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ABSTRACT 

 

Evaluation of Arginine and Glutamine as Dietary Supplements  

to Enhance Edwardsiella ictaluri Vaccine Effectiveness  

in Channel Catfish.  (December 2011) 

Camilo Pohlenz Castillo, M.V.Z., Instituto Tecnológico de Sonora; M.Sc., Centro de 

Investigaciones Biológicas del Noroeste, S.C 

Co-Chairs of Advisory Committee:  Dr. Delbert M. Gatlin III 
         Dr. Alex Buentello 
 

Rapid expansion of the aquaculture industry in recent decades has resulted in 

infectious diseases emerging as a major constraint to fish production, causing large 

economical losses worldwide.  Therefore, prevention practices are indispensable for 

maintaining the industry’s profitability and sustainability.  Vaccination is a proven 

effective strategy for disease control in aquaculture; however, improvements in vaccine 

efficacy are still needed.  Because amino acid supplementation not only enhances fish 

growth but also immune responses, a series of experiments were conducted to test the 

hypothesis that dietary supplementation of arginine and glutamine, two amino acids with 

immunomodulatory roles, may promote growth and increase the efficacy of vaccination 

against Edwardsiella ictaluri in channel catfish. 

An initial experiment demonstrated that dietary arginine supplementation at 2 

and 4% of diet enhanced growth and feed efficiency of channel catfish.  Dietary arginine 

deficiency diminished plasma levels of arginine, citrulline, ornithine, glutamine and 
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glutamate, and impaired innate performance of macrophages and neutrophils.  In a 

separate experiment, dietary glutamine supplementation failed to enhance growth 

responses; however, supplementation at 2% of diet had strong positive effects on 

intestinal histology and enterocyte migration rate.  In addition, serine, asparagine, 

glycine and threonine were increased in plasma of fish fed the diet with glutamine at 2%.  

A third experiment revealed that activated macrophages utilized large quantities of 

glutamine in media and to a lesser extent arginine. These two amino acids also were the 

most utilized by proliferating lymphocytes.  Supplementing media with these amino 

acids positively modulated phagocytosis and bactericidal capacity of macrophages, as 

well as increased the proliferation rate of lymphocytes.  A final experiment indicated 

that dietary supplementation of arginine (4%) and glutamine (2%) optimized the 

nutritional and immunological status of channel catfish, and enhanced responses to E. 

ictaluri vaccination.  At the same time, this supplementation ameliorated some short-

term adverse effects of vaccination on growth.  Higher specific antibody titers, better 

lymphocyte responsiveness and survival to the bacterium were seen in vaccinated fish 

fed arginine- and glutamine-supplemented diets.  These results support an expanded role 

of dietary arginine and glutamine manipulation as a tool to improve growth and vaccine 

efficacy of channel catfish. 
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CHAPTER I 

INTRODUCTION 

 

1.  Fish nutrition 

Aquaculture has become a major animal production activity worldwide and an 

important source of protein food for human kind, as well as a socioeconomically 

relevant industry.   It continues to grow more rapidly than all other animal agriculture 

sectors.  Freshwater fish culture towers over marine fish production, with an output of 

27.8 million tons in 2006 (FAO, 2009).  Among freshwater species, the channel catfish, 

Ictalurus punctatus, is the most important aquaculture species in the U.S. with 

approximately 150,000 surface acres in production accounting for $410 million in total 

sales for the year 2008 (USDA-NASS, 2009). 

Despite the continuous expansion of aquaculture, there are several constraints 

that currently limit production, with infectious diseases being a major negative factor 

resulting in multimillion dollar loss per year worldwide.  Diseases are natural events in 

all animal groups but these events get magnified by increased population densities, and 

fish are no different in this regard.  Therefore, preventive measures must be taken in 

order to diminish the deleterious effects of diseases in aquaculture (Plumb, 2001; Klesius 

et al., 2004). 

Adequate nutrition is critical to maintain fish’s health and disease resistance 

(Sealey and Gatlin, 2001).  This becomes apparent when nutrient imbalances lead to 

____________ 
This dissertation follows the style of Aquaculture. 



 2

pathological changes (Chan, 2008).  For that reason, fish nutrition focused for many 

years on determining nutrient requirements and preventing nutritional diseases (Tacon, 

1985; NRC, 2011).  Nevertheless the role of fish nutrition in health management, 

through modulation of immune responses and disease resistance, has become a priority 

research topic leading to the development of functional aquafeeds.  These are defined as 

“feeds supplemented with specific ingredient to achieve desirable efficiency of 

metabolic transformation, growth performance, health, and/or compositional traits of 

aquacultured animals at various developmental stages” (Li et al., 2009). 

 

2.  Nutrition and immunology 

Immunonutrition may be defined as the positive effect of providing specific 

nutrients, at levels above those required for normal growth, to improve immune function.  

This concept implies that besides having a direct effect on the defense system a 

particular dietary ingredient also may have a positive effect on other physiological 

processes that combine for an overall positive outcome on health and growth.  

Glutamine (GLN) and arginine (ARG) are two amino acids of enormous importance in 

this regard as they have been demonstrated to have an array of desirable biological 

properties. 

 

2.1.  Arginine supplementation 

Arginine is an essential amino acid for maximal growth of young animals.  It is 

the most abundant nitrogen carrier in tissue proteins and is used in multiple synthetic 
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pathways, involving enzymes such as arginase, nitric oxide synthase, arginine:glycine 

amidinotransferase, and arginyl-tRNA synthetase.  As such, ARG serves as a precursor 

for the synthesis of creatine, ornithine, proline, glutamate, polyamines, and nitric oxide 

(NO) and thus displays remarkable metabolic and regulatory versatility in cells (Wu et 

al., 2004; Morris, 2006; Yao et al., 2008).  Polyamines such as putrescine, spermine and 

spermidine are involved in cell growth and proliferation by stimulating DNA and protein 

synthesis.  Polyamines are not only beneficial for growth but they also have wider 

effects such as affecting signal transduction pathways and modulating immune 

functions.  For example, spermine and spermidine have been shown to inhibit the 

secretion of pro-inflammatory cytokines (Wu et al., 2005a; Morris, 2006). 

Arginine deficiency is a major factor limiting maximal growth of young animals 

causing growth retardation, intestinal and reproductive dysfunction, impaired immune 

and neurological development, cardiovascular and pulmonary abnormalities, impaired 

wound healing, hyperammonemia, and even death(Wu et al., 2004).  Dietary ARG 

supplementation markedly enhances protein accretion and the efficiency of nutrient 

utilization in milk-fed piglets.  Additionally, an increase in circulating ARG through 

dietary supplementation or enhancing endogenous ARG synthesis was associated with 

enhanced protein synthesis in skeletal muscle of neonatal pigs (Yao et al., 2008). 

Dietary supplementation with 0.4% ARG increased plasma concentrations of 

insulin and growth hormone by 24–27% in piglets, compared with controls.  Between 7 

and 21 days of age, the supplementation of 0.2 and 0.4% ARG to piglets enhanced 

average daily weight gain by 28 and 66%, and body weight by 15 and 32%, respectively, 
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compared with control piglets (Kim et al., 2004).  Likewise, dietary ARG 

supplementation increased daily gain, plasma insulin concentration, and protein 

synthesis in skeletal muscle of piglets through the mTOR signaling activity (Yao et al., 

2008). 

As in mammals, ARG is an indispensable amino acid necessary for optimal 

growth of young fish including channel catfish (Robinson et al., 1981; NRC, 2011).  It is 

noteworthy that the ARG requirement of channel catfish is one of the lowest when 

compared to other freshwater and saltwater fish species (Table 1.1).  This amino acid 

also is a potent taste stimulant for channel catfish (Grosvenor et al., 2004).  Arginine 

also has a role as a secretagogue, affecting pancreatic hormones plasma levels in 

rainbow trout, Ochorynchus mikiss (Mommsen et al., 2001) and barfin flounder, 

Verasper moseri (Andoh, 2007).  However, no information on this respect is available 

for channel catfish to date.  Supplementation of dietary ARG (4%) to channel catfish 

resulted in significantly higher growth, and hemoglobin and hematocrit levels (Buentello 

et al., 2007), but not in higher numbers of circulating leukocytes.  Additionally, ARG is 

a unique source of nitric oxide, having an important role in the innate immune response 

of this species (Buentello and Gatlin, 1999).  There is strong evidence for an ARG-

sparing effect of dietary glutamate in channel catfish (Buentello and Gatlin, 2000, 

2001a), but to date, this de novo pathway for endogenous synthesis of ARG from other 

amino acids (or vice versa) has not been fully elucidated.   
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Table 1.1 
 Interspecies ARG requirement for ammonotelic, uricotelic and ureotelic animals 

Species % of dry diet % of crude 
protein 

Physiological 
Status 

Ammonotelic    

Channel catfish, 1 

Ictalurus punctatus 1.0 4.3 Juvenile - growing 

Rainbow trout, 1 

Oncorhynchus mykiss 1.2 3.3 Juvenile - growing 

Red drum, 2 

Sciaenops ocellatus 1.4 4.2 Juvenile - growing 

Yellow perch,3 
Perca flavescens 1.4 4.2 Juvenile - growing 

Hybrid striped bass, 4 

Morone chrysops x M. saxatilis 1.6 4.6 Juvenile - growing 

Common carp, 1 

Cyprinus carpio 1.6 4.3 Juvenile - growing 

Tilapia, 1 

Oreochromis sp. 1.6 4.0 Juvenile - growing 

Gilthead sea bream, 1 

Sparus aurata 1.7 5.0 Juvenile - growing 

Japanese eel, 1 

Anguilla japonica 1.7 4.5 Juvenile - growing 

European seabass, 5 

Dicentrarchus labrax 1.8 3.9 Juvenile - growing 

Indian major carp, 6 
Cirrhinus mrigala 1.8 4.6 Juvenile - growing 

African catfish, 7 

Clarias gariepinus 1.8 4.5 Juvenile - growing 

Hybrid Clarias,8 
C. gariepinus x C. macrocephalus 2.0 5.0 Juvenile - growing 

Japanese flounder, 9 
Paralichthys olivaceus 2.1 4.1 Juvenile - growing 

Atlantic salmon, 10 

Salmo salar 2.2 5.1 Juvenile - growing 

Coho salmon, 1 

Oncorhynchus kisutch 2.3 5.8 Juvenile - growing 

Chinook salmon, 1 

Oncorhynchus tshawytscha 2.4 6.0 Juvenile - growing 
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Table 1.1 continued 

Species % of dry diet % of crude 
protein 

Physiological 
Status 

Chum salmon, 1 

Oncorhynchus keta 2.6 6.0 Juvenile - growing 

Grouper, 11 
Epinephelus coioides 2.7 5.5 Juvenile - growing 

Silver perch, 12 
Bidyanus bidyanus 2.7 6.8 Juvenile - growing 

Black sea bream, 13 
Sparus macrocephalus 2.8 7.3 Juvenile - growing 

    
Uricotelic    

Chicken,14 Gallus domesticus 
- Replacement pullets 
- Laying hens 
- Broilers 

 
 

0.7 - 1.0 
0.6 - 0.9 
1.0 - 1.3 

 
 

4.5 - 5.5 
4.6 - 4.7 
5.4 - 5.5  

 
 

Growing 
Producing 
Growing 

Turkey,14 Meleagris sp. 
- Meat producing 
- Breeders 

 
0.6 - 1.6 
0.5 - 0.6 

 
4.3 - 5.7 
4.2 - 4.3 

 
Growing 

Producing 

Duck,14  
Anas platyrhynchos domestica 1.0 - 1.1 5.0 - 6.3 Growing 

    
Ureotelic    

Swine,15 Sus scrofa 
- Sows 
 
- Weanling pigs 
- Finishing pigs 

 
0.0 - 0.04 
0.4 - 0.5 
0.4 - 0.5 
0.2 - 0.3  

 
0.0 - 0.3 
2.0 - 2.6 

2.1 
1.2 - 1.8 

 
Gestating 
Lactating 
Growing 
Growing 

Rat,16 Rattus norvegicus 0.4 2.9 Growing and 
Reproduction 

Mouse,16 Mus musculus 0.3 1.7 Maintenance 

Guinea pig, 16 Cavia porcellus 1.2 6.7 Growing 

Primates N.D. N.D.  
1 NRC (2011); 2 Barziza et al. (2000); 3 Twibell & Brown (1997); 4 Griffin et al. (1994); 5 Tibaldi et al. (1994); 6 

Ahmed and Khan (2004); 7 Fagbenro et al (1999); 8 Singh and Khan (2007); 9 Alam et al. (2002); 10 Berge et al.(1997); 
11 Luo et al. (2007) (2007); 12 Ngamsnae et al. (1999); 13 Zhou et al. (2010); 14 NRC (1994); 15 NRC (1998); 16 NRC 

(1995) 
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2.2.  Glutamine supplementation 

Glutamine acts as an energy source for proliferating cells, and is essential for the 

synthesis of nucleic acids, pyrimidine and purine nucleotides, providing also the nitrogen 

necessary for the formation of glycosamines and other important cellular intermediates 

like NAD+ (Wu et al., 1996; Watford, 1999; Wilmore and Shabert, 1999).  For humans, 

rats and pigs, GLN is the principal metabolic fuel for enterocytes, lymphocytes, 

macrophages (MØ), and fibroblasts (Wu and Flynn, 1995; Bartell and Batal, 2007).  

Furthermore, it has been shown that GLN improves whole-body protein synthesis.  In 

addition, an enhanced hepatic uptake of GLN increases the synthesis of glucose, 

glutathione and acute phase proteins; improving also energy metabolism, supporting 

tissue growth, and assisting also in the maintenance of the gastrointestinal mucosa 

(Wilmore and Shabert, 1999). 

Glutamine plays an important role as a regulator of cellular metabolism.  It has 

been shown to induce protein synthesis and to inhibit intracellular protein degradation 

(Wu and Thompson, 1990; Mok et al., 2006).  As mentioned above, GLN is a major fuel 

source for proliferating cells, so there are specific circumstances in which GLN 

supplementation aids cell function and metabolism, particularly during pathological or 

physiological challenges.  Juvenile animals are not in a steady state regarding protein 

turnover, but in fact protein synthesis is greater than protein degradation.  Thus, at this 

stage of development, GLN could be classified as a semi-essential or conditionally 

essential amino acid for rapidly growing animals (Lobley et al., 2001; Zou et al., 2006).  
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The small intestine is a major organ of GLN utilization in mammals in the post-

absorptive state (Wu et al., 1995; Wu et al., 1996).  Mucosal cells of the digestive tract 

have, along with other rapidly proliferating cells, an obligate requirement for GLN.  The 

major challenges to the digestive tract, and its demands for GLN, arise during the early 

suckling period, the transition to weaning and in response to intestinal injury (Lobley et 

al., 2001).  For example, the addition of GLN at 1% of diet improved the feed efficiency 

of weanling pigs (Kitt et al., 2002).  Villi length in the duodenum and jejunum were 

significantly longer in birds and pigs fed diets supplemented with GLN (Yi et al., 2001; 

Kitt et al., 2002; Zou et al., 2006; Bartell and Batal, 2007) 

Supplementation of GLN at 1% of diet also improved weight gain and feed 

efficiency of turkey poults (Yi et al., 2001) and chicks (Bartell and Batal, 2007).  

Moreover, at 1.2-2% of diet improved weight gain, feed efficiency, intestinal weight, 

fold height and digestive enzyme activities in juvenile jian carp, Cyprinus carpio var. 

Jian (Yan and Qiu-Zhou, 2006).   

If the intestinal villi height can be increased early in the animal’s life, then it may 

be able to utilize nutrients more efficiently due to increased surface area and thus have 

improved growth performance.  Such response was reported by Wu et al. (1996) where 

dietary GLN supplementation (1.0%) prevented jejunal atrophy in weaned pigs during 

the first week post-weaning and improved pig's growth performance during the second 

week post-weaning.  

Glutamine in total parenteral nutrition maintains gut integrity which is important 

in preventing bacterial infections (Karinch et al., 2001; Kessel et al., 2008), and also 
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enhances bowel mucosal proliferation, thereby repairing intestinal mucosal defects and 

maintaining the bowel barrier function (Wilmore and Shabert, 1999; Kessel et al., 2008).  

Challenges associated with diarrhea also are mitigated by GLN and the deleterious 

changes in digestive tract permeability associated with endotoxins also can be decreased 

(Lobley et al., 2001; Zou et al., 2006; Kessel et al., 2008). 

Enterocytes from the new-born piglet can synthesize ARG from GLN and this 

may play an important early anabolic role.  Later in development, GLN is a precursor for 

both ARG and proline synthesis within the digestive tract (Wu et al., 1994), and these 

synthetic processes may supplement dietary supplies of these amino acids and help 

prevent growth limitations (Lobley et al., 2001). 

 

2.3.  Role of GLN and ARG in immune system function 

The amino acid GLN is usually included in the list of ‘‘immunonutrients’’ that 

possess various biological effects (Wilmore and Shabert, 1999).  The rate of 

proliferation of lymphocytes in culture increases with external GLN concentration, as it 

is utilized at a high rate by cells of the immune system and is required to support optimal 

lymphocyte proliferation and cytokine production by lymphocytes and MØ (Calder and 

Yaqoob, 1999; Wilmore and Shabert, 1999; Zaloga and Siddiqui, 2004).  Glutamine 

supports the potential for cytotoxic T cells to lyse target cells (Spittler et al., 1995).  It is 

also important for the synthesis of Immunoglobulin (Ig) G antibodies and perhaps 

required for thymus derived T-cell helper function and response (Kew et al., 1999; 

Newsholme, 2001).  For example, broiler chickens fed diets supplemented with 1% GLN 
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had significantly higher IgA and IgG concentrations in the serum, intestine and bile, as 

well as better gut barrier function due to higher IgA concentrations in the intestine thus, 

resulting in more resistance to infection (Bartell and Batal, 2007).  In many cases, 

dietary GLN addition resulted in restoration of injured cell function to normal or 

supranormal levels (Wu et al., 1996; Karinch et al., 2001; Zaloga and Siddiqui, 2004; 

Kessel et al., 2008).   

In regards to indirect actions, GLN stimulates growth hormone synthesis and this 

hormone can effectively up-regulate the immune system, through direct and indirect 

effects, with the latter occurring because of receptor homologies with interleukin-2 

(Wilmore and Shabert, 1999).  As a major source of glutamate, GLN regulates the 

synthesis of glutathione, a tripeptide crucial for defending cells from oxidative stress (Li 

et al., 2007).  Glutamine supplementation has only been reported as an 

immunomodulatory strategy for hybrid sturgeon Acipenser schrenckii × Huso dauricus, 

where it increased the plasma levels of complement proteins C3 and C4 (Zhu et al., 

2011).  Finally, Glutamine is a precursor for the net synthesis of ARG, whose effects on 

the immune system will be mentioned next. 

Similarly, ARG has been shown to exert a variety of roles on the animal’s 

immune function (Efron and Barbul, 2000) including fish (Buentello and Gatlin, 1999, 

2001b; Buentello et al., 2007).  Arginine serves as the sole substrate for production of 

NO, which modulates expression of adhesion molecules, tissue factors, and cytokines 

(Zaloga and Siddiqui, 2004).  Additionally, in MØ and neutrophils, NO is an essential 

defense mechanism against viruses, bacteria, fungi, malignant cells, intracellular 
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protozoa, and parasites in mammals, birds, terrestrial animals, lower vertebrates and 

invertebrates (Li et al., 2007).  Arginine has been shown to increase thymus and spleen 

size in mice, increase cytokine production, and enhance lymphocyte proliferation 

(Bartell and Batal, 2007).  It enhances T-lymphocyte mediated functions, stimulates 

replication of thymic lymphocytes, increases release of interleukin-2 from stimulated T-

lymphocytes, and increases lymphocyte responses to mitogens.  Arginine also improves 

nitrogen retention and enhances wound healing (Evoy et al., 1998; Zaloga and Siddiqui, 

2004).  Moreover, ARG supplementation before and during vaccination increased 

antibody titers in chicks vaccinated against infectious bursal disease virus, and 

diminished the adverse effects of the virus on immune cells (Tayade et al., 2006a; 

2006b). 

 

3.  Enteric septicemia of catfish 

Edwardsiella ictaluri is the causative agent of Enteric Septicemia of Catfish 

(ESC), the most prevalent and economically important disease in farmed-raised channel 

catfish (OIE, 2006).  This disease accounts for about 30% of all disease-related losses in 

U.S.  catfish aquaculture, with an annual economic impact of about $19 million related 

to both mortality losses and treatment costs.   

This pathogen is a gram negative, rod-shaped, motile bacterium of the family 

Enterobacteriacae, which is capable of intra- and extra-cellular replication.  It is β-

hemolytic, positive for hemolysin activity, conferring it a high virulence (Williams and 

Lawrence, 2005; Booth et al., 2006).  The channel catfish is the most susceptible 
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ictalurid species to ESC infection, while white, brown bullhead, and walking catfishes 

are rarely affected.  In addition, blue catfish may be somewhat resistant to ESC infection 

(USDA-APHIS, 2003).    

Enteric septicemia of catfish occurs in acute and chronic forms.  The acute form 

is a bacterial septicemia characterized by multisystemic necrosis and hemorrhages that 

can rapidly progress in apparently healthy, fast-growing fish and can result in extensive 

mortality (Lobb et al., 1993; OIE, 2006).  The chronic form is a meningoencephalitis 

with dorsal extension through the sutra fontanel of the skull (OIE, 2006).  In the acute 

form, propagation of the bacterium throughout the body is rapidly achieved by crossing 

the intestinal mucosa.  In a period of 15 min after infection the pathogen can be found in 

the head kidney, and as soon as 3 h initial necrosis of the intestine mucosa starts to 

appear, undergoing a rapid-onset septicemia (Baldwin and Newton, 1993; Booth et al., 

2006).   Affected fish will display hemorrhagic enteritis, systemic edema, ascites, and 

multiple necrotic foci in liver, spleen, head kidney, skeletal muscle, skin and other 

organs, generating granulomatous inflammation (OIE, 2006) within the following 48 h 

(Baldwin and Newton, 1993).  Occurrence of ESC is primarily in the late spring - early 

summer and in the fall when water temperatures are between 22 and 28 C (Williams and 

Lawrence, 2005; OIE, 2006). 

 

3.1.  Immune response against E. ictaluri infection 

Resistance to ESC is an extremely complex phenomenon.  In general, fish are 

susceptible to the initial infection, but differ in their ability to limit the infection or 
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destroy the pathogen (Camp et al., 2000).  Numerous observations suggest that variation 

in susceptibility to ESC is a function of differences in innate immune responses 

(Bilodeau-Bourgeois et al., 2008). 

A multifaceted initial immune response to E. ictaluri infection has been 

observed, encompassing the complement cascade, iron regulation, inflammatory cell 

signaling, and antigen processing and presentation (Peatman et al., 2008).  The acute 

phase response (APR) denotes a major role of innate responses, particularly up-

regulation of genes involved in iron homeostasis (e.g., intelectin, hemopexin, 

haptoglobin, ferritin and transferrin).  Up-regulation of the majority of the complement 

cascade is observed including the membrane attack complex components and 

complement inhibitors (Peatman et al., 2007).  A number of pathogen recognition 

receptors (PRRs) and chemokines are also differentially expressed in the liver following 

infection (Bilodeau and Waldbieser, 2005; Baoprasertkul et al., 2006; Peatman et al., 

2007).    

The toll-like receptor (TLR)-5 is highly expressed in liver tissue of affected fish; 

its induction increases on days 5 and 8 post-exposure in liver and increases on day 5 in 

the head kidney, which may be due to MØ aggregation during ESC infection.  In the 

same way, TLR3 expression in kidney is elevated and increases over time in spleen 

(Bilodeau and Waldbieser, 2005; Baoprasertkul et al., 2006).  Toll-like receptors are an 

important component of the innate immune response of catfish, this family of PRRs is 

strongly associated with both innate and adaptive immune systems (Bilodeau-Bourgeois 

et al., 2008). 
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Also major histocompatibility complex (MHC)-I molecules play a major role in 

processing and presenting ESC antigens; MHC-I itself along with β2M are highly 

expressed after day 3 post-infection, playing an important role in antigen presentation.  

In addition, some endoplasmic reticulum chaperons, such as calreticulin and 

endoplasmin, which have a role in peptide assembly to MHC-I, are highly up-regulated.  

In some ESC-sensitive catfish families, there is a slow expression of MHC-I related 

molecules along with the percentage of B lymphocytes increasing over time, with the 

greater responses on day 7 post-exposure; whereas, the resistant families have higher 

percentages of T-cells at each day post-exposure (Camp et al., 2000). 

It is clear that during an ESC episode, the immune system is directed towards a 

cell-mediated response which is the classical response against intracellular pathogens, 

and it correlates with previous findings of survival and replication of this bacterium 

inside phagocytes (Booth et al., 2006).  On the other hand, the kinetics of Ig production 

following infection shows that serum concentrations markedly increase at 13 days post-

infection and the increase in mucus Ig concentrations occurs 14 days later  (Zilberg and 

Klesius, 1997) or even 21 days post infection (Bader et al., 2004). 

Fish from a population that has recovered from the disease are considered to be 

carriers.  These fish will have protective immunity and may have high levels of E.  

ictaluri specific antibodies (OIE, 2006).  This protective immunity in channel catfish is 

largely mediated by a cellular immune response with humoral antibodies having a 

secondary function (Russo et al., 2009).  Thus, protection from ESC does not correlate 

with antibody production unless titers are very high, but antibodies do appear to play a 
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role in immunity when combined with phagocytic cells (Moore et al., 2002).  

Opsonization of E. ictaluri with serum from vaccinated fish enhanced phagocytosis by 

MØ from both vaccinated and non-vaccinated fish (Russo et al., 2009).  Nevertheless, it 

is noteworthy that MØ from vaccinated fish were more efficient in phagocytosis and 

killing of E. ictaluri without opsonization compared to MØ from non-vaccinated fish, 

reflecting that other components of the immune system may enhance MØ killing 

efficiency.  It has been noted that MØ from vaccinated catfish produce higher amounts 

of reactive oxygen species (ROS) and NO, as compared to MØ from non-vaccinated fish 

(Russo et al., 2009).  Thus, MØ from vaccinated fish are activated and are responsible 

for rapid clearance of bacteria upon re-exposure to virulent E. ictaluri, along with a rapid 

and augmented traffic of activated MØ to the site of infection as shown in ESC-resistant 

catfish families (Camp et al., 2000). 

 

3.2.  Prevention of ESC 

Prevention and control of ESC has proven difficult due to challenges present in 

intensive channel catfish husbandry and also because the widespread distribution of the 

bacterium throughout the catfish aquaculture industry.  Although many efforts have been 

expended to develop a highly effective vaccine (Lawrence et al., 1997; Thune et al., 

1997; Bader et al., 2004; Klesius et al., 2004), no cost-effective high-efficacy vaccine is 

on the market to date.  Thus, management practices have been the best approach to 

reduce the incidence of E. ictaluri.  Among these are proper feeding practices and 

nutrition, stress reduction, maintenance of adequate water quality and the correct use of 
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antibiotics and other chemicals (Hawke et al., 1998).  However, governmental policies 

and consumer awareness, as well as pure economics have restrained the use of the latter.  

Hence, further development and use of appropriate vaccination strategies is vital for 

improving the efficiency and economics of catfish aquaculture and might have 

application to other cultured fish species (Adams and Thompson, 2006; Secombes, 

2008).   

Several studies have demonstrated as many as 15 immunogenic antigens present 

in E. ictaluri (Thune et al., 1997; Moore et al., 2002).  Mainly two types of vaccines 

have been used against ESC, killed and live-modified bacterins.  The latter is currently 

commercially available, and is the sole vaccine for fish currently licensed by the Animal 

and Plant Health Inspection Service – United States Department of Agriculture (USDA- 

APHIS, 2008).  At an early stage of ESC vaccine development, efforts were primarily 

focused on the use of killed bacterins with equivocal results, and although antibodies 

were produced to a variety of preparations, a positive response did not correlate with 

protection unless very high titers were achieved (Thune et al., 1997; Hawke et al., 1998).  

In addition, a short-term humoral immunity would be expected from injection of 

subcomponents of the bacteria (Bader et al., 2004).  For these reasons, the use of live-

modified vaccines became the preferable strategy to improve efficacy (Klesius et al., 

2004), due to long-term cell-mediated immunity likely requiring the entire live organism 

for stimulation and/or the addition of an adjuvant (Bader et al., 2004).   

The efficacy of vaccines might be influenced by a variety of factors besides the 

immunogen per se (Klesius et al., 2004), and they need to be taken into account when 
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developing strategies for fish vaccination.  One of the most important factors is nutrition; 

the role of nutrition on the immune system and health of fish is very complex and still 

not totally elucidated.  On one hand, nutritional requirements need to be met in order to 

maintain proper growth, but also improved nutrition through supplementation of key 

nutrients may increase health and the disease resistance (Blazer et al., 1989; Hawke et 

al., 1998; Buentello and Gatlin, 2001b; Klesius et al., 2004; Buentello et al., 2007).  

Attempts to pursue the latter have been conducted by supplementing various vitamins, 

minerals, lipids, probiotics, prebiotics and amino acids among others, with some positive 

results (Wise et al., 1993; Sealey et al., 1997; Wang et al., 1997; Lim and Klesius, 2003; 

Welker et al., 2007; Peterson et al., 2009).  Previous results in our laboratory 

demonstrated a positive effect of an ARG-enriched diet on the resistance of channel 

catfish to E. ictaluri infection (Buentello and Gatlin, 2001b). 

Based on the preceding information, it was hypothesized that dietary 

supplementation of ARG and GLN at optimal levels would enhance various metabolic 

responses including vaccination efficacy of channel catfish against E. ictaluri.  To test 

this hypothesis the following objectives were pursued: 

 

1) To evaluate nutritional and metabolic responses of juvenile channel catfish fed 

graded amounts of ARG. 

2) To evaluate nutritional and metabolic responses of juvenile channel catfish fed 

graded amounts of GLN. 
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3) To evaluate in vitro effects of ARG and GLN supplementation on channel catfish 

leukocytes performance. 

4) To evaluate in vivo effects of ARG and GLN on E. ictaluri-specific immune 

responses in channel catfish. 
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CHAPTER II 

EVALUATION OF NUTRITIONAL AND METABOLIC 

RESPONSES OF JUVENILE CHANNEL CATFISH FED 

GRADED AMOUNTS OF ARGININE 

 

1.  Introduction 

Growth rates and efficiency of feed utilization are two of the most economically 

important factors in aquaculture.  Hence, there is an increasing need to develop 

biotechnological applications that may help reduce production costs and grow fish more 

efficiently (Naylor et al., 2009).  Pivotal roles of several amino acids on growth 

improvement and enhanced metabolic function have been documented for various fish 

species (Mommsen et al., 2001; Fournier et al., 2002; Gómez-Requeni et al., 2004; 

Andoh, 2007).  More than just contributing to a balanced amino acid profile, recent 

evidence points to specific regulatory actions through which individual amino acids 

modulate key metabolic pathways which are indispensable for the optimization of 

somatic growth and immune function in cultured fish species (Li et al., 2009). 

