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ABSTRACT 

 

Numerical Study of Convective Heat Transfer in Flat Tube Heat Exchangers Operating 

in Self-Sustained Oscillatory Flow Regimes. (December 2011) 

Tracy Leo Fullerton, B.S.; M.S., Texas Tech University 

Chair of Advisory Committee: Dr. N. K. Anand 

 

Laminar, two-dimensional, constant-property numerical simulations of flat tube 

heat exchanger devices operating in flow regimes in which self-sustained oscillations 

occur were performed.  The unsteady flow regimes were transition flow regimes 

characterized by cyclic variations of flow parameters such as stream-wise or cross-

stream velocity. 

A computer code was developed to perform the numerical simulations.  Spatial 

discretization was based upon a Control Volume Finite Element Method (CVFEM).  

Temporal discretization was based upon a semi-implicit Runge-Kutta method.  Double 

Cyclic conditions were used to limit the numerical domains to one repeating geometric 

module. 

Nine geometric domains representing flat tube heat exchanger devices were 

tested over a range of Reynolds numbers.  A maximum Reynolds number (Re) of 2000 

was established to keep the study within the transition range.  For each domain, a critical 

Reynolds number (Recrit) was found such that for Re< Recrit the flow was steady, laminar 

flow and for Re> Recrit the flow exhibited cyclic oscillations. For the cases tested, the 
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variation in longitudinal pitch had little impact on the Recrit value for a fixed transverse 

pitch.  However, for a fixed longitudinal pitch, the Recrit was increased for decreasing 

transverse pitch. 

The results demonstrate the importance of using unsteady simulation methods for 

these cases.  Nusselt numbers predicted by the unsteady method were on the order of 

65% higher than predicted by steady methods for the same Reynolds numbers. 

Data for required pumping power versus resultant Nusselt number were collected 

which showed four distinct operating regions for these devices spanning the low 

Reynolds number, steady flow region through the self-sustained oscillating flow region.  

Based on the data, the recommended operating region is the region of self-sustained 

oscillations as this region is characterized by the highest increase in Nusselt number per 

increase in required pumping power. 
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NOMENCLATURE 

a’s and b’s Coefficients in discretization equations 

A, B, and C Coefficients in interpolation functions 

Acs Cross-sectional area of domain 

Anbe Area of neighboring element 

AR Tube aspect ratio 

AREA Area of element 

,D pressC  Pressure drag coefficient 

,D skinC  Skin friction coefficient 

pc  Fluid specific heat 

Dh Hydraulic diameter 

Dmin Tube minimum diameter 

Dmaj Tube maximum diameter 

f Friction factor 

freq Oscillation frequency 

GapL Longitudinal distance between columns of tubes 

GapT Transverse distance between rows of tubes 

H Domain height 

HEM Heat exchange module 

Hz Hertz (1/s) 

J  Flux vector 
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EVJ  Flux vector based on element velocity 

k Fluid thermal conductivity 

L Domain length 

m Periodicity 

m  Mass flow rate 

nbe Neighboring element 

n̂  Normal vector to element link 

Nu Nusselt number 

P Pressure 

Pe Peclet number 

Pr Prandtl number 

P̂  Locally varying pressure 

PTP  Normalized peak-to-peak amplitude of oscillation 

PL Longitudinal pitch 

PT Transverse pitch 

q” Heat flux 

Q Total heat added per module 

Re Reynolds number 

Recrit Critical Reynolds number 

Remax Maximum Reynolds number 

S Source term in transport equation 
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Str Strouhal number (non-dimensional frequency) 

SL Non-dimensional longitudinal pitch 

ST Non-dimensional transverse pitch 

T Temperature 

T̂  Locally varying temperature 

Tb Bulk temperature 

Ts Surface temperature 

b̂T  Locally varying bulk temperature 

ŝT  Locally varying surface temperature 

u Stream-wise velocity 

u  Stream-wise component of element velocity 

inletu  Average stream-wise velocity at domain inlet 

Uavg Average velocity within an element 

v Cross-stream velocity  

v  Cross-stream component of element velocity 

v  Velocity vector 

v  Element velocity vector 

W Width of domain (W=1 for 2D) 

(x, y) Global coordinates 

(X,Y) Element local coordinates 
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Greek Symbols  

β  Global pressure gradient 

γ  Global temperature gradient 

arcθ  Included angle in chord across arc for meshing tube 

iλ  
Coefficient in integrated flux expression 

µ  Fluid dynamic viscosity 

ν  Fluid kinematic viscosity 

ρ  Fluid density 

φ  General transported scalar 

χ  General field variable 

ψ  Non-dimensional pumping power 

Γ  Fluid diffusion coefficient 

Φ  Non-dimensional pumping power (Amon) 

linkΦ  Integrated flux 

Ω  Dimensionless frequency 

Abbreviations and Acronyms 

2D Two-dimensional 

3D Three-dimensional 

CTDMA Cyclic Tri-Diagonal Matrix Algorithm 

CV Control Volume 

CVFEM Control Volume Finite Element Method 
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DC Double Cyclic 

ESDIRK Explicit first stage, Single diagonal coefficient, Diagonally Implicit, 

Runge-Kutta 

FE Finite Element 

FV Finite Volume 

LHS Left-Hand Side 

PFD Periodically Fully-Developed 

RHS Right-Hand Side 

SSOF Self-Sustained Oscillating Flow 

TDMA Tri-Diagonal Matrix Algorithm 

TS Tollmien-Schlichting 
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1. INTRODUCTION 

The use of flat tubes in heat exchangers has become common, especially in the 

automotive air conditioning industry. [1] [2]   Figure 1-1 shows the geometry of a typical 

flat tube.  Tubes of this shape are available commercially in a variety of sizes.  Because 

of their lower profile, external “air-side” pressure drop characteristics of flat tubes are 

generally better than those for round tubes.  With proper design, one may expect the heat 

transfer performance of a flat tube heat exchanger to rival that of a round tube heat 

exchanger.  However, there is a shortage of data in the literature for flat tube 

performance, either as individual tubes or in tube banks.  Published studies include only 

steady, laminar data or unsteady data at relatively low Reynolds numbers.  Data for flat 

tubes operating in unsteady flow conditions at moderate to high Reynolds numbers is 

lacking.  

 

Flow

 

Figure 1-1.  A flat tube and its orientation with respect to the flow. 

 
 

 For some flow domains, including tube-in-cross-flow domains, one of the 

transition pathways from steady, laminar flow to fully turbulent flow is a flow regime 

characterized by self-sustained oscillations in velocity.  This transition flow regime is 

characterized by velocities that vary with time, but in a repeating or cyclic manner, as 

________________ 
This dissertation follows the style and format of Numerical Heat Transfer. 
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 opposed to the random oscillations observed in fully turbulent flows.  These oscillations 

provide additional mixing of fluid layers which leads to thinner thermal boundary layers 

and subsequently to enhanced heat transfer.  The same may be said of turbulent flow 

oscillations, however, the oscillations in this oscillatory transition flow regime are 

expected to have smaller friction losses associated with them as compared to those in 

fully turbulent flows.  Operating a heat exchanger device in this oscillatory transition 

regime, one may expect an increase in heat transfer compared to operating in a steady, 

laminar flow regime.  There may also be advantages to operating in this oscillatory 

transition regime as compared to operating in a fully turbulent regime. 

The current work consists of a numerical study of the performance of simple flat 

tube heat exchanger devices operating in the oscillatory transition flow regime described 

above.  Solutions to test problems for steady, laminar flow and for the transitional 

oscillatory regime were obtained for performance comparison for several two-

dimensional (2D) domains of varying geometry.  For all cases, data were collected for 

flow performance in terms of Reynolds number (Re), friction factor (f), and non-

dimensional pumping power (ψ ) and for heat transfer performance in terms of Nusselt 

number (Nu).  Other collected data include tube skin friction, tube pressure drag, non-

dimensional frequency of oscillation (Strouhal number (Str)), and peak-to-peak 

magnitude of oscillations ( PTP ). 

An original computer code was developed to perform the numerical study for the 

current work.  There are three features of these oscillating flows and their associated 

geometric domains that had to be addressed in the development of the code.  First, as 
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seen in Figure 1-1, the flat tube geometry has radiused ends.  The chosen method must 

therefore be capable of handling irregular geometric features such as this.  Second, while 

the oscillations of parameters such as velocities are cyclic, the flow is still unsteady and 

the chosen method must be capable of solving unsteady flow problems.  Third, the 

solution of these unsteady problems was expected to be very resource intensive in terms 

of computer hardware and solution time.  Fortunately, the regular geometric spacing of 

tubes which promote the transitional oscillatory flows also lead to periodically fully-

developed (PFD) flows.  Imposing PFD flow conditions on a numerical solution allow 

solution for just one domain module of several identical modules.  Imposing PFD flow 

conditions limits the size of the domain and makes for more efficient use of computer 

resources. 

Features of the code were developed and validated over the course of the project.  

The basis for this code is a Control Volume Finite Element Method (CVFEM) as 

described in the literature.  This method features a triangular element mesh allowing 

irregular geometric features to be modeled easily.  The development of this original code 

began with a steady-flow version for 2D laminar constant-property flows.  This was 

followed by steady-flow versions which incorporated PFD flow conditions and the 

related Double Cyclic (DC) conditions.  Finally, unsteady versions of the code were 

developed using a semi-implicit Runge-Kutta method.  At each stage of development, 

the code was validated using published or theoretical data.  While the three features of 

the code are not original, the combination of these three features into one computer code 

is original.  
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This dissertation is organized into six sections.  Section 2 presents a discussion of 

flat tube performance based on published results.  Section 2 also includes a discussion of 

the theory behind self-sustained oscillating flow and presentation of some published 

performance data.  Section 3 describes the numerical methods used to conduct the 

current work.  This section includes a discussion of CVFEMs and the semi-implict 

Runge-Kutta method chosen.  Section 3 also includes a discussion of periodically fully-

developed flow and Double Cyclic conditions and how the implementation of these 

conditions in the code limit the required solution domain to one repeating module.  

Section 4 presents code validation data for both steady and unsteady cases.  Section 4 

also describes previously published work.  Section 5 presents the results from the current 

study of flat tube heat exchanger devices.  Section 6 presents a summary of the current 

work and recommendations for continuation of this effort.  
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2. THEORY AND LITERATURE REVIEW 

As stated in Section 1 above, for the current work the primary interest is the 

performance of flat tube heat exchanger devices operating in flow regimes that exhibit 

self-sustained oscillations.  This section will provide a discussion of relevant theory and 

literature references for both flat tube flow/heat transfer and for self-sustained 

oscillations. 

2.1 Flat Tube Flow and Heat Transfer 

While flat tubes have gained popularity and acceptance in some industries, 

especially in the air conditioning industry, there are few references in the literature 

discussing the performance of flat tubes in heat exchanger devices. [2] 

Bahaidarah et al. [3] performed a numerical study of the performance of banks of 

flat tubes under 2D steady, laminar, constant-property conditions at Reynolds numbers 

between 25 and 400.  This study included cases of flat tubes arranged in both inline and 

staggered configurations for varying longitudinal and transverse spacing of tubes.  The 

results indicated that, in general, flat tubes did not perform as well as equivalent round 

tubes under the same conditions when only heat transfer was considered.  However, 

when both heat transfer and pumping power were considered, the flat tube outperformed 

the equivalent round tube.  Due to the flat tube’s lower profile for the equivalent heat 

transfer area, the pressure drop required for a given flow rate was less for the flat tube 

than for the round tube thereby making the pumping power and operating cost less.  

Another conclusion was that the staggered configurations out-performed the inline 

configurations from a heat transfer standpoint. 
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Bahaidarah et al. [4] also considered flat tubes as part of a numerical study of 

round tubes and non-circular tubes.  For these 2D steady, laminar, constant-property 

cases, a row of tubes confined between parallel plates was studied for varying Reynolds 

number flows.  One of the main conclusions from this study was that for Re >50, when 

both heat transfer and pumping power were considered, the flat tube outperformed the 

equivalent round tube. 

Fullerton and Anand [5] performed a 2D steady, laminar, constant-property study 

of flat tubes, circular tubes, and oval tubes similar to Bahaidarah et al. [4].  In this study, 

periodically fully-developed conditions were imposed for the numerical simulation of a 

row of tubes between two flat plates.  Reynolds numbers between 50 and 350 were 

considered for fluids of Prandtl number 0.7 and 7.0.  The results were similar to those 

from [3] and [4] above.  When both heat transfer and pumping power were considered, 

the flat tube outperformed the equivalent round tube.  (This paper, Fullerton and Anand 

[5] appears in its entirety as Appendix A.) 

Benarji et al. [6] performed a numerical study of unsteady cases over inline and 

staggered banks of flat tubes.  The geometry and Reynolds number range were the same 

as for Bahaidarah et al. [3] above.  Fluids of Prandtl number 0.7 and 7.0 were 

considered.  Few transient effects were reported.  Only transient start-up conditions were 

seen due to the low Reynolds number range considered.  The cases tested all converged 

to a steady state.  No self-sustained oscillations were reported.  Also, symmetry was used 

in such a way that unsteady oscillatory effects would have been prevented. 
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The literature review for flat tube data is brief due to the lack of references.  

However, there does seem to be a consensus that flat tubes have a performance 

advantage over other tube shapes under certain steady operating conditions if both heat 

transfer performance and cost of operation in terms of pumping power are considered. 

2.2 Self-Sustained Oscillatory Flows 

Self-sustained oscillatory flows (SSOFs) are flows in which velocities and other 

quantities at a specific location vary with time in a periodic manner.  The oscillations in 

such flows occur naturally in that they are not induced by artificially varying the flow 

rate or by inducing oscillations mechanically.  Figure 2-1 demonstrates the difference 

between steady laminar flow, self-sustained oscillatory flow, and fully turbulent flow by 

comparing plots of u-velocity versus time at a point.  Figure 2-1(a) shows the plot of u 

versus t for a steady flow.  Since the u-velocity is constant with time for steady flow, the 

plot is a horizontal line.  Figure 2-1(b) shows the plot of u versus t for a point in a self-

sustained oscillatory flow.  In this case, while u varies with time, the variation is cyclic 

and repeats itself with time.  Figure 2-1(c) shows the plot of u versus t for a point in a 

fully turbulent flow.  In this case, the variation of u with time is not periodic but appears 

random. 
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Figure 2-1.  U-velocity at a point: (a) steady flow; (b) SSOF; (c) turbulent flow. 

 
 

These SSOFs lie on the path of transition from steady, laminar flow to fully 

turbulent flow for certain flow geometries and flow conditions.  One type of domain 

geometry for which self-sustained oscillations have been observed and studied is a flow 

domain having regularly spaced geometric features such as fins, plates, or tubes.  For 

some, but not necessarily all, such geometries, as Reynolds number is increased from 

low-speed, steady, laminar flow, a critical Reynolds number (Recrit) is reached above 

which the flow is unsteady and characterized by periodic oscillations. 

Self-sustained oscillatory flows are of interest for heat exchanger devices 

because the oscillations of u- and v-velocities enhance mixing and keep thermal 

boundary layers from growing, both of which enhance heat transfer rates. 

Combining SSOFs with flat tubes is attractive because operating in a SSOF 

regime may help to increase heat transfer performance of flat tubes.  Pressure drop 

requirements, and therefore pumping power requirements, are expected to be higher than 

for steady flows, but if heat transfer performance increases at a faster rate than the 

pressure drop increases, a net gain in performance may be realized.   
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2.2.1 Grooved Channel and Communicating Channel 

SSOFs have been observed and studied for several flow geometries associated 

with heat exchangers.  Two such geometries are the grooved channel geometry and the 

communicating channel geometry as shown in Figure 2-2.  Both geometries exhibit 

regularly spaced geometric features, which, as stated above, may lead to self-sustained 

oscillations under certain conditions. 

Several references may be found in the literature related to these two problems.  

The reported results share some commonality.  The commonalities will be discussed 

first, followed by a discussion of specific references.  

 

 

Flow

Flow

(a)

(b)

Typical Domain

Typical Domain

 

Figure 2-2.  (a) Grooved channel geometry; (b) communicating channel geometry. 
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2.2.1.1 General Characteristics 

Both the grooved channel and communicating channel geometries may be 

viewed as plane channels with periodically-spaced geometric disturbances.  At low 

Reynolds numbers, the flow is steady.  As the Reynolds number is increased, a critical 

Reynolds number Recrit is reached and the flow undergoes a Hopf bifurcation and 

transitions from steady, laminar flow to flow characterized by self-sustained oscillations.  

A Hopf bifurcation occurs when a steady solution is unstable to an oscillatory 

disturbance.  In this case, the flow bifurcates into a periodic solution of a particular 

frequency. [7]  As the Reynolds number is increased further, the magnitude and 

frequency of the oscillations increases.  As the Reynolds number is increased still 

further, the oscillations begin exhibiting the randomness associated with turbulent flow. 

For both geometries, the frequency of oscillation is closely tied to the frequency 

of Tollmien-Schlichting (TS) waves predicted for the plane channel flow by linear and 

nonlinear stability analysis.  TS waves exist due to the viscous interaction between the 

channel walls and the fluid.  These TS waves are present in plane channel flow, but are 

stable up a Reynolds number of approximately 5772.  For both the grooved channel and 

communicating channel flows, the periodically spaced obstructions trigger oscillations 

for existing modes at lower Reynolds numbers that would otherwise be stable in plane 

channel flow.  The oscillations are stabilized by nonlinear forces. 

For both geometries, oscillations were observed for domains of varying 

periodicity.  Here, the term periodicity refers to the number of identical repeating 

modules included in the solution domain.  For example, if only one module is included, 
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that is referred to as a periodicity m=1 condition.  If two modules are included, this is a 

periodicity m=2 condition, and so forth.  Published results indicate that different 

frequencies of oscillation may be found depending upon the periodicity of the solution 

domain.   

For both geometries, if constant heat flux is applied to the bounding plates, the 

heat transfer is enhanced compared to the plane channel flow.  First, the presence of the 

obstructions enhances heat transfer at Re<Recrit due to the breakup of the thermal 

boundary layer in the channel flow.  Second, after the onset of self-sustained 

oscillations, mixing of fluid layers is greatly enhanced which also enhances heat transfer. 

2.2.1.2 Specific References 

Ghaddar et al. [8] studied the grooved channel problem.  They used linear 

stability to predict the critical Reynolds number for varying grooved channel geometries.  

The critical Reynolds numbers were found to be shifted only slightly from those 

predicted by both linear and nonlinear stability theory.  They also demonstrated a square 

root relationship between the amplitude of oscillation and the degree of criticality (Re- 

Recrit) that suggested the behavior was associated with a regular Hopf bifurcation. 

Majumdar and Amon [9] studied the communicating channel problem.  They 

performed a numerical study for 2D constant-property cases using a spectral element 

method.  The authors considered this communicating channel domain to be two plane 

channels separated by the row of obstructions along the centerline as shown in Figure 

2-2(b).  As part of their study, the authors predicted TS wave frequencies for the plane 

channel flows above and below the row of obstructions.  Their results showed that for 
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cases of self-sustained oscillatory flow for the communicating channel geometry, there 

was only a minor shift in oscillation frequency from predictions based on plane TS 

waves to the observed oscillations in the flow.  According to their results, the 

oscillations were the result of a primary Hopf bifurcation.  The primary channel flow 

was unstable to small disturbances but at Re>Recrit, nonlinear affects stabilized the flow 

such that time periodic self-sustained oscillations resulted.  From their results, Majumdar 

and Amon concluded that self-sustained oscillatory flows are ordered flows compared to 

turbulent flows.  Ordered supercritical flows require less pumping power than turbulent 

flow to achieve the same transport rates.  Also, a self-sustained oscillatory flow has less 

viscous dissipation than turbulent flow.  These conclusions are of interest when one 

considers pumping power as a cost of operation of a device. 

