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ABSTRACT

Bayesian Spatial Modeling of Complex and High Dimensional Data.

(December 2011)

Bledar Konomi, B.S., Athens University of Economics and Business

Co-Chairs of Advisory Committee: Dr. Bani K. Mallick
Dr. Huiyan Sang

The main objective of this dissertation is to apply Bayesian modeling to different

complex and high-dimensional spatial data sets. I develop Bayesian hierarchical spa-

tial models for both the observed location and the observation variable. Throughout

this dissertation I execute the inference of the posterior distributions using Markov

chain Monte Carlo by developing computational strategies that can reduce the com-

putational cost.

I start with a “high level” image analysis by modeling the pixels with a Gaus-

sian process and the objects with a marked-point process. The proposed method is

an automatic image segmentation and classification procedure which simultaneously

detects the boundaries and classifies the objects in the image into one of the prede-

termined shape families. Next, I move my attention to the piecewise non-stationary

Gaussian process models and their computational challenges for very large data sets.

I simultaneously model the non-stationarity and reduce the computational cost by

using the innovative technique of full-scale approximation. I successfully demonstrate

the proposed reduction technique to the Total Ozone Matrix Spectrometer (TOMS)

data. Furthermore, I extend the reduction method for the non-stationary Gaus-

sian process models to a dynamic partition of the space by using a modified Treed

Gaussian Model. This modification is based on the use of a non-stationary function

and the full-scale approximation. The proposed model can deal with piecewise non-
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stationary geostatistical data with unknown partitions. Finally, I apply the method

to the TOMS data to explore the non-stationary nature of the data.
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CHAPTER I

INTRODUCTION

In the last two decades the hierarchical Bayesian methods have been the tool

of choice for many scientists to model challenging data sets. The success of the

hierarchical Bayesian modeling relay on the ability to realistically model data sets

and on the computational efficiency which came with the use of Markov chain Monte

Carlo (MCMC). One area that has benefited from the use of the Bayesian modeling

is spatial statistics.

Spatial statistics is essential for modeling the heterogeneity and the interaction

in environmental, geophysical, image and other spatial data sets. The spatial sta-

tistical methods can be divided into three main categories: spatial point process,

geostatistics and lattice. In this dissertation, we concentrate our attention on spatial

point process and geostatistics. In the spatial point process, the spatial positions

(locations) are modeled as random events. On the other hand, in geostatistics the

spatial locations are considered to be a continuous over space and the dependence

among the responses Y (s) at different locations s are modeled. The Bayesian meth-

ods simplify the modeling of these data sets and the parameters can be realistically

interpreted. Moreover, the high-dimensional nature of the parametric space and the

data sets makes it computationally more attractive than the classical statistics.

The main topic of this dissertation is to apply the hierarchical Bayesian methods

in complex and huge data sets. We first model the data realistically and then apply

This dissertation follows the style of Journal of Statistical Planning & Inference.
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different techniques to reduce the computational cost. We begin in Chapter II by

using a marked-point process to model objects in an image. Next in Chapter III we

use approximation techniques to deal with non-stationary and high-dimensional data

sets. Finally we dynamically model the non-stationary with a Gaussian Tree Model.

Chapter II deals with the Bayesian modeling of the locations of nanoparticles

in an image and the classification into a predetermined family of shapes. The prop-

erties of materials synthesized with nanoparticles are highly correlated to the sizes

and shapes of the nanoparticles. By controlling the shape and size of nanoparticles

during synthesis, one could control the properties of the synthesized material. Ac-

curate methodologies for enabling morphological analysis are highly underdeveloped

in the current practice of nanomaterial science and engineering. Transmission elec-

tron microscopy (TEM) imaging technique can be used to measure the morphological

characteristics of nanoparticles, which can be simple circles or more complex irregular

polygons with varying degree of scales and sizes. A major difficulty in analyzing the

TEM images is the overlapping of objects, having different morphological properties

with no specific information about the number of objects present. Furthermore, the

objects lying along the boundary render automated image analysis much more dif-

ficult. To overcome these challenges, we propose a Bayesian method based on the

marked-point process representation of the objects. We derive models, both for the

marks which parameterize the morphological aspects and the points which determine

the location of the objects, to greatly reduce the complexity of the problem. The pro-

posed model is an automatic image segmentation and classification procedure, which

simultaneously detects the boundaries and classifies the nanoparticles into one of the

predetermined shape families. We execute the inference by sampling the posterior

distribution using Markov chain Monte Carlo (MCMC) since the posterior is doubly

intractable. We also designed split and merge moves in addition to spatial birth and
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death moves to efficiently infer the number of objects and their shapes. We apply our

novel method to several TEM imaging samples of gold nanoparticles, producing the

needed statistical characterization of their morphology.

Chapter III deals with the reduction methods in a huge dimension and non-

stationary spatial random field. Gaussian process models have been widely used in

spatial statistics but face tremendous computational challenges for very large data

sets. The model fitting and spatial prediction of such models typically require O(n3)

operations for a data set of size n. Various approximations of the covariance function

have been introduced to reduce the computational cost. The predictive process, taper-

ing and lately the full rank approximation are among the most popular approximation

techniques used in the recent statistical literature to deal with the computational cost

of large spatial data set. All of these techniques are successfully applied in stationary

spatial process models where the data are reasonably considered stationary. The non-

stationary spatial process have been considered in the predictive process but only in

a simulation study with known partition and parameters. Total Ozone Matrix Spec-

trometer (TOMS) data are proven to be, by previous work, an example of a large

spatial data set with non-stationary covariance function. The goal of this chapter

is to generalize the full scale approximation into non-stationary processes, apply it

to TOMS data and compare it with other approximation techniques. The method

used in this chapter is based on the partition of the spatial region into subregions

with stationary random fields which can be linked in a non-stationary unique random

field.

Chapter IV is an extension of the third chapter which explore the non-stationary

of the huge data sets by using a random partition. We propose a model which sepa-

rates the space with non-stationary covariance function, with a modified Treed Gaus-

sian Model, into subregions with stationary and anisotropic covariance functions. The
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modification is a combination of the use of the reduced covariance function proposed

by Sang and Huang (2011) and a use of the non-stationary covariance function, pro-

posed by Paciorek and Schervish (2006). The non-stationary covariance function pro-

posed by Paciorek and Schervish (2006) links different reduced stationary covariance

functions from the separate subregions into a unique covariance function. This model

is applied to TOMS data where as we explain in Chapter III the non-stationarity is

coming though the latitude and the prediction performance show good fit. With this

method not only the computational cost is reduced but also the non-stationarity is

taken into account.
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CHAPTER II

OBJECT CLASSIFICATION OF GOLD NANOPARTICLES USING BAYESIAN

MARKED POINT PROCESS MODEL

A marked-point process is a random collection of objects falling in some space.

The way this objects are distributed over space is usually govern by some physical

properties which can be expressed in a mathematical model. The mathematical model

is not straightforward to be expressed when these collections of objects appear in an

image, since we need a model for the pixels. This difficulty can be resolver with the

hierarchical Bayesian model where we can use different model for the pixels as well

as for the object interaction and link them.

A mathematical model should be considered for the case where two objects may

not overlap completely, but only in a small regions. This behavior can be modeled

using a repulsive interaction prior in the point process representation. Since there

may be a difference in the degree (intensity) of overlapping from image to image, we

assume that the parameters of the point process are unknown and ought to be in-

ferred. This leads to a hierarchical model setting where the prior distribution has an

intractable normalizing constant. As a result, the posterior is doubly intractable and

we use the Markov-chain Monte-carlo (MCMC) framework to carry-out the inference.

Simulating from distributions with doubly intractable normalizing constants has re-

ceived much attention in the recent literature, but most of these methods consider the

normalizing constant in the likelihood and not in the hierarchical prior; Møller et al.

(2006) and Murray et al. (2006), Liang (2010), among others. In this chapter, we

borrow the idea of Liang and Jin (2011), which is a modified version of the reweight-

ing mixtures given in Chen and Shao (1998) and Geyer and Møller (1994), which
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can deal with doubly intractable normalizing constants in the hierarchical prior as

well. The MCMC algorithm used can be described as a two step MCMC algorithm.

We first sample the parameters from the pseudo posterior distribution - which is a

part of the posterior that does not contain the AIPP normalizing constant - and then

an additional Monte Carlo Metropolis-Hasting (MCMH) step that accounts for this

normalizing constant.

Sampling from the pseudo posterior distribution is also quite challenging. Infer-

ring the unknown number of objects is a complex task. We propose Reversible Jumps

MCMC (RJ-MCMC) type of moves to handle both the tasks (Green (1995)). Specifi-

cally, we use spatial birth and death moves to sample the number of objects and while

proposing a new object, we use information from prior knowledge available. However,

at times, an object may have to be split into two objects or may have to be merged

to form a single object. The regular birth and death moves may be slow in mixing,

or we may travel through some very low-probability intermediate states. Due to this

specific problem, split and merge moves have been designed. We also propose RJ-

MCMC moves to swap (switch) the shape of an object. Using the above mentioned

computational scheme, we obtain the posterior distributions for all the parameters

which characterize the nanoparticles: number, shape, size, center, rotation, mean

intensity, etc.. Owing to the model specification and the computational engine for in-

ferring the model parameters, our approach extracts the morphological information of

nanoparticles, detects nanoparticles laying on the boundaries, quantifies uncertainty

in shape classification, and successfully deals with the object overlapping, when most

of the existing shape analysis methods fail.
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2.1 Nanoparticles in an image and the use of MPP

For nanomaterials, material properties are often encoded in their morphological

characteristics. Understanding the material properties can help scientists to find new

applications and optimize their process parameters. Such knowledge offers control

over the morphological footprints Wang et al. (1998); Mohamed et al. (2000); El-

Sayed (2001); Nehl et al. (2006); Pan et al. (2007). A major step in accomplishing this

task is the availability of image analysis tools that segment, classify and characterize

the images of the nanoparticles.

Transmission Electron Microscopy (TEM) has been used to analyze the morphol-

ogy of nanoparticles. TEM uses a beam of electrons transmitted through an ultra-thin

specimen, interacting with the specimen as it passes through. A grayscale image is

then formed from the interaction of the electrons with the specimen, which conveys

information about the presence or absence of a nanoparticle in two dimensions. In

the presence of a nanoparticle, electrons have a difficulty to pass through, resulting in

reduced intensity in that part of the image. Representative TEM images are shown

in Fig. 1.

Detecting nanoparticles and determining their properties is usually based on the

grayscale contrast in the TEM images. High-level statistical image analysis techniques

model an image as a collection of discrete objects and are used for object recognition,

Baddeley and van Lieshout (1993). Here, the object is any abstract representation of

an ensemble of pixels that are of importance to the subject expert. In images with

object overlapping, Bayesian approaches have been preferred over maximum likeli-

hood estimators (MLE). The unrestricted MLE approaches tend to contain clusters

of identical objects, whereas the Bayesian approaches mitigate this problem by pe-

nalizing the overlapping by an area interaction process prior (AIPP) or by a similar
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(a) Gold nanoparticles at 20nm

(b) Gold nano particles at 50nm

Figure 1: Example of TEM images

approach, offering flexibility over controlling the overlapping or the touching. More-

over, the high dimensionality of the problem makes the Bayesian approach attractive

in these cases. The Bayesian approach has been used quite successfully in a wide

variety of settings ( Baddeley and van Lieshout (1993); Mardia et al. (1997); Rue

and Syversveen (1998); Rue and Hurn (1999); Al-Awadhi et al. (2004a); van Lieshout

(2008)), among others.

In Mardia et al. (1997), an area interaction model which forbids objects to

overlap completely is proposed. Inference is carried out by finding the Maximum
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A Posteriori (MAP) estimates and the area interaction parameters are chosen by

simulation experience, in effect, fixing the parameters that define the penalty terms.

Spatial birth and death moves are considered to infer the number of objects. There are

a number of limitations of this model: 1) we may only find a local mode, 2) when more

than one type of object is present, we may need additional transdimensional moves

to navigate the rugged posterior energy landscape and 3) fixing certain parameters

in the AIPP are very restrictive as it needs intervention by the subject expert every

time. Further, their application is limited to circular objects with greater intensity

in the center.

Rue and Hurn (1999) also used MPP as in Mardia et al. (1997) to handle the

unknown number of objects but introduce polygonal templates to model the objects.

However, their application is restricted to cell detection problems, where the objects

do not overlap but barely touch each other and the method works more like a seg-

mentation technique than as a classification technique. Moreover, the success of this

approach depends on MPP parameters, which are assumed known throughout the

simulation. Recently, Al-Awadhi et al. (2004a) used the same model except that

they considered elliptical templates instead of polygonal templates and applied their

method to similar cell images. As noted, all the above methods take advantage of

the MPP, in particular the AIPP or any other prior that penalizes the overlapping

or touching. In addition to the above methods, substantial work in estimating the

closed contours of objects in an image has been done by Blake and Yuille (1992); Hel-

terbrand et al. (1994); Qian and Mardia (1995); Pievatolo and Green (1998); Hobolth

et al. (2002); Jung et al. (2008); Kothari et al. (2009), among others. Imaging pro-

cessing tools, especially for cell segmentation also exist; for instance, ImageJ ( ImageJ

(2004)) is a tool recommended by the National Institute of Health (NIH). However,

the features of the data we are dealing with are quite different from those considered
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in the literature reviewed, as there are various degrees of overlapping of the nanopar-

ticles differing in shapes and sizes, as well as a significant number of nanoparticles

lying along the image boundaries. Moreover, in this chapter we are interested in si-

multaneous classification and segmentation. Efficient object representation is critical

to overcome these challenges.

There are various possible statistical approaches for object representation in high-

level image analysis. The pattern theory Grenander (1993); Grenander and Miller

(1995) suggests using multiple-graph deformable templates and jump-diffusion sim-

ulation. The method is based on the deformation of a template - a polygon with

a fixed number of sides of variable length - to find the optimal fit to the object.

The geometrical object process proposed by Baddeley and van Lieshout (1993) uses

marks to handle the varying dimensionality of the geometrical objects and the point

process to handle the locations. Rue and Hurn (1999) successfully combine these

two methods and generalize the approach to polygonal deformable templates with

random number of sides, retaining the marked point process characteristics. Their

method uses a polygon template of varying resolution for different shapes, which

works well in detecting object boundaries. However, the nanoparticles have usually

smooth corners and if we use this method then the number of sides in the polygon

will be overestimated. And as a result, it leads to incorrect classification.

In Mardia et al. (1997), objects were represented by templates which constitute

the marks and were employed even to detect occlusions. More specifically, a tem-

plate is a predetermined shape represented with fixed vertices, which can be shifted,

scaled, rotated and deformed to represent an object in the image. The line segment

joining each vertex to some fixed internal point lies entirely within the polygon. The

deformation considered in their work can be seen more as a “small scale deformation”

of the boundaries and shape classification can be done only if we know exactly the
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parameters of a particular shape: e.g. ellipse with certain parameters. Since the

structure of the data we are analyzing is different from literature, we adapt object

representation strategies discussed above to the problem at hand. Firstly, when we

refer to a shape, we refer to a family of geometrical objects which share certain fea-

tures; for example, an isosceles and a right triangle both belong to the triangle family.

There are five types of possible shapes of the nanoparticles in our problem. The scien-

tific reason is that the final shape of the particle is dominated by the potential energy

and the growth kinetics. There is a balance between surface energy and bulk energy

once a nucleus is formed. The arrangement of atoms in a crystal determines those

energies such that only one of these specified shapes can be formed. We use similar

scientific reasons to construct shape templates. These templates are determined by

the parameters which vary from shape to shape.

The Bayesian approach proposed above is used and comparison with ImageJ

(recommended by NIH) has been conducted to demonstrate the efficiency of our

proposed method.

The rest of the chapter is organized as follows: Section 2.3 describes the TEM

images, Section 2.4 deals with the object specification procedure, Section 2.5 de-

scribes the model specification, Section 2.6 describes the MCMC algorithm, Section

2.7 describes a simulation study and Section 2.8 applies the method to the real data.

Conclusions are presented in Section 2.9.

2.2 Data

We analyze a mixture of gold nanoparticles in aH2O solution. In order to analyze

the morphological characteristics, nanoparticles are sampled from this solution onto

a very thin layer of carbon film. After the water evaporates, the two dimensional

morphology of nanoparticles measured using an Electron microscopy such as TEM.
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In our case, a JEOL 2010 high resolution TEM operating at 200-kV accelerating

voltage was used, which has 0.27 nm of point resolution. The TEM shoots a beam of

electrons onto the materials embedded with nanoparticles and captures the electron

wave interference by using a detector on the other side of the material specimen

resulting in an image. The electrons cannot penetrate through the nanoparticles,

resulting in a darker area in that part of the image. The output from this application

will be a eight bit gray scale image where darker parts indicate the presence of a

nanoparticle. The gray scale intensity is varying as an integer between 1 and 256.

Refer to Figure 1 for examples of TEM images.

Due to the absorption of electrons by the gold atoms, the regions occupied by

the nanoparticles look darker in the image. The darkness pattern may vary according

to specific arrangements of the atoms inside any single nanoparticle. Additionally,

one can see many tiny dark dots in the background, which are uniformly distributed

throughout the image region. These dark dots are generated because the carbon

atoms of the carbon film also absorb electrons. One may also notice a white thin

aura wrapping around the whole or partial boundary of a particle. This is the result

of having surfactants on the rim of the particles. The surfactants are added to keep

the particles from aggregating in the process of making colloidal gold. Analyzing the

shapes of the nanoparticles in a TEM image is primarily based modeling them as

objects, whose shapes are parametrized. Treating a nanoparticle as an object is the

critical component of our modeling framework, which we discuss in the next section.

