level-2 variable. You can replace the 

level-1 independent variable given above (e.g., insert “bilingual”) to attain 

analogous interpretations for  through ; 

 is the change in slope , on the “age at immigration” level-1 variable, for a one-unit 

change on the percent with a bachelors degree and beyond level-2 factor. As 

before, by simply exchanging the level-1 age at immigration independent 

variable—with for example age, corresponding interpretations can be given for 

 through ; 

The output using a non-linear model with a logit link function, being interpreted 

in this project, come from the section titled population average model in the HLM raw 



 149 

text outputs (see Raudenbush, Bryk, and Congdon 2000).  In particular, the coefficients 

in all the following tables come from the final estimation of fixed effects found in the 

population-average model with robust standard errors section of the outputs.  Fixed 

effects are variable coefficients that are constant across groups (e.g., mean intercept and 

slope across level-2 units).  Random effects are coefficient that can vary across groups 

(e.g., error terms at both levels).  

Our pre-GWR model, with 2,526,896 level-1 units nested in 2,054 level-2 units, 

converged after two iterations with a likelihood function value of -3.556673E+006.  As 

in the null-model (i.e., intercepts only or unconditional model) used to calculate the 

intra-class correlation, (i.e., ) remains significant with a  (i.e., chi-square) value 

of 25,878 (p-value=0.000).  This means that individuals within PUMAs are not 

independent from one another.  Using a single-layer regression would be inappropriate 

since the units under observation violate the independence principal assumption in non-

hierarchical multivariate regressions.  

Before moving on to the discussion of the pre-GWR HLM findings, it is 

important to recall why both multilevel and spatial models are employed: I argue that 

spatial dependence is a substantive phenomenon that requires both theoretical and 

methodological attention (see Tolnay, Deane, Beck 1996).  This is despite the fact that 

spatial dependence can be treated as a nuisance—in the form of a spatial error model 

(Anselin, 1988).  As others have done my theoretical approach specifies spatial 

dependence as a substantive phenomenon rather than as a nuisance (Morenoff, Sampson, 

and Raudenbush 2010). 
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Table 3 contains the results of our pre-GWR multilevel logistic model.  Table 4 

is long and complex.  Thus, and explanation of the contents and layout of the table will 

help.  Note that the labels for each column can be found in the top-most row.  The left-

most column contains all the variables.  These are broken down into three sections: 

intercept, independent variables, and control variables. Each of the independent variables 

is followed by all of the level-2 factors associated with the level-1 variable.  For 

example, right below the “Latino” micro-level variable, one will find all the three 

associated macro-level factors included in the equation.  All the independent variables 

have the same three macro variables: percent Latino, percent black, and percent with a 

bachelor’s degree and beyond.   

Furthermore, the “gamma” column is introduced to help the reader follow during 

the interpretations of the various coefficients. The “percent change” column will be the 

primary source of all interpretations. The “p-value” is given to determine the statistical 

significance of the gammas, the odds ratio values are given to show how “1” is 

subtracted from these values and then converted to percent form to create our primary 

column of interest (i.e., %-change).   

The logit coefficient and standard error values are given for reference.  Only 

statistically significant values at or below an α of 0.05 are discussed.  All statistically 

non-significant outcomes are included for reference. 

    The results show that Latino is significant (p=0.000) with a logit-coefficient of 

0.21 and an odds ratio value of 1.231 ( ).  Thus, Latinos have about a 

23% greater likelihood of being in poverty than whites—ceteris paribus. This confirms a 
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common hypothesis (not being formally tested here) that Latinos are more likely to 

experience poverty than non-minority group members.  We could say that when it comes 

to predicting the likelihood of poverty, being a Latino/a is a disadvantage. 

There are two statistically significant cross-level-interactions (CLI) with our 

level-1 Latino variable. The CLI with   (coefficient 0.21, α 0.002), as predicted by 

Blalock, indicates that the “Latino disadvantage” increases as the percent of Latinos in 

the PUMA of residence increases—holding all else constant at zero.  In more technical 

terms, this means that for every increase of 0.01 of percent Latino in a PUMA, the slope 

of Latino status on the log odds of being in-poverty are increased by 0.0021. 

The reason why the value is moved two decimal places to the rights is that the 

percent black variable is measured as a proportion that ranges from 0.00 to 0.98 (see 

Table 2).  This means that a one unit change in the percent Latino variable would result  

 

Table 4 
Pre-GWR Multilevel Logistic Model Results with Level-2 Controls 

 
Variable Gam

ma 
% Change P-Value  Odds Ratio Logit Coef Std. Error 

        
Intercept  84.9%    0.000 

 
1.849 0.614 0.046 

     % Latino  -72.5%    0.000 
 

0.275 -1.292 0.097 
% NL-Black  -31.1%    0.000 

 
0.689 -0.372 0.085 

% BA-Plus  -96.4%    0.000 
 

0.036 -3.319 0.231 
 
Independent 
Variable 
 

Latino 

 
 
 

 
23.1%    0.000 

 
1.231 0.200  0.04 

% Latino  24.5%    0.002 
 

1.245 0.210  0.06 
% NL-Black  64.9%    0.000 

 
1.649 0.500  0.10 

% BA-Plus  -14.5%    0.353 
 

0.855 -0.150  0.16 



 152 

Table 4 (continued) 

Variable Gam
ma 

% Change P-Value  Odds Ratio Logit Coef Std. Error 

 
Control 
Variables 

 

       

Non-Latino-
Black 

 
74.6%    0.000 

 
1.746 0.550  0.03 

% Latino  8.4%    0.255 
 

1.084 0.080  0.07 
% NL-Black  14.6%    0.072 

 
1.146 0.130  0.07 

% BA-Plus  39.7%    0.024 
 

1.397 0.330  0.14 
        

Age at 
Immigration 

 
1.1%    0.000 

 
1.011 0.011 0.001 

% Latino  -0.1%    0.707 
 

0.999 0.000 0.002 
% NL-Black  -2.1%    0.000 

 
0.979 -0.021 0.002 

% BA-Plus  1.3%    0.022 
 

1.013 0.013 0.005 
  

      Bilingual  17.2%    0.000 
 

1.172 0.158 0.039 
% Latino  -17.3%    0.002 

 
0.827 -0.189 0.059 

% NL-Black  -18.0%    0.009 
 

0.820 -0.198 0.075 
% BA-Plus  6.7%    0.623 

 
1.067 0.064 0.132 

  
      Mono-Other  23.6%    0.002 

 
1.236 0.211 0.064 

% Latino  24.0%    0.012 
 

1.240 0.214 0.085 
% NL-Black  -12.9%    0.228 

 
0.871 -0.138 0.114 

% BA-Plus  368.7%    0.000 
 

4.687 1.544 0.228 
 

Age 
 

 -3.9%    0.000 
 

0.961 -0.039 0.001 
% Latino  1.3%    0.000 

 
1.013 0.012 0.001 

% NL-Black  0.3%    0.126 
 

1.003 0.002 0.001 
% BA-Plus  -0.3%    0.533 

 
0.997 -0.003 0.005 

        
Male  -54.4%    0.000 

 
0.456 -0.784 0.016 

% Latino  27.7%    0.000 
 

1.277 0.244 0.030 
% NL-Black  14.9%    0.000 

 
1.149 0.138 0.031 

% BA-Plus  194.5%    0.000 
 

2.945 1.080 0.074 
        

Disable  279.1%    0.000 
 

3.791 1.332 0.018 
% Latino  -40.0%    0.000 

 
0.600 -0.510 0.036 

% NL-Black  -19.9%    0.000 
 

0.801 -0.221 0.036 
% BA-Plus  92.2%    0.000 

 
1.922 0.653 0.086 
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Table 4 (continued) 

Variable Gam
ma 

% Change P-Value  Odds Ratio Logit Coef Std. Error 

 
Control 

Variables 
(continued) 

 
Married 

 
 
 

 

-73.1%    0.000 
 

0.269 -1.313 0.020 
% Latino  145.5%    0.000 

 
2.455 0.898 0.035 

% NL-Black  67.5%    0.000 
 

1.675 0.515 0.037 
% BA-Plus  -48.7%    0.000 

 
0.513 -0.668 0.099 

        
Served  -10.9%    0.000 

 
0.891 -0.115 0.029 

% Latino  -16.5%    0.008 
 

0.835 -0.179 0.066 
% NL-Black  -15.3%    0.005 

 
0.847 -0.166 0.058 

% BA-Plus  47.2%    0.005 
 

1.472 0.386 0.137 
        

High School 
Plus 

 
-64.7%    0.000 

 
0.353 -1.042 0.022 

% Latino  51.6%    0.000 
 

1.516 0.415 0.038 
% NL-Black  -1.3%    0.731 

 
0.987 -0.012 0.037 

% BA-Plus  -18.1%    0.080 
 

0.819 -0.200 0.114 
 

 

in a change in the log-odds of 0.21.  But a change of 0.01 in the same variable results in 

a change in the log-odds of 0.0021.  The main point is that Blalock’s group threat theory 

finds support here.   

