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ABSTRACT

Numerical Study of Convective Heat Transfer in Flat Tube Heat Exchangers Operating
in Self-Sustained Oscillatory Flow Regimes. (December 2011)
Tracy Leo Fullerton, B.S.; M.S., Texas Tech University

Chair of Advisory Committee: Dr. N. K. Anand

Laminar, two-dimensional, constant-property numerical simulations of flat tube
heat exchanger devices operating in flow regimes in which self-sustained oscillations
occur were performed. The unsteady flow regimes were transition flow regimes
characterized by cyclic variations of flow parameters such as stream-wise or cross-
stream velocity.

A computer code was developed to perform the numerical simulations. Spatial
discretization was based upon a Control Volume Finite Element Method (CVFEM).
Temporal discretization was based upon a semi-implicit Runge-Kutta method. Double
Cyclic conditions were used to limit the numerical domains to one repeating geometric
module.

Nine geometric domains representing flat tube heat exchanger devices were
tested over a range of Reynolds numbers. A maximum Reynolds number (Re) of 2000
was established to keep the study within the transition range. For each domain, a critical
Reynolds number (Recrit) was found such that for Re< Regi the flow was steady, laminar

flow and for Re> Rei; the flow exhibited cyclic oscillations. For the cases tested, the



variation in longitudinal pitch had little impact on the Rec; value for a fixed transverse
pitch. However, for a fixed longitudinal pitch, the Regit was increased for decreasing
transverse pitch.

The results demonstrate the importance of using unsteady simulation methods for
these cases. Nusselt numbers predicted by the unsteady method were on the order of
65% higher than predicted by steady methods for the same Reynolds numbers.

Data for required pumping power versus resultant Nusselt number were collected
which showed four distinct operating regions for these devices spanning the low
Reynolds number, steady flow region through the self-sustained oscillating flow region.
Based on the data, the recommended operating region is the region of self-sustained
oscillations as this region is characterized by the highest increase in Nusselt number per

increase in required pumping power.
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Coefficients in discretization equations
Coefficients in interpolation functions
Cross-sectional area of domain

Area of neighboring element
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Skin friction coefficient
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Flux vector based on element velocity

Fluid thermal conductivity
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Mass flow rate

Neighboring element

Normal vector to element link
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Locally varying pressure
Normalized peak-to-peak amplitude of oscillation
Longitudinal pitch
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Heat flux

Total heat added per module
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Maximum Reynolds number

Source term in transport equation
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Strouhal number (non-dimensional frequency)
Non-dimensional longitudinal pitch
Non-dimensional transverse pitch
Temperature

Locally varying temperature

Bulk temperature

Surface temperature

Locally varying bulk temperature
Locally varying surface temperature

Stream-wise velocity
Stream-wise component of element velocity

Average stream-wise velocity at domain inlet

Average velocity within an element
Cross-stream velocity

Cross-stream component of element velocity
Velocity vector

Element velocity vector

Width of domain (W=1 for 2D)

Global coordinates

Element local coordinates



Greek Symbols

yij Global pressure gradient

I Global temperature gradient

O, Included angle in chord across arc for meshing tube
A Coefficient in integrated flux expression
H Fluid dynamic viscosity

1% Fluid kinematic viscosity

Y Fluid density

o General transported scalar

X General field variable

4 Non-dimensional pumping power

r Fluid diffusion coefficient

D Non-dimensional pumping power (Amon)
D Integrated flux

Q Dimensionless frequency

Abbreviations and Acronyms

2D Two-dimensional

3D Three-dimensional

CTDMA Cyclic Tri-Diagonal Matrix Algorithm
CcVv Control Volume

CVFEM Control VVolume Finite Element Method



Xi

DC Double Cyclic
ESDIRK Explicit first stage, Single diagonal coefficient, Diagonally Implicit,

Runge-Kutta

FE Finite Element

FV Finite Volume

LHS Left-Hand Side

PFD Periodically Fully-Developed
RHS Right-Hand Side

SSOF Self-Sustained Oscillating Flow
TDMA Tri-Diagonal Matrix Algorithm

TS Tollmien-Schlichting
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1. INTRODUCTION

The use of flat tubes in heat exchangers has become common, especially in the
automotive air conditioning industry. [1] [2] Figure 1-1 shows the geometry of a typical
flat tube. Tubes of this shape are available commercially in a variety of sizes. Because
of their lower profile, external “air-side” pressure drop characteristics of flat tubes are
generally better than those for round tubes. With proper design, one may expect the heat
transfer performance of a flat tube heat exchanger to rival that of a round tube heat
exchanger. However, there is a shortage of data in the literature for flat tube
performance, either as individual tubes or in tube banks. Published studies include only
steady, laminar data or unsteady data at relatively low Reynolds numbers. Data for flat
tubes operating in unsteady flow conditions at moderate to high Reynolds numbers is

lacking.

: .

Figure 1-1. A flat tube and its orientation with respect to the flow.

For some flow domains, including tube-in-cross-flow domains, one of the
transition pathways from steady, laminar flow to fully turbulent flow is a flow regime
characterized by self-sustained oscillations in velocity. This transition flow regime is

characterized by velocities that vary with time, but in a repeating or cyclic manner, as

This dissertation follows the style and format of Numerical Heat Transfer.



opposed to the random oscillations observed in fully turbulent flows. These oscillations
provide additional mixing of fluid layers which leads to thinner thermal boundary layers
and subsequently to enhanced heat transfer. The same may be said of turbulent flow
oscillations, however, the oscillations in this oscillatory transition flow regime are
expected to have smaller friction losses associated with them as compared to those in
fully turbulent flows. Operating a heat exchanger device in this oscillatory transition
regime, one may expect an increase in heat transfer compared to operating in a steady,
laminar flow regime. There may also be advantages to operating in this oscillatory
transition regime as compared to operating in a fully turbulent regime.

The current work consists of a numerical study of the performance of simple flat
tube heat exchanger devices operating in the oscillatory transition flow regime described
above. Solutions to test problems for steady, laminar flow and for the transitional
oscillatory regime were obtained for performance comparison for several two-
dimensional (2D) domains of varying geometry. For all cases, data were collected for
flow performance in terms of Reynolds number (Re), friction factor (f), and non-

dimensional pumping power (v ) and for heat transfer performance in terms of Nusselt

number (Nu). Other collected data include tube skin friction, tube pressure drag, non-

dimensional frequency of oscillation (Strouhal number (Str)), and peak-to-peak

magnitude of oscillations (PTP).
An original computer code was developed to perform the numerical study for the
current work. There are three features of these oscillating flows and their associated

geometric domains that had to be addressed in the development of the code. First, as



seen in Figure 1-1, the flat tube geometry has radiused ends. The chosen method must
therefore be capable of handling irregular geometric features such as this. Second, while
the oscillations of parameters such as velocities are cyclic, the flow is still unsteady and
the chosen method must be capable of solving unsteady flow problems. Third, the
solution of these unsteady problems was expected to be very resource intensive in terms
of computer hardware and solution time. Fortunately, the regular geometric spacing of
tubes which promote the transitional oscillatory flows also lead to periodically fully-
developed (PFD) flows. Imposing PFD flow conditions on a numerical solution allow
solution for just one domain module of several identical modules. Imposing PFD flow
conditions limits the size of the domain and makes for more efficient use of computer
resources.

Features of the code were developed and validated over the course of the project.
The basis for this code is a Control Volume Finite Element Method (CVFEM) as
described in the literature. This method features a triangular element mesh allowing
irregular geometric features to be modeled easily. The development of this original code
began with a steady-flow version for 2D laminar constant-property flows. This was
followed by steady-flow versions which incorporated PFD flow conditions and the
related Double Cyclic (DC) conditions. Finally, unsteady versions of the code were
developed using a semi-implicit Runge-Kutta method. At each stage of development,
the code was validated using published or theoretical data. While the three features of
the code are not original, the combination of these three features into one computer code

is original.



This dissertation is organized into six sections. Section 2 presents a discussion of
flat tube performance based on published results. Section 2 also includes a discussion of
the theory behind self-sustained oscillating flow and presentation of some published
performance data. Section 3 describes the numerical methods used to conduct the
current work. This section includes a discussion of CVFEMs and the semi-implict
Runge-Kutta method chosen. Section 3 also includes a discussion of periodically fully-
developed flow and Double Cyclic conditions and how the implementation of these
conditions in the code limit the required solution domain to one repeating module.
Section 4 presents code validation data for both steady and unsteady cases. Section 4
also describes previously published work. Section 5 presents the results from the current
study of flat tube heat exchanger devices. Section 6 presents a summary of the current

work and recommendations for continuation of this effort.



2. THEORY AND LITERATURE REVIEW

As stated in Section 1 above, for the current work the primary interest is the
performance of flat tube heat exchanger devices operating in flow regimes that exhibit
self-sustained oscillations. This section will provide a discussion of relevant theory and
literature references for both flat tube flow/heat transfer and for self-sustained

oscillations.

2.1 Flat Tube Flow and Heat Transfer

While flat tubes have gained popularity and acceptance in some industries,
especially in the air conditioning industry, there are few references in the literature
discussing the performance of flat tubes in heat exchanger devices. [2]

Bahaidarah et al. [3] performed a numerical study of the performance of banks of
flat tubes under 2D steady, laminar, constant-property conditions at Reynolds numbers
between 25 and 400. This study included cases of flat tubes arranged in both inline and
staggered configurations for varying longitudinal and transverse spacing of tubes. The
results indicated that, in general, flat tubes did not perform as well as equivalent round
tubes under the same conditions when only heat transfer was considered. However,
when both heat transfer and pumping power were considered, the flat tube outperformed
the equivalent round tube. Due to the flat tube’s lower profile for the equivalent heat
transfer area, the pressure drop required for a given flow rate was less for the flat tube
than for the round tube thereby making the pumping power and operating cost less.
Another conclusion was that the staggered configurations out-performed the inline

configurations from a heat transfer standpoint.



Bahaidarah et al. [4] also considered flat tubes as part of a numerical study of
round tubes and non-circular tubes. For these 2D steady, laminar, constant-property
cases, a row of tubes confined between parallel plates was studied for varying Reynolds
number flows. One of the main conclusions from this study was that for Re >50, when
both heat transfer and pumping power were considered, the flat tube outperformed the
equivalent round tube.

Fullerton and Anand [5] performed a 2D steady, laminar, constant-property study
of flat tubes, circular tubes, and oval tubes similar to Bahaidarah et al. [4]. In this study,
periodically fully-developed conditions were imposed for the numerical simulation of a
row of tubes between two flat plates. Reynolds numbers between 50 and 350 were
considered for fluids of Prandtl number 0.7 and 7.0. The results were similar to those
from [3] and [4] above. When both heat transfer and pumping power were considered,
the flat tube outperformed the equivalent round tube. (This paper, Fullerton and Anand
[5] appears in its entirety as Appendix A.)

Benarji et al. [6] performed a numerical study of unsteady cases over inline and
staggered banks of flat tubes. The geometry and Reynolds number range were the same
as for Bahaidarah et al. [3] above. Fluids of Prandtl number 0.7 and 7.0 were
considered. Few transient effects were reported. Only transient start-up conditions were
seen due to the low Reynolds number range considered. The cases tested all converged
to a steady state. No self-sustained oscillations were reported. Also, symmetry was used

in such a way that unsteady oscillatory effects would have been prevented.



The literature review for flat tube data is brief due to the lack of references.
However, there does seem to be a consensus that flat tubes have a performance
advantage over other tube shapes under certain steady operating conditions if both heat

transfer performance and cost of operation in terms of pumping power are considered.

2.2 Self-Sustained Oscillatory Flows

Self-sustained oscillatory flows (SSOFs) are flows in which velocities and other
quantities at a specific location vary with time in a periodic manner. The oscillations in
such flows occur naturally in that they are not induced by artificially varying the flow
rate or by inducing oscillations mechanically. Figure 2-1 demonstrates the difference
between steady laminar flow, self-sustained oscillatory flow, and fully turbulent flow by
comparing plots of u-velocity versus time at a point. Figure 2-1(a) shows the plot of u
versus t for a steady flow. Since the u-velocity is constant with time for steady flow, the
plot is a horizontal line. Figure 2-1(b) shows the plot of u versus t for a point in a self-
sustained oscillatory flow. In this case, while u varies with time, the variation is cyclic
and repeats itself with time. Figure 2-1(c) shows the plot of u versus t for a point in a
fully turbulent flow. In this case, the variation of u with time is not periodic but appears

random.
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Figure 2-1. U-velocity at a point: (a) steady flow; (b) SSOF; (c) turbulent flow.