2.3 Object specification

An object is specified in a series of steps that allow us to model a wide variety

of shapes. They are:

1. Template
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2. Shift, Scale and Rotate operators

3. Object multiplicity

We discuss each of them in detail below.

2.3.1 Template

A template is a predetermined shape which is defined by a set of parameters

which we call pure shape parameters or simply pure parameters. We will call the

template T a pure object and we will specify a pure object by its pure parameters as

g0T = {g0T (1), . . . , g0T (q)}, where q is the number of parameters, and it varies from shape

to shape. For example, a circle with unit radius at the origin (0, 0) can be regarded

as a template for circular objects. Likewise, an equilateral triangle with unit sides,

centered at the origin with the median aligned to the x-axis can be a template for

triangular objects. We can potentially differentiate an equilateral triangle from an

isosceles triangle even when they both belong to the triangle family. However, to

avoid defining an infinite number of templates, we consider all types of a particular

shape to be members of the same template. For example, all types of triangles, such as

equilateral, right-angled, etc., are considered to be members of the triangle template.

As such, when we refer to a template in this chapter we refer to a family of shapes that

has certain characteristics. A family of shapes is formed by deforming some of the pure

parameters {g0T (1), . . . , g0T (q)} in the shape definition. We distinguish g0T parameters

as random (unknown) grT , and constant (known) gcoT . The random pure parameters grT

cannot be determined exactly by the template or by other components of g0T . These

random pure parameters affect the overall shape, size and other geometric properties,

thereby causing a large scale deformation of the template. These parameters are

closely related to the template but for simplicity we ignore the indicator T and use
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the notation g0T = g0 = (gr, gco). The pure parameters are chosen such that the

defined template will have an area equal to the area of a unit circle, that is π square

units. A template can be shifted, rotated and scaled, still belonging to the same

shape family.

We also specify landmarks l0 = l0(1), . . . , l0(M) as the M equally spaced bound-

ary points of a given template. These landmarks can be determined if one knows

the pure parameters. The landmarks will help us representing the shape of the real

image. In polar coordinates, these landmarks can be represented as:

l0(k) = c0,0 + s0(k)(cos(θ(k)), sin(θ(k)))T

where s0(k) is the distance of kth landmark from the center c0,0, and θ(k) is the

rotation of the kth landmark with respect to the baseline. The particular choice of

the coordinate system in which the landmarks are represented does not affect the

results. Hence, we have chosen to use polar coordinates for the simplicity of the

mathematical analysis. We chose ninety landmark points for all the shapes. Simply

speaking, these landmarks in an image form the shape. The random deformation of

these landmarks results in small scale deformation of the template. In this chapter, we

focus our attention on the large scale deformation since the main goal is to determine

the shape and not making boundary detection or contour tracking, where small-scale

deformations are important. Templates used in the current study are given in the

next section.

2.4 Templates used in the current study

Using the expert knowledge as stated in section (2.1), the possible shapes of the

gold nanoparticles are: rectangle, circle, ellipse, triangle and polygon. From now on,

we will denote this categorical random variable by T . Below we will give the details
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of the corresponding template and their related pure parameters.

• Circle: A circle is defined by the equation

(u− cx)
2 + (v − cy) = s2

where (cx, cy) determines the center and s the radius. In this dissertation, we

take (cx, cy) = (0, 0) and s = 1. The pure template is a unit circle centered

at (0, 0). This way g0(1) = cx = 0, g0(2) = cy = 0 and g0(3) = s = 1 and no

deformation is needed.

• Ellipse: With respect to the usual coordinate axes, the ellipse is described by

the equation:

(

(u− cx) cos(θ)− (v − cy) sin(θ)

E1

)2

+

(

(u− cx) sin(θ) + (v − cy) cos(θ)

E2

)2

= 1.

(2.1)

The pure object template here is the ellipse with center (cx, cy) = (0, 0), rotation

θ = 0 and the largest distance E1 > 1 and the shortest E2. Values of g
r = E1 ≈

1 implies that the elliptical shape is closer to the circular shape whereas large

values of E1 indicate a departure from the circular shape. A circle can be treated

as an ellipse and the variable gr = E1 is the measure of deviation of the ellipse

from the circle. A threshold to distinguish ellipse from circle in our applications

is chosen as E1 ∈ (1.12, 1.4) and E2 = 1/E1 which constrain the area of ellipse to

be equal to π. Here, we have one variable g0(3) = E1 that controls g0(4) = E2

and two variables that remain constant as (g0(1), g0(2)) = (cx, cy) = (0, 0).

That way, we have gco = (g0(1), g0(2), g0(4)) and gr = g0(3).

• Triangle: Many approaches can be seen to define the pure template for the

triangle. The Bookstein coordinates or Kendall’s spherical coordinates can be
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used to define every possible triangle in ℜ2, (Dryden and Mardia (1998)). All the

images we analyzed are isosceles triangles without sharp vertices. The degree

of sharpness (smoothness) of these vertices varies from triangle to triangle. We

construct an appropriate template, namely an isosceles triangle with unknown

smoothness for its vertices.

We define the template for every isosceles triangle with a height h1 and half

of the unequal side as h2 (see Fig. 2). To have an area equal to π, we

constrain h2 = π/h1. One of the equal angles θ1 of the isosceles triangle

is considered to vary between [20o, 90o]. After some algebra we have: h1 ∈
{√

π tan(200),
√

π tan(900)
}

. Sharp edges in the triangle are smoothed by ap-

plying a smoothing spline to approximate the edges after a random cutting of

the edges. In addition, we can generalize the triangular template to cover all

possible triangles, by introducing h2 as another random quantity and apply the

necessary changes in size and center of template. The template with center at

the centroids of the smoothed isosceles triangle and the rotation θ = 0, which

is the angle of the h2 with the baseline, will be our template for a triangle (as

in Fig. 2).

• Square & Rectangle: The square of sides
√
π and center (cx, cy) = (0, 0) will

be the template for the square shapes. For the rectangle we need two parame-

ters A1, A2 which determine the half length of sides of the rectangle , with A1

corresponding to the larger side and A2 corresponding to the smaller side. For

details see Fig. 2. A small portion of the vertices are also randomly removed

to cover deformed squares and rectangles. To cover all the possible rectangles

in our application, we choose A1 ∈ (A11, A12) and A2 = π/4A1 which constrain

the area of rectangle to be equal to π.
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Figure 2: Templates with at least one random pure parameter

2.4.1 Shift, scale and rotate operators

Apart from the parameters that determine the shape which vary from template

to template there are also some common parameters related to shifting, rotating and

scaling which are needed to represent the actual shape in the image. A particular

affine shape with shift c = (cx, cy), scale s and rotation θ is given by the landmarks

l = {l(1), . . . , l(M)}, whose polar coordinates are: [l(k) = c+ c0 + sS0(k)(cos{θ(k) +

θ}, sin{θ(k) + θ})T ] for k = 1, . . . ,M .

2.4.2 Object multiplicity and the Markov point process

In an image, we have multiple objects with different shapes and we assume that

the number of objects is unknown. A point process is used to model the unknown

number of objects and the overlapping. One of the widely used models that penalize

object overlapping is the Markov point process (MPP). Among the many MPPs that

control the interaction among the objects in different fashions is the area interaction

process prior ( Baddeley and van Lieshout (1993)). We calibrated priors such that

inference is invariant to changes in the image resolution. The location parameters
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c = (c1, · · · , cm) and the number of objects m are modeled as:

π(c,m|gr, s,θ,T, γ1, γ2) =
1

A∗
exp {−γ1m− γ2S(η)} , (2.2)

where S(η) denotes the area of the image covered by more than one object, ηi =

(ci, si, ti, θi, g
r
i ) is a collection of parameters that represents the ith object and η =

ηm = {ηk}mk represent these parameters for all objects which we call ‘object pa-

rameters’. Moreover, T = Tm{ti}mi=1, s = sm = {si}mi=1, θ = θm = {θi}mi=1,

gr = gr

m = {gri }mi=1 and A∗ is the normalizing constant which depends on all the

paprameters described above (η,m) and the positive unknown parameters γ1 and

γ2, (A
∗ = A(η,m, γ1, γ2)). The interaction parameter γ2 controls the overlapping

between objects and γ1 the number of objects in the image. For example, γ2 = 0 does

not penalize overlapping, whereas γ2 = ∞ does not allow overlapping at all. Prior

distributions for γ1 and γ2 are considered in subsequent sections. For simplicity we

introduce γ = (γ1, γ2) to represent the MPP parameters.

Another way to penalize object overlapping is the two-way interaction:

π(c,m|η) =
1

A∗
exp

{

−γ1m− γ2
∑

i<j

|R(ηi) ∩R(ηj)|
}

I[No three or more objects have common area].

The term I[No three or more objects have common area] will not allow three or

more objects to overlap in the same area, R(ηi) is the region of a single object char-

acterized by its parameters ηi and R(ηi)
⋂

R(ηj) is the overlapping area between the

ith and the jth object. We can generalize this case to allow more objects to overlap in

a region and also penalize with a different parameter γk. Investigating such models

is out of the scope of the current work.
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2.5 Model

2.5.1 The likelihood function

Due to the electron absorption, the mean intensity of the background is larger

than the mean intensity of the regions occupied by the nanoparticles. Furthermore,

since each nanoparticle has different volume size, the mean pixel intensity for each

nanoparticle is different, which is evident from the representative TEM images of gold

nanoparticles shown in Fig. 1. It can also be observed that the overlapping regions

have usually lower intensity because they absorb more electrons in that region. For

tractability, we consider the darkest region to be the dominant region in determining

the configuration of the objects with which it is overlapping. Due to specific arrange-

ments of the atoms inside any single nanoparticle the neighboring pixels have similar

intensities. An appropriate choice for the covariance function in such scenarios is the

popular Conditional Autoregressive (CAR) model, Cressie (1993). Computationally

a much simpler model is the independent noise model, (Baddeley and van Lieshout

(1993); Mardia et al. (1997); Rue and Hurn (1999).

After analyzing both real and simulated datasets, the posterior specification of

the parameters did not change much even if we replaced the CAR model with the

independent Gaussian noise model. We denote µ = µm = (µ0, . . . , µm) as the mean

vector and σ2 = σ2
m = (σ2

0, σ
2
1, . . . , σ

2
m) as the variance vector for the background and

objects intensity. To facilitate the notation, we use Θ = (η,m,µ,σ2). In this case

the likelihood can be written as:

f(Y |Θ) ∝
N
∏

p=1

exp

{

− 1

2φ(xp)
(yp − δ(xp))

2

}

(2.3)

where N is the number of pixels, xp is the p
th pixel, δ(xp) is the mean of the pth pixel,

φ(xp) is the function of the variance depending on the pixel. More explicitly the mean
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intensity for pixels covered by more than one object is taken to be the minimum mean

intensity of the objects covering the pixels and with variance which corresponds to

the variance of that object.

For example, in the case where we allow only two way interaction, Eqn. (2) can

be written as:

f(Y |Θ) ∝ exp

{

− 1

2σ2
0

∑

ν∈R(η0)

(

yν0 − µ0

)2 −
m
∑

i=1

1

2σ2
i

∑

ν∈R(ηi)\R(−i)

(

yνi − µi

)2

−
∑

i<j

1

2min(µi,µj)(σ
2
i , σ

2
j )

∑

ν∈(R(ηi)
⋂

R(ηj))

(

yνi,j −min(µi, µj)
)2
}

(2.4)

where R(−i) is the region occupied by all objects (nanoparticles) without the ith object

and R(η0) is the area of the background.

2.5.2 Prior specification

We elicit the joint prior distribution hierarchically as follows:

π(Θ,γ) = π(Θ|γ)π(γ)

= π(µ,σ2)π(η,m|γ)π(γ)

= π(µ,σ2)π(c,m|γ,gr, s,θ,T)π(gr, s,θ,T)π(γ).

(2.5)

In the above expression π(µ,σ2) is the prior of the means and the variances of the

background and the objects, π(c,m|γ,gr, s,θ,T) is the joint prior of the locations

and the number of the objects as given in equation (1), π(gr, s,θ,T) is the joint

prior on all the ‘object parameters’ except the locations and π(γ) is the prior on the

interaction parameters.

We assume independent (µi, σ
2
i ) pairs and assign a non-informative prior for each

of these pairs.

π(µ,σ2) =
m
∏

i=0

π(µi, σ
2
i ) ∝

m
∏

i=0

(σ2
i )

−1. (2.6)
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All the ‘object parameters’ except the locations are assumed to be independent

from object to object. Also the scale, rotation and template within object parameters

are assumed to be independent of other parameters while gri is assumed to be closely

related to the template Ti (shape). We remind the reader that gri are different from

template to template. In mathematical form we have:

π(gr, s,θ,T) =
m
∏

i=1

π(si)π(θi)π(g
r
i |Ti)π(Ti). (2.7)

We assign a uniform prior for si which is proportional to the size of the image

Smax, i.e., π(si) ∼ U(0, Smax). Except for circles, all other shapes have a rotation

parameter θ ∈ (0, π]. The prior density for θ is π(θ) ∼ {| cos(θ)| + π−1}/3, which

favors values near θ = 0 and θ = π. The circle and square do not have a random

pure parameter while the other considered templates have at least one random pure

parameter. All these parameters have one basic characteristic: they are constrained

to take values between two variables (a1, a2). We use altered location and scale Beta

distribution as prior given by:

π(gri ) =
1

Beta(α, β)

(gri − a)α−1(b− gri )
β−1

(b− a)α+β−1

where a, b, α, β are different for the three different cases. Furthermore, we have used

the uniform discrete distribution to specify the prior for the template, Ti.

For both the object process parameters γ1, γ2 we assume independent log-normal

distribution priors with parameters which determine a mean close to 100 and large

variance, γ1 ∼ LN(α1, δ1), γ2 ∼ LN(α2, δ2).

2.5.3 The posterior distribution

The model proposed above is a hierarchical model of the form:
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









































y|Θ ∼ f(y|Θ) (a)

Θ|γ ∼ π(Θ|γ)

≡ 1

A∗
π∗(c,m|γ,gr, s,θ,T)π(gr, s,θ,T|m)

(b)

γ|α1, δ1, α2, δ2 ∼ π(γ|α1, δ1, α2, δ2) (c)

(2.8)

where α1, δ1, α2, δ2 are known values and π∗(c,m|γ,gr, s,θ,T) is the MPP prior with-

out the normalizing constant.

The posterior distribution of the parameters p(η,µ,σ,m,γ|y) is proportional to

the multiplication of (a), (b) and (c) in the above hierarchical representation.

p(Θ,γ|y) ∝ π(γ)π(µ,σ2|η)π(η|γ)f(y|η,µ,σ2)

=
1

A∗
π∗(c,m|γ,gr, s,θ,T)π(gr, s,θ,T)π(µ,σ2)π(γ)f(y|η,µ,σ2)

=
1

A∗
p∗(η,µ,σ,m,γ|y),

(2.9)

which is not only intractable but also has a random intractable normalizing constant

A∗. We use Markov-chain Monte-carlo (MCMC) computation algorithm to carry-

out the inference since the posterior distribution is analytically intractable and the

point process prior has a random intractable normalizing constant. To facilitate the

discussion, we call p∗(η,µ,σ,m,γ|y) the pseudo posterior distribution.

2.6 Posterior computation using MCMC

The MCMC algorithm used in this chapter can be described as a two stage

Metropolis-Hasting algorithm. We first sample the parameters from the pseudo pos-

terior distribution followed by a Monte Carlo Metropolis-Hasting step to account for

A∗ ( Liang and Jin (2011)).

The MCMC algorithm will have the following form:
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• Given the current state Θk,γk draw Θ′,γ ′ from p∗ using any standard MCMC

sampler.

• Simulate auxiliary variables z1, . . . , zM from z ∼ f(z;Θ′) using an exact sam-

pler.

• Estimate R = A(η′,m′,γ ′)/A(ηk,mk,γk) as

R̂ =
1

M

M
∑

i=1

f(z;Θ′)

f(z;Θk)
.

• Compute (estimate) the MH rejection ratio α as α̂ = 1/R̂.

• Accept Θ′,γ ′ with probability min(1; α̂).

Simulating auxiliary variables zi from the likelihood is straightforward. The

challenge lies in drawing from the pseudo posterior.

A generalized Metropolis-within-Gibbs sampling with a reversible jump step is

used to simulate from the pseudo posterior distribution with known number of ob-

jects. Additionally, a reversible jump MCMC (RJ-MCMC) with spatial birth-death

as well as merge-split move is invoked to sample the number of objects and their

corresponding parameters.

We draw from the joint pseudo posterior p∗(µ,σ2,η,γ,m|y) by alternately draw-

ing from the conditional pseudo posteriors of µ,σ2η|m, y,γ, γ|µ,σ2η,m, y and

m|η,µ,σ2,γ, y, as follows:

• Draw ηk+1,µk+1,σk+1 from p∗(η,µ,σ|mk,γk, y) using a Metropolis-within-

Gibbs sampler.

• Draw mk+1 from the pseudo posterior p∗(m|µk+1,σk+1,ηk+1,γk, y) using a RJ-

MCMC.
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• Draw γ
(k+1)
1 , γ

(k+1)
2 from the distribution p∗(γ|y,Θ) using an M-H step.

We explain these steps in detail, in the following paragraphs.