The same association is present in the CLI with   (coefficient 0.5, α 0.000), 

where an increase in the presence of blacks further aggravates the Latino disadvantage.   

Both   and  directly support hypothesi-1 (H1).  Just as Blalock’s group threat 

hypothesis predicted, the concentration of minorities significantly alters the odds of 

being in poverty.  As hypothesized, I find that as the percent of minorities increases, the 
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odds of being in poverty increases for Latinos/as.  H1 finds support in the intercepts-and-

slopes-as-outcomes HLM model.  

 The rest of the variables are discussed briefly, with a special focus on how the 

percent of minorities in the area of residence alters the odds of being in poverty.  With 

the black ( variable, we see that blacks have a 75% greater likelihood of being in-

poverty (p=0.000) than their white counterparts.  The only statistically significant CLI is 

with percent-BA-plus. The coefficient indicates that as the percent of individuals with a 

bachelor’s degree and beyond increases, the odds of being in-poverty increase for 

blacks.  

Moving on to the rest of the control variables, we see that age at immigration is 

statistically significant (p=0.000).  Within immigrants, with every one unit increase of 

age at time of entry to the U.S., there is a 1.1% greater likelihood of being in poverty.  

The variable is relevant for the immigrant population and captures two general trends: 

immigrants have greater odds of being in-poverty than native born, and the older the 

immigrant is at the time of arrival, the greater the odds of experiencing poverty. Both  

(i.e., the age-at-immigration and non-Latino-black CLI) and  (i.e., the age-at-

immigration and percent-BA-plus CLI) are statistically significant.  Where  shows 

that as the percent of individuals with a bachelor’s degree and beyond increases, the 

“poverty-immigration” slope slows down.  This means the “immigrant penalty” 

increases in PUMAs that contain a highly educated population.  On the other hand,  

shows that as the percent of blacks increases, the odds of being in poverty are reduced 

for immigrants. 
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When it comes to language, bilinguals have a 17% ( , p=0.000) chance of 

being in-poverty than individuals who only speak English.  An increase in the Latino 

( ) and black concentration ( ) reduces the odds of being in poverty for bilinguals.  

Bilinguals are less penalized in minority concentrated PUMAs.  Mono-others ( ) also 

have 24% greater odds of being in poverty than mono-English speakers—where residing 

in a heavily concentrated Latino PUMA ( ) further increases the negative effects and 

living in a highly-educated PUMA ( ) significantly magnifies the mono-other 

disadvantage.  

As expected, with each unit increase in age ( ), the odds of being in poverty 

decrease by 4%. The “age benefit” seems to be greatest in heavily Latino populated 

PUMAs ( ).  When it comes to sex, males ( ) are 54% less likely to be in poverty 

than females. The benefit of being “male” increases as the percent of Latinos ( ), 

blacks ( ), and highly educate people ( ) increase.  Disabled ( ) persons are three 

times more likely to be in poverty than their non-disabled counterparts. The “disability 

penalty” is reduced as the percent of Latinos ( ) and blacks ( ) increases.  Disabled 

individuals suffer a greater disadvantage as the percent of highly educate people ( ) 

increases. 

Married ( ) respondents also have 73% lower odds of being in-poverty 

compared to their divorced, widowed, or never married counterparts.  This “marriage 

benefit” increases in areas with many Latinos ( ) and blacks ( ) and decreases in 

highly educate areas ( ).  I find that those who have served in the military ( ) have 

lower (11%) odds of being in poverty than individuals who have never served.  This 
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benefit is reduced (reversed) in Latino ( ) and black ( ) concentrated areas and is 

increased in highly educated PUMAs ( ).  Finally, when it comes to education ( ), 

the pre-GWR model indicates that those with a high school education and beyond are 

less likely to be in poverty than their moderately educated counterparts. This benefit 

increases in Latino ( ) heavy PUMAs and is reduced in highly educated areas ( ). 

Blalock’s minority-group threat theory led me to formalize the following pre-

GWR-H1 hypothesis: I hypothesize that as the percent of Latinos/as in the area of 

residence increases, the odds of being in poverty will increase for Latinas/os—even after 

controlling for various level-1, level-2.  Gamma 101 ( ) in pre-GWR model is 

statistically significant and consequently fails to rejects my hypothesis.  Blalock’s 

proposition—a minority-group’s proliferation increases discrimination against them—is 

validated with our findings.  

 

Geographically Weighted Regression 

The previous section highlighted the pre-GWR HLM-findings.  After showing 

that the increase in the minority population increases the odds of being in poverty for 

Latinos, I concluded that H1 is supported.  I now want to determine if after accounting 

for spatial nonstationarity, we can still find support for H1.  Our GWR model will help 

us produce data to account for spatial nonstationarity in the final hybrid-HLM model.  

In this section, we give an overview of the GWR findings. As a reminder, the 

dependent variable is percent of people living in-poverty in a given PUMA.  The 

independent variables are percent of Latinos, blacks, and people with a bachelors degree 
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and beyond by PUMA.  I use ArcGIS to specify the model even though GWR 3.0 

software is available (see Wen, Chen, Tsai 2010; Fotheringham 2011).  

Our formal exploratory hypothesis (H2) is as follows: I hypothesized that the 

statistical association between percent Latina/o and percent poverty is spatially non-

stationary.  In particular, I expect my exploratory analysis to show that the association 

between percent in-poverty and percent-Latino is positively correlated in areas where 

Latino/a have historically been concentrated and negatively associated in new Latino-

destinations.  This hypothesis is in part inspired by previous findings that illustrate how 

“communities’ sustenance activities are useful in explaining local” phenomenon (Saenz 

and Colberg 1988:334).  

Before moving on to the GWR model, I will provide my general spatial metadata 

in Table 5.  By doing this, I am abiding by the minimum mandatory elements as required 

by the Federal Geographic Data Committee (FGDC) Content Standard for Digital 

Geospatial Metadata (FGDC-STD-001-1998), which include the identification and 

reference information sections. The main goal of Table 5 is to provide the reader basic 

information on the source, validity, and reliability of the data used in the GWR model. 

After providing basic spatial metadata information, basic GWR model results are 

given.  Since the descriptive statistics for the GWR sample are given above in Table 2, 

only model evaluation diagnostics are given. Table 6 below gives the model descriptive 

outputs.  The model uses an inverse distance and Euclidian distance.  All interpretations 

are guided by ESRI online help instructions (ESRI-July 2011). 
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Table 5 
Spatial Metadata 

 Description 
Title By Carlos Siordia (csiordia@tamu.edu) during 2011 at Texas 

A&M University in College Station from U.S. Census Bureau 
2007 TIGER/Line Shapefile source data (approximate 
resolution at 400 by 600), in miles with a North American 
Albers Equal Area Conic projected coordinate system on a 
GCS North American 1983 geographic coordinate system with 
a NAD83 datum. 
 

Abstract The spatial data set was created to conduct statistical analyses. 
It contains information on poverty-, racial-ethnic-, and 
education-concentrations by PUMAs.  The geographical area 
being covered is made up of mainland PUMAs.  The data set 
compliments the study by accounting for poverty-Latino 
spatial nonstationarity.    
 

Spatial 
Extent/Coordinate 

System (Projection): 

Shapefile feature class using an automatic data frame extend 
(with an average 1:27,064,159 value). The geographic 
coordinate system is GCS North American 1983 with a 
NAD83 datum.  The projected coordinate system in miles is 
North American Albers Equal Area Conic (“polygon” 
geometry type with a “degree” angular unit).  The prime 
meridian is in Greenwich. 
           