These SSOFs lie on the path of transition from steady, laminar flow to fully
turbulent flow for certain flow geometries and flow conditions. One type of domain
geometry for which self-sustained oscillations have been observed and studied is a flow
domain having regularly spaced geometric features such as fins, plates, or tubes. For
some, but not necessarily all, such geometries, as Reynolds number is increased from
low-speed, steady, laminar flow, a critical Reynolds number (Rec;) is reached above
which the flow is unsteady and characterized by periodic oscillations.

Self-sustained oscillatory flows are of interest for heat exchanger devices
because the oscillations of u- and v-velocities enhance mixing and keep thermal
boundary layers from growing, both of which enhance heat transfer rates.

Combining SSOFs with flat tubes is attractive because operating in a SSOF
regime may help to increase heat transfer performance of flat tubes. Pressure drop
requirements, and therefore pumping power requirements, are expected to be higher than
for steady flows, but if heat transfer performance increases at a faster rate than the

pressure drop increases, a net gain in performance may be realized.



2.2.1 Grooved Channel and Communicating Channel

SSOFs have been observed and studied for several flow geometries associated
with heat exchangers. Two such geometries are the grooved channel geometry and the
communicating channel geometry as shown in Figure 2-2. Both geometries exhibit
regularly spaced geometric features, which, as stated above, may lead to self-sustained
oscillations under certain conditions.

Several references may be found in the literature related to these two problems.
The reported results share some commonality. The commonalities will be discussed

first, followed by a discussion of specific references.

/ Typical Domain

@

| —— Typical Domain

(b)

Figure 2-2. (a) Grooved channel geometry; (b) communicating channel geometry.
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2.2.1.1 General Characteristics

Both the grooved channel and communicating channel geometries may be
viewed as plane channels with periodically-spaced geometric disturbances. At low
Reynolds numbers, the flow is steady. As the Reynolds number is increased, a critical
Reynolds number Rei; is reached and the flow undergoes a Hopf bifurcation and
transitions from steady, laminar flow to flow characterized by self-sustained oscillations.
A Hopf bifurcation occurs when a steady solution is unstable to an oscillatory
disturbance. In this case, the flow bifurcates into a periodic solution of a particular
frequency. [7] As the Reynolds number is increased further, the magnitude and
frequency of the oscillations increases. As the Reynolds number is increased still
further, the oscillations begin exhibiting the randomness associated with turbulent flow.

For both geometries, the frequency of oscillation is closely tied to the frequency
of Tollmien-Schlichting (TS) waves predicted for the plane channel flow by linear and
nonlinear stability analysis. TS waves exist due to the viscous interaction between the
channel walls and the fluid. These TS waves are present in plane channel flow, but are
stable up a Reynolds number of approximately 5772. For both the grooved channel and
communicating channel flows, the periodically spaced obstructions trigger oscillations
for existing modes at lower Reynolds numbers that would otherwise be stable in plane
channel flow. The oscillations are stabilized by nonlinear forces.

For both geometries, oscillations were observed for domains of varying
periodicity. Here, the term periodicity refers to the number of identical repeating

modules included in the solution domain. For example, if only one module is included,
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that is referred to as a periodicity m=1 condition. If two modules are included, this is a
periodicity m=2 condition, and so forth. Published results indicate that different
frequencies of oscillation may be found depending upon the periodicity of the solution
domain.

For both geometries, if constant heat flux is applied to the bounding plates, the
heat transfer is enhanced compared to the plane channel flow. First, the presence of the
obstructions enhances heat transfer at Re<Re.j; due to the breakup of the thermal
boundary layer in the channel flow. Second, after the onset of self-sustained

oscillations, mixing of fluid layers is greatly enhanced which also enhances heat transfer.

2.2.1.2 Specific References

Ghaddar et al. [8] studied the grooved channel problem. They used linear
stability to predict the critical Reynolds number for varying grooved channel geometries.
The critical Reynolds numbers were found to be shifted only slightly from those
predicted by both linear and nonlinear stability theory. They also demonstrated a square
root relationship between the amplitude of oscillation and the degree of criticality (Re-
Recrit) that suggested the behavior was associated with a regular Hopf bifurcation.

Majumdar and Amon [9] studied the communicating channel problem. They
performed a numerical study for 2D constant-property cases using a spectral element
method. The authors considered this communicating channel domain to be two plane
channels separated by the row of obstructions along the centerline as shown in Figure
2-2(b). As part of their study, the authors predicted TS wave frequencies for the plane

channel flows above and below the row of obstructions. Their results showed that for
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cases of self-sustained oscillatory flow for the communicating channel geometry, there
was only a minor shift in oscillation frequency from predictions based on plane TS
waves to the observed oscillations in the flow. According to their results, the
oscillations were the result of a primary Hopf bifurcation. The primary channel flow
was unstable to small disturbances but at Re>Reci;, nonlinear affects stabilized the flow
such that time periodic self-sustained oscillations resulted. From their results, Majumdar
and Amon concluded that self-sustained oscillatory flows are ordered flows compared to
turbulent flows. Ordered supercritical flows require less pumping power than turbulent
flow to achieve the same transport rates. Also, a self-sustained oscillatory flow has less
viscous dissipation than turbulent flow. These conclusions are of interest when one
considers pumping power as a cost of operation of a device.

Amon and Mikic [10] studied the communicating channel problem. They
performed a numerical study for 2D constant-property cases using a spectral element
method. According to their results, the match of TS frequencies depends on depth of the
plate and width of the gap along the domain centerline. They also caution that the
domain with periodicity m=1 may or may not give the least stable mode. It is possible
that a domain with periodicity of m=2, m=3, or higher may produce the lowest Rei.
They also reported that while heat transfer increased for these oscillating cases, that the
required pressure drop to drive the flow also increased. They defined a non-dimensional
pumping power based on required pressure drop and showed that pumping power is

proportional to (Nu Re?) for these flows. They stated that self-sustained oscillatory
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flows have less viscous dissipation than turbulent flows and therefore require less
pumping power to achieve same transport rate.

In Mujumdar and Amon [11], the authors apply techniques usually associated
with turbulent flow to study the kinetic energy equation term-by-term. One interesting
result was a difference between these SSOFs and turbulent flows. They found that the
pressure term contributed to the production of kinetic energy for SSOF, but for turbulent
flows the contribution of the pressure fluctuations was almost negligible.

In Amon et al. [12], both numerical and experimental work was performed with
communicating channels. Good agreement was obtained between numerical and
experimental results. The results confirmed that the presence of the plates along the
centerline of the channel enhanced heat transfer compared to plane channel flow even
for steady flow cases Re<Re... After the onset of SSOF, the heat transfer rates were
enhanced at an even greater rate. A plot of Nu versus Re shows a steeper slope for
Re>Recyit.

Guzman et al. [13] studied the transition scenario for the communicating channel
problem. For the geometry and flow conditions used, they found the least stable
frequency to occur in a domain of period m=2. As the pressure drop driving the flow
was increased, the flow underwent a Hopf bifurcation to an oscillatory mode with a
Re<Re.it. As the pressure drop was increased further, second Hopf bifurcation was

observed and accompanied by a further increase in Re.
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2.2.2 Arrays of Rectangular Tubes

Two other geometries for which self-sustained oscillations have been observed
and studied are inline and staggered arrangements of rectangular fins or tubes. Figure
2-3(a) and Figure 2-3(b) show the inline and staggered arrangements, respectively. In
both geometric domains, the tubes are periodically arranged in both the stream-wise and
cross-stream direction whereas in the grooved channel and communicating channel, the
interruptions were arranged only in the stream-wise direction.

In Zhang et al. [14], a numerical study was conducted to isolate the heat transfer
and friction effects associated with two mechanisms: the prevention of the continuous
growth of thermal boundary layers at both steady and oscillatory modes, and the
increased mixing due to oscillatory modes.

For both tube arrangements, the flow showed the same characteristics as Re was
increased from a low value. The flow was in a steady, laminar state up to Regit. For
Re>Re.;, self-sustained oscillations occurred at a single frequency. As Re was
increased, another low frequency was observed followed by random fluctuations. The
Strouhal number (non-dimensional frequency) remained relatively constant throughout
although a slight increase was observed as the second low frequency appeared.

Conclusions from this work were that steady simulation under-predicts both heat
transfer and friction because it misses the effects of the oscillations. Vortices generated
at the leading edge of the rectangular tube roll down the top and bottom of each tube

enhancing local Nusselt number and decreasing skin friction due to flow reversal. Flow
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Figure 2-3. Rectangular tube arrays: (a) inline; (b) staggered.

unsteadiness in the wake makes form drag increase. Therefore, steady simulation under-
predicts form drag and over-predicts skin friction.

In Zhang et al. [15] and Zhang et al. [16], the authors considered the effect of 3D
features in the flow on the predicted heat transfer and friction for the geometry shown in

Figure 2-3. The distinction was made between intrinsic 3D effects, which occur for 2D
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geometry at higher Reynolds numbers, and extrinsic 3D effects which occur for all
Reynolds numbers. They showed that for higher Reynolds numbers, 2D simulations
tend to over-predict Nusselt number and under-predict friction. In other words, 3D
effects tend to decrease predicted heat transfer rates based on 2D predictions. 3D effects
on friction depend on Re. For lower Re, just above the onset of 3D, skin drag dominates
so the increase in skin drag leads to an overall increase in friction. For higher Re where
form drag is higher relative to skin drag, the decrease in form drag leads to an overall
decrease in friction and pumping power.

Balachandar and Parker [17] studied inline and staggered arrays of rectangular
cylinders as shown in Figure 2-3 in addition to isolated cylinders to observe the effect of
the array on the onset of oscillatory behavior. The important effect of the periodic array
is to promote vortex shedding at lower Reynolds numbers than for isolated cylinders.
For the inline case, the stream-wise periodic spacing was shown to have a weak effect on

the onset of vortex shedding while the transverse spacing had a large influence.

2.3 Summary

The material above explains the origin of self-sustained oscillatory flow for the
grooved channel and communicating channel geometry. The close match between TS
frequencies for the plane channel and the oscillation frequencies of the grooved channel
and communicating channel problem help explain the origin of these oscillations. These
geometries may be viewed as plane channels with periodic geometric interruptions. As
such, the main flow is that of a channel flow. The presence of the periodic interruptions

destabilizes some modes that appear as stable modes in plane channel flow as evidenced
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by the fact that the resulting frequencies closely match those predicted for plane channel
flow.

The material on arrays of rectangular tubes focuses more on the effects of SSOF
on heat transfer and friction than on the origin of the SSOF itself. The current work also
focuses on the effects of SSOF rather than on the origins. The geometry of the flat tube
arrays considered in the current work was based on the geometry of arrays of rectangular
tubes which was known to produce self-sustained oscillations with the expectation that
small changes in geometry will still leave a geometry for which SSOFs will exist. Tube
spacing and flow conditions were varied to establish Reci; and document Nu and friction
factor and break down friction into skin friction and form drag. The Reynolds number
was limited to a maximum value of approximately 2000 to stay well within the
boundaries of where the 2D simulation is valid. This maximum value is based on the
results in Zhang et al. [14] in which flow unsteadiness was observed for the staggered
configuration of rectangular tubes for a Reynolds number of 1465. Converting the
Reynolds number value to match the definition in the current work, this translates to a
value of approximately 2344. This value of Re=2344 was further reduced to Rema=
2000 based on differences in geometry and the fact that observations of chaotic behavior

would tend to invalidate the results. A module of periodicity m=1 was used.
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3. NUMERICAL METHODS

3.1 Overview

The current work involves the application of numerical methods to investigate
the performance characteristics of flat tube heat exchanger devices operating in flow
regimes exhibiting self-sustained oscillations. As established in the previous section, the
current work will include determining values for the primary quantities of interest
including friction factor, Strouhal number and Nusselt number for a series of 2D
geometric domains under varying constant-property flow conditions. To determine
values for derived quantities such as these, a numerical solution provides values of
stream-wise velocity (u), cross-stream velocity (v), pressure (P), and temperature (T) at
discrete locations in the domain of interest at suitable intervals of time. Once the u, v, P,
and T fields have been determined, values for the derived quantities of interest may be
calculated.

For the current work, a computer code was developed based on the principles of
a particular Control Volume Finite Element Method (CVFEM) for 2D, steady, constant-
property flows. This code was then modified to allow for unsteady solutions using a
particular semi-implicit Runge-Kutta method. For the cases of interest, Double Cyclic
flow conditions were imposed as stated above.

This section includes a discussion of the general transport equation, spatial
discretization using CVFEM, temporal discretization using an ESDIRK (Explicit first
stage, Single diagonal coefficient, Diagonally Implicit, Runge-Kutta) method, and

solution subject to Double Cyclic conditions. Also included here is a discussion of how
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the various derived quantities of interest are calculated using numerical methods. As no
originality is claimed for any of these pieces of the numerical method, only material
essential to an overall understanding of the methods used is included here. The
originality in the current work lies in the combination of these methods in one computer
code. The interested reader will find additional details for specific topics in the

appendices provided as noted.