Amon and Mikic [10] studied the communicating channel problem.  They 

performed a numerical study for 2D constant-property cases using a spectral element 

method.  According to their results, the match of TS frequencies depends on depth of the 

plate and width of the gap along the domain centerline.  They also caution that the 

domain with periodicity m=1 may or may not give the least stable mode.  It is possible 

that a domain with periodicity of m=2, m=3, or higher may produce the lowest Recrit.  

They also reported that while heat transfer increased for these oscillating cases, that the 

required pressure drop to drive the flow also increased.  They defined a non-dimensional 

pumping power based on required pressure drop and showed that pumping power is 

proportional to (Nu Re2) for these flows.  They stated that self-sustained oscillatory 
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flows have less viscous dissipation than turbulent flows and therefore require less 

pumping power to achieve same transport rate. 

In Mujumdar and Amon [11], the authors apply techniques usually associated 

with turbulent flow to study the kinetic energy equation term-by-term.  One interesting 

result was a difference between these SSOFs and turbulent flows.  They found that the 

pressure term contributed to the production of kinetic energy for SSOF, but for turbulent 

flows the contribution of the pressure fluctuations was almost negligible. 

In Amon et al. [12], both numerical and experimental work was performed with 

communicating channels.  Good agreement was obtained between numerical and 

experimental results.  The results confirmed that the presence of the plates along the 

centerline of the channel enhanced heat transfer compared to plane channel flow even 

for steady flow cases Re<Recrit.  After the onset of SSOF, the heat transfer rates were 

enhanced at an even greater rate.  A plot of Nu versus Re shows a steeper slope for 

Re>Recrit. 

Guzman et al. [13] studied the transition scenario for the communicating channel 

problem.  For the geometry and flow conditions used, they found the least stable 

frequency to occur in a domain of period m=2.  As the pressure drop driving the flow 

was increased, the flow underwent a Hopf bifurcation to an oscillatory mode with a 

Re<Recrit.  As the pressure drop was increased further, second Hopf bifurcation was 

observed and accompanied by a further increase in Re. 
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2.2.2 Arrays of Rectangular Tubes 

Two other geometries for which self-sustained oscillations have been observed 

and studied are inline and staggered arrangements of rectangular fins or tubes.  Figure 

2-3(a) and Figure 2-3(b) show the inline and staggered arrangements, respectively.  In 

both geometric domains, the tubes are periodically arranged in both the stream-wise and 

cross-stream direction whereas in the grooved channel and communicating channel, the 

interruptions were arranged only in the stream-wise direction. 

In Zhang et al. [14], a numerical study was conducted to isolate the heat transfer 

and friction effects associated with two mechanisms: the prevention of the continuous 

growth of thermal boundary layers at both steady and oscillatory modes, and the 

increased mixing due to oscillatory modes. 

For both tube arrangements, the flow showed the same characteristics as Re was 

increased from a low value.  The flow was in a steady, laminar state up to Recrit.  For 

Re>Recrit, self-sustained oscillations occurred at a single frequency.  As Re was 

increased, another low frequency was observed followed by random fluctuations.  The 

Strouhal number (non-dimensional frequency) remained relatively constant throughout 

although a slight increase was observed as the second low frequency appeared. 

Conclusions from this work were that steady simulation under-predicts both heat 

transfer and friction because it misses the effects of the oscillations.  Vortices generated 

at the leading edge of the rectangular tube roll down the top and bottom of each tube 

enhancing local Nusselt number and decreasing skin friction due to flow reversal.  Flow  
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Figure 2-3.  Rectangular tube arrays: (a) inline; (b) staggered. 

 
 
unsteadiness in the wake makes form drag increase.  Therefore, steady simulation under-

predicts form drag and over-predicts skin friction. 

In Zhang et al. [15] and Zhang et al. [16], the authors considered the effect of 3D 

features in the flow on the predicted heat transfer and friction for the geometry shown in 

Figure 2-3.  The distinction was made between intrinsic 3D effects, which occur for 2D 
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geometry at higher Reynolds numbers, and extrinsic 3D effects which occur for all 

Reynolds numbers.  They showed that for higher Reynolds numbers, 2D simulations 

tend to over-predict Nusselt number and under-predict friction.  In other words, 3D 

effects tend to decrease predicted heat transfer rates based on 2D predictions.  3D effects 

on friction depend on Re.  For lower Re, just above the onset of 3D, skin drag dominates 

so the increase in skin drag leads to an overall increase in friction.  For higher Re where 

form drag is higher relative to skin drag, the decrease in form drag leads to an overall 

decrease in friction and pumping power.   

Balachandar and Parker [17] studied inline and staggered arrays of rectangular 

cylinders as shown in Figure 2-3 in addition to isolated cylinders to observe the effect of 

the array on the onset of oscillatory behavior.  The important effect of the periodic array 

is to promote vortex shedding at lower Reynolds numbers than for isolated cylinders.  

For the inline case, the stream-wise periodic spacing was shown to have a weak effect on 

the onset of vortex shedding while the transverse spacing had a large influence.   

2.3 Summary 

The material above explains the origin of self-sustained oscillatory flow for the 

grooved channel and communicating channel geometry.  The close match between TS 

frequencies for the plane channel and the oscillation frequencies of the grooved channel 

and communicating channel problem help explain the origin of these oscillations.  These 

geometries may be viewed as plane channels with periodic geometric interruptions.  As 

such, the main flow is that of a channel flow.  The presence of the periodic interruptions 

destabilizes some modes that appear as stable modes in plane channel flow as evidenced 
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by the fact that the resulting frequencies closely match those predicted for plane channel 

flow. 

The material on arrays of rectangular tubes focuses more on the effects of SSOF 

on heat transfer and friction than on the origin of the SSOF itself.  The current work also 

focuses on the effects of SSOF rather than on the origins.  The geometry of the flat tube 

arrays considered in the current work was based on the geometry of arrays of rectangular 

tubes which was known to produce self-sustained oscillations with the expectation that 

small changes in geometry will still leave a geometry for which SSOFs will exist.  Tube 

spacing and flow conditions were varied to establish Recrit and document Nu and friction 

factor and break down friction into skin friction and form drag.  The Reynolds number 

was limited to a maximum value of approximately 2000 to stay well within the 

boundaries of where the 2D simulation is valid.  This maximum value is based on the 

results in Zhang et al. [14] in which flow unsteadiness was observed for the staggered 

configuration of rectangular tubes for a Reynolds number of 1465.  Converting the 

Reynolds number value to match the definition in the current work, this translates to a 

value of approximately 2344.  This value of Re=2344 was further reduced to Remax= 

2000 based on differences in geometry and the fact that observations of chaotic behavior 

would tend to invalidate the results.  A module of periodicity m=1 was used.   
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3. NUMERICAL METHODS 

3.1 Overview 

The current work involves the application of numerical methods to investigate 

the performance characteristics of flat tube heat exchanger devices operating in flow 

regimes exhibiting self-sustained oscillations.  As established in the previous section, the 

current work will include determining values for the primary quantities of interest 

including friction factor, Strouhal number and Nusselt number for a series of 2D 

geometric domains under varying constant-property flow conditions.  To determine 

values for derived quantities such as these, a numerical solution provides values of 

stream-wise velocity (u), cross-stream velocity (v), pressure (P), and temperature (T) at 

discrete locations in the domain of interest at suitable intervals of time.  Once the u, v, P, 

and T fields have been determined, values for the derived quantities of interest may be 

calculated. 

For the current work, a computer code was developed based on the principles of 

a particular Control Volume Finite Element Method (CVFEM) for 2D, steady, constant-

property flows.  This code was then modified to allow for unsteady solutions using a 

particular semi-implicit Runge-Kutta method.  For the cases of interest, Double Cyclic 

flow conditions were imposed as stated above. 

This section includes a discussion of the general transport equation, spatial 

discretization using CVFEM, temporal discretization using an ESDIRK (Explicit first 

stage, Single diagonal coefficient, Diagonally Implicit, Runge-Kutta) method, and 

solution subject to Double Cyclic conditions.  Also included here is a discussion of how 
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the various derived quantities of interest are calculated using numerical methods.  As no 

originality is claimed for any of these pieces of the numerical method, only material 

essential to an overall understanding of the methods used is included here.  The 

originality in the current work lies in the combination of these methods in one computer 

code.  The interested reader will find additional details for specific topics in the 

appendices provided as noted. 

3.2 General Transport Equation 

Many numerical methods for solving flow and heat transfer problems are based 

on the general transport equation for the transported scalar φ  as shown in Eq.(3.1) 

below. 

 ( ) ( ) ( )v S
t

ρφ ρ φ φ∂
+ ∇ = ∇ Γ∇ +

∂
   Eq.(3.1) 

In Eq.(3.1), ρ is the fluid density, Γ  is the diffusivity, S is a generalized source term, 

and v is the velocity vector while φ  may represent either stream-wise velocity (u), 

cross-stream velocity (v), or temperature (T).  It should be noted that pressure (P) is not a 

transported scalar and may not be represented by φ  in Eq.(3.1).   

In Eq.(3.1), the term ( )
t

ρφ∂
∂

represents the time rate of change of φ  in a fluid 

element, the term ( )vρ φ∇ represents the change of φ  in a fluid element due to 

advection, the term ( )φ∇ Γ∇  represents the change of φ  in a fluid element due to 

diffusion, and the term S the change of φ  in a fluid element due to sources.  Depending 

on the choice of φ , Γ , and source term S, Eq.(3.1) may represent conservation of x-
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momentum, of y-momentum, of energy, or of mass for a differential fluid element.  

Table 3-1 shows the definition of Γ and S for the various quantities that φ  may represent 

for 2D flows. 

 

Table 3-1.  Definitions ofφ , Γ , and S for the general transport equation 

Conserved Quantity φ  Γ  S 

Mass 1 0 0 
X-Momentum u µ  /P x−∂ ∂  
Y-Momentum v µ  /P y−∂ ∂  

Energy T / pk c  Q 

 

 

Many numerical methods, including the CVFEM chosen for the current work, are 

based on an integral form of Eq.(3.1).  By integrating each term of Eq.(3.1) with respect 

to the volume of a control volume (CV), and by applying Gauss Divergence Theorem to 

the advective and diffusive terms, Eq.(3.2) below is obtained. 

 ( ) ( )( ) ˆ ˆ
CV s s CV

dV v n ds n ds S dV
t

ρφ ρ φ φ∂
+ = Γ∇ +

∂∫ ∫ ∫ ∫   Eq.(3.2) 

In Eq.(3.2), s represents the surface of the CV and n̂  represents the outward surface 

normal of the CV.  Further simplification results from defining a combined flux vector 

J representing the combination of advective and diffusive flux as shown by Eq.(3.3) and 

Eq.(3.4) below. 

 J vρ φ φ≡ − Γ∇  Eq.(3.3) 

 ( ) ˆ
CV s CV

dV J n ds S dV
t

ρφ∂
+ =

∂∫ ∫ ∫  Eq.(3.4) 
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 Eq.(3.4) is the basis for the overall numerical method chosen.  Spatial 

discretization is required for the flux integral and source integral while temporal 

discretization is required for the unsteady term.  Various methods (and their 

combinations) exist for discretization of Eq.(3.4).  What follows is a discussion of 

discretization and solution methods used in the current work. 

3.3 Control Volume Finite Element Method (CVFEM) 

3.3.1 Overview 

In general, CVFEMs are methods of spatial discretization that combine features 

of both Finite Element (FE) methods and Finite Volume (FV) methods.  Like FE 

methods, the domain is discretized into regions called elements to which material 

properties are assigned and within which interpolation functions are defined which 

describe the variation of velocity, pressure, and temperature within an element.  Like FV 

methods, control volumes (CVs) are defined to which conservation equations in integral 

form are applied resulting in sets of algebraic equations for the domain which may be 

solved for the u, v, P, and T fields. 

There are several 2D CVFEM’s described in the literature.  References are 

available that describe various formulations for 2D CVFEM’s using both triangular- and 

quadrilateral-shaped elements. Comparing and contrasting the various versions is 

beyond the scope of the current work.  The basic method for the particular CVFEM 

employed in the current work is the co-located, equal-order, triangular-element method 
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described by Prakash [18] [19].  Additional material directly influencing the current 

work may be found in Sabaas [20] [21] [22] and Husain [23].  

This section on CVFEM will describe Prakash’s CVFEM for steady, 2D, 

laminar, constant-property flows. 

3.3.2 Element Velocity and the General Transport Equation 

Prakash’s CVFEM is referred to above as a co-located and equal order method.  

This refers to the fact that values for u- and v-velocity, pressure, and temperature are 

obtained at the same discrete locations in the domain of interest.  Co-located methods 

may produce physically unrealistic solutions, particularly in the pressure field.  This is 

generally referred to as checkerboarding and staggered grid methods (as opposed to co-

located methods) were developed to prevent this effect.  For the co-located CVFEM 

used in the current work, the concept of mass-conserving or element velocity is 

introduced to prevent checkerboarding effects.  While the concept of element velocity 

cannot be fully defined at this point in the discussion, it is important to introduce it at 

this point.  A detailed definition of element velocity may be found in Section 3.3.8 

below. 

For now, the following statements regarding the element velocity will be made: 

1) The element velocity vector ( v ) replaces the nodal velocity vector ( v ) in 

the definition of the combined flux vector, Eq.(3.3) above, regardless of the 

choice of φ ;  

2) The components of the element velocity are known numerically at a given 

element’s nodes;  
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3) The numerical values of the element velocity components vary linearly with 

position within the element. 

With these statements in mind, Eq.(3.3) may be rewritten by substituting the element 

velocity vector for the nodal velocity vector.  

 EVJ vρ φ φ= − Γ∇  Eq.(3.5) 

The superscript EV signifies that the flux is calculated using the element velocity rather 

than the nodal velocity. 

As stated above, the discussion to follow considers spatial discretization using 

CVFEM for steady flows only.  Therefore, the unsteady term in Eq.(3.4) plays no part in 

the discussion.  Eq.(3.4) may now be rewritten by dropping the unsteady term and by 

substituting the flux vector based on element velocity for the flux vector based on nodal 

velocity. 

 ˆEV

s CV

J nds SdV=∫ ∫  Eq.(3.6) 

Eq.(3.6) is the general transport equation upon which Prakash’s CVFEM is 

based.  Eq.(3.6) is in steady-flow form assuming that sources, if they exist, are not time-

dependent. The unsteady term in Eq.(3.4) will be considered in Section 3.4 for the 

discussion of temporal discretization. 

3.3.3 Domain Discretization 

For Prakash’s 2D CVFEM, the computational domain is first discretized as a set 

of triangular elements which completely fill the domain without overlap.  The vertices of 

these triangles are called nodes and are the locations at which u, v, P, and T are 
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calculated.  Each element is divided into three equal-area sub-regions by defining links 

from the element centroid to the midpoint of each of the three sides as shown in Figure 

3-1(a).  Each sub-region is associated with one of the element’s three nodes.  The fact 

that the domain is meshed with triangles makes this method a good candidate for the 

solution of flat tube heat exchanger problems in that the irregular domain geometry 

associated with the tube shape may be meshed to desired accuracy using triangles.  Also, 

the variables u, v, P, and T may remain in their native (x, y) coordinates without 

coordinate transformation.   
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Figure 3-1.  CVFEM domain discretization: (a) typical element; (b) internal CV; (c) boundary CV. 

 
 

The domain is further discretized as a set of polygonal CVs such that each node 

in the domain has an associated CV.  The set of CVs defined in this manner completely 

fills the domain without overlap.  The CV associated with a given node is formed from 

sub-regions of the elements that share that particular node.  The element links of 
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contributing elements form the boundary of the CV for internal CVs as shown in Figure 

3-1(b).  For boundary CVs, the boundary is formed from a combination of element links 

and segments of the domain boundary as shown in Figure 3-1(c).  Integral forms of the 

various conservation equations as given by Eq.(3.6) are applied to the CVs resulting in 

four sets of algebraic equations, one set for each of the unknown field variables of 

interest: u, v, P, and T.  If the general variable χ  represents u, v, P, or T then the various 

conservation equations for the CV associated with Node P may be written in the 

following form: 

 
P P nb nb P

nb

a a b    Eq.(3.7) 

The set of all such equations for all CVs in the domain are solved simultaneously using 

an iterative solution technique based on the SIMPLER algorithm [24]. 

3.3.4 Flux Integration for , ,u v orTφ =  

Applying integral forms of the conservation equations to a given CV involves, in 

part, determining expressions for the integrated flux of x-momentum, y-momentum, 

energy, and mass across the element links that form the CV boundary as shown by the 

LHS of Eq.(3.6) above.  Boundary CVs are special cases involving integrated flux across 

segments of the domain boundary itself.  The integration along the boundary of a 

particular CV is performed piece-wise by first calculating the integrated flux across each 

element link for the entire set of elements and then assembling the appropriate 

expressions for the set of links that form the boundary of a particular CV.  Adjustments 



26 
 

 
 

to account for flux through domain boundary segments may be added after the assembly 

process. 

To perform the integrated flux calculations across an element link, expressions 

for u- and v-velocity, temperature, and the spatial gradients of pressure are required at 

points along the link.  Once these expressions are known, Simpson’s One-Third Rule 

may be applied to derive an expression for the integrated flux.  Interpolation functions 

are defined to provide the distribution of velocity, pressure, and temperature within each 

element.  For the general transported scalar variable   representing stream-wise velocity 

(u), cross-stream velocity (v), or temperature (T) (but not pressure (P)), the interpolation 

function takes the following exponential form: 

 

( )
( )

max

max min

max min

max 1 2 3

min 1 2 3

( , ) ( )

( )where   ( ) exp 1
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  −Γ  = −  −   
−

=
Γ

=
=





 Eq.(3.8) 

In Eq.(3.8),   and  are the density and diffusion coefficient of the fluid, respectively.  

Pe is the element Peclet number.  avgU  is the average magnitude of the element velocity 

vector for the element’s three nodes.  The interpolation function is defined in an 

element-local coordinate system (X, Y) such that the X-axis is aligned with the average 

flow direction within the element, the Y-axis direction is determined by the right-hand 

rule, and the origin is located at the element centroid.  The interpolation function is 

exponential along the X direction and linear along the Y direction.  In this way, the 
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method takes into account the local flow direction within the element during flux 

calculations, thus minimizing false diffusion. Xmax and Xmin are the maximum and 

minimum, respectively, of the X coordinate values at the element’s three nodes as 

specified in the element-local coordinate system. 

The coefficients A, B, and C in Eq.(3.8) do not represent numerical constants.  

Rather, they are expressions in terms of the unknown values of   at the element’s three 

nodes.  The expressions for A, B, and C are determined by assuming that Eq.(3.8) is 

valid at each of the element’s three nodes. (See Appendix B.)  Eq.(3.8) therefore 

provides an expression for   at a point (X, Y) within the element in terms of the 

unknown values of  at the element’s nodes.  If one uses Simpson’s One-Third Rule for 

the integration of flux along a link, the expressions for   at the two endpoints and at the 

midpoint of each link may be used to determine the final expression for the integrated 

flux of   across the link in terms of the unknown values of  at the element’s three 

nodes.  The integrated flux across an element link (
link

 ) may be represented as follows: 

    1,2, 3
link i i

i    Eq.(3.9) 

where 
i

  represents the unknown value of  at node i  and 
i

  represents a numerical 

coefficient.  The expressions for 
i

 may be found in Appendix C. 

After the expressions for integrated flux in the form of Eq.(3.9) are obtained for 

all element links in the domain, an assembly process is used to combine the expressions 

for all links forming the boundary of a given CV.  The result is an expression of the form 
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P P nb nb

nb

Integrated Flux a a    Eq.(3.10) 

 representing integrated flux for the x - or y -momentum equation or for conservation of 

energy equation for that particular CV.  Details of the assembly process may be found in 

Appendix D.  