Bounding 
coordinates 

Horizontal in decimal degrees: 
West:      -128.477280 
East:         -64.998987 
North:        51.306925 
South:        22.956769 

and in projected coordinates: 
Left:      -1393.208558 
Right:     1325.012221 
Top:          828.446654 
Bottom: -1059.503873 
 

 
Data Quality The primary source of the data and shapefile is the U.S. 

Census Bureau.  PUMA’s attributes were created using ACS 
2005-2007 PUMS files.  Polygon-line information for the 
2007-PUMAs was downloaded from 
http://www.census.gov/cgi-bin/geo/shapefiles/national-files 
and projected in ArcGIS. 

mailto:csiordia@tamu.edu�
http://www.census.gov/cgi-bin/geo/shapefiles/national-files�
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Table 6 
Geographically Weighed Regression Results 

 
Variable Value 

Neighbors 60 
Residual Squares 1.99 
Effective Number 384.58 

Sigma 0.035 
AICc -7737.64 

R2 0.77 
R2 Adjusted 0.72 

 

 

When executing a GWR model, one of the first things the researcher must do is 

decide which bandwidth to use.  My approach has been established in academia (see 

Deller 2010).  In a GWR model, the weight given to data point n for location i works on 

a function with a Gaussian weighting scheme, where the distance between observation i 

and location j (i.e., the bandwidth) is estimated by minimizing the Akaike Information 

Criterion (AICc)—my AICc is -7,738.  This follows existing logic that “fixed 

bandwidths” are inappropriate when using census enumeration units because their 

population-density driven formulation forces them to vary in size (Mennis and Jordan 

2005; Mennis 2006).   

The adaptive kernel I am using selects an optimal number of neighboring 

PUMAs for the analysis which rely upon contiguity (rather than distance) to specify a 

number of nearest neighbors that ensures a constant size of local samples (Zhuang 

2006).  My spatially adaptive kernel is “produced by sorting the distances of the sample 

points from the desired regression point i and setting the bandwidth so that it includes 
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only the nearest N observations, where the optimal value of N is found from the data” 

and where the “weight is computed by using the specified kernel and setting the value 

for any observation whose distance is greater than the bandwidth to zero and excluding 

them from the local calibration” (Gilbert and Chakraborty 2011:278).  This is the 

preferred method for producing adaptive kernels (Fotheringham, Brunsdon, and Charlton 

2002). 

The spatial weighting scheme I am using was selected to allow for the bandwidth 

to adapt itself.  Table 5 indicates I have a polygon bandwidth of 60.  This means that for 

each regression point, i, there is a 60-neighbor area of influence—observations within 

the bandwidth have a greater influence on the estimation of the parameters in ith PUMA 

than those outside the bandwidth. 

After using the AICc to identify the optimal distance number of neighbors of 

60—the bandwidth is a function of the 60 nearest neighbors so that each PUMA 

parameter is based on the same number of features.  I now proceed to quickly outline the 

other statistical output.  The residual squares value of 1.99 in Table 5 is the sum of the 

squared residuals in the model, where smaller values indicate closer fit of the model to 

the observed data. 

Our effective number of 385, which is influenced by the bandwidth, reflects the 

tradeoff between the variance of the fitted values and the bias in the coefficient estimate.  

The effective number is used to compute other diagnostic measures. Our sigma value of 

0.035 is the square root of the normalized residual sum of squares—it is the estimated 

standard deviation for the residuals and is used for AICc computations.  As discussed 
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before, AICc is the measure of the model performance (but not an absolute measure of 

goodness of fit).   

The R2 value of 0.77 is the measure of goodness of fit.  Our GWR model is 

accounting for about 77% of the dependent variable variance.  Because the denominator 

for the R2 is not altered by the introduction of an explanatory variable but the numerator 

is, an adjusted-R2 can be used. Our adjusted-R2 value of 0.72 reflects our model fit after 

we normalize the numerator and denominator by their degrees of freedom.  After 

compensation for the number of variables in our GWR model, we can still have an 

acceptable degree of fit as we explore the variance of percent in-poverty between 

mainland PUMAs.   

Before moving on to discussing GWR maps, we must make sure that over and 

under predictions are randomly distributed.  Thus, I conducted a spatial autocorrelation 

(Moran’s I) analysis on the GWR regression residuals to ensure they are spatially 

random. The local Moran's I index is popularly used (Anselin, 1995; Getis and Ord, 

1996) and detail explanations of it with ArcGIS have been given elsewhere (see Zhang 

et. al. 2008).   

Map 2 below shows the results of a Local Moran’s cluster analysis on the 

standardize residuals from the GWR model.  Note that all maps are extracted from PDF 

images to present findings.  No standard geo-referencing applies to their visual 

representation since they are warped through the extraction process and final 

presentation formatting.   
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Map 2 
Local Moran’s I Clustering of GWR Standardize Residuals 

  

For the most part, no significant clustering of concern is present.  High-High 

areas (i.e., red polygons) signal that high-residual values are significantly clustered—

these are most present in rural areas.  Low-Low areas (i.e., green polygons) indicate the 

presence of low-residual value clustering—they are most present in metro areas.  Most 

of the clustering items are in the hyper-metro areas like Los Angeles in California and 

Houston in Texas.  I conclude predictions are randomly distributed.  We can now move 

on to evaluate additional outputs given by ArcGIS. 

Map 3 below shows the condition number distribution. This diagnostic evaluates 

local collinearity.  If strong local collinearity is present, results may become unstable.  
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Results associated with condition numbers larger than 30, may be unreliable.  Map 3 

below signals that all conditional values range from 4 to 28 and thus are acceptable.  

Deep red areas in California and South Texas are the most unstable and the mid-East 

region (light red) is the most stable.  In general, there is no strong local collinearity in 

my GWR model.  

Since the map above indicates that the GWR model is stable, we can move on to 

Map 4 to display Local R2 values. Values on this diagnostic can range between 0.0 and 

1.0.   As explained earlier, the number indicates how well the local regression model fits 

observed y values (i.e., poverty rates).  My R2 values range from 0.05 to 0.91.  The very 

low values (e.g., below 0.30 in very light green) indicate the local model is performing 

poorly. The map below shows the distribution of the Local R2 values.  The GWR 

predicts well (dark green reflects high values) in most of the heavily populated areas and 

predicts poorly in rural regions.  Previous research has found that minorities’ poverty 

rate varies by metropolitan status (Saenz 1991).  Perhaps a rural/urban variable would 

help better specified the model.  
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  Map 3 
GWR: Condition Number Distribution

 
 

 

I then mapped and evaluated predicted values, residuals, and cold-to-hot 

standardized residuals.  After finding no problems with these diagnostics, I moved on to 

map the coefficient values for all three predictors in the model.  By mapping the 

individual spatial parameters of percent-Latino we can observe the spatial patterns in 

Map 5.  In this mapping, the green polygons signal a negative statistical relationship 

between percent Latino and percent in poverty (all else held constant).  I use green to 

indicate that a positive event is occurring—in green areas, as the percent of Latinos 

increases, the percent of poverty is decreases.  Red tone polygons indicate a positive 
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(i.e., undesired) association.  Positive value polygons in Map 5 signify a cluster of units 

where as the percent of Latinos increase, the percent in-poverty increases. 

 

Map 4 
GWR: R2 Distribution 

 

   

 
Our formal exploratory H2 that the statistical association between percent 

Latina/o and percent poverty is spatially non-stationary is confirmed in Map 5.  I find 

that  is significantly heterogeneous and ranges from negative (-1.21) to 

positive (0.83) values (see Table 2).  More specifically, H2 stated that the positive 

correlations would be present in areas where Latinos have been historically concentrated 
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(e.g., Texas, California, and New York) and that negatively associations would exist in 

new Latino-destinations (e.g., Tennessee, Kentucky, West Virginia)—this too is 

generally confirmed in Map 5. 

 
 

Map 5 
Percent Latino GWR Coefficient

 
 

  

The GWR Latino coefficient   can be represented using quasi-3-

dimensional maps.  Positive values represent “low altitude” areas and negative 

coefficients represent “high altitude” mountain-like areas. The 3-D Map 6 displays the 

spatial nonstationarity of —where red areas (high negative numbers) indicate that as 

the percent of Latinos increases, the percent in-poverty decreases.  
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From the angle in 3-D Map 6, we can appreciate the fact the West Virginia area 

has the strongest negative values—the more Latinos the greater the likelihood of having 

low poverty levels, ceteris paribus.  