3.2 General Transport Equation
Many numerical methods for solving flow and heat transfer problems are based

on the general transport equation for the transported scalar ¢ as shown in Eq.(3.1)

below.
%N.(p@) =V+('Vg)+S Eq.(3.1)

In Eq.(3.1), pis the fluid density, T' is the diffusivity, S is a generalized source term,
and Vis the velocity vector while ¢ may represent either stream-wise velocity (u),

cross-stream velocity (v), or temperature (T). It should be noted that pressure (P) is not a

transported scalar and may not be represented by ¢ in Eq.(3.1).

o(p9)

In Eq.(3.1), the term Trepresents the time rate of change of ¢ in a fluid

element, the term 5-(,0@15) represents the change of ¢ in a fluid element due to
advection, the term 5-(1‘%&) represents the change of ¢ in a fluid element due to
diffusion, and the term S the change of ¢ in a fluid element due to sources. Depending

on the choice of ¢, I', and source term S, Eq.(3.1) may represent conservation of x-
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momentum, of y-momentum, of energy, or of mass for a differential fluid element.

Table 3-1 shows the definition of I"and S for the various quantities that ¢ may represent

for 2D flowvs.

Table 3-1. Definitions of ¢, ", and S for the general transport equation

Conserved Quantity i) r S
Mass 1 0 0
X-Momentum u H —0P [ ox
Y-Momentum v M —oP | oy
Energy T k/c Q
p

Many numerical methods, including the CVFEM chosen for the current work, are
based on an integral form of Eqg.(3.1). By integrating each term of Eq.(3.1) with respect
to the volume of a control volume (CV), and by applying Gauss Divergence Theorem to

the advective and diffusive terms, Eq.(3.2) below is obtained.

| %dv + j ( pyp)eids = j (r%)-ﬁ ds+cjv Sdv Eq.(3.2)

cv
In Eq.(3.2), s represents the surface of the CV and A represents the outward surface
normal of the CV. Further simplification results from defining a combined flux vector
J representing the combination of advective and diffusive flux as shown by Eq.(3.3) and

Eq.(3.4) below.

J=pvp-TVg Eq.(3.3)

j%dv +jJ‘.ﬁds= j Sdv Eq.(3.4)

cv
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Eq.(3.4) is the basis for the overall numerical method chosen. Spatial
discretization is required for the flux integral and source integral while temporal
discretization is required for the unsteady term. Various methods (and their
combinations) exist for discretization of Eq.(3.4). What follows is a discussion of

discretization and solution methods used in the current work.

3.3 Control Volume Finite Element Method (CVFEM)

3.3.1 Overview

In general, CVFEMs are methods of spatial discretization that combine features
of both Finite Element (FE) methods and Finite Volume (FV) methods. Like FE
methods, the domain is discretized into regions called elements to which material
properties are assigned and within which interpolation functions are defined which
describe the variation of velocity, pressure, and temperature within an element. Like FV
methods, control volumes (CVs) are defined to which conservation equations in integral
form are applied resulting in sets of algebraic equations for the domain which may be
solved for the u, v, P, and T fields.

There are several 2D CVFEM’s described in the literature. References are
available that describe various formulations for 2D CVFEM’s using both triangular- and
quadrilateral-shaped elements. Comparing and contrasting the various versions is
beyond the scope of the current work. The basic method for the particular CVFEM

employed in the current work is the co-located, equal-order, triangular-element method
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described by Prakash [18] [19]. Additional material directly influencing the current
work may be found in Sabaas [20] [21] [22] and Husain [23].
This section on CVFEM will describe Prakash’s CVFEM for steady, 2D,

laminar, constant-property flows.

3.3.2 Element Velocity and the General Transport Equation
Prakash’s CVFEM is referred to above as a co-located and equal order method.
This refers to the fact that values for u- and v-velocity, pressure, and temperature are
obtained at the same discrete locations in the domain of interest. Co-located methods
may produce physically unrealistic solutions, particularly in the pressure field. This is
generally referred to as checkerboarding and staggered grid methods (as opposed to co-
located methods) were developed to prevent this effect. For the co-located CVFEM
used in the current work, the concept of mass-conserving or element velocity is
introduced to prevent checkerboarding effects. While the concept of element velocity
cannot be fully defined at this point in the discussion, it is important to introduce it at
this point. A detailed definition of element velocity may be found in Section 3.3.8
below.
For now, the following statements regarding the element velocity will be made:
1) The element velocity vector (V) replaces the nodal velocity vector (V) in
the definition of the combined flux vector, Eq.(3.3) above, regardless of the
choice of ¢;
2) The components of the element velocity are known numerically at a given

element’s nodes;
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3) The numerical values of the element velocity components vary linearly with
position within the element.
With these statements in mind, Eq.(3.3) may be rewritten by substituting the element
velocity vector for the nodal velocity vector.
J¥ = plgp-TVg Eq.(3.5)
The superscript EV signifies that the flux is calculated using the element velocity rather
than the nodal velocity.

As stated above, the discussion to follow considers spatial discretization using
CVFEM for steady flows only. Therefore, the unsteady term in Eq.(3.4) plays no part in
the discussion. Eg.(3.4) may now be rewritten by dropping the unsteady term and by
substituting the flux vector based on element velocity for the flux vector based on nodal

velocity.

jJ_EV- Ads = j sdv Eq.(3.6)
S Ccv

Eq.(3.6) is the general transport equation upon which Prakash’s CVFEM is
based. EQq.(3.6) is in steady-flow form assuming that sources, if they exist, are not time-
dependent. The unsteady term in EQ.(3.4) will be considered in Section 3.4 for the

discussion of temporal discretization.

3.3.3 Domain Discretization
For Prakash’s 2D CVFEM, the computational domain is first discretized as a set
of triangular elements which completely fill the domain without overlap. The vertices of

these triangles are called nodes and are the locations at which u, v, P, and T are
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calculated. Each element is divided into three equal-area sub-regions by defining links
from the element centroid to the midpoint of each of the three sides as shown in Figure
3-1(a). Each sub-region is associated with one of the element’s three nodes. The fact
that the domain is meshed with triangles makes this method a good candidate for the
solution of flat tube heat exchanger problems in that the irregular domain geometry
associated with the tube shape may be meshed to desired accuracy using triangles. Also,
the variables u, v, P, and T may remain in their native (x, y) coordinates without

coordinate transformation.

M Control Volume

Control Volume for Node P
for Node P
M N
link oc
E2 |
1 Element i
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hd
Domain Boundary
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Figure 3-1. CVFEM domain discretization: (a) typical element; (b) internal CV; (c) boundary CV.

The domain is further discretized as a set of polygonal CVs such that each node
in the domain has an associated CV. The set of CVs defined in this manner completely
fills the domain without overlap. The CV associated with a given node is formed from

sub-regions of the elements that share that particular node. The element links of
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contributing elements form the boundary of the CV for internal CVs as shown in Figure
3-1(b). For boundary CVs, the boundary is formed from a combination of element links
and segments of the domain boundary as shown in Figure 3-1(c). Integral forms of the
various conservation equations as given by Eq.(3.6) are applied to the CVs resulting in
four sets of algebraic equations, one set for each of the unknown field variables of

interest: u, v, P, and T. If the general variable y represents u, v, P, or T then the various

conservation equations for the CV associated with Node P may be written in the

following form:

aPXP + Z anbxn,b = bP Eq(37)

nb

The set of all such equations for all CVs in the domain are solved simultaneously using

an iterative solution technique based on the SIMPLER algorithm [24].

3.3.4 Flux Integration for ¢ =u,v,orT

Applying integral forms of the conservation equations to a given CV involves, in
part, determining expressions for the integrated flux of x-momentum, y-momentum,
energy, and mass across the element links that form the CV boundary as shown by the
LHS of Eq.(3.6) above. Boundary CVs are special cases involving integrated flux across
segments of the domain boundary itself. The integration along the boundary of a
particular CV is performed piece-wise by first calculating the integrated flux across each
element link for the entire set of elements and then assembling the appropriate

expressions for the set of links that form the boundary of a particular CV. Adjustments
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to account for flux through domain boundary segments may be added after the assembly
process.

To perform the integrated flux calculations across an element link, expressions
for u- and v-velocity, temperature, and the spatial gradients of pressure are required at
points along the link. Once these expressions are known, Simpson’s One-Third Rule
may be applied to derive an expression for the integrated flux. Interpolation functions
are defined to provide the distribution of velocity, pressure, and temperature within each

element. For the general transported scalar variable ¢ representing stream-wise velocity

(u), cross-stream velocity (v), or temperature (T) (but not pressure (P)), the interpolation
function takes the following exponential form:

#(X,Y)=AZ(X)+BY +C

where Z(X)= L exp[PeM}—l
pUavg (Xmax_Xmin)
=pUavg(Xmax_Xmin)

r
Xmax = max(Xl, X2' Xs)

X =Min(X,, X,, X3)

Pe Eq.(3.8)

In Eq.(3.8), p and I'are the density and diffusion coefficient of the fluid, respectively.

Pe is the element Peclet number. U is the average magnitude of the element velocity

avg
vector for the element’s three nodes. The interpolation function is defined in an
element-local coordinate system (X, Y) such that the X-axis is aligned with the average
flow direction within the element, the Y-axis direction is determined by the right-hand
rule, and the origin is located at the element centroid. The interpolation function is

exponential along the X direction and linear along the Y direction. In this way, the
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method takes into account the local flow direction within the element during flux
calculations, thus minimizing false diffusion. Xmax and Xmin are the maximum and
minimum, respectively, of the X coordinate values at the element’s three nodes as
specified in the element-local coordinate system.

The coefficients A, B, and C in EQq.(3.8) do not represent numerical constants.
Rather, they are expressions in terms of the unknown values of ¢ at the element’s three
nodes. The expressions for A, B, and C are determined by assuming that Eq.(3.8) is
valid at each of the element’s three nodes. (See Appendix B.) Eq.(3.8) therefore
provides an expression for ¢ at a point (X, Y) within the element in terms of the
unknown values of ¢ at the element’s nodes. If one uses Simpson’s One-Third Rule for
the integration of flux along a link, the expressions for ¢ at the two endpoints and at the
midpoint of each link may be used to determine the final expression for the integrated

flux of ¢ across the link in terms of the unknown values of ¢ at the element’s three

nodes. The integrated flux across an element link (®, ) may be represented as follows:
o, =Ao 1=123 Eq.(3.9)
where ¢. represents the unknown value of ¢at node i and A represents a numerical

coefficient. The expressions for A\ may be found in Appendix C.

After the expressions for integrated flux in the form of Eq.(3.9) are obtained for
all element links in the domain, an assembly process is used to combine the expressions

for all links forming the boundary of a given CV. The result is an expression of the form



28

Integrated Flur = a,$, + Zanbgbnb Eq.(3.10)

nb
representing integrated flux for the x- or Yy -momentum equation or for conservation of
energy equation for that particular CV. Details of the assembly process may be found in

Appendix D.

3.3.5 Integration of Source Term

The RHS of Eq.(3.6) is an integral over the area of the CV. (In 2D, the “volume”
of the control volume is actually an area.) The area of each CV is composed of sub-
regions of contributing elements. The area of each sub-region is one-third the area of the
contributing element by definition and the source S is defined to be constant over the
area of the element. The average S over the CV may be defined as an area-weighted

average of S over the set of contributing elements for the CV.

el © Eq.(3.11)

In Eq.(3.11), the superscript nbe signifies neighboring element. Using Eq.(3.11) to

evaluate the integral on the RHS of Eq.(3.6), Eq.(3.12) below is obtained.

Snbe ﬂbe
[ sdv = [§;dv = el 3] AREA, =Z{S“*’eﬂe} Eq.(3.12)
Ccv CcVv CV AREACV Y nbe 3

Thus, the source integral has been converted to a summation of quantities over

the set of contributing elements. For the current work, the source integration will
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evaluate to a numerical constant b,. Thus, after flux integration and source term

integration, Eq.(3.6) is converted to an algebraic equation of the form of Eq.(3.13)

below.

a0, +Y a0, =D, Eq.(3.13)

nb
Eq.(3.13) may represent either conservation of x-momentum, of y-momentum, or of

energy depending on the choice of ¢.

3.3.6 Momentum Equations

When solving the x- or y-momentum equations, either ¢ =u or ¢=v. For either
choice, T'= u, the fluid viscosity. Because the diffusion coefficient is the same for
either choice of ¢=u or ¢=v, the flux coefficients will be identical for the x- and y-

momentum equations and will be denoted a"'. The source integrals will, in general, be
different.