3.3.5 Integration of Source Term 

The RHS of Eq.(3.6) is an integral over the area of the CV.  (In 2D, the “volume” 

of the control volume is actually an area.)  The area of each CV is composed of sub-

regions of contributing elements.  The area of each sub-region is one-third the area of the 

contributing element by definition and the source S is defined to be constant over the 

area of the element.  The average S over the CV may be defined as an area-weighted 

average of S over the set of contributing elements for the CV. 

 
3

nbe
nbe

nbe
CV

CV
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S

AREA

 
 
 =

∑
 Eq.(3.11) 

In Eq.(3.11), the superscript nbe signifies neighboring element.  Using Eq.(3.11) to 

evaluate the integral on the RHS of Eq.(3.6), Eq.(3.12) below is obtained. 
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∑
∑∫ ∫  Eq.(3.12) 

Thus, the source integral has been converted to a summation of quantities over 

the set of contributing elements.  For the current work, the source integration will 
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evaluate to a numerical constant Pb .  Thus, after flux integration and source term 

integration, Eq.(3.6) is converted to an algebraic equation of the form of Eq.(3.13) 

below. 

 
P P nb nb P

nb

a a b    Eq.(3.13) 

Eq.(3.13) may represent either conservation of x-momentum, of y-momentum, or of 

energy depending on the choice of φ . 

3.3.6 Momentum Equations 

When solving the x- or y-momentum equations, either uφ =  or vφ = .  For either 

choice, µΓ = , the fluid viscosity.  Because the diffusion coefficient is the same for 

either choice of uφ =  or vφ = , the flux coefficients will be identical for the x- and y-

momentum equations and will be denoted uva .  The source integrals will, in general, be 

different. 

For the current work, the source integrals for the momentum equations will 

involve only the spatial derivatives of pressure as shown in Table 3-1 above.  In this 

method, P x∂ ∂ and P y∂ ∂  are considered constants for elements although they may 

change values during the solution process.  Writing the momentum equation in the form 

of Eq.(3.13)  using the notation discussed the following expressions for conservation of 

x- and y-momentum for a CV associated with Node P are obtained. 

         x-momentum
3

nbe
uv uv
P P nb nb

nb nbe

P Aa u a u
x

 −∂
+ =  ∂ 
∑ ∑  Eq.(3.14) 
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         y-momentum
3

nbe
uv uv
P P nb nb

nb nbe

P Aa u a u
y

 −∂
+ =  ∂ 
∑ ∑  Eq.(3.15) 

3.3.7 Energy Equation 

When solving the energy equation, Tφ =  and pk cΓ = .  For the current work, 

volumetric energy sources are not considered and the source integral from Eq.(3.12) is 

identically zero.  However, the application of known heat flux to the domain boundary 

may result in a constant on the RHS of the equation denoted as Pc .  The flux coefficients 

are denoted by ea .  Writing the energy equation in the form of Eq.(3.13)  using the 

notation discussed the following expression for conservation of energy for a CV 

associated with Node P is obtained.  

         energye e
P P nb nb P

nb
a T a T c+ =∑  Eq.(3.16) 

3.3.8 Definition of Element Velocity 

This section will present the definition of the element velocity used previously in 

the derivation of the momentum and energy equations.  It is necessary to define this 

prior to discussing the method of solving for nodal pressures. 

Beginning with the x-momentum equation Eq.(3.14) above, the RHS of Eq.(3.14) 

may be rewritten in terms of the average pressure gradient over the CV. 

 uv uv
P P nb nb CV

nb CV

Pa u a u AREA
x

∂
+ =

∂∑  Eq.(3.17) 

Solving Eq.(3.17) for the nodal velocity Pu results in Eq.(3.18) below. 
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uv
CVnb nb

nb CV
P uv uv

P P

PAREAa u x
u

a a

∂
− ∂

= +
∑

 Eq.(3.18) 

For convenience, ˆPu and u
Pd  are defined as follows 

 ˆ           

uv
nb nb

unb CV
P Puv uv

P P

a u
AREAu d

a a

−
= =

∑
 Eq.(3.19) 

such that the nodal velocity may be written as  

 ˆ u
P P P

CV

Pu u d
x

 ∂
= +  

∂  
 Eq.(3.20) 

Eq.(3.20) represents the nodal velocity at Node P.  The x-component of the 

element velocity ( Pu ) is now defined by replacing the CV’s average pressure gradient 

with the pressure gradient for Element E that contains Node P. 

 ˆ u
P P P

E

Pu u d
x

 ∂
= +  ∂ 

  Eq.(3.21) 

While ˆPu and u
Pd  have unique values at nodes in the domain, Pu is valid only for 

calculations performed within Element E. 

By similar logic, the expression for the y-component of the element velocity ( Pv ) 

may be developed as Eq.(3.22) below. 

 ˆ v
P P P

E

Pv v d
y

 ∂
= +  ∂ 

  Eq.(3.22) 
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Eq.(3.21) and Eq.(3.22) represent the x- and y-components of the element 

velocity, respectively.  Note that each is written in terms of the pressure gradient within 

a particular element. 

3.3.9 Solution for Nodal Pressure 

Pressure is not a transported scalar.  Therefore the method described above for 

solution for φ is not directly applicable to the solution for nodal pressures in the domain 

of interest.  Pressure P does not appear explicitly in the set of conservation equations for 

CVs.  For the incompressible flows of interest in the current work, there is no equation 

of state to evaluate P.  

The conservation of mass version of Eq.(3.6) together with the previously 

defined element velocity components and a linear interpolation function for pressure 

within an element will be used to write algebraic equations that have nodal pressures as 

explicit unknowns. 

By choosing 1φ = in Eq.(3.6), the conservation of mass equation is obtained in 

the form of Eq.(3.23) below. 

 ˆ( ) 0
s

v n dsρ =∫ 
  Eq.(3.23) 

Recall that v represents the element velocity vector, the components of which are 

represented by Eq.(3.21) and Eq.(3.22) above.  From these equations, it may be seen that 

the components of the element velocity vector involve the spatial gradients of pressure 

within elements.   
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A linear interpolation function of the form of Eq.(3.24) below is used for 

pressure within an element.  

 P Ax By C= + +  Eq.(3.24) 

The spatial derivatives of pressure within the element are therefore as follows 

 
1 1 2 2 3 3

1 1 2 2 3 3

P A A P A P A P
x
P A B P B P B P
y

∂
= = + +

∂
∂

= = + +
∂

 Eq.(3.25) 

The details of this derivation may be found in Appendix E. 

The combination of using a linear interpolation function for pressure within an 

element, the definition of element velocity, and the use of element velocity in the 

expression for mass flux in Eq.(3.23) allow the mass flux to be written in terms of nodal 

pressures rather than in terms of the spatial derivatives of nodal pressures.  This allows 

equations to be constructed for the solution of the unknown nodal pressures.   

Once again, the flux integrations are performed on an element basis and the 

resulting expressions assembled for a CV.  The result is an equation of the form 

 
P P nb nb P

nb

a P a P d   Eq.(3.26) 

 representing conservation of mass for a CV in terms of the unknown nodal pressure 

values at Node P and at each of the neighbor nodes. 

3.3.10 Boundary Conditions and Solution Process 

Typical boundary conditions for steady flow problems are specified u- and v-

velocity at the domain inlet, and zero u- and v-velocity at solid boundaries.  For heat 
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transfer problems, either temperature (T) or heat flux ( "q ) is specified along specified 

boundaries.  For boundary CVs, the integrated flux of a variable across the domain 

boundary is added to the expression in the form of Eq.(3.13) or Eq.(3.26).  The boundary 

conditions are known numerically, so this process modifies the general source term 
P

b  

or pd in these equations.   

As stated earlier, conservation equations are assembled for each CV for each 

field variable of interest (u, v, P, and T). The resulting sets of equations are solved 

iteratively using a combination of the line-by-line procedure and the Tri-Diagonal 

Matrix Algorithm (TDMA).  The order of solution is determined by the SIMPLER 

algorithm.  

3.4 ESDIRK 

The section above on CVFEM covered spatial discretization for steady flows.  

This section will cover the temporal discretization necessary for solving unsteady 

problems such as the oscillating flows of interest in the current work. 

The method used for the current work is a semi-implicit Runge-Kutta method 

known as an ESDIRK (Explicit first stage, Single diagonal coefficient, Diagonally 

Implicit, Runge-Kutta) method.  This method was used by Ijaz [25] in developing his 

SIMPLE DIRK method for solving unsteady combined flow and heat transfer problems.  

SIMPLE DIRK combines the spatial discretization methods of SIMPLE [24] with the 

temporal discretization methods of ESDIRK to create a method capable of arbitrarily 

high order of accuracy. 
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In the current work, the spatial discretization methods of CVFEM are combined 

with the temporal discretization methods of ESDIRK to solve the unsteady problems of 

interest.  More specifically, a two-stage second-order ESDIRK is used.  The ESDIRK is 

well documented in the literature and a full mathematical development of the method is 

beyond the scope of the current work.  In this section, a simple geometric interpretation 

of the two-stage second-order ESDIRK is presented and it is shown that the results from 

the CVFEM spatial discretization may be incorporated into the unsteady equation. 

In general, the unsteady equation of interest is of the form shown in Eq.(3.27) 

below.  

 ( , )g t
t
φ φ∂

=
∂

 Eq.(3.27) 

A solution for φ  at some time (t+1) is required given that a solution at time (t) is known.  

The function ( , )g tφ may be interpreted as the slope of theφ  versus t curve.  The mean 

value theorem of calculus guarantees that for some average value of the slope ( g ) 

between time (t) and time (t+1), that the value of φ at time (t+1) can be represented by 

Eq.(3.28) below. 

 1t t t gφ φ+ = + ∆  Eq.(3.28) 

The key is in estimating g .  When working forward in time, the value of g  at time (t) is 

known, but the value of g at time (t+1) is not known. 

For the two-stage second-order ESDIRK used in the current work, the average 

slope is estimated by the arithmetic mean of the slopes at the beginning and at the end of 

the time step.  Thus, the solution for 1tφ + is given by the following equation. 



36 
 

 
 

 ( )1 11
2

t t t tt g gφ φ+ + = + ∆ +  
 Eq.(3.29) 

The ESDIRK uses the known solution at time t  to calculate the slope tg

explicitly.  Therefore, in Eq.(3.29), tφ  and tg are known numerically.  The unknown 

slope at time (t+1) may be written as an expression including the unknown values of φ  

thus exposing them for solution.  This process may be demonstrated by applying 

Eq.(3.29) to the general transport equation in integral form. 

Eq.(3.30) below is obtained by rearranging Eq.(3.4) from above, using the flux 

vector based on the element velocity as given by Eq.(3.5), and including the unsteady 

term that was ignored for CVFEM development above. 

 ( ) ˆEV

CV s CV

dV J n ds S dV
t

ρφ∂
= − +

∂∫ ∫ ∫  Eq.(3.30) 

For constant fluid properties, the unsteady term may be integrated with respect to 

volume to produce Eq.(3.31) below. 

 ˆEV

s CV

V J n ds S dV
t
φρ ∂

= − +
∂ ∫ ∫  Eq.(3.31) 

The RHS of Eq.(3.31) may be recognized as a rearrangement of Eq.(3.6) above.  

The spatial discretization techniques associated with CVFEM described above led to an 

equivalent expression in terms of unknown nodal φ  values and coefficients ap’s and bp’s 

as seen in Eq.(3.13).  Substituting a rearranged Eq.(3.13) into Eq.(3.31) and dividing 

both sides by Vρ , obtain Eq.(3.32) below is obtained. 
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 1 ( , )p
p p nb nb p

nb
a a b g t

t V
φ

φ φ φ
ρ

∂   = − + + =  ∂   
∑  Eq.(3.32) 

Eq.(3.32) represents the slope of the ( )tφ curve.  

The slope at time (t) may be evaluated explicitly as a number based on the stored 

solution at the beginning of the time step.  Rewriting Eq.(3.29) by substituting Eq.(3.32) 

for tg  Eq.(3.33) is obtained. 

 1 1 1 1 1 11 1 1
2 2

t t t t t t t t
p p p p p nb nb p

nb
t g t a a b

V
φ φ φ φ

ρ
+ + + + + +  = + ∆ + ∆ − + +    

∑  Eq.(3.33) 

Multiplying through by 1
2

V

t

ρ

∆
and moving the unknowns to the LHS results in Eq.(3.34) 

below. 

 1 1 1 1 1
1 1 2
2 2

t t t t t t t
p p nb nb p p p

nb

V Va a t g b
t t

ρ ρφ φ φ+ + + +

   
     + + = + ∆ +         ∆ ∆
   

∑  Eq.(3.34) 

This is the same as the steady flow equation with only two differences.  The coefficient 

of 1t
pφ + is modified as is the source term on the RHS of the equation. 

The solution procedure is the same as developed for steady solutions using 

CVFEM.  Solution procedure at time (t) is as follows. 

1) At the end of the previous time step, calculate and store pg .  This becomes 

t
pg  for current time step. 

2) Use steady solution routines to determine coefficients pa and pb . 
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3) Modify pa per Eq.(3.34). 

4) Modify the source term per Eq.(3.34). 

5) Solve using the same solver routines as for steady solution. 

6) After convergence, calculate and store pg for the next time step. 

3.5 Periodically Fully-Developed Flow and Double Cyclic Conditions 

Double Cyclic (DC) conditions are a special case of Periodically Fully-

Developed (PFD) flow conditions.  This section begins with a discussion of PFD 

conditions followed by a discussion of DC conditions. 

3.5.1 Periodically Fully Developed (PFD) Flow  

Commonly, heat exchanger devices such as the ones of interest in the current 

work exhibit regular geometric spacing of tubes or fins in the stream-wise direction 

leading to the development of PFD flow conditions at some distance from the inlet.  

Once developed, the PFD conditions persist until near the device exit.  For such devices, 

the majority of tubes or fins lie in flow modules exhibiting PFD conditions.  Therefore, 

the performance of such a device may be characterized by the flow and heat transfer 

characteristics in a single PFD module.  That the desired performance data may be 

obtained from solution of a single PFD module means faster solution times and better 

utilization of available computer resources. 

Mathematical formulation of PFD flow and heat transfer is well established and 

may be found in Patankar et al. [26] and Kim and Anand [27].  In this section, a brief 

discussion of PFD conditions is presented followed by a discussion of how these 
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conditions are implemented in the CVFEM code.  In the discussion to follow, x

represents the stream-wise direction, y  represents the cross-stream direction, and L

represents the length of the module.   

In a periodically fully-developed flow domain, velocity profiles in the stream-

wise direction repeat themselves periodically and pressure drop per module length ( β ) 

remains constant.   

 
( , ) ( , ) ( 2 , )

( , ) ( , ) ( 2 , )

( , ) ( , )
constant

u x y u x L y u x L y

v x y v x L y v x L y

P x y P x L y
L



     
     

 
 

 Eq.(3.35) 

Pressure in a PFD module may be represented as a combination of global 

pressure drop per module and local pressure variation P̂ . 

 ˆ( , ) ( , )P x y x P x y    Eq.(3.36) 

While pressure itself does not repeat with periodicity, the local pressure variation does. 

 ˆ ˆ ˆ( , ) ( , ) ( 2 , )P x y P x L y P x L y       Eq.(3.37) 

In the CVFEM representation of the x- and y-momentum equations, the spatial 

derivatives of pressure are included in the source term of the general transport equation 

Eq.(3.1).  By taking the spatial derivatives of pressure using Eq.(3.36), the following 

expressions for the source terms in the conservation of x- and y-momentum equations are 

obtained:  

 
X-Momentum Source

ˆP P
x x


 

  
 

 Eq.(3.38) 
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Y-Momentum Source

ˆP P
y y

 
  

 
 Eq.(3.39) 

Both the x-momentum and y-momentum equations are therefore written in terms 

of the spatial derivatives of the locally-varying pressure component P̂ .  The spatial 

derivatives of pressure (P) do not appear explicitly in the equations.  The x-momentum 

equation includes a   term representing the global pressure gradient in the stream-wise 

direction for the module.   

For the case of specified wall heat flux, the temperature values do not repeat 

module-to-module for neighboring PFD modules.  Rather, the temperature differences 

repeat from module to module and a global temperature gradient γ  in the stream-wise 

direction may be defined for a PFD module of length (L) by performing a global energy 

balance on a PFD module. 

 
( , ) ( , ) ( 2 , ) ( , )

( , ) ( , )

p

T x L y T x y T x L y T x L y

T x L y T x y Q
L mc L



                
 

 


 Eq.(3.40) 

In Eq.(3.40) Q is the total heat into (or out of) the module, m is the mass flow rate 

through the module, and pc is the fluid specific heat.   

The temperature at any point (x, y) in the domain may be expressed in terms of a 

global component involving  and a locally varying component T̂ as shown below. 

 ˆ( , ) ( , )T x y x T x y   Eq.(3.41) 

 The locally varying component T̂  is periodic in the stream-wise direction. 
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 ˆ ˆ ˆ( , ) ( , ) ( 2 , )T x y T x L y T x L y       Eq.(3.42) 

Substituting for T(x, y) in terms of the global temperature rise and local variation 

components into the conservation of energy equation for 2D, steady, laminar flows, a 

form involving   and T̂ is obtained.  Two new source terms, each involving   are 

revealed. 

 

 
1

2

Energy Equation Source Terms
E

p

E

S c u

S k
x

 



 





 Eq.(3.43) 

The term p
c u   is an added source term involving the global temperature 

gradient for the PFD module.  The second added source term  k
x





 is identically zero 

if the thermal conductivity (k) is constant throughout the domain.  This second source 

term is important for domains including conducting solids such that the thermal 

conductivity for the solid differs from the thermal conductivity for the fluid.  (Kim and 

Anand [27]).  For the current work, the second source term may be ignored. 

Thus, for a PFD solution, one does not solve for pressure (P) or temperature (T), 

but rather for the locally-varying components P̂ and T̂ .  Table 3-2 below shows the 

changes in φ and source terms. 
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Table 3-2.  Definitions of φ , Γ , and S for PFD flow conditions 

Conserved Quantity φ  Γ  S  
Mass 1 0 0 

X-Momentum u µ  ˆ /P xβ − ∂ ∂  
Y-Momentum v µ  ˆ /P y−∂ ∂  

Energy T̂  / pk c   
p

c u k
x

  


 


 

 

3.5.2 Double Cyclic Conditions 

Double Cyclic conditions occur in a heat exchanger device like that shown in 

Figure 2-3.  There is a recurring geometric spacing of tubes in both the stream-wise and 

cross-stream direction. A typical domain is shown in Figure 2-3.  From the figure, it is 

clear that the velocities along the top boundary of the domain must be the same as for the 

bottom boundary of the domain.  The pressures and temperatures are also identical along 

the transverse boundaries.  However, in the stream-wise direction, PFD conditions exist 

as described above. 

Many times, for cases like these, symmetry is applied at the transverse 

boundaries.  Symmetric conditions are a special case of Double Cyclic conditions.  In a 

domain with repeating geometric features in both stream-wise and cross-stream 

directions, the boundaries of the module considered for solution are arbitrary as long as 

the module repeats.  So, for example one may choose a transverse line that is a line of 

symmetry and symmetric conditions may be applied.  Double Cyclic conditions are more 

general in that the choice of transverse boundary need not lie along a line of symmetry. 
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A CVFEM code to implement the above conditions was developed.  Rather than 

solving for u, v, P, and T, the DC version of the code provides the solution for u, v, P̂ , 

and T̂ for a single DC module.  The DC code is based on an existing code which 

implements the standard CVFEM algorithms described above.  The required code 

modifications include the addition of the source terms for the momentum and energy 

equations as explained above in reference to PFD conditions and the implementation of 

repeating conditions on the transverse boundaries.  The Cyclic Tri-Diagonal Matrix 

Algorithm (CTDMA) is used in the iterative solver when operating on either rows of 

nodes aligned in the stream-wise direction or on columns of nodes aligned in the cross-

stream direction.  