From the angle in 3-D Map 7 below, we can see the impact Alabama and 

Mississippi. These new Latino-immigrant destinations indicate that as the percent of 

Latinos increase, the odds of having lower levels of poverty decreases, holding all else 

constant.  This association is in stark contrast to the “low altitudes” in the South Texas 

region where the increasing presence of Latinos is accompanied by increasing levels of 

poverty.  

 

Map 6  
Percent Latino GWR Coefficient (3D Angle-1)
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Map 7 
Percent Latino GWR Coefficient (3D Angle-2) 

  
 
 
 
 

Map 8 
Percent Latino GWR Coefficient (3D Angle-3)

 
 

From our final quasi-3-d maps, Map 8 and 9, we can see that in the Montana, the 

Dakotas, and Iowa area, an increasing presence of Latinos is accompanied by a 

decreasing level of poverty, net all other effects.  In an indirect way, this finding 

supports H1—for the most part, the more Latinos present the higher the level of poverty.  
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An implicit assumption here is that majority group-members are aware of aggregate 

circumstances (i.e., the high presence of minorities) and that this knowledge creates fear 

that minority proliferation will worsen economic and safety conditions.  

 
Map 9 

Percent Latino GWR Coefficient (3D Angle-4)

 
 

 

It is worth noting in passing that many majority group-members may not simply 

be concerned about “managing dangerous classes” (Feeley and Simon 1992), but more 

focused on  regulating “those perceived as menacing material resources such as jobs and 

welfare” (King and Wheelock 2007: 1272).  Blalock’s minority-group threat theory 

again finds support in the exploratory spatial modeling.  

Before moving on to display the other coefficients, let us examine Map 10.  The 

map below shows how the Latino coefficient’s standard error (cSE) is distributed.  These 

values measure the reliability of each coefficient estimate.  Confidence in GWR 
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estimates is high in areas with low cSE values.  Polygons with high cSE values may 

indicate problems with local collinearity and are consequently of low confidence. 

   

Map 10 
Percent Latino GWR Coefficient Standard Error 

 

  

 As can be seen from the map above, confidence in our Latino GWR-coefficient 

is high in most of the PUMAs.  The SE ranges from 0.02 to 1.15.  The stability of the 

coefficient is most volatile in western Alabama, mid-east Mississippi, West Virginia, 

Kentucky, southern Illinois, and eastern Missouri.  The errors seem highest in PUMAs 

with positive GWR Latino-coefficient values.  Map 11 is given only for reference. 
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Map 12 below shows the distribution of —where values range 

from -0.66 to 0.94.  In New Mexico and Arizona (yellow areas), an increasing presence 

of blacks is closely associated with lower levels of poverty, ceteris paribus.  Dark purple 

areas indicate that an increasing presence of blacks is accompanied by an increasing 

level of poverty in the PUMA.  

 

Map 11 
Percent Latino by PUMA Polygon

 
 

 

 

My findings concur with what others have found: Blalock’s assumptions in his 

racial threat theory are supported.  For example, researchers investigating the desire to 

punish from a group threat and social control perspective found that “whites who live in 
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places with a growing African American population are more punitive largely because 

they perceive African Americans as a threat to economic resources. The assumptions of 

racial threat theory were thus supported” (King and Wheelock 2007:1272).  These 

findings are not surprising because almost 40 years ago investigations on percent Black 

and lynchings supported Blalock’s theory (Reed 1972). 

  

Map 12 
Percent Non-Latino-Black GWR Coefficient

 

Map 13 below displays the black GWR coefficient stability.  As illustrated in this 

tri-color map, the variable is most unstable (red areas) in Montana and Indiana and most 

stable (in blue) in most of the East mainland. The SE range here is from 0.02 to 1.37 
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(similar range as in the Latino coefficient).  I conclude that the coefficient is stable in 

most PUMAs.   

 

Map 13 
Percent Non-Latino-Black GWR Coefficient Standard Error 

  

 

Map 14 below demonstrates the distribution of —where values 

range from -0.83 to 0.17.  For the most part, net of all other effects, as the percent of 

people with a bachelor’s degree and beyond increases, the percent of people in-poverty 

decreases. Although not visible in this map, opposite associations are present in deep 

metro areas (deep red polygons) and in Utah, Wyoming, Colorado, and Indiana (light red 
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areas).  Deep metro areas like Houston, Texas indicate that the increase presence of 

highly educated populations is also accompanied by high levels of poverty. The opposite 

statistical association is present in most rural areas.  

 

Map 14 
Percent Bachelors-Plus GWR Coefficient 

  

 

Our next map (Map 15) illustrates the BA-Plus GWR coefficient standard error 

distribution.  From the map we see that the variable is most unstable in dark brown areas 

like Montana and Indiana and most stable in yellow and orange polygons.  Most of the 

mainland is stable.  Note that the SE range goes from 0.04 to 0.25.   
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Map 15 
Percent Bachelors-Plus GWR Coefficient Standard Error 

  

 

 

When compared to the Latino cSE range of 0.02-1.15 and the black cSE of 0.02-

1.37, the BA-plus cSE is the most stable of all the predictors.  A metro/non-metro binary 

variable may help improve the model and would help account for the fact that “Latinos 

have deep rural roots” (Saenz and Torres 2003:57).  The inclusion of binary variables in 

GWR equations creates havoc for model convergence.  Besides, previous research has 

found no significant differences on the economic returns of Mexican workers (Saenz 

2000)—the biggest group in the Latino population (our focus minority group). 
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This section has delineated our GWR findings. After careful evaluation, I find 

that H2 is supported.  There are two parts to this hypothesis.  In the first part, I support 

H2 because I find that the statistical association between percent Latina/o and percent 

poverty is spatially non-stationary. In the second part, I find general support for H2 

because the association between the percent in-poverty and percent-Latino is in general 

positively correlated in areas where Latinos have historically been concentrated and 

negatively associated in new Latino-destinations.     

Let us move on to use the GWR coefficients as data in our final hybrid-

multilevel model. By doing so, I argue, I am accounting for spatial nonstationarity.  

 

Post-GWR Multilevel Logistic “Hybrid” Model 

Our final hybrid model is now discussed.  After conducting the GWR model in 

ArcGIS, I take the information given to each of the PUMAs for each of the GWR 

independent variables and use them as data in the hybrid-HLM equation.   

At level-1, the model remains as before: 

 

 

 

 

. 
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And at level-2, it changes with the introduction of the “shifted” and then grand-mean 

centered GWR coefficients (i.e., GwrLatino, GwrNLBlack, and GwrBAPlus), as 

follows: 

 

 

 

 

 

 

until we reach where it look like this: 

 

 

 

 

From the final estimation of variance components of this hybrid model (where 

the GWR coefficients are centered on their grand mean), I find that the variance 

component ( ) is 0.11521 with a SD of 0.33943 and a p-value of 0.000.  Table 7 below 

displays the population-average output with robust standard errors for our final hybrid-

HLM model.  Interpretations are only given for gammas associated with the primary 

level-1 variable of interest: Latino. 