The formulation of aquafeeds with “functional nutrients” as a priority may be 

desirable as the supplementation of these nutrients often results in favorable effects 

including growth promotion and enhanced health of animals intended for human 

consumption.  One such nutrient is arginine (ARG), an amino acid of enormous 

physiological importance due to its various beneficial actions, which have been 

demonstrated in different vertebrate models including fish (Morris, 2006; Buentello et 
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al., 2007; Wu et al., 2009).  Of paramount importance is ARG’s essentiality for 

maximization of growth potential in juvenile animals.  This amino acid is the most 

abundant nitrogen carrier for tissue proteins and is used in multiple biosynthesis 

pathways, involving key regulatory enzymes such as arginase, nitric oxide (NO) 

synthase, arginyl-tRNA synthetase, among others (Morris, 2006; Wu et al., 2009).  As 

such, ARG serves as a precursor for the synthesis of creatine, ornithine, proline, 

glutamate, polyamines, and NO, displaying remarkable metabolic and modulatory 

versatility in cells (Morris, 2006; Yao et al., 2008; Wu et al., 2009). 

A growing number of reports on the enhancement of average daily weight gain, 

feed intake, protein efficiency and muscle protein synthesis emphasize ARG’s unique 

ability to support rapid growth in different vertebrate species (Fligger et al., 1997; Kim 

et al., 2004; Fernandes et al., 2009; Ma and Li, 2009).  Similarly, aquatic species also 

experience enhanced growth and improved protein metabolism upon supplementation of 

dietary ARG.  For instance, acute stimulatory effects on growth have been observed in 

chinook salmon (Oncorhynchus kisutch) and rainbow trout (O. mykiss) fingerlings 

(Plisetskaya et al., 1991).  In juvenile European seabass (Dicentrarchus labrax), 

supplementation of ARG to plant protein-based diets produced improvements of specific 

growth rate, feed efficiency and protein efficiency ratio (Tulli et al., 2007).  Increased 

growth was also observed in Atlantic salmon (Salmo salar), but this effect was transient 

and observed in conjunction with glutamate supplementation (Oehme et al., 2010).  

However, in the South American pacu (Piaractus mesopotamicus), limited improvement 

was observed in protein efficiency ratio (Tesser et al., 2005).   
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In addition, several roles have been established for ARG as an immunomodulator 

of both the innate and adaptive immune systems of vertebrates.  As previously indicated, 

ARG serves as the sole substrate for synthesis of NO – an essential oxidative molecule 

used to combat a multitude of invading pathogens.  Likewise, ARG may strongly 

regulate the expression of adhesion molecules, tissue factors, cytokines and promote, 

among other important immune functions, the proliferation of lymphocytes and 

enhanced wound healing (Evoy et al., 1998; Li et al., 2007; Roth, 2007).  In channel 

catfish, ARG supplementation (in vivo and in vitro) has been shown to influence NO 

production and phagocytosis in activated macrophages (MØ) of channel catfish 

(Buentello and Gatlin, 1999; Buentello et al., 2007) as well as enhance fish survival 

upon Edwardsiella ictaluri challenge (Buentello and Gatlin, 2001b).  Because it is 

possible that other important components of the immune system may synergize with NO 

to exert deleterious reactions against bacteria and other pathogens (Secombes, 1996; 

Yano, 1996), further elucidation of the effects of ARG on the immune defense 

mechanisms becomes crucial to further understand its physiological role in fish.  

Therefore, the present study was conducted to evaluate the effects of dietary ARG 

supplementation on weight gain, protein optimization, circulating amino acid profiles 

and specific components of the innate immune system of juvenile channel catfish. 
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2.  Materials and methods 

2.1  Experimental diets 

A basal diet was formulated to contain 26% crude protein from casein, gelatin 

and a crystalline L-amino acid premix; dextrin was provided at 25.4% and lipids from 

corn and menhaden oil at 8%, on a dry-matter basis, for an estimated available energy 

level of 12 kJ ∙ g-1 (Table 2.1).  The basal diet was analyzed to contain 0.5% ARG which 

is deficient based on the minimum dietary ARG requirement of 1% previously 

quantified for fingerling channel catfish (Robinson et al., 1981).  Experimental diets 

were formulated and analyzed to provide ARG at 1, 2 and 4% of diet, by supplementing 

L-ARG∙HCl (11500, Affymetrix, Santa Clara, CA) to the basal diet.  Diets were 

maintained isonitrogenous by adjusting the levels of a 50:50 glycine-aspartate premix, as 

described by Buentello and Gatlin (2000). 

 

2.2  Feeding trial  

One hundred and eighty disease-free juvenile catfish, with an average weight of 

22.9 ± 0.5 g were placed into 12, 110-L aquaria, at a density of 15 fish per aquarium.  

Each treatment was randomly assigned to triplicate aquaria which were arranged as a 

recirculating system equipped with a biofilter for ammonia removal and sand filter for 

mechanical filtration.  A constant flow of 1L ∙ min-1 was maintained in all tanks.  

Dissolved oxygen and water temperature were maintained at 90% of air saturation and 

27 ± 1 °C, respectively.  A 12:12 h light:dark cycle was provided through fluorescent 

lights regulated with a timer.  Water quality was monitored every other day for pH, 
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Table 2.1  
Formulation (% of dry weight) and proximate composition of experimental diets supplemented with 

graded levels of ARG 

  Dietary ARG (% of diet) 

Ingredient 0.5 1 2 4 

Casein, vitamin free1 10.4 10.4 10.4 10.4 

Gelatin1 2.7 2.7 2.7 2.7 

Amino acid premix1,2 7.1 7.1 7.1 7.1 

Dextrin1 25.4 25.4 25.4 25.4 

Celufil1 28.0 28.6 29.8 32.4 

Corn oil3 4.0 4.0 4.0 4.0 

Menhaden oil3 4.0 4.0 4.0 4.0 

Vitamin premix4 3.0 3.0 3.0 3.0 

Mineral premix5 4.0 4.0 4.0 4.0 

Ca(PO4)6 1.0 1.0 1.0 1.0 

Carboxymethyl cellulose1 2.2 2.2 2.2 2.2 

Aspartate:Glycine premix1,2 8.2 7.1 4.9 0.2 

L-ARG·HCl7 0.0 0.5 1.5 3.6 

  

Analyzed proximate composition (% dry weight) 
Dry matter 92.9 93.8 92.1 93.4 

Crude protein 26.6 26.7 27.1 26.9 

Crude lipid 8.3 8.3 8.5 8.4 

Ash 3.7 3.7 3.7 3.6 

ARG 0.5 1.0 1.9 4.0 
1 USB, Cleveland, OH, USA. 
2 Buentello and Gatlin (2000).  Consisted of (% of diet) : L-histidine, 0.14; L-isoleucine, 0.19; L-leucine, 0.06; L-

lysine, 0.64; LD-methionine, 0.32; L-phenylalanine, 0.42; L-serine, 1.57; L-threonine, 0.13; L- tryptophan, 0.02; L-

valine, 0.11; L-proline, 1.57; L-alanine, 1.57. 
3 Omega Protein, Reedville, VA, USA. 
4 Moon and Gatlin (1991). 
5 MP Biomedicals, Solon, OH, USA. 
6 Fisher Scientific, Waltham, MA, USA. 
7 Affymetrix, Santa Clara, CA. 
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hardness, alkalinity, nitrite, ammonia, temperature and dissolved oxygen and remained 

within acceptable levels known to support optimal growth of channel catfish.  Fish were 

 acclimated for a period of 2 weeks to the experimental conditions during which fish 

were fed the basal diet.  Thereafter, fish were fed the experimental diets for the duration 

of the feeding trial (6 weeks).  Feeding rate was initially set at a level approaching 

satiation (4% of biomass) and provided in two daily feedings (a.m. and p.m.).  

Acceptance of diets, avidity of feeding and unconsumed feed were parameters 

considered for determining the feeding rate.  Fish were weighed once a week and the 

feed ration was adjusted accordingly.  Procedures used in this study were approved by 

the Texas A&M University System Animal Care and Use Committee. 

 

2.3  Sample collection and analyses 

At the end of the experimental period, three fish per tank were randomly selected 

for sample collection.  Prior to all sampling fish were euthanized with tricaine 

methanesulphonate (MS-222, Western Chemical Inc., Ferndale, WA, USA, 300 mg/L).  

Blood samples (~1 mL) were obtained from the caudal vasculature with heparinized 

needles (1-mL syringe, 23-ga needle).  Whole blood was used for neutrophil oxidative 

radical production (respiratory burst) and blood plasma was used for lysozyme activity 

and amino acid quantification after separation by centrifugation (3,800 x g for 12 min).  

Both head and trunk kidneys of each fish were excised and pooled per tank for 

phagocyte isolation.  In addition, whole-body samples of three additional fish per tank 
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were separated for proximate composition analysis.  Plasma and whole-body samples 

were quickly frozen and kept at –80 °C until analysis. 

Performance indicators including relative weight gain (WG = final weight – 

initial weight x 100 / initial weight), feed efficiency ratio (FER = weight gain / dry feed 

intake) protein efficiency ratio (PER = weight gain / dry protein fed), protein retention 

(PR = [final body protein – initial body protein] x 100 / total protein fed), and survival 

rates were computed for fish fed each diet.  Whole-body proximate composition was 

analyzed using established methodologies for crude protein (AOAC, 2005), lipids (Folch 

et al., 1957) and ash (AOAC, 1990).   

Plasma amino acids, including ARG were analyzed via HPLC following a 

fluorometric technique (Buentello and Gatlin, 2000) using pre-column derivatization 

with o-phthaldialdehyde (P0657, Sigma, St. Louis, MO). 

Neutrophil oxidative radical production was determined as described by Siwicki 

et al. (1994), absorbance was converted to nitro blue tetrazolium (NBT) units based on a 

standard curve of NBT diformazan ∙ mL-1 blood.  Serum lysozyme activity was 

determined by a turbidimetric assay described by Jørgensen et al. (1993), slightly 

modifying the pH (5.9) of the Micrococcus lysodeikticus suspension to maximize 

activity, as determined in preliminary assays with channel catfish plasma in our 

laboratory (data not shown).  Phagocytes were isolated, enumerated and their viability 

assessed via trypan blue exclusion, as described in Buentello and Gatlin (2000).  

Viability was >95% in all cases.  Their ability to produce both extracellular (EC) and 
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intracellular (IC) superoxide anion was analyzed following established methodology 

(Secombes, 1990; Sealey and Gatlin, 2002b). 

 

2.4  Statistical analysis 

Data was evaluated for normality using the Shapiro-Wilk test and for 

homogeneity of variance using the Levene’s test.  Results were analyzed via linear 

regression and analysis of variance.  The post hoc Duncan’s multiple-range test was used 

to identify means differences.  The Statistical Analysis System (SAS, 9.2 v) software 

was used for all analyses.  Statistical significance among treatments was considered at P 

≤ 0.05.  Values are presented as means with a pooled standard error (P.S.E) per variable 

measured. 

 

3.  Results 

Increasing levels of ARG in the diet resulted in significant effects on WG, FER, 

PER and PR (Table 2.2) after 6 weeks of feeding.  Fish fed the 4% ARG diet had 

significantly higher values for all performance indicators, although these values were not 

different from those fed the 2% ARG diet, with the exception of PR.  Weight gain, FER 

and PER values of fish fed the 2 and 4% ARG diets were 29-32 and 44-47% higher, 

respectively, than fish fed the 1% ARG.  Also, PR was 65 and 180% higher in fish fed 

the 2 and 4% ARG diets, respectively, as compared with fish fed the 1% ARG diet.  

Accordingly, whole-body crude protein levels for the two highest supplementation levels 

were significantly greater than corresponding whole-body protein levels for the lower 
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levels of ARG inclusion.  There were no significant differences in any other proximate 

composition parameter evaluated (Table 2.2). 

Plasma ARG and related amino acid concentrations were significantly affected 

by dietary ARG levels (Table 2.3).  Generally, fish fed the deficient diet (0.5%) had 

significantly lower values for all analyzed amino acids.  Fish fed 2 and 4% ARG diets 

had significantly higher circulating levels of ARG as compared to the basal diet.  These 

values were 2.2- and 2.3-fold higher than those observed for fish fed the basal diet, 

respectively.  However, these values were not significantly different from levels 

observed in fish fed the 1% ARG diet.  Circulating ornithine was 3.8-fold higher in fish 

fed the 2% ARG diet than in fish fed the basal diet; whereas, these values were only 2.4- 

and 2.6-fold for fish fed the 1 and 4% ARG, respectively, as compared to the level or 

ornithine found in fish fed the 0.5% ARG diet.  Citrulline plasma levels were 3.7-, 3.7- 

and 5-fold higher in fish fed the 1, 2 and 4% ARG diets, respectively, compared to the 

citrulline concentration found in fish fed the basal diet.  Glutamine concentrations 

exhibited a dose-dependent response as ARG increased from 0.5 to 4% of diet, with 

circulating glutamine in fish fed the 4% ARG diet being 3.6-fold higher than that of fish 

fed the basal diet.  Similarly, fish fed the 2% ARG diet had 1.8-fold higher concentration 

of circulating glutamate than fish fed the basal diet.  However, a further increase in 

dietary ARG, beyond 2% of diet, did not result in increased plasma glutamate. 

All innate immune responses, except plasma lysozyme, were also significantly 

affected by dietary ARG supplementation (Table 2.4).  Although fish fed the 2 and 4% 

ARG diets showed increased lysozyme values, they were not significantly different 
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Table 2.2  
Growth performance responses of juvenile channel catfish fed incremental levels of ARG1 

ARG Level (% of diet) 
Pr > F 2 

Pooled  
std. 

error 
R2 

 0.5 1 2 4 

Initial biomass (g) 344 340 343 343 0.923 5.23 0.004 

Final biomass (g) 5203,c 607b 740a 808a 0.0001 23.58 0.914 

Weight Gain (% initial 
weight) 51.1c 91.4b 120.8a 134.5a <0.0001 6.17 0.724 

Feed Efficiency (g gain 
· g feed) 0.3c 0.4b 0.5a 0.6a <0.0001 0.02 0.754 

Protein Efficiency Ratio 
(g gain · g protein fed) 1.0c 1.4b 1.9a 2.1a <0.0001 0.08 0.764 

Protein Retention (%) 14.6d 27.7c 45.7b 77.6a <0.0001 2.29 0.984 

Survival (%) 100 95 98 100 0.197 2.12 0.07 

Proximate composition of whole-body 

Moisture (%) 68.2 68.2 69.3 68.9 0.5852 1.15 0.09 

Crude Protein (%) 12.8d 15.3c 19.0b 27.1a <0.0001 1.10 0.933 

Lipid (%) 9.0 11.9 10.1 9.6 0.1643 1.78 0.02 

Ash (%) 4.3 3.7 3.1 3.9 0.1076 1.43 0.09 
1 Values represent means of three replicate tanks. 
2 Significance probability associated with the F-statistic.  
3 Different superscript letters indicate significant (P < 0.05) differences as evaluated by Duncan’s multiple range test. 
4 Indicate significant (P < 0.05) differences as evaluated by linear regression. 
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Table 2.3  
Circulating plasma levels (nmol ∙ mL-1) of selected amino acids in juvenile channel catfish fed incremental 

levels of ARG1 

  ARG level (% of diet) 
Pr > F 2 

Pooled 
std. 

error 
R2 

  0.5 1 2 4 

Arginine 71.43,b 124.6ab 156.1a 164.3a 0.015 10.21 0.444 

Ornithine 17.9c 43.1b 68.0a 46.1b 0.020 11.70 0.14 

Citrulline 9.9b 36.2a 36.9a 49.9a 0.016 6.65 0.494 

Glutamine 38.4c 85.2b 135.7a 137.4a 0.048 7.36 0.404 

Glutamate 38.4c 57.8b 70.8a 63.7ab 0.001 3.59 0.344 
1 Values represent means of two fish from each three replicate tanks. 
2 Significance probability associated with the F-statistic.  
3 Different superscript letters indicate significant (P < 0.05) differences as evaluated by Duncan’s multiple range test. 
4 Indicate significant (P < 0.05) differences as evaluated by linear regression. 
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Table 2.4  
Innate immune responses of juvenile channel catfish fed incremental levels of ARG1 

  ARG level (% of diet) 
Pr > F 2 

Pooled 
std. 

error 
R2 

  0.5 1 2 4 

NBT3  2.94,b 4.0a 3.7a 3.9a < 0.0001 0.11 0.225 

Superoxide anion –EC6  5.2b 8.6a 5.4b 5.6b 0.0490 0.98 0.03 

Superoxide anion –IC7  0.125b 0.547a 0.511a 0.484a 0.0030 0.08 0.12 

Lysozyme8 166.7 179.7 206.2 218.8 0.572 28.87 0.05 
1 Values represent means of two fish from each three replicate tanks.
2 Significance probability associated with the F-statistic.  
3 NBT, Nitroblue tetrazolium units (mg · mL-1). 
4 Different superscript letters indicate significant (P < 0.05) differences as evaluated by Duncan’s multiple range test.  
5 Indicate significant (P < 0.05) differences as evaluated by linear regression. 
6 EC, extracellular (nmol 02

-). 
7 IC, intracellular (ABS). 
8 units · mL-1. 
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among treatments.  Dietary ARG deficiency not only diminished the capacity of 

phagocytes to generate superoxide anion, but it also curtailed the capacity of blood 

neutrophils to generate oxidative radicals.  All innate immunity indicators assessed in the 

present experiment were significantly decreased in fish fed the 0.5% ARG diet.  

However, no further enhancement was attained by supplementing ARG at levels beyond 

1% of diet.  In fact, EC superoxide anion production was significantly higher in fish fed 

the 1% ARG diet when compared to fish fed both ARG-supplemented and ARG-

deficient diets. 

 

4.  Discussion 

4.1  Effects of arginine on fish growth 

The dietary arginine requirement of channel catfish was originally determined to 

be 1.0% of diet by Robinson et al. (1981).  This requirement is one of the lowest when 

compared to other freshwater and saltwater fish species (NRC, 2011).  In the present 

experiment, results indicate that dietary ARG supplementation beyond the previously 

determined minimum requirement increased PER, resulted in better PR, as well as 

improved WG and FE.  These results are in agreement with previous reports with other 

fish species whose growth and metabolic rates are similar to that of channel catfish – 

e.g., Clarias lazera (Metwally and Fouad, 2009) – and other freshwater fish such as 

rainbow trout (Plisetskaya et al., 1991; Fournier et al., 2002), the South American pacu 

(Tesser et al., 2005), and marine fish including turbot, Psetta maxima, gilthead sea 

bream, Sparus aurata (Fournier et al., 2002), European seabass (Fournier et al., 2002; 
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Tulli et al., 2007), and Atlantic salmon (Oehme et al., 2010).  The specific physiological 

mechanism by which ARG elicits an increased growth in fish species has not been fully 

elucidated.  Investigations on mammalian species (Wideman et al., 2000) as well as fish 

(Mommsen et al., 2001), including our own ongoing research with channel catfish 

(unpublished data), points to a strong endocrine modulation, which may not have been 

previously considered in defining the nutritional requirement for this amino acid.  

Supplementation of ARG has been shown to increase plasma concentrations of insulin 

and growth hormone, and ultimately improving weight gain and protein synthesis in 

higher vertebrates (Kim et al., 2004; Collier et al., 2005; Wu et al., 2009).  Although data 

in this area with fish is more sparse, similar effects have been reported for barfin 

flounder, Verasper moseri (Andoh, 2007), rainbow trout (Plisetskaya et al., 1991; 

Mommsen et al., 2001), chinook salmon (Plisetskaya et al., 1991), brown trout, Salmo 

trutta, common carp, Cyprinus carpio (Baños et al., 1997), and largemouth bass, 

Micropterus salmoides (Sink and Lochmann, 2007). 

A plausible physiological alternative considers ARG’s established roles as the 

most abundant nitrogen carrier in tissue proteins and its participation in multiple 

synthetic pathways (Morris, 2006; Wu et al., 2009) including protein (Kim et al., 2004; 

Yao et al., 2008) and proline synthesis (Wu et al., 2009).  From these, ARG’s role on 

polyamine biosynthesis deserves special consideration because numerous studies have 

shown that the polyamines putrescine, spermidine, and spermine have a significant effect 

on growth of the gastrointestinal mucosa of a variety of animals (McCormack and 

Johnson, 1991; Larque et al., 2007), including fish (Péres et al., 1997).  As precursor of 
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ornithine, ARG is an essential and rate-controlling component for the biosynthesis of 

polyamines in animal tissues (Wu, 2010).  Because several studies correlate high 

intracellular levels of polyamines with periods of increased growth in bacterial, plant and 

animal species (McCormack and Johnson, 1991; Li et al., 2009; Wu, 2010) it is possible 

that ARG also may influence growth through this hitherto unknown regulatory 

mechanism in fish.  Interestingly, results from the present study (Table 2.3) indicate that 

ARG supplementation beyond 1% of diet did not result in significantly higher 

postprandial levels of plasma ARG but raised the concentrations of circulating ARG 

byproducts such as ornithine, glutamine and glutamate.  As in the experiments listed 

above, it is quite possible that a fraction of the dietary ARG in excess of 1% could have 

been metabolized in the gastrointestinal tract, yielding higher concentrations of ARG-

related products in both portal and post-hepatic circulation.  This would up-regulate the 

usage of ornithine, glutamine and glutamate for the biosynthesis of polyamines in target 

tissues.  Several reports on vertebrate species support this notion by describing a 

common metabolic pathway for ARG, ornithine, glutamine and glutamate.  Evidence 

generated in our laboratory demonstrate that channel catfish is physiologically similar in 

this aspect to higher vertebrates (Buentello and Gatlin, 2001a). 

The interorgan metabolism of ARG can provide citrulline either from ARG-

derived ornithine or directly from ARG (Buentello and Gatlin, 2001a).  The fact that in 

the present experiment plasma citrulline levels remained similar in fish fed 1-4% ARG 

and only those fed the ARG-deficient basal diet displayed a significantly lower citrulline 

concentration (Table 2.3) can be explained in two ways.  First, if channel catfish has an 
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incomplete ornithine urea cycle, as indicated by some authors due to reduced activities 

of carbamoyl phosphate synthetase III (Felskie et al., 1998), this would result in reduced 

formation of citrulline from ornithine.  On the other hand, if the activity of the enzyme 

arginase is of higher magnitude than NO synthase – as is the case for animals under no 

pathological challenge (Wong et al., 1998; Gouillou-Coustans et al., 2002), this would 

increase the formation of ornithine from ARG.  Under either scenario ornithine appears 

to be more readily synthesized from ARG than citrulline and, this ARG-derived 

ornithine could be funneled to polyamine biosynthesis in support of rapid somatic (Li et 

al., 2009; Wu, 2010) and/or gastrointestinal (Péres et al., 1997; Larque et al., 2007) 

growth, as previously described.   

 

4.2  Effects of arginine on fish immunity 

It is well established that ARG is an important immunonutrient in vertebrate 

species such as humans, rodents, swine and poultry (Evoy et al., 1998; Li et al., 2007; 

Roth, 2007; Wu, 2010).  Also, accumulating evidence demonstrates that, as in higher 

vertebrates, ARG potentiates several aspects of the immune responses in fish.  For 

instance, improved survival of channel catfish was observed upon dietary ARG 

supplementation when fish were challenged with a virulent strain of E. ictaluri 

(Buentello and Gatlin, 2001b) and, the presence of ARG in vivo and in vitro up-

regulated the synthesis of NO in lipopolysaccharide-activated catfish phagocytes 

(Buentello and Gatlin, 1999).  In addition, ARG in the diet had positive effects on both 

hematological and innate immune responses such as hematocrit, hemoglobin, 
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phagocytosis, and circulating erythrocytes (Buentello et al., 2007).  Data from the 

present experiment helps to highlight the crucial role that ARG has in maintaining 

proper phagocyte function.  Specifically, the production of both superoxide anion by 

kidney phagocytes and oxidative radicals by blood neutrophils was severely 

compromised in fish fed the ARG-deficient basal diet (Table 2.4).  That these indicators 

were not raised by levels of ARG above 1% of diet may be a reflection of the metabolic 

state of the cells.  Neither neutrophils nor MØ were in an activated state.  In contrast, an 

increase in oxidative radicals would be expected upon ARG enrichment in activated 

cells of the immune system, such as MØ (Buentello and Gatlin, 1999, 2001b; Li et al., 

2007).   

Although the levels of lysozyme activity increased as dietary ARG increased in 

the present experiment, a high degree of variability among treatments made these 

differences not significantly different (P = 0.5).  An important consideration is that the 

activity of plasma lysozyme is not a direct measurement of cell performance but reflects 

the presence of this muramidase in plasma and can also be linked to the turnover rate of 

granulocytes and monocytes (Hansen, 1975; Yano, 1996).  Because in the present 

experiment the sampled fish were presumably under a homeostatic state, a similar 

turnover rate of granulocytes and monocytes would be expected. 

These results add to the growing body of literature concerning ARG and its 

effects on fish metabolism.  The present results also confirm that dietary ARG is 

indispensable for optimal growth of juvenile fish as well as providing strong indications 

that this amino acid may have an important regulatory role in the biosynthesis of 
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polyamines and perhaps another one as an endocrine modulator in fish.  Expanded ARG 

functions in maintaining proper phagocyte function were also demonstrated in the 

present study.  However, more research is still necessary to further elucidate the specific 

mechanisms by which ARG promotes somatic growth in fish.  In addition, the evaluation 

of ARG effects on other parameters of the immune system in health and disease is 

crucial to help optimize aquafeed formulations. 
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CHAPTER III 

EVALUATION OF NUTRITIONAL AND METABOLIC 

RESPONSES OF JUVENILE CHANNEL CATFISH FED 

GRADED AMOUNTS OF GLUTAMINE 

 

1.  Introduction 

Glutamine (GLN) plays an important role as a regulator of cellular metabolism, 

acting as an energy source for proliferating cells and being essential for the synthesis of 

nucleic acids, pyrimidine and purine nucleotides and other important cellular 

intermediates (Nakajo et al., 2005; Wu et al., 2011).  Glutamine is the principal 

metabolic fuel for enterocytes, which makes the gastrointestinal tract (GIT) a major 

organ of GLN utilization in the post-absorptive state (Bartell and Batal, 2007; Rhoads 

and Wu, 2009; Wu et al., 2011). 

Dietary GLN has been proven to elicit desirable effects for animal husbandry, 

and compelling evidence shows that GLN is a conditionally-essential amino acid under 

specific physiological conditions (Wu et al., 2011).  The addition of GLN in diets 

improves the weight gain and feed efficiency in different mammalian and avian species.  

In addition, it not only prevents intestinal mucosal atrophy, but also promotes intestinal 

growth, and increases villi length in the duodenum and jejunum (Yi et al., 2005; Zou et 

al., 2006; Bartell and Batal, 2007; Murakami et al., 2007; Wang et al., 2008; Soltan, 

2009; Wu et al., 2011).  Additionally, challenges associated with diarrhea are mitigated 

by GLN and the deleterious changes in digestive tract permeability associated with 
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endotoxins also can be decreased (Lobley et al., 2001; Zou et al., 2006; Kessel et al., 

2008).  Moreover, GLN enhances recovery of the villous surface area in animals with 

ischemic-injured intestines (Blikslager et al., 1999).  Noteworthy is the fact that GLN-

enriched diets also enhance the transport of absorptive vesicles and amino acids across 

the enterocyte brush border (Salloum et al., 1990; Frankel et al., 1993; Curi et al., 2005).   

Similar effects of dietary GLN supplementation have been reported to a limited 

extent in fish species.  Improved weight gain, feed efficiency, intestinal weight, fold 

height and digestive enzyme activities were reported in juvenile Jian carp, Cyprinus 

carpio var. Jian (Yan and Qiu-Zhou, 2006) and juvenile hybrid sturgeon, Acipenser 

schrenckii × Huso dauricus (Qiyou et al., 2011).  Additionally, it has been proven in 

vitro that GLN is essential for enterocyte proliferation (Jiang et al., 2009) as well as 

being an effective protector against H2O2-induced oxidative stress in jian carp (Chen et 

al., 2009).  

Under normal conditions, the GIT epithelium has a high cell turnover and 

metabolic rate, both of which increase during physiological and/or pathological 

challenges.  Thus, adequate nutrition is crucial to maintain proper function and integrity 

of the GIT, which in turn, has major repercussions on growth performance and health 

status of cultured animals.  The GIT is not only the major site of digestion and 

absorption of nutrients, but it is also a critical player in intermediary metabolism, having 

a specific role in whole-body amino acid homeostasis and the availability of amino acids 

for the support of somatic growth (Reeds and Burrin, 2000; Wu et al., 2005b; Wang et 

al., 2009).  
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Therefore, the purpose of the present study was to evaluate the effects of graded 

amounts of GLN supplementation to semi-purified diets on intestinal structure, plasma 

amino acid profiles and growth performance of channel catfish.  Also, based on results 

of the feeding trial, another experiment evaluated the effect of GLN supplementation on 

enterocyte migration rate using the incorporation of an exogenous marker 

bromodeoxyuridine (BrdU). 

 

2.  Materials and methods 

2.1  Experimental diets 

The basal diet was formulated to contain 28% crude protein from casein, gelatin 

and a crystalline L-amino acid premix; dextrin was provided at 24.5% and lipids from 

corn and menhaden oil at 8%, on a dry-matter basis, for an estimated available energy of 

12 kJ ∙ g-1 (Table 3.1).  The basal diet was analyzed to contain 0% of free GLN.  Five 

experimental diets were formulated, and analyzed, to provide 0.5, 1, 1.5, 2 and 3% free 

GLN by supplementing L-GLN (USB, 16285).  Diets were maintained isonitrogenous by 

adjusting the levels of a 50:50 glycine-aspartate premix, as described by Buentello and 

Gatlin (2000).  Diets were stored in sealed bags at -20 °C until used.  

 

2.2  Experiment 1.  Feeding trial 

A first experiment was done to evaluate graded amounts of GLN 

supplementation on intestinal structure, plasma amino acid profiles and growth 

performance of channel catfish.  Experimental fish were obtained from a local  
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Table 3.1  

Formulation and proximate composition of the basal diet that was supplemented with graded levels of 

GLN 

Ingredients % of dry weight 

Casein, vitamin free1 13.4 

Gelatin1 3.7 

Amino acid premix1,2 7.1 

Dextrin1 24.7 

Celufil1 27.5 

Corn oil1 4.0 

Menhaden oil3 4.0 

Vitamin premix4 3.0 

Mineral premix5 4.0 

CaHPO4·2H2O6 1.0 

Carboxymethyl cellulose1 2.2 

Aspartate/glycine premix1,2 5.0 

L-Glutamine1, 7 0.0 

L-Arginine1 0.4 

Analyzed proximate composition (% dry weight) 

Dry matter 89.7 

Crude protein  29.1 

Lipid 8.3 

Ash 3.4 
1 US Biochemical Corp., Cleveland, OH, USA. 
2 Buentello and Gatlin (2000).  Consisted of (% of diet): L-histidine, 0.14; L-isoleucine, 0.19; 

L-leucine, 0.06; L-lysine, 0.64; LD-methionine, 0.32; L-phenylalanine, 0.42; L-serine, 1.57; 

L-threonine, 0.13; L- tryptophan, 0.02; L-valine, 0.11; L-proline, 1.57; L-alanine, 1.57. 
3 Omega Protein, Reedville, VA, USA. 
4 Moon and Gatlin (1991). 
5 MP Biomedicals, Solon, OH, USA. 
6 Fisher Scientific, Waltham, MA, USA. 
7 Analyzed GLN content (% - non-protein bound) in diets: 0, 0.44, 1.1, 1.4, 2.2, and 2.9  
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commercial hatchery and transported to the Texas A&M University Aquacultural 

Research and Teaching Facility.  Fish were acclimated for 2 weeks to a recirculating 

system (flow rate: 1 L ∙ min-1) equipped with a biofilter for the removal of nitrogenous 

by-products.  Fish were fed the basal diet during the conditioning period.  Three hundred 

and sixty juvenile catfish, averaging 6.1 ± 0.2 g were placed at same density (20 fish / 

0.11 m3) into 18, 110-L aquaria.  Oxygen saturation and water temperature were 

maintained at 90% and 27 ± 1 °C, respectively.  A 12:12 h light:dark cycle was provided 

through fluorescent lights regulated with a timer.  Water quality was monitored weekly 

for pH, hardness, alkalinity, nitrite, ammonia, temperature and dissolved oxygen and 

remained within optimal levels for channel catfish.  Each aquarium was randomly 

assigned to a dietary treatment with a total of three replicate aquaria per diet.  Fish were 

fed the experimental diets for a period of 10 weeks.  Feeding rate was set at a level 

approaching satiation (4% of biomass) and was provided in two daily feedings (morning 

and evening).  Fish were weighed once a week and the ration was adjusted accordingly. 