Solution for a DC module involves first specifying a value of   and solving the 

flow problem for u, v, and P̂ .  Next, the flow solution is used to calculate m  for the 

domain and the specified heat flux is used to calculate Q.  Eq.(3.40) may then be used to 

calculate  .  The solution process concludes with the solution for the T̂  field.  Note that 

for the PFD solution,   is specified rather than velocity.  Because of this, Reynolds 

numbers cannot be explicitly specified. 

3.6 Parameter Definitions 

3.6.1 Reynolds Number 

The Reynolds number is calculated using the average u-velocity at the inlet of the 

module as shown by Eq.(3.44) below.  
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 h inletD uRe ρ
µ

=  Eq.(3.44) 

In Eq.(3.44), module hydraulic diameter ( hD ) is taken as twice the module height ( H ).  

Also, ρ  and µ  represent the fluid density and viscosity, respectively. 

 

3.6.2 Friction Factor for PFD/DC Solution 

The current work involves calculating friction factor and Nusselt number for the 

flow and temperature fields associated with the cases of interest.  However, with the DC 

code, the solution does not actually involve pressure or temperature.  Rather, the solution 

is in terms of the locally varying components P̂  and T̂ subject to a specified value of .  

Therefore, friction factor and Nusselt number must be defined in terms of  and T̂ . 

The friction factor ( f ) may be defined as follows: 

 
2

( 2)
h

inlet

D
f

u




  Eq.(3.45) 

The friction factor definition in Eq.(3.45) is used for compatibility with Zhang et al. 

[14].  In this equation, β  is the specified global pressure drop and hD  is the hydraulic 

diameter.   

3.6.3 Bulk Temperature and Nusselt Number for PFD/DC Solution 

Calculating the Nusselt number requires calculating the bulk temperature at 

cross-stream sections of the domain.  Because these flows may exhibit recirculation, the 

definition of bulk temperature is modified to include the absolute value of velocity rather 
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than simply the velocity itself.  For the case of DC flow with specified surface heat flux, 

the solution process yields the T̂  field rather than the (T) field.  Therefore, the 

fluctuating component of the bulk temperature ˆ
b

T is defined in terms of T̂  rather than in 

terms of (T). 

 

ˆ( , ) ( , )
ˆ ( )

( , )

y
b

y

T x y u x y dy

T x
u x y dy





 Eq.(3.46) 

The Nusselt number is defined as follows: 

 
( )

ˆ ˆ( ) ( )

           

h

s b

q D
Nu x

T x T x k




   
 Eq.(3.47) 

In Eq.(3.47), k is the fluid conductivity.  It can be shown that Nu defined in Eq.(3.47) in 

terms of fluctuating temperatures ˆ
s

T  and ˆ
b

T is directly comparable to the standard 

definition in terms of actual temperatures 
s

T  and 
b

T . 

3.6.4 Strouhal Number 

The Strouhal number representing non-dimensional frequency of oscillation was 

defined in the current work to be compatible with Zhang et al. [14].  This was used for 

oscillations of u- and v-velocity at points of interest in the domain.  Given the u versus 

time or v versus time data, the period of oscillation was found by computing the time 

between peaks.  The frequency of oscillation was computed as the reciprocal of the 

period.  The Strouhal number (Str)  was then calculated using Eq.(3.48) below. 
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( ) min

inlet

freq D
Str

u
=  Eq.(3.48) 

Here, minD  is the minor diameter of the flat tube. 

3.6.5 Non-Dimensional Pumping Power 

In this work, one of the measures of cost of operation for the heat exchanger 

devices of interest is pumping power.  Amon and Mikic [10] used a dimensionless 

pumping power ( Φ ) defined as follows. 

 
4

3

3
4

dp Vh
dx ρν

Φ =  Eq.(3.49) 

This same expression appears as non-dimensional viscous dissipation in Karniakis et al. 

[28].  In Eq.(3.49), dp
dx

 is equivalent to the global pressure gradient β in the current 

work.  Also, V is equivalent to inletu and h is equivalent to the domain height H. 

Amon and Mikic [10] used the definition of Φ above to compare cases of varying 

flow conditions for fixed domain geometry.  For the current work, however, there are 

nine combinations of domain length and height.  A definition for non-dimensional 

pumping power that takes into account the varying geometry is required.  The new 

definition is obtained by starting with an expression for the dimensional pumping power.  

Pumping power was defined as the product of the required pressure drop to sustain the 

flow, the average flow velocity at the inlet, and the cross-sectional area of the domain. 

 Pumping Power inlet csPu A= ∆  Eq.(3.50) 
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For these Double Cyclic domains, P Lβ∆ = and csA HW= where W is the width 

of the domain which is taken as 1 for 2D.  Therefore, the dimensional pumping power 

may be written as follows. 

 Pumping Power inletu LHβ=  Eq.(3.51) 

This may be rewritten in terms of the friction factor ( f ) from Eq.(3.45) above. 

 3Pumping Power inletf u Lρ=  Eq.(3.52) 

This may then be non-dimensionalized using fluid properties and the tube minor 

diameter minD . 

 
2

min
3

inletf u LDψ
ν

=  Eq.(3.53) 

Eq.(3.53) represents the non-dimensional pumping power for the cases of interest.  Even 

with varying L and H, plots of this non-dimensional quantity retain the trends shown 

with the dimensional quantity.  This was not true of the definition used by Amon an 

Mikic [10]. 

3.6.6 Tube Drag Coefficients 

Skin friction and pressure drag were calculated for each tube for each time step 

of solution.  The values of each were then time-averaged and presented in the form of 

non-dimensional coefficients. 

The non-dimensional skin friction coefficient ( ,D skinC ) was based on the time-

averaged skin friction ( wτ ), the average inlet velocity ( 2
inletu ), and the tube minor 

diameter ( minD ) as shown in Eq.(3.54) below. 
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 min
, 2

w

D skin
inlet

DC
u

τ

ρ
≡  Eq.(3.54) 

The non-dimensional pressure drag coefficient ( ,D pressC ) was based on the time-

averaged pressure drag ( pressdrag ), the average inlet velocity ( 2
inletu ), and the tube minor 

diameter ( minD ) as shown in Eq.(3.55) below. 

 min
, 2

press

D press
inlet

drag
DC

uρ
≡  Eq.(3.55) 

Both ,D skinC  and ,D pressC  are presented in the data tables in Section 5.  It should be 

noted that while there are two tube surfaces present in each DC domain used for 

analysis, that the above coefficients are based on the skin friction and pressure drag of 

one tube only.  The time-average values are identical for each of the two tubes. 
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4. CODE VALIDATION* 

The first version of the computer code was developed to solve steady, developing 

flow problems.  Next, versions of the steady code were developed which implemented 

periodically fully-developed (PFD) flow conditions and Double Cyclic (DC) flow 

conditions.  Finally, unsteady versions of developing flow, PFD, and DC codes were 

developed.  At each step in development, the code was tested against published or 

theoretical results.  For this section, selected validation results involving Poiseiulle flow 

and tubes in cross-flow are presented as these topics relate directly to the current work.  

Also in this section is a discussion of previously published work involving use of the 

steady versions of the code. 

4.1 Steady Validation 

Many validation runs were performed with the steady code during development.  

Classic validation problems such as the driven cavity and backward facing step were 

used.  In each case, the code produced results that compared well with published results 

or theory. 

As part of the work for the publication of Fullerton and Anand [5], a problem 

involving tubes in cross-flow between parallel flat plates was solved and the results 

compared to previously published results for the same domain geometry and flow 

conditions.  Figure 4-1 shows the domain which consists of five regularly spaced round 

________________ 
*Part of this section is reprinted with permission from “Periodically Fully-Developed 
Flow and Heat Transfer over Flat and Oval Tubes Using a Control Volume Finite-
Element Method” by T.L. Fullerton and N.K. Anand, 2010.  Numerical Heat Transfer, 
Part A, vol. 57, pp. 642-665, Copyright 2010 by Taylor & Francis Group, LLC. 
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tubes confined between parallel plates.  There is also an entry and exit region. 

Periodically fully-developed conditions were not imposed for this validation effort.  

Rather, a developing flow version of the code was used.  The results, however, indicate 

that PFD conditions develop downstream from the entry region due to the regularly 

spaced flow interruptions.  Table 4-1 shows a comparison of average Nusselt numbers 

using the CVFEM code compared to computed results from Kundu et al. [29] and 

Bahaidarah et al. [4].  These results demonstrate good agreement.   

 

L L L L L L 3L

Entry
Length HEM#1 HEM#2 HEM#3 HEM#4 HEM#5

Exit
Length

HFLOW

 

Figure 4-1.  Computational domain for steady, developing-flow code validation. 

 
 

Table 4-1.  Comparison of average Nusselt numbers 

 HEM#2 HEM#3 HEM#4 
Re 50    
    Kundu et al. [29] 9.4 9.4 9.8 
    Bahaidarah et al. [4] 9.23 9.23 9.23 
    Fullerton&Anand [5] 9.24 9.24 9.24 
Re 200    
    Kundu et al. [29] 12.5 12.6 12.8 
    Bahaidarah et al. [4] 12.44 12.43 12.42 
    Fullerton&Anand [5] 12.50 12.46 12.45 

 
 
 

A steady PFD version of the code was developed for use in collecting data for the 

publication of [5] and [30].  As part of the validation effort for [5], the PFD code was 

used to solve 2D Poiseiulle flow for the case of constant specified wall heat flux for 
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several meshes of increasing density.  As the mesh density increased, the Nusselt 

number approached the theoretical value of 140/17 ≈ 2.235.  The finest mesh used 

produced a Nusselt number of 2.234 along both the top and bottom walls which is within 

0.04% of the theoretical value. 

As part of the work for [30], results were obtained for Poiseiulle flow with 

specified constant wall temperature.  The subject of [30] was the development of a new 

method whereby the constant wall temperature problem could be solved using PFD flow 

conditions without solving the eigenvalue problem for temperature.  For this problem, 

the flow is characterized by the product of friction factor and Reynolds number (fRe) 

which should converge to a value of 96.  The heat transfer is characterized by a Nusselt 

number value of 7.54.  Table 4-2 shows the flow results for several Reynolds number 

values.  In each case, the quantity (fRe/96) is a value of 1.000 to three decimal places.  

Table 4-2 also shows Nusselt number values that are 7.54 to two decimal places.  Both 

the flow and heat transfer results indicate good agreement with theoretical values for the 

steady PFD code. 

 

 

Table 4-2.  Flow results for parallel plate example 

Nominal Re Calculated Re f (fRe)/96 Nu 
100 99.896 0.961 1.000 7.543 
150 150.132 0.640 1.000 7.542 
200 199.791 0.481 1.000 7.542 
250 250.028 0.384 1.000 7.542 
300 299.975 0.320 1.000 7.542 
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4.2 Unsteady Validation 

The first validation effort with the unsteady code was to replicate the driven 

cavity results from Ijaz [25] .  The CVFEM results and the results of Ijaz closely 

matched. 

An attempt was made using the unsteady CVFEM code to recreate the results 

presented by Zhang et al. [14] for the staggered configuration of rectangular tubes.  For 

this exercise, no attempt at establishing grid independence was made.  Rather, a mesh 

was built for use with the CVFEM code with the same number of nodes as the mesh 

used in the Zhang et al. [14] study.  Figure 4-2(a) and Figure 4-2(b) below show friction 

factor versus Reynolds number and j-factor versus Reynolds number, respectively, for 

both the Zhang results and for the current work.  The j-factor is a measure of heat 

transfer defined by the following equation. 

 0.4

Nu
j

RePr
≡  Eq.(4.1) 

In Eq.(4.1), Nu is the time-averaged Nusselt number, Re is the time-averaged 

Reynolds number, and Pr is the Prandtl number.  The exponent of 0.4 is for fully 

developed flow. 

Figure 4-2(a) and Figure 4-2(b) represent good agreement between the two sets 

of data.  Good agreement was also obtained with the integrated values of skin friction 

and pressure drag on the tube between the two sets of results, as well as the Strouhal 

numbers.  One difference in the results was that the Zhang et al. [14] data shows an 

increase of Strouhal number from 0.15 to 0.16 to 0.17 with increasing Reynolds number 
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for the range of Reynolds numbers tested.  Results with the CVFEM code showed a 

smaller increase in Strouhal number from 0.153 to 0.164 over the same range of 

Reynolds numbers tested.  This difference between the two sets of results may be due to 

the coarseness of the mesh used for the CVFEM solutions.  As indicated above, no 

attempt was made to establish grid independence for this exercise.  As will be seen 

below in the discussion of the results of the current work, there is a variation of Strouhal 

number with Reynolds number for many of the cases considered. 

 

 

 

 
Figure 4-2.  Comparison of current work to Zhang et al. [14] for rectangular tubes: (a) friction factor versus Reynolds 

number; (b) j factor versus Reynolds number. 
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4.3 Previously Published Work 

4.3.1 Fullerton and Anand [5] 

A journal article entitled “Periodically Fully-Developed Flow and Heat Transfer 

Over Flat and Oval Tubes Using A Control Volume Finite-Element Method” was 

published in Numerical Heat Transfer, Part A in 2010. [5]  This article appears in its 

entirety in Appendix A of this document.  What follows is a description of the work 

performed and a brief summary of relevant results. 

For this work, the steady version of the CVFEM code was used along with 

imposed PFD conditions for a numerical study of the performance of flat and oval tubes 

as compared to the performance of round tubes in a heat exchanger device.  Each two-

dimensional domain consisted of a single tube confined between two insulated parallel 

plates.  Figure 4-3 shows the geometry of the computational domains studied.  Once the 

diameter of the round tube was selected, the shapes of the flat and oval tubes were 

selected such that the perimeter of all tubes would be equal.  This also ensured that the 

heat transfer area was the same for each domain given that constant heat flux was 

specified on the surface of each tube. 

For each of the computational domains shown in Figure 4-3, steady, laminar, 2D, 

constant-property solutions were obtained for Reynolds number range of 50-350 for two 

different fluids of Prandtl number 0.7 and 7.0. 
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Figure 4-3.  Computational domain geometries for Fullerton and Anand [5]:                                                                
(a) round tube; (b) flat tube; (c) oval tube. 

 
 

In comparing the performance of flat and oval tubes to that of round tubes under 

similar conditions, two parameters were used.  The heat transfer enhancement ratio (

Nu+ ) was used for comparison on the basis of heat transfer performance alone. 

 ,

,

avg noncircular

avg round

Nu
Nu

Nu
+ ≡  Eq.(4.2) 

 In Eq.(4.2), avgNu  represents the average Nu along the perimeter of the top half 

of any of the three tube shapes for matching Reynolds numbers. 

The second performance parameter, the heat transfer performance ratio ( *Nu ) 

takes into account not only the heat transfer performance, but the required pumping 

power to maintain the flow. 

 *
1/3

 or flat oval round

NuNu
f f

+

≡
  

 Eq.(4.3) 
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In Eq.(4.3), Nu+  is the heat transfer enhancement ratio from above, and f is the friction 

factor.  The denominator is proportional to the required pumping power for a flat or oval 

tube domain to that required of a round tube domain at the same Reynolds number. 

Figure 4-4 and Figure 4-5 show plots of Nu+ and *Nu for Prandtl number 0.7 and 

7.0.  These plots show that for all cases considered, the heat transfer enhancement ratio 

is less than one meaning that the round tube outperforms both the flat and the oval tube 

on the basis of heat transfer only.  However, the heat transfer performance ratio is 

greater than one for all cases considered meaning that if both heat transfer and required 

pumping power are considered, then both the flat and oval tubes outperform the round 

tube.  

 

 

 

Figure 4-4.  Heat transfer enhancement ratio versus Reynolds number for Fullerton and Anand [5]:                            
(a) Pr=0.7; (b) Pr=7.0. 
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Figure 4-5.  Heat transfer performance ratio versus Reynolds number for Fullerton and Anand [5]:                            
(a) Pr=0.7; (b) Pr=7.0. 

 
 
 

4.3.2 Fullerton and Anand [30] 

A journal article entitled “An alternative approach to study periodically fully-

developed flow and heat transfer problems subject to isothermal heating conditions” was 

published in International Journal of Engineering Science in 2010. [30]  The subject of 

this paper is a method of solving the PFD heat transfer problem with constant specified 

wall temperature without solving an eigenvalue problem. [26] 

Periodically fully-developed flow conditions are fully described in Patankar et al. 

[26].  Section 3.5.1 in this document gives a summary of PFD conditions including a 

discussion of the periodic condition for the heat transfer problem when constant wall 

heat flux is specified.  For that case, the temperature may be expressed in terms of a 
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global component involving  and a locally varying component T̂ as seen in Eq.(3.41).  

Solution may then proceed using standard methods except solving for T̂  instead of T. 

 For the case of specified wall temperature, however, the PFD solution for 

temperature involves the solution of an eigenvalue problem involving both the unknown 

temperature at each node in the domain and the unknown bulk temperature at each 

stream-wise location in the domain.  Keeping in mind that PFD conditions arise from 

having a series of equally-spaced geometric features in the stream-wise direction, many 

researchers have chosen to not use PFD conditions to solve the problem.  Instead, they 

use a developing flow (DF) code with a domain consisting of several identical modules 

connected inlet-to-outlet.  PFD conditions are not imposed for solution, but periodicity 

may be recognized by monitoring the values of flow parameters and heat transfer 

parameters in the modules.  A DF solution of a multi-module domain produces the same 

result as a PFD solution, but with the penalty of solving a much larger domain. 

In Fullerton and Anand [30], the authors present an alternative approach to 

solving the case of specified wall temperature under PFD conditions.  The method may 

be viewed as a hybrid approach between the two methods described above.  This 

alternative method involves first obtaining a PFD solution for the flow field in a single-

module domain.  The temperature solution is then obtained with a DF code by first 

importing the PFD flow solution into each module of a multi-module DF domain.  Thus, 

the flow field in the DF code is represented by the exact PFD solution and need not be 

solved using the DF code.  The temperature solution may then be obtained in the usual 
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way and a PFD temperature module may be identified from the resulting solution.  This 

process is shown diagrammatically in Figure 4-6. 
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Figure 4-6.  Diagram describing the alternative method. 

 
 

Both of the solution methods discussed above should produce valid results.  

Setting up the specified wall temperature problem as an eigenvector problem has the 

advantage of requiring only a single-module domain.  It does, however, involve extra 

code for the solution.  It should be noted that the authors (Fullerton and Anand) have not 

attempted this type of solution.  The DF solution approach has the advantage of not 

imposing PFD conditions, but, assuming that one is interested only in the performance in 

a PFD module, the solution must be obtained for a domain that is much larger than the 

actual domain of interest.  This is of particular disadvantage in that the flow field must 
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be solved for such a large domain.  For both approaches, solution of the flow field is 

much more time consuming than solution of the temperature field. 

The alternative approach obviates the need to address the eigenvalue problem at 

the expense of having to produce the flow and temperature solutions in separate 

processes.  Compared to a regular DF solution, the alternative approach eliminates the  

need to solve the flow problem for multi-module domains when one is generally only 

interested in the solution at a PFD module. 

The alternative approach to solving the PFD specified wall temperature problems 

was tested using two CVFEM codes: one for the PFD flow problem, and one for the DF 

temperature problem.  It should be noted that while testing used CVFEM codes, the 

method is not dependent on using CVFEM.  It may be used with other finite difference 

or finite volume methods to solve combined flow and heat transfer problems.  

One problem for which the alternative approach was tested was flow in a parallel 

plate channel with staggered plate fins.  The domain of interest is shown in Figure 4-7.  

Several researchers have studied this problem using a variety of analysis techniques.  