From Table 7 below, we see that after we control for spatial nonstationarity, the 

individual-level Latino attribute remains statistically significant (p-value=0.000).  
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Latinos/as are 25% more likely to be in poverty than their white counterparts (i.e., 

Latinos are more at risk of poverty than whites)—holding everything else at zero.  This 

post-GWR model, here being interchangeably called a hybrid-model because it 

incorporates GWR produced data, indicates that even after controlling for spatial 

stationarity, Latinos retain their greater likelihood of being in poverty when compared to  

 

 

Table 7 
 Post-GWR Multilevel Logistic Hybrid-Model Results 

 

 

 

Variable Gamma % Change P-Value Odds Ratio Logit Coef Std. 
Error 

 
Intercept  

 
44.4%  0.000 1.444 0.367 

  
0.0477 

% Latino       -58.8% 0.000          0.412        -0.886  0.0974 
% NL-Black  -22.0%  0.005 0.781 -0.248  0.0874 

% BA-Plus  -91.4%  0.000 0.087 -2.447  0.2302 
Latino GWR-Coefficient  -19.1%  0.002 0.809 -0.212  0.0660 

NL-Black GWR-Coefficient  4.3%  0.671 1.043 0.042  0.0996 
BA-Plus GWR-Coefficient  -67.0%  0.000 0.330 -1.109  0.1009 

       
 
Independent Variable 

 
Latino  

 
 
 

25.3%  0.000 1.253 0.225    0.048 
% Latino  18.3%  0.019 1.183 0.168    0.071 

% NL-Black  59.8%  0.000 1.598 0.469    0.100 
% BA-Plus  -19.0%  0.225 0.810 -0.209    0.172 

Latino GWR-Coefficient  56.7%  0.000 1.567 0.449    0.082 
NL-Black GWR-Coefficient  20.3%  0.042 1.203 0.185    0.091 

BA-Plus GWR-Coefficient  -7.0%  0.426 0.930 -0.072    0.090 
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Table 7 (continue) 

Variable Gamma % Change P-Value Odds Ratio Logit Coef Std. 
Error 

  
     Control Variables  

 
Non-Latino-Black  

 
 

69.6%  0.000 1.696 0.528    0.038 
% Latino  19.0%  0.019 1.190 0.174    0.074 

% NL-Black  18.7%  0.020 1.187 0.172    0.074 
% BA-Plus  49.3%  0.010 1.493 0.400    0.155 

Latino GWR-Coefficient  3.7%  0.430 1.037 0.037    0.047 
NL-Black GWR-Coefficient  50.4%  0.000 1.504 0.408    0.082 

BA-Plus GWR-Coefficient  -22.6%  0.001 0.774 -0.256    0.071 
 

 
Age at Immigration  

 
 

1.0%  0.000 1.010 0.010 
  
0.0017 

% Latino  0.2%  0.418 1.002 0.002  0.0022 
% NL-Black  -2.0%  0.000 0.980 -0.020  0.0027 

% BA-Plus  1.7%  0.006 1.017 0.017  0.0059 
Latino GWR-Coefficient  -0.8%  0.003 0.992 -0.008  0.0028 

NL-Black GWR-Coefficient  0.1%  0.832 1.001 0.001  0.0034 
BA-Plus GWR-Coefficient  -0.4%  0.291 0.996 -0.004  0.0035 

 
 

Bilingual  

 
 

21.2%  0.000 1.212 0.192 
  
0.0432 

% Latino  -23.8%  0.000 0.762 -0.272  0.0646 
% NL-Black  -20.4%  0.005 0.796 -0.228  0.0792 

% BA-Plus  -3.1%  0.826 0.969 -0.032  0.1439 
Latino GWR-Coefficient  30.6%  0.000 1.306 0.267  0.0630 

NL-Black GWR-Coefficient  -9.7%  0.218 0.903 -0.102  0.0824 
BA-Plus GWR-Coefficient  2.0%  0.813 1.020 0.020  0.0826 

  
      

Mono-Other  
 

33.9%  0.000 1.339 0.292 
  
0.0685 

% Latino  6.0%  0.516 1.060 0.058  0.0898 
% NL-Black  -19.5%  0.070 0.806 -0.216  0.1194 

% BA-Plus  262.7%  0.000 3.627 1.288  0.2401 
Latino GWR-Coefficient  72.4%  0.000 1.724 0.545  0.1192 

NL-Black GWR-Coefficient  -1.4%  0.910 0.986 -0.014  0.1251 
BA-Plus GWR-Coefficient  16.8%  0.242 1.168 0.156  0.1329 
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Table 7 (continue) 

Variable Gamma % Change P-Value Odds Ratio Logit Coef Std. 
Error 

  
     Control Variables (continued) 

 
Age 

 
 

 -3.6%  0.000 0.964 -0.037 
  
0.0011 

% Latino  0.9%  0.000 1.009 0.009  0.0019 
% NL-Black  0.2%  0.388 1.002 0.002  0.0017 

% BA-Plus  -1.2%  0.031 0.988 -0.012  0.0055 
Latino GWR-Coefficient  0.1%  0.377 1.001 0.001  0.0015 

NL-Black GWR-Coefficient  0.0%  0.828 1.001 0.001  0.0023 
BA-Plus GWR-Coefficient  1.2%  0.000 1.012 0.012  0.0024 

  
      

Male 
 

 -54.3%  0.000 0.457 -0.784 
  
0.0184 

% Latino  27.0%  0.000 1.270 0.239  0.0325 
% NL-Black  14.8%  0.000 1.148 0.138  0.0325 

% BA-Plus  194.5%  0.000 2.945 1.080  0.0779 
Latino GWR-Coefficient  0.6%  0.812 1.006 0.006  0.0251 

NL-Black GWR-Coefficient  -0.5%  0.891 0.995 -0.005  0.0373 
BA-Plus GWR-Coefficient  0.9%  0.827 1.009 0.009  0.0397 

  
      

Disable 
 

 285.8%  0.000 3.858 1.350 
  
0.0202 

% Latino  -40.9%  0.000 0.591 -0.526  0.0376 
% NL-Black  -20.4%  0.000 0.796 -0.228  0.0370 

% BA-Plus  81.3%  0.000 1.813 0.595  0.0904 
Latino GWR-Coefficient  5.7%  0.060 1.057 0.056  0.0296 

NL-Black GWR-Coefficient  8.0%  0.080 1.080 0.077  0.0440 
BA-Plus GWR-Coefficient  2.4%  0.600 1.024 0.024  0.0454 

 
Married 

 
 -74.0%  0.000 0.260 -1.347  0.0224 

% Latino  154.9%  0.000 2.549 0.936  0.0383 
% NL-Black  69.6%  0.000 1.696 0.528  0.0388 

% BA-Plus  -42.4%  0.000 0.576 -0.551  0.1015 
Latino GWR-Coefficient  -8.2%  0.008 0.918 -0.085  0.0317 

NL-Black GWR-Coefficient  -6.9%  0.132 0.931 -0.071  0.0471 
BA-Plus GWR-Coefficient  -6.3%  0.165 0.937 -0.065  0.0470 
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Table 7 (continue) 

Variable Gamma % Change P-Value Odds Ratio Logit Coef Std. 
Error 

  
     Control Variables (continued)  

 
Served 

 
 

 -11.7%  0.000 0.884 -0.124 
  
0.0330 

% Latino  -13.2%  0.043 0.868 -0.141  0.0698 
% NL-Black  -13.2%  0.020 0.868 -0.142  0.0608 

% BA-Plus  47.4%  0.008 1.474 0.388  0.1448 
Latino GWR-Coefficient  2.6%  0.543 1.026 0.026  0.0422 

NL-Black GWR-Coefficient  21.5%  0.005 1.215 0.195  0.0690 
BA-Plus GWR-Coefficient  -4.1%  0.545 0.959 -0.042  0.0696 

  
      

High School Plus 
 

 -62.3%  0.000 0.377 -0.976 
  
0.0244 

% Latino  35.8%  0.000 1.358 0.306  0.0402 
% NL-Black  -5.4%  0.153 0.946 -0.055  0.0385 

% BA-Plus  -34.4%  0.001 0.656 -0.422  0.1170 
Latino GWR-Coefficient  4.5%  0.167 1.045 0.044  0.0315 

NL-Black GWR-Coefficient  -4.2%  0.383 0.958 -0.043  0.0487 
BA-Plus GWR-Coefficient  32.1%  0.000 1.321 0.279  0.0491 

 

 

their non-minority counterparts.  This finding validates the widely held belief that even 

after controlling for a series of factors, Latinos are more at risk of being in poverty than 

their majority group-member counterparts.  

Our results from the hybrid-model also support H1.  Our  is significant at 

0.02 and shows, as predicted by Blalock, that as the percent of Latinos/as in the area of 

residence increases, the odds of being in poverty increase for Latinas/os—even after 

controlling for various level-1, level-2, and GWR-level-2 spatial nonstationarity factors.   
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This holds true with the %-NL-Black CLI ( , p-value 0.000), where the “Latino 

disadvantage” increases as the percent of black increases.  Blalock’s group threat theory 

is validated by both the pre- and post-GWR hierarchical models. 