 

2.2.1  Sample collection and analyses 

Three representative fish per aquarium were randomly sampled at the end of 

week 10.  Prior to all sample collection, fish were euthanized via tricainemethane 

sulphonate (MS-222, 300 mg/L) overdose.  Whole body and GIT weight and length, 

along with liver, spleen, and intraperitoneal fat weight were recorded for morphometric 

calculations and tissue protein content analysis.  Blood samples (approximately 0.5 mL) 

were drawn from the caudal vasculature with heparinized syringe (1 mL, 27 gauge 
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needle) at 15 h after the final feeding.  Plasma was separated by centrifugation at 3,800 x 

g for 12 min, and stored frozen (-20 °C) until amino acid analysis.  Whole-body samples 

from three additional fish per tank were taken for proximate composition analysis. 

To evaluate changes in histological structures of the intestinal mucosa, GIT 

samples from three more fish were dissected from the gastro-pyloric region to the anal 

region, and tied at both ends with cotton mesh.  Davidson’s solution was injected into 

the intestinal lumen for preventing autolytic changes to the mucosa.  Intestinal samples 

were kept in Davidson’s fixative for 24 h and then transferred to a 70% ethanol solution 

for conservation until processing for histological slides. 

Performance indicators were analyzed as follows, relative weight gain (WG = 

final weight – initial weight x 100 / initial weight), feed efficiency ratio (FER = weight 

gain / dry feed intake), protein efficiency ratio (PER = weight gain / dry protein fed) and 

protein retention (PR = [final body protein – initial body protein] x 100 / total protein 

fed).  In addition, body indexes were computed as follows, condition factor (CF= fish 

weight x 100 / fish length ^ 3), hepatosomatic index (HSI= liver weight x 100 / whole-

body weight) and intraperitoneal fat ratio (IPF= intraperitoneal fat weight x 100 / whole-

body weight), relative gut weight (RGW= gut weight x 100 / whole-body weight), 

relative gut length (RGL= gut length x 100 / whole-body length), and relative spleen 

weight (RSW= spleen weight x 100 / whole-body weight).  Finally, proximate 

composition of whole-body samples were analyzed using established methodology: 

Dumas protocol (AOAC, 2005) for crude protein (N factor = 6.25), Folch et al. (1957) 

for lipids, AOAC (1990) for ash.  Crude protein content of liver, intestine and spleen 
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were analyzed as cited above.  Plasma amino acid levels were analyzed via HPLC 

following the methodology of Buentello and Gatlin (2000). 

For histological analysis, two cross-sectional rings of approximately 0.5 cm were 

cut from each of the anterior, mid and posterior regions of the intestine.  Intestinal 

regions were processed for paraffin embedding, and 5-µm sectioning was made for glass 

slide mounting and hematoxylin-eosin staining.  All slides were evaluated in an 

Olympus BC-2 series light microscope linked to a digital camera.  Three fields at 4x and 

five fields at 40x objectives were captured for each region.  Images were then analyzed 

with the ImageJ (v.1.4g) Software (NIH, freeware).  Variables measured included fold 

length (distance between the base and tip of the fold), and enterocyte and microvilli 

height for all intestinal regions.  

 

2.3  Experiment 2.  Enterocyte migration rate 

A second experiment was done to further evaluate the enterocyte migration rates.  

A second batch of 120 fish, averaging 33 ± 0.9 g, were placed in six 110-L glass aquaria 

and kept under the same conditions as described earlier.  Based on the results from the 

first experiment (feeding trial), fish were only fed the basal and 2% GLN diets (three 

replicates each).  After 2 weeks of feeding, all fish were intraperitoneally injected with 

an aqueous solution of BrdU (Sigma B5002) at a dose of 0.1 mg · g-1 of body weight 

(Alfei et al., 1993).  Three randomly selected fish per treatment were sampled every day 

until 11 d post injection (dpi), then every other day until 19 dpi.  Before sampling, fish 

were euthanized as described earlier.  Fish intestines were carefully removed and placed 
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in 4% formalin for 24 h and moved to 70% ethanol for conservation until processing for 

histological slides. 

 

2.3.1  Immunohistochemistry detection of BrdU 

Intestinal samples were processed for paraffin embedding and unstained slides 

were obtained for immunohistochemistry (IHC) detection of BrdU in cross-sections of 

the anterior, mid and posterior intestinal regions.  Tissue detection of BrdU was done 

using a commercial kit (Millipore BrdU IHC kit, 2760).  Briefly, tissue sections were 

deparaffinized with xylene, and rehydrated with several dilutions of ethanol (100-70%) 

and phosphate buffer solution (PBS).  Endogenous peroxidase was quenched 

submerging the slides in 30% hydrogen peroxide:methanol (1:10, v/v).  Tissue DNA was 

denatured and the sections were blocked to prevent non-specific binding.  Sections were 

incubated with primary antibody (mouse anti-BrdU) and then secondary antibody 

(Streptavidin-Horse radish peroxidase conjugated goat anti-mouse IgG).  Slides were 

developed with the addition of the substrate solution (3,3' diaminobenzidine).  Then, 

tissues were counterstained with hematoxylin.  Slides were dehydrated and mounted 

with coverslip for further analysis.   

 

2.3.2  Quantification and orientation of BrdU 

Quantification and orientation of BrdU positive cells were done using the 

equipment and software described earlier for histometric analysis.  For enterocyte 

migration rate, BrdU positive cells were analyzed.  At least 10 measurements per section 
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per fish were taken, where only appropriately oriented folds were used.  Enterocyte 

migration per day was calculated by measuring the distance (µm) between the base of 

the fold and the farthest BrdU+ cell (Fan et al., 2001).  This distance was then correlated 

to the fold height (µm) and a migration percentage per day was obtained (MP = distance 

from base to BrdU+ cells x 100/ fold height).  All animal procedures used in this study 

were approved by the Texas A&M University Animal Care and Use Committee. 

 

2.4  Statistical analysis 

Data was evaluated for normality using the Shapiro-Wilk test and for 

homogeneity of variance using the Levene’s test.  Results from feeding trial were 

subjected to linear regression analysis, and analysis of variance, using Duncan’s 

multiple-range test to compare treatment means when appropriate.  Data from the 

enterocyte migration trial were subjected to analysis of covariance to detect differences 

in slopes and intercepts.  All analyses were conducted using the Statistical Analysis 

System (SAS v9.2) software.  Statistical significance was set at a P-value of ≤ 0.05. 

 

3.  Results 

3.1  Performance parameters and condition indices 

Although fish fed the diet supplemented with 2% GLN tended to have higher 

values for WG, FER, PER, PR, no statistical differences were observed (Table 3.2).  

Similarly, whole-body proximate composition values were equal among treatments in 

dry matter, crude protein, and ash, but a significant difference was obtained in lipid 
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content where fish fed the diet supplemented with 2% GLN had higher values than those 

fed 0, 0.5 and 1% GLN but not compared to those fed diets supplemented with 1.5 and 

3% GLN (Table 3.2).  

In agreement with productive parameters, 2% free GLN in the diet tended to 

improve the majority of body indexes and the protein content of intestine, but again, no 

significant differences were found among treatments (Table 3.3). 

 

3.2  Plasma amino acids 

Plasma levels of asparagine, serine, glycine and threonine were significantly 

higher in fish fed the diet supplemented with 2% GLN (Table 3.4).  Glutamine and 

related amino acids did not exhibit any significant differences, although they had similar 

patterns as the parameters reported above.  Namely, fish fed 2% GLN tended to have 

higher values than other supplementation levels. 

 

3.3  Intestinal structure 

Intestinal histometrics are presented in Table 3.5.  The mucosal intestinal 

histology showed a high degree of responsiveness to free dietary GLN supplementation.  

Increased fold length as well as enhanced enterocyte and microvilli height were  

observed in a dose-dependent manner.  The anterior, mid and posterior intestinal 

sections had significantly higher values in all parameters measured for fish fed the diets 

supplemented with 2-3% GLN. 
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Table 3.2  
Growth performance responses and proximate composition of juvenile channel catfish fed graded levels of GLN for 10 weeks1 

R2 

0.01 

0.039 

0.045 

-0.043 

0.068 

-0.047 

Proximate composition of Whole-body 

0.385 

-0.059 

-0.062 

-0.059 

1 Values represent means of three replicate tanks. 
2 Significance probability associated with the F-statistic.  
3 Different superscript letters indicate significant (P < 0.05) differences as evaluated by Duncan’s multiple range test. 

Pooled 
std. 

error
0.11 

0.99 

11.42 

0.02 

0.06 

1.68 

0.74 

0.75 

0.79 

0.4 

Pr > F2 

0.821 

0.704 

0.686 

0.794 

0.619 

0.979 

0.503 

0.976 

0.049 

0.211 

L-GLN inclusion level (%) 
3 

6.1 

16.3 

165 

0.36 

1.17 

20.9 

70.0 

16.9 

9.7ab 

3.8 

2 

6.0 

17.6 

191 

0.40 

1.26 

20.8 

71.0 

16 

10.0a 

3.3 

1.5 

6.0 

15.8 

162 

0.37 

1.15 

19.6 

71.5 

16.4 

8.9ac 

3.6 

1 

6.1 

16.4 

167 

0.38 

1.21 

20.9 

69.8 

16.5 

8.0c 

3.8 

0.5 

6.2 

16.3 

162 

0.37 

1.17 

20.7 

71.1 

16.7 

7.9c 

3.4 

0 

6.1 

15.9 

161 

0.36 

1.11 

19.6 

70.1 

16.7 

8.23,bc 

3.7 

 
Variables 

Initial average fish weight (g) 

Final average fish weight (g) 

Weight gain (% initial weight) 

Feed efficiency (g gain · g feed) 

Protein efficiency ratio (g gain · g protein fed) 

Protein retention (%) 

Moisture (%) 

Crude protein (%) 

Lipid (%) 

Ash (%) 

 
 



 
48

Table 3.3 
Tissue indices and composition of juvenile channel catfish fed graded levels of GLN for 10 weeks1 

R2 

0.077 

0.008 

0.053 

0.048 

0.024 

0.015ns 

0.153ns 

0.035ns 

0.104ns 

1 Values represent means of three fish from each three replicate tanks.  
2 Significance probability associated with the F-statistic.  

 

Pooled  
std. error 

0.07 

0.24 

0.02 

0.1 

0.18 

0.01 

0.99 

0.39 

0.98 

Pr > F 2 

0.336 

0.787 

0.74 

0.251 

0.194 

0.083 

0.283 

0.179 

0.275 

L-GLN inclusion level (%) 

3 

1.38 

3.27 

0.73 

1.2 

2.37 

0.10 

15.4 

14.9 

20.9 

2 

1.48 

3.18 

0.74 

1.38 

2.81 

0.07 

15.1 

14.7 

19.6 

1.5 

1.49 

2.79 

0.71 

1.42 

2.79 

0.09 

14.5 

13.4 

19.5 

1 

1.59 

3.17 

0.74 

1.27 

2.66 

0.08 

15.0 

13.8 

19.6 

0.5 

1.57 

3.16 

0.71 

1.19 

2.35 

0.07 

14.7 

14.8 

18.1 

0 

1.44 

3.08 

0.72 

1.11 

2.29 

0.08 

13.0 

15.6 

19.0 

  

 Variables 

Hepatosomatic index 

Intraperitoneal fat index 

Condition factor 

Relative GIT length 

Relative GIT weight 

Relative spleen weight 

GIT protein content (%) 

Liver protein content (%) 

Spleen protein content (%) 
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Table 3.4  
Plasma amino acid profile (nmol · mL-1) of juvenile channel catfish fed graded levels of GLN for 10 weeks1 

R2 

 

0.012 

0.028 

0.031 

0.025 

0.043 

-- 

0.037 

0.011 

0.005 

0.010 

0.086 

0.051 

0.097 

0.051 

-- 

0.076 

0.009 

0.027 

0.047 

0.059 

0.014 

1 Values represent means of three fish from each three replicate tanks. 
2 Significance probability associated with the F-statistic.  
3 Different superscript letters indicate significant (P < 0.05) differences as evaluated by Duncan’s multiple range test. 

Pooled  
std. error 

8.17 

12.44 

5.2 

18.71 

27.16 

-- 

12.24 

7.72 

11.66 
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-- 
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0.04 

0.36 

-- 
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0.679 
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-- 
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3.4  Enterocyte migration rates 

Patterns of enterocyte migration rates, obtained from experiment 2, were 

influenced by dietary glutamine supplementation.  In fish fed the basal diet, enterocytes 

reached the tip of the fold on 11dpi for the anterior intestine and on 10 dpi for the mid 

and posterior intestinal sections.  Fish fed the diet supplemented with 2% GLN had a 

significant increase in enterocyte migration rate, reaching the tip of the fold on 9, 6 and 8 

dpi for the anterior, mid and posterior regions, respectively.  Linear regression indicated 

a migration rate for fish fed the basal and GLN supplemented diets of 5.4 ± 0.3 vs. 6.5 ± 

0.3 % · d-1 for the anterior intestine, 5.5 ± 0.4 vs. 8.9 ± 0.7 % · d-1 for the mid intestine, 

and 6.4 ± 0.4 vs. 7.8 ± 0.5 % · d-1 for the posterior intestine.  All slopes were 

significantly different among treatments in all three intestinal sections; whereas, the 

intercept was only different in the anterior and posterior sections (Fig. 3.1).   

 

4.  Discussion 

            Glutamine is a versatile amino acid which plays important roles in a variety of 

biochemical functions.  This versatility would seem to give it great potential in normal 

animal production as well as during situations involving pathological challenges.  It is 

well known that GLN serves as the main energy source for proliferating cells and its 

supply may improve the outcome of catabolic states and/or disease challenges (Wu et al., 

2005b; Wang et al., 2009).  Therefore, dietary supplementation of GLN could result in 

enhanced growth and survival of cultured fish.  In practice, however, responses of  
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Table 3.5  
Intestinal histometrics (µm) of juvenile channel catfish fed graded levels of GLN for 10 weeks1 

R2 

 

0.0764 

0.1954 

0.1104 

 

0.2264 

0.2684 

0.0654 

 

0.0834 

0.1324 

0.1544 

1 Values represent means of three fish from each three replicate tanks. 
2 Significance probability associated with the F-statistic.  
3 Different superscript letters indicate significant (P < 0.05) differences as evaluated by Duncan’s multiple range test. 
4 Indicate significant (P < 0.05) differences as evaluated by linear regression. 
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Fig. 3.1.  Enterocyte migration rates for the anterior, mid and posterior intestine of fish fed the basal or GLN-supplemented diet (20 g ∙ kg-1) 

f i t 2 R i l i i di t d li l ti hi (P < 0 05) b t t f t t i ti d d ftfrom experiment 2.  Regression analysis indicated a linear relationship (P < 0.05) between percentage of enterocyte migration and days after 

BrdU injection (p.i.) in all intestinal sections.  The linear regression equations indicated a migration rate for fish fed the basal ( ) vs. GLN 

( ) supplemented diets of 5.42 ± 0.25 vs. 6.54 ± 0.31 %·d-1 for the anterior intestine (A), 5.47 ± 0.37 vs. 8.85 ± 0.73 %·d-1 for the mid 

intestine (B) and 6 41 ± 0 39 vs 7 83 ± 0 54 %·d-1 for the posterior intestine (C) Slopes were significantly (P < 0 05) different amongintestine (B), and 6.41 ± 0.39 vs. 7.83 ± 0.54 % d for the posterior intestine (C).  Slopes were significantly (P < 0.05) different among 

treatments in all intestinal sections.  The intercept was significantly (P < 0.05) different in the anterior and posterior intestine. 
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various animal species to dietary GLN enrichment have been thus far inconsistent 

(Lobley et al., 2001). 

The intestine is an important organ for its utilization in the post-absorptive state.  

The latter is well established in mammals (Curi et al., 2005; Rhoads and Wu, 2009; Wu 

et al., 2011), and it is thought to be similar in fish (Buentello and Gatlin, 2000; Li et al., 

2009).  However, information on the effects of GLN as a dietary supplement in fish 

feeds is rather limited to date. 

In seawater eel, GLN was reported to be metabolized to produce ATP, increase 

oxygen consumption and net water flux, and the effects of GLN depended on its 

concentration (Ando, 1988).  Likewise, GLN effects were reported to be more prominent 

on the mucosal side, where its absorption limited the rate of end-product formation 

(Ando, 1988).  In addition, in vitro studies have indicated that GLN significantly 

enhanced proliferation, growth and differentiation of fish enterocytes, increasing protein 

retention and alkaline phosphatase activity (Jiang et al., 2009).  Glutamine 

supplementation in cultured enterocytes protected against peroxide-induced cell damage, 

inhibiting enterocyte lipid oxidation, facilitating recovery of Na+-K+ ATPase, superoxide 

dismutase, catalase and glutathione peroxidase activities, and maintaining glutathione 

content and its redox ratio.  This information appears to indicate that GLN is able to 

restore enteric absorption and restitute enterocyte integrity after oxidative damage (Chen 

et al., 2009). 

Because previously listed GLN actions point to improvements of GIT integrity, 

results from the present experiment are in line with the current understanding of GLN 
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metabolism in monogastric animals.  The GIT of channel catfish experienced significant 

increases in fold length and both enterocyte and microvilli height (Table 3.5).  More 

importantly, these dimensional modifications were not associated with any microscopic 

signs of enteritis, but in fact resulted in a somewhat improved fish performance (Table 

3.2).  Our results are also in agreement with other studies which consistently report 

beneficial effects upon GLN supplementation in fish (Yan and Qiu-Zhou, 2006; Qiyou et 

al., 2011), poultry (Yi et al., 2005; Bartell and Batal, 2007; Murakami et al., 2007; 

Soltan, 2009) and swine (Wu et al., 1996). 

In addition, in fish fed GLN-supplemented diet, the enterocyte turnover rate was 

increased by 19, 46 and 20% in the anterior, mid and posterior intestine, respectively, 

deducted from an increased enterocyte migration rate.  The latter corroborates the role of 

GLN as a growth factor and not just as a required nutrient, with mitogenic and anti-

apoptotic effects (Curi et al., 2005; Rhoads and Wu, 2009).  Although Jiang et al. (2009) 

reported an in vitro GLN promotion of enterocyte proliferation in fish as well as cellular 

structural integrity, the present study reports for the first time an enhanced enterocyte 

migration rates upon dietary GLN supplementation in fish.  

The GIT is not only the chief organ of nutrient digestion and absorption, but 

performs a number of physiological functions different from nutrient assimilation, being 

also important for whole-body amino acid homeostasis (Reeds and Burrin, 2000).  About 

65-75% of dietary GLN is oxidized by the intestine (Wu, 1998), which makes it almost 

unavailable to extra-intestinal tissues illustrating its crucial role to intestinal metabolism.  

Besides GLN, the intestine metabolizes several other dietary amino acids such as 
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arginine, ornithine, proline, valine, leucine, isoleucine, lysine, methionine, 

phenylalanine, threonine, glycine, and serine (Wu et al., 2005b; Wang et al., 2009), some 

of which have concurrent fates with GLN.  In the present experiment, dietary 

supplementation of 2% GLN significantly increased values of plasma threonine, glycine, 

serine and asparagine (Table 3.4).  These results are in agreement with plasma profiles 

found in humans fed free dietary GLN (Boza et al., 2001).  The enteric metabolism of 

these amino acids is not directly connected to that of GLN but rather, it appears to exert 

a sparing effect on them.  The fact is that the metabolic fate of glycine, serine and 

threonine is interconnected and these amino acids may be used by the intestine for 

synthesis of purines and pyrimidines, which are important compounds for cell 

proliferation and protein synthesis (Wu, 1998; Wu et al., 2005b).  In the current trial, it 

appeared as if having an increased GLN source primed catfish enterocytes to utilize this 

amino acid for the production of proliferative compounds instead of other dietary amino 

acids as reported for rats (Salloum et al., 1990).  Also, asparagine is a potent stimulator 

of ornithine decarboxylase – a key enzyme in polyamine metabolism – and, although it 

is not metabolized by the enterocytes, it may assist, together with GLN, in maintaining 

adequate proliferation rates for the turnover of these enteric cells (Kandil et al., 1995).   

Despite the positive effects mentioned earlier no statistical differences were 

established among treatments in the evaluated productive parameters.  This disagrees 

with findings in Jian carp where GLN supplementation (1.2 to 2%) improved weight 

gain, feed intake, feed efficiency and intestinal weight (Yan and Qiu-Zhou, 2006), as 

well as with findings in young hybrid sturgeon were supplementation (0.6 to 1.5%) 
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improved weight gain and feed efficiency (Qiyou et al., 2011).  Glutamine has been 

proven to beneficially affect several animal species with supplementation in the range of 

1% in the diet, improving performance parameters such as weight gain and/or feed 

efficiency of swine (Wu et al., 1996; Kitt et al., 2002; Zou et al., 2006) and poultry (Yi 

et al., 2001; 2005; Bartell and Batal, 2007; Soltan, 2009).  In contrast, House et al. 

(1994), Plazier et al. (2001), Murakami et al. (2007), and Sakamoto et al. (2006) found 

no effects of GLN supplementation on growth or other productive parameters of 

different animal species. 

The results of the present study indicate an efficient utilization of GLN by 

intestinal cells of channel catfish, perhaps due to the reported roles of this amino acid as 

metabolic fuel, without a significant positive outcome on growth parameters when 

supplemented in purified diets.  Longer-term trials and/or the use of practical diets may 

result in improved fish growth due to increased absorptive areas in the gastrointestinal 

tract, but more research is needed to evaluate this notion. 
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CHAPTER IV 

EVALUATION OF IN VITRO PERFORMANCE OF 

CHANNEL CATFISH LEUKOCYTES IN ARGININE 

AND/OR GLUTAMINE SUPPLEMENTED MEDIA 

 

1.  Introduction 

Infectious diseases worldwide are a major constraint for the continuous 

expansion and production of aquaculture, resulting in multimillion dollar losses each 

year (Plumb, 2001).  Significant research efforts have been implemented to prevent, 

control and treat diseases in aquaculture in order to maintain it as a sustainable industry.  

Consequently, as the primary line of defense against invading pathogens, it is crucial to 

study the immune system of fish, including specific components (e.g., leukocytes) of 

both the innate and adaptive immune responses. 

In vitro models are important for functional studies involving fish leukocytes, 

and although under this approach the roles of particular nutrients on immune 

competence have been evaluated (Villena, 2003), there is still a lack of understanding 

regarding how specific amino acids may modulate the immune function of fish. 

Glutamine (GLN) and arginine (ARG) are two amino acids with proven 

immunomodulatory effects in higher vertebrates (Li et al., 2007), including the 

enhancement of phagocytosis and bacterial killing (Wallace and Keast, 1992; 

Newsholme, 2001; Muhling et al., 2002), lymphocyte proliferation (Newsholme et al., 

1999; Choi et al., 2009), cytokine production (Newsholme, 2001; Mori and Gotoh, 2004; 



 58

Li et al., 2007), T-cells responses (Roth, 2007; Abdukalykova et al., 2008), and 

immunoglobulin synthesis (Newsholme, 2001; Tayade et al., 2006a).  As unique 

precursor for nitric oxide (NO), ARG donates nitrogen; whereas, GLN provides 

metabolic fuel to support this reaction’s kinetics.  Most of this research, however, has 

been conducted with mammalian species, whose immune system has important 

differences from that of teleost fish.  Therefore, further research is needed to assess the 

effects of these two amino acids on the immune system of fish, with the targeted goal of 

using them as dietary tools for health preservation and disease management in 

aquaculture.   

In fish, GLN’s role on leukocyte metabolism is a complex one and appears to be 

species specific.  This is in contrast with GLN’s role on mammalian leukocytes, which is 

consistent across species (Crawford and Cohen, 1985).  Conflicting reports document 

GLN-dependent (Rosenberg-Wiser and Avtalion, 1982) and GLN-independent 

(McBride and Keast, 1997; Ganassin et al., 1998) responses of proliferating cultured 

lymphocytes of fish.  Interestingly, GLN plasma levels fall sharply in disease-affected 

fish (Walker et al., 1996), which reflects increased GLN utilization; and is analogous to 

the endogenous GLN production via muscle breakdown, a well-documented catabolic 

state in humans undergoing trauma and sepsis (Griffiths, 2001), such condition may be 

reverted by provision of parenteral GLN.  The essentiality of GLN as metabolic fuel for 

active cells of the immune system in fish is further supported by the increased NO 

production documented for activated channel catfish macrophages (MØ) when the 

culture media was supplemented with GLN (Buentello and Gatlin, 1999).  Moreover, 
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dietary GLN supplementation has been shown to increase plasma levels of complement 

proteins C3 and C4 in juvenile hybrid sturgeon, Acipenser schrenckii × Huso dauricus 

(Zhu et al., 2011).   

Similarly, ARG also enhanced NO production in catfish MØ but, through a 

different mechanism (Buentello and Gatlin, 1999).  In addition, increased phagocytosis 

in channel catfish (Buentello et al., 2007) together with increased lysozyme activity and 

an enhanced respiratory burst in the Japanese flounder, Paralichthys olivaceus (Galindo-

Villegas et al., 2006) have been reported upon ARG supplementation.  More 

importantly, an experimental challenge with pathogenic bacteria is all-encompassing in 

that it tests all components of the immune system at once and, ARG has also been 

reported to increase survival of fish after exposure to Edwardsiella ictaluri (Buentello 

and Gatlin, 2001b).  On the other hand, it also has been proven that supplementation of 

ARG to culture media enhances NO production by activated MØ of channel catfish 

(Buentello and Gatlin, 1999). 

Based on the preceding information, the present study was conducted to further 

elucidate the immunomodulatory roles of ARG and GLN via in vitro studies with 

various cells of the channel catfish immune system. 

 

2.  Materials and methods 

2.1  Fish 

Healthy channel catfish with an average weight of 600 g were held in a 1100-L 

round fiberglass tank arranged as a recirculation system (flow 1.1 L/min).  This system 
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included a common settling chamber, biological filter and sand filter.  Fish were fed a 

commercial catfish diet (32% crude protein, 8% crude lipid, 90% dry matter, Land O’ 

Lakes Purina Feed LLC, Shoreview, MN), and sampled as needed.  Before drawing 

blood, fish were anesthetized with tricaine methanesulfonate (MS-222, Western 

Chemical Inc, Ferndale, WA, 100 mg ∙ L-1).  Blood was drawn from the caudal 

vasculature of three fish with heparinized syringes (5 mL, 22-ga needle), pooled into a 

composite sample and used immediately for peripheral blood lymphocyte proliferation 

assays.  Three more fish were euthanized with a more concentrated dose of MS-222 (300 

mg ∙ L-1) and head kidneys were aseptically excised and placed in cold incomplete 

catfish media (sterile, described below) and pooled into a composite sample.  All 

immunological assays were repeated twice using two separate composite samples. 

 

2.2  Culture media 

Incomplete catfish medium (ICM, pH 7.0) consisted of equal portions of AIM-V 

(31035, InvitrogenTM, Carlsbad, CA) and L-15 (L5520, Sigma, St. Louis, MO) media, 

8% cell culture grade water (SH30529, HyClone®, Logan UT), 50 units ∙ mL-1 of 

penicillin – 0.05 mg ∙ mL-1 of streptomycin (P0781, Sigma), 0.02 mg ∙ mL-1 gentamicin 

(G1397, Sigma), 0.05 mM of 2-mercaptoethanol (M3148, Sigma), and 0.09% Na2HCO3 

(S-233, Fisher Scientific, Waltham, MA).  Complete catfish medium (CCM) consisted of 

ICM plus 5% of heat-inactivated and pooled channel catfish serum (Miller et al., 1994).  

The control medium consisted of plain CCM which contained 0.83 mM of each ARG 

and GLN.  Based on previous studies with catfish MØ (Buentello and Gatlin, 1999; 
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Buentello et al., 2007), CCM was supplemented with ARG (A3784, Sigma) and GLN 

(G5763, Sigma) at 0.5 and 1 mM, respectively.  Media enrichment with ARG and GLN 

was applied individually and in combination, resulting in seven different media 

treatments. 

 

2.3  Macrophage primary culture 

Macrophages were isolated from head kidney as previously reported (Secombes, 

1990) with slight modifications.  Briefly, head kidney tissue was filtered through a 100-

µm nylon mesh.  The resulting cell suspension was layered on a Percoll (77237, Sigma) 

gradient (34%/51% v/v) and centrifuged at 400 x g for 30 min.  The cell layer at the 

interface was collected and washed two times with ice-cold (PBS) at 200 x g for 10 min.  

A final wash was conducted with antibiotic free (af)-ICM, then the cell pellet was 

resuspended in 1 mL of af-CCM.  Macrophages were enumerated using a 

hemocytometer and viability assessed by Trypan blue (T8154, Sigma) staining.  

Viability was > 95% in all cases.  Cell suspension was adjusted to 1 x 107 cells ∙ mL-1 in 

af-CCM and 100 µL of the MØ suspension were added per well in a sterile flat bottom 

96-well microplate (351172, Falcon, Le Pont De Claix, France). 

 

2.4  Phagocytosis assay 

Phagocytosis of E. ictaluri by catfish MØ cultured with different ARG, GLN, 

and ARG + GLN concentrations, was evaluated using the method described by 

Ainsworth and Chen (1990), with some modifications.  Namely, E. ictaluri isolated from 
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a natural outbreak at the Aquacultural Research and Teaching Facility, Texas A&M 

University was cultured in brain heart infusion (BHI) broth (211059, BBLTM, Sparks, 

MD) for 18 h at 27 °C.  The bacterial broth was then centrifuged at 2000 x g for 10 min 

after which the pellet was washed once in phenol-free Hank’s balanced salt solution 

(HBSS, pH 7.3, H4891, Sigma) for 10 min and resuspended in 1 mL af-ICM.  Bacteria 

were enumerated using a bacterial counter chamber and the suspension was adjusted to 6 

x 107 cells ∙ mL-1.  Before the addition of 100 µL of bacterial suspension per well (6 x 

106 cells), amino acids were added (in af-CCM) to triplicate sets of MØ primary culture 

plates.  The control medium consisted of plain af-CCM also added to triplicate wells.  

After the addition of bacterial cells, MØs were cultured at 27 °C in a humidified 5% CO2 

atmosphere for 1 h with occasional shaking.  At the end of the incubation period, 150 µL 

of MØ-bacteria suspension from each of three replicate wells were smeared onto a glass 

slide, fixed and stained with Wright’s stain (WS16, Sigma).  A light microscope 

(Olympus BH-2) was used to enumerate phagocytes (300) with at least one internalized 

bacterium.  The total number of engulfed bacteria per MØ was recorded as well.  