2.6.1 Updating η,µ,σ, given m and γ

The conditional distribution of p∗(η|µ,σ2,m, y) does not have any closed form

and the same is true for the conditional distribution of every component or group of

components of η. A Gibbs sampling step which contains Metropolis-Hasting steps

and RJ-MCMC step is utilized. The Metropolis-Hasting updates for (η,µ,σ/T) and

T are given next.

2.6.1.1 Metropolis-Hasting updates of (η,µ,σ) exluding T

Updating µ and σ: The conditional distribution of p∗(µj, σj|.) is proportional

to the multiplication of (9) with (7): p∗(µj, σj|.) ∝ π(µj, σ
2
j )f(y|Θ).

Metropolis-Hasting step is used to draw from this posterior with proposal distri-

bution

σ
−Nj−2
j exp

{

− 1

2σ2
j

[(Ni − 1)s2j + n(ȳj. − µj)
2]

}

,

where s2j =
1

Nj−1

∑Nj

i=1(yi − ȳj), Nj ∈ (Rj) is the total number of pixels in the region

of the proposed shape and ȳj. is the sample mean intensity of the jth object. To draw

from this proposal we first draw σ2
j |. ≡ Invχ2(Nj − 1, σ2) and then from µj|σ2

j , . ≡

N(ȳj., σ
2
j /Nj).

Updating s, c, θ and gr: Metropolis-Hasting step is used to draw from the

pseudo conditional posterior distributions of the components of s, c, θ and gr. To

implement the M-H step, we need the proposal distribution which will generate the

parameters. These proposals should have some good properties in order for the chain

to mix well. The preprocessing is not only helpful to determine the starting values

of some of the parameters but also their proposal distribution. More specifically, the



25

proposal distributions of scaling sj and location cj are determined by the preprocess-

ing.

Scaling sj: As we have already mentioned, all the shapes have a scaling param-

eter. The choice of templates to have an equal area reduces the number of scaling

parameters to one per object. Also it has been chosen such a way that different

shapes with same scaling parameter s will have the same area. This is a very impor-

tant property and its benefits will become obvious when we move from template to

template in the MCMC algorithm.

Given the current sample of scaling skj we use q(sj, s
k
j ) ≡ N(skj , σ

2
Sj
) as the pro-

posal distribution for sj, where σ
2
Sj

is derived from the estimated scale s0j from the

preprocessing. In this dissertation we chose σ2
Sj

= s0j/10. Then we use a standard

M-H algorithm to draw sj.

Location cj: When the number of objects is m, we have 2m location parameters

( m in the x-coordinates and m in the y-coordinates). Given the current sample of

location ckj we use q(cj, c
k
j ) ≡ MN(ckj , σ

2
Cj
I) as the proposal distribution, where σ2

Cj

is the variance for both (x, y) coordinates.

Rotation θj: The rotation parameter is present in every template except for the

circle. We have used the prior proposal in θj ∈ [0, π].

Random pure parameter grj : An independence sampler with the prior distri-

bution as the proposal, q(grj , (g
r)k) = q(grj ) = π(grj ) has been used. The sampling has

been performed as follows:

1. Generate (grj )
∗ from q(grj )

2. Compute

α =
p∗{(grj )∗, µk+1, (σ2)k+1, T k, sk+1, ck+1, θk+1, (gr)k+1

1:(j−1), (g
r)k(j+1):m|y}

p∗{(grj )k, µk+1, (σ2)k+1, T k, sk+1, ck+1, θk+1, (gr)k+1
1:(j−1), (g

r)k(j+1):m|y}
q{skj , s∗j}
q{s∗j , skj }

(2.10)
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3. Set (grj )
k+1 = (grj )

∗ with probability min{1, α} and (grj )
k+1 = (grj )

k with the

remaining probability.

2.6.1.2 Updating the template Tj (swap move)

We can view the problem of shape selection as a problem of model selection

between Mj,t1 , . . . ,Mj,tD , where Mj,ti represents the model with template ti. Moving

from shape to shape is considered a difficult task since not only the pure parameters

that characterize the template are different, but also the parameter specification may

not have the same meaning across templates. For example, one can argue that the

scaling parameter of a circle can be different from the scaling parameter of a triangle.

The move from shape to shape is based on the rule that both shapes should have the

same area and the centers of both shapes are the same. This increases the likelihood of

generating good proposals. For the particular shapes we deal with, the equality of area

also means equality of the scaling parameter. This means that all of the above models

Mj,ti have the same scaling sj and location cj parameters. The rotation parameter, θ,

can be chosen such that the proposed shape overlap “matches” as much as possible to

the existing shape given the same (sj, cj) or simply one may retain the same θ while

changing shapes. The ‘pure random’ parameters are the only parameters that do not

have a physical meaning when we change the shape and also their number could vary

from shape to shape. Reversible Jump MCMC is used successfully for problems with

different dimensionality and is characterized by introducing auxiliary variables for

the unmatched parameters (Green 1995). This is the approach we follow here. Two

new variables (uTj
= grTj

, vTj
= grTj

) are introduced to make it clear that the pure

parameters have different meaning from template to template. For all the shapes,

we provide a general algorithm: Let ψk
j = (T k

j , sT k
j
, cT k

j
, θT k

j
, uT k

j
) denote the current

state and ψ∗
j = (T ∗

j , sT ∗

j
, cT ∗

j
, θT ∗

j
, vT ∗

j
) the proposed state for ψk+1. The notations of
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the parameters are different from the previous sections to show the dependence of the

parameters on the model T ∗
j , (or template). If T k

j 6= T ∗
j , generate vT k

j
from the prior

distribution of the vTj
and consider a bijection:

(sT ∗

j
, cT ∗

j
, θT ∗

j
, uT ∗

j
, vT ∗

j
) = (sT k

j
, cT k

j
, θT k

j
, uT k

j
, vT k

j
).

This bijection is formed from the steps described above. From this bijection it is clear

that the Jacobian is equal to identity matrix, J = I, and |J | = 1.

In summary, the RJ-MCMC algorithm is:

• Select model MT ∗

j
with probability q(Tj, T

k
j ) = π(Tj).

• Generate vT k
j
from π(vTj

)

• Set (sT ∗

j
, cT ∗

j
, θT ∗

j
, uT ∗

j
, vT ∗

j
) = (sT k

j
, cT k

j
, θT k

j
, uT k

j
, vT k

j
).

• Compute the M-H ratio:

α =
p∗(sT ∗

j
, cT ∗

j
, θT ∗

j
, vT ∗

j
|y)π(T k

j )

p∗(sT k
j
, cT k

j
, θT k

j
, uT k

j
|y)π(T ∗

j )

π(uT ∗

j
)

π(vT k
j
)
|J |

where J is the Jacobian.

• Set ψt+1 = (T ∗
j , sT ∗

j
, cT ∗

j
, θT ∗

j
, vT ∗

j
) with probability min(1, α) and ψt+1 =

(T k
j , sT k

j
, cT k

j
, θT k

j
, uT k

j
) with remaining probability.

2.6.2 Updating m

Two different types of moves are considered in updating the number of objects:

birth-death and split-merge. In the death step, one chosen-at-random object is deleted

and in the birth step, one object with parameters generated from the priors is added.

In the merge step we consider the case where two objects die and give birth to a

new one and in the split step two new objects are created in the place of one. Let

Pr(birth), Pr(death), Pr(split) and Pr(merge) be the probabilities of proposing a

birth, death, split or a merge move, respectively.
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2.6.2.1 Birth and death movement

The spatial birth and death moves are described in Geyer and Møller (1994)

and in Geyer and Thompson (1995). The acceptance ratio for these move type of

moves is determined by a RJ-MCMC involving a change in the dimension.

In the birth step a new object ηm+1 is proposed with a randomly assigned center.

In this step we increase the dimension of the parameters by Qm+1, all the parameters

which describe the proposed object (ηm+1, µm+1, σ
2
m+1). All these new parameters are

sampled from the prior distributions of the Qm+1 parameters. The introduction of

these kind of auxiliary variables leads again to a Jacobian equal to 1 and the M-H

ratio is:

min
{

1,
p∗(ηm+1, µm+1, σ

2
m+1,ηm,µm,σ

2

m
|y)

p∗(ηm,µm,σ2
m
|y)π(ηm+1, µm+1, σ

2
m+1)

q((m+ 1) � m)

q(m � (m+ 1))

}

. (2.11)

The death proposal chooses one object, ηj, at random and removes it from the

configuration. The M-H ratio for this move is similar to Eqn. (9).

2.6.2.2 Split and merge movement

The details for the split and merge move are more complicated than the move

types described above. First we restrict our attention only to the case where we merge

two neighboring objects or split one object into two neighbors. The distance between

the two neighbors can be approximated by a function of their individual size. This is

the approach we take to propose two new objects in the split step. As in the swap

move described in sec. (5.1.1), when we move from one state to another, we require

that the proposed objects have equal area with the existing. In order for the Markov

Chain to be reversible we should ensure that every jump step can be reversed. It

is important to mention that we can improve the acceptance rate of this move with

different proposed algorithms, e.g. Al-Awadhi et al. (2004b), but that is beyond the

scope of this work.
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To facilitate the representation we will denote by bold characters η, µ and σ2

the current state in every move and η−(.), µ−(.) and σ2
−(.) the current state values

without the (.) objects.

Merge Step: Let’s suppose we have two objects and that their parameters are

(ηi, ηj , µi, µj , σ
2
i , σ

2
j ). In the merge step, we move to a new object with parameters

(ηh, µh, σ
2
h) = (xh, yh, sh, θh, Th, g

r
h, µh, σh). The equation which link the sizes of the

old objects (si, sj) with the new is sh =
√

s2i + s2j . Also xh and yh are chosen to

represent the “weighted middle” point taking in account the size of each object as

(xh, yh) = ((sjxj + sixi)/(si + sj), (sjyj + siyi)/(si + sj)). All the other parameters

are chosen from one of the “parent” objects or at random.

In order to match the two dimensions, we introduce six auxiliary variables,

(u1, u2, u3, u4, u5, u6), which not only would enable us to move from state to state

but also are interpretable: u1 =
√

(yj − yi)2 + (xj − xi)2 is expressing the distance

between two centers of the neighboring objects,

u2 = arctan(
(yj − yi)

(
√

(yj − yi)2 + (xj − xi)2)
),

is the angle created from the union of the two centers (c1, c2), u3 = (s2i − s2j)/(s
2
i + s

2
j)

is chosen such that Ri = Rh

√

(1 + u)/2 and Rj = Rh

√

(1− u)/2, u4 = θ2,u5 = T2,

u6 = g22.

The acceptance ratio, α, in this case is the minimum of one and:

p∗(ηh, µh, σ
2
h,η−(i,j),µ−(i,j),σ

2
−(i,j)|y)

p∗(η(i,j), µ(i,j), σ
2
(i,j),η−(i,j),µ−(i,j),σ

2
−(i,j)|y)

q(1 � 2)

q(2 � 1)

∏6
i=1 π(ui)

1
|J |, (2.12)

where |J | is the determinant of the Jacobian for the transformation and q(1 � 2) is

the split proposed probability and q(2 � 1) is the merge proposed probability.

Split Step: In the split step, we move from (x,y,s,θ,T ,gr,u1,u2,u3,u4,u5,u6) to

(x1,y1,x2,y2,s1,s2,θ1,θ2,T1,T2,g
r
1,g

r
2). In order to make this move possible, we introduce
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six proposal distributions for the auxiliary variables. We propose u1/2 from the prior

of the size parameter, u2 from the prior of rotation parameter, u3 from Unif(−1, 1),

u4, u5, u6 from the priors of θ, T and gr respectively. In order for this move to be

reversible we again use the same transform that was used in the merge step.

The acceptance ratio, α, in this case is:

min
{

1,
p∗(η(i,j), µ(i,j), σ

2
(i,j),η(−h)|y)

p∗(ηh, µh, σ2
h,η(−h)|y)

q(2 � 1)

q(1 � 2)

1
∏6

i=1 π(ui)

1

|J |
}

.

2.6.3 Updating γ

Random walk log-Normal proposal, q(γi, γ
k
i ) = log − N(log(γki ),∆), is used to

sample from the pseudo posterior distribution of γ,

p∗(γ|Θ, y) ∝ π∗(c,m|γ,gr, s,θ,T) ∗ π(γ) = exp {−γ1m− γ2S(η)} π(γ).

2.7 Simulations

In this section, we use a simulation study to evaluate the performance of our

proposed MCMC method. Two 200 by 200 pixels images ten number of objects

each are generated from the prior distributions described in Section (4.1.1) with area

interaction parameter γ2 = 40 and γ2 = 10 respectively. The pixels inside each object

have constant mean, which is different from object to object. The covariance matrix

is chosen from a CAR model with parameters very close to the extreme dependence.

Two images with ten different sizes, rotations and center objects which belong to five

different shape families, described in Section (2), are shown in Fig. 3.

At first, we compare the MCMC results from the proposed model with the results

of the model that does not penalize the overlapping. More specifically, in the first

case we considers γ2 a random variable while in the second γ2 is considered known and

equal to zero. In both cases the parameter γ1 is chosen constant and equal to 10. The
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(a) γ2 = 40 (b) γ2 = 10

Figure 3: Simulation of two different images with m = 10 and their coresponding
values for the interaction parameter γ2

MCMC posterior distribution ofm for image in Fig. 3(a), in a total of 12000 iterations,

is recorded and presented for these two different cases in Fig. 4. The distribution of

the number of objects m in the case of γ2 = 0 is mostly a misspecification of the real

image. In this case we have a sample of up to 18 objects, which almost doubles the

original number of objects. An obvious overestimation of the number of objects in

the posterior distribution occurs when we do not penalize the overlapping. On the

other hand when we choose γ2 as a random variable 90% of the posterior simulated

number of objects represent the true number of objects. Treating γ2 as unknown,

in comparison with γ2 = 0 yields a better fit and improves classification. For the

case where γ2 is fixed at a value different from zero the answer depends on how close

the original and the assumed value of γ2 are. If we fix the value of γ2 in the range

determined from the MCMC updates the results on the number of particles and shape

analysis are not very different from the original values. Nevertheless, values outside

the range can change the results dramatically. The same observations are true for

the second simulated image.

After demonstrating the significance of the penalized overlapping, we move to

the simulated posterior distribution of γ2. For the two simulated images, the MCMC
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(a) γ2 = 0 (b) γ2 random

Figure 4: Distribution of the number of objects, m, for two different values of γ2: (a)
γ2 = 0 and (b) γ2 is considered random

sampler for the posterior distribution of γ2 are given in Fig. 5. From these simulations,

we can see that the Markov chain mixes well and the posterior mean is close to the

values we simulate the data. Values close to 40 are drawn for the first simulated

image {Fig.-3(a)} while values close to 10 are drawn for the second simulated image. A

general observation in the simulations is that the variance of the posterior distribution

of γ2 depends on the value of γ2. For large values of γ2 we observe relatively large

posterior variance than it is for small values. Another significant observation is that

there is a dependence on the accuracy and the variance of the posterior distribution

of γ2 on the number and size of objects. To investigate this phenomenon, we fixed

the value of γ2 but simulate images with different number of objects and sizes. As

we increase the number and the size of objects, the posterior distribution of γ will be

closer to the true value.

Finally, different moves are displayed by showing the results of two MCMC inter-

actions. We can see the merge and split step in action in Fig. 6 and Fig. 7, respectively.

In the absence of these move steps it would have required a large number of iteration
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(a) γ2 posterior (b) γ2 posterior

Figure 5: The last 4000 simulated values of γ2 for the two different cases: (a) γ2 = 40
and (b) γ2 = 10

(a) 1000 iteration (b) 1500 iteration

Figure 6: Simulation of objects at (a) 1000 iteration (b) 1500 iteration. Except from
the different movements a merge and a change template move has occurred

terms to arrive at this letter configuration. We present the two different move steps

that occurred in the two simulated images. The 1000 and the 1500 MCMC itera-

tion is given for the first image. In additional to different moves there is an obvious

merge move step of 7th and 8th objects in Fig. 6(a) to 7th object in Fig. 6(b). Also

we display a split move step in the second simulated image. The 1400 and the 1600

MCMC iteration for the second image are given in Fig. 7(a) and Fig. 7(b). Not only

an obvious split step has occurred but also we can see the different deviations of the

boundaries which are related to the object representation parameters.
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(a) 1400 iteration (b) 1700 iteration

Figure 7: Simulation of objects at (a) 1400 iteration (b) 1700 iteration. Except from
the different movements a split template move has ocured

2.8 Application to gold nano particle analysis

Using the MCMC samples, we can obtain the distribution of the particle size,

which is characterized by the area of the nanoparticle and the distribution of the

particle shape. The aspect ratio, defined as the length of the perimeter of a boundary

divided by the area of the same boundary, can be derived from the combination of

size, shape and the pure parameters. The statistics of size, shape and aspect ratio

are widely adopted in nano science and engineering to characterize the morphology of

nanoparticles, and are believed to strongly affect the physical or chemical properties

of the nanoparticles (El-Sayed, 2001; Nyiro-Kosa et al., 2009). For example, the

aspect ratio is considered as an important parameter relevant to certain macro-level

material properties because physical and chemical reactions are believed to frequently

occur on the surface of molecules so that as the aspect ratio of a nanoparticle gets

larger, those reactions are more active.