Kelkar et al. [31] used a control volume technique as presented in Patankar [24].  Kelkar 

et al. [31] not only imposed PFD conditions for both the flow problem and the heat 

transfer problem, they also took advantage of the inverted symmetry in the domain to 

recast the PFD conditions for solution of only one-half of the PFD module.  Santos and 

de Lemos [32] studied the problem for both solid and porous baffles using a control 

volume technique and the SIMPLE algorithm.  Webb and Ramadhyani [33] studied 

conjugate heat transfer for different fin heights using a control volume technique and the 
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SIMPLER algorithm.  Nonino and Comini [34] studied the problem in the context of 

several spatially periodic domains of varying geometry using a finite element technique.  

Cheng and Huang [35] studied the problem for various fin configurations for the case of 

the two plates at different constant temperatures. 

Figure 4-8 shows a comparison of friction factor versus Reynolds number from 

the various sources and from the current work using the CVFEM.  Figure 4-8 shows the 

spread of data among the various sources.  The results in the current work show good 

agreement for Re  up to approximately 200, but show that ( ) / 96f Re  increases at a 

higher rate with increasing Reynolds number at Re>200 as compared to the other 

methods.  Since the ( ) / 96f Re  values closely match at lower Reynolds numbers, it may 

be assumed that the flow solutions are comparable.  At higher Reynolds numbers, the 

fact that the ( ) / 96f Re  values do not match indicates that the current method does not 

match the flow solutions of the other methods. 

Figure 4-9 shows a comparison of Nu  versus Re  from various sources and from 

the current work.  Nu  is a module average Nusselt number.  At the lower Re  values, the 

values of Nu compare well.  However, for the current work, the Nu  values increase at a 

faster rate with increasing Re .  This is due to differences in the flow solution at these 

Re  values.  At lower Re , where the friction factor matches well, the corresponding Nu  

also matches.   
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Figure 4-7.  Staggered plate domains for Fullerton and Anand [30]: (a) PFD flow domain;                                          
(b) DF temperature domain. 

 
 
 

 

Figure 4-8.  Plot of (fRe)/96 from various sources [30]. 
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Figure 4-9.  Plot of Nu/7.54 versus Re from various sources [30]. 
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5. RESULTS AND DISCUSSION 

As stated in previous sections, the primary interest of the current work is the flow 

and heat transfer performance of staggered arrays of flat tubes operating in flow regimes 

exhibiting laminar, self-sustained oscillations.  In this section, the geometry of the 

domains of interest and the CVFEM meshes for those domains are described.  Results of 

grid and time step independence are presented followed by a description of procedures 

involved in the solution process for both the unsteady and steady solutions obtained.  

Results are presented in both tabular and graphical form describing characteristics of 

flow and heat transfer for the cases considered. 

5.1 Domain Geometry 

Figure 5-1 shows an array of flat tubes in a staggered configuration.  As 

discussed above, there is no interest in entrance or exit effects in the current work, so the 

analysis domain may be limited to the shaded region shown and DC conditions may be 

imposed.  The choice of domain is not unique, but the domain chosen must include the 

surfaces of two tubes.  The domain shown was chosen for convenience in that the 

transverse boundaries lie along lines of symmetry.  Checking that y-velocities along a 

stream-wise line of symmetry approach zero value is useful as a check for the code. 

Figure 5-1 shows the parameters defining the shape of the flat tube.  The overall 

length of the tube is Dmaj and the height is Dmin.  The shape of the flat tube is such that 

the end curves are full-radius curves.  The tube aspect ratio (AR) is defined as the ratio of 

major diameter to minor diameter as shown below. 
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 m minajAR D D=  Eq.(4.4) 

For the current work, the tube ratio AR was maintained at a constant value of AR=6.0 for 

all domains considered. 
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Figure 5-1.  Computational domain geometry: staggered array of flat tubes. 

 
 

Figure 5-1 also shows the definition of the geometric parameters used to define 

the array geometry.  The spacing between tubes is defined by the longitudinal pitch (PL) 

and transverse pitch (PT).  The distance between columns of tubes is defined as GapL and 

the distance between rows of tubes is defined as GapT.  For convenience, the non-

dimensional longitudinal and transverse pitches, SL and ST, respectively, are defined as 

shown below. 

 min min            L L T TS P D S P D= =  Eq.(4.5) 
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Nine unique domain geometries were chosen for the current work.  The flat tube 

geometry is fixed for all nine at AR=6.0, but the longitudinal and transverse spacing are 

varied.  Table 5-1 presents the definition of each domain geometry in terms of 

longitudinal and transverse spacing as well as in terms of the gaps between tubes.  The 

variation in SL and ST is created by varying the gaps between columns and rows.  Both 

GapL and GapT vary starting from Dmin and increasing in increments of Dmin /2 to a 

maximum of 2Dmin. 

 

Table 5-1.  Definition of domain geometries 

Domain Name SL ST GapL GapT 
SL7_ST2 7 2 Dmin Dmin 

SL7.5_ST2 7.5 2 3Dmin/2 Dmin 
SL8_ST2 8 2 2Dmin Dmin 

SL7_ST2.5 7 2.5 Dmin 3Dmin/2 
SL7.5_ST2.5 7.5 2.5 3Dmin/2 3Dmin/2 
SL8_ST2.5 8 2.5 2Dmin 3Dmin/2 
SL7_ST3 7 3 Dmin 2Dmin 

SL7.5_ST3 7.5 3 3Dmin/2 2Dmin 
SL8_ST3 8 3 2Dmin 2Dmin 

 
 

5.2 CVFEM Mesh 

A computer code was developed to provide the CVFEM mesh for each of the 

domains of interest.  The term mesh here refers to the triangular element mesh required 

by the CVFEM. 

 The mesh geometry is fully defined by specification of Dmin, AR, SL, and ST.  The 

coarseness/fineness of the mesh is determined by a parameter arcθ specified in degrees.  

arcθ determines the length of the equal-length chords that approximate the curved end of 

each tube.  The number of chord segments is determined by 180 arcθ such that arcθ is the 
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included angle for each chord.  Once this chord length has been determined, it is used as 

a base length for the remainder of the mesh.  Throughout the domain, except in 

proximity of the curved tube ends, the base length is used as the element edge length.  

Near the tube, a region of finer elements with edge length one-half the base length is 

used to provide better grid resolution for the calculation of spatial derivatives. 

Figure 5-2 shows a typical mesh.  Each element is a right triangle and the nodes 

are arranged along lines of constant x and constant y.  The mesh definition is 

communicated from the mesher code to the CVFEM code through a set of text files.  The 

NodeFile is a listing of {Node Number, x, y} representing the location of the nodes.  The 

ElementFile is a listing of {Element Number, N1, N2, N3} where N1, N2, and N3 are 

the node numbers of the element’s three nodes.  There are also files Tube1File and 

Tube2File that are listings of nodes along the surface of each of the two tubes in the 

domain.  The listing starts with a node at a specific location and lists nodes in order as 

one travels along the surface in a counterclockwise fashion.  These tube node listings are 

used when performing calculations for Nusselt number, skin friction, and pressure drag 

along the tube surfaces. 
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Figure 5-2.  Typical CVFEM element mesh. 

 

5.3 Grid Independence Study 

For the current work, the cases of interest involve laminar oscillatory flow in the 

transition regime between steady laminar flow and fully turbulent flow.  For the chosen 

geometry, a maximum Reynolds number of 2000 was chosen to avoid the turbulent 

regime.  To determine grid independence for the current work, two domains were used:  

SL7_ST2 and SL8_ST3.  SL7_ST2 is the domain with minimum SL and minimum ST.  

SL8_ST3 is the domain with maximum SL and maximum ST.  Figure 5-3 shows these 

two domains plotted to scale for comparison.  For each of these two domains, a solution 

at 2000Re ≈  was obtained with a coarse mesh.  Subsequent solutions were then 

obtained with finer meshes while monitoring the values of certain flow and heat transfer 

parameters.  Once the parameter values had stopped changing within reasonable limits, 

the grid independence exercise was stopped. 
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(a) 

 

(b) 

Figure 5-3.  Comparison of domains used for grid independence study: (a) SL7_ST2; (b) SL8_ST3. 

 
 

Table 5-2 shows the description of the SL7_ST2 meshes used for the grid 

independence study in terms of the number of elements, nodes, rows, and columns.  A 

different seed value of arcθ was used for each mesh.  Using the coarsest mesh, it was 

determined by a series of solutions that 4.0β = produced 2000Re ≈ .  The same β value 

was used for the solutions with the other meshes.   

 

Table 5-2.  Description of SL7_ST2 meshes for grid independence study 

Model #ELEM #NODE #Rows #Cols #Tube 
arcθ

 
(deg)

 

SL7_ST2_26 21152 11011 65 197 176 15 

SL7_ST2_25 44872 23083 93 293 264 10 

SL7_ST2_27 84608 43175 129 393 352 7.5 

SL7_ST2_28 128664 65423 157 493 444 6 
 
 



70 
 

 
 

For each solution at 4.0β = , Re, Nu, and friction factor (f) were determined.  

Table 5-3 shows the data from all of the SL7_ST2 grid independence solutions.  The 

percent difference for each parameter is calculated with respect to the parameter value 

for the solution using the finest mesh, assuming that that is closest to the ideal solution.  

The solution time given in the last column is the number of clock hours of solving time 

required per one second of solution time.  For 2000Re ≈ , five seconds of solution time 

were required to obtain repeating oscillations.  Table 5-3 shows that the flow parameters, 

Re and f, are both within 1.5% of the finest mesh value on the coarsest mesh used.  

However, the Nu for the coarsest mesh was 27% lower than that for the finest mesh.  The 

Nu at the third mesh, SL7_ST2_27, is within 4.1% of the finest model.  Based on this 

data, it was decided to use SL7ST2_27 for the study.  Note that this choice represents 

35% fewer elements and a savings of over one-half the required solution time than for 

SL7_ST2_28. 

 
Table 5-3.  Grid independence results: SL7_ST2 at 4.0β =  

Model Re % Re∆  f % f∆  Nu % Nu∆  

Solution 
Time 

(hr/sec) 

SL7_ST2_26 2030.9 -0.7% 0.045367 1.4% 40.43 -27.0% 0.392 

SL7_ST2_25 2035.8 -0.4% 0.045146 0.9% 47.31 -14.6% 1.22 

SL7_ST2_27 2042.4 -0.1% 0.044859 0.2% 53.15 -4.1% 3.32 

SL7_ST2_28 2044.7 ------------ 0.044758 -------------- 55.41 ------------- 6.84 
 
 
 

The same procedure as described above for SL7_ST2 was used for the grid 

independence study for SL8_ST3.  Table 5-4 shows the mesh description of all the 

SL8_ST3 meshes used.  For this domain geometry, it was determined that 1.25β =
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produced 2000Re ≈ .  Table 5-5 shows the grid independence solution data.  Based on 

the data, SL8_ST_12 was chosen.  This choice represents 39% fewer elements and 

solution time savings of over 50% compared to SL8_ST3_13. 

 

Table 5-4.  Description of SL8_ST3 meshes for grid independence study 

Model #ELEM #NODE #Rows #Cols #Tube 
arcθ

 
(deg)

 

SL8_ST3_10 34336 17643 93 209 176 15 

SL8_ST3_11 79624 40531 141 317 264 10 

SL8_ST3_12 138816 70363 185 421 352 7.5 

SL8_ST3_13 226264 114343 237 533 444 6 
 
 
 
 

Table 5-5.  Grid independence results: SL8_ST3 at 1.25β =  

Model Re % Re∆  f % f∆  Nu % Nu∆  

Solution 
Time 

(hr/sec) 

SL8_ST3_10 1968.5 0.02274 0.050932 0.047165 50.78 -0.09644 0.66 

SL8_ST3_11 1981.1 0.01648 0.050282 0.033801 56.53 0.005872 2.2 

SL8_ST3_12 1998.3 0.00794 0.04942 0.016078 56.88 0.0121 5.4 

SL8_ST3_13 2014.3 ---------- 0.048638 ---------- 56.2 ---------- 11.2 
 

 

Using the two domain geometries representing the extremes in size, meshes were 

chosen for each that were built with the seed value of 7.5arcθ =  .  Therefore, the seed 

value of 7.5arcθ =  was used for the remaining seven meshes in the nine-mesh set.   

Table 5-6 lists the characteristics of the meshes used for all nine domain 

geometries.  From this point forward, the model names will include only the SL and ST 
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values.  For example, the chosen meshes from above, SL7_ST2_27 and SL8_ST3_12 

will be referred to as SL7_ST2 and SL8_ST3, respectively, from this point forward. 

 

Table 5-6.  Description of meshes for all computational domains 

Model #ELEM #NODE #Rows #Cols #Tube arcθ (deg) 

SL7_ST2 84608 43175 129 393 352 7.5 

SL7_ST2.5 106560 54179 157 393 352 7.5 

SL7_ST3 128512 65183 185 393 352 7.5 

SL7.5_ST2 85440 43603 125 409 352 7.5 

SL7.5_ST2.5 111552 56691 157 409 352 7.5 

SL7.5_ST3 134400 68143 185 409 352 7.5 

SL8_ST2 88416 45103 125 421 352 7.5 

SL8_ST2.5 115296 58575 157 421 352 7.5 

SL8_ST3 138816 70363 185 421 352 7.5 
 
 

5.4 Time Step Independence 

Based on the experience gained in replicating the Zhang et al. [14] results as 

described above, the geometric dimensions of the domains were chosen such that at the 

maximum Reynolds number the highest expected frequency was 40 Hz or less.  Based 

on Zhang et al. [14] and Mujamdar and Amon [9], among others, the cases were 

expected to produce only one primary frequency of interest.  For the expected 40 Hz 

maximum frequency, a time step of 0.001t s= provides 25 time steps to resolve one 

period of oscillation.  For lower frequencies, a time step of 0.001t s= provides even 

more time steps to resolve one period of oscillation.  Therefore, 0.001t s= was 

considered more than sufficient for the current work and a time step of 0.001t s= was 

used for all cases. 
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As a check, some cases were solved with smaller time step of 0.0001t s= .  The 

resulting parameter values were well within 0.5% of the corresponding values for a 

0.001t s= solution at the cost of more than doubling the solution time.  This data is not 

included here. 

5.5 Unsteady Solutions 

For each of the nine domain geometries of interest, a series of solutions was 

obtained by varying the global pressure gradient β .   

For each geometry, the procedure began with a series of solutions using a coarse 

mesh to establish a β value to produce 2000Re ≈ .  (For the two grid independence 

cases, this β value had already been established.)  Using a coarse mesh saved solution 

time as compared to the prospect of using the finer 7.5arcθ =  mesh.  Once this value of 

β was determined, a solution was obtained using a 7.5arcθ =  mesh at this β value.  After 

that, values of β  were chosen to produce Re<2000.  If oscillations were observed, the 

solution was allowed to continue until the oscillations became repeating and average 

parameter values stopped changing within reasonable limits.  There was no 

predetermined list of β values for each domain and each domain had its unique list of 

values.  The values used are not listed here.  Instead, these values will appear below in 

the detailed discussion of results.  

For oscillating cases, values for Re, f, and Nu were saved for each time step.  

Time-averaged values of these quantities were obtained post solution.  The values for u-

velocity and v-velocity were saved at each time step for one node in the domain.  This 
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node is located along the upper transverse boundary aligned with the center of the flat 

tube.  The node is in the same relative position for each geometric domain.  Using the u-

velocity and v-velocity data from this node, the frequency of oscillation and peak-to-

peak magnitude of the oscillations could be obtained.  These values are listed in the 

tables below. The frequency value obtained in this way is representative of the flow in 

the entire domain although there are phase differences between oscillations at different 

points. 

5.5.1 Note on Required Solution Times 

Most of the solutions for the current work were obtained using a desktop PC 

having an Intel Xeon processor chip with eight processors.  OpenMP directives were 

used to take advantage of the multiple processors available for parallel computing.  On 

the PC, test runs were done using two, three, four, five, and six processors and solution 

times were compared to the non-parallel solution.  Solution times decreased for the case 

of two, three, and four processors, but increased for the case of five and six processors as 

compared to the non-parallel solution time.  This result indicates that for the problem 

being solved, the overhead required to set up parallel execution directives outweighs the 

decrease in solution time for the five and six processor case.  Similar results were 

obtained on the Texas A&M Supercomputer.  For the case of four processors, solution 

was approximately 2.5 times faster than the non-parallel solution.  OpenMP directives 

specifying the use of four processors were used for all cases. 

SL8_ST3 is the largest mesh used in the current work at 138816 elements.  This 

is relatively small compared to some CFD codes due to use of DC conditions.  For a 
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larger mesh with, say,  one million elements, the extra overhead involved in setting up 

the OpenMP directives for five, six, or more processors may have resulted in an overall 

decrease in solution time. 

The grid independence effort using SL8_ST3, as shown above, required 27 hrs of 

clock time to obtain 5 seconds worth of solution time.  For lower β  values, this amount 

of time increases substantially.  For example, at 0.375β = the SL8_ST3 geometry 

required over 80 hours of clock time to obtain 15 seconds worth of solution time.  For 

this case, the oscillations did not become cyclic until t=15 seconds. 

In all, the unsteady solutions for the current work required over 2000 hours of 

clock time for solution.   

5.5.2 Tabular Listing of Unsteady Results 

Table 5-7, Table 5-8, and Table 5-9 present the unsteady results for the SL7, 

SL7.5, and SL8 cases respectively.  As a set, these three tables present all the unsteady 

data. 

Each table presents values for stream-wise pressure gradient ( β ), Reynolds 

number (Re), friction factor (f), Strouhal number (Str), normalized oscillation amplitude 

( PTP ), tube skin friction coefficient ( ,D skinC ), tube pressure drag coefficient ( ,D pressC ), 

percent tube skin friction, percent tube pressure drag, non-dimensional pumping power (

ψ ) and Nusselt number (Nu).  β was chosen as an input to the solution process.  The 

values for Re, ψ and Nu are time-averaged values over an integral number of periods of 

oscillation.  For each case, skin friction drag and pressure drag on each tube surface were 
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calculated at each time step.  The time-averages of each were added to produce a total.  

In addition to the non-dimensional coefficients ,D skinC  and ,D pressC , the tables present the 

percentage of that total that skin and pressure drag each represents.  PTP  is the peak-to-

peak amplitude of the u-velocity normalized by the time-averaged u-velocity at the node 

location described above.  The data associated with Recrit is shaded in each table for each 

domain geometry.  Determination of Recrit is discussed below in Section 5.7. 

5.5.3 Notes on Unsteady Solution Characteristics  

This section provides information on the characteristics of the unsteady solutions 

obtained.  The remarks here say little about the actual physics of the problem and more 

about the solution method and boundary conditions. 

Each unsteady solution was started at t=0 with all fluid velocities set to zero 

(quiescent fluid).  Comparing two oscillatory solutions, one with 1β  and the other with

2β , such that 1 2β β> , then the 1β  solution will begin oscillating earlier than 2β solution 

in solution time.  Figure 5-4 shows a plot of u-velocity versus time for two such 

solutions. 