Phagocytic index (PI = total engulfed bacteria / total phagocytes) and phagocytic activity 

(PA= number of phagocytes with engulfed bacteria x100/ total MØ) were computed for 

each slide. 

 

2.5  Bactericidal assay 

The MØ ability to kill E. ictaluri was evaluated at different ARG, GLN, and 

ARG + GLN media concentrations using the method described by Secombes (1990), as 
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modified by Shoemaker et al. (1997).  Bacterial suspension was prepared as described 

earlier, but with a final concentration of 1 x 108 cells ∙ mL-1.  The MØ primary culture 

was incubated for 2 h, then washed twice with 200 µL of af-CCM, and supplemented 

with corresponding treatments into sets of six wells (section 2.2).  The bacterial 

suspension was added (20 µL) to each well and the plate was centrifuged at 150 x g for 5 

min.  The combined cell cultures (MØ + bacteria) were incubated for 0 h (control, three 

wells) or 2.5 h (three wells), under the same conditions as in section 2.4.  After each 

incubation period, supernatants were removed and MØ lysed with 50 µL of 0.2% Tween 

20 (H285, Mallinckrodt, St. Louis, MO) solution.  Fresh BHI was added (100 µL) to 

each well and the plate was further incubated for 18 h at 27 °C in an orbital incubator.  

After the incubation period, 20 µL of thiazolyl blue tetrazolium bromide (MTT, 10 mg ∙ 

mL-1, M5655, Sigma) were added per well and the plate incubated for an additional 15 

min.  The plate was then read at 620 nm.  Bacterial concentrations were calculated by 

comparing the absorbance (ABS) obtained for each well to a standard curve previously 

constructed (data not shown).  Bactericidal capacity (% killing = bacteria 0 h – bacteria 

2.5 h x 100/ bacteria 0 h) was computed for each well and are presented as mean % 

killing per treatment.  

 

2.6  Lymphocyte primary culture 

Lymphocytes were isolated from peripheral blood as previously described by 

Miller and Clem (1988) and Miller et al. (1994).  Briefly,  channel catfish blood (~ 4 

mL) was diluted 1:2 with ICM, then 4 mL were layered over 3 mL of LymphoprepTM 
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(1114544, Axis-Shield, Oslo, Norway) and centrifuged at 350 x g for 20 min.  

Lymphocytes were recovered from the interface.  Cells were washed with ICM at 600 x 

g for 10 min.  The resulting cell pellet was resuspended in 1 mL of CCM, enumerated 

and checked for viability as described in section 2.3 (viability was > 95%).  Lymphocyte 

concentration was adjusted to 2.5 x 106 cells ∙ mL-1 and 200 µL were added per well to a 

sterile round bottom 96-well microplate (163320, Nunc, Roskilde, Denmark). 

 

2.7  Proliferation assay 

Lymphocyte proliferation stimulated by non-specific mitogens was evaluated 

using ARG, GLN and ARG + GLN media enrichment and assessed using the method 

described by Miller and Clem (1988), with modifications.  Briefly, supplemented media 

was added to appropriate wells (sets of six for each treatment) of lymphocyte primary 

culture plate as indicated earlier (section 2.2).  Lipopolysaccharide (LPS, from 

Salmonella thyphimuryum, L6511, Sigma), concavalin A (ConA, 150710, MP 

Biologicals, Solon, OH) and a mixture of phorbol myristate acetate (PMA, P8139, 

Sigma) and Ca++ ionophore, A24187 (Ca2+, C4403, Sigma) were added to sets of 21 

wells each to achieve a final concentration of 500 mg ∙ mL-1, 50 mg ∙ mL-1 and 

0.00001:0.0001 mg ∙ mL-1, respectively.  One set of 21 wells did not receive any 

mitogen and served as control.  Cells were incubated at 27 °C in a 5% CO2 - 95% air 

incubator; media with PMA + Ca2+ was removed after 18 h and replaced with fresh 

CCM.  Cell proliferation was quantified using bromodeoxyuridine (BrdU) incorporation 

to cell DNA following manufacturer’s instructions (BrdU cell proliferation kit, 2752, 
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MilliporeTM, Billerica, MA).  After incubating cells for 18 h, lymphocytes were pulsed 

with BrdU and further incubated for 24 h.  Detection of BrdU was conducted through an 

enzyme-linked immunosorbent assay, using mice anti-BrdU monoclonal antibodies and 

peroxidase conjugated goat anti-mouse IgG antibodies.  Absorbance was read at 450 nm 

using a plate reader (Biorad, iMarkTM).  Lymphocyte proliferation capacity was 

computed and presented as stimulation index (SI = ABS stimulated cells / ABS non-

stimulated [control] cells).   

 

2.8  Amino acid profiles 

Amino acid levels in CCM, before and after cell addition, were evaluated as 

indirect assessment of amino acid utilization by MØ and lymphocytes under activated 

conditions such as bacterial killing and proliferation.  Supernatants of cell culture media 

were sampled during the bactericidal (0 h and 2.5 h) and proliferation (0 h and 18 h) 

assays, and kept at -80 °C until further analysis.  Amino acid levels in culture media 

were determined using ultraperformance liquid chromatography (UPLC-Acquity 

system®, WatersTM) and the commercial kit MassTrakTM (186004094, WatersTM, 

Milford, MA).  Samples were deproteinized with 1.5 M HClO4 (9552-05, J.T. Baker, 

Phillipsburg, NJ) and neutralized with 2 M K2CO3 (P5833, Sigma) before derivatization 

following manufacturer’s instructions with associated reagents. 
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2.9  Statistical analysis 

Because each phagocytosis, bactericidal, and proliferation assay was replicated 

twice, values from the replicate assays were first compared, via Student’s T-test, and 

found to be non-significantly different; therefore, data from the replicate assays were 

pooled and analyzed via one-way analysis of variance, after which Duncan’s multiple-

range test was used to detect potential differences in treatment means.  Data from amino 

acid profiles were compared before and after each assay using Student’s T-test.  All 

analyses were conducted using Statistical Analysis System (SAS, 9.2v) software.  

Statistical differences among treatments were considered significant at P ≤ 0.05. 

 

3.  Results 

3.1  Amino acid utilization 

Changes in amino acid levels in CCM after bactericidal assays are summarized in 

Table 4.1.  The concentrations of most amino acids decreased after 2.5 h of co-

incubation MØ-E. ictaluri.  The sum total of amino acids in the culture media also 

decreased by 23% and this reduced level was significantly different from the initial 

overall amino acid level.  Figure 4.1 illustrates changes (%∆) in amino acid levels 

sharing a common biochemical pathway with ARG and GLN.  Both ARG and GLN 

significantly decreased from the original levels – 19 and 39% reduction, respectively.   

Also, the culture media was completely devoid of citrulline after 2.5 h of incubation 

(from 2.8 to 0 nmol ∙mL-1).  Together with citrulline, serine experienced one of the most 

remarkable drops in concentration (100 and 75% reduction, respectively).  On the other 
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Table 4.1   
Medium amino acid profile (nmol · mL-1) before and after bactericidal assay with E. ictaluri1 

Amino acid 0 h 18 h Change ∆ %∆ P-Value Pooled std. error 
Hydroxyproline 5.6 2.1 - 3.6 63.4 0.015 0.9 
Histidine 376.8 277.2 - 99.7 26.4 0.025 28.5 
Phosphoethanolamine 2.5 1.4 - 1.1 43.2 0.0001 0.1 
Asparagine 520.6 309.3 - 211.3 40.6 0.006 39.2 
3-Methylhistidine 1.1 1.0 - 0.1 9.3 0.102 0.05 
Taurine 13.3 8.2 - 5.2 38.7 0.025 1.5 
1-Methylhistidine 2.2 4.3 + 2.1 94.7 0.163 1.2 
Serine 436.4 108.7 - 327.7 75.1 0.001 35.2 
Glutamine 834.7 513.3 - 321.4 38.5 0.010 70.8 
Carnosine 4.9 4.6 - 0.3 7.0 0.197 0.2 
Arginine 829.7 673.9 - 155.8 18.8 0.004 25.3 
Glycine 650.0 528.7 - 121.3 18.7 0.048 43.2 
Anserine 12.6 1.6 - 11.1 87.7 0.019 1.5 
Ethanolamine 6.8 3.0 - 3.7 55.3 0.002 0.5 
Aspartate 4.0 4.0 + 0.0 0.5 0.927 0.2 
Sarcosine 24.0 19.8 - 4.2 17.4 0.001 0.5 
Glutamate 68.8 91.1 + 22.2 32.3 0.010 4.9 
Citrulline 2.8 0.0 - 2.8 100 0.0001 0.01 
Threonine 634.0 467.9 - 166.1 26.2 0.021 44.9 
Alanine 563.7 497.0 - 66.7 11.8 0.114 33.0 
γ-Aminobutyric acid 2.6 2.8 + 0.2 8.2 0.411 1.3 
Proline 41.0 45.1 + 4.1 10.0 0.145 2.3 
β-Aminoisobutyric acid 2.5 2.3 - 0.2 9.8 0.428 0.3 
Hydroxy-lysine 1 0.9 0.8 - 0.1 8.2 0.100 0.03 
Hydroxy-lysine 1 5.4 5.8 + 0.4 7.1 0.274 0.3 
α-Aminobutyric acid 3.3 4.0 + 0.7 20.5 0.078 0.3 
Cysteine 8.9 7.2 - 1.6 18.2 0.028 0.5 
Ornithine 9.6 12.6 + 3.0 31.3 0.080 1.3 
Cystine 21.5 20.1 - 1.4 6.4 0.337 1.3 
Lysine 281.5 289.7 + 8.2 2.9 0.629 15.8 
Tyrosine 399.4 285.8 - 113.7 28.5 0.024 32.2 
Methionine 132.2 124.1 - 8.0 6.1 0.308 6.9 
Valine 292.6 259.8 - 32.8 11.2 0.107 15.8 
Isoleucine 294.2 243.2 - 51.0 17.3 0.049 18.2 
Leucine 322.5 337.7 + 15.2 4.7 0.461 16.9 
Phenylalanine 221.0 212.6 - 8.4 3.8 0.492 11.1 
Tryptophan 31.4 30.1 - 1.3 4.1 0.507 1.7 
SUM 7067 5403  1664 23.5 0.013 391.7 
1 Values represent means of three replicate wells. 
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Fig. 4.1.  Amino acid changes in medium after a bactericidal assay with head-kidney-derived MØ.  

Peripheral blood lymphocyte proliferation assay.  Bars represent means (± S.E.) of the % of the difference 

from the initial value (∆%).  All presented values, but ornithine’s, were significantly (P < 0.05) different 

from the initial value. 
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hand, ornithine increased 31%, although this level was not significantly different (P = 

0.08) from the original value.  Glutamate concentration significantly increased after the 

bactericidal assays; whereas, taurine significantly decreased.  Interestingly, proline 

levels remained unchanged. 

Changes in amino acid levels in the culture media after proliferation assays are 

summarized in Table 4.2.  In general, these changes were more pronounced than those 

observed for the bactericidal assay.  The sum of total amino acids in the culture media 

significantly decreased by 45% from the original level after lymphocyte proliferation.  

Figure 4.2 illustrates changes in amino acid levels sharing a common biochemical 

pathway with ARG and GLN, after proliferation.  As in the bactericidal assays, both 

ARG and GLN significantly decreased from the original levels – 46 and 52% reduction, 

respectively.  Citrulline followed the same pattern as in the bactericidal assay, being 

completely cleared from the culture media.  Also, ornithine, glutamate and proline levels 

were significantly diminished (68, 40, and 44%, respectively) from before-assay levels.  

There was no change in the levels of taurine before or after proliferation but, aspartate 

evidently increased 3.8-fold after lymphocyte proliferation in a significant manner.  

 

3.2  Head kidney-derived MØ phagocytic and bactericidal capacity 

Phagocytosis of head kidney MØ, expressed as PI and PA, is presented in Table 

4.3.  The PI significantly increased with ARG supplementation to the culture media, 

irrespective of GLN addition.  Phagocytic index increased 2.3-fold upon ARG 
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Table 4.2   
Medium amino acid profile (nmol · mL-1) before and after lymphocyte proliferation assay1 

Amino acid 0 h 18 h Change ∆ %∆ P-Value Pooled std. error 
Hydroxyproline 5.6 3.8 - 1.8 32.2 0.166 0.9 
Histidine 376.8 218.7 - 158.1 42.0 0.005 28.2 
Phosphoethanolamine 2.5 1.6 - 0.9 36.6 0.622 1.6 
Asparagine 520.5 285.0 - 235.5 45.2 0.005 40.9 
3-Methylhistidine 1.1 26.4 + 25.3 2271 0.001 2.6 
Taurine 13.3 11.0 - 2.3 17.2 0.357 2.2 
1-Methylhistidine 2.2 2.5 + 0.3 15.4 0.910 2.8 
Serine 436.4 252.1 - 184.3 42.2 0.009 39.1 
Glutamine 834.7 400.5 - 434.2 52.0 0.004 72.3 
Carnosine 4.9 0.9 - 4.0 81.9 0.044 0.9 
Arginine 829.7 446.7 - 383.0 46.2 0.0001 31.9 
Glycine 650.0 379.1 - 271.0 41.7 0.003 41.7 
Anserine 12.6 1.5 - 11.1 88.5 0.016 1.5 
Ethanolamine 6.8 5.1 - 1.7 25.1 0.099 0.8 
Aspartate 4.0 19.0 + 15.0 373.1 0.016 2.0 
Sarcosine 24.0 0.0 - 24.0 100 0.0001 0.1 
Glutamate 68.8 41.6 - 27.2 39.6 0.003 4.3 
Citrulline 2.8 0.0 - 2.8 100 0.0001 0.01 
Threonine 634.0 356.6 - 277.4 43.8 0.004 45.6 
Alanine 563.7 315.5 - 248.3 44.0 0.002 32.8 
γ-Aminobutyric acid 2.6 1.8 - 0.8 31.2 0.374 2.2 
Proline 41.0 22.7 - 18.4 44.8 0.001 2.0 
β-Aminoisobutyric acid 2.5 0.0 - 2.5 100 0.0001 0.1 
Hydroxy-lysine 1 0.9 0.0 - 0.9 100 0.0001 0.1 
Hydroxy-lysine 1 5.4 0.7 - 4.7 86.6 0.0001 0.4 
α-Aminobutyric acid 3.3 0.5 - 2.8 83.5 0.035 0.5 
Cysteine 8.8 5.7 - 3.1 35.8 0.012 0.4 
Ornithine 9.6 3.0 - 6.6 68.8 0.005 1.2 
Cystine 21.5 12.1 - 9.4 43.9 0.0001 0.7 
Lysine 281.5 129.2 - 152.3 54.1 0.0001 11.6 
Tyrosine 399.4 230.6 - 168.8 42.3 0.006 32.3 
Methionine 132.2 71.4 - 60.7 46.0 0.0001 5.8 
Valine 292.6 160.6 - 132.1 45.1 0.001 14.0 
Isoleucine 294.2 162.2 - 132.0 44.9 0.001 17.0 
Leucine 322.5 175.0 - 147.5 45.7 0.001 14.9 
Phenylalanine 221.0 131.4 - 89.6 40.5 0.002 12.3 
Tryptophan 31.4 18.2 - 13.2 42.2 0.003 2.0 
SUM 7067 3893  3174 44.9 0.002 431.7 
1 Values represent means of three replicate wells. 
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Fig. 4.2.  Amino acid changes in medium after a proliferation assay with peripheral blood lymphocytes.  

Bars represent means (± S.E.) of the % of the difference from the initial value (∆%).  All presented values 

were significantly (P < 0.05) different from the initial value. 
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fortification at 0.5 mM but, further supplementation (1 mM) did not elicit additional 

improvements.  Glutamine supplementation alone made no difference on PI values.  

Although PA levels were noticeably higher for all MØ cultured in amino acid-

supplemented media as compared to control media, only those cultured with 1 mM 

ARG, 0.5 mM ARG + GLN and 1 mM ARG + GLN displayed significantly higher PA 

values than those of MØ cultured in control media.  The highest PA index was observed 

for MØ cultured in 0.5 mM ARG + GLN, a 3-fold improvement from the control media.  

Table 4.3 also illustrates MØ bactericidal ability, presented as mean % killing.  Arginine 

supplementation at 0.5 mM elicited a significant 45% increase over that attained by MØ 

in control medium.  Further supplementation of ARG and/or GLN did not change the 

ability of MØ to kill E. ictaluri. 

 

3.3  Proliferation of peripheral blood lymphocytes 

Proliferation of peripheral blood lymphocytes upon non-specific mitogenic 

stimulation is summarized in Table 4.4 and presented as SI.  The response of channel 

catfish lymphocytes to non-specific mitogens was positively modulated by 

supplementation of either ARG or GLN to the culture media.  Arginine + GLN at 0.5 

mM consistently exhibited a significantly higher SI value.  Concavalin A-treated cells 

significantly increased proliferation rates when ARG or GLN (either alone or in 

combination) were present in the culture media at a concentration of 1 mM.  

Lymphocytes cultured in the presence of 0.5 mM ARG + GLN and exposed to PMA + 

Ca2+ had the highest proliferation rates but, no further enhancement was attained above 
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Table 4.3 
Phagocytic and killing capacity against E. ictaluri of head-kidney-derived MØ incubated with 
supplemental levels of ARG and/or GLN1 

  Phagocytosis Assay  Bactericidal Assay 

 Cell culture media Phagocytosis index Phagocytosis activity   Mean % killing 

CCM 1.92,c 13.7c  34.6b 

 + GLN 0.5 mM 2.1c 23.6bc  37.5b 

 + GLN 1 mM 2.4bc 25.6bc  47.6ab 

 + ARG 0.5 mM 4.3a 24.7bc  50.4a 

 + ARG 1mM 4.4a 39.7ab  45.6ab 

 + ARG + GLN 0.5 mM 3.7ab 42.7a  42.4ab 

 + ARG + GLN 1 mM 4.8a 38.6ab  42.3ab 

      

Pr > F3 0.003 0.01  0.044 

Pooled std. error 0.439 7.11  7.98 

1 Values represent means of 6 replicate wells. 
2 Different superscript letters indicate significant (P < 0.05) differences as evaluated by Duncan’s multiple range test. 
3 Significance probability associated with the F-statistic.   
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Table 4.4   
Proliferation capacity upon non-specific stimulation of peripheral blood lymphocytes incubated with 
supplemented levels of ARG and/or GLN1 

  Stimulation index 

 Cell culture media ConA LPS PMA + Ca2+ 

CCM 2.02,d 2.5c 4.0c 

 + GLN 0.5 mM 4.2c 3.3b 6.5ab 

 + GLN 1 mM 6.2ab 5.0a 6.1ab 

 + ARG 0.5 mM 5.1bc 3.2b 5.4bc 

 + ARG 1 mM 6.1ab 4.9a 5.7ab 

 + ARG + GLN 0.5 mM 6.6a 5.4a 7.4a 

 + ARG + GLN 1 mM 6.0ab 3.6b 6.3ab 

  

Pr > F3 < 0.0001 < 0.0001 0.014 
Pooled std. error 0.430 0.206 0.530 
1 Values represent means of 6 replicate wells. 
2 Different superscript letters indicate significant (P < 0.05) differences as evaluated by Duncan’s multiple  
range test. 

3 Significance probability associated with the F-statistic.  
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this concentration.  There was a step-wise increase in SI for LPS-treated lymphocytes in 

that, as the concentration of each amino acid increased in the culture media so did SI.  

Also, a limited synergistic effect was accomplished by supplementing both amino acids 

at 0.5 mM (a 2-fold increase over control values) but not at 1 mM.  Finally, GLN 

supplementation appeared to have a greater impact on lymphocyte proliferation rates 

than ARG. 

 

4.  Discussion 

In quiescent immune cells, found in homeostatic conditions, nutrient utilization 

should remain at a minimum level for maintenance purposes.  However, during an 

immune challenge, utilization of key nutrients (including amino acids) by these cells 

should sharply increase (Newsholme et al., 1999).  In the present experiment, the amino 

acid analysis performed on culture media proved to be ideally suited to detect 

differences in uptake and utilization of ARG, GLN and other amino acids by channel 

catfish leukocytes, MØ and lymphocytes, experimentally induced to proliferate, 

phagocytize or kill.  

Because CCM adequately satisfies the metabolic requirements of channel catfish 

immune cells it is widely used for in vitro studies with this species (Miller et al., 1994; 

Stuge et al., 1997; Khayat et al., 2001; Edholm et al., 2010) and thus constitutes a 

suitable control media.  The significant decline in amino acid concentration after cell 

induction observed in the present experiment (tables 4.1 and 4.2), is consistent with 

earlier studies on mammalian cells (Straus et al., 1977; Segel, 1992; Muhling et al., 
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2002).  As in leukocytes from higher vertebrates, it is likely that fish cells actively 

transport amino acids against a concentration gradient, such that the intracellular 

concentration became many times higher than the concentration in the medium.  In the 

present study it is important to point out that cell proliferation demanded nearly twice as 

much amino acids from the culture medium as did the bactericidal assay.  This may be 

attributed to the increased amino acid demand, both as energy substrates and synthetic 

precursors, exerted by proliferating immune cells (Newsholme et al., 1999; Hotamisligil 

and Erbay, 2008; Choi et al., 2009).  It is also possible that increased amino acid usage 

may be directed to the production of immune mediators, such as cytokines (Mori and 

Gotoh, 2004; Hotamisligil and Erbay, 2008).   

It also should be noted that 21 amino acids accounted for most of media amino 

acid loss during lymphocyte proliferation, compared to only 12 amino acids during the 

bacterial killing process.  This partially agrees with previous mammalian reports (Segel, 

1992), highlighting ARG, GLN, isoleucine, leucine, lysine, methionine, threonine, 

tryptophan, valine, tyrosine, histidine, cysteine, phenylalanine, serine and alanine (15 

amino acids) as necessary for optimal in vitro proliferation, DNA synthesis and survival 

of lymphocytes.  In addition, channel catfish lymphocytes also consumed citrulline, 

ornithine, proline, glutamate, asparagine and glycine.   

The sharp decline in ARG and GLN concentrations after cell activation is also in 

line with previous studies (Newsholme et al., 1999) indicating that from the many amino 

acids available in cell culture medium, mammalian MØ utilize only GLN and ARG in 

significant quantities.  Moreover, Nishiyama et al. (2010) reported that activated MØ 
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produce greater amounts of glycine, glutamate, alanine and histidine, and consume 

serine and GLN at the highest rates.  Data from the present MØ trials is similar in that 

GLN and ARG accounted for 30% of the absolute amino acid losses; and GLN and 

serine were consumed at the highest rates.  However, only glutamate was produced in 

greater amounts. 

Because commercially available culture media is designed to emulate the nutrient 

composition of specific body fluids (e.g., catfish plasma), the data reported herein 

corroborates the essentiality of adequate amino acid supplies to support a 

physiologically-efficient immune cell function in fish.  The possibility of using 

nutritional interventions to enhance the immune system in fish is further confirmed by 

the fact that the diet strongly affects the concentration of most amino acids in the body 

(Li et al., 2007). 

Interestingly, after the bactericidal challenge, concentrations in media of ARG 

and GLN decreased 18 and 38%, respectively.  Serine and GLN were the most used 

amino acids by MØ in absolute terms during the bactericidal assay; whereas, ARG was 

the fifth.  Similarly, it is widely accepted that MØ activation in vitro, leads to a 

significant increase in GLN utilization for important cell metabolites needed for proper 

phagocytosis and bacterial killing (Wallace and Keast, 1992; Newsholme, 2001).  

Additionally, it would be expected that ARG is more readily used by MØ to produce NO 

during the bacterial killing process (Mori and Gotoh, 2004).  However, even though 

ARG transport is increased in MØ generating NO (Bogle et al., 1992), activated MØ 

possess a high rate of arginase activity, using the extracellular ARG for ornithine 
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production (Mills, 2001), which concurs with the increased ornithine values (38%, not 

significantly different) observed in this experiment.  Newsholme et al. (1999) reported 

that activated mammalian MØ use GLN at a higher rate to meet the intracellular ARG 

needs and then use this ARG for NO production.  The current finding of a more distinct 

decrease in extracellular GLN than ARG partially correlates with the previous statement 

and is in agreement with previous results in our laboratory (Buentello and Gatlin, 1999).  

In addition, Wu and Brosan (1992) reported that mammalian MØ can convert citrulline 

into ARG, and this is also thought to be the case for channel catfish (Buentello and 

Gatlin, 1999).  Accordingly, in the present experiment, medium citrulline levels 

surprisingly decreased below detection levels after the incubation period, suggesting a 

substantial usage of this amino acid by activated MØ.  While the fate of GLN and 

citrulline for ARG synthesis cannot be proven through the approach used in this 

experiment, it could be a plausible explanation for the current findings. 

In regard to the amino acid changes observed during the proliferation assay, the 

ARG value decreased 46%, while the GLN concentration decreased 52%, which 

indicates a 2.5- and 1.4-fold increase over that observed in the bactericidal assay.  In this 

case, both GLN and ARG were the most used amino acids by lymphocytes during 

proliferation, accounting for 26% of the absolute loss of amino acids.  These results are 

in agreement with previous findings for both amino acids in mammals (Li et al., 2007; 

Hotamisligil and Erbay, 2008; Choi et al., 2009), but differ from the scarce reports with 

fish lymphocytes from other species, which appear to minimize GLN essentiality for cell 

proliferation (Bols et al., 1994; McBride and Keast, 1997; Ganassin et al., 1998).  To our 
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knowledge, no reports exist for ARG metabolism during lymphocyte proliferation in 

fish.  Arginine and GLN have been proven to influence several lymphocyte metabolic 

functions in mammals including protein synthesis (Segel, 1992), regulation of cell-cycle 

progression (Rodriguez et al., 2007), and energy utilization (Newsholme et al., 1999), 

hence their preferential use by these cells during immune challenges (Hotamisligil and 

Erbay, 2008). 

Interactions between E. ictaluri and channel catfish immune cells have been 

extensively studied in the past (Ainsworth and Chen, 1990; Shoemaker et al., 1997; 

Booth et al., 2009).  Amino acid management to enhance health status also has been 

studied in this species (Buentello and Gatlin, 1999; Buentello et al., 2007).  However, to 

our knowledge, the present study is pioneer in assessing these two factors in 

combination.   

In this experiment, phagocytic and bactericidal capacities of head-kidney MØ 

against E. ictaluri were modulated by amino acid supplementation to the culture media.  

This is in accordance with similar studies in mammalian (Wallace and Keast, 1992; 

Wang et al., 2003; Blanc et al., 2005; Roth, 2007) and fish species (Galindo-Villegas et 

al., 2006; Buentello et al., 2007).  It has been proven that ARG modulates MØ 

phagocytosis (Nii et al., 1992; Moffat et al., 1996; Choi et al., 2009), where NO seems to 

play a crucial role affecting the MØ cytoskeleton (Moffat et al., 1996).  Both, 

supplemental ARG (Buentello and Gatlin, 1999) and E. ictaluri (Schoor and Plumb, 

1994), has been proven to support an up-regulated synthesis of NO in channel catfish 

MØ.  Furthermore, it is interesting that fish MØ utilize serine in similar amounts as 
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GLN.  Serine is needed for de novo synthesis of ceramide, which may act as a secondary 

molecule and appears to play a critical role in many important MØ inflammatory 

signaling, mainly in response to LPS, such as stimulation of inducible isoform of NO 

synthase (Knapp and English, 2000).  Therefore, it is feasible that the increased 

phagocytosis observed in the present experiment, may have been driven by NO 

modulation, where amino acids are being coordinately utilized to promote a sustained 

response against E. ictaluri.  However, despite the high GLN utilization by activated 

MØ, limited modulation of phagocytosis and killing capacity was achieved by 

supplementing GLN alone to the culture media.  These findings emphasize the need for 

extracellular ARG to enhance channel catfish MØ function against this pathogen. 

Higher mean % killing of E. ictaluri was expected with higher levels of either 

amino acid.  Nevertheless, it is noteworthy that ARG supplementation at 0.5 mM had the 

highest bactericidal effect and further supplementation with or without GLN did not 

increase this parameter, despite having similar phagocytic performance.  One possible 

reason for the observed effect is the high arginase activity in activated MØ as previously 

discussed.  Nevertheless, if that is the case, GLN supplementation should have solved 

this paradox, but results showed that GLN supplementation did not have a strong effect 

on bacterial killing.  Furthermore, previous results in our laboratory indicated that 

medium supplementation with ARG + GLN significantly increased NO production in 

channel catfish activated MØ (Buentello and Gatlin, 1999), but this does not appear to 

correlate with E. ictaluri killing in the current experiment.  This discrepancy may be 

explained by findings from a recent study indicating that E. ictaluri encodes an acid-
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activated urease that is required for intracellular replication in channel catfish MØ 

(Booth et al., 2009), suggesting the utilization of urea produced by MØ (Mills, 2001; 

Munder, 2009) to increase intracellular pH to evade killing.  Furthermore, it seems 

feasible that E. ictaluri possesses the genetic makeup to either up-regulate host arginase 

or to enzymatically use microenvironmental ARG for urea synthesis (Thune et al., 

2007).  Therefore, it might be possible that supplementing higher levels of ARG or GLN 

may raise levels of urea in MØ, providing higher levels of substrate for the bacteria’s 

urease, hence its increased survival in the present experiment.  Yet further research is 

needed to evaluate this notion. 

Phagocytic efficiency and killing capacity of MØ are crucial in channel catfish 

for E. ictaluri immunity and resistance (Chen et al., 2002).  Here, ARG had an increase 

on both parameters, but only with mid level of supplementation.  Results in the present 

study corroborates with the findings reported by Buentello and Gatlin (2001b) where 

increased levels of ARG pool elevated by dietary ARG supplementation, increased 

resistance of channel catfish to E. ictaluri infection.  Interestingly, in that experiment, 

the highest level of ARG had lower survival than a moderate level of supplementation, 

what might be related to the findings reported here for the highest levels of ARG 

supplementation to the media.  Thus, although our findings appears promising for the 

utilization of ARG and/or GLN as dietary tools for enhancing disease resistance, 

attention needs to be put on a possible synergy among high levels of these two amino 

acids and the pathogenesis of E. ictaluri.  However, the finding of increased 
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phagocytosis with supplemented levels of ARG warrants further research with other 

pathogen models.  