We apply our method to three different TEM images. The parameters that max-

imizes the posterior distribution (MAP) obtained from the (MCMC) are presented in

detail. Our classification results of particular type are verified by our collaborators
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Table 1: MAP estimates of the parameters for the first six objects in Ex1

Object Shape (T) Center (x,y) Size (s) Rotation (θ) gr Mean (µ)

1 E (39.68, 32.72) 51.49 -0.21 1.14 50.64
2 E (105.92, 105.92) 49.41 1.41 1.22 74.67
3 E ( 175.79, 41.29) 47.20 1.36 1.12 62.55
4 E (25.87, 221.72) 28.86 0.61 1.15 71.58
5 E (39.89, 297.00) 49.98 0.83 1.13 64.58
6 C (116.07, 362.30) 51.82 NA NA 73.76

with domain expertise, this manual verification appears the only valid way for the

time being. More than 95% of the nanoparticles in those images are classified cor-

rectly. This also includes the particles in the boundary as well as having overlapping

regions. For completely observed objects, there is almost 100% correct classification.

We start our application with the image in Fig. 8.(a). Morphological image pro-

cessing steps can be used to get an approximate count of the number of nanoparticles

in the model. They also can be used in initializing the MCMC chains and in construct-

ing proposal distributions required by the MCMC sampler. The morphological image

processing we used in this dissertation has the following steps: (1) image filtering and

segmentation, (2) determining the number of objects, (3) estimating location, size

and rotation parameters. Because this morphological processing is not the subject

of the present work, it is not presented in more details. After the initial values are

obtained from the preprocessing step, all the five templates are randomly assigned for

starting template specifications. The parameters drawn from the MCMC output that

maximize the posterior namely, shape T , size s, rotation θ, random pure parameter

gr and mean intensity µ, are presented for the first six objects in Table 1.

In Fig. 8, we show the TEM image and MAP estimates of the parameters for

20,000 MCMC sample. In Fig. A-1, we present the parameters of s, gr and µ that

correspond to the MAP estimate for all the number of objects, m, corresponding
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(a) TEM image Example-1 (Ex1)

(b) Object shapes at the maximum posterior of 20000
MCMC sample

Figure 8: Object shapes sampled using MCMC in Ex1
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Table 2: MAP estimates of the parameters for the first six objects in Ex2

Object Shape (T) Center (x,y) Size (s) Rotation (θ) gr Mean (µ)

1 E (13.97, 256.78) 37.48 -1.51 1.2960 39.185
2 C (27.44, 275.96) 41.04 NA NA 42.969
3 E (37.56, 314.44) 38.02 -0.29 1.2175 52.569
4 E (106.40, 321.61) 47.44 -1.17 1.1591 60.605
5 E (93.20, 413.87) 44.33 -0.36 1.1612 51.080
6 E (146.67, 406.42) 49.63 -1.76 1.1621 44.617

to that value. Summary statistics of the shape parameters are given in Table 1.

From the table and the histogram it is clear that the mean intensity is different from

nanoparticle to nanoparticle, justifying our assumption of different means in Eqn. (3).

We also obtain the posterior probability of the classification for each of the objects.

This probability depends on the complexity of the shape of the object. For example,

object 2 has been classified as an ellipse with probability 0.98 where as object 20

has been classified as an ellipse with probability .68 (circle with probability 0.32). In

Table 1 (and in all the following tables of this chapter), we presented the classification

with the highest posterior probability.

Our second application deals with a more complex image shown in Fig. 9(a).

In this image at least 6 overlapping areas and at least 6 nanoparticles laying in the

boundary are observed. More specifically: nanoparticles 1,2,3,14,15,16,18, and 19 lay

in the boundary of the image while pairs 2−4,3−4,9−10,10−11,17−18, and 10−12

overlap. In this example, the overlapping is more complex and existing methods fail to

represent the real situation. MAP estimates values for all the parameters are obtain

after 20,000 MCMC iterations. Complex shapes have been classified accurately, see

Fig. 9(b). For example, nanoparticle 18 has an incomplete image and it has been

classified as a circle with posterior probability 0.77. The MAP estimates of the

parameters drawn from MCMC namely, shape T , size s, rotation θ, random pure
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(a) TEM image Example-2 (Ex2)

(b) Object shapes at the maximum posterior of 20000
MCMC sample

Figure 9: Object shapes sampled using MCMC in Ex2
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Table 3: MAP estimates of the parameters for the first six objects in Ex3

Object Shape (T) Center (x,y) Size (s) Rotation (θ) gr Mean (µ)

1 E (-3.11, 68.18) 12.43 -1.57 1.29 66.27
4 T (35.53, 110.92) 25.82 1.38 2.32 49.33
12 T (306.90, 225.73) 28.73 0.35 2.31 79.59
28 E (219.91, 221.35) 24.09 1.53 1.14 68.19
51 T (365.75, 352.49) 24.61 -1.46 2.25 63.29
57 T (422.15, 139.28) 25.25 0.25 2.01 70.49

parameter gr and mean intensity µ are presented for the first six objects in Table 2.

In this application, 11 out of the 17 objects are ellipses (E) and 6 are circles (C) and

one is triangle (TR). We also present the histogram of the MAP estimates parameters

s, gr and µ in Fig. A-2. Summary statistics of various shape parameters are given

in Table 2. We see from the table that, our proposed algorithm captures triangles,

circles etc. quite accurately.

Our next application deals with an image with 76 nanoparticles with 4 shapes,

see Fig. 10(a). In this image, few objects have overlapping areas and at least 10

nanoparticles are laying in the boundary. Some objects do not have very clear shape

like objects 29 and 31.

Different shapes are captured with different templates with the proposed method.

In addition to the circles and ellipses which were successfully captured in the previous

images, the triangles and squares are also captured accurately. Nanoparticles, 29 and

31 those have vague shapes are classified correctly, see Fig. 10(b). In this example,

out of 76 nanoparticles, 47 are classified as a circle, 23 as an ellipse, 4 as a triangle

and 2 as a square. Distribution of the various parameters of the identified objects are

shown in Fig. A-3. In Table 3, we present all the triangular shapes in order to compare

the pure parameter h1. As we can see from the table, triangular shape nanoparticles

4 and 12 are closer to the equilateral triangle, with value close to h1 = 2.33, while
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(a) TEM image Example-3 (Ex3)

(b) Object shapes at the maximum posterior of 20000 MCMC sample

Figure 10: Object shapes sampled using MCMC in Ex3
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triangular shape nanoparticle 51 and 57 have wider sides, since their h1 < 2.3.

As a part of the verification process, we compare the accuracy of our method with

that of the current practice used in nanoscience. In brief, the current practice is largely

a manual process with support of image processing tools such as ImageJ Particle

Analyzer (http://rsbweb.nih.gov/ij) and AxioVision (http://www.zeiss.com/), which

have been popularly used for biomedical image processing. The results are shown in

Figs. 11 and 12.

Figure 11: Objects identified by ImageJ in Ex1. Out of the 22 particles, 4 are
recognized. Recognition rate = 18.18%

Figure 12: Objects identified by ImageJ in Ex2. Out of the 19 particles, 6 are
recognized. Recognition rate = 35.58%

The manual counting process, subject to the application of the above imaging

tools, is necessitated by the low accuracy of the autonomous procedures. For three
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TEM images with overlaps among particles, our procedure recognized 95% of the

total articles compared to the 20− 50% recognition rate of the ImageJ. Considering

frequent occurrence of overlaps in the TEM images of nanoparticles, the existing

software cannot be used as more than a supporting tool.

2.9 Concluding remarks

We adopted a Bayesian approach to image classification and segmentation si-

multaneously and applied it in TEM images of gold nanoparticles. We used marked

point process to represent the nanoparticles in the image, where points represent the

location of nanoparticles and marks represent their geometrical features. More specif-

ically, we treated the nanoparticles in the image as objects, wherein the geometrical

properties of the object were largely determined by templates and the interaction be-

tween the objects was modeled using the area interaction process prior. By varying

the template parameters and applying operators such as scaling, shifting and rotation

to the template, we modeled different shapes very realistically. In our current applica-

tions, we chose circle, triangle, square and ellipse as our templates. Other templates

can be also constructed in the same framework. To solve the intractability of the

posterior distribution we proposed a complex Markov Chain Monte Carlo (MCMC)

algorithm which involves Reversible Jump, Metropolis-Hasting, Gibbs sampling and a

Monte Carlo Metropolis-Hastings (MCMH) for the intractable normalizing constants

in the prior. The first steps deal with simulating from a pseudo posterior distribution

without involving the random normalizing constant. A generalized Metropolis-within-

Gibbs sampling with a reversible jump step is used to simulate from a pseudo posterior

distribution given the number of objects. Additionally, a reversible jump MCMC with

the use of birth-death and merge-split moves is invoked on moving from state with

different number of objects. Finally, we simulate from the intractable normalizing
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constant posterior using Monte Carlo Metropolis-Hastings where the acceptance ra-

tion of the sample taken from the pseudo posterior is estimated by simulating from

an auxiliary variable. We reported the posterior summary statistics of the shapes

and the number of objects in the image. We successfully applied this algorithm to

real TEM images with nanoparticles outperforming convention tools aided by manual

screening.
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CHAPTER III

REDUCED-DIMENSION HIERARCHICAL STATISTICAL MODELS

In the recent years a number of non-stationary covariance functions have been

proposed to model the non-stationary Gaussian spatial processes. This ability to

model with accuracy the variability, or heterogeneity, in the unknown process is of par-

ticular importance in environmental, geophysical, and other spatial datasets, in which

domain knowledge suggests that the covariance structure may be non-stationary.

However, the different proposed models usually require an expensive computational

cost when we have to deal with large dimensional data.

Spatial deformations have been used to model non-stationary spatial processes

in Sampson and Guttorp (1992); Schmidt and O’Hagan (2003); Anderes and Stein

(2008) among others. Despite, the simplicity of the approach by maintaining the sta-

tionary structure of the covariance function the research on this approach has focused

on multiple noisy replicates of the spatial function rather than the setting of one set

of observations on which we focus here. Jun and Stein (2008) used a parametric

non-stationary covariance function on the global scale which can reduce the compu-

tations when dealing with high dimensional gridded data. The method is particularly

developed to deal with TOMS data of level 3 and 2, but computations can be facili-

tated only for level 3 data. Other approaches use different fixed set of basis functions

that can be modeled on space e.g. wavelet, kernel etc.. Nychka and Royle (2002)

applied a wavelet approach to produce non-stationary covariance function. In addi-

tion, Cressie and Johannesson (2008) modeled non-stationary covariance structure

through a fixed rank approximation. Kernel convolution have been applied in several

papers due to their simplicity to create non-stationary covariance functions and to
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deal with the high dimensionality (Higdon (1998); Higdon et al. (2011); Calder (2008)

among others). Fuentes (2002) introduced a different kernel based model, which is an

extension of the finite decomposition method of Fuentes (2001). The spatial process

is represented as a convolution of stationary processes. Paciorek and Schervish (2006)

extended the non-stationary covariance function of the Kernel approach by provid-

ing a more general class of closed-form non-stationary covariance functions which are

built upon familiar stationary covariance functions, e.g. Matérn. This non-stationary

covariance function does not follow the usual kernel convolution method where we re-

duce also the computational cost. In this method we need to make the computations

with the full covariance matrix.

In the recent literature there are various approximation techniques of the co-

variance functions that have been introduced in order to reduce the computational

cost. The fixed rank approximation covariance matrix, Cressie and Johannesson

(2008), is one of the most popular techniques which model also the non-stationary of

the data. A fundamental limitation of this method is that implementation requires

either independent replication of the spatial process or a parametric representation

of the covariance function of the data in order to obtain a good estimation of the

covariance matrix. Banerjee et al. (2008) proposed the predictive process which is as

well a very popular technique. The predictive process is a reduction method based on

hierarchical predictive Gaussian Process which captures the large scale spatial depen-

dence. Their paper includes a simulation study to show that their reduction method

can be used also in data with non-stationary covariance function define by Paciorek

and Schervish (2006). Despite the success of the simulation study the method is not

used to real data and the non-stationary regions are predetermined and known. A

new method proposed by Sang and Huang (2011) simultaneously captures both the

large and small scale spatial dependence. A reduced rank covariance technique is
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proposed for the large scale covariance and tapering (or block) covariance is used to

model the small scale. The method has been proven to work well in the case where a

stationary known covariance function is assumed but its behavior has not been tried

in high-dimensional data with non-stationary covariance function. Another reduc-

tion method, which produce a non-stationary covariance function, is the Bayesian

Treed Gaussian Process Models, proposed by Kim et al. (2005) and Gramacy and

Lee (2008). This method can model data with piecewise space-varying mean and

non-stationary covariance function. However, the model is performing poorly for pre-

diction in the boundary of the subregions. This is because the subregions considered

cannot incorporate information from the entire space or neighboring subspaces. This

is apparent also from the simulation study in section (3.5). Moreover, even if the

data support this model, we may have computational problems to find the subregions

and to compute the posterior distribution of the parameters inside each subregion.

A non-stationary covariance function with a reduced computational cost should be

considered.

In geophysical and environmental applications, it is common to have huge dimen-

sional data with non-stationary covariance function. Total Ozone Matrix Spectrom-

eter (TOMS) data are such an example. A detail description of the non-stationary

of the data is given by Jun and Stein (2008), where it is clear a strong dependence

of the covariance structure on latitude but not much dependence on longitude. The

model proposed by Jun and Stein (2008) deals preliminary with Level 3 data since

the computational cost of the method is very big to deal with Level 2 data.

We propose a model which separates the space with non-stationary covariance

function into subregions with stationary covariance functions. The method is a com-

bination of the use of the reduced covariance function proposed by Sang and Huang

(2011) and a use of the non-stationary covariance function proposed by Paciorek and
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Schervish (2006). The non-stationary covariance function proposed by Paciorek and

Schervish (2006) links different reduced stationary covariance functions from sepa-

rate subregions into a unique covariance function. The choice of this non-stationary

covariance structure has the advantage of computational efficiency, since we can do

independently the computations in each subregion. This model is applied to TOMS

level 2 data where as we explain the non-stationary is coming though the latitude

and other methods are difficult to be applied. In this chapter we chose predetermine

subregions which are equal in length. We try to take as many as possible subregions.

As it is demonstrated in the first simulation study when the covariance function is

stationary or close to stationary the use of the non-stationary covariance function will

not affect significantly the results. Moreover, when we have small differences of the

covariance parameters inside a subregion the results will not change significantly if

we consider a constant parameter inside this subregion.

3.1 Gaussian process models for spatial data sets.

In this section, we present a summary of Gaussian process models for spatial

data sets. Our presentation of Gaussian process models is based on the standard

treatment in Banerjee et al. (2004) and Schabenberger and Gotway (2005).

3.1.1 Gaussian process

The basic geostatistical Gaussian model is of the form:

Z(s) = µ(s) + w(s) + ǫ(s), (3.1)

where the process is decomposed in a mean part and two independent error processes,

w(s) and ǫ(s): ǫ(s) models the measurement error, also known as the nugget effect,

which is usually modeled with an independent Gaussian process, w(s), is introduced
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to capture the spatial association and it is assumed to be a mean zero Gaussian spatial

process. In a parametric approach the main issue is to choose a valid and appropriate

correlation function, typically considering families of stationary processes.

The most common specification for w(s) is w(s) ∼ GP (0, C(· , · )), a zero-mean

Gaussian process with a valid stationary covariance function C(s′, s). A widely used,

flexible choice of correlation function is the isotropic Matérn family of correlation

functions (see, e.g., Stein (1999)), C(s′, s) = σ2ρ0(h; ν, φ), where h = s − s′ is the

vector of the difference between the coordinates, σ quantifies the spatial variance, φ

quantifies the correlation range and ν the smoothness of the process path.

An extension of the isotropic stationary correlation function is to include anisotropic

correlation function where spatial association depends upon the separation vector be-

tween locations. A special case which also is the most prominent among the different

anisotropies models is the geometric anisotropy. This refers to the case where the

coordinate space can be linearly transformed to an isotropic space. In general for ℜd

space,

ρ(h;φ) = ρ0(||Lh||;φ)

where L is the d × d matrix of the linear transformation. Another way to see the

geometric anisotropy is by substituting the existing Euclidian distance ||h|| with a

Mahalanobis distance h′B−1h in the isotropic covariance function, where B = L′L.

Because we can have the same value of the matrix B ∗ φ with different values of B

and φ we ignore φ and when we refer to B we refer to B ∗φ, for identification reasons.

For a diagonal marix B with equal values on the diagonals the correlation function

reduces to the isotropic correlation function.

In this chapter we prefere to decompose B into a diagonal eigenvalue matrix Λ
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and eigenvector matrix Ψ(θ) as: B = Ψ(θ)ΛΨ(θ). This will facilitate to distinguish

the dependence in space and the computations.

3.1.2 Modeling the mean µ

Since we focus on modeling the covariance structure of this data, we should

somehow filter the data and make the process close to mean zero. Spherical harmonics

provide a natural basis for capturing the large-scale patterns in the glob (Jun and Stein

2008). Specifically, we regress the ozone levels with Xn
m(sinϑ, φ)|n = 0, 1, 2, . . . ,m =

−n, . . . , n for n = 12. This will make the Eqn. (3.1):

Z = Xβ +W + ǫ, (3.2)

where X is the spherical harmonics basis matrix, W is the vector of spatial error and

ǫ is the vector of random error.

In what follows we give a brief review on the spherical harmonics basis functions.