For the current work, the source integrals for the momentum equations will
involve only the spatial derivatives of pressure as shown in Table 3-1 above. In this
method, oP/oxand oP/dy are considered constants for elements although they may
change values during the solution process. Writing the momentum equation in the form
of Eq.(3.13) using the notation discussed the following expressions for conservation of

x- and y-momentum for a CV associated with Node P are obtained.

nbe
as'u +Zanbunb Z{ ;XP A3 } X-momentum Eq.(3.14)

nbe
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apUp + D Ay, =
nb

nbe

{—ap A

- y-momentum Eq.(3.15)
75

3.3.7 Energy Equation

When solving the energy equation, ¢ =T and I'=k/c,. For the current work,

volumetric energy sources are not considered and the source integral from Eq.(3.12) is
identically zero. However, the application of known heat flux to the domain boundary

may result in a constant on the RHS of the equation denoted as c,. The flux coefficients

are denoted by a®. Writing the energy equation in the form of Eq.(3.13) using the
notation discussed the following expression for conservation of energy for a CV

associated with Node P is obtained.

agT,+> aiT, =C,  energy Eq.(3.16)

nb

3.3.8 Definition of Element Velocity

This section will present the definition of the element velocity used previously in
the derivation of the momentum and energy equations. It is necessary to define this
prior to discussing the method of solving for nodal pressures.

Beginning with the x-momentum equation Eq.(3.14) above, the RHS of Eq.(3.14)

may be rewritten in terms of the average pressure gradient over the CV.

ap'Uy + Y anu,, = AREA,, % Eq.(3.17)
nb

Cv

Solving Eq.(3.17) for the nodal velocity u, results in Eq.(3.18) below.
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oP
_Z arl:;)’unb AR EAbV 76)(
— nb

Up = — —¥ Eq.(3.18)
ap ap
For convenience, U, and d; are defined as follows
_Z arl:gunb
- ARE
U, =——— dy = uf‘v Eq.(3.19)
a’ a,
such that the nodal velocity may be written as
U, =U, +dp @® Eq.(3.20)
Xl

Eq.(3.20) represents the nodal velocity at Node P. The x-component of the
element velocity (0, ) is now defined by replacing the CV’s average pressure gradient
with the pressure gradient for Element E that contains Node P.

P
OX

G, =G, +d! { } Eq.(3.21)
E

While G,and d; have unique values at nodes in the domain, G,is valid only for

calculations performed within Element E.

By similar logic, the expression for the y-component of the element velocity (V)

may be developed as Eq.(3.22) below.

} Eq.(3.22)



32

Eq.(3.21) and Eq.(3.22) represent the x- and y-components of the element
velocity, respectively. Note that each is written in terms of the pressure gradient within

a particular element.

3.3.9 Solution for Nodal Pressure
Pressure is not a transported scalar. Therefore the method described above for

solution for ¢is not directly applicable to the solution for nodal pressures in the domain

of interest. Pressure P does not appear explicitly in the set of conservation equations for
CVs. For the incompressible flows of interest in the current work, there is no equation
of state to evaluate P.

The conservation of mass version of Eq.(3.6) together with the previously
defined element velocity components and a linear interpolation function for pressure
within an element will be used to write algebraic equations that have nodal pressures as
explicit unknowns.

By choosing ¢ =1in Eq.(3.6), the conservation of mass equation is obtained in

the form of Eq.(3.23) below.

j p(7-R)ds =0 Eq.(3.23)

Recall that V represents the element velocity vector, the components of which are
represented by Eq.(3.21) and Eq.(3.22) above. From these equations, it may be seen that
the components of the element velocity vector involve the spatial gradients of pressure

within elements.



33

A linear interpolation function of the form of Eq.(3.24) below is used for
pressure within an element.
P=Ax+By+C Eq.(3.24)

The spatial derivatives of pressure within the element are therefore as follows

S A= AR+ AP, + AP
a; Eq.(3.25)
o ~A-BRTBP+BP

The details of this derivation may be found in Appendix E.

The combination of using a linear interpolation function for pressure within an
element, the definition of element velocity, and the use of element velocity in the
expression for mass flux in Eq.(3.23) allow the mass flux to be written in terms of nodal
pressures rather than in terms of the spatial derivatives of nodal pressures. This allows
equations to be constructed for the solution of the unknown nodal pressures.

Once again, the flux integrations are performed on an element basis and the

resulting expressions assembled for a CV. The result is an equation of the form

a,P,+> a,P, =d, Eq.(3.26)
nb

representing conservation of mass for a CV in terms of the unknown nodal pressure

values at Node P and at each of the neighbor nodes.

3.3.10 Boundary Conditions and Solution Process
Typical boundary conditions for steady flow problems are specified u- and v-

velocity at the domain inlet, and zero u- and v-velocity at solid boundaries. For heat
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transfer problems, either temperature (T) or heat flux (¢") is specified along specified

boundaries. For boundary CVs, the integrated flux of a variable across the domain

boundary is added to the expression in the form of Eq.(3.13) or Eq.(3.26). The boundary

conditions are known numerically, so this process modifies the general source term b,
or d in these equations.

As stated earlier, conservation equations are assembled for each CV for each
field variable of interest (u, v, P, and T). The resulting sets of equations are solved
iteratively using a combination of the line-by-line procedure and the Tri-Diagonal
Matrix Algorithm (TDMA). The order of solution is determined by the SIMPLER

algorithm.

3.4 ESDIRK

The section above on CVFEM covered spatial discretization for steady flows.
This section will cover the temporal discretization necessary for solving unsteady
problems such as the oscillating flows of interest in the current work.

The method used for the current work is a semi-implicit Runge-Kutta method
known as an ESDIRK (Explicit first stage, Single diagonal coefficient, Diagonally
Implicit, Runge-Kutta) method. This method was used by ljaz [25] in developing his
SIMPLE DIRK method for solving unsteady combined flow and heat transfer problems.
SIMPLE DIRK combines the spatial discretization methods of SIMPLE [24] with the
temporal discretization methods of ESDIRK to create a method capable of arbitrarily

high order of accuracy.
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In the current work, the spatial discretization methods of CVFEM are combined
with the temporal discretization methods of ESDIRK to solve the unsteady problems of
interest. More specifically, a two-stage second-order ESDIRK is used. The ESDIRK is
well documented in the literature and a full mathematical development of the method is
beyond the scope of the current work. In this section, a simple geometric interpretation
of the two-stage second-order ESDIRK is presented and it is shown that the results from
the CVFEM spatial discretization may be incorporated into the unsteady equation.

In general, the unsteady equation of interest is of the form shown in Eq.(3.27)

below.

% =g(t,9) Eq.(3.27)

A solution for ¢ at some time (t+1) is required given that a solution at time (t) is known.

The function g(¢,t) may be interpreted as the slope of the¢ versus t curve. The mean

value theorem of calculus guarantees that for some average value of the slope (Q)

between time (t) and time (t+1), that the value of @at time (t+1) can be represented by
Eq.(3.28) below.

P =g+ AL Eq.(3.28)

The key is in estimating § . When working forward in time, the value of g at time (t) is

known, but the value of g at time (t+1) is not known.

For the two-stage second-order ESDIRK used in the current work, the average

slope is estimated by the arithmetic mean of the slopes at the beginning and at the end of

t+1 ¢

the time step. Thus, the solution for ¢ is given by the following equation.
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¢t =¢' +At E(gt+1 + 9‘)} Eq.(3.29)

The ESDIRK uses the known solution at time t to calculate the slope g'

explicitly. Therefore, in Eq.(3.29), ¢' and g'are known numerically. The unknown
slope at time (t+1) may be written as an expression including the unknown values of ¢
thus exposing them for solution. This process may be demonstrated by applying
Eq.(3.29) to the general transport equation in integral form.

Eq.(3.30) below is obtained by rearranging Eq.(3.4) from above, using the flux
vector based on the element velocity as given by Eq.(3.5), and including the unsteady

term that was ignored for CVFEM development above.

j_a(m’” dv = [T fids+ [ Sav Eq.(3.30)
o ot s cv

For constant fluid properties, the unsteady term may be integrated with respect to

volume to produce Eq.(3.31) below.

0f _ (rev
V —=—|J""ends+ | SdV Eq.(3.31
=] j q.(3.31)

The RHS of Eq.(3.31) may be recognized as a rearrangement of Eq.(3.6) above.
The spatial discretization techniques associated with CVFEM described above led to an
equivalent expression in terms of unknown nodal ¢ values and coefficients a,’s and by’s
as seen in Eq.(3.13). Substituting a rearranged Eq.(3.13) into Eq.(3.31) and dividing

both sides by pV , obtain Eq.(3.32) below is obtained.
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0y _ 1| _
Ry { {ap% +%anb nb}bp}_ 9(4,t) Eq.(3.32)

Eq.(3.32) represents the slope of the @(t) curve.

The slope at time (t) may be evaluated explicitly as a number based on the stored

solution at the beginning of the time step. Rewriting Eq.(3.29) by substituting Eq.(3.32)

for g' Eq.(3.33) is obtained.

=g sbay s bt Ta o) Eae
nb

Multiplying through by p—vland moving the unknowns to the LHS results in Eq.(3.34)

At =
2
below.
+ V + +1 st V 1
¢:}1 p_1+atpl +za;bl¢rt1bl - p_l {(15; +Atzg;}+b; Eq.(3.34)
AtE b AIE

This is the same as the steady flow equation with only two differences. The coefficient

of ¢;+1 Is modified as is the source term on the RHS of the equation.

The solution procedure is the same as developed for steady solutions using
CVFEM. Solution procedure at time (t) is as follows.

1) At the end of the previous time step, calculate and storeg,. This becomes
. :
g, for current time step.

2) Use steady solution routines to determine coefficients a and b, .
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3) Modify a, per Eq.(3.34).

4) Modify the source term per Eq.(3.34).

5) Solve using the same solver routines as for steady solution.

6) After convergence, calculate and store g, for the next time step.

3.5 Periodically Fully-Developed Flow and Double Cyclic Conditions
Double Cyclic (DC) conditions are a special case of Periodically Fully-
Developed (PFD) flow conditions. This section begins with a discussion of PFD

conditions followed by a discussion of DC conditions.

3.5.1 Periodically Fully Developed (PFD) Flow

Commonly, heat exchanger devices such as the ones of interest in the current
work exhibit regular geometric spacing of tubes or fins in the stream-wise direction
leading to the development of PFD flow conditions at some distance from the inlet.
Once developed, the PFD conditions persist until near the device exit. For such devices,
the majority of tubes or fins lie in flow modules exhibiting PFD conditions. Therefore,
the performance of such a device may be characterized by the flow and heat transfer
characteristics in a single PFD module. That the desired performance data may be
obtained from solution of a single PFD module means faster solution times and better
utilization of available computer resources.

Mathematical formulation of PFD flow and heat transfer is well established and
may be found in Patankar et al. [26] and Kim and Anand [27]. In this section, a brief

discussion of PFD conditions is presented followed by a discussion of how these
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conditions are implemented in the CVFEM code. In the discussion to follow, x
represents the stream-wise direction, Yy represents the cross-stream direction, and L
represents the length of the module.

In a periodically fully-developed flow domain, velocity profiles in the stream-
wise direction repeat themselves periodically and pressure drop per module length (5)

remains constant.

v(z,y) =v(z + Ly) = v(z +2L,y)--- Eq.(3.35)
8= P(a,y) - Plz + L,y) = constant

L

Pressure in a PFD module may be represented as a combination of global
pressure drop per module and local pressure variation P.
P(z,y) = —Bz + P(z,y) Eq.(3.36)

While pressure itself does not repeat with periodicity, the local pressure variation does.

A ~ A

P(z,y) = P(x + L,y) = P(x + 2L,y)--- Eq.(3.37)

In the CVFEM representation of the x- and y-momentum equations, the spatial

derivatives of pressure are included in the source term of the general transport equation

Eq.(3.1). By taking the spatial derivatives of pressure using Eq.(3.36), the following

expressions for the source terms in the conservation of x- and y-momentum equations are
obtained:

X-Momentum Source
or_, 0P E0.(3.39)
oz oz
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Y-Momentum Source
op_ o £0.(339)
dy dy

Both the x-momentum and y-momentum equations are therefore written in terms
of the spatial derivatives of the locally-varying pressure componentﬁ. The spatial
derivatives of pressure (P) do not appear explicitly in the equations. The x-momentum
equation includes a 3 term representing the global pressure gradient in the stream-wise
direction for the module.

For the case of specified wall heat flux, the temperature values do not repeat
module-to-module for neighboring PFD modules. Rather, the temperature differences
repeat from module to module and a global temperature gradient y in the stream-wise
direction may be defined for a PFD module of length (L) by performing a global energy

balance on a PFD module.