In this study, naïve lymphocyte proliferation capacity upon non-specific 

mitogenic stimulation with ARG and/or GLN supplemented culture media was 

evaluated.  Results herein showed a clear effect on stimulation index by supplementing 

media with either of these two amino acids, which agrees with previous finding in other 

animal models (Chang et al., 1999; Newsholme et al., 1999; Abdukalykova et al., 2008; 

Choi et al., 2009).  It is known that GLN is obligatory in mammalian lymphocytes 

cultures (Newsholme, 2001; Roth, 2007); however, as previously discussed, differences 

seem to exist in fish species, and channel catfish lymphocyte responded differently than 

those from rainbow trout, Onchorynchus mykiss (Ganassin et al., 1998), or snapper, 

Pargus auratus (McBride and Keast, 1997).  On the other hand, ARG has also 

proliferative promoting effects in mammalian lymphocytes (Newsholme et al., 1999; 

Ochoa et al., 2001; Suarez Butler et al., 2005), but no data have been published in fish 

cell cultures to date.  In the present study, T lymphocytes (ConA sensitive), B 

lymphocytes (LPS sensitive) and both (PMA + Ca2+ sensitive) proliferation was 

achieved as in previous studies with channel catfish lymphocytes (Miller and Clem, 

1988; Lin et al., 1992; Miller et al., 1994).  This proliferation rate was enhanced by 

supplementing with either ARG or GLN, and generally was higher in media 

supplemented with either amino acid at 1 mM.  Although a strong synergistic effect was 

not evident, supplementation of a combination of both amino acids at 0.5 mM 

consistently produced the best performance in the proliferation assays.  The latter might 
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be explained by different fates of these two amino acid in lymphocytes when both are 

present in high levels in the surrounding environment instead of a possible common 

usage when one is low or even lacking (Buentello and Gatlin, 1999; Newsholme et al., 

1999; Moinard et al., 2000; Blanc et al., 2005).  As expected, SI in the CCM and 

PMA+Ca2+ treated cells was higher when compared to the other mitogens.  Interestingly, 

SI changes by supplementing either or both amino acids in the PMA+Ca2+ treated cells 

was of a lesser magnitude to those obtained in the cells treated with ConA or LPS, when 

all are compared to their appropriate control.  In this sense, PMA+Ca2+ stimulation of 

channel catfish cells involves more than one type of leukocytes, namely, B and T 

lymphocyte, and monocytes (Miller and Clem, 1988; Lin et al., 1992), which seems to 

result in a higher demand for these two amino acids. 

The adaptive immune response is mainly driven by different lymphocyte subsets, 

which have the capability to create memory.  This unique characteristic increases the 

chances of rapid clearance and survival on subsequent infection by the same pathogen.  

However the capacity to generate memory relies on an initial activation and expansion of 

naïve lymphocytes after encounter with the appropriate antigen and cytokine stimulation 

(Boyman et al., 2009).  Therefore, the findings of an increased proliferation of naïve 

lymphocytes driven by ARG or GLN supplementation gain importance for fish 

immunology because it raises the possibility for in vivo supplementation with these two 

amino acids to promote creation of memory during vaccination. 

In conclusion, the current findings appear promising for fish immunonutrition.  

This study has demonstrated that these two amino acids play a pivotal role in both 
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branches of the immune system, being important for the very first response against an 

invading pathogen, increasing phagocytosis and killing capacity of MØ against E. 

ictaluri, and for expanding the response upon activation, of either naïve T or B 

lymphocyte subsets and thus increase the creation of memory.  
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CHAPTER V 

EVALUATION OF DIETARY ARGININE AND/OR  

GLUTAMINE SUPPLEMENTATION ON THE EFFICACY 

OF Edwardsiella ictaluri VACCINATION OF JUVENILE 

CHANNEL CATFISH 

 

1.  Introduction 

Growth and disease resistance are two traits of pivotal importance to the 

aquaculture industry.  Impaired disease resistance will have a strong negative impact on 

growth and survival of fish potentially resulting in large economical losses (Plumb, 

2001).  Therefore, disease prevention is extremely relevant to all aquaculture ventures 

aiming for profitability and sustainability (Klesius et al., 2004). 

Different prophylactic measures may be taken to increase disease resistance 

including vaccination, proper nutrition and feeding practices, stress reduction, 

maintenance of adequate water quality and correct use of antibiotics and other chemicals 

(Klesius et al., 2004).  Vaccination has been proven to be somewhat effective against 

disease occurrence in aquaculture.  However, there is a considerable need to develop 

high-efficacy vaccines because the lack of effectiveness is a factor that constrains the 

widespread use of this method of disease control (Secombes, 2008; Shoemaker et al., 

2009). 

The efficacy of vaccines might be influenced by a variety of factors besides the 

immunogen per se.  Although nutritional factors are recognized as having major 
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consequences on the immune responses of fish (Klesius et al., 2004), and great efforts 

have been expended in this area of research, the role of nutrition on the immune system 

and health of fish is very complex and still not totally elucidated.  Nutritional 

requirements need to be met in order to support proper growth, but also, nutritional 

intervention through supplementation of key nutrients may improve health and increase 

disease resistance.  Generally, such research has been conducted by feeding the fish for a 

specific time period and then evaluating immune parameters or survival after a disease 

challenge (Waagbø, 2006).  However, few studies have combined immunization with 

nutrient supplementation (Sealey and Gatlin, 2002a; Li et al., 2004).  Under this 

scenario, the amino acids glutamine (GLN) and arginine (ARG) may prove fundamental 

as they have been demonstrated not only to promote growth (Wu, 2010) but also to have 

an array of desirable immunological attributes (Li et al., 2007). 

Immunity is a complex process involving multiple humoral and cellular 

components from both the innate and adaptive immune system, such as cytokines, 

immunoglobulins, mononuclear cells (macrophages [MØ] and lymphocytes), as well as 

polymorphonuclear cells including neutrophils (Secombes, 2008).  Adequate amino acid 

availability plays a key role in the performance of the immune system while combating 

invading pathogens.  For example, GLN improves the secretion of important cytokines 

such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-2, IL-4, IL-6 and IFN-γ 

(Newsholme, 2001; Yeh et al., 2003; Yi et al., 2005; Li et al., 2007).  In addition, GLN 

improves phagocytosis and killing capacity of neutrophils and MØ (Calder and Yaqoob, 

1999), enhancing the expression of major histocompatibility complex-II molecules in 
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MØ (Newsholme, 2001).  Also, lymphocyte proliferation is improved in the presence of 

this amino acid, and it plays an important role for plasma cell differentiation and 

immunoglobulin synthesis (Newsholme, 2001; Li et al., 2007).  There is only a single 

report of dietary GLN supplementation in fish increasing plasma levels of complement 

proteins C3 and C4 (Zhu et al., 2011)  

Similarly, ARG possesses several immunological functions.  As the sole 

precursor for nitric oxide (NO), ARG has a key role for the innate and adaptive immune 

systems.  High concentrations of ARG increases cytotoxicity of monocytes and natural 

killer cells, as well as synthesis of IL-2 and CD3 expression in T-cells (Li et al., 2007; 

Choi et al., 2009).  In addition, ARG increases phagocytosis and killing capacity of MØ 

and neutrophils (Muhling et al., 2002; Choi et al., 2009), also modulating lymphocyte 

subsets and positively affecting their proliferation, adhesion molecules and chemotaxis 

(Zaloga and Siddiqui, 2004; Abdukalykova et al., 2008; Choi et al., 2009).  Dietary ARG 

supplementation to poultry has proven to increase cell-mediated immunity and antibody 

titers after vaccination (Abdukalykova and Ruiz-Feria, 2006; Tayade et al., 2006a; Ruiz-

Feria and Abdukalykova, 2009).  In channel catfish, ARG-supplemented diets increased 

production of NO by MØ (Buentello and Gatlin, 1999) and their phagocytic capacity 

(Buentello et al., 2007), as well as resistance to experimental E. ictaluri infection 

(Buentello and Gatlin, 2001b). 

Enteric septicemia of catfish (ESC) is caused by E. ictaluri, a gram negative, rod-

shaped, motile bacterium of the family Enterobacteriacae (Hawke et al., 1981), which is 

capable of intra- and extra-cellular replication (Thune et al., 1993; Booth et al., 2006).  
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This disease is the most prevalent and economically devastating disease in farmed-raised 

channel catfish, costing the US catfish industry $40–60 million annually (Shoemaker et 

al., 2009).  A lived-attenuated vaccine was developed against ESC (Klesius and 

Shoemaker, 1999) and made into a commercially available option for ESC control 

(Intervet/Schering plough Animal Health, Summit, NJ  AQUAVAC-ESC®), which is 

presently the only licensed vaccine against this disease (APHIS-USDA, 2008).  

Although this vaccine has proven to build protection against E. ictaluri, this protection 

seems to be not permanent and not entirely effective as it does not encompass all 

bacterial strains causing ESC (Klesius and Shoemaker, 1999; Shoemaker et al., 2009).  

Apparently, fish survival upon vaccination is dependent on specific application protocols 

(Carrias et al., 2008) and the time lapsed after immunization.  In addition, vaccine 

administration often triggers response mechanisms that may negatively affect fish 

growth and metabolism (Midtlyng and Lillehaug, 1998; Ronsholdt and McLean, 1999; 

Lönnström et al., 2001). 

Here, it is hypothesize that dietary ARG and GLN intervention in channel catfish 

may enhance vaccine effectiveness against ESC, while preventing detrimental changes 

in fish growth.  Therefore, the objective of the present experiment was to evaluate 

immune and metabolic performance of juvenile channel catfish fed supplemental levels 

of ARG, GLN and their combination, before and after vaccination against ESC, and after 

infection with E. ictaluri. 
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2.  Materials and methods 

2.1  Experimental diets 

A basal diet was formulated to contain 26% crude protein from casein, gelatin 

and a crystalline L-amino acid premix.  Dextrin was provided at 15.9% and lipids from 

corn and menhaden oil at 8%, on a dry-matter basis, for an estimated available energy 

level of 12 kJ · g-1 (Table 5.1).  This diet met minimum dietary requirements of channel 

catfish (NRC, 2011).  Three experimental diets were formulated to provide either ARG 

at 4%, GLN at 2% or a combination of both (same levels) by supplementing L-ARG 

(11490 USB, Cleveland, OH) and/or GLN (16285-USB) to the basal diet while 

maintaining them isonitrogenous by adjusting the levels of a 50:50 glycine-aspartate 

premix (Buentello and Gatlin, 2000).  All diets were prepared as previously described 

(Bai and Gatlin, 1994) and maintained at -20 °C until used. 

 

2.2  Feeding trial  

Four hundred and eighty disease-free and E. ictaluri naïve juvenile catfish, with 

an average weight of 18.8 ± 0.6 g were placed into 24, 110-L aquaria, at a density of 20 

fish per aquarium.  The aquaria were arranged as a recirculating system equipped with a 

sand filter for mechanical filtration and biofilter for ammonia removal.  A constant flow 

of 1L · min-1 was maintained in all aquaria.  Dissolved oxygen and water temperature 

were maintained at 90% of air saturation and 27 ± 1 °C, respectively.  A 12:12 h 

light:dark cycle was provided through fluorescent lights regulated with a timer.  Water 
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Table 5.1 
Formulation and proximate composition of the basal diet  

Ingredient % of dry weight 

Casein1 16.2 

Gelatin1 3.7 

Amino acid premix1,2 7.1 

Dextrin1 15.9 

Celufil1 29.3 

Corn oil3 4.0 

Menhaden oil3 4.0 

Vitamin premix4 3.0 

Mineral premix5 4.0 

Ca(PO4)6 1.0 

Carboxymethyl cellulose1 2.2 

Aspartate:Glycine premix1,2 8.2 

L-ARG1 0.2 

L-GLN1 0.0 

Analyzed proximate composition (% dry weight) 
Dry matter 90.2 

Crude protein 33.5 

Crude lipid 7.9 

Ash 3.8 
1 USB, Cleveland, OH, USA. 
2 Buentello and Gatlin (2000).  Consisted of (% of diet) : L-histidine, 0.14; L-isoleucine, 

0.19; L-leucine, 0.06; L-lysine, 0.64; LD-methionine, 0.32; L-phenylalanine, 0.42; L-

serine, 1.57; L-threonine, 0.13; L- tryptophan, 0.02; L-valine, 0.11; L-proline, 1.57; L-

alanine, 1.57. 
3 Omega Protein, Reedville,VA, USA. 
4 Moon and Gatlin (1991). 
5 MP Biomedicals, Solon, OH, USA. 
6 Fisher Scientific, Waltham, MA, USA

. 
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quality was monitored every other day for pH, hardness, alkalinity, nitrite, ammonia, 

temperature and dissolved oxygen and remained within acceptable levels known to 

support optimal growth of channel catfish.  Fish were acclimated to the experimental 

conditions for a period of 2 weeks and fed the basal diet.  Thereafter, each dietary 

treatment was randomly assigned to six aquaria, and fish were fed the experimental or 

basal diets for a period of 4 weeks.  Feeding rate was set at a level approaching satiation 

(4% of biomass) and provided in two daily feedings (a.m. and p.m.).  Fish were weighed 

once a week and the feed ration was adjusted accordingly.  Procedures used in this study 

were approved by the Texas A&M University System Animal Care and Use Committee. 

 

2.3  Vaccination 

After 2 weeks of the feeding trial, fish were vaccinated against E. ictaluri using 

the commercial vaccine Aquavac-ESC.  Vaccination protocol followed the 

manufacturer’s instructions.  Briefly, one vaccine vial was dissolved with water to reach 

a dosage sufficient to immunize 1 kg of fish biomass in 1.15 L of tank water.  Fish from 

three aquaria per treatment were removed and placed in previously cleaned plastic 

containers with an appropriate amount of water and oxygen supply, and exposed to the 

vaccine solution for 30 min.  After vaccination, fish were returned to their appropriate 

aquarium.  Fish in the remaining three aquaria were sham-treated as the vaccinated fish, 

by placing them in a container with tank water and no vaccine.  The feeding trial 

continued for 2 more weeks. 
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2.4  Disease challenge 

After 14 d post-vaccination (dpv, 4 weeks into the feeding trial) 20 fish per 

treatment were challenged with a pathogenic strain of E. ictaluri via intraperitoneal (i.p.) 

injection of 5 x 108 colony forming units (CFU)/fish.  This dose was previously 

determined in a median lethal dose (LD50) trial (described below).  Bacteria-exposed fish 

were monitored for morbidity and mortality every 12 h until the vaccinated control fish 

reached 100% mortality (day 8), and every 24 h until day 21 post-infection (pi). 

For the LD50 trial, inoculums were prepared with a pathogenic E. ictaluri isolated 

and molecularly identified (Williams and Lawrence, 2010) from a natural outbreak as 

described by Buentello and Gatlin (2001b).  Dilutions were made with brain heart 

infusion (BHI) broth to obtain four different concentrations.  The dosages were i.p. 

injected to four different groups of fish (n = 6), weighing 15 g ± 1, at a dose of 0.5 

mL/fish.  A fifth group received sterile BHI to serve as a control.  Fish were checked for 

mortality for a 4-d period. 

 

2.5  Sample collection 

Samples from nine randomly selected fish per treatment (three per aquarium) 

were taken at 2 weeks of the feeding trial (pre-vaccine), 7 dpv and 14 dpv.  Prior to all 

sampling, fish were euthanized with tricaine methanesulphonate (MS-222, Western 

Chemical Inc., Ferndale, WA, USA, 300 mg · L-1).  Blood samples (~1 mL) were 

obtained from the caudal vasculature with heparinized needles (1-mL syringe, 23-ga 

needle).  Heparinized blood (n=3) was used for peripheral blood lymphocyte isolation 
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(described below).  Also, plasma was obtained (n=6) by centrifuging whole blood at 

3800 x g for 10 min.  Intestinal mucus samples were obtained by placing both sides of a 

1-cm2 filter paper (Wathman No.2, 1002-042) in contact with the enteric mucosa for 1 

min each side; protein was eluted by shaking filter papers in 1 mL of PBS (Phosphate 

buffer solution, pH 7.2, Sigma P4417) for 2 h (Zilberg and Klesius, 1997).  Bile was 

collected using a 1-mL syringe, 23-ga needle, and centrifuged at 2000 x g for 10 min 

(Coscia and Oreste, 2000).  Fish whole-body and intestinal length and weight were 

recorded along with liver, spleen, head and trunk kidney, and left side fillet muscle 

weight.  Spleen and both head and trunk kidneys, from three fish, were placed in sterile 

Hank’s buffered salt solution (HBSS, Sigma H4891) and used for lymphocyte isolation.  

All remaining tissue samples and plasma (from six fish) were quickly frozen in liquid 

nitrogen and kept at -80 °C for further analysis.  Intestinal mucus and bile samples were 

kept at -20 °C.  In addition, available fish were sampled at 3 dpi for plasma and 14 dpi 

for plasma, intestinal mucus and bile. 

 

2.6  Growth and performance parameters 

To corroborate previous effects of ARG and GLN supplementation in channel 

catfish and to determine if these amino acids affected growth and other responses after 

vaccination, the following indicators were analyzed.  Relative weight gain (WG = final 

weight – initial weight x 100 / initial weight), feed efficiency ratio (FER = weight gain / 

dry feed intake), protein efficiency ratio (PER = weight gain / dry protein fed), condition 

factor (CF= fish weight x 100 / length ^ 3), fillet yield (FY= muscle weight x 2 x 100 / 
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whole-body weight), hepatosomatic index (HSI= liver weight x 100 / whole-body 

weight), relative intestinal length (RIL= intestine length x 100 / whole-body length), 

relative intestinal weight (RIW = intestine weight x 100 / whole-body weight), relative 

spleen weight (RSW = spleen weight x 100 / whole-body weight), relative kidney weight 

(RKW = kidney weight x 100 / whole-body weight) and percent survival (final no. of 

living fish x 100 / initial no. of fish) were computed.  Also crude protein (AOAC, 2005) 

was estimated for muscle, intestine, liver, spleen and kidney to obtain protein retention 

(PR = [final tissue protein – initial tissue protein] x 100 / total protein fed) for each 

tissue. 

 

2.7  Amino acid analysis 

To evaluate changes and modulation of amino acids, free-pool (perchloric acid 

extracted) amino acid profiles were analyzed in plasma and muscle at each sampling 

point during the feeding trial.  Sample preparation before derivatization was as described 

by Buentello and Gatlin (2002) with modifications.  Briefly, muscle (~500 mg) was 

homogenized in 3 mL of 1.5 M HClO4 (9552-05, J.T. Baker, Phillipsburg, NJ), 

centrifuged at 3000 x g for 15 min, then supernatant was neutralized with 2M K2CO3 

(P5833, Sigma).  Plasma was deproteinized (HClO4) and neutralized (K2CO3) as muscle 

samples.  Amino acid were analyzed using an ultraperformance liquid chromatograph 

(UPLC-Acquity system®, WatersTM, Milford, MA) and the commercial kit MassTrakTM 

(186004094, WatersTM). 
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2.8  Anti-E. ictaluri antibody detection 

To evaluate specific humoral responses against E. ictaluri, specific antibody 

titers in plasma, intestinal mucus and bile were measured through enzyme linked 

immunosorbent assay (ELISA).  Plates were prepared as described by Waterstrat et al. 

(1989), and stored at room temperature until used. 

Based on previous titration assays of positive and negative samples (data not 

shown), PBS was used to dilute (v/v) plasma 1:160, and bile 1:20.  Intestinal mucus was 

not diluted.  In order to detect specific antibodies against E .ictaluri, 50 µL of sample 

were dispensed to duplicate wells of the ELISA plate.  After 1 h incubation, the plate 

was washed three times with PBS.  Mouse anti-channel catfish IgM (9E1, University of 

Mississippi) was used as a primary antibody, adding 50 µL (1:10 dilution) to each well; 

repeating incubation and washing steps.  The secondary antibody consisted of 

peroxidase-conjugated sheep anti-mouse IgG (Sigma, A5906), adding 50 µL (1:1000 

dilution) to each well; repeating both incubation and washing steps.  Substrate solution 

(1 tetramethylbenzidine tablet [Sigma, T5525] + 1 mL dimethyl sulfoxide [Sigma, 

154838] + 9 mL citric acid buffer [Sigma, P4809]+ 2 mL H2O2 [Sigma, H3410]) was 

added (100 µL) to each well.  Reaction was stopped after 5 min with 50 µL of 1M 

H2SO4 (VWR, 7662-93-9).  An ELISA plate reader (Biorad, iMarkTM) was used to read 

the absorbance (ABS) at 450 nm.  Inter-plate differences were prevented by 

standardizing raw values to a positive control value.   
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2.9  Lymphocyte isolation from blood and tissues 

To study immune cellular responses, lymphocytes were isolated from peripheral 

blood as described by Miller et al. (1994).  These cells were isolated from spleen and 

both head and trunk kidney following the procedures of Secombes (1990), with 

modifications.  Briefly, heparinized blood was diluted 1:2 with PBS (pH 7.2).  Each 

tissue was mechanically disaggregated using a glass tissue homogenizer and filtered 

through a 100-µm nylon mesh.  Then cell suspensions were layered over LymphoprepTM 

(Axis-Shield PoC AS, 1114545) and centrifuged at 350 x g for 20 min.  Lymphocytes 

were recovered from the interface.  Cells were washed three times with PBS at 600 x g 

for 10 min, red blood lysing buffer (0.15 M NH4Cl + 0.01 M KHCO3 + 0.0003 M 

ethylenediaminetetraacetic acid) was used to lyse remanent red blood cells.  Cells were 

resuspended in 1 mL ice-cold PBS and enumerated using a hemocytometer and viability 

assessed by trypan blue (Sigma, T8154) staining.  Viability was > 95% in all cases.  

Lymphocytes for flow cytometry were kept in cold PBS; whereas, those cells intended 

for responsiveness assays were transferred to a complete channel catfish medium (CCM, 

L-15:AIM-V:de-ionized water, 45:45:10; 50 units · mL-1 of penicillin – 0.05 mg · mL-1 

of streptomycin, 0.02 mg · mL-1 gentamicin, 0.05 mM of 2-mercaptoethanol, 0.09% 

Na2HCO3, and 5% pooled heat-inactivated channel catfish serum).  

 

2.10  Flow cytometry for B-lymphocytes 

To analyze lymphocyte population modulation, the proportion of B-lymphocyte 

(IgM+ cells) was analyzed.  Isolated lymphocytes were transferred (5 x 105) to a flow 
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cytometry tube (VWR, 60818-408) and washed once with 1 mL of PBS.  Supernatant 

was decanted and the tube blotted on paper towel.  Cells were resuspended in the 

remaining PBS.  Primary antibody (9E1, 1:10 dilution) was added (10 µL) incubating in 

ice for 1 h.  Cells were then washed two times with 2 mL of PBS.  After the second 

wash, supernatant was decanted and tube blotted on paper towel, resuspending cells in 

remaining PBS.  Secondary antibody (FITC conjugated Goat anti-mouse IgG, Sigma 

F8521, 1:100 dilution) was added (5 µL) and incubated for 1 hr in ice.  After washing 

the cells twice they were resuspended in 300 µL of PBS.  Stained cells were counted in a 

cell-coulter (FACSCalibur, Becton-Dickinson).  Results are presented as the mean 

percentage amount of IgM+ cells per 10,000 events. 

 

2.11  Lymphocyte responsiveness against E. ictaluri 

In order to evaluate formation of memory cells, proliferation of lymphocytes 

upon exposure to a known antigen (E. ictaluri) was analyzed.  Isolated lymphocyte 

concentration was adjusted to 2.77 x 106 cell · mL-1 with CCM.   Lymphocytes were 

seeded by adding 180 µL to sextuplet wells of a sterile round bottom 96-well microplate 

(Nunc, 163320).  Formalin-killed E. ictaluri (bacteria suspension cultured with 1% 

formalin for 24 h) was added (20 µL) to three wells to achieve 1 x 105 bacteria per well.  

The remaining three wells received CCM to serve as control (non-stimulated) cells.  A 

separate set of triplicate wells with cells from a control fish received Concavalin-A to 

serve as a positive control for the assay.  Cells were cultured at 27 °C in a humidified 5% 

CO2 atmosphere for 72 h.  Cells were pulsed with 0.5 µCi of 3H-thymidine (MP 
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biologicals, 124066) 18 h before harvesting.  Incorporation of the radionucleotide was 

measured with a liquid scintillation β−counter (Perkin Elmer, Wallac MicroBeta 

TriLux).  Results are presented as stimulation index (SI = counts per minute stimulated 

cells / counts per minute control cells).  The positive control cells validated the assays as 

proliferation was detected (data not-shown). 

 

2.12  Statistical analysis 

Pre-vaccine data were subjected to one-way analysis of variance (ANOVA).  

Post-vaccine data were subjected to two-way ANOVA with diet and vaccine as main 

effects and the interaction of both.  The Statistical Analysis System (SAS, 9.2 v) 

software was used for all analyses.  A P ≤ 0.05 was taken to indicate statistical 

significance among treatment means, which were separated using Duncan’s multiple 

range test.  Values are presented as means with a pooled standard error (P.S.E) per 

variable measured. 

 

3.  Results 

3.1  Growth and performance parameters 

Growth parameters, pre- and post- vaccination, are summarized in Table 5.2.  

Before vaccination, there was a significant positive effect on WG, FE and PER of fish 

fed ARG-supplemented diets, with or without GLN addition.  No synergistic effect was 

observed by supplementing both amino acids to the diet.  Similarly, consistent trends 

were observed at 7 and 14 dpv in all these parameters when diet was considered a 
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Table 5.2 
Growth parameters pre- and post-vaccination with Aquavac-ESC®1 

Survival 

14dpv 

 

87 

77 

84 

96 

88 

77 

98 

85 

6.6 

 

0.502 

0.323 
0.339 

1 Values represent the mean of three replicate tanks. 
2 WG, weight gain = final weight – initial weight x 100 / initial weight. 
3 FE, feed efficiency ratio = weight gain / dry feed intake. 
4 PER, protein efficiency ratio = weight gain / dry protein fed. 
Survival = final no. of living fish x 100 / initial living fish. 
5 Different superscript letters indicate significant (P < 0.05) differences as evaluated by Duncan’s multiple range test. 
6 Significance probability associated with the F-statistic.  

7dpv 

 

98 

96 

98 

100 

100 

94 

98 

100 

1.8 

 

0.598 

0.482 
0.242 

PER 

14dpv 

 

0.3 

0.5 

0.4 

0.5 

0.7 

0.7 

0.5 

0.6 

0.11 

 

0.059 

0.179 
0.7 

7dpv 

 

0.3 

0.6 

0.5 

0.5 

1.0 

0.8 

0.7 

0.7 

0.12 

 

0.01 

0.76 
0.23 

FE 

14dpv 

 

0.1 

0.2 

0.2 

0.2 

0.3 

0.3 

0.2 

0.2 

0.05 

 

0.047 

0.108 
0.695 

7dpv 

 

0.1 

0.2 

0.2 

0.2 

0.4 

0.3 

0.3 

0.3 

0.05 

 

0.001 

0.44 
0.09 

WG 

14dpv 

 

8.6 

17 

11.9 

15 

24.9 

24.4 

14.4 

19.5 

3.78 

 

0.002 

0.04 
0.515 

7dpv 

 

6.1 

15.1 

12.3 

11.1 

25.0 

21.0 

16.7 

17.9 

3.1 

 

0.0002 

0.328 
0.046 

Factor 

Vaccine 

 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

No 

Pooled std. error 

 

Diet 

Vaccination 

Diet*Vaccination 

Diet 

 

Basal 

 

GLN 

 

ARG 

 

ARG + 
GLN 

 

Pr > F6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pre-vaccine 

Survival 

 

97 

 

98 

 

96 

 

98 

 

2.81 

 

0.83 

 

 

PER4 

 

0.64b 

 

0.73b 

 

1.01a 

 

1.07a 

 

0.07 

 

0.001 

 

 

FER3 

 

0.27b 

 

0.31b 

 

0.45a 

 

0.42a 

 

0.04 

 

0.001 

 

 

WG2 

 

11.65,b 

 

13.3b 

 

19.8a 

 

18.3a 

 

1.9 

 

0.001 

 

 

 

Diet 

 

Basal 

 

GLN 

 

ARG 

 

ARG + 
GLN 

Pooled 
std. 
error 

Pr > F 
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factor.  On the other hand, vaccination only had a significant effect at 14 dpv, where WG 

was lower in the vaccinated than unvaccinated groups.  Significant interaction of these 

two factors was only observed at 7 dpv, as WG was reduced in vaccinated fish fed the 

basal diet by 60% in comparison to unvaccinated animals.  Importantly, supplementing 

the diet with either GLN or ARG ameliorated this effect.  In addition, ARG tended (P = 

0.09) to increase WG in vaccinated fish. 

Organosomatic indices for the pre-vaccine period are showed in Table 5.3.  Only 

CF, FY and RIL were affected by diet in the pre-vaccine period.  Fish fed diets 

supplemented with GLN or ARG had significantly higher CF compared to fish fed the 

basal diet.  However, in those fed the diet supplemented with ARG + GLN, CF was 

lower compared to those fed the diet in which GLN was supplemented alone.  Fillet 

yield was significantly higher in fish fed the two diets supplemented with ARG.  

However, FY from fish fed the diet supplemented with GLN was not different from the 

ARG-fed fish or those fed the basal diet.  Concerning the RIL, all supplemented diets 

had a significant increase of up to 30%; however, no synergistic effect was observed by 

providing both amino acids in the diet.  After vaccination (Table 5.4), diet continued to 

have an effect on CF and RIL at 7 dpv, with the same pattern as described earlier.  

Vaccination affected FY at 7 dpv, as well as RIW, RSW and RKW at 14 dpv.  In all 

cases but IRW, vaccinated groups had higher indexes than the non-vaccinated.  An 

interaction between vaccine and diet was only observed in FY and RKW at 7 dpv, and in 

RIW at 14 dpv.  
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Table 5.3 
Organosomatic indices pre-vaccination with Aquavac-ESC®1 

Diet CF2 FY3 RIL4 RIW5  HSI6 RSW7 RKW8 

                
Basal 0.719,c 20.2b 0.62b 1.03 1.37 0.084 0.55 

GLN 0.75a 23.8ab 0.90a 1.15 1.45 0.061 0.65 

ARG 0.74ab 27.1a 0.90a 1.11 1.53 0.057 0.65 

ARG + GLN 0.72b 27.0a 0.89a 1.25 1.38 0.065 0.66 

Pooled std. 
error 0.012 0.84 0.081 0.20 0.11 0.016 0.08 

Pr > F10 0.003 0.024 0.003 0.586 0.390 0.991 0.309 
1 Values represent the mean of six randomly sampled fish. 
2 CF, condition factor = fish weight * 100 / length ^ 3 
3 FY, fillet yield = muscle weight * 100 / whole-body weight.  
4 HSI, hepatosomatic index = liver weight * 100 / whole-body weight. 
5 RIL, relative intestinal length = intestine length * 100 / whole-body length  
6 RIW, relative intestinal weight = intestine weight * 100 / whole-body weight.  
7 RSW, relative spleen weight = spleen weight * 100 / whole-body weight. 
8 RKW, relative kidney weight = kidney weight * 100 / whole-body weight. 
9 Different superscript letters indicate significant (P < 0.05) differences as evaluated by Duncan’s 

multiple range test.  
10 Significance probability associated with the F-statistic. 

  



 
102

Table 5.4 
 Organosomatic indices post-vaccination with Aquavac-ESC®1 

RKW8 

14dpv 

0.84 

0.58 

0.98 

0.78 

0.90 

0.69 

0.79 

0.88 

0.14 

 

0.284 

0.029 

0.256 
1 Values represent the mean of six randomly sampled fish. 
2 CF, condition factor = fish weight x 100 / length ^ 3. 
3 FY, fillet yield = muscle weight x 2 x 100 / whole-body weight. 
4 RIL, relative intestinal length = intestine length x 100 / whole-body length.  
5 RIW, relative intestinal weight = intestine weight x 100 / whole-body weight. 
6 HSI, hepatosomatic index = liver weight x 100 / whole-body weight. 
7 RSW, relative spleen weight = spleen weight x 100 / whole-body weight. 
8 RKW, relative kidney weight = kidney weight x 100 / whole-body weight. 
9 Significance probability associated with the F-statistic. 