3.1.2.1 Spherical harmonics

Laplace’s equation is a linear second-order differential equation. This common

and important equation can describe many problems of theoretical physics, e.g. elec-

tromagnetic phenomena, hydrodynamics, heat flow and gravitation (Arfken (1970)),

and is expressed in its most general form with the squared del operator which is

applied on a function f and in the ℜ3 Cartesian Coordinates take the form:

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
= 0,

and in three dimentional spherical Coordiantes (r, ϑ and ϕ):

∇2f =
1

r2
∂

∂r

(∂f

∂r

)

+
1

r2 sin(ϑ)

∂

∂ϑ

(

sin(ϑ)
∂f

∂θ

)

+
1

r2 sin2(ϑ)

∂2f

∂ϕ2
= 0. (3.3)
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The spherical harmonics are then an orthogonal set of solutions to Laplace’s equation

of three dimensions in spherical coordinates. If only the angular portion is consid-

ered the resulting functions are called surface spherical harmonics. Since only surface

spherical harmonics are of interest for the presented work the term ‘spherical har-

monics’ refers hereafter to surface spherical harmonics.

The most common way to get particular solutions of partial differential equations

is by the method of separation of variables. The method of separation of variables

is applied twice and the solution is a product of trigonometric functions with the

associated Legendre functions:

Xn
m = NeinϕP n

m(cos(θ))

where Xn
m is called a spherical harmonic function of degree m and order n. N is

a normalization constant, einϕ describes the trigonometric functions of the product

(function of the longitude angle φ), and P n
m(cos(θ)) the associated Legendre function.

3.1.3 Modeling the covariance matrix

Since the global TOMS data are non-stationary, we cannot use a stationary

Matérn covariance function. A detail description of the non-stationary nature of

the data is given by Jun and Stein (2008), where it is clear a strong dependence

of the covariance structure on latitude but not much dependence on longitude. We

can also see this dependence in the results of this chapter. A novel parametric non-

stationary covariance matrix is proposed by Paciorek and Schervish (2006). The non-

stationary covariance function proposed is an extension of the stationary parametric

case built upon familiar stationary covariance functions with geometric anisotropy.

Specifically, if an isotropic correlation function, ρ0(), is positive definite on ℜd for
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every d = 1, 2, . . . , then the function, ρNS(||h||), defined by

ρNS(si, sj) = |Bi|
1
4 |Bj|

1
4

∣

∣

Bi + Bj

2

∣

∣

1
2ρ0(Qij), (3.4)

with Qij =
√

(si − sj)′
(

(Bi + Bj)/2
)−1

(si − sj) used in place of ||h||, is a valid non-

stationary correlation function and it is positive definite on d = 1, 2, . . . . The proof

of the validity is a simple application of Schoenberg theorem (1938) (Paciorek and

Schervish (2006)).

The result applies to any positive definite correlation function in the Euclidean

space of a particular dimension. This means that we can use any known stationary

correlation function as the power exponential, rational quadratic, and Matérn to

construct a unique and valid non-stationary covariance function.

In the referred paper the case where not only the smoothness parameters are dif-

ferent for different region but also the variances is not mentioned. This can be done

easily by just considering C(s′, s) = σsσs′ρNS(s, s
′; ν, φ). Where σs is the function of

the standard deviations in different regions and ρNS is the covariance proposed corre-

lation function. More specifically a non-stationary version of the Matérn correlation

function will have the form:

ρNS(si, sj) = σsiσsj
1

Γ(ν)2ν−1
|Bi|

1
4 |Bj|

1
4

∣

∣

Bi +Bj

2

∣

∣

1
2
(

2∗
√

νQij

)ν
Kν

(

2∗
√

νQij

)

. (3.5)

This non-stationary covariance model can also cover the case where the parame-

ters change over space for every observation. The authors have developed an MCMC

algorithm for this particular case but this approach is expensive in time and it is

hard to be considered in a computation reduction paper. Instead the assumption of

stationary over subspaces will facilitate the computation. This is the approach which

we consider in this chapter.

Let’s suppose that we partition the input space into D non-overlapping regions:
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rξ
D
ξ=1. Each region rξ contains covariate and data {Xξ, Zξ}, consisting of nξ observa-

tions and the generative GP model for every of the regions is: For the case where we

have D different region we can write the covariance matrix as:

Σ = C+Dτ2 =









σ21R11 σ1σ2R12 . . . σ1σDR1D

σ2σ1R21 σ22R22 . . . σ2σDR2D
...

...
. . .

...
σDσ1RD1 σDσ2RD2 . . . σ2DRDD









+









τ21 I 0 . . . 0
0 τ22 I . . . 0
...

...
. . .

...
0 0 . . . τ2DI









,

where ΣE is a diagonal variance matrix with equal variance for separate. The likeli-

hood will have the form:

Z|Θ ∼ N(Xβ,Σ). (3.6)

It is obvious that if we know the partitions we can find exactly the covariance

function.

One possible approach to partition the space is the Treed partitioning. Treed

partition models typically divide up the input space by making binary splits on the

value of a single variable. Since variables may be revisited, there is no loss of gener-

ality by using binary splits, as multiple splits on the same variable will be equivalent

to a non-binary split. The model is very similar to the Gaussian Tree process (Deni-

son et al. (1998); Chipman et al. (1998, 2002); Gramacy and Lee (2008)) with the

difference that our tree model does not assume independent observations between the

subregions of a tree. Moreover, only the parameters related to the covariance function

are assumed to depend on the tree.

Another characteristic of the ozone data is that the non-stationarity of the co-

variance matrix is coming through different latitude (Jun and Stein (2008)). This

will facilitate our search for the tree by dividing the space only for different latitude.
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3.1.4 Modeling the anisotropy on earth

The Chordal distance (more explicitly the great circle chordal distance) is a

very good spherical distance which can model the distance in earth in a natural way

producing isotropic covariance matrices. However its form makes it difficult to extend

to the anisotropic covariance matrices. On the other hand, if we ignore the sphericity

of the earth and work only with the two dimension Euclidean distance in longitude

and latitude we will measure distances which are not a good representation of the

reality.

To overcome these difficulties we propose the tunnel distance or alternatively

the distance in a three dimension using Cartesian coordinates. The simple tunnel

distance is the Euclidian distance between two points in a three dimensional space.

Earth belongs to a 3D space and this is a natural way of representing the distance.

The tunnel distance may be calculated as follows for the corresponding sphere with

radius r, by means of Cartesian subtraction:

∆X = r ∗ (cos(φf ) cos(λf )− cos(φs) cos(λs)); (3.7)

∆Y = r ∗ (cos(φf ) sin(λf )− cos(φs) sin(λs)); (3.8)

∆Z = r ∗ (sin(φf )− sin(φs)). (3.9)

DI
h =

√

(∆X)2 + (∆Y )2 + (∆Z)2,

where DI(s, s′) is the “isotropic” distance in 3D Cartesian space and is the Euclid-

ian distance of the two points. If we want to generalize the distance and make it

anisotropic we use the Mahalanobis distance in the Cartesian coordinates. By this

extension we can construct geometrical anisotropy covariance functions, so the spatial
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correlation between two observations will not depend only on the absolute distance

but also upon the separation vector between their locations.

Let ∆ = (∆X,∆Y,∆Z) be a vector of the differences of the coordinates of two

points s and s′. The anisotropic distance preferred in this dissertation is:

DNI(s, s′) =
√
∆′B−1∆,

where B is a 3× 3 positive definite symmetric matrix which will determine the range

and the angles of the range parameters.

For the isotropic Matérn covariance matrix we can substitute φ with B = diag(φ).

If we want to separate the longitude and latitude range parameter we choose

B =





φ1 0 0
0 φ1 0
0 0 φ2



 ,

where φ1 corresponds to the longitude range parameter and φ2 corresponds to the

latitude range parameter.

The nonstationary covariance matrix in 2.3 assumes that each location, si, has a

Gaussian kernel with covariance (kernel) matrix, Bi = B(si). For a better represen-

tation, interpretation and compuational eficiency we decompose Bi into Bi = ΨiΛiΨ
′
i

where Λi is the matrix of eignevalues, λ1(si), λ2(si) and λ3(si), and Ψi is an eigenvec-

tor matrix (rotation matrix) constructed as described below.

The rotation matrix in 3D can be represented in various ways. We chose the three

basic (gimba-like) rotation matrices which rotates vectors in the x, y, or z axis, in

three dimension. We write Ψ(si) = Ψx(θ1(si))Ψy(θ2(si))Ψz(θ3(si)) where Ψx(θ1(si)),

Ψy(θ2(si)), and Ψz(θ3(si)) represent the rotation matrix for each dimention. Each

embedding leaves one direction fixed, which in the case of 3×3 matrix is the rotation

axis. The three rotational matrixes analytically are:
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Ψx(θ1(si)) =





1 0 0
0 cos(θ1(si)) − sin(θ1(si))
0 sin(θ1(si)) cos(θ1(si))



 ,

Ψy(θ2(si)) =





cos(θ2(si)) 0 sin(θ2(si))
0 1 0

− sin(θ2(si)) 0 cos(θ2(si))



 ,

Ψz(θ3(si)) =





cos(θ3(si)) − sin(θ3(si)) 0
sin(θ3(si)) cos(θ3(si)) 0

0 0 1



 .

Each of these basic vector rotations typically appears counter-clockwise when the

axis about which they occur points toward the observer, and the coordinate system is

right-handed. Ψz, for instance, would rotate toward the y-axis a vector aligned with

the x-axis. This is similar to the rotation produced by the 2−D rotation matrix.

3.2 Reduction models

In this section we review three existing methods of approximating the covariance

functions that allow rapid computation of the likelihood-based parameter estimation

and spatial prediction, namely, the reduced rank, the tapering and the full-scale

covariance approximation.

3.2.1 The predictive process model: reduced rank approximation

Reduced rank methods approximate the spatial process w(s) in (1) by a process

wl(s) that lies in a fixed, finite-dimensional space. Since the resulting covariance

matrix of the data has a fixed rank, great computational savings can be achieved for

both likelihood inference and spatial prediction.

The reduced rank approximation can be motivated through the Karhunen-Lóeve

expansion of the spatial process (K-L expansion; Baker (1977)). Suppose the domain

D of the process w(s) is a compact set. Under certain conditions on the covariance
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function C(s, s0), the Karhunen-Lóeve expansion decomposes w(s) into a countable

orthogonal series z(s) as:

w(s) =
∞
∑

i

√

λiφi(s)z(s),

where λi are the descending values of eigenvalues and φs(s) is the eigenfunction which

corresponds to the λi eigenvalue. The eigenvalue-eigenfunction pairs are solutions to

the integral equation,

∫

C(s′, s)φi(s)p(s)ds = φi(s
′)λiφi(s

′), (3.10)

where p(s) is the distribution of the locations s and it is usually assumed to be

constant and eventually ignored. The eigenfunctions are assumed to be orthogonal

so that
∫

φi(s)φj(s)ds = δij , where δij is the Kronecker delta. To solve this equation,

Williams and Seeger (2001) sample m knots from p(s) and approximate the above

second order Freedholm equation with the discrete solution given by these m knots.

Because the distribution is uniform, a better representation is by fixing the knots to

cover the entire region equivalently. Let’s consider a set of knots S∗ = s∗1, . . . , s
∗
m.

The discrete form of the above equation is:

1

m

m
∑

k

C(s′, s∗k)φi(s
∗
k) ≈ λiφi(s

′). (3.11)

The reduced rank predictive process method will approximate the real model by:

Z(s) = µ(s)+w(s)+ ǫ(s) ≈ µ(s)+wl(s)+ ξ(s)+ ǫ(s) = µ(s)+Wl(s)+ ǫ′(s). (3.12)

where Wl(s) = C(s, S∗)C(S∗, S∗)w∗ and w∗ denote the realization of w(s) at the m

knots in S∗. For more information regarding predictive process and Noÿstrom method

see, Sang and Huang (2011), Banerjee et al. (2008) and Williams and Seeger (2001)

among others.
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From the above equation it is obvious that except the fact that we lose some

information we will increase the variance of the nugget error and most probably

decreasing the variance of the spatial error. This is the reason why this method will

in general produce weak estimations for the spatial variance and overestimate the

nugget variance. The reduced rank approximation is also inaccuracy in representing

local/small scale dependence (Stein (2008); Finley et al. (2009)). This can also be

seen from the fact that the knots considered to reduce the rank are usually further

apart from the real observations.

Except from the predictive process reduce rank the recent literature is rich in

reduced rank methods. For example the fixed rank kriging (FRK) proposed by Jo-

hannesson et al. (2007); Cressie and Johannesson (2008) is one of the most famous

reduced rank methods. Usually these methods are not parametric and depend on an

the estimation of the covariance matrix.

3.2.2 Sparse matrix approximation

Another approach is to approximate the data covariance matrix by a sparse ma-

trix and then employ the sparse matrix algorithm to achieve computational efficiency.

If one believes that distant pairs of observations are uncorrelated, then one can use

a compactly supported covariance function to model the spatial dependence (Gneit-

ing (2002)). A common technique to achieve sparseness in the covariance tapering

function can be found in (Genton and Nychka (2006) and Kaufman et al. (2008)).

Another technique to achieve a sparse covariance matrix is by constructing subregions

which are independent from each other. Independent subregions methods are faster

than tapering but they lack of accuracy.

Let h = x − x∗ and K0(h; θ) denote the original covariance function for a sta-

tionary random field. Consider a tapering function Ktaper(h; γ) which is an isotropic
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correlation function. The tapered covariance function is defined as

K1(h; θ, γ) = K0(h; θ)Ktaper(h; γ), h > 0.

According to the Schur product theorem (Horn and Johnoson (1985), section 7.5),

the tapered covariance function is positive semi-definite and thus a valid covariance

function.

3.2.3 The full-scale covariance approximation

A new approach proposed by Sang and Huang (2011) combines the ideas of

the reduced-rank process approximation and the sparse covariance approximation.

The new approximation take advantages of both approaches while overcomes their

individual shortcomings. This new method is called “full-scale” approximation of the

covariance because of its capability of providing high quality approximations at both

the small and large spatial scales. In short, we first should decompose the spatial

Gaussian process into two parts: a reduced rank process to characterize the large

scale dependence and a residual process to capture the small scale spatial dependence

that is unexplained by the reduced rank process. We then obtain sparse covariance

approximation of the residual process using covariance tapering or block covariance

matrix. Since the residual process mainly captures the small scale dependence and

the tapering has little impact on such dependence other than introducing sparcity,

the error of the new approximation is expected to be small.

For the spatial process w(s) as in Eqn. (3.1), consider the decomposition:

w(s) = wl(s) + wr(s),

where wl(s) is a reduced rank approximation of w(s) and wr(s) = w(s)−wl(s) is the

residual of the approximation.
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For m knots at a fix set of locations S∗ and process realization w∗, the predictive

process can be expressed as:

wl(s) = C(s, S∗)C(S∗, S∗)−1w∗

with covariance function: Cl(s, s
′) = C(s, S∗)C(S∗, S∗)−1C(s′, S∗)′, for every s and

s′. The exact residual of the approximation is wr(s) = w(s) − wl(s) = w(s) −

C(S∗, s)C(S∗, S∗)−1w∗ and its covariance function is:

Cr(s, s
′) = C(s, s′)− C(s, S∗)C(S∗, S∗)C(s′, S∗)′

A short scale approximation is applied to the residual covariance matrix Cr which

leaves it sparse or block diagonal. In the case where we apply the tapering technique

we have:

Cs(s, s
′) = (C(s, s′)− Cl(s, s

′))Ktapering(s, s
′; γ),

which is a valid covariance function with compact support. By putting things together

we will have an approximation of the covariance matrix C as:

C = Cl + Cr ≈ Cl + Cs = Ca.

Ca is called the full-scale approximation covariance matrix and provides a valid

covariance function, Sang and Huang (2011).

The approximation of the covariance matrix as it is described above will facilitate

the computations of the likelihood or posterior by applying the well known Sherman-

Woodbury-Morrison formula for inverse matrices.

3.3 Bayesian inference with predetermined subregions

The Bayesian inference for the model parameters begins with assigning prior

(hyperprior) distributions to the model parameters (hyperparameters). In this section
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we assume that the partitions are given but not independent.

3.3.1 Prior specification

For each partition we will follow the standard method for prior specifications

(Banerjee et al. (2004)) and assume independence between parameters of different

bands and vague but proper priors. For β we chose a Normal distribution prior

with very large variance to make it close to non-informative. The number of the

parameters in the covariance will depend on the number of subregions and the choice

of the stationary covariance function within the subregions. For simplicity, we chose

the same prior specification for the covariance parameters in different subregions. An

Inverse Gamma prior for the model error σ2
i and the nugget error variance τ 2i . The

parameters of the prior in the variance components are chosen such that the Inverse

Gamma distribution will have a big variance and a reasonable guess of mean. Prior

specifications for the range parameters will depend upon the choice of correlation

function and also the anisotropic nature of the spatial dependence.

In the isotropic case we have only one range parameter, φi, for each subregion

and its prior specifications will depend upon the choice of correlation function. In

the case of Exponential distribution we can use more specific priors for φi ∼ IG(2, b)

where b0 = ρ0/(−2 ln(0.05)) and ρ0 = maxi,j |si − sj| (see Banerjee et al. (2004) and

Schmidt and O’Hagan (2003)), for more details). In other words π(φj) ∝ φ−3
j e−b/φi .

A second approach is to take a reference-type prior for the parameters of the

covariance. In this case we follow the reference analysis proposed by Berger et al.