 

Summary 

The first hypothesis under investigation (H1) is confirmed.  Using Blalock’s 

group threat theory, I had hypothesized that as the percent of Latinos/as in the area of 

residence increased, the odds of being in poverty will increase for Latinas/os.  The pre-

GWR model supports H1.  The HLM model accounting for spatial nonstationarity also 

supports H1.  

The second hypothesis (exploratory in nature), H2, is confirmed.  In the first part of H2, I 

had hypothesized that the statistical association between percent Latina/o and percent 

poverty would be spatially non-stationary.  Our GWR findings support the first part of 

H2.  On the second part of H2, I hypothesized that association between the percent in-

poverty and percent-Latino would be positively correlated in areas where Latinos have 

been historically concentrated and negatively associated in new Latino-destinations. The 

GWR results also support this second part of H2.   
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CHAPTER V 

CONCLUSION  

 

“The potential exists, of course, for substantively meaningful      
spatial effects in many of the phenomena studied by social scientists...       

such models can make important contributions to our understanding 
of how events in one area can transcend geographic boundaries          

to influence outcomes in other areas”  
Tolnay, Deane, and Beck 1996:812 

 

 

In concluding the dissertation, I first summarize the theory used in framing the 

analysis. After making it clear that both hypotheses under investigation are unfalsifiable, 

important implications are outlined.  Subsequently a discussion of Blalock’s ideas on 

minority-group threat theory is given before concluding with some suggestions for future 

research.  

 

Summary of Findings 

The project began by arguing and providing evidence for how social 

disequilibrium asymmetrically affects people and places.  Chapter I outlined the growing 

gap between the wealthy and poor.  From the time I began writing this dissertation until 

now, a report by the Pew Research Center noted that the “median wealth of white 

households is 20 times that of black households and 18 times that of Hispanic 

households” (Kochhar, Fry, and Taylor 2011:1).  The report highlights how the gaps 
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“are the largest since the government began publishing such data a quarter century ago” 

(Kochhar, Fry, and Taylor 2011:1).   

The fundamental argument underlying this investigation is that social suffering 

occurs on an unequal basis.  In citing Rogelio Saenz’s (1997) research on the Chicano 

population, I found justification for focusing on on how Latinos/as are affected by 

wealth distributing mechanisms.  In reviewing the literature in Chapter II, I use 

Blalock’s race-relations writings as the cornerstone of my investigation and expanded 

the foundation of the theories by utilizing Gerhard E. Lenski’s (1984) theory of power.  I 

summarized that the unjust and systematic uneven distribution of resources is based on 

human’s three primary dispositions that result in making Homo sapiens self-seeking, 

social-units, with an insatiable appetite for finite resources.  

After concluding a review of existing ideas and investigations, a formal 

hypothesis was anchored on Hubert M. Blalock’s (1970) seminal minority-group threat 

theory.  Douglas S. Massey’s (2007) modern take then helped frame how our species’ 

basic constitution exacerbates social inequality by systematically altering how resources 

are distributed along different categories.  The Blalock theoretical grounding was thus 

centered with the help of Saenz’s, Lenski’s, and Massey’s valuable academic work. 

The primary goal of this project has been to explore how hierarchical and 

sociogeographical factors influence a Latino’s likelihood of being in poverty.  The 

presence of poverty is interpreted as being partially the product of racial-ethnic 

discrimination by those controlling resources (i.e., majority-group whites).  Moving 

beyond how individual level characteristics predict likelihood of poverty, the dissertation 
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answers how the percent of Latinos/as in the area of residence has an influence on 

Latino’s poverty over and above the influence on poverty of the person characteristics.  I 

have clearly shown in Chapter IV that accounting for racial-ethnic context matters and 

that Blalock’s predictions are accurate: the increase of the Latino (i.e., oppressed group) 

population increases the odds of being in poverty for Latinos. 

As explained in Chapter III, in combination with the multilevel hypothesis, I 

explored how spatial non-stationarity plays a role in predicting context-level poverty 

rates.  After offering an extensive argument for why spatial nonstationarity should be 

accounted for, I hypothesized that the statistical association between percent Latina/o 

and percent poverty would be spatially non-stationary. Of particular interest to this work 

was how the Latino GWR-coefficient would be associated with the poverty percent 

GWR-dependent variable.  In the latter case, I predicted positive GWR statistical 

associations in historically concentrated Latino/a regions and negative betas in new 

destination areas. 

There are several significant statistical findings.  Foremost, the null hierarchical 

model in Chapter III indicates there are significant differences among individual’s 

average log-odds of being in poverty between PUMAs.  In particular, I find that about 

12% of the variance in poverty occurs between PUMAs.  As such, about 12% of the 

variance in poverty can be explained by the PUMA grouping structure in the U.S. 

mainland population.  This finding alone requires that poverty be investigated using 

hierarchical modeling.  
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I would like to mention in passing why hypotheses are being defined in terms of 

their falsifiability. I concur with Clegg’s notion that formal hypothesis statements are not 

“timeless truths but are provisional, expressed in a propositional form as hypotheses 

which are always in principle subject to empirical disconfirmation” (Clegg 1989: 45).  

More technically, scientifically testable hypotheses are “conjectures which are 

systematically grounded but which remain open to refutation” where they remain until 

“either the establishment of a counterfactual empirical regularity or the demonstration of 

an irregularity” is given “where one was previously not established which would 

occasion the refutation of a conjecture” (Clegg 1989: 45, also see Popper 1965).  

Nothing can be proven, only refuted or unfalsified.  I use this approach in drawing 

conclusions regarding my hypotheses.     

The variance component remained significant in all models. In Chapter IV, the 

random coefficient model demonstrated that Latinos had greater odds of being in 

poverty when compared with their white counterparts—controlling for several 

individual-level characteristics. This statistically significant association remained even 

after introducing PUMA-level controls in the intercepts-and-slopes-as-outcomes 

hierarchical model; Latinos have a greater likelihood of being in poverty than their white 

counterparts.  This last model tested H1 and found no evidence to reject it because the 

PUMA’s increase in Latino population increases a Latino’s odds of being in poverty.  

The same was true with the increase in the black population.  Blalock’s minority threat 

theory could not be falsified.  As minority concentration increases, minorities’ odds of 

experiencing disadvantage increases.  This pattern supports Blalock’s idea that his is the 
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result of oppressed groups becoming a threat to the existing power structure as their 

numbers grow. 

 In exploring sociospatial inequality, as measured by the existence of economic 

poverty, I theorized that racial-ethnic discriminatory micro-level processes eventually 

aggregate to create and sustain macro-level structures that lead to the preservation of 

inequality.  In framing this view, I explained that social phenomena have material 

consequences that alter both societies and their physical environments.  In other words, 

social power navigates the abstract world through a series of micro-level interactions 

that eventually have macro-level consequences that in the end serve towards the 

solidification of inequality-creating social and physical structures.  

  The GWR model tested for H2 and found no evidence to reject it. The GWR 

model indicated the statistically significant presence of spatial nonstationarity.  Spatial 

modeling outputs indicate that the increased presence of Latinos does not always equal 

an increase in the percent of local poverty.  Using GWR created PUMA coefficients as 

data in a final hybrid hierarchical model, I found no evidence to reject H1 since Latinos 

retained their greater odds of poverty when compared to whites and the rising presence 

of Latinos (and blacks) increased their odds of being in poverty.  Thus, even after 

accounting for spatial nonstationarity, Blalock’s predictions prove useful.  The quantity 

of minorities in an area has an effect on their life chances.  

General theories were particularized to be used with Blalock’s minority group 

threat hypothesis.  This dissertation is unable to falsify Blalock’s minority group threat 

propositions.  The findings support the idea that both socioeconomic inequality and 
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percent of minorities in a community rise and fall congruently—because there are social 

structures that bind their movements.  Using Blalock’s logic, I find support for the 

theory that the primary element perpetuating this positive relationship has to do with 

systematic discriminatory practices rooted in human nature and structuralized by biased 

informal interactions and formal organizations.  