Another characteristic of these unsteady solutions is that the Reynolds number 

approaches a steady value prior to the onset of oscillations.  After oscillations begin, the 

Reynolds number decreases to a new average value.  For the cases above, with 1 2β β> , 

the percent change in average Re is higher for the higher β case as shown in Figure 5-5. 
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Table 5-7.  Unsteady data for SL7 cases 

SL7_ST2 β  Re f Str 

 

PTP  

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
1.711 1157.8 0.0604   0.18 0.13 58% 42% 6.83E+08 31.0 

 
2.000 1273.3 0.0577 0.124 0.13 0.16 0.13 56% 44% 8.69E+08 34.4 

 
3.000 1673.9 0.0501 0.123 0.21 0.13 0.12 51% 49% 1.71E+09 46.7 

 
4.000 2042.4 0.0449 0.123 0.24 0.11 0.12 48% 52% 2.79E+09 53.3 

SL7_ST2.5 β  Re f Str 

 

PTP  

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
0.589 765.2 0.0966   0.31 0.20 61% 39% 1.62E+08 29.8 

 
0.875 981.8 0.0829 0.140 0.18 0.25 0.19 57% 43% 2.93E+08 39.3 

 
1.250 1265.5 0.0713 0.139 0.23 0.21 0.18 54% 46% 5.39E+08 49.2 

 
1.750 1613.7 0.0614 0.136 0.26 0.17 0.16 51% 49% 9.63E+08 53.6 

 
2.000 1777.5 0.0578 0.137 0.27 0.15 0.16 50% 50% 1.21E+09 54.1 

 
2.400 2027.8 0.0533 0.134 0.28 0.14 0.15 48% 52% 1.66E+09 54.6 

SL7_ST3 β  Re f Str 

 

PTP  

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
0.350 724.6 0.1091   0.37 0.23 62% 38% 8.97E+07 29.5 

 
0.500 914.8 0.0943 0.151 0.14 0.31 0.22 59% 41% 1.56E+08 37.2 

 
0.750 1230.8 0.0782 0.148 0.18 0.24 0.19 55% 45% 3.15E+08 46.9 

 
1.000 1519.9 0.0683 0.146 0.20 0.20 0.18 53% 47% 5.18E+08 53.7 

 
1.250 1786.4 0.0618 0.144 0.23 0.17 0.17 51% 49% 7.62E+08 57.7 

 
1.500 2035.3 0.0572 0.139 0.25 0.15 0.16 49% 51% 1.04E+09 59.4 
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Table 5-8.  Unsteady data for SL7.5 cases 

SL7.5_ST2 β  Re f Str 

 

PTP  

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
1.592 1176.9 0.0549 

 

 0.17 0.13 57% 43% 7.00E+08 31.5 

 
2.000 1353.8 0.0511 0.114 0.16 0.16 0.13 55% 45% 9.90E+08 37.1 

 
2.500 1570.7 0.0474 0.114 0.21 0.14 0.12 53% 47% 1.44E+09 44.1 

 
3.000 1776.1 0.0445 0.112 0.25 0.12 0.12 51% 49% 1.95E+09 49.2 

 
3.500 1972.4 0.0421 0.114 0.27 0.11 0.12 49% 51% 2.52E+09 51.5 

SL7.5_ST2.5 β  Re f Str 

 

PTP  

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
0.542 770.1 0.0865 

 

 0.30 0.20 61% 39% 1.58E+08 30.3 

 
0.750 944.7 0.0768 0.128 0.18 0.26 0.19 58% 42% 2.59E+08 37.9 

 
1.000 1155.0 0.0685 0.127 0.23 0.22 0.18 55% 45% 4.22E+08 46.1 

 
1.500 1541.2 0.0577 0.127 0.29 0.17 0.16 52% 48% 8.45E+08 51.4 

 
1.800 1755.6 0.0534 0.125 0.31 0.16 0.15 50% 50% 1.15E+09 51.7 

 
2.200 2025.6 0.0490 0.125 0.33 0.14 0.15 48% 52% 1.63E+09 52.1 

SL7.5_ST3 β  Re f Str 

 

PTP  

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
0.309 721.6 0.0994 

 

 0.37 0.23 62% 38% 8.64E+07 30.0 

 
0.500 978.0 0.0825 0.139 0.17 0.29 0.21 58% 42% 1.79E+08 40.5 

 
0.750 1314.4 0.0685 0.137 0.21 0.22 0.19 54% 46% 3.60E+08 50.1 

 
1.000 1620.5 0.0601 0.134 0.23 0.19 0.17 52% 48% 5.92E+08 55.5 

 
1.375 2037.2 0.0523 0.132 0.27 0.15 0.16 49% 51% 1.02E+09 58.6 
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Table 5-9.  Unsteady data for SL8 cases 

SL8_ST2 β  Re f Str 

 

PTP  

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
1.524 1191.3 0.0505 0.000  0.17 0.13 57% 43% 7.11E+08 32.0 

 
1.750 1298.3 0.0486 0.106 0.14 0.16 0.13 55% 45% 8.86E+08 35.3 

 
2.000 1416.5 0.0466 0.106 0.18 0.15 0.13 54% 46% 1.10E+09 39.1 

 
2.500 1640.0 0.0435 0.104 0.24 0.13 0.13 51% 49% 1.60E+09 46.1 

 
2.875 1798.2 0.0416 0.105 0.28 0.12 0.12 50% 50% 2.02E+09 48.9 

 
3.250 1948.9 0.0400 0.105 0.31 0.12 0.12 49% 51% 2.47E+09 49.6 

SL8_ST2.5 β  Re f Str 

 

PTP  

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
0.513 787.5 0.0783 0.000  0.29 0.19 60% 40% 1.63E+08 30.8 

 
0.750 994.3 0.0693 0.120 0.21 0.25 0.19 57% 43% 2.91E+08 40.4 

 
1.000 1212.7 0.0621 0.118 0.27 0.21 0.18 55% 45% 4.73E+08 47.4 

 
1.500 1605.8 0.0532 0.117 0.36 0.17 0.16 51% 49% 9.39E+08 49.1 

 
2.000 1949.4 0.0481 0.117 0.43 0.15 0.16 49% 51% 1.52E+09 49.7 

SL8_ST3 β  Re f Str 

 

PTP  

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
0.282 724.3 0.0903 0.000  0.36 0.23 61% 39% 8.47E+07 30.6 

 
0.500 1030.8 0.0743 0.128 0.20 0.27 0.21 57% 43% 2.01E+08 43.7 

 
0.750 1382.9 0.0619 0.126 0.25 0.22 0.18 54% 46% 4.04E+08 52.2 

 
1.000 1702.9 0.0544 0.124 0.27 0.18 0.17 51% 49% 6.64E+08 55.4 

 
1.250 1998.4 0.0494 0.123 0.30 0.16 0.16 49% 51% 9.74E+08 57.2 
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Figure 5-4.  Oscillating u-velocity at a point for two values of β . 

 

 
Figure 5-5.  Reynolds number versus time for two values of β . 

 
 

The fact that smaller values of β (and therefore smaller Re) lead to much longer 

solution times presents a problem in determining Recrit.  Cases near Recrit are very 

expensive to run in terms of computer resources.  Since Recrit is unknown ahead of time, 
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at some time in the solution process one cannot be certain whether a particular case 

demonstrates steady, non-oscillatory behavior or has simply not yet reached the onset of 

oscillations.  For example, in Figure 5-4, if one were to check the solution for the 

0.375β = case at t=8s, one may decide that this represents a steady, non-oscillatory case 

based on the data from t=0s to t=8s. 

That fact that the Re drop decreases as the Recrit is approached was used to set a 

limit on the number of solutions obtained for each geometry.  As smaller and smaller β

values were used, once an oscillating solution was found such that the percentage change 

in the “steady” Re and average oscillating Re was approximately 5%, no more solutions 

were obtained. 

 

5.6 Steady Solutions 

A version of the CVFEM code was developed which produced pseudo-steady 

solutions for a range of Re starting at Re<Recrit and overlapping the Re range producing 

self-sustained oscillations.  The term pseudo-steady here refers to the fact that these 

solutions were obtained with a modified version of the unsteady code with the main 

difference being that symmetry was enforced along the stream-wise centerline of the 

domain.  Applying symmetry in this way effectively prevents oscillations from 

developing [15].  In this way, a “steady” solution may be obtained for a β  case that is 

known to produce an oscillatory flow with the unmodified unsteady code.  These 

solutions are used as a comparison with the oscillatory solutions. 
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The code used to produce pseudo-steady solutions for Re>Recrit produces true 

steady solutions for Re<Recrit that match the solutions produced by the steady version of 

the code.  It should be noted that the steady code used in validation is unable to produce 

a solution for SSOF cases.  The solution will diverge.  The pseudo-steady solution is 

based on the unsteady code which parcels out the source term in small increments 

allowing the solution to continue to convergence. 

5.6.1 Tabular Listing of Steady Results 

Table 5-10, Table 5-11, and Table 5-12 present the steady results for the SL7, 

SL7.5, and SL8 cases, respectively.  As a set, these three tables present all the steady 

data. 

Each table presents values for stream-wise pressure gradient ( β ), Reynolds 

number (Re), friction factor (f), tube skin friction coefficient ( ,D skinC ), tube pressure drag 

coefficient ( ,D pressC ), percent tube skin friction, percent tube pressure drag, non-

dimensional pumping power (ψ ) and Nusselt number (Nu).  β was chosen as an input to 

the solution process.  For β values producing Re<Recrit, these solutions are truly steady 

solutions.  For β values producing critRe Re≥ , these solutions are pseudo-steady as 

discussed above.  As these are not oscillatory solutions, there is no Str or PTP value 

listed for each case.  The data associated with Recrit is shaded in each table for each 

domain geometry. 
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Table 5-10.  Steady data for SL7 cases 

SL7_ST2 β  Re f 

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
1.000 745.0 0.0843 0.26 0.16 62% 38% 2.54E+08 31.0 

 
1.500 1033.2 0.0657 0.20 0.14 59% 41% 5.29E+08 30.9 

 
1.711 1157.8 0.0604 0.18 0.13 58% 42% 6.83E+08 31.0 

 
1.750 1169.6 0.0598 0.18 0.13 58% 42% 6.98E+08 31.0 

 
2.000 1302.1 0.0552 0.16 0.12 56% 44% 8.88E+08 31.1 

 
3.000 1802.3 0.0432 0.12 0.10 53% 47% 1.84E+09 31.4 

SL7_ST2.5 β  Re f 

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
0.500 652.2 0.1074 0.36 0.22 62% 38% 1.11E+08 29.7 

 
0.589 765.2 0.0966 0.31 0.20 61% 39% 1.62E+08 29.8 

 
0.750 908.7 0.0830 0.26 0.18 59% 41% 2.32E+08 30.0 

 
0.875 1030.5 0.0753 0.24 0.17 58% 42% 3.08E+08 30.2 

 
1.250 1378.0 0.0601 0.18 0.14 56% 44% 5.88E+08 30.7 

 
1.750 1811.8 0.0487 0.14 0.12 53% 47% 1.08E+09 31.1 

 
2.000 2019.4 0.0448 0.12 0.12 52% 48% 1.38E+09 31.3 

 
2.400 2341.4 0.0400 0.11 0.11 50% 50% 1.92E+09 30.5 

SL7_ST3 β  Re f 

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
0.200 445.8 0.1589 0.57 0.31 65% 35% 3.04E+07 28.9 

 
0.300 624.1 0.1216 0.42 0.25 63% 37% 6.39E+07 29.3 

 
0.350 724.6 0.1091 0.37 0.23 62% 38% 8.97E+07 29.5 

 
0.400 791.8 0.1007 0.34 0.22 61% 39% 1.08E+08 29.7 

 
0.500 952.0 0.0871 0.29 0.20 60% 40% 1.62E+08 30.0 

 
0.750 1329.8 0.0670 0.21 0.16 57% 43% 3.40E+08 30.7 

 
1.000 1684.8 0.0556 0.17 0.14 55% 45% 5.75E+08 31.1 

 
1.250 2023.2 0.0482 0.14 0.13 53% 47% 8.63E+08 31.4 

 
1.500 2348.6 0.0429 0.13 0.12 52% 48% 1.20E+09 31.7 
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Table 5-11.  Steady data for SL7.5 cases 

SL7.5_ST2 β  Re f 

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
1.000 803.0 0.0725 0.25 0.16 61% 39% 2.93E+08 31.3 

 
1.500 1118.8 0.0568 0.18 0.13 58% 42% 6.21E+08 31.4 

 
1.592 1176.9 0.0549 0.17 0.13 57% 43% 7.00E+08 31.5 

 
2.000 1399.8 0.0478 0.15 0.12 56% 44% 1.02E+09 31.7 

 
2.500 1673.1 0.0418 0.12 0.11 54% 46% 1.53E+09 32.0 

 
3.000 1935.4 0.0375 0.11 0.10 52% 48% 2.12E+09 32.3 

 
3.500 2188.8 0.0342 0.10 0.09 51% 49% 2.80E+09 32.5 

SL7.5_ST2.5 β  Re f 

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
0.250 403.0 0.1406 0.53 0.29 65% 35% 3.68E+07 29.9 

 
0.500 708.4 0.0910 0.33 0.20 62% 38% 1.29E+08 30.2 

 
0.542 770.1 0.0865 0.30 0.20 61% 39% 1.58E+08 30.3 

 
0.750 984.8 0.0707 0.24 0.17 59% 41% 2.70E+08 30.7 

 
1.000 1243.4 0.0591 0.20 0.15 57% 43% 4.54E+08 31.1 

 
1.500 1727.0 0.0459 0.14 0.12 53% 47% 9.46E+08 31.8 

 
1.800 2001.8 0.0410 0.12 0.12 52% 48% 1.32E+09 32.1 

 
2.200 2355.0 0.0362 0.11 0.11 50% 50% 1.89E+09 32.4 

SL7.5_ST3 β  Re f 

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
0.100 274.8 0.2090 0.84 0.41 67% 33% 1.00E+07 29.0 

 
0.200 486.0 0.1337 0.52 0.29 64% 36% 3.55E+07 29.4 

 
0.300 678.3 0.1029 0.39 0.23 62% 38% 7.43E+07 29.9 

 
0.309 721.6 0.0994 0.37 0.23 62% 38% 8.64E+07 30.0 

 
0.500 1031.2 0.0742 0.26 0.18 59% 41% 1.88E+08 30.8 

 
0.750 1437.4 0.0573 0.19 0.15 56% 44% 3.94E+08 31.5 

 
1.000 1819.0 0.0477 0.16 0.13 54% 46% 6.65E+08 32.0 

 
1.375 2359.6 0.0390 0.12 0.11 52% 48% 1.19E+09 32.6 
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Table 5-12.  Steady data for SL8 cases 

SL8_ST2 β  Re f 

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
1.000 848.4 0.0650 0.23 0.16 60% 40% 3.31E+08 31.7 

 
1.500 1172.6 0.0510 0.17 0.13 57% 43% 6.85E+08 32.0 

 
1.524 1191.3 0.0505 0.17 0.13 57% 43% 7.11E+08 32.0 

 
1.750 1325.9 0.0466 0.16 0.12 56% 44% 9.05E+08 32.2 

 
2.000 1474.6 0.0430 0.14 0.12 54% 46% 1.15E+09 32.4 

 
2.500 1761.3 0.0377 0.12 0.11 53% 47% 1.72E+09 32.8 

 
2.875 1968.5 0.0347 0.11 0.10 51% 49% 2.21E+09 33.0 

 
3.250 2170.2 0.0323 0.10 0.10 50% 50% 2.75E+09 33.2 

SL8_ST2.5 β  Re f 

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
0.250 430.5 0.1232 0.50 0.28 64% 36% 4.19E+07 30.1 

 
0.500 754.1 0.0803 0.31 0.20 61% 39% 1.47E+08 30.7 

 
0.513 787.5 0.0783 0.29 0.19 60% 40% 1.63E+08 30.8 

 
0.750 1046.2 0.0626 0.23 0.17 58% 42% 3.06E+08 31.3 

 
1.000 1319.4 0.0525 0.18 0.15 56% 44% 5.14E+08 31.9 

 
1.500 1829.8 0.0409 0.14 0.12 53% 47% 1.07E+09 32.7 

 
2.000 2308.2 0.0343 0.11 0.11 50% 50% 1.80E+09 33.2 

SL8_ST3 β  Re f 

 

,D skinC  
 

,D pressC  Skin 
Friction 

Pressure 
Drag ψ  Nu 

 
0.100 295.5 0.1808 0.78 0.39 67% 33% 1.15E+07 29.1 

 
0.282 724.3 0.0903 0.36 0.23 61% 39% 8.47E+07 30.6 

 
0.300 724.7 0.0902 0.36 0.23 61% 39% 8.48E+07 30.6 

 
0.500 1098.7 0.0654 0.25 0.18 58% 42% 2.14E+08 31.6 

 
0.750 1528.8 0.0507 0.18 0.15 55% 45% 4.47E+08 32.4 

 
1.000 1932.8 0.0423 0.15 0.13 53% 47% 7.54E+08 32.9 

 
1.250 2318.2 0.0367 0.12 0.12 51% 49% 1.13E+09 33.4 
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5.7 Estimation of Recrit  

There are at least two ways to approach the problem of determining Recrit for 

these cases.  One would be to perform linear or nonlinear stability analysis.  The other 

would be a more empirical approach where cases were run to bracket the value of Recrit 

and then as many cases as necessary could be run to determine the value of Recrit to 

whatever precision is desired. 

Performing linear or nonlinear stability analysis is beyond the scope of the 

current work.  This was used on the grooved channel problem and communicating 

channel problem where the stability analysis was actually performed on plane channel 

flow, a more straightforward problem than the current one.  It is not clear how applicable 

the plane channel stability results would be to double cyclic staggered configuration of 

flat tubes. 

The empirical approach of bracketing the value is also untenable.  As discussed 

above, as one approaches Recrit from above, that is from cases with oscillations to lower 

Re, the time to reach the onset of oscillations increases exponentially.  Performing 

several solutions with small negative increments of β is out of the question.  Coming the 

other direction from known steady solutions with increasing β  values, one has no way 

of knowing at a particular time in the solution process whether a specific case is steady 

or simply has not run long enough to exhibit oscillations. 

At the critical point, the solution bifurcates from a steady, laminar solution to an 

unsteady, oscillatory solution as Reynolds number is increased from a known steady 

solution.  The critical point should therefore be a solution to both the steady problem and 
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the unsteady problem.  The approach here is to predict the intersection point of the Re 

versus β curves from both the unsteady and steady data to estimate a value of Recrit for a 

given case.  More specifically, the pseudo-steady Re versus β  data were used along 

with the unsteady data.  The pseudo-steady and steady data form continuous curves, so 

either set of data could be used.  However, the pseudo-steady data were used because the 

Reynolds number range closely matches that of the unsteady data. 

Figure 5-6 shows the pseudo-steady and unsteady Re versus β  curves for a 

typical case.  The relationship between Re and β is not linear as seen in the figure.  One 

option would be to curve fit each curve and then determine from the curve fit equations 

the predicted intersection of the curves.  However, with so few data points, the curve fits 

are not likely to be very accurate.  Instead, for the current work, the two points from 

each data set for lowest Re and β  were used to create a linear curve fit for each curve 

and then the intersection point is determined.  This is akin to assuming that the slope of 

the curve at low Re is equal to the slope of the line formed by these two points. 

After the determination of Recrit for each geometric domain, a pseudo data point 

was created whereby values for Nu, f, ψ , and other parameters were determined using 

linear regression with the existing steady data set.  This new pseudo data point is then 

included as the first point in the unsteady data for that domain.  (See Table 5-7, Table 

5-8, and Table 5-9 above.)  Using this pseudo point data helps to illustrate some of the 

characteristics of the data in that it represents the intersection of steady, laminar plot and 

unsteady, oscillatory plot. 
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Figure 5-6.  Estimation of 

crit
Re from steady and unsteady β  v. Re  curves. 

 
 

Table 5-13 lists the estimated Recrit for each domain considered.  The value 

shown is rounded to tens-place accuracy.  The value shown in parentheses is the 

calculated value using the curve fit method.  Note that along constant ST with increasing 

SL the values of Recrit show a slight increase (less than 3%) for ST2 and ST2.5.  For ST3, 

the value of Recrit is constant within the uncertainty of the values.  However, along 

constant SL with increasing ST, the values of Recrit show a substantial decrease.  From 

ST2 to ST3 along SL8, there is a 40% decrease in Recrit.  Even considering the 

uncertainty involved in determining these values, this trend is clear.  As the transverse 

spacing of tubes increases, the flow becomes destabilized at a lower Recrit. 
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Table 5-13.  Estimated values of Recrit 

 SL7 SL7.5 SL8 

ST2 1160 (1157.8) 1180 (1176.9) 1190 (1191.3) 

ST2.5 770 (765.2) 770 (770.1) 790 (787.5) 

ST3 720 (724.6) 720 (721.6) 720 (724.3) 

 

5.8 Discussion of Flow Results 

5.8.1 General Characterization of the Flow Oscillations 

There were several cases for each geometry that demonstrated self-sustained 

oscillations.  Table 5-7, Table 5-8, and Table 5-9 above list the data for each of these 

cases.  While the main emphasis of the current work is the effect of oscillatory flow on 

heat transfer and pumping power, it is worth noting some characteristic trends shown in 

the Strouhal number and in the PTP data. 