[T(33 + L,y) — Tz, y)] = [T(:L" +2L,y)—T(z + L, y)] ...
T(x+ Lyy)—T(z,y) _ Q Eq.(3.40)

L mc L
p

~y

In Eq.(3.40) Q is the total heat into (or out of) the module, mis the mass flow rate

through the module, and c is the fluid specific heat.
The temperature at any point (X, y) in the domain may be expressed in terms of a
global component involving <y and a locally varying component T as shown below.
T(x,y) = vyo + T(az, Y) Eq.(3.41)

The locally varying component 7' is periodic in the stream-wise direction.
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T(z,y) = T(x + L,y) = T(x + 2L,y)--- Eq.(3.42)
Substituting for T(x, y) in terms of the global temperature rise and local variation
components into the conservation of energy equation for 2D, steady, laminar flows, a

form involving v and 7T'is obtained. Two new source terms, each involving 7 are

revealed.

Energy Equation Source Terms

SlE = —pc,yu Eq.(3.43)
0
E __

The term —pc,Yu is an added source term involving the global temperature

gradient for the PFD module. The second added source term g(m) Is identically zero
T

if the thermal conductivity (k) is constant throughout the domain. This second source
term is important for domains including conducting solids such that the thermal
conductivity for the solid differs from the thermal conductivity for the fluid. (Kim and
Anand [27]). For the current work, the second source term may be ignored.

Thus, for a PFD solution, one does not solve for pressure (P) or temperature (T),

but rather for the locally-varying components Pand T. Table 3-2 below shows the

changes in ¢ and source terms.
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Table 3-2. Definitions of ¢,T", and S for PFD flow conditions

Conserved Quantity i) r S
Mass 1 0 0
X-Momentum u H B — 0P I ox
Y-Momentum % u P/ oy
Energy r
T k/ c, 0
—pc yu + —(lw)
ox

3.5.2 Double Cyclic Conditions

Double Cyclic conditions occur in a heat exchanger device like that shown in
Figure 2-3. There is a recurring geometric spacing of tubes in both the stream-wise and
cross-stream direction. A typical domain is shown in Figure 2-3. From the figure, it is
clear that the velocities along the top boundary of the domain must be the same as for the
bottom boundary of the domain. The pressures and temperatures are also identical along
the transverse boundaries. However, in the stream-wise direction, PFD conditions exist
as described above.

Many times, for cases like these, symmetry is applied at the transverse
boundaries. Symmetric conditions are a special case of Double Cyclic conditions. In a
domain with repeating geometric features in both stream-wise and cross-stream
directions, the boundaries of the module considered for solution are arbitrary as long as
the module repeats. So, for example one may choose a transverse line that is a line of
symmetry and symmetric conditions may be applied. Double Cyclic conditions are more

general in that the choice of transverse boundary need not lie along a line of symmetry.
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A CVFEM code to implement the above conditions was developed. Rather than

A

solving for u, v, P, and T, the DC version of the code provides the solution for u, v, P,

and 7' for a single DC module. The DC code is based on an existing code which
implements the standard CVFEM algorithms described above. The required code
modifications include the addition of the source terms for the momentum and energy
equations as explained above in reference to PFD conditions and the implementation of
repeating conditions on the transverse boundaries. The Cyclic Tri-Diagonal Matrix
Algorithm (CTDMA) is used in the iterative solver when operating on either rows of
nodes aligned in the stream-wise direction or on columns of nodes aligned in the cross-
stream direction.

Solution for a DC module involves first specifying a value of 3 and solving the
flow problem for u, v, and P . Next, the flow solution is used to calculate 7 for the
domain and the specified heat flux is used to calculate Q. EQq.(3.40) may then be used to
calculate . The solution process concludes with the solution for the T field. Note that
for the PFD solution, ( is specified rather than velocity. Because of this, Reynolds

numbers cannot be explicitly specified.
3.6 Parameter Definitions

3.6.1 Reynolds Number
The Reynolds number is calculated using the average u-velocity at the inlet of the

module as shown by Eq.(3.44) below.
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Re — 2 Pnlinier Eq.(3.44)

Y7,

In Eq.(3.44), module hydraulic diameter (D, ) is taken as twice the module height (H ).

Also, p and u represent the fluid density and viscosity, respectively.

3.6.2 Friction Factor for PFD/DC Solution
The current work involves calculating friction factor and Nusselt number for the
flow and temperature fields associated with the cases of interest. However, with the DC

code, the solution does not actually involve pressure or temperature. Rather, the solution

is in terms of the locally varying components P and Tsubject to a specified value of 5.

Therefore, friction factor and Nusselt number must be defined in terms of Fand T.

The friction factor ( f ) may be defined as follows:

f 5(132/ ? Eq.(3.45)
Pl

The friction factor definition in Eq.(3.45) is used for compatibility with Zhang et al.
[14]. In this equation, g is the specified global pressure drop and D, is the hydraulic

diameter.

3.6.3 Bulk Temperature and Nusselt Number for PFD/DC Solution
Calculating the Nusselt number requires calculating the bulk temperature at
cross-stream sections of the domain. Because these flows may exhibit recirculation, the

definition of bulk temperature is modified to include the absolute value of velocity rather
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than simply the velocity itself. For the case of DC flow with specified surface heat flux,
the solution process yields the 7' field rather than the (T) field. Therefore, the
fluctuating component of the bulk temperature Tb is defined in terms of 7' rather than in

terms of (T).

f T(w,y)|U(:v,y)|dy
T (z) = Eq.(3.46)
I f [u(z, )| dy
Yy
The Nusselt number is defined as follows:
1
q"D
Nu(z) = — <
@ |7 (x) = T, () k Eq.(3.47)

In EQ.(3.47), k is the fluid conductivity. It can be shown that Nu defined in Eq.(3.47) in

terms of fluctuating temperatures Ts and Tbis directly comparable to the standard

definition in terms of actual temperatures 7 and 7, .

3.6.4 Strouhal Number

The Strouhal number representing non-dimensional frequency of oscillation was
defined in the current work to be compatible with Zhang et al. [14]. This was used for
oscillations of u- and v-velocity at points of interest in the domain. Given the u versus
time or v versus time data, the period of oscillation was found by computing the time
between peaks. The frequency of oscillation was computed as the reciprocal of the

period. The Strouhal number (Str) was then calculated using Eq.(3.48) below.
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(freq) D,
U

Str = Eq.(3.48)

inlet

Here, D,;, is the minor diameter of the flat tube.

3.6.5 Non-Dimensional Pumping Power
In this work, one of the measures of cost of operation for the heat exchanger
devices of interest is pumping power. Amon and Mikic [10] used a dimensionless

pumping power (® ) defined as follows.

3 /dp\ Vh*
O = z<d—§> " Eq.(3.49)

This same expression appears as non-dimensional viscous dissipation in Karniakis et al.

[28]. In EQ.(3.49), <$> is equivalent to the global pressure gradient g in the current
X

work. Also, V is equivalent to T, and h is equivalent to the domain height H.

Amon and Mikic [10] used the definition of ® above to compare cases of varying
flow conditions for fixed domain geometry. For the current work, however, there are
nine combinations of domain length and height. A definition for non-dimensional
pumping power that takes into account the varying geometry is required. The new
definition is obtained by starting with an expression for the dimensional pumping power.
Pumping power was defined as the product of the required pressure drop to sustain the
flow, the average flow velocity at the inlet, and the cross-sectional area of the domain.

Pumping Power = AP T, A Eq.(3.50)
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For these Double Cyclic domains, AP = gLand A, = HW where W is the width

of the domain which is taken as 1 for 2D. Therefore, the dimensional pumping power
may be written as follows.

Pumping Power = gu. . LH Eq.(3.51)

inlet

This may be rewritten in terms of the friction factor ( f ) from Eq.(3.45) above.

Pumping Power = f pT;, L Eq.(3.52)

This may then be non-dimensionalized using fluid properties and the tube minor

diameter D, .

f Uiilet I—Dmin
== 3

Eq.(3.53)

|4
Eq.(3.53) represents the non-dimensional pumping power for the cases of interest. Even
with varying L and H, plots of this non-dimensional quantity retain the trends shown
with the dimensional quantity. This was not true of the definition used by Amon an

Mikic [10].

3.6.6 Tube Drag Coefficients

Skin friction and pressure drag were calculated for each tube for each time step
of solution. The values of each were then time-averaged and presented in the form of
non-dimensional coefficients.

The non-dimensional skin friction coefficient (C, ... ) was based on the time-

D,skin

averaged skin friction (z,), the average inlet velocity (uZ.), and the tube minor

inle

diameter (D_. ) as shown in Eq.(3.54) below.

min
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Z_-/

D

Co «in S Eq.(3.54)
ou

inlet

The non-dimensional pressure drag coefficient (C ) was based on the time-

D, press

averaged pressure drag (drag . ), the average inlet velocity (u?), and the tube minor

diameter (D, ) as shown in Eq.(3.55) below.
drag press
C —— /P Eq.(3.55)
D, press ,OUizmet A\ 9.
Both C, , and C, ., are presented in the data tables in Section 5. It should be

noted that while there are two tube surfaces present in each DC domain used for
analysis, that the above coefficients are based on the skin friction and pressure drag of

one tube only. The time-average values are identical for each of the two tubes.
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4. CODE VALIDATION*

The first version of the computer code was developed to solve steady, developing
flow problems. Next, versions of the steady code were developed which implemented
periodically fully-developed (PFD) flow conditions and Double Cyclic (DC) flow
conditions. Finally, unsteady versions of developing flow, PFD, and DC codes were
developed. At each step in development, the code was tested against published or
theoretical results. For this section, selected validation results involving Poiseiulle flow
and tubes in cross-flow are presented as these topics relate directly to the current work.
Also in this section is a discussion of previously published work involving use of the

steady versions of the code.

4.1 Steady Validation

Many validation runs were performed with the steady code during development.
Classic validation problems such as the driven cavity and backward facing step were
used. In each case, the code produced results that compared well with published results
or theory.

As part of the work for the publication of Fullerton and Anand [5], a problem
involving tubes in cross-flow between parallel flat plates was solved and the results
compared to previously published results for the same domain geometry and flow

conditions. Figure 4-1 shows the domain which consists of five regularly spaced round

*Part of this section is reprinted with permission from “Periodically Fully-Developed
Flow and Heat Transfer over Flat and Oval Tubes Using a Control Volume Finite-
Element Method” by T.L. Fullerton and N.K. Anand, 2010. Numerical Heat Transfer,
Part A, vol. 57, pp. 642-665, Copyright 2010 by Taylor & Francis Group, LLC.
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tubes confined between parallel plates. There is also an entry and exit region.
Periodically fully-developed conditions were not imposed for this validation effort.
Rather, a developing flow version of the code was used. The results, however, indicate
that PFD conditions develop downstream from the entry region due to the regularly
spaced flow interruptions. Table 4-1 shows a comparison of average Nusselt numbers
using the CVFEM code compared to computed results from Kundu et al. [29] and

Bahaidarah et al. [4]. These results demonstrate good agreement.

Entry Exit
Length HEM#1 HEM#2 HEM#3 HEM#4 HEM#5 Length
[
| Oroo
|

OO, 1+
e a |

—

Figure 4-1. Computational domain for steady, developing-flow code validation.

L L L L L

Table 4-1. Comparison of average Nusselt numbers

HEM#2 HEM#3 HEM#4

Re 50

Kundu et al. [29] 9.4 9.4 9.8

Bahaidarah et al. [4] 9.23 9.23 9.23

Fullerton&Anand [5] 9.24 9.24 9.24
Re 200

Kundu et al. [29] 125 12.6 12.8

Bahaidarah et al. [4] 12.44 12.43 12.42

Fullerton&Anand [5] 12.50 12.46 12.45

A steady PFD version of the code was developed for use in collecting data for the
publication of [5] and [30]. As part of the validation effort for [5], the PFD code was

used to solve 2D Poiseiulle flow for the case of constant specified wall heat flux for
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several meshes of increasing density. As the mesh density increased, the Nusselt
number approached the theoretical value of 140/17~2.235. The finest mesh used
produced a Nusselt number of 2.234 along both the top and bottom walls which is within
0.04% of the theoretical value.

As part of the work for [30], results were obtained for Poiseiulle flow with
specified constant wall temperature. The subject of [30] was the development of a new
method whereby the constant wall temperature problem could be solved using PFD flow
conditions without solving the eigenvalue problem for temperature. For this problem,
the flow is characterized by the product of friction factor and Reynolds number (fRe)
which should converge to a value of 96. The heat transfer is characterized by a Nusselt
number value of 7.54. Table 4-2 shows the flow results for several Reynolds number
values. In each case, the quantity (fRe/96) is a value of 1.000 to three decimal places.
Table 4-2 also shows Nusselt number values that are 7.54 to two decimal places. Both
the flow and heat transfer results indicate good agreement with theoretical values for the

steady PFD code.