(2001). They proposed and recommended the use of the reference prior for the pa-

rameters of the correlation function because the reference prior always yields a proper

posterior, in contrast to other noninformative priors. This prior is computationally

more challenging and it is not suggested in this dissertation.
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For the anisotropic covariance function we can use two kinds of prior distribution:

i) Wishart prior for the matrix B as it is given in Banerjee et al. (2004) and ii) prior

specification for the three eignevalues, λ1, λ2 and λ3 , and three rotation parameters,

θ1, θ2 and θ3. In the second case a noninformative uniform prior on (0, π] is chosen for

every θj while prior specification for λj are given by an Inverse Gamma distribution

with big variance and mean close to the mean of φ from previous studies.

3.3.2 Posterior inference

To facilitate notation we will refer to all the spatial range parameters as φ. Let

Ω = [β,φ, τ ,σ] denote collectively the model parameters. The MCMC method is

used to draw samples of the model parameters from the posterior:

p(Ω|Data) = p(Z|Ω)p(β)
∏

i=1

p(φi)p(τi)p(σi). (3.13)

We use Gibbs sampling to sample from the joint distribution. Sampling proceeds

by first updating β from an MVN(µβ|.,Σβ|.) distribution with the covariance matrix:

Σβ|. = [Σβ0 +X ′{Σ}−1X]

≈ [Σβ0 +X ′{Cl + Cs +Dτ2}−1X],
(3.14)

and mean

Σβ|. = Σβ|.[Σβ0µβ0 +X ′{Σ}−1Z]

≈ [Σβ0 +X ′{Cl + Cs +Dτ2}−1Z],
(3.15)

where X is the matrix of the basis function for the whole region, Z are the total obser-

vations, µβ0 and Σβ0 are the mean and covariance matrix of the prior distribution of

β, and Cl, Cs and τ
2
i are defined above. For the parameters φ,σ, τ which do not have

closed form posterior conditional distributions, we will need to draw samples using

Metropolis-Hasting steps ( Gelman et al. (2004)). Following the MCMC sampling,

posterior inferences such as posterior means and credible intervals are then made by

computing summaries of the posterior samples.
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3.3.3 Spatial prediction

For spatial prediction, we consider two approaches. One is the classical kriging

method, i.e., the spatial best linear unbiased prediction (BLUP) given the MCMC

mean parameters, and the other is the Bayesian prediction. Following Sang and

Huang (2011) the BLUP prediction in location s0 is given by:

Y (s0) = xT (s0) + hT (s0)(Cl + Cs +Dτ2)
−1(Y −Xβ), (3.16)

where hT (s0) = [Cl(s0, si) + Cs(s0, si)]
N
i=1 and the mean square prediction error is:

Y (s0) = σ2 − hT (s0)(Cl + Cs +Dτ2)
−1h(s0) + τ 2. (3.17)

In the Bayesian approach we take a similar approach but now we have to compute

randomly the value from MCMC values. Y
(l)
(s0)

∼ p[Y(s0)|Ω(l), Y ] where Ω(l) is the lth

sample from the MCMC posterior values.

3.4 Implementation

Since the global data are huge in dimension and non-stationary, the number of

knots used in the predictive process and the full-scale approximation should suffi-

ciently cover the globe. It is obvious that we will need a lot of knots to cover the

whole globe and also we need to store a N × N covariance matrix. Despite the fact

that we reduce the computational cost by using the full rank approximation or the

predictive process we still need to store a N × N covariance matrix. Every MCMC

iteration requires an approximate inversion of the covariance matrix using a lot of

knots and storing a very big covariance matrix, e.g. 2.5 ∗ 105. This is usually very

expensive and computationally intensive. To overcome these difficulties, we assume

that the partitions are independent of each other. Since the subregions consist of
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relatively large data, the assumption of independence will not change the posterior

distribution of the parameters in the model a lot. This observation is crucial in re-

ducing the computational cost without really losing in the accuracy of computing the

posterior distribution. For more details on the efficiency this approach see also the

first simulation study.

3.4.1 MCMC for the parameters

When we sample from the posterior distribution we assume that the partitions are

given and independent of each other. Let Ω = [β,φ, τ ,σ] denote as above collectively

the model parameters. We use Gibbs sampling to sample from an approximate joint

distribution.

Independent MCMC’s are applied to draw samples for the parameters [φi, τi, σi]

for every subregion. More specifically we will draw samples using Metropolis-Hasting

steps as above for every subregion. In each of these draws, we use full rank or predic-

tive process approximation for the covariance matrix and the draws are considered to

come from an approximate posterior distribution.

We already know the distribution of β whichMVN(µβ|.,Σβ|.). Since the compu-

tational cost is huge we use the independent subregion logic and apply the covariance

approximation.

We draw β from a normal distribution with the covariance matrix:

Σβ|. = [Σβ0 +X ′{Σ}−1X]

≈ [Σβ0 +
D
∑

i

X ′
iΣi

−1Xi]

≈ [Σβ0 +
D
∑

i

X ′
i{Cl,i + Cs,i + τ2i Ii}−1Xi],

(3.18)



64

and mean

Σβ|. = Σβ|.[Σβ0µβ0 +X ′{Σ}−1Z]

≈ [Σβ0 +
D
∑

i

X ′
iΣi

−1Zi]

≈ [Σβ0 +
D
∑

i

X ′
i{Cl,i + Cs,i + τ2i Ii}−1Zi],

(3.19)

where Xi are the spherical basis functions which correspond to the ith band, Zi are the

observations corresponding to that band, µβ0 and Σβ0 are the mean and covariance

matrix of the prior distribution of β, and Cl,i, Cs,i and τ
2
i are defined above.

3.4.2 Prediction

In contrast with the estimation of the parameters, the prediction of the data it

is sensitive to the assumption of independence. As it is clear from the first simula-

tion study when we ignore information from other subregions the prediction will be

poor in the boundary regions. Especially in the boundaries, we should incorporate

information from other subregions. If we can compute with the reduction techniques

the covariance matrix for all the data then we can make the prediction with the full

covariance matrix. In practice we were unable to store a matrix of 200, 000×200, 000

every time, and for that reason we suggest other approaches to be able to perform

the prediction as accurately as possible.

One possible solution to the computational problem is to take only data from

the neighboring subregions. For example to predict values from the ith subregion we

use data from the (i− 1), i and (i+ 1) subregions. This is a fast and effective way to

predict with high accuracy even in the boundaries of the subregions.

3.5 Simulations

In this section, we conduct a simulation study to evaluate the performance of

our proposed MCMC method. For a better representation we generate values from
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two Gaussian processes with non-stationary Matérn covariance function with two

different subregions as it is described in section 2.3. The extension to the case with

more subregions is obvious.

In the first simulation study we test the efficiency of using the non-stationary

covariance function in comparison with the stationary or with the use of separate

and independent subregions covariance functions. In the second simulation study we

test the efficiency of different reduction methods using the non-stationary covariance

function proposed in section 2.3.

The implementations of methods for all illustrations was written in Matlab and

run on a processor with dual 2.8 GHz Xeon CPUs and 12GB memory. For sparse

matrix calculations, we used the Matlab function sparse. The spam package for

sparse matrix calculation in R is also available at http://cran.rproject.org/src/

contrib/PACKAGES.html.

3.5.1 Simulation study 1

In the first simulation study, data were generated fromModel (1) at 900 locations.

The 800 are randomly picked over a [0, 100]× [0, 100] region and are used to estimate

the parameters while the rest 100 are chosen close to the line that separates both of

the regions and are used to evaluate the prediction performance.

The response Y (s) is generated using model (3.1) with mean fixed to zero and

non-stationary Matérn covariance structure as it is described in section 2.3. In the

particular study we separate the region into two subregions with a straight line parallel

to the x axis: the first subregion is defined by y ≤ 50 and the second by y > 50,

as it is shown in Fig. 13. Two different sets of parameters are used to evaluate the

significance of the non-stationary covariance approach in the prediction.

In the first case we generate data from a stationary and isotropic Matérn co-
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Figure 13: Spatial location of the simulated data and the 40 locations left to produce
the MSPE

variance function over the whole region. We simply chose for both subregions the

same parameters, with: spatial variance σ2 = 5, nugget variance τ 2 = 1, smoothing

parameter ν = 1.5 the range matrix parameters is B = Ψ(0)

(

10 0
0 10

)

Ψ(0).

In the second case we generate data from a non-stationary covariance function as

it is described in section 2.3. The spatial variance σ2, nugget variance τ 2, smoothing

parameter ν are chosen the same for the two subregions and similar to the first case.

The range matrix parameters for the first subregion are B1 = Ψ(0)

(

5 0
0 5

)

Ψ(0)

and the second subregion B2 = Ψ(0.5)

(

20 0
0 20

)

Ψ(0.5).

For each set of parameters we apply four different MCMC approaches of draw-

ing from the posterior distribution and predicting the training data. In the first

approach a stationary covariance function is applied for the whole region and the

MCMC is run to this model. In the second approach, the two regions are considered

independent to find the posterior distributions of the stationary Matérn parameters

and the prediction of the training data is done separately. In the third approach,

the non-stationary covariance function used to generate the data is used to gener-

ate from the posterior distributions and to predict the training data. Finally, in the
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Figure 14: MSPE for four different covariance structures in the first simulation

fourth approach we find the posterior distributions separately assuming indepen-

dence between the subregions but we use the non-stationary covariance matrix to

predict the training data.

We simulate data thirty times with the given parameters from the stationary

Matérn covariance matrix. Assuming that we separate the region into two subregions

as described above, we evaluate the prediction performance for each of the approaches

described above. For each simulated data and covariance structure we run the MCMC

with 2000 iteretions computing also the MSPE. Thirty different means of MSPE for

the four different approaches are computed and plotted in Fig. 14. The MSPE using

non-stationary covariance in the MCMC algorithm is very similar to the MSPE using

the stationary covariance matrix in the MCMC algorithm.

We follow the same steps as in the first case to obtain thirty different means of

MSPE for the three different covariance structures. The values for the four different

methods are plotted in Fig. 15.

From the above simulation study it is obvious that the non-stationary covariance

function perform well in both cases. In addition, the use of the non-stationary covari-

ance function seems to be important only in the prediction process. The posterior
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Figure 15: MSPE for four different covariance structures in the second simulation

distributions of the covariance parameters are not changing significantly if we run

the MCMC separately in each subregion. This is the reason why the MSPE of the

third approach is very similar to the MSPE of the fourth approach. The third

approach will give in general slightly better results but if we have computational

difficulties it is obvious we can use the fourth approach without really loosing in

the accuracy. In the case where data are simulated from a stationary covariance func-

tion, the MSPE using non-stationary covariance in the prediction is very similar to

the MSPE using the stationary covariance function. In the case where we simulate

the data from a non-stationary covariance function, the use of the non-stationary

covariance function in the prediction is crucial.

Moreover, the non-stationary covariance function it is crucial to be used in the

case of the prediction but as we can see it is not sensitive if we compute the posterior

distributions of the parameters separately.

To demonstrate the importance of the use of the non-stationary covariance matrix

introduced in section 2.3 we selected 100 points in the bound 45 to 55. This was done

because the difference between the non-stationary covariance and the independent

subregion model are mathematically almost zero. To demonstrate this claim we
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Figure 16: Difference of the absolute value of the residuals for two different methods

generate sites to evaluate the prediction performance randomly over the region. For

the first case of the simulated study we repeat the same experiment 30 times and

record the absolute difference of the difference of the real with the predicted value for

the two different methods. (in a mathematical form |Resjnon−stationary|− |Resjseparate|).

The mean of the these values is computed and plotted in Fig. 16 where it is obvious

that we have differences only close to the boundary of the two regions.

3.5.2 Simulation study 2

The goal of the second simulated study is to show the effectiveness of the full rank

approximation covariance function compared to predictive process and the full model

when the data are generated from a Gaussian process with non-stationary covariance

function. We randomly selected 2100 locations from the region [0, 200]× [0, 200] and

100 of then are left out of the study as training data. We simulated the spatial process

Y (s) at these 2100 locations using Gaussian process with non-stationary covariance

function. The mean is modeled as µ(s) = 0 for the entire region and the variance is

modeled as in Section 3.2.3, partitioning the region into two different subregions with

a line parallel to the x axis.
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Table 4: Posterior estimations of the model parameters and the MSPE

Param. True Full model m = 200, r = 20 m = 200 m = 100, r = 20 m = 100

ψ1 0.3 0.32(0.17) 0.25(0.18) 0.56(0.22) 0.51(0.34) 0.66(0.31)
ψ2 0.1 0.14(0.10) 0.16(0.11) 0.34(0.21) 0.16(0.10) 0.40(0.15)
λ11 70 79.88(16.02) 81.63(18.81) 89.85(19.42) 85.91(22.81) 229.51(52.39)
λ12 40 44.38(11.51) 49.69(12.07) 57.75(15.83) 46.73(12.74) 114.61(31.96)
λ21 10 9.07(3.41) 9.57(2.90) 23.99(12.02) 14.43(5.37) 41.30(20.80)
λ22 30 29.19(6.48) 35.44(8.04) 37.82(13.68) 40.27(12.9) 65.17(20.02)
σ2

1
5 4.44(0.41) 4.20(0.45) 6.49(0.95) 4.99(0.46) 8.01(1.58)

σ2

2
5 5.99(0.56) 5.02(0.48) 8.21(1.43) 5.18(0.52) 9.32(1.50)

τ2
1

1 1.04(0.21) 1.06(0.20) 2.8(0.26) 1.20(0.20) 3.49(0.362)
τ2
2

1 0.91(0.15) 0.85(0.17) 3.18(0.21) 0.83(0.17) 3.63(0.19)

MSPE - 3.0429 3.7890 6.5644 5.032 9.740

For the Bayesian posterior inference, flat priors were assigned to each of the

three intercepts, U(0, π/2) priors were assigned for the rotation angle θ’s, U(1, dmax/3)

priors for the φ’s, where dmax is the maximum distance of all pairs. The smoothness

parameter ν was fixed to be 0.5 and for every subregion the variance parameters σ2
k

are assumed to have IG(3, 3) and τ 2k assumed to have IG(0.5, 1) as priors.

For the same set of data we applied the full-scale approximation with 200 numbers

of knots and 10 subpartitions in each subregion as well as the predictive process with

200 knots. Knots were located on a uniform grid over the domain. In addition to the

full-scale approximation, we fit the model using the predictive process approximation

with the same set of knots and the full covariance model. For each method, we ran

5, 000 iterations to collect posterior samples after a burn-in period of 1, 000 iterations.

Good convergence of the respective marginal distributions is indicated by the trace

plots of parameters.

Table 4 shows the Bayesian posterior sample means and standard deviations of

the model parameters each approach.

In general the posterior distributions of the parameters using the full scale ap-

proximation is closer to the real posterior distribution than the posterior distributions
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using the predictive process approximation. The values of the full-model and full-scale

approximation are closer. Moreover the full scale approximation has a smaller MSPE.

In the next step we explore the change in the MSPE using full scale approxima-

tion and predictive process with different knots. For the same set of data we applied

the full-scale approximation with a set of different knots [100, 200, 300, 400, 500] num-

bers of knots and 10 subpartitions in each subregion as well as the predictive process

with the same number of knots. For all these sets we ran 2, 000 iterations to collect

posterior samples after a burn-in period of 500 iterations. For each set of parameter

values, we recorded the MSPE under the four approaches for these choices of knot

numbers.

3.6 Data

Stratospheric ozone is important for all life on Earth because it absorbs incom-

ing ultra-violet (UV) radiation and also constitutes a negative radioactive forcing of

climate (World Meteorological Organization, 2007, Chapter V). Since the Antarctic

ozone hole was discovered in 1985 (Farman et al. (1985)), halogen-induced ozone de-

pletion and resulting changes in atmospheric ozone distribution have been the focus

of intensive research.

TOMS Level 2 data are spatially and temporally irregular measurements of

Ozone following the satellite scanning tracks (measurements are 8 seconds apart)

and there are a significant number of missing observations. TOMS Level 3 data are

post processed from Level 2 data and they are on regular grids (1 degree latitude by

1.25 degrees longitude for pixels with latitude from 50 S to 50 N, see Krueger et al.

(1998) for more details) as daily averages. Although there is loss of information in

Level 3 data, especially fine scale spatial and temporal variations, data on grids with

global coverage and few missing observations are convenient to focus on the study of
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the covariance structure of the process purely due to the computational efficiencies.

TOMS Level 3 data are obtained usually from an ad-hoc method to average

Level 2 data pixel by pixel. The main difficulty to statistically deal with the data is

the computational cost. Recently, Level 2 data have been analyzed with statistical

methods by Cressie and Johannesson (2008); Stein (2007b,a). Cressie and Johannes-

son (2008) produce new Level 3 data through statistical models rather than ad hoc

averaging. The estimation of the basis function S depends on an estimation of the

covariance matrix which should use repeated observations. The methods propose by

Stein (2007b,a) and Jun and Stein (2008) are expensive in irregularly spaced data

and are not suggested to be used in Level 2 data.

To avoid huge variances and not very good quality of data we restrict our atten-

tion to pixels with latitude from 70 S to 70 N. This is chosen also to be able to see

the variation of the parameters for data that have been usually left out from other

studies. To see the prediction performance of the different models, we keep out 5000

training observations at uniformly random locations in the globe. These 5000 will be

used to check the performance of different methods.

3.6.1 Isotropic case

Given the subregions we consider the following model fitting methods: the full

covariance model, the predictive process and the full-scale approximation. For these

three methods and each subregion we use stationary Matérn covariance function with

isotropic chordal distance. We remind the reader that the covariance parameter

inference is done separately for each subregion. As we explained in the simulation

study, this provides more accuracy and faster computational times. The estimation of

the posterior parameters is not sensitive of using information from neighbor subregions

when the amount of data is relatively large, e.g. 3− 5 thousand observations in each
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subregions are enough to draw from the posterior with a high accuracy. This will

facilitate the MCMC algorithm a lot and decrease the computational cost. On the

other hand, we use two neighboring subregions for prediction purposes linking the

stationary covariances with the non-stationary covariance function (3.2.3). For data

prediction in the boundary of the subregion, the information from neighboring fields

is significant.