7dpv 

0.65 

0.76 

1.01 

0.71 

0.66 

0.65 

0.56 

0.90 

0.13 

 

0.135 

0.715 

0.022 

RSW7 

14dpv 

0.082 

0.077 

0.131 

0.078 

0.109 

0.085 

0.074 

0.077 

0.022 

 

0.135 

0.017 

0.332 

7dpv 

0.061 

0.060 

0.078 

0.059 

0.052 

0.057 

0.070 

0.074 

0.009 

 

0.064 

0.580 

0.290 

HSI6 

14dpv 

1.20 

1.28 

1.21 

1.29 

1.20 

1.38 

1.26 

1.19 

0.12 

 

0.358 

0.259 

0.500 

7dpv 

1.28 

1.42 

1.33 

1.24 

1.34 

1.16 

1.31 

1.36 

0.14 

 

0.716 

0.764 

0.356 

RIW5 

14dpv 

0.73 

1.05 

0.95 

0.87 

0.85 

1.06 

0.90 

0.95 

0.10 

 

0.832 

0.027 

0.050 

7dpv 

0.83 

0.89 

0.85 

0.90 

0.95 

0.92 

0.90 

0.96 

0.11 

 

0.73 

0.509 

0.930 

RIL4 

14dpv 

0.81 

0.95 

0.95 

0.94 

0.91 

0.91 

0.92 

0.87 

0.08 

 

0.762 

0.606 

0.372 

7dpv 

0.71 

0.76 

0.97 

0.92 

0.91 

0.90 

0.94 

0.90 

0.11 

 

0.043 

0.839 

0.917 

FY3 

14dpv 

33.2 

33.2 

36.3 

35.1 

35.8 

36.7 

33.0 

33.9 

1.73 

 

0.074 

0.859 

0.850 

7dpv 

33.0 

33.0 

35.8 

28.4 

36.5 

30.7 

34.9 

28.5 

1.53 

 

0.230 

0.0001 

0.01 

CF2 

14dpv 

0.68 

0.68 

0.66 

0.68 

0.70 

0.68 

0.65 

0.69 

0.03 

 

0.764 

0.433 

0.536 

7dpv 

0.65 

0.69 

0.71 

0.72 

0.71 

0.73 

0.75 

0.71 

0.03 

 

0.004 

0.696 

0.362 

Factor 

Vaccine 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

No 

Pooled std. error 

 

 

Vaccination 

Diet*Vaccination 

Diet 

Basal 

 

GLN 

 

ARG 

 
ARG + 
GLN 
 

Pr > F9 

Diet 
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Protein retention by channel catfish organs, pre- and post-vaccination, is 

presented in Table 5.5.  After 2 weeks of the feeding trial, although fish fed the diet 

supplemented with ARG had higher numerical values, there were no significant 

differences among treatments in any of the tissues analyzed.  In contrast, 7 d after 

vaccination, PR in all tissues was affected by dietary treatment.  Fish fed supplemental 

levels of ARG or GLN (but not combined) had significantly higher PR.  Interestingly, 

fish fed the diet supplemented with ARG had the highest muscle PR; whereas, those fed 

the diet supplemented with GLN had the highest kidney PR.  At this point (7 dpv), only 

PR in muscle was significantly affected by vaccination, with vaccinated fish having 

higher PR than non-vaccinated fish.  Additionally, an interaction between diet and 

vaccination was observed in liver.  Vaccinated fish fed diets supplemented with GLN 

and/or ARG and non-vaccinated fish fed the diet supplemented with ARG alone had 

significantly higher PR than vaccinated and non-vaccinated fish fed the basal diet.  

Protein retention at 14 dpv was only affected in kidney.  Fish fed the basal diet had 

significantly lower PR than the other treatments; whereas, vaccinated fish had 

significantly higher PR than the non-vaccinated group. 

 

3.2  Amino acid profiles 

Plasma amino acid profile for the pre-vaccine period is presented in Table 5.6.  

Only a few changes in amino acids were noticed.  Plasma ARG levels were significant 

higher (2-fold) in fish fed diets supplemented with ARG.  Glutamine supplementation 

did not affect levels of this amino acid.  Ornithine levels were higher only in fish fed the 
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Table 5.5  
Protein retention1 by individual tissues pre- and post-vaccination with Aquavac-ESC®2 

Kidney 

14dpv 

0.17 

0.01 

0.33 

0.24 

0.34 

0.14 

0.23 

0.26 

0.07 

 

0.043 

0.035 

0.340 

1 Protein retention = (initial tissue protein – initial tissue protein) x 100 / total protein fed. 
2 Values represent the mean of tissues from six randomly sampled fish. 
3 Significance probability associated with the F-statistic. 

7dpv 

0.05 

0.11 

0.58 

0.25 

0.23 

0.33 

0.15 

0.19 

0.11 

 

0.036 

0.669 

0.200 

Spleen 

14dpv 

0.032 

0.035 

0.059 

0.036 

0.041 

0.043 

0.039 

0.028 

0.010 

 

0.635 

0.421 

0.701 

7dpv 

0.008 

0.010 

0.051 

0.027 

0.030 

0.025 

0.041 

0.032 

0.010 

 

0.003 

0.093 

0.360 

Muscle 

14dpv 

5.80 

5.00 

8.5 

8.5 

11.0 

7.4 

9.6 

7.6 

1.70 

 

0.143 

0.201 

0.751 

7dpv 

3.3 

2.6 

10.8 

5.7 

10.7 

10.4 

8.6 

4.4 

1.53 

 

0.001 

0.030 

0.324 

Liver 

14dpv 

0.21 

0.22 

0.27 

0.45 

0.43 

0.30 

0.38 

0.30 

0.10 

 

0.366 

0.925 

0.401 

7dpv 

0.11 

0.21 

0.62 

0.20 

0.44 

0.47 

0.43 

0.32 

0.09 

 

0.014 

0.109 

0.034 

Gut 

14dpv 

0.03 

0.21 

0.21 

0.31 

0.48 

0.25 

0.32 

0.33 

0.12 

 

0.163 

0.746 

0.293 

7dpv 

0.05 

0.01 

0.21 

0.33 

0.40 

0.44 

0.34 

0.14 

0.13 

 

0.022 

0.881 

0.636 

Factor 

Vaccine 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

No 

Pooled std. error 

 

 

Vaccination 

Diet*Vaccination 

Diet 

Basal 

 

GLN 

 

ARG 

 

ARG + 
GLN 

 

Pr > F3 

Diet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pre-vaccine 

Kidney 

0.01 

 

0.20 

 

0.24 

 

0.31 

 

0.126 

 

0.403 

 

 

Spleen 

0.03 

 

0.02 

 

0.02 

 

0.06 

 

0.017 

 

0.465 

 

 

Muscle 

3.36 

 

3.28 

 

7.42 

 

4.59 

 

1.86 

 

0.469 

 

 

Liver 

0.52 

 

0.45 

 

0.60 

 

0.75 

 

0.184 

 

0.713 

 

 

Gut 

0.26 

  

0.33 

  

0.41 

  

0.67 

  

0.196 

 

0.574 

  

  

  

Diet 

Basal 

 

GLN 

 

ARG 

 

ARG + 
GLN 

Pooled 
std. 
error 

Pr > F 
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Table 5.6 
Plasma amino acid profiles (nmol · mL-1) pre-vaccination with Aquavac-ESC®1 

Diet Pooled 
std. 

error 
Pr > F2 

Amino acid Basal GLN ARG 
ARG + 
GLN 

Hydroxyproline 352.9 438.8 574.4 805.4 163.1 0.296 
Histidine 86.2 88.9 78.5 126.9 19.3 0.354 
Phosphoethanolamine 117.83,a 44.9b 28.2b 31.2b 9.6 0.001 
Asparagine 151.5 104.4 136.9 149.7 24.3 0.527 
3-Methylhistidine 55.4 24.0 48.7 71.0 10.5 0.070 
Taurine 678.4 505.1 380.6 585.3 524.7 0.300 
1-Methylhistidine 17.4b 13.5b 20.9b 36.8a 4.4 0.024 
Serine 370.5a 198.8b 171.1b 188.8b 27.0 0.003 
Glutamine 277.9 221.3 254.8 303.0 28.3 0.735 
Carnosine n.d n.d n.d n.d  --  -- 
Arginine 103.9b 110.1b 229.8a 282.7a 26.2 0.049 
Glycine 484.0 323.5 268.3 353.8 72.1 0.262 
Anserine 2.6 10.2 19.1 27.6 9.1 0.305 
Ethanolamine 64.7 46.6 40.3 63.3 0.9 0.224 
Aspartate 45.9 43.7 33.1 23.1 6.5 0.121 
Sarcosine 18.1 11.9 8.3 15.3 2.4 0.090 
Glutamate 181.4 133.4 105.7 732.8 299.8 0.446 
Citrulline 2.7 4.4 4.4 7.2 2.0 0.504 
β-Alanine 10.7 10.5 9.0 11.7 1.3 0.549 
Threonine 246.9 196.5 207.8 169.1 20.5 0.135 
Alanine 706.5 597.8 517.5 728.3 93.0 0.398 
γ-Aminobutyric acid 31.2a 17.9ab 12.4b 31.8a 4.7 0.046 
Proline 344.5 467.5 594.3 829.9 310.8 0.727 
Hydroxylysine 18.6 14.5 16.9 21.0 4.5 0.776 
α-Aminobutyric acid 78.3a 36.8b 38.5b 37.7b 7.1 0.008 
Cysteine 16.4 7.5 4.7 4.2 4.0 0.196 
Ornithine 42.1b 39.3b 68.2b 151.1a 24.0 0.035 
Cystine 17.1 28.0 19.7 23.3 5.7 0.585 
Lysine 341.5 230.0 270.8 285.3 55.9 0.588 
Tyrosine 102.3 57.5 84.1 103.4 17.5 0.286 
Methionine 121.3 57.6 32.9 101.9 24.2 0.109 
Valine 551.9 455.8 397.0 513.9 50.9 0.230 
Isoleucine 355.9 267.6 219.5 304.6 30.0 0.062 
Leucine 638.6 475.3 451.5 543.0 50.6 0.113 
Homocysteine 3.4 3.4 5.9 4.3 1.6 0.685 
Phenylalanine 207.0 167.2 157.9 251.3 32.1 0.231 
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Table 5.6 continued 

Diet Pooled 
std. 

error 
Pr > F2 

Amino acid Basal GLN ARG 
ARG + 
GLN 

Tryptophan 76.3 59.8 68.4 123.5 19.9 0.185 
1 Values represent the mean of six randomly sampled fish. 
2 Significance probability associated with the F-statistic. 
3 Different superscript letters indicate significant (P < 0.05) differences as evaluated by Duncan’s multiple range test.  
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diet supplemented with both amino acids, with values of 3.6, 3.8 and 2.2-fold those of 

fish fed the basal, GLN and ARG diets, respectively.  Other amino acids affected were γ-

aminobutyric acid (GABA), which was lower in fish fed ARG-supplemented diets.  

Serine, α-aminobutyric acid (AABA) and phosphoethanolamine (PEA) were higher in 

fish fed basal diet; whereas, methylhistidine (MH) was higher in fish fed the ARG + 

GLN diet. 

At 7 dpv (Table 5.7), plasma amino acid profile changes were more accentuated 

than during the pre-vaccine period.  Diet had an effect on circulating ARG but not in 

circulating GLN.  Fish fed diets supplemented with either ARG or GLN had 

significantly higher (P < 0.05) plasma ARG than those fed the basal and ARG + GLN 

diets.  Citrulline levels were higher in fish fed the GLN diet than the rest of the 

treatments.  Diet had also an important effect on hydroxyproline, MH, citrulline, 

threonine, AABA, cysteine, leucine and tryptophan.  On the other hand, asparagine, 

glycine and AABA were significantly higher in non-vaccinated fish, while 

ethanolamine, GABA and methionine remained lower.  Vaccine and diet interaction had 

an effect on hydroxyproline, asparagine, serine, glutamine and AABA.  Non-vaccinated 

fish fed the diet supplemented with GLN had significantly higher levels of circulating 

GLN than vaccinated animals.  Also, the former group of fish had higher levels of 

hydroxyproline, asparagine and AABA.  A similar pattern was seen in fish fed ARG + 

GLN but without significant differences (P > 0.05) in the GLN values.  Fish fed either 

ARG-supplemented diet had a noticeable tendency to lower plasma ARG levels when 

vaccinated (P = 0.09).  In contrast, fish fed the basal diet or the GLN-
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Table 5.7 
Plasma amino acid profiles (nmol · mL-1) 7 dpv with Aquavac-ESC®1 

Pr > F2 

Diet *Vaccine 

0.012 

0.617 

0.608 

0.030 

0.637 

0.215 

0.451 

0.048 

0.030 

0.352 

0.096 

0.156 

0.960 

0.627 

0.398 

0.503 

Vaccine 

0.128 

0.437 

0.175 

0.018 

0.491 

0.086 

0.541 

0.182 

0.16 

0.441 

0.283 

0.038 

0.283 

0.019 

0.553 

0.868 

Diet 

0.006 

0.173 

0.585 

0.176 

0.215 

0.365 

0.043 

0.069 

0.53 

0.411 

0.021 

0.794 

0.075 

0.652 

0.094 

0.288 

Pooled 
std. 

error 

34.1 

7.0 

4.2 

11.9 

16.5 

202.7 

2.2 

20.4 

90.8 

5.0 

21.4 

32.8 

3.0 

4.7 

3.8 

5.1 

Diet / Vaccine 

ARG + GLN 

Yes 

78.5 

33.3 

20.9 

40.6 

14.5 

1282.4 

9.4 

88.3 

397.7 

0.6 

113.1 

99.5 

5.3 

37.6 

10.0 

4.7 

No 

66.9 

42.8 

14.7 

97.1 

18.0 

554.0 

10.3 

164.1 

500.9 

1.4 

162.8 

234.8 

2.7 

25.1 

10.7 

14.2 

ARG 

Yes 

212.3 

46.8 

13.2 

40.8 

19.2 

780.7 

14.5 

84.4 

593.2 

0.6 

165.9 

116.1 

12.3 

31.0 

23.0 

7.1 

No 

174.8 

49.0 

13.4 

55.7 

53.6 

655.0 

11.9 

109.6 

507.9 

1.4 

205.2 

164.8 

9.0 

29.3 

16.5 

6.0 

GLN 

Yes 

58.3 

49.3 

18.8 

45.4 

46.0 

900.2 

5.6 

130.6 

235.1 

15.5 

191.5 

142.9 

11.3 

42.1 

16.4 

7.1 

No 

256.6 

59.7 

9.1 

83.0 

46.1 

558.2 

10.4 

160.6 

682.7 

1.3 

167.8 

194.1 

10.9 

29.3 

21.5 

7.1 

Basal 

Yes 

75.1 

49.5 

12.8 

85.1 

18.3 

958.3 

6.0 

176.4 

464.1 

1.6 

112.3 

179.7 

7.4 

34.9 

18.0 

18.6 

No 

80.7 

43.2 

11.8 

65.1 

13.3 

1105.7 

6.8 

125.8 

377.4 

3.1 

88.7 

154.7 

4.2 

26.9 

12.2 

12.7 

Amino acid 

Hydroxyproline 

Histidine 

Phosphoethanolamine 

Asparagine 

3-Methylhistidine 

Taurine 

1-Methylhistidine 

Serine 

Glutamine 

Carnosine 

Arginine 

Glycine 

Anserine 

Ethanolamine 

Aspartate 

Sarcosine 
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Table 5.7  continued 

Pr > F2 

Diet *Vaccine 

0.207 

0.963 

0.688 

0.732 

0.288 

0.673 

0.319 

0.432 

0.002 

0.192 

0.441 

0.712 

0.720 

0.280 

0.090 

0.401 

Vaccine 

0.151 

0.295 

0.137 

0.196 

0.888 

0.029 

0.384 

0.091 

0.02 

0.708 

0.463 

0.777 

0.787 

0.435 

0.021 

0.794 

Diet 

0.291 

0.05 

0.969 

0.02 

0.891 

0.708 

0.552 

0.722 

0.014 

0.001 

0.927 

0.113 

0.193 

0.128 

0.102 

0.029 

Pooled 
std. 

error 

8.7 

2.4 

0.9 

19.9 

47.8 

6.3 

145.9 

2.4 

3.7 

1.3 

17.8 

2.0 

57.8 

9.3 

6.3 

28.8 

Diet / Vaccine 

ARG + GLN 

Yes 

63.2 

3.6 

5.0 

71.8 

232.6 

20.7 

86.6 

8.5 

14.5 

2.3 

45.4 

0.8 

136.8 

46.4 

42.6 

169.5 

No 

41.9 

1.3 

7.2 

91.2 

309.2 

12.1 

79.0 

2.7 

30.6 

2.6 

47.3 

2.2 

204.4 

57.6 

14.8 

202.5 

ARG 

Yes 

52.0 

3.4 

6.0 

68.3 

303.8 

18.9 

368.9 

9.7 

10.6 

1.2 

35.7 

4.8 

146.3 

42.3 

18.7 

212.6 

No 

55.6 

1.8 

6.1 

96.8 

265.9 

11.5 

179.6 

4.7 

16.8 

1.8 

37.4 

5.8 

169.6 

45.6 

12.8 

175.8 

GLN 

Yes 

64.3 

9.6 

6.0 

119.5 

220.6 

31.0 

77.8 

10.1 

16.7 

4.8 

66.3 

6.5 

270.2 

79.1 

24.6 

256.5 

No 

69.8 

6.6 

6.8 

154.6 

286.2 

10.8 

356.6 

6.8 

35.0 

6.4 

20.2 

4.2 

288.2 

55.3 

7.1 

284.5 

Basal 

Yes 

76.0 

2.0 

6.0 

131.2 

295.7 

24.3 

119.3 

6.0 

32.6 

9.0 

34.2 

2.5 

230.6 

57.3 

10.3 

264.8 

No 

51.2 

1.5 

6.7 

124.2 

210.7 

17.8 

406.7 

7.7 

18.9 

5.2 

39.1 

0.7 

166.6 

45.6 

15.8 

219.4 

Amino acid 

Glutamate 

Citrulline 

β-Alanine 

Threonine 

Alanine 

γ-Aminobutyric acid 

Proline 

Hydroxylysine 

α-Aminobutyric acid 

Cysteine 

Ornithine 

Cystine 

Lysine 

Tyrosine 

Methionine 

Valine 
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Table 5.7  continued 

Pr > F2 

Diet *Vaccine 

0.811 

0.477 

0.386 

0.188 

0.522 

1 Values represent the mean of six randomly sampled fish. 
2 Significance probability associated with the F-statistic. 

Vaccine 

0.732 

0.638 

0.285 

0.167 

0.236 

Diet 

0.072 

0.033 

0.099 

0.056 

0.037 

Pooled 
std. 

error 

32.0 

36.7 

2.5 

12.6 

4.9 

Diet / Vaccine 

ARG + GLN 

Yes 

107.9 

207.2 

1.4 

94.7 

33.0 

No 

136.9 

243.0 

4.3 

104.9 

34.5 

ARG 

Yes 

131.3 

247.8 

3.3 

116.2 

42.6 

No 

103.5 

192.7 

5.4 

120.6 

43.2 

GLN 

Yes 

203.9 

315.2 

6.5 

157.7 

53.8 

No 

182.0 

337.7 

12.3 

118.5 

44.8 

Basal 

Yes 

181.7 

304.7 

6.8 

128.8 

44.0 

No 

171.0 

251.7 

3.8 

101.8 

34.1 

Amino acid 

Isoleucine 

Leucine 

Homocysteine 

Phenylalanine 

Tryptophan 
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supplemented diet tended to have higher values of this amino acid when vaccinated.  

Finally, serine decreased in vaccinated fish fed the diet supplemented with ARG + GLN. 

At 14 dpv (Table 5.8) only ARG, GLN, MH, taurine, β-alanine, alanine and 

methionine were significantly affected by diet.  Arginine levels remained high in fish fed 

either ARG-supplemented diet and, for the first time, GLN was higher in fish fed ARG-

enriched diets.  Also, these fish had higher values of MH.  Fish fed the GLN diet had 

significantly higher values of circulating taurine and methionine than fish fed the basal 

diet or the ARG + GLN-supplemented diet.  Fish fed the basal diet had the lowest levels 

of β-alanine.  Conversely, vaccinated fish had higher values of carnosine and 

methionine, and lower values of β-alanine and alanine.  Interactions between factors 

were only seen for GLN and MH.  Contrary to observations at 7 dpv, plasma GLN was 

significantly higher in vaccinated fish fed GLN-supplemented diets.  However, only fish 

fed the ARG + GLN-supplemented diet yielded significant differences between 

vaccinated and non-vaccinated fish.  Fish vaccinated and fed the basal diet had 

significantly higher values of MH than non-vaccinated animals under the remaining 

dietary treatments. 

Pre-vaccine muscle total free pool amino acids profile is presented in Table 5.9.  

The sum of total amino acids among treatments remained unchanged after 2 weeks of 

feeding.  Muscle total ARG, ornithine and glutamate pools were significantly higher in 

both groups of fish fed ARG-supplemented diets, with or without GLN supplementation.  

A 15- and 8-fold increase was seen in muscle total ARG pool in fish fed the ARG and 

ARG + GLN diets, respectively, when compared to fish fed the control diet.  In addition 
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Table 5.8 
Plasma amino acid profiles (nmol · mL-1) 14 dpv with Aquavac-ESC®1 

Pr > F2 

Diet *Vaccine 

0.825 

0.339 

0.641 

0.358 

0.041 

0.717 

0.366 

0.247 

0.046 

0.131 

0.606 

0.319 

0.964 

0.374 

0.353 

0.691 

Vaccine 

0.482 

0.558 

0.489 

0.775 

0.468 

0.074 

0.522 

0.178 

0.517 

0.000 

0.759 

0.093 

0.426 

0.253 

0.227 

0.908 

Diet 

0.365 

0.415 

0.746 

0.069 

0.025 

0.050 

0.005 

0.373 

0.036 

0.113 

0.018 

0.166 

0.573 

0.897 

0.518 

0.582 

Pooled 
std. 

error 

95.0 

13.9 

4.2 

12.0 

6.7 

146.0 

2.5 

81.6 

88.3 

0.3 

29.8 

47.6 

4.0 

4.8 

14.1 

2.9 

Diet / Vaccine 

ARG + GLN 

Yes 

252.4 

52.4 

11.1 

83.0 

34.8 

559.6 

19.8 

114.1 

692.3 

1.9 

201.8 

198.4 

8.5 

26.5 

13.6 

10.4 

No 

330.8 

89.1 

13.5 

56.4 

31.5 

426.5 

16.7 

398.7 

367.5 

0.7 

167.8 

339.9 

7.0 

32.5 

57.6 

13.7 

ARG 

Yes 

261.0 

57.0 

19.5 

81.5 

23.1 

936.3 

13.1 

122.5 

594.3 

2.4 

196.5 

176.3 

11.1 

30.4 

18.3 

7.8 

No 

254.2 

60.6 

12.9 

99.2 

27.9 

538.1 

18.6 

197.1 

688.8 

0.5 

189.5 

272.4 

7.3 

26.6 

22.8 

9.9 

GLN 

Yes 

144.9 

55.6 

19.1 

56.9 

14.7 

987.2 

10.0 

122.4 

414.1 

1.2 

168.1 

172.6 

9.7 

33.0 

22.5 

9.2 

No 

128.6 

43.0 

13.7 

55.2 

27.3 

905.4 

9.5 

97.1 

294.4 

0.5 

117.4 

138.9 

6.1 

24.0 

17.5 

7.1 

Basal 

Yes 

106.1 

52.7 

15.2 

77.6 

56.9 

817.6 

7.9 

179.1 

441.0 

0.9 

128.0 

205.2 

13.0 

36.3 

11.8 

11.0 

No 

244.6 

48.5 

16.3 

78.4 

28.8 

642.0 

10.5 

170.2 

625.5 

0.5 

135.0 

242.3 

12.7 

27.1 

18.4 

8.6 

Amino acid 

Hydroxyproline 

Histidine 

Phosphoethanolamine 

Asparagine 

3-Methylhistidine 

Taurine 

1-Methylhistidine 

Serine 

Glutamine 

Carnosine 

Arginine 

Glycine 

Anserine 

Ethanolamine 

Aspartate 

Sarcosine 
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Table 5.8 continued 

Pr > F2 

Diet *Vaccine 

0.636 

0.169 

0.483 

0.595 

0.165 

0.255 

0.796 

0.538 

0.553 

0.050 

0.704 

0.654 

0.870 

0.468 

0.527 

0.563 

Vaccine 

0.595 

0.270 

0.001 

0.474 

0.013 

0.583 

0.432 

0.105 

0.994 

0.980 

0.570 

0.399 

0.211 

0.437 

0.050 

0.108 

Diet 

0.886 

0.378 

0.002 

0.658 

0.232 

0.887 

0.235 

0.722 

0.096 

0.724 

0.238 

0.183 

0.905 

0.832 

0.050 

0.347 

Pooled 
std. 

error 

12.5 

1.3 

1.0 

28.9 

36.3 

9.3 

277.9 

1.6 

4.3 

1.3 

31.8 

2.1 

37.8 

10.9 

5.1 

29.9 

Diet / Vaccine 

ARG + GLN 

Yes 

63.6 

1.7 

8.5 

95.3 

244.5 

7.2 

271.1 

6.8 

20.8 

1.7 

57.4 

10.5 

206.5 

49.5 

11.2 

221.0 

No 

52.9 

6.6 

12.4 

155.6 

369.0 

32.6 

157.5 

8.0 

22.1 

5.2 

112.3 

6.6 

204.1 

61.9 

10.1 

221.1 

ARG 

Yes 

65.1 

2.2 

9.4 

143.0 

261.5 

13.7 

256.2 

6.1 

33.9 

2.7 

48.7 

5.4 

234.5 

50.2 

23.3 

273.3 

No 

64.3 

2.6 

12.8 

145.0 

401.8 

12.9 

426.2 

5.8 

29.2 

4.1 

65.6 

6.3 

209.2 

45.6 

14.5 

217.6 

GLN 

Yes 

65.9 

4.4 

8.2 

166.0 

259.3 

24.0 

292.7 

5.4 

23.3 

4.6 

29.2 

5.5 

228.1 

51.0 

33.1 

259.8 

No 

46.4 

3.7 

11.3 

149.0 

256.8 

10.8 

423.7 

9.8 

19.9 

3.6 

25.0 

3.3 

175.1 

41.5 

17.5 

184.4 

Basal 

Yes 

50.2 

2.6 

6.1 

149.8 

308.2 

12.4 

557.1 

5.6 

23.6 

6.6 

33.7 

4.2 

253.6 

62.6 

15.5 

276.0 

No 

61.9 

2.3 

7.0 

164.6 

331.7 

15.8 

1003.8 

7.8 

30.4 

2.7 

18.2 

4.4 

195.2 

39.7 

11.6 

263.1 

Amino acid 

Glutamate 

Citrulline 

β-Alanine 

Threonine 

Alanine 

γ-Aminobutyric acid 

Proline 

Hydroxylysine 

α-Aminobutyric acid 

Cysteine 

Ornithine 

Cystine 

Lysine 

Tyrosine 

Methionine 

Valine 
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Table 5.8 continued 

Pr > F2 

Diet *Vaccine 

0.747 

0.503 

0.671 

0.711 

0.785 
1 Values represent the mean of six randomly sampled fish. 
2 Significance probability associated with the F-statistic. 

Vaccine 

0.144 

0.077 

0.879 

0.775 

0.359 

Diet 

0.392 

0.506 

0.807 

0.948 

0.734 

Pooled 
std. 

error 

30.7 

40.0 

3.5 

15.1 

6.0 

Diet / Vaccine 

ARG + GLN 

Yes 

133.6 

251.8 

11.9 

106.9 

40.9 

No 

135.3 

253.2 

10.8 

127.0 

43.4 

ARG 

Yes 

178.1 

327.8 

9.1 

106.8 

44.7 

No 

133.3 

237.9 

8.0 

115.7 

41.6 

GLN 

Yes 

169.7 

313.0 

10.2 

115.4 

41.6 

No 

106.1 

209.4 

6.2 

101.9 

32.1 

Basal 

Yes 

196.8 

320.6 

7.3 

116.2 

43.7 

No 

170.1 

298.7 

11.9 

113.1 

37.7 

Amino acid 

Isoleucine 

Leucine 

Homocysteine 

Phenylalanine 

Tryptophan 
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ARG-supplementation (with/without GLN) increased the free ornithine pool by 39- and 

37-fold, respectively; in turn, the glutamate pool was 2.2 and 1.9 higher.  The total free 

serine pool was 5.8-fold and 4.3-fold higher in fish fed the basal diet as compared to fish 

fed the ARG or the ARG + GLN diets, respectively.  Lastly, MH was significantly 

higher in fish fed the ARG + GLN diet. 

At 7 dpv (Table 5.10), the total muscle-free amino acid pool was affected by diet 

or vaccination but with no significant interaction of factors.  Fish fed the ARG or GLN 

diets had significantly higher total free pool than fish fed the basal diet while fish fed 

ARG + GLN did not differ from either treatment.  Vaccinated fish had a higher muscle-

free amino acid pool than non-vaccinated.  Arginine total free pool remained unaffected 

by any of the factors evaluated, although higher numerical values were observed in fish 

fed the ARG diets.  In contrast, free citrulline pool was affected by dietary treatment 

with fish fed the basal diet having significantly lower citrulline levels than fish from any 

other treatment.  Muscle-free ornithine was higher in fish fed ARG and ARG + GLN 

diets, but not in fish fed the GLN diet.  Other diet-affected amino acids were 

hydroxyproline, which was higher in fish fed the ARG-supplemented diet; taurine, 

glycine and alanine which were higher in fish fed ARG- and GLN-supplemented diets; 

β-alanine, GABA and AABA which were lower in fish fed the basal diet; and cysteine, 

which was higher in fish fed the GLN-supplemented and basal diets.  Vaccinated fish 

had significantly higher taurine, MH, carnosine, EA, GABA, and ornithine.  Interaction 

diet * vaccination was found in fish fed the ARG diet, for which vaccinated and non-
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Table 5.9 
Muscle free-pool amino acid profiles (nmol · wet muscle weight-1) pre-vaccination with Aquavac-ESC®1 

Diet** Pooled 
std. 

error 
Pr > F2 

Amino acid Basal GLN ARG 
ARG + 
GLN 

Hydroxyproline 33167 39738 57821 45062 13768 0.646 
Histidine 5972 8804 8357 6026 1871 0.607 
Phosphoethanolamine 747 478 770 992 326 0.745 
Asparagine 376 1309 4389 3056 1014 0.088 
3-Methylhistidine 2017 1067 3285 1035 1060 0.441 
Taurine 428365 389296 497889 423688 52086 0.545 
1-Methylhistidine 3403,b 223b 297b 685a 89 0.026 
Serine 30790a 22538ab 5297b 7230b 5690 0.036 
Glutamine 30946 27447 60094 51001 11304 0.202 
Carnosine 1509 1408 2329 1708 416 0.445 
Arginine 2904b 1149b 45095a 23676a 9571 0.036 
Glycine 132159 98115 70545 68871 34488 0.556 
Anserine 6499 5529 5921 6449 1653 0.970 
Ethanolamine 1593 1427 2956 1316 497 0.147 
Aspartate 685 1459 1108 1530 271 0.186 
Sarcosine 894 605 617 754 148 0.509 
Glutamate 12739c 14684bc 28205a 23775ab 2900 0.015 
Citrulline 235 280 443 333 179 0.858 
β-Alanine 1819 1938 2189 2458 507 0.815 
Threonine 9892 12022 12712 5858 2273 0.217 
Alanine 63134 69888 77911 79206 14553 0.848 
γ-Aminobutyric acid 1716 2530 6558 5043 1683 0.231 
Proline 95181 118299 239299 162615 68655 0.502 
Hydroxylysine 445 230 394 220 116 0.450 
α-Aminobutyric acid 2917 2468 3942 3319 707 0.535 
Cysteine 2064 1693 1314 862 419 0.285 
Ornithine 787b 1355b 31036a 29382a 5750 0.007 
Cystine 133 94 156 155 56 0.843 
Lysine 12562 10662 30271 13860 6860 0.235 
Tyrosine 0 0 0 0  --  -- 
Methionine 147 108 226 190 75 0.718 
Valine 3611 3107 3794 3472 510 0.807 
Isoleucine 2439 1873 2231 2284 338 0.692 
Leucine 4094 3190 4230 3891 525 0.539 
Homocysteine 0 0 0 0  --  -- 
Phenylalanine 1152 966 1097 1331 92 0.114 
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Table 5.9 continued 

Diet** Pooled 
std. 

error 
Pr > F2 

Amino acid Basal GLN ARG 
ARG + 
GLN 

Tryptophan 426 343 454 485 76 0.6066 
SUM 895087 847112 1214062 982658 195491 0.5811 

1 Values represent the mean of six randomly sampled fish. 
2 Significance probability associated with the F-statistic. 
3 Different superscript letters indicate significant (P < 0.05) differences as evaluated by Duncan’s multiple range test. 
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Table 5.10 
Muscle free-pool amino acid profiles (nmol · wet muscle weight-1) 7 dpv with Aquavac-ESC®1 

Pr > F2 

Diet *Vaccine 

0.010 

0.689 

-- 

0.025 

0.217 

0.050 

0.329 

0.589 

0.018 

0.481 

0.306 

0.428 

0.176 

0.201 

0.448 

0.136 

Vaccine 

0.785 

0.845 

-- 

0.435 

0.620 

0.008 

<0.0001 

0.539 

0.581 

0.011 

0.121 

0.425 

0.180 

0.003 

0.395 

0.199 

Diet 

<0.0001 

0.075 

-- 

0.393 

0.313 

0.037 

0.329 

0.146 

0.156 

0.089 

0.118 

0.040 

0.218 

0.057 

0.711 

0.385 

Pooled 
std. 

error 

7468 

2273 

-- 

2061 

500 

75132 

82 

8251 

17472 

433 

9782 

24285 

1926 

579 

666 

793 

Diet / Vaccine 

ARG + GLN 

Yes 

32463 

9167 

n.d. 