In summary, H1 cannot be falsified.  I find that as the percent of Latinos/as in the 

area of residence increases, the odds of being in poverty increase for Latinas/os, even 

after controlling for various level-1, level-2, and GWR-level-2 factors.  My multilevel 

and spatial modeling investigation was unable to falsify Blalock’s minority group threat 

theory.  Hierarchical models indicate that as the percent of Latino/a increases, the 

likelihood of being in poverty for Latinas/os increases.  This statically significant 

relationship holds constant even after spatial nonstationarity level-2 control factors are 

introduced.  I interpreted this cross-level-interaction as being the product of ethno-racial 

discrimination: Latinas/os are more at risk of poverty as their numbers increase because 

their population growth increases local discriminatory practices against them.      

Finally, H2 could not be falsified. I find that the statistical association between 

percent Latina/o and percent poverty is spatially non-stationary.  Geary’s and Moran’s 

mid-1950s ideas on spatial autocorrelation, later made testable by Cliff and Ord in the 

1960s find support in the geographically weighted regression advanced by Charlton, 

Fotheringham, and Brunsdon.  In general, the geographically weighted statistical 

association between the percent of householder in poverty and the percentage of the 
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population in the area that is Latino are positively correlated in historically concentrated 

Latino/a areas and negatively associated in new Latino-destination PUMAs.       

 

Discussion 

Writing about inequality is difficult.  Seeking its cause is primarily driven by the 

desire to blame somebody.  A general belief is that if the source of a problem is found, 

then a solution is possible.  For those who still belief a solution is achievable, finding the 

source of inequality is the first step towards developing a response.   

Even within the ranks of the optimist, solving structural injustices is 

overwhelming. Which is why some argued that instead of “focusing exclusively on how 

individuals and families manage the adversity associated with poverty” it is more 

important to “alleviate the stress and resulting crisis in the first place” (Seccombe 2002: 

391).  They explain that research endeavors should instead “be attuned to what causes 

poverty and how structural conditions and economic policies (or their absence) affect the 

objective and subjective experience of impoverishment” (Seccombe 2002: 391).  In 

other words, understand how the problem is created and then alter that process so as to 

negate its initial formation.  If we are proactive and stop the problem from ever 

developing, then we need not solve it at a later, in a potentially more complicated and 

expensive point in time.  

Micro-level behavioral patterns do influence financial outcomes.  As explained in 

Chapter II, individual-level factors are founded on biological materialism and arise from 

both internal life experiences and external influences. It is the latter that this dissertation 
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has focused on.  I have delineated how structural patterns, fueled by racism among those 

controlling resources, negatively influence Latino’s life chances.  In wrestling with the 

structure/agency debate, I have concluded that structure matters most and that 

individuals in poverty exhibit the same basic economic behaviors as other most fortunate 

people, “except that in poverty, with its narrow margins for error, the same behaviors 

often manifest themselves in more pronounced ways and can lead to worse outcomes” 

(Bertrand, Mullainathan, and Shafir 2004:419), because when people are at the edge of a 

precipice, even the smallest of wind gust matter.  

As with all academic investigations, there are some limitations with the present 

study.  I will only focus on two of them.  The first concerns the measure of poverty and 

how it relates to discriminatory practices.  This topic was discussed at length during the 

literature review in Chapter II.  I only want to bring attention to the assumed connection 

between an individual’s current income and his/her communities’ level of 

discrimination.  

The non-longitudinal data being used in this project does not allow me to 

investigate how the various factors associated with financial outcomes have varied over 

time.  For example, assume José is in poverty.  My variables only tell me José’s other 

current demographic characteristics and context-level attributes.  I will know how much 

education he currently has, if he is currently married, if he considers himself a Latino or 

not, how many Latinos resided in his PUMA during the survey period, and so forth.  I 

will not be able to understand the factors that played a role in the past to determine 

José’s current level of education or marital status.   
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The data only allows me a one-time slice of information on José.  This static and 

limited image of José means that several assumptions are being made on how his 

demographic and contextual characteristics are interrelated. The main point is that I am 

assuming that racial-ethnic discriminatory practices are partially responsible for José’s 

current poverty status.  My theoretical framework assumes that micro-level prejudices 

coalesce to influence the formation of unjust and systematic discriminatory systems.  

From these views, José is most influence by the structure he is randomly born into.  I am 

privileging the idea that structure is the most powerful force shaping José’s ultimate life 

chances. Existing variables within my cross-sectional data do not allow me explore such 

longitudinal events.  

Existing research does verify that minority concentration has effects on majority-

group members. For example, researchers investigating community trust found that the 

increase in percent Hispanic was associated with reducing interracial trust among whites 

(Rudolph and Popp 2010: 83).  Others have found that as the size of a minority group 

increases, majority-group members are more likely to feel their social, economic, and 

political privileges are at risk (Oliver and Wong 2003).  The term “minority groups” has 

its own problems and could more correctly be interchanged for “oppressed” groups 

(Meyers 1984). 

Similar studies have discovered that white people “are influenced by the 

percentage white in a community (net of the community's social class characteristics) 

and very unlikely to consider [residing in] communities where they are anything but the 

strong majority” (Krysan and Bader 2007:699).  In general, findings indicate that caution 
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toward minority-group members is a function of minority-group size (Harpham 

2008:53).  In my dissertation, Blalock’s minority group threat hypothesis creates the 

expectation that inter-racial/ethnic discrimination will increase as a function of 

racial/ethnic heterogeneity.  Previous and current evidence make it clear that my 

assumptions are not borne out of pure speculation.  They are very probable and I thus 

conclude their inclusion in the theory is reasonable and beneficial. 

The second major limitation highlighted here concerns the non-theoretically 

driven boundaries of PUMA polygons.  PUMA polygons rarely (if ever) represent a 

community. It is worth noting that the term “community” is highly elusive and possesses 

many interpretations (Bell and Newby 1974; Bernard 1973; McLain and Jones 1997).  

Attempts to define community have been in existence within sociology for more than a 

century (e.g., Tonnies 1905).   

Even though there is a lack of consensus, some agree that there are three basic 

elements that can help define a community: shared geography, common ties, and social 

interaction (Bernard 1973).  Common locality (i.e., residing in geographic proximity) is 

necessary but not sufficient (Selznick 1996).  Participating in a local economic hub is the 

second central component of classifying a community because it captures how 

individuals share in the conflict over access to and control of resources.  Lastly, 

demarcating a community requires accounting for shared history, knowledge, beliefs, 

ethics, customs, etc. (Bernard 1973).  Although somewhat ambiguous, the porous and 

continually morphing geographical boundaries of communities could be said to be 

established as a function of physical proximity, economics, and shared culture.  
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 Defining the geographical boundaries of communities is difficult—and may 

even be impossible.  Previous research has shown that social relations transcend most 

spatial boundaries (Leach et al 1997).  Others have offered more complete reviews on 

the challenges of defining community (e.g., Kepe 1999).  Community is the ideal areal 

unit for most “sociospatiological” investigations. It has yet to be systematically defined.  

We are still working on simpler topics like: what is a nation?  Defining political 

boundaries should be easier than deciphering the informal demarcations of communities. 

This is not so.   

For example, the U.S. recognizes the Sovereign Military order of Malta—whose 

territory only includes two buildings in Rome—as a sovereign government and sanctions 

the 0.44 km2 that is Vatican City as a nation.  If this seems extreme, consider the fact that 

the U.S. government distinguishes Bouvet Islands as a political entity—even though the 

recognized Norway-dependent island is only an uninhabitable Antarctic volcanic knoll 

in the South Atlantic. Ironically, the penguins in Bouvet Island have their own zip code 

(Anonymous 2010) while South Ossetia, with its 3,900 km2 area and about 70,000 

people is not consider a sovereign entity by the U.S.  There is no global consensus on 

what constitutes a nation. How far off are we from being able to boundarize 

communities?   

After extensive contemplation, I consider the non-theoretically driven boundaries 

of PUMA polygons acceptable.  Then truth is that when researchers investigate spatial 

communities, “the main decision is whether to use an officially recognized area, such as 

an electoral ward or postcode area, or to qualitatively explore respondents’ constructions 
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of community and then to use the most meaningful definition in the quantitative survey” 

(Harpham 2008:53).  Either way, the final decision of what constitutes a community will 

remain arbitrary until the matter is more systematically and scientifically established. In 

my case, I abstained from calling PUMA areas communities.  PUMAs in deeply 

populated areas may be more likely to capture what could be understood as a 

community.  I leave it to the reader to determine how PUMA’s relate to their own idea 

of a community.    