Table 4-2. Flow results for parallel plate example

Nominal Re Calculated Re f (fRe)/96 Nu
100 99.896 0.961 1.000 7.543
150 150.132 0.640 1.000 7.542
200 199.791 0.481 1.000 7.542
250 250.028 0.384 1.000 7.542
300 299.975 0.320 1.000 7.542
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4.2 Unsteady Validation

The first validation effort with the unsteady code was to replicate the driven
cavity results from ljaz [25] . The CVFEM results and the results of ljaz closely
matched.

An attempt was made using the unsteady CVFEM code to recreate the results
presented by Zhang et al. [14] for the staggered configuration of rectangular tubes. For
this exercise, no attempt at establishing grid independence was made. Rather, a mesh
was built for use with the CVFEM code with the same number of nodes as the mesh
used in the Zhang et al. [14] study. Figure 4-2(a) and Figure 4-2(b) below show friction
factor versus Reynolds number and j-factor versus Reynolds number, respectively, for
both the Zhang results and for the current work. The j-factor is a measure of heat

transfer defined by the following equation.

j= N Eq.(4.1)

In Eq.(4.1), <Nu>is the time-averaged Nusselt number, Re is the time-averaged

Reynolds number, and Pr is the Prandtl number. The exponent of 0.4 is for fully
developed flow.

Figure 4-2(a) and Figure 4-2(b) represent good agreement between the two sets
of data. Good agreement was also obtained with the integrated values of skin friction
and pressure drag on the tube between the two sets of results, as well as the Strouhal
numbers. One difference in the results was that the Zhang et al. [14] data shows an

increase of Strouhal number from 0.15 to 0.16 to 0.17 with increasing Reynolds number
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for the range of Reynolds numbers tested. Results with the CVFEM code showed a
smaller increase in Strouhal number from 0.153 to 0.164 over the same range of
Reynolds numbers tested. This difference between the two sets of results may be due to
the coarseness of the mesh used for the CVFEM solutions. As indicated above, no
attempt was made to establish grid independence for this exercise. As will be seen
below in the discussion of the results of the current work, there is a variation of Strouhal

number with Reynolds number for many of the cases considered.
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0.055 ; A Current Work 1 A Current Work
] ——Zhang etal. [12] 0025 4 —— Zhang etal. [12]
0.050 |
5 0045 0.020
g C .
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g | "= 0,010
L 00304 ]
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Figure 4-2. Comparison of current work to Zhang et al. [14] for rectangular tubes: (a) friction factor versus Reynolds
number; (b) j factor versus Reynolds number.
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4.3  Previously Published Work

4.3.1 Fullerton and Anand [5]

A journal article entitled “Periodically Fully-Developed Flow and Heat Transfer
Over Flat and Oval Tubes Using A Control Volume Finite-Element Method” was
published in Numerical Heat Transfer, Part A in 2010. [5] This article appears in its
entirety in Appendix A of this document. What follows is a description of the work
performed and a brief summary of relevant results.

For this work, the steady version of the CVFEM code was used along with
imposed PFD conditions for a numerical study of the performance of flat and oval tubes
as compared to the performance of round tubes in a heat exchanger device. Each two-
dimensional domain consisted of a single tube confined between two insulated parallel
plates. Figure 4-3 shows the geometry of the computational domains studied. Once the
diameter of the round tube was selected, the shapes of the flat and oval tubes were
selected such that the perimeter of all tubes would be equal. This also ensured that the
heat transfer area was the same for each domain given that constant heat flux was
specified on the surface of each tube.

For each of the computational domains shown in Figure 4-3, steady, laminar, 2D,
constant-property solutions were obtained for Reynolds number range of 50-350 for two

different fluids of Prandtl number 0.7 and 7.0.
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Figure 4-3. Computational domain geometries for Fullerton and Anand [5]:
(a) round tube; (b) flat tube; (c) oval tube.

In comparing the performance of flat and oval tubes to that of round tubes under

similar conditions, two parameters were used. The heat transfer enhancement ratio (

Nu™) was used for comparison on the basis of heat transfer performance alone.

+ Nuavg,noncircular
Nu* = TR Eq.(4.2)

avg,round

In Eq.(4.2), Nu,, represents the average Nu along the perimeter of the top half
of any of the three tube shapes for matching Reynolds numbers.

The second performance parameter, the heat transfer performance ratio (Nu")
takes into account not only the heat transfer performance, but the required pumping
power to maintain the flow.

NU = Nu Eq.(4.3)

1/3
I: fflat or oval / fround :'
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In Eq.(4.3), Nu™ is the heat transfer enhancement ratio from above, and f is the friction
factor. The denominator is proportional to the required pumping power for a flat or oval

tube domain to that required of a round tube domain at the same Reynolds number.

Figure 4-4 and Figure 4-5 show plots of Nu*and Nu’for Prandtl number 0.7 and
7.0. These plots show that for all cases considered, the heat transfer enhancement ratio
is less than one meaning that the round tube outperforms both the flat and the oval tube
on the basis of heat transfer only. However, the heat transfer performance ratio is
greater than one for all cases considered meaning that if both heat transfer and required
pumping power are considered, then both the flat and oval tubes outperform the round

tube.
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Figure 4-4. Heat transfer enhancement ratio versus Reynolds number for Fullerton and Anand [5]:
(@) Pr=0.7; (b) Pr=7.0.
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Figure 4-5. Heat transfer performance ratio versus Reynolds number for Fullerton and Anand [5]:
(a) Pr=0.7; (b) Pr=7.0.

4.3.2 Fullerton and Anand [30]

A journal article entitled “An alternative approach to study periodically fully-
developed flow and heat transfer problems subject to isothermal heating conditions” was
published in International Journal of Engineering Science in 2010. [30] The subject of
this paper is a method of solving the PFD heat transfer problem with constant specified
wall temperature without solving an eigenvalue problem. [26]

Periodically fully-developed flow conditions are fully described in Patankar et al.
[26]. Section 3.5.1 in this document gives a summary of PFD conditions including a
discussion of the periodic condition for the heat transfer problem when constant wall

heat flux is specified. For that case, the temperature may be expressed in terms of a
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global component involving 7y and a locally varying component T as seen in Eq.(3.41).

Solution may then proceed using standard methods except solving for 7" instead of T.

For the case of specified wall temperature, however, the PFD solution for
temperature involves the solution of an eigenvalue problem involving both the unknown
temperature at each node in the domain and the unknown bulk temperature at each
stream-wise location in the domain. Keeping in mind that PFD conditions arise from
having a series of equally-spaced geometric features in the stream-wise direction, many
researchers have chosen to not use PFD conditions to solve the problem. Instead, they
use a developing flow (DF) code with a domain consisting of several identical modules
connected inlet-to-outlet. PFD conditions are not imposed for solution, but periodicity
may be recognized by monitoring the values of flow parameters and heat transfer
parameters in the modules. A DF solution of a multi-module domain produces the same
result as a PFD solution, but with the penalty of solving a much larger domain.

In Fullerton and Anand [30], the authors present an alternative approach to
solving the case of specified wall temperature under PFD conditions. The method may
be viewed as a hybrid approach between the two methods described above. This
alternative method involves first obtaining a PFD solution for the flow field in a single-
module domain. The temperature solution is then obtained with a DF code by first
importing the PFD flow solution into each module of a multi-module DF domain. Thus,
the flow field in the DF code is represented by the exact PFD solution and need not be

solved using the DF code. The temperature solution may then be obtained in the usual
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way and a PFD temperature module may be identified from the resulting solution. This

process is shown diagrammatically in Figure 4-6.

I—I Solve
flow with

-im* O single
l | module

and PFD

Copy
PFD
flow

solution
to each
module

= [0[0l0]010] &
L y,
'

Monitor Nusselt number to
find PFD module

Figure 4-6. Diagram describing the alternative method.

Both of the solution methods discussed above should produce valid results.
Setting up the specified wall temperature problem as an eigenvector problem has the
advantage of requiring only a single-module domain. It does, however, involve extra
code for the solution. It should be noted that the authors (Fullerton and Anand) have not
attempted this type of solution. The DF solution approach has the advantage of not
imposing PFD conditions, but, assuming that one is interested only in the performance in
a PFD module, the solution must be obtained for a domain that is much larger than the

actual domain of interest. This is of particular disadvantage in that the flow field must
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be solved for such a large domain. For both approaches, solution of the flow field is
much more time consuming than solution of the temperature field.

The alternative approach obviates the need to address the eigenvalue problem at
the expense of having to produce the flow and temperature solutions in separate
processes. Compared to a regular DF solution, the alternative approach eliminates the
need to solve the flow problem for multi-module domains when one is generally only
interested in the solution at a PFD module.

The alternative approach to solving the PFD specified wall temperature problems
was tested using two CVFEM codes: one for the PFD flow problem, and one for the DF
temperature problem. It should be noted that while testing used CVFEM codes, the
method is not dependent on using CVFEM. It may be used with other finite difference
or finite volume methods to solve combined flow and heat transfer problems.

One problem for which the alternative approach was tested was flow in a parallel
plate channel with staggered plate fins. The domain of interest is shown in Figure 4-7.
Several researchers have studied this problem using a variety of analysis techniques.
Kelkar et al. [31] used a control volume technique as presented in Patankar [24]. Kelkar
et al. [31] not only imposed PFD conditions for both the flow problem and the heat
transfer problem, they also took advantage of the inverted symmetry in the domain to
recast the PFD conditions for solution of only one-half of the PFD module. Santos and
de Lemos [32] studied the problem for both solid and porous baffles using a control
volume technique and the SIMPLE algorithm. Webb and Ramadhyani [33] studied

conjugate heat transfer for different fin heights using a control volume technique and the
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SIMPLER algorithm. Nonino and Comini [34] studied the problem in the context of
several spatially periodic domains of varying geometry using a finite element technique.
Cheng and Huang [35] studied the problem for various fin configurations for the case of
the two plates at different constant temperatures.

Figure 4-8 shows a comparison of friction factor versus Reynolds number from
the various sources and from the current work using the CVFEM. Figure 4-8 shows the
spread of data among the various sources. The results in the current work show good
agreement for Re up to approximately 200, but show that (f Re)/96 increases at a
higher rate with increasing Reynolds number at Re>200 as compared to the other
methods. Since the (f Re)/96 values closely match at lower Reynolds numbers, it may
be assumed that the flow solutions are comparable. At higher Reynolds numbers, the
fact that the (f Re)/96 values do not match indicates that the current method does not
match the flow solutions of the other methods.

Figure 4-9 shows a comparison of Nu versus Re from various sources and from

the current work. Nu is a module average Nusselt number. At the lower Re values, the
values of Nucompare well. However, for the current work, the Nu values increase at a
faster rate with increasing Re. This is due to differences in the flow solution at these

Re values. At lower Re, where the friction factor matches well, the corresponding Nu

also matches.
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Figure 4-7. Staggered plate domains for Fullerton and Anand [30]: (a) PFD flow domain;

(b) DF temperature domain.
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5. RESULTS AND DISCUSSION

As stated in previous sections, the primary interest of the current work is the flow
and heat transfer performance of staggered arrays of flat tubes operating in flow regimes
exhibiting laminar, self-sustained oscillations. In this section, the geometry of the
domains of interest and the CVFEM meshes for those domains are described. Results of
grid and time step independence are presented followed by a description of procedures
involved in the solution process for both the unsteady and steady solutions obtained.
Results are presented in both tabular and graphical form describing characteristics of

flow and heat transfer for the cases considered.

5.1 Domain Geometry

Figure 5-1 shows an array of flat tubes in a staggered configuration. As
discussed above, there is no interest in entrance or exit effects in the current work, so the
analysis domain may be limited to the shaded region shown and DC conditions may be
imposed. The choice of domain is not unique, but the domain chosen must include the
surfaces of two tubes. The domain shown was chosen for convenience in that the
transverse boundaries lie along lines of symmetry. Checking that y-velocities along a
stream-wise line of symmetry approach zero value is useful as a check for the code.

Figure 5-1 shows the parameters defining the shape of the flat tube. The overall
length of the tube is Dpsj and the height is Dmin. The shape of the flat tube is such that
the end curves are full-radius curves. The tube aspect ratio (AR) is defined as the ratio of

major diameter to minor diameter as shown below.
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AR=D,, /D Eq.(4.4)

min

For the current work, the tube ratio AR was maintained at a constant value of AR=6.0 for

all domains considered.

| - Gpr

Gapr

:)J/ T

Typical Domain
Figure 5-1. Computational domain geometry: staggered array of flat tubes.

Figure 5-1 also shows the definition of the geometric parameters used to define

the array geometry. The spacing between tubes is defined by the longitudinal pitch (P.)

and transverse pitch (P1). The distance between columns of tubes is defined as Gap, and

the distance between rows of tubes is defined as Gapy. For convenience, the non-

dimensional longitudinal and transverse pitches, S, and St, respectively, are defined as
shown below.