In general, for a given geometry, the frequency of oscillation increases with 

increasing Re while the Strouhal number decreases with increasing Re.  For the ST2 

cases, the Strouhal number remains relatively constant for each domain with increasing 

Re showing a decrease of less than 2% from Recrit to 2000Re ≈ .  However, for the ST2.5 

and ST3 cases, the Strouhal number decreases approximately 4% and 8%, respectively, 

from Recrit to 2000Re ≈ .  For the set of domain geometries, for constant SL, the Strouhal 

number increases with increasing ST.  For constant ST, the Strouhal number decreases 

with increasing SL. 
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In general, the PTP  u-velocity increases with increasing Re for each domain 

geometry.  As the PTP is associated with an isolated point in each domain, these results 

cannot be compared across the different domain geometries. 

The overall trend for any particular geometry is for frequency of oscillation to 

increase, Strouhal number to decrease, and PTP to increase with increasing Re. 

5.8.2 Skin Friction and Pressure Drag 

Skin friction and pressure drag on the flat tubes were calculated for each steady 

and unsteady case.  Tables 5.7 through 5.12 list the percentage of the total that may be 

attributed to each for all unsteady and steady cases. 

For all cases, the steady data show approximately 60% skin friction and 40% 

pressure drag.  After the onset of oscillations, both skin friction and pressure drag 

increase, but the percentage of skin friction decreases while the percentage of pressure 

drag increases.  In general, for all cases, at approximately 2000Re ≈ , the skin friction is 

approximately equal to the pressure drag.  This is an indication that these cases lie well 

within laminar range at 2000maxRe = .  In the turbulent regime, the pressure drag is 

expected to dominate the skin friction. 

While both skin friction and pressure drag show increases with increasing 

Reynolds number, the reported non-dimensional coefficients ,D skinC  and ,D pressC  show 

decreases.  This is due to the definitions of these parameters as given in Section 3.6.6.  

With increasing Reynolds number, the average inlet velocity ( inletu ) also increases.  But, 

the square of inletu  appears in the denominator for each coefficient definition and the 
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value of 2
inletu  rises faster than the force value.  This leads to a decrease in coefficient 

values even though the drag force values are rising. 

As described in Section 3.6.6, the integrated values for skin friction and for 

pressure drag on the flat tubes were obtained at each time step.  The Strouhal number 

reported in Table 5-7, Table 5-8, and Table 5-9 is the non-dimensional frequency 

associated with u- and v-velocity.  The oscillation frequency of both the integrated skin 

friction and pressure drag is twice the oscillation frequency of velocity.  This is due to 

the fact that even though the velocity components at every node in the domain oscillate 

at the same frequency, there are phase shifts between the u- and v-velocity at each point 

and between the u-velocity at all points and the v-velocity at all points.  At a given time 

step, the sum of the skin friction and pressure drag also oscillates at a frequency twice 

that of the primary variables.   

5.8.3 Stream Function Plots 

Figure 5-7 shows a series of six plots of the stream function during one period     

(τ ) of oscillation for SL7.5_ST2.5 at Re=2025.6.  These plots are typical of the cases 

studied for the current work. 

In Figure 5-7, dark blue represents negative values of the stream function while 

dark red represents positive values of the stream function.  Therefore, blue and red 

represent opposite-hand rotation in the figures.  The series of figures shows the shedding 

of pairs of opposite-hand rotating vortices from the tubes. 
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5.8.4 Pumping Power 

Figure 5-8 shows non-dimensional pumping power (ψ ) versus Reynolds number 

for all cases grouped by constant transverse spacing.   In Figure 5-8, parts (a), (b), and 

(c) represent constant transverse spacing ST2, ST2.5, and ST3, respectively.  Note that 

even though SL varies for a given ST, there is very little variation in pumping power.  The 

curves are virtually indistinguishable in the plot. 

Figure 5-9 shows non-dimensional pumping power (ψ ) versus Reynolds number 

for all cases grouped by constant longitudinal spacing.   In Figure 5-9, parts (a), (b), and 

(c) represent constant longitudinal spacing SL7, SL7.5, and SL3, respectively.  For these 

plots, the steady and unsteady data are plotted with different symbols.  Here, there is a 

clear difference in pumping power with changing ST for constant SL.  The more compact 

geometry ST2 requires more pumping power to produce a given Reynolds number than 

for ST2.5 or ST3.  As an example, for the SL7 cases at 2000Re ≈ , the ST2 configuration 

ψ is 68% higher than for ST2.5 and 168% higher than for ST3.  If ψ is used as a cost 

indicator, then it is clearly more costly to operate the more compact geometry at a given 

Reynolds number. 
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(a) t=0 

 
(b) t=τ /5 

 
(c) t=2τ /5 

 
(d) t=3τ /5 

 
(e) t=4τ /5 

 
(f) t=τ  

 
Figure 5-7.  Stream function plots for one period of oscillation (τ ) for SL7.5_ST2.5 at Re=2025.6. 
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Figure 5-8.  Non-dimensional pumping power (ψ ) versus Reynolds number: constant ST plots. 
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Figure 5-9.  Non-dimensional pumping power (ψ ) versus Reynolds number: constant SL plots. 
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5.9 Discussion of Heat Transfer Results 

The Nusselt number data appear in the tables above for both steady and unsteady 

cases.  The general trend is for constant ST , the Nu decreases slightly (on the order of 

3%) with increasing SL.  However, for constant SL, there is significant increase in Nu as 

ST as increases.  Figure 5-10 shows Nu versus Re for the unsteady SL7.5 cases.  The plot 

is representative of the other two SL values, as well.  Comparing ST2 to ST3, a 

significant increase in Nu at all Re is observed.  The ST2.5 case shows different 

behavior.  It closely tracks the curve for ST3 data until 1200Re ≈ , then is almost flat 

showing little increase in Nu with increasing Re. 

Figure 5-11 shows Nu versus Re for unsteady, steady, and pseudo-steady cases 

for SL7.5_ST2.5 geometry.  Recrit lies at the intersection of the three plots.  The steady 

data for critRe Re> are pseudo-steady solutions.  For critRe Re< , the solutions are true 

steady solutions and the curve is flat indicating very little rise in Nu with increasing Re.  

For critRe Re= to 1500Re ≈ , there is an approximate 65% increase in Nu with respect to 

pseudo-steady solutions.  Recall that the pseudo-steady solutions are obtained with a 

modified unsteady code for which flow oscillations are prevented from occurring.  The 

65% difference in Nu for the unsteady and pseudo-steady curves therefore represents the 

effect of flow oscillations on Nusselt number.  For 1500Re > , the Nu shows little 

change with increasing Re.   Figure 5-11 is typical of the other domains as well except 

that for the SL7.5_ST2.5 geometry, the unsteady curve flattens out more quickly than for 

the other geometries. 
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Figure 5-10.  Nusselt number versus Reynolds number for unsteady SL7.5 cases. 

 
 
 

 
Figure 5-11.  Nusselt number versus Reynolds number for SL7.5_ST2.5: unsteady and steady data. 
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5.10 Discussion of Combined Flow and Heat Transfer 

As discussed above, non-dimensional pumping power (ψ ) is used in the current 

work as an indication of cost of operation.  The intended use of the flat tube heat 

exchanger devices considered in the current work is to transfer energy from one fluid to 

another.  The purpose of the current work is to shed light upon which combination of 

geometry and operating conditions can produce the highest rate of heat transfer at the 

lowest cost.  With these considerations in mind, a plot of ψ  versus Nusselt number is a 

plot of cost versus benefit.   

Figure 5-12 shows ψ  versus Nusselt number on semi-log scales for all cases 

grouped by constant transverse spacing.   In Figure 5-12, parts (a), (b), and (c) represent 

constant transverse spacing ST2, ST2.5, and ST3, respectively.  The three plots for 

Figure 5-12 are very similar.  Each shows a near-vertical section at low Reynolds 

numbers that corresponds to true steady flow.  A vertical line on these plots indicates 

that an increase in pumping power is not accompanied by an increase in Nu.  Essentially, 

there is no benefit for the added cost.  This is followed by a section corresponding to 

unsteady, oscillatory flow which shows steady increase in Nu for the added cost of 

higher ψ .  For the ST2.5 and ST3 plots, the plot indicates the beginning of another near-

vertical section at the higher Nu values shown.  This is more pronounced for the ST2.5 

plot.  This indicates that there is a Re range between Recrit and another higher Re that the 

oscillatory flow demonstrates benefits by producing higher Nu for relatively modest 

increases inψ .  This will then be followed by a Re range where pumping power will 
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increase with little increase in Nu.  Presumably, this region of the curve is a precursor to 

the turbulent flow regime. 

Figure 5-13 shows ψ  versus Nusselt number on semi-log scales for all cases 

grouped by constant longitudinal spacing.  In Figure 5-13, parts (a), (b), and (c) 

represent constant longitudinal spacing SL7, SL7.5, and SL8, respectively.  These plots 

show that for the geometries tested, the more compact ST2 geometries require more 

pumping power to deliver the same Nu as compared to the ST2.5 and ST3 geometries.  

As an example, for the SL7 cases at 53Nu ≈ , the ST2 configuration ψ is 189% higher 

than for ST2.5 and 437% higher than for ST3.  Similar ψ requirements are indicated for 

the SL2.5 and SL8 cases as well. 

For one case, SL7.5_ST2.5, additional data were collected to show the shape of 

the ψ  versus Nu curve at higher and at lower Re values.  Figure 5-14 shows the plot of 

this data on semi-log scales similar to Figure 5-12 and Figure 5-13.  The oscillatory 

unsteady data was extended to 2822Re = .  Higher Re solutions were attempted, but the 

solutions diverged.  Some steady Re data was also added at lower Reynolds numbers.  

The curve in Figure 5-14 shows four distinct regions.  Region 1 shows that for very low 

Reynolds number flows, the flow is steady laminar flow and there is a positive slope on 

the curve indicating that as pumping power is increased, there is a corresponding 

increase in Nu.  Region 2 is a near-vertical section that is steady flow at critRe Re< .  In 

Region 2, there is little change in the Nu for the increase in ψ .  Region 3 begins at the 

critical point and shows a steady increase in Nu for increasedψ as Reynolds number 



100 
 

 
 

100 

increases.  Region 4 shows an increase in the slope of the curve indicating more 

pumping power required for modest Nu gains.  It is expected that with similar extensions 

of the data sets, the curves for the other eight domains would look similar to that of 

Figure 5-14. 

Two additional figures show the steady and unsteady regions of Figure 5-14 

separately on linear-linear scales.  Figure 5-15 shows the two steady regions, while 

Figure 5-16 shows the two unsteady regions. 

Figure 5-15 shows the near-vertical Region 2 clearly.  In this steady-flow region, 

the Nusselt number shows an increase from 29.8 to 30.3 (1.7% increase) for a ten-fold 

increase in the required pumping power.  Based on this data, operation in this steady-

flow region should be avoided. 

Figure 5-16 shows that in the first section of unsteady Region 3, the Nusselt 

number increases from 30.3 to 46.1 (52% increase) for 2.6 times increase in required 

pumping power.  Operation in this region is desired because the flow oscillations 

produce higher Reynolds numbers for moderate increases in required pumping power. 

Figure 5-16 also shows the near-vertical unsteady Region 4.  In Region 4, the 

Nusselt number increases from 51.2 to 54.9 (7% increase) for a 4.5 times increase in 

required pumping power.  Operating in this region, one sees an increase in Nusselt 

number, but at higher cost than seen in Region 3. 

Based on the extended data for SL7.5_ST2.5, operation in Region 3 shown in 

Figure 5-14 or Figure 5-16 is most effective on a cost/benefit basis.  This region begins 

at the critical point where oscillatory flow begins and extends to beginning of Region 4. 



 
 

 
 

101 

 

Figure 5-12.  Non-dimensional pumping power (ψ ) versus Nusselt number: constant ST plots. 
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Figure 5-13.  Non-dimensional pumping power (ψ ) versus Nusselt number: constant SL plots. 
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Figure 5-14.  Non-dimensional pumping power (ψ ) versus Nusselt number: SL7.5_ST2.5 (Extended). 

 

10 20 30 40 50 60
104

105

106

107

108

109

1010
ψ

Nu

 Region 1 (Steady)
 Region 2 (Steady)
 Region 3 (Unsteady)
 Region 4 (Unsteady)

Critical
Point



104 
 

 
 

104 

 

Figure 5-15.  Non-dimensional pumping power (ψ ) versus Nusselt Number: SL7.5_ST2.5 (steady only). 

 

 

Figure 5-16.  Non-dimensional pumping power (ψ ) versus Nusselt Number: SL7.5_ST2.5 (unsteady only). 
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6. SUMMARY 

Numerical simulations of flat tube heat exchanger devices operating in flow 

regimes in which self-sustained oscillations occur were performed.  These unsteady flow 

regimes represent transition flow regimes between steady, laminar flow and fully 

turbulent flow for the domains studied.  The oscillations observed were cyclic in that the 

values of flow parameters such as stream-wise or cross-stream velocity at a point varied 

with time in a repeating manner. 

A computer code was developed to perform the numerical simulations.  Spatial 

discretization was based upon a Control Volume Finite Element Method (CVFEM).  

Temporal discretization was based upon an ESDIRK, a semi-implicit Runge-Kutta 

method.  Double Cyclic conditions were used to limit the numerical domains to one 

module. 

Nine geometric domains representing flat tube heat exchanger devices were 

defined and tested over a range of Reynolds numbers.  Three values of longitudinal tube 

spacing (SL) and three values of transverse tube spacing (ST) were used to define the nine 

domain geometries.  A maximum Reynolds number (Re) of 2000 was established to 

keep the study well within the transition range.  For each unique domain a critical 

Reynolds number (Recrit) was found such that for Re< Recrit the flow was steady, laminar 

flow and for Re> Recrit the flow exhibited cyclic oscillations. 

For each domain, numerical solutions for several cases of unsteady flow, steady 

flow, and pseudo-steady flow were obtained.  The global pressure gradient ( β ) was 

chosen for each solution.  For each unsteady solution, data were collected corresponding 
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to Reynolds number (Re), friction factor (f), Strouhal number (Str), normalized 

oscillation amplitude ( PTP ), tube skin friction coefficient ( ,D skinC ), tube pressure drag 

coefficient ( ,D pressC ), percent tube skin friction, percent tube pressure drag, non-

dimensional pumping power (ψ ) and Nusselt number (Nu).  For each steady or pseudo-

steady solution, data were collected for the same parameters except for Strouhal number 

(Str) and normalized oscillation amplitude ( PTP ) as these two pertain only to unsteady 

flows. 

There were several general trends in the data that were identified.  First, the 

results showed little variation with changing longitudinal spacing (SL), but significant 

variation with changes in the transverse spacing (ST) for the cases studied.  For 

oscillating cases for the same domain geometry, both the frequency of oscillation and the 

peak-to-peak magnitude of oscillation for primary variables u, v, T̂ , and P̂  increased 

with increasing Reynolds number.   

The frequency of oscillation for integrated skin friction and pressure drag was 

twice the frequency for the primary parameters.  This is due to the fact that even though 

primary variables oscillate at the same frequency for all nodes in the domain, there are 

phase shifts in the oscillations from one location to another.  Also, the sum of the 

integrated skin friction and pressure drag representing the time varying force on the tube 

also oscillates at a frequency twice that of the primary variables.   

A method of estimating Recrit was presented.  The underlying assumption to this 

method is that Recrit lies on both the unsteady and pseudo-steady Re versus β  curves.  
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The critical Reynolds number was lower for larger values of the transverse spacing (ST) 

meaning that the least compact geometry leads to destabilization of the flow at a lower 

Reynolds number for the cases studied. 

The data indicate that flow oscillations are responsible for significant increases in 

Nusselt number compared to pseudo-steady solutions for the same Reynolds number.  

The results underscore the importance of identifying Recrit prior to performing numerical 

analysis for domains such as these.  For cases of interest where Re<Recrit, steady 

analysis may be used and symmetry may be applied along the stream-wise centerline of 

the domain.  However, for Re>Recrit, unsteady analysis must be performed without 

imposing symmetry and the solution must be carried past the onset of oscillations to the 

point where the oscillations are cyclic in order to achieve accurate results.  Large errors 

in predicted Nusselt number would occur if one used steady analysis for one of these 

unsteady cases.   

The data for pumping power versus Nusselt number show four operating regions 

with differing characteristics.  The results indicate that operation in Region 3 coinciding 

with self-sustained oscillations provides the highest Nusselt number for the smallest 

required pumping power.  This data would provide good guidance for the design of a 

heat exchanger device based on the geometry studied. 

6.1 Recommendations for Future Work 

Recommendations for future work include extending the range of ST for the 

current data set.  In the current data, the greatest changes in parameter values followed 

changes in the transverse spacing.  It is likely that at very high ST, the flow may not 
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exhibit oscillations at all.  It would be interesting to increase the range of ST for one of 

the SL values used in the current study. 

The changes in the longitudinal spacing in the current work were too small to 

have much impact on the parameter values of interest.  The gap between columns of 

tubes was varied from Dmin to 2Dmin but the length of the tube is 6Dmin.  It would be 

interesting to check SL values on the order of 2Dmin to 6Dmin. 

It would also be interesting to use a 3D turbulent code to extent the ψ versus Nu 

curves into turbulent region. 
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APPENDIX A* 

APPENDIX A presents the entire text of Fullerton and Anand [5].   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
________________ 
*Reprinted with permission from “Periodically Fully-Developed Flow and Heat Transfer 
over Flat and Oval Tubes Using a Control Volume Finite-Element Method” by T.L. 
Fullerton and N.K. Anand, 2010.  Numerical Heat Transfer, Part A, vol. 57, pp. 642-
665, Copyright 2010 by Taylor & Francis Group, LLC. 
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APPENDIX B – INTERPOLATION FUNCTION FOR φ WITHIN AN 
ELEMENT 

 

To evaluate the link flux integrals on the LHS of Eq.(3.6), the distributions of φ , 

X∂∂φ  and Y∂∂φ along the element links are required.  To this end, a nonlinear 

interpolation function for φ is introduced.  The equations in Eq.(3.8) are repeated here 

for convenience as Eq.(B.1) through Eq.(B.4).  Eq.(B.1) is an expression for the value of 

the general transported variable φ at an (X,Y) location within an element. 

 ( , ) ( )X Y AZ X BY Cφ = + +  Eq.(B.1) 

 max

max min

( )( ) exp 1
( )avg

X XZ X Pe
U X Xρ

  −Γ  = −  −   


 Eq.(B.2) 

 max min( )avgU X X
Pe

ρ −
=

Γ



 Eq.(B.3) 

 max 1 2 3

min 1 2 3

max( , , )
min( , , )

X X X X
X X X X

=
=

 Eq.(B.4) 

Eq.(B.1) is known as the interpolation function for φ within the element.  

Eq.(B.2) defines Z(X) within Eq.(B.1).  Note that Z is a function of X.  Eq.(B.3) defines 

the element Peclet number.  avgU in Eq.(B.2) and Eq.(B.3) is the average magnitude of 

the element velocity vector for the element’s three nodes.  Eq.(B.4) defines Xmax and Xmin 

as the maximum and minimum, respectively, of the X-coordinates of the element’s nodes 

in the local element coordinate system.  Eq.(B.1) through Eq.(B.4) show that the value of 

φ at a location (X,Y) within the element is dependent upon the element geometry, the 

average velocity within the element, and specified material properties.   
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Before Eq.(B.1) can be used in the evaluation of link fluxes, the coefficients A, B, 

and C must be determined.  The coefficients are determined by applying the constraint 

that Eq.(B.1) is valid at each of the element’s three nodes.  This produces a set of three 

equations which may be solved for the coefficients A, B, and C. 