In order to be able to compute and compare the posterior distribution of the

full model with the approximate posterior distribution of the full-scale and predictive

process, we separate the latitude space into 50 equal subregions. This will help us

also to see the variation of the parameters over latitude. In the predictive process

approximation we consider tree different intensities of 125, 250, 400. Knots were

located on a uniform grid over each subregion domain. In the full-scale approximation,

we consider the knots intensity used in the predictive process and in addition we used

40 subpartitions to capture the small scale variation as it is described in section (3.3).

The additional computational cost of the full scale approximation is of order
∑30

k=1 n
3
ik

where nik is the number of the observations in the kth subpartition of the ith subregion.

After obtaining the approximate posterior distribution for each method we conclude

that the use of 125 knots will give poor fit of the data and should not be considered

in practice. From a repeated study with different number of knots we prefer to use

more than 250 knots for the predictive process and the full-scale approximation. In

what follows we will present the study with 250 knots.

For all the three methods, we follow the same MCMC strategy. The three MCMC

algorithms were run for a total of 5000 iterations and posterior inference was based

on the last 4000 draws using 4th moment of chain (a total of 1000 posterior draws).

Competing methods can be compared based on their posterior probabilities and the

mean square prediction error (MSPE) for a set of training data which have been left
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out of the study. To compare the posterior probabilities for different subregions and

different methods we construct the box-plots of the MCMC draws. Box-plot compar-

ison is an easy and sufficient graphical technique to compare posterior distributions

of parameters for different subregions or methods.

The box-plots of the MCMC draws for the covariance parameters φ, σ2 and

τ 2 using the full-model are respectively presented in Fig. A-4(a),Fig. A-4(b), and

Fig. A-4(c). There is a clear dependence of all the parameters on the latitude which

means that the TOMS data supports the use of a non-stationary covariance matrix.

We capture this non-stationary with the model described in section 2.3. For values

close to the poles the variance is very big and it is not very useful to be included in

the study. This is also the reason why we zoom-in the subregions with latitude close

to the equator. To see how the parameters change closer to the equator we plot the

MCMC box-plots posterior of φ, σ2 and τ 2 for 40 subregions with latitude range

from −55 to 55 in Fig. A-7(a),Fig. A-7(b), and Fig. A-7(c) respectively.

We also present the MCMC posterior distributions of the covariance parame-

ters φ, σ2 and τ 2, using the predictive process approximation with 250 knots in

Fig. A-8(a), Fig. A-8(b) and Fig. A-8(c) and using the full-scale approximation with

250 knots and 40 sub-partitions in Fig. A-9(a), Fig. A-9(b) and Fig. A-9(c). For a

complete picture, we also give the same distributions for the predictive process and

the full-scale approximation from −70 to 70 in Fig. A-5 and Fig. A-6 respectively.

From these graphs is obvious that the predictive process tend to overestimate all

the parameters of the covariance: the range parameter, the model variance and the

nugget variance. The accuracy of the predictive process with 250 knots in the model

variance cannot be trusted. Instead, the posterior distributions of the parameters

using the full-scale approximation are very close to the posterior distribution using

the full model. We reduce the computational cost and maintain a high accuracy on
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Figure 17: Comparing the MSPE for the three different methods

estimating the posterior distribution of the parameters.

To better demonstrate the accuracy of each method we test their prediction

performance. We predict the values of 5000 training data using the prediction process

which borrows strength from neighboring subregions as it is described in section

(3.4.2). For every subregion we compute the MSPE using the predictive process

approximation, the full-scale approximation and the full-model. The values of 30

subregions in the middle are given in Table 5 as well as in Fig. 17. The MSPE using

the predictive process approximations is always larger than the MSPE using the full-

scale approximation. As a mater of fact in some cases the MSPE using predictive

process is twice as big as the MSPE using the full-scale. Moreover, the MSPE using

the full scale approximation is very similar to the MSPE computed by the full-model.

In general the full-scale approximation gives slightly bigger MSPE than the full-model

however we have a few cases where the full-scale approximation performed better on

average. This should be expected when we work with real data.

From the above study we conclude that the full-scale approximation performs
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Table 5: MSPE table

Subregin MSPE full-model MSPE full-scale MSPE PP

1 8.1832 10.7269 18.6851
2 9.2428 13.7994 24.0790
3 8.9502 12.2883 22.3399
4 8.5282 10.6106 16.0746
5 10.1497 11.3186 18.2895
6 9.5007 10.8723 14.6687
7 10.4195 11.5509 21.8168
8 7.9168 11.0704 22.2754
9 8.3429 10.5323 16.9125
10 10.6541 10.6388 14.0622
11 8.7700 11.0415 16.8053
12 11.5994 12.8354 19.5942
13 12.2549 14.3242 24.7129
14 15.5072 14.6327 27.5421
15 17.5676 18.1493 36.5181
16 18.9536 17.0597 31.0577
17 18.4256 17.8960 30.7692
18 15.1855 17.1268 37.0435
19 16.0168 14.7753 27.7258
20 10.6889 13.2716 29.2326
21 8.3473 11.4326 16.9738
22 11.7195 15.4102 25.8425
23 13.8429 13.8264 23.6904
24 15.8317 15.1418 48.9797
25 14.4049 14.5996 30.5840
26 17.0219 17.9945 36.0282
27 18.8360 23.8072 37.0351
28 27.2268 39.3680 47.0424
29 32.0858 40.2659 55.4432
30 26.3579 39.1945 65.7298



77

better than the predictive process and its results are more similar to the results

produced by the full-model.

3.6.2 Anisotropic case

As we explained, in the above study we took 50 subregions to compare the

full-scale and predictive process approximation with the full-model the covariance

function is considered isotropic within each subregion. The next step is to introduce

the anisotropy of the covariance matrix into each subregion and see whether or not the

ozone data support this model. Because in the anisotropy case the distance depends

also on the separation vector between locations we take thicker subregions to explore

this possible dependence.

We decide to take twenty disjoint subregions in a latitude range of [−70, 70]. All

the steps are the same with the previous study with the difference that the range

parameter φi is substituted from six other parameters of the range matrix Bi =

ΨiΛiΨ
′
i, θ1i, θ2i, θ3i, λ1i, λ2i and λ3i, for i = 1, . . . , 20.

Since the number of the observations in some of the subregions are close to

15, 000− 20, 000 we avoid useing the full-model approximation and concentrate only

on the full-scale approximation. The MCMC algorithm was run as in the isotropic

case (Section (3.7.1)) with 3, 000 drwas and burn-in of 750 draws. The box-plots of the

MCMC distributions of the parameters obtained using the full-scale approximation

covariance with 300 knots and 40 subregionss are plotted in Fig. A-10 and Fig. A-11

for comparison. We observe that λ’s, λ1, λ2 and λ3, inside each subregion are different

and θ’s , θ1, θ2i, θ3, are different from zero. This means that the data supports the

anisotropic model. One interesting observation is that despite having different λ’s in

each subregion they seems to vary across the different latitudes quite similarly.

The question of whether or not we should use the anisotropic covariance matrix
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Figure 18: Comparing the MSPE of anisotropic with isotropic covariance

will depend on whether the use of the anisotropic covariance matrix will yield a smaller

MSPE compared to the MSPE using the isotropic covariance matrix. Again 5000

training data are uniformly left out from the study to be used for the comparison of

the prediction performance of the two different methods (covariance functions). After

applying the prediction steps described in section (3.4.2) we compute the mean of the

MSPE for the two different covariance functions at every single subregion and plot it

in Fig. 18. The MSPE using the anisotropic covariance matrix is in general smaller

than the one using isotropic covariance matrix. This shows a strong support of the

ozone data to the anisotropic model.

3.7 Concluding remarks

In this chapter we focus on modeling the data in the globe with a Gaussian

process. We model the mean with spherical harmonics basis and the covariance of the

spatial error with a non-stationary and geometrical anisotropic closed form covariance

function. We model realistically the covariance function in 3D in order to be able to
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use the non-stationary covariance form proposed by Paciorek and Schervish (2006).

The choice of this covariance function has some advantages over other possible choices.

First of all the parameter inference is straightforward since the parameters are well

defined. Secondly, we can partition the region to small subregions where we can infer

the parameters independently from the other subregions. Third, in each subregion

we can use different reduction techniques such as predictive process, tapering and

the full-scale. Finally, we can partition a stationary Gaussian field without losing

significantly the prediction accuracy. To deal with the large dimensionality of the

data we apply the predictive process and the full-scale approximation. From the

simulation study as well as the real data analysis we conclude that the performance

of the full-scale approximation is closer to the full model and as such should be

preferred. We also prove in practice the non-stationary and the anisotropic nature of

the covariance function of TOMS level 2 data.
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CHAPTER IV

MODIFIED TREED GAUSSIAN PROCESS

As it is explained in Chapter III, in the recent literature there are many proposed

covariance functions for the Gaussian Process which model the non-stationary of the

spatial data. The piecewise Gaussian Process (GP) is a common model for fitting

non-stationary spatial data where the overall region is partitioned into smaller disjoint

sub-regions with stationary Gaussian processes. The two main questions we have to

answer using this model are: a) how to link the different sub-regions and b) how to

separate the region into non-stationary subregions. The first question is answered in

Chapter III. In this chapter we will concentrate on answering the second question.

Smith (2001) and Fuentes (2001) proposed a kernel approach in which the

unknown process is taken to be the convolution of a fixed kernel over independent

stationary processes, in different subregions, with different covariance parameters;

Barber and Fuentes (2004) gave a discretized mixture version of the model. They

suggested the use of the Akaike information criteration (AIC) to find these subregions

first and then apply a Bayesian approach to find the posterior distribution in each

subregion. Kim et al. (2005) used mixtures of Gaussian processes defined locally on

a tessellation. Paciorek and Schervish (2006) proposed an innovative model for the

covariance function which links the different pieces. In their paper the subregions are

assumed known while in practice the subregions are usually unknown and not very

straightforward to define.

A popular and effective method for partitioning the non-stationary region into

stationary subregions is the tree Gaussian model (TGM). The use of the random

number of subregions and the random boundaries of subregions make this method
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very attractive for the Bayesian approach. One of the weaknesses of this method

is the assumption of the independent data between subregions. In this chapter we

will try to combine the Paciorek and Schervish (2006) model with the tree Gaussian

model to overcome the loss of information between different subregions. Moreover,

because in practice the computational cost may be very big we propose the use of the

full-scale approximation technique for the covariance matrix as it is presented in the

third chapter.

4.1 Bayesian inference with undefined dynamic subregions

The Bayesian treed Gaussian process (BTGP) is used in statistics to separate

the space into small disjoint subregions with different parameters, see Gramacy and

Lee (2008). Although the assumption of independent data between the subregions

makes the BTGP attractive to deal with large dimensional data we may still have

computational issues if each subregion consists of large dimensional data. TOMS data

are such an example which may start with an approximately 200, 000 observations in

a parent subregion. On the other hand the assumption of independence is also one

of the weaknesses of the BTGP approach since it ignores possible dependence across

different subregions in the grow and prune operations.

The assumption of parameters changing in latitude and not in longitude will sim-

plify the BTGP by ignoring some computationally challenging steps. Also we simplify

the BTGP by considering only split (grow), merge (prune) and change operations in

the algorithm as well as the parameter updating given the subregions. We give first

a review of the BTGP following Gramacy and Lee (2008) and later we propose a

unique approach which fits better to our problem.
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4.2 Bayesian treed Gaussian process

A tree T recursively partitions the input space into R non-overlapping regions:

rRξ=1. Each region rξ contains covariate and data Dξ = {Xξ, Zξ}, consisting of nξ

observations and the generative GP model for every of the regions is:

Zξ(s) = µ(s) +Wξ(s) + ǫξ(s), (4.1)

where Wξ(s) are considered independent for different region, rξ. While this detail

is not very important when we estimate the parameters it is crucial for prediction

process. Especially, for location close to the boundaries of the regions.

Following Chipman et al. (1998, 2002), the prior is specified through a tree-

generating process and enforce a minimum amount of data in order to infer the

parameters in each partition. Starting with a null tree (all data in a single region),

a leaf node η ∈ T , representing a region of the input space, splits with probability

a(1 + dη)
−b, where dη is the depth of η ∈ T and a and b are parameters chosen to

give an appropriate size and spread to the distribution of trees. Further details are

available in the Chipman et al. (1998) papers and in Gramacy and Lee (2008). The

prior for the splitting process involves first choosing the splitting dimension u from a

discrete uniform, and then the split location ζ is chosen uniformly from a subset of the

locations S in the uth dimension. Integrating out dependence on the tree structure T

can be accomplished via Reversible-Jump (RJ) MCMC.

Gramacy and Lee (2008) generalize the tree process by proposing to fit stationary

GPs in each of the leaves of the tree but assuming independence between data of

different subregions.
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4.3 Modified proposed BTGP for TOMS data

Because we have separation of the space only through latitude, the general idea

and the moves in the BTGP are easier. The u variable described in BTGP review

is considered constant and equal to the latitude variable. Furthermore, we improve

the merge and split step by using the non-stationary covariance structure to link two

separated subregions. Let ζ represent all the splitting points in the latitude direction,

y dimension. Apart from the updating of the parameters given in Chapter III in this

chapter we use three more different operations: split, merge and change.

The split (grow) and merge (prune) operations are complex because they add

or remove partitions, changing the dimension of the parameter space. The first step

for either operation is to uniformly select a (child) subregion to split (grow), or two

neighbor subregions (a parent) to merge (prune). When a split move occurs, one

single parent subregion creates two smaller and disjoint children subregions (or when

a split move occurs one child subregion splits into two smaller disjoint subregions).

New parameters must be proposed for one of the created subregions as well as for the

new splitting point, ζr+1. The other children subregion absorbs its parameters by the

parent subregion. In the merge (prune) operations, we randomly select parameters

from one of the children subregions being absorbed.

We present in details the MCMC acceptance probability moves of split, merge

and change. For all the moves we take equal probabilities: q(r+1),r = qr,(r+1) = qr,r =
1
3
.

4.3.1 Prior

A tree model is identify as (Θ;T ) and the usual prior assign is π(Θ;T ) =

π(Θ|T )π(T ). The prior specification of the parameters given the partitions (tree),

π(Θ|T ), is given in the third chapter. Here we specify the prior for the tree, π(T ).

Depending on the approach we are taking we can specify the priors regarding the
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depth of the tree or the number of subregions. We can follow Chipman et al. (1998)

who’s prior specification is given in details above or we can just specify the prior as

a number of the subregions π(T ) = π(r). The distribution of π(r) is chosen to be a

truncated Poisson distribution.

4.3.2 Split operation

The first step for this operation is to uniformly select a subregion and then split it

into two. To avoid very small subregions the split-point proposal distribution is chosen

to be uniformly distributed in a logical range of the selected subregion. In our applica-

tions we use U(Lj+(Uj−Lj)/6;Uj− (Uj−Lj)/6), where Lj and Uj are the lower and

the uper latitude bound of the jth subregion. Let Θj = (φj, σ
2
j , τ

2
j , ν) denote all the

parameters in the jth selected subregion (parent subgegion) and Θjk = (φjk, σ
2
jk, τ

2
jk, ν)

denote the parameters of the kth spit part of the jth subregion (children subregions).

One of the newly formed children is uniformly chosen to receive the parameters of the

parent subregion. To ensure that the resulting Markov chain is ergodic and reversible,

the other new sibling draws its parameters from the prior or from a distribution with

similar mean with the existing one but with at lease twice the variance. In this step

we increase the dimension of the parameters which describe one of the splitting parts

(Θjk). Generate Θjk random variables Θjk = (φjk, σ
2
jk, τ

2
jk, ν) from a distribution. All

these new parameters are sampled from the prior distributions.

If we have r existing subregions the M-H ratio for splitting is:

π(r)

π(r + 1)

q(r+1),r

qr,(r+1)

f(Zj1, Zj2|β,Θj1,Θj2)π(Θj1)π(Θj2)

f(Zj|β,Θj)π(Θj)q(Θj2)
|J |,

where π(r) is the prior of the number of the subregions, q(Θj2) is the proposal distribu-

tion of generating parameters for one of the two formed siblings. This transformation

will give a unity Jacobian term which can be ignore in the above equation.
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4.3.3 Merge operation

In the merge operation we move from two neighboring subregions to one that

consists of these two subregions. The first step for this operation is to uniformly

sample two neighboring subregions which we are the candidates for merging. Let Θj

and Θk denote the parameters in the jth and kth neighboring subregions (children

subregion) and Θ′
h denote the proposed parameters of the united subregions. One of

the selected subregions is randomly chosen to give its parameters to the new formed

subregion. The other selected subregion parameters are given to a dummy variable

in order to match the dimension of the parameter space. The acceptance ratio will

be equal to:

π(r + 1)

π(r)

qr,(r+1)

q(r+1),r

f(Zj|β,Θ′
h)π(Θ

′
h)q(Θj)

f(Zj1, Zj2|β,Θj,Θk)π(Θj)π(Θj)

1

|J | .