5515 

1236 

642801 

242 

18084 

103408 

2970 

25188 

73475 

5514 

1313 

1531 

1308 

No 

9515 

6468 

n.d. 

780 

1281 

502006 

0 

15945 

32562 

1827 

16885 

47878 

7097 

678 

1298 

1598 

ARG 

Yes 

63352 

11616 

n.d. 

1886 

2135 

773281 

257 

20176 

76868 

3347 

41433 

129681 

5537 

1882 

2324 

1489 

No 

50669 

12089 

n.d. 

2615 

992 

751675 

0 

25183 

83930 

2651 

6953 

129066 

6027 

1203 

1529 

1246 

GLN 

Yes 

7855 

11209 

n.d. 

986 

1552 

914333 

512 

35523 

36308 

2866 

8027 

84907 

6733 

4040 

2670 

4182 

No 

40593 

13667 

n.d. 

10246 

2528 

477800 

0 

35133 

91262 

1354 

5139 

135925 

114 

1101 

1294 

994 

Basal 

Yes 

12397 

8028 

n.d. 

3011 

1438 

572731 

261 

40375 

48232 

1952 

2905 

56336 

4279 

1831 

1784 

2092 

No 

9426 

6521 

n.d. 

2423 

845 

531011 

0 

23244 

29247 

1756 

3197 

87816 

1193 

361 

2543 

2223 

Amino acid 

Hydroxyproline 

Histidine 

Phosphoethanolamine 

Asparagine 

3-Methylhistidine 

Taurine 

1-Methylhistidine 

Serine 

Glutamine 

Carnosine 

Arginine 

Glycine 

Anserine 

Ethanolamine 

Aspartate 

Sarcosine 
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Table 5.10 continued 

Pr > F2 

Diet *Vaccine 

0.491 

0.725 

0.880 

0.543 

0.392 

0.026 

0.077 

0.236 

0.540 

0.311 

0.316 

0.610 

0.596 

-- 

0.158 

0.391 

Vaccine 

0.973 

0.869 

0.735 

0.792 

0.079 

0.004 

0.701 

0.679 

0.381 

0.180 

0.036 

0.769 

0.337 

-- 

0.696 

0.161 

Diet 

0.218 

<0.0001 

0.025 

0.089 

0.018 

0.042 

0.243 

0.091 

0.012 

0.014 

0.001 

0.061 

0.062 

-- 

0.309 

0.108 

Pooled 
std. 

error 

4157 

159 

634 

2906 

19661 

817 

26570 

287 

944 

921 

3844 

57 

5981 

-- 

142 

1405 

Diet / Vaccine 

ARG + GLN 

Yes 

17184 

1186 

2868 

10135 

108850 

4348 

93934 

516 

4530 

694 

20751 

154 

18793 

n.d. 

160 

4177 

No 

17862 

1071 

2460 

8367 

46132 

1934 

38128 

685 

3927 

2446 

11823 

177 

14495 

n.d. 

177 

3886 

ARG 

Yes 

19703 

1410 

3592 

12962 

133435 

5123 

125016 

700 

5223 

2399 

28019 

290 

25331 

n.d. 

213 

5827 

No 

20774 

1582 

4017 

13780 

110718 

4177 

65186 

777 

7164 

1738 

15018 

206 

12696 

n.d. 

163 

4695 

GLN 

Yes 

20636 

1255 

3863 

14999 

85242 

7016 

21451 

1758 

5603 

4689 

8776 

259 

28281 

n.d. 

530 

9929 

No 

26015 

1095 

3343 

18507 

92583 

2051 

91268 

916 

6745 

4720 

4603 

215 

32294 

n.d. 

291 

5482 

Basal 

Yes 

18263 

284 

1898 

13040 

64104 

2322 

31341 

645 

3199 

2346 

1779 

69 

15356 

n.d. 

107 

5390 

No 

10727 

311 

1782 

8275 

37788 

2799 

47734 

898 

3125 

4875 

3027 

126 

11537 

n.d. 

539 

5425 

Amino acid 

Glutamate 

Citrulline 

β-Alanine 

Threonine 

Alanine 

γ-Aminobutyric acid 

Proline 

Hydroxylysine 

α-Aminobutyric acid 

Cysteine 

Ornithine 

Cystine 

Lysine 

Tyrosine 

Methionine 

Valine 
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Table 5.10 continued 

Pr > F2 

Diet *Vaccine 

0.380 

0.522 

-- 

0.182 

0.540 

0.641 
1 Values represent the mean of six randomly sampled fish. 
2 Significance probability associated with the F-statistic. 

Vaccine 

0.324 

0.249 

-- 

0.600 

0.867 

0.029 

Diet 

0.181 

0.179 

-- 

0.533 

0.687 

0.004 

Pooled 
std. 

error. 

1431 

1708 

-- 

629 

163 

133281 

Diet / Vaccine 

ARG + GLN 

Yes 

2301 

4770 

n.d. 

1738 

618 

1224876 

No 

2575 

4417 

n.d. 

1904 

707 

811850 

ARG 

Yes 

3565 

6348 

n.d. 

2025 

790 

1519407 

No 

2563 

5083 

n.d. 

2366 

840 

1350408 

GLN 

Yes 

7619 

10725 

n.d. 

3775 

863 

1367302 

No 

3592 

6229 

n.d. 

1750 

547 

1121268 

Basal 

Yes 

3504 

5703 

n.d. 

1946 

577 

931724 

No 

4138 

6033 

n.d. 

2512 

676 

855781 

Amino acid 

Isoleucine 

Leucine 

Homocysteine 

Phenylalanine 

Tryptophan 

SUM 
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vaccinated groups had higher hydroxyproline free pool than those fed the basal diet, 

regardless of this group’s vaccination status, and than vaccinated GLN-fed fish and non-

vaccinated ARG + GLN-fed fish.  In addition, non-vaccinated fish fed GLN diet had 

higher asparagine free pool than all other treatments.  Taurine free pool was affected by 

vaccination status only in fish fed the GLN diet, where vaccinated fish had a 2-fold 

increase in its muscle-free pool than the non-vaccinated group.  Glutamine free pool was 

changed by vaccination in fish fed the GLN and ARG + GLN diets.  In the first group, 

vaccinated fish had a fourth of the non-vaccinated animals muscle GLN free pool; 

whereas, ARG + GLN fed fish had a 3-fold increase in the vaccinated group.  Also, non-

vaccinated fish fed GLN diet had higher GLN free pool than fish fed basal diet with the 

same vaccination status.  Also, the GABA free pool had a similar pattern, with 

vaccinated fish fed the GLN and ARG + GLN diets having a 3.4- and 2.5-fold increase, 

respectively, compared to non-vaccinated fish.  Proline tended to be higher (P = 0.0773) 

in vaccinated fish as well as in those fed ARG diets. 

At 14 dpv (Table 5.11), the sum total of muscle-free amino acid pool was not 

significantly affected by either factor evaluated.  Diet did affect the muscle-free amino 

acid pool of nine amino acids and had a strong tendency to affecting three more amino 

acids.  In contrast, vaccination did not have noticeable effects on muscle-free amino acid 

pools, and a significant interaction of both factors was only observed for ornithine.  The 

total muscle-free pool of GLN was significantly higher in fish fed the ARG diet.  

Histidine values were 2-fold higher in fish fed the GLN diet as compared to the fish fed 

the basal diet.  Fish fed ARG and ARG + GLN diets had twice as much carnosine in the 
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muscle-free amino acid pool as compared to those fed the basal diet.  Furthermore, the 

same pool for ornithine was significantly higher in fish fed ARG and ARG + GLN diets.  

Cysteine and tryptophan were higher only in fish fed the ARG + GLN compared to fish 

fed the basal diet.  Aspartate and threonine free pools were higher in fish fed GLN diet.  

In contrast, citrulline free pool was remarkably lower in fish fed the control diet.  

Arginine, anserine and GABA free pools tended (P = 0.06) to be higher in fish fed the 

ARG and ARG + GLN-supplemented diet.  On the other hand, ornithine was the only 

amino acid where an interaction between factors was observed.  Vaccinated animals fed 

ARG + GLN had an ornithine muscle-free amino acid pool 4-fold that of non-vaccinated 

fish.  The former treatment had also higher ornithine free pool values than fish fed the 

basal and GLN diets, despite of their vaccination status.  Arginine tended (P = 0.07) to 

be higher in non-vaccinated fish fed the ARG diet.  Finally, taurine also tended (P = 

0.09) to be higher in vaccinated fish fed ARG and ARG + GLN diets.  

 

3.3  Immune parameters 

Specific antibodies against E. ictaluri were analyzed and presented as ABS (OD 

at 450 nm).  Low ABSs were seen in plasma, bile and intestinal mucus before 

vaccination with no significant differences among treatments (Table 5.12).  In addition, 

all titres in all non-vaccinated groups remained similar throughout the post-vaccination 

period and were significantly different from the vaccinated groups.  Plasma from fish 

vaccinated and fish fed the ARG + GLN diet had, at 7 dpv, significantly higher titres 
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Table 5.11 
Muscle free-pool amino acid profiles (nmol · wet muscle weight-1) 14 dpv with Aquavac-ESC®1 

Pr > F2 

Diet *Vaccine 

0.768 

0.939 

-- 

0.831 

0.390 

0.095 

-- 

0.460 

0.126 

0.124 

0.073 

0.779 

0.537 

0.217 

0.893 

0.205 

Vaccine 

0.937 

0.622 

-- 

0.494 

0.998 

0.491 

-- 

0.879 

0.230 

0.897 

0.799 

0.756 

0.511 

0.138 

0.516 

0.630 

Diet 

0.279 

0.037 

-- 

0.337 

0.196 

0.103 

-- 

0.360 

0.034 

0.001 

0.066 

0.752 

0.062 

0.803 

0.024 

0.172 

Pooled 
std. 

error 

30472 

3505 

-- 

7884 

549 

79095 

-- 

16218 

22280 

284 

6214 

51127 

1819 

598 

972 

947 

Diet / Vaccine 

ARG + GLN 

Yes 

65488 

13598 

n.d. 

10196 

2572 

871571 

n.d. 

20243 

142901 

2227 

20535 

135007 

7887 

1475 

2079 

1441 

No 

101904 

13716 

n.d. 

7313 

1687 

595962 

n.d. 

38434 

56235 

2568 

5802 

167873 

4218 

1934 

2617 

4378 

ARG 

Yes 

82164 

16076 

n.d. 

13563 

1708 

771570 

n.d. 

40012 

138601 

2523 

9171 

143982 

8839 

1859 

1483 

1543 

No 

57001 

14766 

n.d. 

17294 

2614 

727754 

n.d. 

56028 

153350 

1620 

30072 

136973 

7899 

1198 

1388 

694 

GLN 

Yes 

55633 

22976 

n.d. 

26626 

2351 

745115 

n.d. 

55615 

116885 

1378 

5558 

198807 

6100 

3153 

4070 

1062 

No 

43882 

22969 

n.d. 

20835 

2747 

895359 

n.d. 

36131 

99248 

1754 

4777 

127199 

5465 

1019 

5363 

625 

Basal 

Yes 

28137 

14435 

n.d. 

20362 

1531 

605003 

n.d. 

70025 

67397 

1012 

3792 

109460 

2047 

1781 

2416 

1600 

No 

21706 

10655 

n.d. 

9711 

1119 

616380 

n.d. 

48231 

78257 

1094 

2951 

109546 

3831 

1475 

2505 

1264 

Amino acid 

Hydroxyproline 

Histidine 

Phosphoethanolamine 

Asparagine 

3-Methylhistidine 

Taurine 

1-Methylhistidine 

Serine 

Glutamine 

Carnosine 

Arginine 

Glycine 

Anserine 

Ethanolamine 

Aspartate 

Sarcosine 
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Table 5.11 continued 

Pr > F2 

Diet *Vaccine 

0.656 

0.177 

0.555 

0.859 

0.778 

0.089 

0.801 

0.175 

0.569 

0.332 

0.016 

0.784 

0.721 

-- 

0.438 

0.390 

Vaccine 

0.768 

0.270 

0.708 

0.805 

0.651 

0.749 

0.398 

0.588 

0.926 

0.944 

0.348 

0.623 

0.816 

-- 

0.706 

0.898 

Diet 

0.845 

0.001 

0.589 

0.020 

0.463 

0.065 

0.447 

0.557 

0.858 

0.701 

0.013 

0.047 

0.539 

-- 

0.370 

0.755 

Pooled 
std. 

error 

4681 

154 

809 

8252 

22133 

1597 

64932 

282 

1268 

2627 

3762 

87 

6009 

-- 

254 

1584 

Diet / Vaccine 

ARG + GLN 

Yes 

21435 

1467 

3806 

11579 

104899 

8019 

126549 

615 

6897 

2436 

22968 

410 

11863 

n.d. 

308 

5769 

No 

21737 

1363 

4419 

14860 

106304 

3303 

68876 

1540 

5070 

8036 

3892 

484 

10482 

n.d. 

880 

8612 

ARG 

Yes 

25565 

1767 

4469 

16333 

128646 

4167 

141103 

864 

4936 

3164 

13731 

191 

12534 

n.d. 

291 

6774 

No 

20185 

1232 

3196 

18522 

107462 

8339 

113031 

725 

6752 

3215 

19202 

256 

14063 

n.d. 

332 

5028 

GLN 

Yes 

24315 

1232 

4355 

37239 

139204 

2948 

182571 

1306 

6478 

7150 

3475 

225 

17469 

n.d. 

372 

6651 

No 

27101 

1206 

3543 

44361 

114762 

2521 

208836 

1063 

6519 

4515 

8422 

291 

22029 

n.d. 

163 

4463 

Basal 

Yes 

19988 

648 

2766 

25885 

85230 

2779 

156456 

1144 

5248 

7750 

4825 

240 

18165 

n.d. 

208 

5790 

No 

26259 

816 

3364 

19149 

100625 

2280 

56527 

1043 

5557 

4204 

3199 

160 

9425 

n.d. 

82 

6299 

Amino acid 

Glutamate 

Citrulline 

β-Alanine 

Threonine 

Alanine 

γ-Aminobutyric acid 

Proline 

Hydroxylysine 

α-Aminobutyric acid 

Cysteine 

Ornithine 

Cystine 

Lysine 

Tyrosine 

Methionine 

Valine 
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Table 5.11 continued 

Pr > F2 

Diet *Vaccine 

0.378 

0.319 

-- 

0.470 

0.399 

0.871 
1 Values represent the mean of six randomly sampled fish. 
2 Significance probability associated with the F-statistic. 

Vaccine 

0.812 

0.987 

-- 

0.418 

0.760 

0.458 

Diet 

0.691 

0.685 

-- 

0.345 

0.046 

0.237 

Pooled 
std. 

error 

1865 

1912 

-- 

741 

155 

235248 

Diet / Vaccine 

ARG + GLN 

Yes 

3188 

6182 

n.d. 

2196 

862 

1641312 

No 

7355 

10174 

n.d. 

4013 

996 

1291675 

ARG 

Yes 

3754 

7188 

n.d. 

2215 

943 

1614294 

No 

2707 

5022 

n.d. 

2040 

633 

1543723 

GLN 

Yes 

4486 

7490 

n.d. 

2172 

675 

1699539 

No 

2298 

4938 

n.d. 

1813 

549 

1731439 

Basal 

Yes 

3873 

6174 

n.d. 

1609 

407 

1282892 

No 

4215 

6990 

n.d. 

2069 

569 

1165258 

Amino acid 

Isoleucine 

Leucine 

Homocysteine 

Phenylalanine 

Tryptophan 

SUM 
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than plasma from vaccinated fish fed the basal, ARG or GLN diets.  In contrast, at 14 

dpv, titres from fish fed the GLN, ARG and ARG + GLN were significantly different 

from those fed the basal diet.  After exposure to E. ictaluri, no interaction of factors was 

observed at 3 or 14 dpi.  However, titers in the vaccinated groups were significantly 

higher than in naïve fish being exposed for the first time to the bacterium.  Also, fish fed 

the basal diet had lower antibody titers than fish fed all other dietary treatments.  Due to 

the progressing mortality, at 14 dpi only antibody titers from fish fed the ARG and GLN 

diets were secured, but, antibody levels at this time remained similar to those collected 

from fish at 3 dpi.  No interactions between diet and vaccination were obtained among 

treatments, and vaccinated fish had higher titers than non-vaccinated fish.  In addition, 

fish fed the ARG diet had higher titers than the GLN group.   

Intestinal mucus titers, pv and pi, were different between vaccinated and non-

vaccinated groups, always being significantly higher in vaccinated fish (Table 5.12).  

Titers from 7 dpv to 14 dpv decreased in most cases; however, they had ~3-fold increase 

after 14 dpi.  A diet-realted tendency (P = 0.07) was observed in mucus antibody titers at 

7 dpv and 14 dpi, with fish fed ARG + GLN or GLN diets displaying numerically higher 

values, although these were not significantly different.  At day 7, vaccinated fish that 

were fed the ARG diet had the lowest mucus antibody titer.  In contrast, at 14 dpi, 

vaccinated fish fed the GLN diet had the highest titer concentration. 

Titers from bile and intestinal mucosa shared a common pattern (Table 5.12).  At 

7 dpv, fish fed GLN-supplemented diets had numerically higher bile titers.  However, 
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Table 5.12 
 Plasma, gut mucus and bile antibody titers (ABS at 450 nm) pre- and post-vaccination with Aquavac-ESC®1 

Bile 

14dpi 

n.d. 

n.d. 

0.861 

0.638 

0.972 

0.817 

n.d. 

n.d. 

0.082 

 

0.015 

0.002 

0.513 

1 Values represent the mean of six randomly sampled fish. 
2 Significance probability associated with the F-statistic. 

14dpv 

0.591 

0.231 

0.768 

0.240 

0.643 

0.228 

0.597 

0.211 

0.167 

 

0.738 

0.0002 

0.722 

7dpv 

0.337 

0.183 

0.422 

0.260 

0.303 

0.234 

0.472 

0.217 

0.059 

 

0.076 

<0.0001 

0.188 

Gut mucus 

14dpi 

n.d. 

n.d. 

0.659 

0.409 

0.487 

0.436 

n.d. 

n.d. 

0.045 

 

0.067 

0.008 

0.031 

14dpv 

0.116 

0.076 

0.109 

0.075 

0.109 

0.078 

0.100 

0.078 

0.006 

 

0.193 

<0.0001 

0.209 

7dpv 

0.123 

0.079 

0.117 

0.08 

0.106 

0.089 

0.127 

0.083 

0.005 

 

0.072 

<0.0001 

0.001 

Plasma 

14dpi 

n.d. 

n.d. 

1.369 

0.662 

1.597 

0.748 

n.d. 

n.d. 

0.186 

 

0.013 

<0.0001 

0.877 

3dpi 

0.639 

0.262 

0.688 

0.404 

0.633 

0.484 

0.714 

0.349 

0.054 

 

0.0363 

<0.0001 

0.2366 

14dpv 

0.539 

0.216 

0.627 

0.212 

0.652 

0.202 

0.687 

0.175 

0.041 

 

0.044 

<0.0001 

0.0102 

7dpv 

0.515 

0.162 

0.556 

0.235 

0.512 

0.216 

0.647 

0.183 

0.042 

 

<0.0001 

<0.0001 

0.0003 

Factor 

Vaccination 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

No 

Pooled std. error 

 

Diet 

Vaccination 

Diet*Vaccination 

Diet 

Basal 

 

GLN 

 

ARG 

 

ARG + 
GLN 

 

Pr > F2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pre-vaccine 

Bile 

0.153 

 

0.233 

 

0.264 

 

0.264 

 

0.06 

 

0.32 

 

 

Gut 
mucus 

0.085 

 

0.077 

 

0.083 

 

0.078 

 

0.004 

 

0.411 

 

 

Plasma 

0.215 

 

0.265 

 

0.298 

 

0.29 

 

0.061 

 

0.533 

 

 

 

Diet 

Basal 

 

GLN 

 

ARG 

 

ARG + 
GLN 

Pooled 
std. 
error 

Pr > F 
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only fish fed the ARG diet had significantly higher bile titers than fish fed the GLN diet 

at 14 dpi.  No other differences were observed. 

Flow cytometry results (Table 5.13) showed that the proportion of IgM+ cells in 

peripheral blood lymphocytes (PBL) tended to be higher at 7 dpv and 14 dpv in 

vaccinated fish but no significant differences were found.  In contrast, at 7 dpv dietary 

GLN increased the IgM+ spleen cell population significantly augmenting their relative 

number by 63 and 38% (for fish fed GLN and ARG + GLN diets, respectively) as 

compared to cells from fish fed the basal diet.  On the contrary, at 14 dpv, fish fed the 

basal diet had the highest number of IgM+ cells in spleen.  Also, vaccinated fish had a 

higher percent of these cells.  Further analysis indicated that, with the exception of basal 

group, cell populations were significantly different (P < 0.05) between vaccinated and 

non-vaccinated fish, within the same dietary treatment.  Individually, both GLN and 

ARG groups had higher percent of B-lymphocytes in vaccinated fish; whereas, ARG + 

GLN had the opposite effect.  As for B-lymphocytes from the head kidney, fish fed the 

GLN diet had higher relative numbers than the rest of the treatments.  Also, vaccination 

raised the proportion of these cells by 29%.  In this case, all groups were different 

between vaccinated and non-vaccinated within the same dietary treatment.  In all cases 

except for fish fed ARG + GLN, vaccination increased the population of B-cells.  A 

vaccine-GLN synergy was displayed by an increased proportion of B-cell, followed by a 

similar interaction between vaccination and ARG. 

When the responsiveness of leukocytes to E. ictaluri was evaluated (Table 5.13), 

vaccinated fish had significantly higher SI than non-vaccinated fish in all cases.  In 
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PBLs, this was the only difference found at both, 7 and 14 dpv, although vaccinated fish 

fed the ARG and ARG + GLN diets had a tendency for higher numerical values.  In 

contrast, at 14 dpv, spleen and head kidney derived leukocyte responsiveness was 

affected by both diet and vaccination.  Vaccinated fish fed the ARG or GLN diets had 

significantly higher SI than fish fed the basal or the ARG + GLN diets. 

 

3.4  Disease challenge 

The cumulative mortality after E. ictaluri challenge is showed in Fig. 5.1.  At 84 

h pi (3.5 days), significant differences were found based on diet, vaccine status and 

interactions between both.  Vaccinated fish had lower mortality than non-vaccinated 

fish.  Within the vaccinated fish, those fed ARG or GLN diets had lower mortality (65% 

for both) than fish fed the ARG + GLN diet (85%).  The highest mortality was observed 

in non-vaccinated fish fed the control diet (90%).  Moreover, at 96 h pi (4 days), non-

vaccinated fish fed the control diet and both groups of fish fed the ARG + GLN diet 

reached 100% mortality.  It was not until 192 h pi (8 days) that the vaccinated fish fed 

the basal diet reached 100% mortality.  At this point, vaccinated fish fed the ARG or 

GLN diet had 85 and 90% mortality, respectively; whereas, non-vaccinated fish fed 

these two diets had 95% mortality. 

 

4.  Discussion 

Growth parameters before vaccination were as expected, namely, ARG 

supplemented diets had the best performance.  The inclusion of GLN to the basal diet 
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Table 5.13 
 Cell immune response post-vaccination with Aquavac-ESC®1 

Leukocyte responsiveness (SI)3 

14 dpv 

HK 

1.30 

1.02 

2.34 

0.89 

2.37 

1.04 

1.62 

0.91 

0.21 

 

0.0067 

<0.0001 

0.0003 

1 Values represent the mean of three randomly sampled fish. 
2 %, relative numbers of cells in 10,000 events. 
3 SI, stimulation index = counts per minute stimulated cells / counts per minute control cells. 
4 PBLs, peripheral blood lymphocytes. 
5 HK, head kidney. 
6 Significance probability associated with the F-statistic. 

Spleen 

1.92 

1.04 

3.15 

0.95 

4.43 

0.91 

2.25 

1.05 

2.95 

 

0.637 

0.025 

0.004 

PBLs 

1.84 

0.98 

1.81 

1.01 

2.49 

0.99 

2.52 

0.98 

0.26 

 

0.809 

<0.0001 

0.256 

7 dpv 

PBLs 

1.59 

0.94 

1.78 

0.91 

1.76 

0.91 

2.28 

0.97 

0.52 

 

0.194 

<0.0001 

0.486 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IgM+ cells population (%)2 

14 dpv 

HK5 

28.1 

22.9 

40.6 

24.9 

29.4 

18.8 

24.3 

27.8 

0.8 

 

<0.0001 

<0.0001 

<0.0001 

Spleen 

35.0 

32.3 

33.7 

26.9 

33.1 

23.7 

26.7 

33.3 

2.3 

 

0.029 

0.015 

0.001 

PBLs 

46.6 

24.0 

51.7 

37.7 

45.4 

51.0 

45.1 

41.5 

17.8 

 

0.773 

0.346 

0.703 

7 dpv 

Spleen 

17.8 

17.1 

29.3 

25.8 

15.5 

18.2 

17.4 

29.2 

3.6 

 

0.002 

0.167 

0.04 

PBLs4 

20.0 

18.1 

28.6 

10.5 

21.7 

9.1 

20.8 

18.1 

11.3 

 

0.936 

0.138 

0.725 

Factor 

Vaccination 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

No 

Pooled std. error 

 

Diet 

Vaccination 

Diet*Vaccination 

Diet 

Basal 

 

GLN 

 

ARG 

 
ARG + 
GLN 
 

Pr > F6 

    
 



  

 

Fig. 5.1.  Cumulative mortality of channel catfish by treatment after E. ictaluri challenge at 14 dpv.  Fish were i.p. injected with 5 x 108 

bacteria mL‐1 Markers represent the mean percentage mortality of two replicate tanks (n=20) At 84 h pi vaccinated fish had

1

bacteria ∙ mL . Markers represent the mean percentage mortality of two replicate tanks (n=20).  At 84 h pi, vaccinated fish had 

significantly (P < 0.05) lower mortality than non‐vaccinated fish; within the vaccinated fish, those fed the ARG and GLN diets had 

significantly (P < 0.05) lower mortality than those fed the ARG + GLN and the basal diets. Non‐vaccinated fish fed the basal diet reached 

100% at 96 h pi Vaccinated fish fed the basal diet reached 100% at 194 h pi

131100% at 96 h pi.  Vaccinated fish fed the basal diet reached 100% at 194 h pi. 
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did not have any positive effects on growth, nor did its co-inclusion with ARG.  These 

results are in agreement with previous reports with fish (Plisetskaya et al., 1991; 

Fournier et al., 2002; Oehme et al., 2010).  All these parameters had the same trend after 

vaccination, where fish fed ARG and ARG + GLN diets performed better than fish fed 

the control and GLN diets.  However, there was a notable decrease in WG, FE and PER 

for fish fed the basal diet after vaccination.  All parameter levels were ~50% lower than 

those from non-vaccinated fish.  This is in accord with previous reports of side effects of 

vaccination on other species.  For instance, Ronsholdt and McLean (1999) and Midtlyng 

and Lillehaug (1998) reported decreases of 8% and 23% in weight gain for rainbow trout 

(Ochorynchus mykiss) and Atlantic salmon (Salmo salar), respectively, vaccinated 

against furunculosis.  These results, however, contrast with field reports for Aquavac-

ESC® (Carrias et al., 2008; Shoemaker et al., 2009), which indicate no adverse effects on 

larger fingerlings and improved FE.  Differences may be explained by the latter reports 

being based on long-term period, longer than the 7 dpv reported herein, which was the 

interval at which significant differences in growth occurred in the present experiment.  

Because parameters tended to revert to normal at 14 dpv, it would be logical to expect a 

similar outcome had our experiment continue for a longer term. 

In the present work, significant differences in growth were found only at 7 dpv, 

compared to 14 or 21 dpv.  The finding that ARG and/or GLN supplementation 

ameliorates adverse growth effects supporting similar performance for vaccinated and 

non-vaccinated fish may be of importance to the producer.  More so, as this 

supplementation also enhanced WG when comparing fish that were both vaccinated and 
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fed the supplemented diets to those vaccinated and fed the basal diet.  The present results 

constitute the first report on the interaction between ARG and/or GLN supplementation 

and vaccination in fish and are very much in line with previous studies using other 

animal models which document similar responses in vaccinated bovine calves (Fligger et 

al., 1997) and broiler chicken (Yi et al., 2005) upon ARG and GLN supplementation, 

respectively. 

Organosomatic indexes at the pre-vaccine stage had variable responses.  

Condition factor, FY and RIL were significantly higher in fish fed ARG, GLN or ARG + 

GLN diet.  Accordingly, Yan and Qiu-Zhou (2006) found that RIL increased in common 

carp (Cyprinus carpio) fed graded levels of GLN after 80 days.  In contrast, previous 

experiments in our laboratory with channel catfish failed to prove this effect after 70 

days (Chapter III).  In that experiment, a diet supplemented with the same GLN level 

used in the current trial had a tendency to produce higher RIL values than in fish fed the 

basal diet, but no significant differences were found.  Interestingly, in the present 

experiment, feeding the fish for only 14 days (instead of 70) brought about significant 

differences (P < 0.05) in RIL between fish fed diets supplemented with GLN and those 

fed the basal diet.  In contrast, Oehme et al. (2010) found that supplementing ARG and 

glutamate to the diet of Atlantic salmon increased the RIW, although these authors did 

not measure RIL. 