S, =P, /D

S, =R /D Eq.(4.5)

min min
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Nine unique domain geometries were chosen for the current work. The flat tube
geometry is fixed for all nine at AR=6.0, but the longitudinal and transverse spacing are
varied. Table 5-1 presents the definition of each domain geometry in terms of
longitudinal and transverse spacing as well as in terms of the gaps between tubes. The
variation in S and St is created by varying the gaps between columns and rows. Both
Gap. and Gapr vary starting from Dpi, and increasing in increments of Dpi, /2 to a

maximum of 2Dpin.

Table 5-1. Definition of domain geometries

Domain Name S St Gap, Gapy
SL7 ST2 7 2 Duin Dhin
SL7.5 ST2 75 2 3Dpin2 Dhnin
SL8 ST2 8 2 2D pin Dhin
SL7 ST2.5 7 2.5 Dhin 3Dpyin/2
SL7.5 ST2.5 75 2.5 3Dpin2 3Dpin2
SL8 ST2.5 8 25 2Dpin 3Dpin2
SL7 ST3 7 3 Duin 2D
SL7.5 ST3 75 3 3Dpin/2 2D pin
SL8 ST3 8 3 2D pin 2D i

52 CVFEM Mesh

A computer code was developed to provide the CVFEM mesh for each of the
domains of interest. The term mesh here refers to the triangular element mesh required
by the CVFEM.

The mesh geometry is fully defined by specification of Dmin, AR, S, and Sr. The

coarseness/fineness of the mesh is determined by a parameter @, specified in degrees.

arc

0,,. determines the length of the equal-length chords that approximate the curved end of

each tube. The number of chord segments is determined by 180°/9, . such that @, is the

arc
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included angle for each chord. Once this chord length has been determined, it is used as
a base length for the remainder of the mesh. Throughout the domain, except in
proximity of the curved tube ends, the base length is used as the element edge length.
Near the tube, a region of finer elements with edge length one-half the base length is
used to provide better grid resolution for the calculation of spatial derivatives.

Figure 5-2 shows a typical mesh. Each element is a right triangle and the nodes
are arranged along lines of constant x and constant y. The mesh definition is
communicated from the mesher code to the CVFEM code through a set of text files. The
NodeFile is a listing of {Node Number, x, y} representing the location of the nodes. The
ElementFile is a listing of {Element Number, N1, N2, N3} where N1, N2, and N3 are
the node numbers of the element’s three nodes. There are also files TubelFile and
Tube2File that are listings of nodes along the surface of each of the two tubes in the
domain. The listing starts with a node at a specific location and lists nodes in order as
one travels along the surface in a counterclockwise fashion. These tube node listings are
used when performing calculations for Nusselt number, skin friction, and pressure drag

along the tube surfaces.
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Figure 5-2. Typical CVFEM element mesh.

5.3 Grid Independence Study

For the current work, the cases of interest involve laminar oscillatory flow in the
transition regime between steady laminar flow and fully turbulent flow. For the chosen
geometry, a maximum Reynolds number of 2000 was chosen to avoid the turbulent
regime. To determine grid independence for the current work, two domains were used:
SL7 ST2 and SL8 ST3. SL7 _ST2 is the domain with minimum S_ and minimum Sr.
SL8 ST3 is the domain with maximum S, and maximum Sy. Figure 5-3 shows these
two domains plotted to scale for comparison. For each of these two domains, a solution
at Re~2000 was obtained with a coarse mesh. Subsequent solutions were then
obtained with finer meshes while monitoring the values of certain flow and heat transfer
parameters. Once the parameter values had stopped changing within reasonable limits,

the grid independence exercise was stopped.
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Figure 5-3. Comparison of domains used for grid independence study: (a) SL7_ST2; (b) SL8_ST3.

Table 5-2 shows the description of the SL7 _ST2 meshes used for the grid
independence study in terms of the number of elements, nodes, rows, and columns. A

different seed value of &, was used for each mesh. Using the coarsest mesh, it was

determined by a series of solutions that 8 =4.0produced Re~2000. The same g value

was used for the solutions with the other meshes.

Table 5-2. Description of SL7_ST2 meshes for grid independence study

arc

Model #ELEM #NODE #Rows #Cols #Tube (deg)
SL7 _ST2 26 21152 11011 65 197 176 15
SL7_ST2_25 44872 23083 93 293 264 10
SL7_ST2 27 84608 43175 129 393 352 7.5

SL7_ST2_28 128664 65423 157 493 444 6
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For each solution at #=4.0, Re, Nu, and friction factor (f) were determined.

Table 5-3 shows the data from all of the SL7 _ST2 grid independence solutions. The
percent difference for each parameter is calculated with respect to the parameter value
for the solution using the finest mesh, assuming that that is closest to the ideal solution.
The solution time given in the last column is the number of clock hours of solving time
required per one second of solution time. For Re =~ 2000, five seconds of solution time
were required to obtain repeating oscillations. Table 5-3 shows that the flow parameters,
Re and f, are both within 1.5% of the finest mesh value on the coarsest mesh used.
However, the Nu for the coarsest mesh was 27% lower than that for the finest mesh. The
Nu at the third mesh, SL7_ST2_ 27, is within 4.1% of the finest model. Based on this
data, it was decided to use SL7ST2_27 for the study. Note that this choice represents

35% fewer elements and a savings of over one-half the required solution time than for

SL7_ST2 28.
Table 5-3. Grid independence results: SL7_ST2 at § = 4.0
Solution
Time

Model Re %ARe f %Af Nu %ANu (hr/sec)
SL7_ST2 26 2030.9 -0.7% 0.045367 1.4% 40.43 -27.0% 0.392
SL7_ST2 25 2035.8 -0.4% 0.045146 0.9% 47.31 -14.6% 1.22
SL7_ST2_27 2042.4 -0.1% 0.044859 0.2% 53.15 -4.1% 3.32
SL7 ST2 28 Iy g [ — (RO — TR e — 6.84

The same procedure as described above for SL7_ST2 was used for the grid
independence study for SL8 ST3. Table 5-4 shows the mesh description of all the

SL8_ST3 meshes used. For this domain geometry, it was determined that g =1.25
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produced Re ~ 2000. Table 5-5 shows the grid independence solution data. Based on
the data, SL8 ST 12 was chosen. This choice represents 39% fewer elements and

solution time savings of over 50% compared to SL8_ST3 13.

Table 5-4. Description of SL8_ST3 meshes for grid independence study

Model #ELEM #NODE #Rows #Cols #Tube (d:;)
SL8 ST3 10 34336 17643 93 209 176 15
SL8 ST3 11 79624 40531 141 317 264 10
SL8 ST3 12 138816 70363 185 421 352 7.5
SL8 ST3_13 226264 114343 237 533 444 6

Table 5-5. Grid independence results: SL8_ST3 at f =1.25

Solution
Time
Model Re %ARe f %Af Nu %ANuU (hr/sec)
SL8 ST3_10 1968.5 0.02274 0.050932 0.047165 50.78 -0.09644 0.66
SL8 ST3 11 1981.1 0.01648 0.050282 0.033801 56.53 0.005872 2.2
SL8 ST3 12 1998.3 0.00794 0.04942 0.016078 56.88 0.0121 5.4
SL8 ST3 13 PN [— 0.048638 | --------- ) — 11.2

Using the two domain geometries representing the extremes in size, meshes were
chosen for each that were built with the seed value of 6, =7.5°. Therefore, the seed
value of 6, =7.5"was used for the remaining seven meshes in the nine-mesh set.

Table 5-6 lists the characteristics of the meshes used for all nine domain

geometries. From this point forward, the model names will include only the S_ and St
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values. For example, the chosen meshes from above, SL7_ST2 27 and SL8_ST3 12

will be referred to as SL7_ST2 and SL8_ST3, respectively, from this point forward.

Table 5-6. Description of meshes for all computational domains

Model #ELEM | #NODE | #Rows | #Cols #Tube 0, (deg)
SL7_ST2 84608 43175 129 393 352 7.5
SL7 ST2.5 106560 | 54179 157 393 352 75
SL7 ST3 128512 | 65183 185 393 352 7.5
SL7.5 ST2 85440 43603 125 409 352 75
SL7.5 ST25 111552 | 56691 157 409 352 75
SL7.5 ST3 134400 | 68143 185 409 352 7.5
SL8 ST2 88416 45103 125 421 352 75
SL8 ST2.5 115296 | 58575 157 421 352 7.5
SL8 ST3 138816 | 70363 185 421 352 75

5.4 Time Step Independence

Based on the experience gained in replicating the Zhang et al. [14] results as
described above, the geometric dimensions of the domains were chosen such that at the
maximum Reynolds number the highest expected frequency was 40 Hz or less. Based
on Zhang et al. [14] and Mujamdar and Amon [9], among others, the cases were
expected to produce only one primary frequency of interest. For the expected 40 Hz
maximum frequency, a time step of t=0.001s provides 25 time steps to resolve one
period of oscillation. For lower frequencies, a time step of t=0.001s provides even
more time steps to resolve one period of oscillation. Therefore, t=0.001swas
considered more than sufficient for the current work and a time step of t =0.001s was

used for all cases.
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As a check, some cases were solved with smaller time step oft =0.0001s. The
resulting parameter values were well within 0.5% of the corresponding values for a
t =0.001s solution at the cost of more than doubling the solution time. This data is not

included here.

5.5 Unsteady Solutions

For each of the nine domain geometries of interest, a series of solutions was
obtained by varying the global pressure gradient 5.

For each geometry, the procedure began with a series of solutions using a coarse

mesh to establish a gvalue to produce Re=2000. (For the two grid independence

cases, this g value had already been established.) Using a coarse mesh saved solution
time as compared to the prospect of using the finer 6, = 7.5 mesh. Once this value of
L was determined, a solution was obtained using a 6, = 7.5" mesh at this g value. After

that, values of B were chosen to produce Re<2000. If oscillations were observed, the

solution was allowed to continue until the oscillations became repeating and average
parameter values stopped changing within reasonable limits.  There was no

predetermined list of g values for each domain and each domain had its unique list of

values. The values used are not listed here. Instead, these values will appear below in
the detailed discussion of results.

For oscillating cases, values for Re, f, and Nu were saved for each time step.
Time-averaged values of these quantities were obtained post solution. The values for u-

velocity and v-velocity were saved at each time step for one node in the domain. This
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node is located along the upper transverse boundary aligned with the center of the flat
tube. The node is in the same relative position for each geometric domain. Using the u-
velocity and v-velocity data from this node, the frequency of oscillation and peak-to-
peak magnitude of the oscillations could be obtained. These values are listed in the
tables below. The frequency value obtained in this way is representative of the flow in
the entire domain although there are phase differences between oscillations at different

points.

5.5.1 Note on Required Solution Times

Most of the solutions for the current work were obtained using a desktop PC
having an Intel Xeon processor chip with eight processors. OpenMP directives were
used to take advantage of the multiple processors available for parallel computing. On
the PC, test runs were done using two, three, four, five, and six processors and solution
times were compared to the non-parallel solution. Solution times decreased for the case
of two, three, and four processors, but increased for the case of five and six processors as
compared to the non-parallel solution time. This result indicates that for the problem
being solved, the overhead required to set up parallel execution directives outweighs the
decrease in solution time for the five and six processor case. Similar results were
obtained on the Texas A&M Supercomputer. For the case of four processors, solution
was approximately 2.5 times faster than the non-parallel solution. OpenMP directives
specifying the use of four processors were used for all cases.

SL8 ST3 is the largest mesh used in the current work at 138816 elements. This

is relatively small compared to some CFD codes due to use of DC conditions. For a
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larger mesh with, say, one million elements, the extra overhead involved in setting up
the OpenMP directives for five, six, or more processors may have resulted in an overall
decrease in solution time.

The grid independence effort using SL8_ST3, as shown above, required 27 hrs of
clock time to obtain 5 seconds worth of solution time. For lower g values, this amount
of time increases substantially. For example, at g =0.375the SL8_ST3 geometry
required over 80 hours of clock time to obtain 15 seconds worth of solution time. For
this case, the oscillations did not become cyclic until t=15 seconds.

In all, the unsteady solutions for the current work required over 2000 hours of

clock time for solution.

5.5.2 Tabular Listing of Unsteady Results

Table 5-7, Table 5-8, and Table 5-9 present the unsteady results for the SL7,
SL7.5, and SL8 cases respectively. As a set, these three tables present all the unsteady
data.

Each table presents values for stream-wise pressure gradient (3), Reynolds

number (Re), friction factor (f), Strouhal number (Str), normalized oscillation amplitude

(PTP), tube skin friction coefficient (C, .. ), tube pressure drag coefficient (C

D,skin D, press )’
percent tube skin friction, percent tube pressure drag, non-dimensional pumping power (
w ) and Nusselt number (Nu). B was chosen as an input to the solution process. The

values for Re, y and Nu are time-averaged values over an integral number of periods of

oscillation. For each case, skin friction drag and pressure drag on each tube surface were
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calculated at each time step. The time-averages of each were added to produce a total.