 

1 1 1

2 2 2

3 3 3

        where  ( )i i

AZ BY C
AZ BY C
AZ BY C

Z Z X

φ
φ
φ

= + +
= + +
= + +

=

 Eq.(B.5) 

While neither the values of φ at the nodes nor the values of coefficients A, B, or 

C are known, the φ values will be treated as knowns in Eq.(B.5).  Rewriting Eq.(B.5) in 

matrix form yields Eq.(B.6). 

 
1 1 1

2 2 2

3 3 3

1
1
1

Z Y A
Z Y B
Z Y C

φ
φ
φ

     
     =     
          

 Eq.(B.6) 

Solving the three-equation system in Eq.(B.6) for A, B, and C yields the 

following expressions. 

 
1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

A L L L
B M M M
C N N N

φ φ φ
φ φ φ
φ φ φ

= + +
= + +
= + +

 Eq.(B.7) 

 
1 2 3

2 3 1

3 1 2

( )

( )

( )

L Y Y DET
L Y Y DET
L Y Y DET

φ

φ

φ

= −

= −

= −

 Eq.(B.8) 

 
1 3 2

2 1 3

3 2 1

( )

( )

( )

M Z Z DET
M Z Z DET
M Z Z DET

φ

φ

φ

= −

= −
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 Eq.(B.9) 
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1 2 3 3 2

2 3 1 1 3

3 1 2 2 1

( )

( )

( )

N Z Y Z Y DET
N Z Y Z Y DET
N Z Y Z Y DET

φ

φ

φ

= −

= −

= −

 Eq.(B.10) 

 1 2 3 2 3 1 3 1 2( ) ( ) ( )DET Z Y Y Z Y Y Z Y Yφ = − + − + −  Eq.(B.11) 

The coefficients A, B, and C are not numerical.  Rather, they are expressions in 

terms of the unknown φ values at the element’s nodes.  Use of Eq.(B.1) in conjunction 

with Eq.(B.7) through Eq.(B.11) specifies the value of φ at an (X, Y) location within the 

element in terms of the unknown values of φ at the nodes.  Specifically, expressions for 

φ may be determined at the element’s integration points. 

 Expressions for Xφ∂ ∂  and Yφ∂ ∂  along the links are also required.  

Differentiating Eq.(B.1) with respect to X yields the following expression for Xφ∂ ∂ . 

 ( ) 1avgU
A Z X

X
ρφ  ∂

= + ∂ Γ 
 Eq.(B.12) 

Differentiating Eq.(B.1) with respect to Y yields the following expression for Yφ∂ ∂ . 

 B
Y
φ∂

=
∂

 Eq.(B.13) 

In Eq.(B.12) and Eq.(B.13), A and B are defined by Eq.(B.7) through Eq.(B.11). 
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APPENDIX C – FLUX INTEGRATION FOR ELEMENT LINKS 
 

This appendix discusses the integration of the flux of the general transported 

scalar φ  across element links.  The general transported scalar φ  may represent velocity 

components u or v or it may represent temperature (T), but not pressure (P). 

1
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b
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link ob
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for Node P
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c

 

Figure C-1.  CVFEM domain discretization: (a) typical element; (b) internal CV; (c) boundary CV. 

 

Figure C-1 shows a typical element, an internal control volume (CV) and a 

boundary CV.  Each element is defined by an ordered set of three nodes.  Each node has 

both a global node number (GNN) and an element local node number (LNN) associated 

with it.  GNN’s are unique within the domain.  The possible values for LNN are 1, 2, 

and 3.  For example, E1{K, P, L} represents the definition of Element 1 (E1) shown in 

Figure C-1(b) in terms of the GNN’s K, P, and L.  In the definition, the GNN’s are 

ordered such that as the perimeter of the triangle is traversed from K to P to L, one 

travels in a counter-clockwise direction.  The LNN’s are assigned based on the order of 
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the GNN’s in the definition of the element.  For example, LNN1 corresponds with 

GNNK, LNN2 corresponds with GNNP, and LNN3 corresponds with GNNL. 

Each element is divided into three equal-area sub-regions by constructing 

element links from the element centroid to the midpoints of each of the three sides as 

shown in Figure C-1(a).  A control volume for a given node is formed from sub-regions 

of elements that share that node.  Figure C-1(b) shows that the element links form the 

outer boundary of an internal CV.  Figure C-1(c) shows that for a boundary CV, a 

combination of element links and domain boundary segments form the outer CV 

boundary.  

For a given element link, Simpson’s One-Third Rule is applied to evaluate the 

flux integrals.  Simpson’s One-Third Rule assumes a parabolic distribution of flux along 

the link.  To apply Simpson’s One-Third Rule to an element link, the values of the 

integrand at the two endpoints of the link and at the midpoint of the link are needed.  It 

should be noted that since the element links lie within elements and since constant 

material properties are assigned to elements in this method, the values of ρ  and  Γ may 

be treated as constants in the following expressions.  The harmonic mean is not required. 

The result of the integration process is an expression for the integrated flux 

across each link in terms of numerical coefficients λ ’s and unknown values of φ at the 

element’s nodes.  These expressions take the form of  



143 
 

 
 

143 

 

3

1link oa
3
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a i i

i

EV ob
b i i
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EV oc
c i i

i

J N dl

J N dl

J N dl

λ φ

λ φ

λ φ

=

=

=

⋅ =

⋅ =

⋅ =

∑∫

∑∫

∑∫

 Eq.(C.1) 

In Eq.(C.1), the subscript i corresponds to the element local node numbers. 

The values for the coefficients are given by the equations below. 

 
,

,

,

( ) ( )

( ) ( )

( ) ( )

oa
i avg oa i oa i oa i avg oa i a i a

ob
i avg ob i ob i ob i avg ob i b i b

oc
i avg oc i oc i oc i avg oc i c i c

m L Z M Y N V Z LY M X

m L Z M Y N V Z LY M X
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λ ρ

λ ρ

λ ρ

= + + − − Γ + Γ

= + + − − Γ + Γ

= + + − − Γ + Γ







 Eq.(C.2) 
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avg ob s b s b
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m U Y V X

m U Y V X

m U Y V X

ρ

ρ

ρ

 = − 
 = − 
 = − 

 



 



 
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 Eq.(C.3) 

 

4 4          
6 6

4 4          
6 6

4 4          
6 6

o r a o r a
oa oa

o s b o s b
ob ob

o t c o t c
oc oc

Z Z Z Y Y YZ Y

Z Z Z Y Y YZ Y

Z Z Z Y Y YZ Y

+ + + +
= =

+ + + +
= =

+ + + +
= =

 Eq.(C.4) 

The m  expressions in Eq.(C.3) result from an assumption that the average 

element velocity across the link applies at all point locations along the link.  Due to the 

linear interpolation of element velocity within the element, the average velocity is 

represented by the velocity at the midpoint of the link – Point r for link oa , Point s for 

link ob , or Point t for link oc .  This is why values of U~  and V~ were needed only at the 

Points r, s, and t on the element links and not at all integration points. 
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The expressions for Z  and Y  in Eq.(C.4) are the result of applying Simpson’s 

Rule.  The value of the integrand at the midpoint of the link is more heavily weighted in 

the integration than the endpoints leading to the factor of 4 on the r, s, and t terms. 

The above expressions allow calculation of integrated fluxes across all links of 

all elements in the domain without regard to which links form the boundary of which 

CV.  The results of these calculations are the stored λ ’s which are multipliers for the 

unknown φ values.  Assembling an equation of the form Eq.(3.13) for a CV is a matter 

of recognizing which pair of links from contributing elements forms the boundary of the 

CV.   

However, another step is required in preparation for this assembly process.  

Looking again at Figure C-1, it is seen that for each element that contributes to a given 

CV, there are two element links that form part of the CV boundary.  The method for 

assigning the direction of link normals guarantees that one link will have an outward 

normal and the other will have an inward normal with respect to the CV.  The LHS of 

Eq.(3.6) represents the net efflux through the CV boundary.  That the net efflux is of 

interest is significant in that it implies that the link normal for each link forming the 

boundary of the CV should be outward. 

If the CV under consideration is associated with the element’s LNN1, then links 

oc  and oa  form part of the boundary of the CV.  With respect to the CV, the normal of 

oc  is outward and the normal of oa  is inward.  It can therefore be said that the net 

efflux through the CV boundary contributed by the element in question is  
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{flux through oc }–{flux through oa }.  Similarly, for the CV associated with LNN2, the 

total efflux contributed by the element is {flux through oa }–{flux through ob }.    For 

the CV associated with LNN3, the total efflux contributed by the element is {flux 

through ob }–{flux through oc }.  These conditions may be expressed in the following 

equations. 

 
1

2

3

( )

( )

( )

oc oa
i i i
oa ob
i i i
ob oc
i i i

λ λ φ

λ λ φ

λ λ φ

Φ = −

Φ = −

Φ = −

 Eq.(C.5) 

In Eq.(C.5), iΦ  represents the total efflux contribution from an element to the CV 

associated with element local node i. 

If coefficients are defined as 

 
1

2

3

oc oa
i i i

oa ob
i i i

ob oc
i i i

A

A

A

λ λ

λ λ

λ λ

′ = −

′ = −

′ = −

 Eq.(C.6) 

then an element’s contribution to the three CV’s associated with it can be represented as 

 
1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

A A A
A A A
A A A

φ
φ
φ

′ ′ ′Φ     
    ′ ′ ′Φ =    
   ′ ′ ′ Φ     

 Eq.(C.7) 

Eq.(C.7) represents the total efflux contribution of this element to the three CV’s 

associated with it in terms of numerical coefficients and the unknown φ values at the 

element’s three nodes. 

When the equation for a CV is assembled, it will be of the form 
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 p p nb nb
nb A

a a SdAφ φ+ =∑ ∫∫  Eq.(C.8) 

For numerical stability, the Scarborough criterion specifies that  

 1  for all equations and 1 for at least one equationnb

p

a
a

≤ <∑  Eq.(C.9) 

If Eq.(C.7) is used to evaluate element contributions to CV’s, when the 

contributions from all contributing elements are added to form the ai coefficients, in 

general, the Scarborough criterion will not be met.  However, with an adjustment to the 

original conservation equation, the Scarborough criterion can be met. Rather than 

subjecting each CV to Eq.(C.8), we will use the modified form of Eq.(C.10). 

 

 
1

ˆ ˆ( )
m

EV
P

i link s A

J N dl m nds SdAφ
=

 
⋅ − ⋅ = 

 
∑ ∫ ∫ ∫∫  Eq.(C.10) 

This is the conservation of Pφ equation for PCV  in modified form.  The second 

term on the LHS represents the product of Pφ  and the continuity equation for PCV .  

Since the value of ˆ
s

m nds⋅∫    is identically zero, the value of the second term is zero and 

the conservation equation is virtually unchanged from the form in Eq.(C.8).  However, 

Prakash [18] showed that this transforms the resulting Eq.(C.8) into a form such that the 

coefficients meet the Scarborough criterion for stability. 

Rather than assembling the CV equation and then performing the adjustment, the 

adjustment can be performed at the element level by redefining the diagonal terms in the 
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A′  matrix above.  If iΠ  is defined as the mass flow rate out of the pair of links 

associated with local node i, and define the product i iφΠ as shown in Eq.(C.11),  

 1 2 3( )i i i i i iA A Aφ φ′ ′ ′Π = + +  Eq.(C.11) 

then subtracting Eq.(C.11) from Eq.(C.7) above results in the following equation. 

 
1 1 1 11 12 13 1

2 2 2 21 22 23 2

3 3 3 31 32 33 3

A A A
A A A
A A A

φ φ
φ φ
φ φ

Φ − Π     
    Φ − Π =    
    Φ − Π     

 Eq.(C.12) 

 
11 12 13 12 12 13 13

22 21 23 21 21 23 23

33 31 32 31 31 32 32

( )                    
( )                    
( )                    

A A A A A A A
A A A A A A A
A A A A A A A

′ ′ ′ ′= − + = =
′ ′ ′ ′= − + = =
′ ′ ′ ′= − + = =

 Eq.(C.13) 

Eq.(C.12) represents expressions for the modified efflux of φ from the links of a 

given element to the CV’s associated with it.  If used consistently for all elements, then 

upon assembling the CV conservation equations in the form of Eq.(3.13), each equation 

will meet the Scarborough criteria. 
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APPENDIX D - CV COEFFICIENT ASSEMBLY PROCESS 
 

A value of pφ is associated with every CV.  Its value is influenced directly by the 

values of φ at neighboring nodes.  The neighbor nodes for any CV are the nodes forming 

the elements that contribute to the CV.  The ultimate goal is to form an algebraic 

equation of the form of Eq.(D.1) for each CV. 

 P P nb nb P
nb

a a bφ φ+ =∑  Eq.(D.1) 

To form Eq.(D.1) for a CV, the sum of the integrals of flux through the element 

links forming the boundary is needed.  In proceeding, it is assumed that these integrated 

fluxes have been calculated for all element links in the domain and they are available in 

the form of Eq.(C.12) for each element.  The assembly process is a matter of 

determining which elements contribute to the CV and which pair of element links from 

each of these elements form a part of the CV boundary and adding the contributing 

integrated fluxes. 

An element is defined as an ordered set of three global node numbers.  Locally, 

for each element, these are known as 1, 2, and 3.  A list of contributing elements for a 

CV may be assembled by searching the list of all element definitions for the global node 

number associated with that CV.  If the CV number appears in an element’s node list, 

that element contributes to the CV.  The position of the CV number in a contributing  
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Figure D-1.  Typical internal CV formed from four elements. 
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Figure D-2.  Exploded view of Figure D-1 showing individual elements. 
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element’s node list determines which expression for flux from Eq.(C.12) is used in the 

assembly process.  This is best illustrated with an example. 

Figure D-1 shows an interior CV formed by contributions from four elements.  

The global node numbers are shown as K, L, M, N, and P with the CV number being P.  

The neighbors of P are K, L, M, and N and therefore expression for the total efflux is 

expected to be in terms of φ at these nodes. 

Figure D-2 shows the four elements in detail.  The ordered sets of nodes defining 

the elements are  

 { } { } { } { }1 2 3 4E L,  K,  P     E M,  L,  P    E P,  N,  M    E N,  P,  K  Eq.(D.2) 

The element local node numbers come from the placement in the list.  For 

example, for E1, local node number LNN1 corresponds to global node number GNNL, 

LNN2 corresponds to GNNK, and LNN3 corresponds to GNNP.  So, in the above 

derivation of  Eq.(C.12), the local node numbers are used, but they correspond to GNN’s 

from the element definition. 

The assembly process will be illustrated for the internal CV shown in Figure D-1 

and Figure D-2.  The same process applies for boundary CV’s, but additional terms must 

be added to account for flux through the domain boundary. 

For E1, GNNP corresponds to LNN3 .  Therefore, the flux contribution from E1 is 

given by Eq.(C.12) with 3i = . 

 1 1 1
1 31 1 32 2 33 3Flux Contribution from E  to CV E E E

P A A Aφ φ φ= + +  Eq.(D.3) 
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Eq.(D.3) can be rewritten in terms of GNN’s by replacing the subscripts on φ’s with the 

corresponding global node number. 

 1 1 1
1 31 32 33Flux Contribution from E  to CV E E E

P L K PA A Aφ φ φ= + +  Eq.(D.4) 

Similar expressions can be obtained for the flux contributions from E2 through E4 

using i=3 for E2, i=1 for E3, and i=2 for E4. 

 2 2 2
2 31 32 33Flux Contribution from E  to CV E E E

P M L PA A Aφ φ φ= + +  Eq.(D.5) 

 3 3 3
3 11 12 13Flux Contribution from E  to CV E E E

P P N MA A Aφ φ φ= + +  Eq.(D.6) 

 4 4 4
4 21 22 23Flux Contribution from E  to CV E E E

P N P KA A Aφ φ φ= + +  Eq.(D.7) 

Adding Eq.(D.4) through Eq.(D.7) and gathering terms gives the following 

expression for the total efflux through the boundary of PCV . 

 

31 2 4

1 2

32

3 4

1 4

33 33 11 22

31 32

31 13

12 21

32 23

Total Efflux = P P L L M M N N K K
EE E E

P
E E

L
EE

M
E E

N
E E

K

a a a a a

a A A A A

a A A

a A A

a A A

a A A

φ φ φ φ φ+ + + +

= + + +

= +

= +

= +

= +

 Eq.(D.8) 

Comparing Eq.(D.8) to the LHS of Eq.(D.1), La , Ma , Na , and Ka  are recognized as the 

'nba s . 

The above process may be performed on each CV in the domain and a 

corresponding equation of the form of Eq.(D.1) derived.  For internal CV’s, the total 

efflux through the CV boundary is represented by the LHS of Eq.(D.8).  For boundary 

CV’s, additional terms are required.   
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APPENDIX E – INTERPOLATION FUNCTION FOR PRESSURE (P) 

Pressure is assumed to vary linearly within elements.  For linear interpolation, 

one may choose to work with the domain global coordinate system or the element local 

coordinate system.  Choosing the domain global coordinate system for pressure 

interpolation allows calculation of the coefficients one time rather than during each 

solution iteration.  (In general, the element local coordinate system changes with each 

iteration as the values of element velocity are updated.) 

It is assumed that the pressure variation within an element may be described by 

an equation of the form  

 ( , )P x y Ax By C= + +  Eq.(E.1) 

By applying the constraint that Eq.(E.1) is valid at each of an element’s three nodes, the 

following set of three equations is obtained 

 
1 1 1

2 2 2

3 3 3

P Ax By C
P Ax By C
P Ax By C

= + +
= + +
= + +

 Eq.(E.2) 

Similar to the discussion of the interpolation function for φ  in Appendix B, 

neither the P’s nor the coefficients A, B, or C are known.  However, by considering the 

P’s to be knowns, the coefficients to be unknowns, and solving for the coefficients in 

terms of the P’s, the expressions for the coefficients take the following form. 

 
1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

A A P A P A P
B B P B P B P
C C P C P C P

= + +
= + +
= + +

 Eq.(E.3) 
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 2 3 3 1 1 2
1 2 3

( ) ( ) ( )                    
P P P

y y y y y yA A A
DET DET DET

− − −
= = =  Eq.(E.4) 

 3 2 1 3 2 1
1 2 3

( ) ( ) ( )                    
P P P

x x x x x xB B B
DET DET DET

− − −
= = =  Eq.(E.5) 

 2 3 3 2 3 1 1 3 1 2 2 1
1 2 3

( ) ( ) ( )                    
P P P

x y x y x y x y x y x yC C C
DET DET DET

− − −
= = =  Eq.(E.6) 

 1 2 3 2 3 1 3 1 2( ) ( ) ( )PDET x y y x y y x y y= − + − + −  Eq.(E.7) 

 

Eq.(E.1) in conjunction with Eq.(E.3) through Eq.(E.7) gives the pressure at any 

location (x, y) within the element.  However, this is not particularly helpful in 

formulating the equations to solve for nodal pressures. 

Recall that P x∂ ∂  and P y∂ ∂  appear in the source integrals for the momentum 

equations.  Differentiating Eq.(E.1) with respect to x and then separately with respect to 

y, the following expressions for the derivatives are obtained. 

 1 1 2 2 3 3
P A A P A P A P
x

∂
= = + +

∂
 Eq.(E.8) 

 1 1 2 2 3 3
P B B P B P B P
y

∂
= = + +

∂
 Eq.(E.9) 

The nodal pressures appear explicitly in the above expressions for the 

derivatives.  These expressions in conjunction with the continuity equation may be used 

to derive CV conservation equations which may be solved for nodal pressures. 
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