During the post-vaccination period, similar dietary effects were observed for CF 

and RIL at 7 dpv but not at 14 dpv, where vaccination did not have an effect on these 

parameters.  Results on fillet yield after vaccination diverged from those obtained during 
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the pre-vaccine period.  Immunized fish which were also fed the supplemented diets had 

higher FY than the non-vaccinated groups.  Interestingly, vaccinated fish fed the ARG 

diet had the highest FY.  These findings may explain in part differences in growth 

performance described above.  However, it is still puzzling that for fish fed the basal diet 

there were no differences in FY between vaccinated and non-vaccinated animals.  These 

results appear to indicate that in vaccinated fish an ARG and GLN-supported mechanism 

exists which prevents the loss of muscle tissue in fish fed supplemented diets.  That this 

mechanism is absent, or rather, that essential materials are missing (e.g., ARG and GLN) 

in fish fed the basal diet is evidenced by the observed reduced growth in this latter group 

upon vaccination.  It is well established in metabolic studies with channel catfish that 

injection with lypopolysaccharide (LPS) transiently increases the abundance of the 

mRNA of MyoD, a muscle regulating factor, and decreases the abundance of the mRNA 

of myostatin, a negative regulator of skeletal muscle mass (Weber et al., 2005).  Because 

the cell wall of gram-negative bacteria, including E. ictaluri, is composed in part of LPS, 

its presence may help explain the anabolic response observed in vaccinated fish.  Weber 

et al. (2005) also suggest the involvement of nuclear factor kappa B (NF-kΒ) in the 

regulation of these two muscle factors in channel catfish.  This mechanism, in 

combination with ARG action down-regulating NF-kB activity in muscle fibers (Hnia et 

al., 2008), may also help explain the increased FY in vaccinated fish fed supplemented 

diets. 

In the present experiment muscle relative weight associated well with RKW at 7 

dpv.  Hence, the participation of skeletal muscle in the vaccination-triggered immune 
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response may be also possible as reported for muscle tissue from mammals (Marino et 

al., 2011) and fish (Purcell et al., 2006).  The head and trunk kidneys are known to be 

key immune organs for the response to E. ictaluri infection (Russo et al., 2009).  In the 

present study, RKW at 7 dpv were affected by supplementing GLN to the diet.  Also, 

vaccinated fish had significantly heavier kidneys than non-vaccinated fish fed this diet.  

Due to the reported roles of GLN on cells of the immune system as both metabolic fuel 

and proliferative compound (Newsholme, 2001) the significant (P < 0.05) increase in 

renal weight may reflect an increased cellularity of these organs.  Similarly, the spleen 

also displayed increased weight upon GLN supplementation, although this increase was 

not significantly different from that of fish fed the basal diet.  Vaccination significantly 

(P < 0.05) increased RSW and RKW at 14 dpv.  However, diet did not significantly 

affect either parameter.  Consistent with these findings, Ronsholdt and McLean (1999) 

found an increased RSW at 7 weeks after inoculating Atlantic salmon with Aeromonas 

salmonicida; however, they did not find any increase in RKW.  More recently, Harun et 

al. (2011) found an increased RSW in rainbow trout exposed to Yersinia ruckeri.  In 

addition, Tayade et al. (2006a) and Ruiz-Feria and Abdukalykova (2009) found 

augmentation in spleen and other immune organ weights between vaccinated and non-

vaccinated chicks, but they did not find differences among vaccinated chicks fed a 

control or ARG-supplemented diet. 

On the other hand, protein retention by specific tissues further supports the 

preceding ideas.  Muscle had higher protein retention at 7 dpv in fish fed the 

supplemented diets, compared to the basal group.  Also, vaccinated fish had higher PR 
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than non-vaccinated fish, which would be expected if MyoD is up-regulated (Weber et 

al., 2005).  Similarly, kidney had higher PR at 7 and 14 dpv, and at the latter time point, 

vaccinated fish had higher PR than non-vaccinated fish.  Spleen PR was only significant 

at 7 dpv and was affected only by diet. 

Metabolism in all these organs is presumably changed during immune responses 

or disease conditions, such as with E. ictaluri infection (Booth and Bilodeau-Bourgeois, 

2009).  In this sense, Pridgeon et al. (2010) recently showed that, from numerous 

important up-regulated genes in head kidney of channel catfish vaccinated with 

Aquavac-ESC®, 21% were related to organ metabolism (including protein); whereas, 

28% to the immune response.  Consistently, 16% and 19% of up-regulated genes in 

muscle were related to metabolism and immune response, respectively, in rainbow trout 

vaccinated against hematopoietic necrosis virus (Purcell et al., 2006).  Although gene 

expression does not necessarily reflect actual protein levels, it could be considered an 

appropriate correlate.  Altogether, it is apparent that the supplementation of amino acids 

played an important role in catfish immune organs, and possibly in muscle, in the 

response to E. ictaluri vaccination; however, it seemed that muscle participation was 

limited to 7 dpv, whereas spleen and kidney responses continued up to 14 dpv, time 

frame consistent with previous experiments using this vaccine (Shoemaker et al., 2009).   

It is well known that during immune responses or pathological conditions there is 

significant mobilization of GLN and ARG from the skeletal muscle and plasma of 

mammals (Wu, 2010) and fish (Walker et al., 1996; Buentello and Gatlin, 2001b).  Thus 

these two compounds might be considered as immuno-essential.  Plasma amino acid 
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pools depend in great part on other tissue free pool.  Because of its mass, skeletal muscle 

has the highest amino acid pool in a living organism, playing a crucial role in their 

homeostasis (Ballantyne, 2001).  In channel catfish, muscle accounts for 70 and 30-60% 

of the whole-body total pool for ARG and GLN, respectively (Wilson and Poe, 1974), 

thus it becomes a key organ to maintain a proper supply of these amino acids during 

adverse conditions (Newsholme, 2001; Salem et al., 2010).  In line with these previous 

reports, in the present study amino acid profiles were distinct among treatments 

throughout the trial.  The proposed rationale for supplementing ARG and GLN was to 

create and maintain an ideal nutrient microenvironment, at least for these two amino 

acids, to enable an enhanced immune response to new antigens.  Evidence showed here 

that feeding fish with supplemented levels of ARG did accomplish the proposed goal 

before vaccination and after vaccination; whereas, supplemented levels of GLN 

accomplish it only after vaccination. 

At the pre-vaccine period, from the seven and five amino acids affected by diet in 

plasma and muscle, respectively, only four were affected in both tissues.  In addition, 

results demonstrate that feeding channel catfish the diet supplemented with ARG, but 

not with GLN, increased ARG and ornithine pools in both tissues.  The latter correlates 

with the understanding of circulating levels of plasma amino acids strongly depend on 

both diet and free pool in tissues (Ballantyne, 2001).  In contrast, neither plasma GLN 

nor glutamate were affected by diet, although the later tended to be higher in fish fed the 

diet supplemented with ARG + GLN.  Interestingly, glutamate was higher in muscle 

total pool in fish fed diets supplemented with ARG, but not with GLN.  The finding of 
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significantly higher plasma ARG levels in fish fed diets supplemented with ARG 

concurs with previous experiments in our laboratory (Buentello and Gatlin, 2000, 

2001b).   

Total free pool amino acid was higher in vaccinated fish than non-vaccinated 

only at 7 dpv, however, not finding a factor interaction in this variable shows that pools 

were not different between vaccinated and non-vaccinated fish of the same group of diet 

fed.  Free pools of amino acids depend on diet or proteolysis.  The levels of proteolysis 

in fish muscle vary with metabolic state and are higher under demanding physiological 

or pathological conditions (Ballantyne, 2001).  Methylhistidines are appropriate markers 

for proteolysis (Nakashima et al., 2008).  Besides, 1-MH and anserine may activate the 

proteolytic protein calpain; whereas, carnosine may increase its inhibition by the 

activation of calpastatin (Johnson and Hammer, 1989).  In the current results, although 

3-MH or anserine pools were not affected by either factor at 7 dpv, 1-MH was higher in 

muscle pool of vaccinated fish.  However, along with a raised 1-MH in muscle, an 

increase of carnosine levels were observed in these groups, and tended to be higher in 

fish fed supplemented diets.  This evidence may indicate an increase in protein turnover 

in muscle after 7 dpv, what matches with an increased intramuscular free amino acid 

pool at this time.  Nevertheless, net protein lost seems not to be happening, as FY and 

muscle PR, discussed previously, were higher in vaccinated fish, suggesting a stronger 

effect of diet on free pool amino acids than proteolysis.  This statement is supported by 

the fact that no distinct pattern of increased levels of 3-MH pools were noticeable as 

reported for poultry, where plasma and muscle 3-MH increased as a sign of net protein 
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lost when infected with Eimeria spp. (Fetterer and Allen, 2000; Fetterer and Augustine, 

2001).  Accordingly, the increase in muscle carnosine pool concurs with the previously 

discussed idea of vaccination triggering a metabolic response to prevent muscle loss.  

Consistently, Johansen et al. (2006) found an up-regulation of calpastatin in LPS-

injected rainbow trout, while no muscle protein content changes were observed.  In 

addition, Salem et al. (2010) found no substantial increase in any major proteolytic 

pathways, only relative abundance of calpain in atrophying rainbow trout muscle.  

Moreover, Bohe et al. (2003) reported that the rates of synthesis of all classes of human 

muscle proteins are regulated by the blood essential amino acids, where the stimulation 

of protein synthesis depends on the sensing of the concentration of their extracellular, 

rather than intramuscular levels.  In this sense, the current data showed that the essential 

amino acids, ARG, threonine, valine, leucine and tryptophan had higher plasma levels at 

7 dpv in either or both groups of fish fed the diets supplemented with ARG and GLN; 

whereas, methionine was higher in vaccinated fish.  

As discussed so far, adequate supplies of ARG and GLN gain relevance during 

changes in metabolic states, but not only to maintain metabolic homeostasis but also to 

promote an adequate immune response against invading pathogens (Li et al., 2007).  For 

channel catfish, Buentello and Gatlin (2001b) reported a correlation between higher 

plasma ARG levels before exposure to E. ictaluri and survival afterwards.  These 

authors found a significant decrease in plasma ARG and citrulline levels after 24 h of the 

exposure.  In addition, in fish fed supplemental ARG, even when the decrease was of 

greater magnitude than in fish fed the basal diet, its plasma levels were still supranormal. 
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Accordingly, in the present experiment, plasma ARG levels tended to decrease in 

vaccinated fish fed the ARG-supplemented diets at 7 dpv.  In contrast citrulline tended to 

be higher in vaccinated fish at this time period, and within these fish, those fed the diet 

supplemented with GLN had the highest levels.  Interestingly, plasma citrulline levels 

correlate with its pool in muscle, as well as with the muscle pool of its metabolic 

predecessor ornithine, which was also higher in vaccinated fish.  Regardless of the high 

levels of plasma ARG in fish fed supplemented diets, its muscle pool remained 

unchanged, contrasting with findings at the pre-vaccine period.  These results suggest 

that plasma ARG continued to be higher when fish were fed supplemented diets, 

although it seems the muscle was using this ARG to synthesize ornithine and, supported 

by the fact that plasma ornithine did not change, tunneled it to synthesize citrulline that 

served as a supply for plasma.  Channel catfish has particularly high levels of muscle 

arginase and ornithine carbamoyl transferase (OTC), and although levels of carbamoyl 

phosphate synthetase (CPS)-III are low, it is possible that these enzymes are induced at 

much higher levels for specific functions (Felskie et al., 1998), such as muscle growth 

and development (Korte et al., 1997), or in this case the immune response against a 

vaccine  

Interestingly, plasma and muscle glutamine were significantly decreased after 

vaccination in fish fed the diet supplemented with this amino acid.  This suggests that 

supplementing GLN into the diet may prime the fish to utilize plasma GLN for the 

synthesis of key molecules.  Under a challenging situation, as is the immune response 

against a vaccine, and in the absence of a surplus of ARG, GLN may be used for 
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arginine, ornithine and citrulline synthesis (Wu, 2010), which correlates with findings of 

these amino acids in this fish group.  The decrease of GLN under pathological conditions 

is well documented in mammals (Wu, 2010) and fish (Walker et al., 1996).  

 Evidence of the amino acid profiles support the idea that supplementing diets 

with ARG and GLN help to maintain an adequate homeostasis of these amino acids, 

having a surplus of plasma ARG and citrulline.  Because amino acids are delivered to 

most cells in free form by the blood (Ballantyne, 2001) it would be appropriate to 

deduce that supra-normal levels of these amino acids would be readily utilize by immune 

cells, and that should be reflected in an enhanced immune performance against 

vaccination, because of their immuno-modulating properties (Li et al., 2007; Wu, 2010).  

One classic way to assess vaccine effectiveness is by measuring antibody titers or 

humoral immune responses (Secombes, 2008).  The current results showed that 

vaccination had a positive effect on fish antibody titers in all body fluids where they 

were measured.   In addition, results showed that diet affected antibody titers among 

vaccinated fish, although the effects depended on body fluid.     

Because of their difference in sample processing and analysis, titers values 

among fluids may not be compared, however, tendencies in each of those fluids are quite 

representative of diet or vaccine effects, and are appropriate for discussing such effects.  

In line with the current results are those reports for common carp (Irie et al., 2003), 

where plasma antibody titers showed more responsiveness to diet and vaccination than 

intestinal mucus and bile.  Fish lack the specific mucosal isotype IgA; to date, in channel 

catfish IgM seems to be the main functional immunoglobulin against invading pathogens 
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(Bengten et al., 2006; Edholm et al., 2010).  Hence, it is feasible that structural variation 

within the IgM may offer a means to achieve diverse effector functionality with this 

single isotype (Ye et al., 2011), making possible its appearance in other tissue fluids 

besides the blood. 

A short synergistic effect was observed at 7 dpv in plasma titers when fish were 

fed the diet supplemented with ARG + GLN; however, titers among fish fed 

supplemented diets, although higher than those of fish fed the basal diet, were equal 

among them at 14dpv.  In addition, at 3 dpi, titers of naïve and vaccinated fish fed these 

supplemented diets were higher than those of fish fed the basal diet.  These results 

suggest that high levels of ARG and GLN in the diet accelerate antibody production, but 

this acceleration will take longer when feeding ARG or GLN alone.  Reports in higher 

vertebrates demonstrated similar results.  Broiler chickens fed supplemental levels up to 

three times its ARG dietary requirement had highest sera specific antibody titers when 

vaccinated and challenged against hydropericardium syndrome virus (Munir et al., 2009) 

and infectious bursal disease virus (Abdukalykova and Ruiz-Feria, 2006; Tayade et al., 

2006a; Ruiz-Feria and Abdukalykova, 2009), or inoculated with sheep red blood cells 

(Ruiz-Feria and Abdukalykova, 2009).  Likewise, the production of specific antibodies 

against Pseudomonas aeruginosa significantly increased in mice fed supplemental levels 

of ARG (Shang et al., 2003).  On the other hand, in a separate experiment, mice fed a 

GLN-supplemented diet and vaccinated against P. aeruginosa had a similar response to 

those fed the ARG-supplemented diet (Yeh et al., 2003).  Accordingly, Bartell and Batal 
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(Bartell and Batal, 2007) found an increase in non-specific IgG and IgA in the serum, 

intestine and bile of broiler chickens fed a diet supplemented with GLN.   

Interestingly, diet had limited effects on specific antibodies in gut mucus and bile 

during the post-vaccine period.  Opposite to findings in plasma titers, fish fed the diet 

supplemented with ARG had a lower titer in gut mucus than the remaining treatments at 

7 dpv.  The tendency of higher titers in both fluids in fish fed the diet supplemented with 

GLN agrees with the above mentioned reference (Bartell and Batal, 2007).  The lower 

titers in gut mucus at 14 dpi than 7 dpi reflects a transient increase of specific antibodies 

against E. ictaluri in this fluid.  This effect is somehow expected when considering E. 

ictaluri has been reported to translocate from the intestine to the channel catfish 

circulation in a short period of time (Thune et al., 1993).  However, contrasting are the 

results found with bile titers suggesting that antibody secretion into bile seems to be 

more lasting.  In higher vertebrate, immunoglobulins are secreted into intestinal mucus 

by plasma cells residing in liver (through bile) or in gut associated lymphoid tissue-

GALT (Jones et al., 1989).  However, because channel catfish have low numbers of B-

cells in intestinal mucosa (Hebert et al., 2002) this function may be assigned to plasma 

cells residing in liver, a fact reported for other teleosts (Abelli et al., 2005).  The results 

reported herein for the post-vaccine period, seems to indicate that although there was not 

an increase in IgM in intestinal mucus after 7 dpv, plasma cells were still active and 

secreting IgM into the bile at 14 dpv.  Also, IgM secretion was readily boosted after re-

exposure with the appropriate antigen, as shown in the intestinal mucus and bile titers at 
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14 dpi (Table 5.12). Nevertheless, the paradoxical effects of ARG or GLN on bile or 

intestinal titers need further investigation. 

To further elucidate the effects of ARG and GLN on immune responses of 

channel catfish upon vaccination, cellular responses were analyzed.  Lymphocytes 

positive to membrane IgM (IgM+-cells) correspond to B-cells, which under appropriate 

signals, evolve to antibody secreting cells (Secombes, 2008).  The biological 

implications of the results presented herein are not fully elucidated and are limited by the 

fact that we failed to assess the proportion of T-cells.  However, insight of modulation of 

IgM+-cells are worthy of discussion.  The proportion present of IgM+-cells in peripheral 

blood tended to be higher in vaccinated fish than non-vaccinated fish at 7 and 14 dpv, 

but no effects of the diet were observed.  In contrast are the findings of Abdukalykova et 

al. (2008), where feeding high levels of ARG increased the proportion of circulating B-

cells and T-cells in vaccinated fish.   

It was not until 14 dpv in the present study that the proportion of IgM+-cells was 

affected by vaccination in both spleen and head kidney.  Noteworthy is that values of 

these cells in spleen of fish fed the basal diet did not differ between vaccinated and non-

vaccinated groups, which was not so in all three groups of fish fed the supplemented 

diets.  A strong relationship was found among immune cell proportions in head kidney 

and spleen but only in fish fed diets supplemented with GLN or ARG.  These 

observations are in agreement with the common knowledge of the kidney serving as a 

hematopoietic tissue and spleen as an immunoreactive tissue in channel catfish (Petrie-

Hanson and Ainsworth, 2001).  Also, in line with current results, Manhart et al. (2001) 
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reported a high yielding of B and T cell Peyer’s patches in mice treated with LPS.  Due 

to the lack of the latter immune tissue in fish, the spleen’s function gains increased 

relevance in pathogen processing and clearance.  These results suggest that dietary GLN 

and ARG supplementation in vaccinated channel catfish modulate B-cell production in 

the head kidney and further homing to the spleen. Such effects have been reported at 

least for ARG supplementation in mice (de Jonge et al., 2002).   

Also, the current results partially correlate with findings in plasma antibody titres 

and both SRW and RKW discussed earlier.  Higher number of B-cells may result in 

higher plasma cells, hence higher antibody titres (Petrie-Hanson and Ainsworth, 2001).  

However, this interpretation is limited in our model because of the fact that vaccinated 

fish fed the diet supplemented with ARG + GLN also had higher antibody titers, but the 

IgM+-cell population was lower in these fish than non-vaccinated fish fed the same diet.  

Further utilization of different lymphocyte surface antigens for cell identification and 

sorting should give a clearer panorama of this situation.  However, to date, the lack of 

specific antibodies against these cell markers is a limiting factor for the study of 

lymphocyte subsets in most teleosts.   

Memory cells are the most unique and advantageous characteristic of the 

adaptive immune system.  Confronting lymphocytes to a known antigen will trigger 

proliferation of those cells with specific receptors to that antigen (memory cells).  

Lymphocyte responsiveness against formalin-killed whole E. ictaluri was modulated by 

dietary ARG and GLN supplementation, but only in lymphocytes residing in spleen and 

head kidney.  Although, PBL proliferation was higher in vaccinated fish, only tendencies 
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of higher response were observed in fish fed the ARG + GLN diet at 7 dpv and the same 

group plus those fed the diet supplemented with ARG at 14 dpv.  In contrast  are the 

findings of Munir et al. (2009), where vaccinated chicks fed supplemental ARG  in the 

diet had higher PBL proliferation than those fed a control diet.  Nonetheless, it is 

important to state that these authors used the non-specific mitogen concavalin-A to 

stimulate proliferation, failing to test memory-cell proliferation.  However, Tayade et al. 

(2006a, 2006b), did use a specific antigen to test PBL proliferation finding a positive 

effect on vaccinated chicks fed supplemental levels of ARG.   

In the present experiment, responsiveness of lymphocytes residing in spleen and 

head kidney was higher in vaccinated fish fed supplemental levels of ARG or GLN but 

not by feeding both in the same diet.  Consistent to these results, Tayade et al. (2006a) 

found higher proliferation of intestinal lymphocytes when chicks were fed a diet 

supplemented with ARG.  Interestingly, results herein showed that spleen lymphocyte 

proliferation was higher than that of the head kidney, which supports the previously 

mentioned immune functions of these two tissues (Petrie-Hanson and Ainsworth, 2001).  

In regard to dietary GLN supplementation, no reports exist concerning vaccination and 

lymphocytes responsiveness.  However, supplementation of dietary GLN did enhance 

non-specific mitogen proliferation of spleen and PBLs lymphocytes in mice (Kew et al., 

1999) and swine (Yoo et al., 1997; Lee et al., 2003).   

The present experiment did not have the aim to test the efficacy of the 

commercial vaccine used, which has been tested elsewhere (Klesius and Shoemaker, 

1999; Shoemaker et al., 2009).  Yet the main objective was to evaluate if dietary ARG 
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and/or GLN supplementation increased the efficacy of the immune response of channel 

catfish to E. ictaluri vaccination, which was found to be accurate with the current data.  

Still, an enhanced immune response against a given pathogen should result in better 

protection upon re-exposure.  Mortality upon E. ictaluri challenge was correlated with 

metabolic and immune findings.  The highest survival was observed in vaccinated fish 

fed diets supplemented with ARG and GLN. 

The finding of an increased survival in non-vaccinated fish fed the ARG and 

GLN supplemented diets compared to those vaccinated and fed the basal diet is 

intriguing.  These results may suggest a lack of protection of the vaccine, since it is not 

effective against all E. ictaluri strains (Shoemaker et al., 2009), but it seems to be more 

related to the aggressiveness of the infection imposed by i.p. injection, as seen in the 

overall mortality rate of all treatments (Fig. 4).  However, the infection model used 

appeared sound in the sense that it permitted resolution of differences among treatments.  

Nonetheless, this evidence suggests that supplementing these two amino acids, by 

themselves, is sufficient enough to slightly increase the survival against ESC without 

previous exposure to the etiological agent.  These results are in agreement with previous 

reports from our laboratory (Buentello and Gatlin, 2001b) where channel catfish fed 

diets supplemented with ARG at 2 and 4% of diet had significantly higher survival than 

fish fed an ARG-deficient and sufficient diet. 

Contrasting results, however, were observed for fish fed the diet supplemented 

with ARG + GLN which reached 100% mortality, regardless of their vaccination status.  

Reasons of these effects may not be determined with the current data, because immune 
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responses in this group had similar trends as the other two groups fed diets supplemented 

with individual amino acids.  Perhaps the pathogenesis of E. ictaluri is enhanced by high 

levels of ARG and GLN or their related compounds.  Evidence of the latter was given by 

Booth et al. (2009) who suggest the utilization of urea to increase intracellular pH to 

evade killing by phagocytic cells.  Interesting, the above-cited research (Buentello and 

Gatlin, 2001b) also reports slightly less survival in fish fed higher amounts of ARG in 

diet.  Likewise, in the pacific flounder, Paralichthys olivaceus, although ARG 

supplementation benefited some innate immune parameters, when fish were exposed the 

closely related bacterium E. tarda, they had higher mortality rate than the control 

(Galindo-Villegas et al., 2006). 

In conclusion, dietary supplementation with ARG or GLN had beneficial 

metabolic and immunological effects on channel catfish vaccinated against ESC.  Both 

amino acids while enhancing the immune responses and further protection against E. 

ictaluri, also prevented, and in some cases improved, the early adverse effects of 

vaccination seen in fish fed the basal diet.  Although the evidence from this study is 

promising as related to vaccinology and immunonutrition fields for aquatic species, 

more research is needed before recommending supplementing aqua-feeds with both 

ARG and GLN. This is mainly because of what appeared to be an antagonic effect of 

feeding high levels of these amino acids at the same time. 
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CHAPTER VI 

CONCLUSIONS 

 

Four separate experiments were conducted with channel catfish to evaluate 

arginine (ARG) and glutamine (GLN) supplementation in terms of their effects on 

growth, metabolic and immune performance after vaccination against Edwardsiella 

ictaluri. 

In the first experiment, incremental dietary ARG resulted in significant 

improvements in weight gain (WG), feed efficiency ratio, protein efficiency ratio and 

protein retention (PR).  Fish fed the diet supplemented with ARG at 4% had significantly 

(P < 0.0001) higher values for all performance indicators, although these values were not 

different from those of fish fed the diet supplemented with ARG at 2% with the 

exception of PR.  Similarly, plasma amino acid concentrations were significantly 

affected by dietary ARG levels.  Fish fed the deficient diet (0.5% ARG) had 

significantly (P < 0.05) lower values for all analyzed amino acids.  With the exception of 

plasma lysozyme, innate immune responses were also significantly affected by dietary 

ARG.  Both superoxide anion production and respiratory burst were significantly (P < 

0.05) decreased in fish fed the 0.5% ARG diet compared to those fed the ARG-

supplemented diets.  These results demonstrate that the indispensability of ARG is not 

only related to optimized protein utilization and growth, but also, the supplementation of 

this amino acid in fish diets may significantly impact several aspects of the immune 

system, including phagocyte function, thus improving overall fish health. 
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In a second experiment, intestinal microstructures were positively affected by 

dietary GLN with the highest levels of supplementation (2 and 3% of diet) significantly 

(P < 0.05) increasing enterocyte and microvilli height in anterior, mid and posterior 

intestinal sections.  Moreover, a subsequent experiment revealed that dietary GLN 

supplementation significantly (P < 0.05) increased the enterocyte migration rate in all 

three intestinal segments.  Plasma amino acid levels 15 h postprandial showed 

significantly (P < 0.05) higher levels of asparagine, serine, glycine and threonine in fish 

fed the diet supplemented with GLN at 2%.  Despite a consistent trend of higher values 

seen in fish fed the diet supplemented with GLN at 2%, there were no significant (P > 

0.05) differences in any growth-related parameters among treatments.  Although the 

present results indicate an efficient utilization of free GLN by intestinal mucosal cells of 

channel catfish, which resulted in enhancement of the enteric microstructure along with 

increased migration rates of enterocytes and modified plasma amino acid profiles, 

improved weight gain at the end of a 10-week feeding trial was not observed. 

In a third experiment, an in vitro bactericidal assay showed that total free amino 

acid pool in media decreased 23%, while GLN levels in media decreased by 38% and 

ARG by 18%.  Similarly, in a lymphocyte proliferation assay, a decrease of 45, 52 and 

46% was observed for total free amino acids, GLN and ARG pools, respectively.  

Phagocytosis was significantly (P < 0.05) modulated by 0.5 and 1 mM ARG 

supplementation to the media regardless of GLN supplementation.  However, a 

significant (P < 0.05) increase in E. ictaluri killing ability was achieved only with 0.5 

mM supplementation of ARG.  Proliferation of T- and B-lymphocytes was positively (P 



 151

< 0.05) modulated by supplementing the medium with either or both amino acids; 

however, a limited synergistic effect was observed.  These findings demonstrate that 

both ARG and GLN are important substrates for fish leukocytes from both branches of 

the immune system, as illustrated by the utilization rate of these two amino acids and 

further corroborated by leukocyte performance in supplemented media.  This suggests 

that these two amino acids play an important role in the first response against an 

invading pathogen by increasing phagocytosis and killing capacity of MØ.  In addition, 

the increased peripheral blood lymphocyte proliferation upon non-specific mitogenic 

stimulation suggests that high levels of ARG and GLN in fish would be beneficial for 

the expansion of either T or B lymphocyte subsets, and this would impact the generation 

of immune memory. 

In a fourth and final experiment, feeding channel catfish with diets supplemented 

with ARG (4%) and GLN (2%) created an appropriate nutritional environment for 

proper metabolic and immune performance enhancing vaccination efficacy against E. 

ictaluri.  Plasma and muscle pools of ARG and related amino acids were significantly (P 

< 0.05) increased in fish fed these diets before and after vaccination.  Results suggested 

that increased pools of key amino acids significantly (P < 0.05) ameliorated the decrease 

of weight gain observed in vaccinated fish fed the basal diet, as well as significantly (P < 

0.05) increased the fillet yield and kidney relative weight at 7 d post-vaccination (pv).  

Also at this time point, protein retention in all evaluated tissues was higher (P < 0.05) in 

fish fed the supplemented diets.  Both humoral and cellular immune responses were 

modulated by the addition of ARG and GLN to the diet.  Plasma-specific antibodies 



 152

titers were elevated (P < 0.05) in fish fed supplemented diets as soon as 7 dpv and 

remained higher throughout the experiment.  Similarly, bile-specific antibodies titers 

were higher in fish fed the diet supplemented with GLN at 7 dpv.  B-cell population in 

spleen was significantly (P < 0.05) higher in vaccinated fish fed the GLN diet at 7 dpv.  

When comparing groups by their vaccination status, fish fed the GLN and ARG diet had 

higher number of B-cells in spleen and head kidney in vaccinated fish than non-

vaccinated fish at 14 dpv.  In addition, at 14 dpv, lymphocyte responsiveness against E. 

ictaluri showed a modulation by dietary supplementation of ARG and GLN in cells 

isolated from spleen and head kidney.  Finally, fish survival upon ESC challenge 

revealed an increased protection in fish vaccinated and fed ARG or GLN in diet, but a 

lower protection was observed when the diet was supplemented with both amino acids at 

the same time.  In conclusion, diet supplementation with ARG or GLN had beneficial 

metabolic and immunological effects in channel catfish vaccinated against ESC.  Both 

amino acids were shown to enhance the immune responses of channel catfish and 

increase vaccine-related protection against E. ictaluri.  In addition, ARG and GLN 

supplementation also prevented some adverse effects caused by vaccination (e.g., 

decreased WG) which were evident in fish fed the basal diet.  Results from the present 

experiments are quite promising from the vaccinology and immunonutrition 

perspectives.  However, more research is needed before recommending dietary 

supplementation of aquafeeds because of the potentially antagonic effects observed 

while feeding supplemental ARG and GLN at the same time. 
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Altogether, these results indicate that ARG is a strong alternative to be used to 

promote growth on both homeostatic and non-homeostatic states such as vaccination or 

disease.  Arginine may also promote improved immunity upon vaccination, increasing 

its efficacy and hence fish survival.  Likewise, GLN supplementation may have similar 

effects; however, such effects seem to be accentuated when fish are in a non-homeostatic 

state, as seen in fish responses after vaccination, rather than in an interior milieu, as seen 

during the GLN feeding trial.  Further research is needed for the elucidation of other 

roles of these two amino acids on specific physiological effects in fish, such as activation 

of synthetic pathways, endocrine system modulation or even a possible synergism in the 

pathogenesis of E. ictaluri. 
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