The main point in this discussion is that the drawing of political boundaries like 

nations, states, counties, cities, and school and voting districts are themselves potent 

political acts (see Newton 1975:18) with all sorts of implications for all community 

members. Blalock wrote that “power is a multiplicative function of two very general 

types of variables, total resources and the degree to which these resources are mobilized 

in the services of those persons or groups exercising the power” (1960:53).  He extended 

his logic and explains that “if [non-Latino] whites are to maintain a constant power 

advantage over [minorities] their degree of mobilization relative to that of [minorities]  

must not only increase with percentage [minorities], but it must rise at an increasing 

rate” (Blalock 1956:56).  Embedded in his argument is the idea that all these processes 

must occur in self-containing areas (i.e., communities).   

Power can only be maintained through these mechanics if control over resources 

is localized.  In the post civil rights U.S., dominant-group discrimination against 

Latinas/os is primarily “maintained by a series of uncoordinated though similar 

individual acts” (Blalock 1956:58).  Institutionalized racial-ethnic discrimination has 
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conceptual and practical limitations.  Alternative multilevel frameworks like the one 

employed in this research are most helpful because they “takes us beyond an approach 

which privileges institutional factors and instead recognize the significance of micro-

racialisation expressed at the individual level and the macro-racialising tendencies of late 

modernity” (Philips 2010:187).  

There are elaborate ideological systems justifying racist behavior.  The main 

point is that when the power threat increases, dominant-group members will mobilize 

their “resources through organizational and ideological techniques” to the point that 

“power relationships are likely to take on more and more the form of a conscious 

struggle between groups” (Blalock 1956:58).  All these events happen in communities.  

The problem is that Blalock (1956) never defined what a community is—and 

consequently “where” dominant-group members increase their degree of resource 

mobilization.  Blalock’s power threat hypothesis offers no tools for operationalizing the 

geographical boundaries of communities (i.e., locus and boundaries of resource control). 

When it comes to sociospatial inequality, PUMA’s geographical boundaries 

mandate that social theory adapt itself to suit their sample-driven construction.  In order 

to account for the limitations and existing theories I now summarize my theoretical 

propositions.  Following Blalock’s approach (1970:191), I too will explain the inequality 

borne out of racial-ethnic discrimination by deriving at a lower- and sociospatial-order 

proposition from a combination of general propositions: 

Universal Proposition: Homo sapiens are social, self-seeking units whose 
appetite for finite resources is insatiable. 
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General Proposition: Because of their universal disposition, humans in 
superordinate positions will act in most cases in such a 
manner as to preserve their privileged status. 

 
 
Specified Condition: In the U.S., non-Latino-whites have historically been in 

superordinate positions vis-à-vis Latinas/os (and all other 
oppressed groups). 

 
 
Lower-Order Proposition: In the U.S., non-Latino-whites act toward Latinos/as 

in such a manner (i.e., discriminatingly) as to 
preserve their privileged position. 

 
 
Sociospatial-Order Proposition: U.S. non-Latino-whites will seek to exercise 

their power over those most geographically 
proximate to them so as to maximize their 
level of influence.  

 

Future Research  

The primary concern of this sociospatial inequality research has been to study 

“who gets what and why” and to “acknowledge that where is also a fundamental 

component of resource distribution” (Lobao, Hooks, and Tickamyer 2007:1).  Working 

from the idea that social relations are frequently and inevitably “correlated with spatial 

relations” (Park 1926:18) I have conducted multilevel and spatial analysis.   

Although challenging, it is easier to investigate how individuals behave 

differently under changing social environments than to detect how communities are 

affected by social structures and by the interactions among ecosystem residents.  The 

investigation ends with many potential future research questions and suggestions.  The 

following discussion only focuses on how community geographical boundaries are 

perceived and how macro-level attributes are estimated by individuals.    
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Of primary interest would be to conduct studies on how individuals construct 

their community geographical boundaries.  Such investigation could use surveys and 

open-ended questions to explore the many factors and psychological mechanics involved 

in determining how individuals perceive their community.  The main question would be 

if there are generalizeable patterns that determine how most people define a community.  

The second question would focus on determining if it is possible to determine the 

geographical boundaries of communities.  I suspect little generalization from 

individual’s responses would be available to inform existing multilevel theories.   

Another important investigation could explore how people develop their 

perceptions of local macro-level demographic factors. Future studies could focus on 

investigating the reliability and process through which people develop their macro-level 

perceptions.  For example: are most individuals able to correctly ascertain the local 

minority concentration?  Even if their estimate of local minorities is wrong, how do they 

arrive at such estimates?  What factors (e.g., family, media, etc.) do they use to 

determine the various macro-level attributes of what they perceive as their community? 

In short, future research should investigate the theoretical essence driving 

hierarchical spatial modeling: people feel they belong to a community, they know the 

geographical boundaries of said community and the social characteristics of their 

environment—and behave accordingly.  The first may be easier than the latter two.  I 

suspect standardizing community geographical boundarization will prove nearly 

impossible since people may vary greatly in their perceptions of where the community 
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starts and ends.  The latter element may show some credence for the belief that 

individuals are able to detect the composition of their social environments.     

 

Conclusion 

Humans are a keystone species—they have a disproportionate effect on their 

environment relative to their biomass.  Our species affects many taxa by our presence.  

We impact other plant and animal organisms in ways that significantly alter our local 

ecosystem.  Our actions sculpt the physical and social environment we inhabit.  We each 

influence the various aspects that go into the creation of our social environment.  I belief 

humans have the potential for both motivation and intent.  Consequently, I believe 

humans have the ability to predict and change the future.   

Blalock’s prediction using the power threat and minority presence function has 

not been falsified.  If Blalock’s theories are correct and Latino’s proliferation in the U.S. 

continues, then fear, conflict, and discrimination will continue to rise.  Consider that 

“conflict enhances group solidarity, clarifies group boundaries and strengthens the 

individual-group linkage through ego-emotion commitment and overt action” to the 

point that “in-group identity is extended to the larger social system through the extension 

of communication, the enlargement of the network of social interactions and ideological 

evolution to national core values” (Himes 1966:10).  If fear gives rise to conflict and the 

latter to discrimination, then it may be that Latinos will continue to gain group 

solidarity—a solidification that may render their group as a political, social, and 

economic key player in North America. 
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One of the major contributions of this dissertation lies in the hierarchical, spatial, 

and hybrid modeling of minority-group status related variables in the prediction of 

poverty.  I have been unable to falsify my argument that Latinos are at a disadvantage 

when compared to whites.  I argue the difference is the product of discrimination. Many 

years ago, Novak wrote that “when a person thinks, more than one generation’s passions 

and images think in him” (1972:32).  So it is with me—my perceptions and 

interpretations join the collective formation of the plural author describing the process 

by which oppressed groups become the recipients of their disadvantages.  

I began the dissertation by highlighting my previously held naïve belief that if 

people follow all the rules, all their dreams will come true.  My personal disposition has 

framed the project in such a way so as to show that life chances are deeply rooted on 

events beyond our control.  I did not choose to be born a Chicano in deep economic 

poverty.  Many factors existed before I could even began to walk that systematically 

influenced my ability to reach my personal goals.   

We are not born into a level-playing field because some of us have more access 

to resources than others.  By using my sociological imagination, I have argued that 

sociospatial inequality is unjust.  I have given quantitative evidence for the existence of 

Latino victimization.  Latinos are and will continue to be a force in the formation of 

North America.  Even after a labyrinth of intellectual thought, the question remains 

simple: How will the Latino population continue to change the U.S.?  And the argument 

remains equally simple: If Latinos are increasingly alienated, all U.S. residents will 

suffer the consequences.   
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American democracy is founded on the popular sovereignty principal.  The 

philosophical principal argues that the sovereignty of a governing body depends on the 

consent of its people.  Consent can only be given by participation and the latter requires 

the formation of social contracts that in turn create social power.  If fear continues to rise 

and produce discriminatory behaviors that unjustly victimize Latinos, then Latinos may 

eventually learn to abstain from participating in the U.S. democracy experiment.  In the 

end, human’s own selfish driven desires challenge the creation of social harmony.  

Perhaps it’s time we reconsider the treatment of oppressed minorities.   
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