4.3.4 Change operation

In the change operation we propose moving an existing split-point ζj between

the two neighboring split points. The proposed values of the moving should be chosen

carefully such that the subregions will maintain a certain numbers of observations and

length. This is accomplished by sampling the proposed value from a narrow uniform

band close to the existing ζj. The M-H acceptance ration for this operation is:

f(Z ′
j, Z

′
j+1|β,Θj,Θj+1, ζ

′
j)

f(Zj, Zj+1|β,Θj,Θj+1, ζj)
,

where Z ′
j and Z

′
j+1 are the observations in the new created subregions and (Z ′

j, Z
′
j+1) =

(Zj, Zj+1).
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4.3.5 Other approach

A common technique used in the BTGP to improve the acceptance ratio of the

RJ-MCMC is to integrate out from the posterior distribution all the parameter which

are not included in the tree T .

p(Z|X,T ) =
∫

p(Z|XΩ, T )P (T )dΩ =
r
∏

i=1

∫

p(Zi|Xi,Ωi)p(Ωi))dΩi, (4.2)

where Ωi are all the parameters used inside of the subregin i.

In practice this can be done by sampling repeatedly the parameters of the co-

variance with given partition and then numerically compute an approximate solution

for
∫

p(Zi|Xi,Ωi)p(Ωi)dΩi. Because of the computational cost we should and do not

include too many iterations to compute this integral. Approximately 50 MCMC iter-

ations are enough in practice to numerically have a stable and a good representation

of the integral.

If we use this step we change the above acceptance rations which involve the tree

movements. Set T k+1 = T ∗ with probability:

α(T i, T ∗) = min
{q(T ∗, T i)

q(T i, T ∗)

p(Z|X,T ∗)p(T ∗)

p(Z|X,T i)p(T i)

}

= min
{q(T ∗, T i)

q(T i, T ∗)

∫

p(Zk|Xk,Ωk)p(Ωk)dΩk
∫

p(Zi|Xi,Ωi)p(Ωi)dΩip(T i)

}

.

(4.3)

After an extensive simulation study we conclude that the differences of the two

methods are minor and as such we usually prefer the less computational expensive

method.

4.4 Reduction methods in the proposed BTGP

In practice the computational cost of the moves described above can be very big

or even impossible. To overcome this computational challenge we apply the proposed
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reduction technique of the full-scale approximation which is presented in detail in

Chapter III. As we already proved in Chapter III, the full-scale approximation is a

very good approximation of the real covariance matrix by capturing both the large

and the small scale variation.

All the likelihoods and the acceptance rations described above should be replaced

with the approximation likelihood. The accuracy of the full-scale approximation de-

pends on the number of the knots and the range of the tapering. If all the regions

have the same number of knots we may end up with a lot of subregions, since the

likelihood of a better approximations is usually bigger than the approximated likeli-

hood. If the data are considered uniformly distributed in the region then it is logical

to assume that bigger subregions with a lot of data should occupy larger number of

knots. Our strategy is simple. We first fix the knots and then we dynamically search

for the subregions.

This is a very good and effective strategy since in reality it will give us the same

degree of approximation all over the region. The split, merge and change operations

will not depend on the approximation efficiency of the real distribution but on the

difference in the data.

To avoid possible instability especially in the split and change operation we

should consider only the cases where the number of the data and the knots are big

enough.

4.5 Spatial prediction

For spatial prediction, we consider two approaches, one is the classical kriging

method, i.e., the spatial best linear unbiased prediction (BLUP) given the Maximum

Posterior Aposteriory (MAP) parameters, and the other is the Bayesian prediction

where for every interation we conduct a prediction.
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Figure 19: Simulated data and 400 knots uniformly distributed

In practice the subregions can be very big and we may not be able to store the

covariance matrix which we will use in the spatial prediction. This is the reason why

in practice we make the spatial prediction with a tapering form. We consider a circle

with center the spatial location of the prediction .

4.6 Simulation study

The goal of this simulated study is to show the effectiveness of the proposed

modified tree method to find the subregions with different parameters. We follow

the procedure described in the second simulation study of Chapter III by randomly

selecting 2000 locations from the region [0, 200] × [0, 200]. We simulated the spatial

process Y (s) at these 2100 locations using the same model with the same parameters

as in the third chapter. Moreover, we fix the number of knots and place them uni-

formly into the overall region as it is shown in the Fig. 19. The green dots represent

the locations where we simulate data, the blue dots are the locations of the training

data and the red stars are the location of the knots which we keep unchanged over

the MCMC iterations.

We start with only one region and apply the algorithm proposed in section 4.4.
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For the Bayesian posterior inference, U(0, π/2) priors were assigned for the rotation

angle θ’s, U(1, dmax/3) priors for the φ’s, where dmax is the maximum distance of

all pairs. The smoothness parameter ν was fixed to be 0.5 and for every subregion

the variance parameters σ2
k are assumed to have IG(3, 3) and τ 2k assumed to have

IG(0.5, 1) as priors. We chose priors for the number of the subregions or the depth

of the tree as it is described in section 4.3.1. For all the cases described below we

ran 5000 MCMC iterations to collect posterior samples after a burn-in period of 1000

iterations.

4.6.1 Approximation methods in the tree process

The first question we have to answer is whether or not the use of the different

reduction methods and the number of knots affect the distribution of the number of

the subregions. We start with the application of the proposed algorithm using the full

covariance model in order to compare it with the approximation methods. We also

apply the proposed algorithm using the predictive process approximation with 169

and 400 knots and the full-scale approximation with the same number of knots and

tapering range of 7 units. The prior distribution of the numbers is considered discrete

uniform on 1, . . . , 20. The distribution of the MCMC number of the subregions for

the full model is given in Fig. 20.

Moreover, the distribution of the numbers using the predictive process with 169

and 400 knots are shown in Fig. 21(a) and 21(b) respectively and the distribution of

the numbers using the full scale with 169 and 400 knots and tapering range 7 are

shown in Fig. 21(c) and 21(d).

Compared with the full model, all approximation approaches yield certain amount

of loss in capturing the real number of the subregions, although the loss can be re-

duced by increasing the number of knots or the taper range. From the plots of the
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Figure 20: MCMC posterior distribution of the number of subregions when we use
the full model
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Figure 21: MCMC posterior distribution of the number of subregions: a) predictive
process with 100 knots b) predictive process with 400 knots c) full-scale with 100
knots and tapering 10 d) full-scale with 400 knots and tapering 10
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posterior distribution of the number of the subregions we can see that the number

of knots affect the results. The predictive process with a few number of knots will

usually overestimate the number of the subregions. For example, when we use 169

knots, the MCMC distribution for the number of subregions will capture the true

situation in only 48.8% of the MCMC draws. This is a weak performance not only

compared to the posterior of the subregions using the full model, but also to the

posterior of the subregions using the full-scale approximation with same number of

knots. When we increase the number of the knots to 400, we observe an increase of

almost 20% in capturing the real situation but it is still very ineffective compared to

the full-scale approximation with the same number of knots. The predictive process

overestimates the number of the subregions even when the number of knots is 400.

One important observation is that the use of the full-scale approximation with 400

knots is very similar to the full model. The improvements of the posterior distribution

of parameters are minor when we take more than 400 knots.

In general, the full-scale approximation should be preferred over predictive pro-

cess since the last one is quite sensitive to the choice of the number of knots.

4.6.2 Full-scale approximation in the tree process

We now examine how the full-scale approximation can be improved from the

priors and compare it with other models which also use the full-scale approximation.

Two priors are chosen for the number of subregions: a) the discrete uniform

on [1, . . . , 20] and b) the truncated Poisson(3) for values [1, . . . , 20]. In the case

where we take uniform distribution prior for the number from the 5000 iterations:

4488 have two subregions, 476 have three subregions, 39 have four subregions and 3

have five subregions. In the case where we take the truncated Poisson prior for the

number of subregions, from the 5000 iterations, 4959 have two subregions and only 41
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Table 6: Posterior estimation and the MSPE for two subregions

Object True values m = 400, r = 10

ψ1 0.3 0.40(0.092)
ψ2 0.1 0.11(0.063)
λ11 70 59.88(15.361)
λ12 40 42.42(12.204)
λ21 10 12.64(-)
λ22 30 38.96(10.808)
σ2 5 4.49(0.459)
τ2 1 1.06(0.172)

MSPE - 4.350

iterations have three subregions. The use of a penalty in the number of the subregions

improves the MCMC percentage to capture the true number of the subregions. The

MCMC distribution of the number of subregions for these two different cases is given

in Fig. 22.
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Figure 22: MCMC posterior distribution of the number of subregions: a) uniform
prior and b) Poission prior

More than 85% of the splits given that we had two or more subregions occur in

the first subregion within y ∈ [0, 100]. This is suggesting that different values of the

range matrix give more stable TGP than others.

To see whether or not the partitions are correct we have to explore also if the
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Table 7: MSPE for four different methods

Method MSPE

Correct Partions Anisotropic 3.659

Correct Partions Isotropic 5.387

Wrong Fixed Partions 8.296

Unknown Random 4.350

values of ζ are close to the real one. For this reason when we have only two partitions

we take the values of ζ. Also, 5 first iterations are taken out every time we jump from

three to two subregions. The distribution of these values is given with a histogram

in Fig. 23.

These MCMC values of ζ are very close to 100 which is our splitting point. The

MCMC mean splitting point is equal to 99.7 which can be seen as a small bias. This

bias seems to be consistent also for other simulations and has to be investigated.

The mean values of the posterior parameters and their standard deviation, for the

above case, are given in Table 6. The mean values are relatively close to the mean

values computed with fixed and known partitions. A very important observation

here is that the values of the first subregion seems to be underestimated. This can

be related to the bias of ζ we described above.

From the above analysis it is obvious that the proposed method is a good choice

to separate the region into stationary subregions.

Finally, to demonstrate the success of the proposed approach we compare the

MSPE of different approaches using the same data set. We consider four different

cases: a) correct partitions with anisotropic covariance matrix b) correct partitions

with isotropic covariance matrix c) wrong partitions with anisotropic covariance ma-

trix (we take three different equal areas subregions) and d) unknown partitions with

anisotropic covariance matrix.
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Figure 23: Histogram of the MCMC values of ζ when the number of subregions is
two

The MSPE of these different approaches is given in table 7. The case of known

partitions with non-stationary covariance function will give us the smallest MSPE

while the uses of wrong subregions can even double the MSPE. Using the proposed

tree model approach is slightly worse than the case where we know the subregion

and better than the cases of wrong subregions. If we are not sure about the right

subregions of the data, it is better to approach the problem with the proposed method.

4.7 Real data analysis

Stratospheric ozone data which are analyzed in Chapter III are also the data

used in this chapter with the difference that the number of subregions is considered

unknown and random. Stationary covariance functions are used in each subregion.

Because of the computational cost, we start the analysis by using 50 different

partitions as it was done in the previous chapter. We select 7000 knots uniformly

distributed in the globe with latitude rage from 70o S to 70o N and keep them fixed in

every MCMC iteration (in which the subregions may change). Each subregion in the

MCMC iterations has a different number of knots which depends on the area it occupy.



95

8 9 9 10 10 11
−80

−60

−40

−20

0

20

40

60

80

Figure 24: Six different partitions in the tree process

Subregions with a larger area have a bigger number of knots. In addition, to avoid

small and unstable subregions, we apply some restrictions in the MCMC algorithm

when we chose them. Following an explanatory study, which is done without any

restriction, we decide to take only subregions with at least 1000 observations and 100

knots. These two restrictions avoid also numerical instability which can arise from

the approximation techniques.

By applying the method described in section 4.6 we conclude that the number of

the subregions is between 8 to 11. More explicitly, after 5000 iterations and a burning

period of 1000 iterations we have approximately: 6% of the MCMC sample with 8

subregions, 68% of the MCMC sample with 9 subregions, 23% of the MCMC sample

with 10 subregions and 2% of the MCMC sample with 11 subregions. Six of the

MCMC subregions are plotted in Fig. 24 for a better understanding of the partition

of the space. As we can see from this figure the non-stationarity seems to be more

severing close to the poles since we have a larger and constant number of subregions.

Especially between the latitude bound 60 to 70 we have three distinct subregions and

in −70 to −55 we have two.
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Figure 25: MAP estimation of the Bayesian treed GP
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Figure 26: Posterior distribution of the parameters using full-scale approximation



97

We compute the Maximum A Posteriori (MAP) estimates of the parameters for

these 5000 iterations and we plot the MAP partition in Fig. 25. Given the subregions

where we take the MAP values for the distribution we run 5000 MCMC iterations

with fixed partitions as it is described in the third chapter. The distribution of these

parameters are given in Fig. 26.

4.8 Concluding remarks

We developed a Bayesian treed GP model for TOMS data which can be extended

to any other non-stationary data set. To make it computationally feasible, we ap-

ply reduction techniques to simplify the different MCMC operations. Moreover, we

improve the prune, split and change operation by considering dependence between

subregions. The method can be seen as a simple and efficient way of modeling and

computationally dealing with nonstationary and big dimensional data sets.

More specifically, we partitioned dynamically the space into smaller subregions

with similar covariance structure which can be linked with the non-stationary co-

variance function proposed by Paciorek and Schervish (2006). To deal with the high

dimensionality we used the predictive process and full-scale approximation. An exten-

sive comparison of the performance between two reduction techniques with different

number of knots and tapering range is done in the simulation study where we prove

the efficiency of using the full-scale approximation. We apply the proposed algorithm

to TOMS data where we assumed only partitions in latitude. We consider this a suc-

cessful application since the number of the subregions converges into a stable number

of the subregions.
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CHAPTER V

CONCLUSION

We have developed two different models for images and global spatial processes

in the Bayesian paradigm using various techniques to handle the high dimensionality.

Both the image pixels, which are analyzed in Chapter II, and TOMS data, which are

analyzed in Chapters III and IV, are high dimensional and spatially correlated.

In Chapter II we model realistically different geometrical objects in an image. A

marked point process is developed and a hierarchical Bayesian model is used to link

different components of different mathematical models. More specifically, we treated

the objects in the image as a known shape, wherein the geometrical properties are

largely determined by templates and the interaction between the objects was modeled

using the area interaction process prior (AIPP). In addition, we model the covariance

structure of the likelihood with a CAR model to facilitate the computations. Finally,

to solve the intractability of the posterior distribution we proposed a complex Markov

Chain Monte Carlo (MCMC) algorithm which involves Reversible Jump, Metropolis-

Hasting, Gibbs sampling and a Monte Carlo Metropolis-Hastings (MCMH) for the

intractable normalizing constants in the prior. We successfully applied this algorithm

to real TEM images, to find the characteristics of the nanoparticles, outperforming

convention tools aided by manual screening.

In Chapter III we model the global data with a Gaussian process (GP) in three

dimensional spaces which has a non-stationary covariance function in latitude. The

use of the three dimensional chordal distance helped us to produce covariance func-

tions which are geometrically anisotropic within each subregion and also to use well

established and more general non-stationary covariance matrices given in Paciorek
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and Schervish (2006). The use of the Paciorek and Schervish (2006) non-stationary

covariance structure helped us to reduce the computational in two ways: a) to apply

different approximation techniques for the covariance matrix and b) carry out the

computations of the parameters separately for each subregion. We applied three dif-

ferent covariance approximation techniques: a) the predictive process, b) tapering and

c) the full-scale approximation and proved with simulation studies and with real data

analysis that the full-scale covariance approximation is the best reduction technique

regarding the MSPE. The predictive process approximation is proven to give biased

posterior distributions while the full-scale approximation is relatively unbiased. More

explicitly, we demonstrate that the predictive process will always overestimate the

nugget variance, the model variance and the number of the subregions in a dynamic

system.

In Chapter IV we extend the application of the reduction techniques from non-

stationary Gaussian process (GP) with known subregions to non-stationary GP with

unknown subregions. Bayesian treed GP is used to model the covariance function

dynamically and find the unknown subregions. We used the predictive process and

the full-scale approximation to facilitate the MCMC operations which in practice can

be computationally impossible to carry out. The predictive process approximation is

proven to overestimate the number of the subregions while the full-scale approxima-

tion gives very similar results to the full model. Finally, we improve the operations

in the existing dynamic model with the use of the dependent subregions.
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APPENDIX A

ADDITIONAL FIGURES ANALYSED IN CHAPTERS II AND III

(a) s(scale) (b) µ(foreground intensity)

(c) gr(random pure parameter)

Figure A-1: Distribution of the MAP estimates for some shape parameters in Ex1
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(a) s(scale) (b) µ(foreground intensity)

(c) gr(random pure parameter)

Figure A-2: Distribution of the MAP estimates for some shape parameters in Ex2
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(a) s(scale) (b) µ(foreground intensity)

(c) gr(random pure parameter)

Figure A-3: Distribution of the MAP estimates for some shape parameters in Ex3



111

0

100

200

300

400

500

600

700

The intensity parameter, φ

(a) Range parameter φ

0

200

400

600

800

1000

1200

1400

1600

1800

model variance

(b) Variance parameter σ2

0

20

40

60

80

100

120
random error variance

(c) Variance of error parameter τ2

Figure A-4: Posterior distribution of the parameters using full model for 50 different
bands in the latitude range [-70,70]
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Figure A-5: Posterior distribution of the parameters using the predictive process for
different band in the latitude range [-70,70] using 250 knots
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Figure A-6: Posterior distribution of the parameters using full rank approximation
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Figure A-7: Posterior distribution of the parameters using the full model for different
bands in the latitude range of [-55,55]
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Figure A-10: The posterior distribution of the parameter of the “Range” matrix in
the 3D model
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Figure A-12: Level 2 and Level 3 TOMS data
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Figure A-13: Level 2 and Level 3 TOMS data for the US
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