In addition to the non-dimensional coefficients C and C the tables present the

D,skin D, press !

percentage of that total that skin and pressure drag each represents. PTP is the peak-to-
peak amplitude of the u-velocity normalized by the time-averaged u-velocity at the node
location described above. The data associated with Rei; is shaded in each table for each

domain geometry. Determination of Re; is discussed below in Section 5.7.

5.5.3 Notes on Unsteady Solution Characteristics

This section provides information on the characteristics of the unsteady solutions
obtained. The remarks here say little about the actual physics of the problem and more
about the solution method and boundary conditions.

Each unsteady solution was started at t=0 with all fluid velocities set to zero

(quiescent fluid). Comparing two oscillatory solutions, one with g, and the other with
B, such that g, > £, then the £, solution will begin oscillating earlier than £, solution

in solution time. Figure 5-4 shows a plot of u-velocity versus time for two such
solutions.

Another characteristic of these unsteady solutions is that the Reynolds number
approaches a steady value prior to the onset of oscillations. After oscillations begin, the

Reynolds number decreases to a new average value. For the cases above, with g, > 5, ,

the percent change in average Re is higher for the higher s case as shown in Figure 5-5.



Table 5-7. Unsteady data for SL7 cases

— Skin Pressure
SL7 ST2 B Re f Str PTP D, skin D, press Friction Drag v Nu
1.711 1157.8 0.0604 0.18 0.13 58% 42% 6.83E+08 31.0
2.000 1273.3 0.0577 0.124 0.13 0.16 0.13 56% 44% 8.69E+08 34.4
3.000 1673.9 0.0501 0.123 0.21 0.13 0.12 51% 49% 1.71E+09 46.7
4.000 2042.4 0.0449 0.123 0.24 0.11 0.12 48% 52% 2.79E+09 53.3
— Skin Pressure
SL7_ST2.5 B Re f Str PTP D skin D, press Friction Drag v Nu
0.589 765.2 0.0966 0.31 0.20 61% 39% 1.62E+08 29.8
0.875 981.8 0.0829 0.140 0.18 0.25 0.19 57% 43% 2.93E+08 39.3
1.250 1265.5 0.0713 0.139 0.23 0.21 0.18 54% 46% 5.39E+08 49.2
1.750 1613.7 0.0614 0.136 0.26 0.17 0.16 51% 49% 9.63E+08 53.6
2.000 17775 0.0578 0.137 0.27 0.15 0.16 50% 50% 1.21E+09 54.1
2.400 2027.8 0.0533 0.134 0.28 0.14 0.15 48% 52% 1.66E+09 54.6
— Skin Pressure
SL7 ST3 B Re f Str PTP D skin D, press Friction Drag v Nu
0.350 724.6 0.1091 0.37 0.23 62% 38% 8.97E+07 29.5
0.500 914.8 0.0943 0.151 0.14 0.31 0.22 59% 41% 1.56E+08 37.2
0.750 1230.8 0.0782 0.148 0.18 0.24 0.19 55% 45% 3.15E+08 46.9
1.000 1519.9 0.0683 0.146 0.20 0.20 0.18 53% 47% 5.18E+08 53.7
1.250 1786.4 0.0618 0.144 0.23 0.17 0.17 51% 49% 7.62E+08 57.7
1.500 2035.3 0.0572 0.139 0.25 0.15 0.16 49% 51% 1.04E+09 59.4

LL



Table 5-8. Unsteady data for SL7.5 cases

S Skin Pressure
SL7.5_ST2 B Re f Str PTP D skin D, press Friction Drag v Nu
1.592 1176.9 0.0549 0.17 0.13 57% 43% 7.00E+08 315
2.000 1353.8 0.0511 0.114 0.16 0.16 0.13 55% 45% 9.90E+08 37.1
2.500 1570.7 0.0474 0.114 0.21 0.14 0.12 53% 47% 1.44E+09 44.1
3.000 1776.1 0.0445 0.112 0.25 0.12 0.12 51% 49% 1.95E+09 49.2
3.500 19724 0.0421 0.114 0.27 0.11 0.12 49% 51% 2.52E+09 51.5
- Skin Pressure
SL7.5 ST25 B Re f Str PTP DT D press Friction Drag v Nu
0.542 770.1 0.0865 0.30 0.20 61% 39% 1.58E+08 30.3
0.750 944.7 0.0768 0.128 0.18 0.26 0.19 58% 42% 2.59E+08 379
1.000 1155.0 0.0685 0.127 0.23 0.22 0.18 55% 45% 4.22E+08 46.1
1.500 1541.2 0.0577 0.127 0.29 0.17 0.16 52% 48% 8.45E+08 514
1.800 1755.6 0.0534 0.125 0.31 0.16 0.15 50% 50% 1.15E+09 51.7
2.200 2025.6 0.0490 0.125 0.33 0.14 0.15 48% 52% 1.63E+09 52.1
— Skin Pressure
SL7.5 ST3 B Re f Str PTP D skin D, press Friction Drag Y Nu
0.309 721.6 0.0994 0.37 0.23 62% 38% 8.64E+07 30.0
0.500 978.0 0.0825 0.139 0.17 0.29 0.21 58% 42% 1.79E+08 40.5
0.750 1314.4 0.0685 0.137 0.21 0.22 0.19 54% 46% 3.60E+08 50.1
1.000 1620.5 0.0601 0.134 0.23 0.19 0.17 52% 48% 5.92E+08 55.5
1.375 2037.2 0.0523 0.132 0.27 0.15 0.16 49% 51% 1.02E+09 58.6

8.



Table 5-9. Unsteady data for SL8 cases

— Skin Pressure
SL8_ST2 B Re f Str PTP D skin D, press Friction Drag v Nu
1.524 1191.3 0.0505 0.000 0.17 0.13 57% 43% 7.11E+08 32.0
1.750 1298.3 0.0486 0.106 0.14 0.16 0.13 55% 45% 8.86E+08 35.3
2.000 1416.5 0.0466 0.106 0.18 0.15 0.13 54% 46% 1.10E+09 39.1
2.500 1640.0 0.0435 0.104 0.24 0.13 0.13 51% 49% 1.60E+09 46.1
2.875 1798.2 0.0416 0.105 0.28 0.12 0.12 50% 50% 2.02E+09 48.9
3.250 1948.9 0.0400 0.105 0.31 0.12 0.12 49% 51% 2.47E+09 49.6
= Skin Pressure
SL8 ST2.5 B Re f Str PTP D.skin D, press Friction Drag v Nu
0.513 787.5 0.0783 0.000 0.29 0.19 60% 40% 1.63E+08 30.8
0.750 994.3 0.0693 0.120 0.21 0.25 0.19 57% 43% 2.91E+08 40.4
1.000 1212.7 0.0621 0.118 0.27 0.21 0.18 55% 45% 4.73E+08 474
1.500 1605.8 0.0532 0.117 0.36 0.17 0.16 51% 49% 9.39E+08 49.1
2.000 1949.4 0.0481 0.117 0.43 0.15 0.16 49% 51% 1.52E+09 49.7
— Skin Pressure
SL8 ST3 B Re f Str PTP D skin D, press Friction Drag v Nu
0.282 724.3 0.0903 0.000 0.36 0.23 61% 39% 8.47E+07 30.6
0.500 1030.8 0.0743 0.128 0.20 0.27 0.21 57% 43% 2.01E+08 43.7
0.750 1382.9 0.0619 0.126 0.25 0.22 0.18 54% 46% 4.04E+08 52.2
1.000 1702.9 0.0544 0.124 0.27 0.18 0.17 51% 49% 6.64E+08 55.4
1.250 1998.4 0.0494 0.123 0.30 0.16 0.16 49% 51% 9.74E+08 57.2

6.
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Figure 5-5. Reynolds number versus time for two values of 3 .

The fact that smaller values of g (and therefore smaller Re) lead to much longer

solution times presents a problem in determining Reci.. Cases near Reg; are very

expensive to run in terms of computer resources. Since Regit is unknown ahead of time,
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at some time in the solution process one cannot be certain whether a particular case
demonstrates steady, non-oscillatory behavior or has simply not yet reached the onset of
oscillations. For example, in Figure 5-4, if one were to check the solution for the

B =0.375case at t=8s, one may decide that this represents a steady, non-oscillatory case

based on the data from t=0s to t=8s.
That fact that the Re drop decreases as the Re; is approached was used to set a

limit on the number of solutions obtained for each geometry. As smaller and smaller g

values were used, once an oscillating solution was found such that the percentage change
in the “steady” Re and average oscillating Re was approximately 5%, no more solutions

were obtained.

5.6 Steady Solutions

A version of the CVFEM code was developed which produced pseudo-steady
solutions for a range of Re starting at Re<Re.: and overlapping the Re range producing
self-sustained oscillations. The term pseudo-steady here refers to the fact that these
solutions were obtained with a modified version of the unsteady code with the main
difference being that symmetry was enforced along the stream-wise centerline of the
domain.  Applying symmetry in this way effectively prevents oscillations from

developing [15]. In this way, a “steady” solution may be obtained for a f case that is

known to produce an oscillatory flow with the unmodified unsteady code. These

solutions are used as a comparison with the oscillatory solutions.
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The code used to produce pseudo-steady solutions for Re>Rei; produces true
steady solutions for Re<Re; that match the solutions produced by the steady version of
the code. It should be noted that the steady code used in validation is unable to produce
a solution for SSOF cases. The solution will diverge. The pseudo-steady solution is
based on the unsteady code which parcels out the source term in small increments

allowing the solution to continue to convergence.

5.6.1 Tabular Listing of Steady Results

Table 5-10, Table 5-11, and Table 5-12 present the steady results for the SL7,
SL7.5, and SL8 cases, respectively. As a set, these three tables present all the steady
data.

Each table presents values for stream-wise pressure gradient (), Reynolds

number (Re), friction factor (f), tube skin friction coefficient (C, .. ), tube pressure drag

D,skin

coefficient (C ), percent tube skin friction, percent tube pressure drag, non-

D, press

dimensional pumping power (y ) and Nusselt number (Nu). S was chosen as an input to
the solution process. For pvalues producing Re<Rec, these solutions are truly steady

solutions. For pvalues producing Re>Re_., these solutions are pseudo-steady as

crit ?
discussed above. As these are not oscillatory solutions, there is no Str or PTP value
listed for each case. The data associated with Rec is shaded in each table for each

domain geometry.



Table 5-10. Steady data for SL7 cases
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c S_kip Pressure
SL7_ST2 B Re f DLl p.pess  Friction Drag v Nu

1.000 745.0 0.0843 0.26 0.16 62% 38% 2.54E+08 31.0
1500 1033.2 0.0657 0.20 0.14 59% 41% 5.29E+08 30.9
1.711 1157.8 0.0604 0.18 0.13 58% 42% 6.83E+08 31.0
1.750 1169.6 0.0598 0.18 0.13 58% 42% 6.98E+08 31.0
2.000 1302.1 0.0552 0.16 0.12 56% 44% 8.88E+08 31.1
3.000 1802.3 0.0432 0.12 0.10 53% 47% 1.84E+09 314

c S_ki_n Pressure

SL7 ST25 | B Re f D, skin p.press  Friction Drag v Nu

0.500 652.2 0.1074 0.36 0.22 62% 38% 1.11E+08 29.7
0.589 765.2  0.0966 0.31 0.20 61% 39% 1.62E+08 29.8
0.750 908.7 0.0830 0.26 0.18 59% 41% 2.32E+08 30.0
0.875 1030.5 0.0753 0.24 0.17 58% 42% 3.08E+08 30.2
1.250 1378.0 0.0601 0.18 0.14 56% 44% 5.88E+08 30.7
1.750 1811.8 0.0487 0.14 0.12 53% 47% 1.08E+09 31.1
2.000 2019.4 0.0448 0.12 0.12 52% 48% 1.38E+09 31.3
2400 23414 0.0400 0.11 0.11 50% 50% 1.92E+09 305

c S_ki_n Pressure

SL7 ST3 | B Re f D.skin p.pess  Friction Drag v Nu

0.200 4458  0.1589 0.57 0.31 65% 35% 3.04E+07 28.9
0.300 624.1 0.1216 0.42 0.25 63% 37% 6.39E+07 29.3
0350 724.6 0.1091 0.37 0.23 62% 38% 8.97E+07 29.5
0.400 79138 0.1007 0.34 0.22 61% 39% 1.08E+08 29.7
0500 952.0 0.0871 0.29 0.20 60% 40% 1.62E+08 30.0
0.750 1329.8 0.0670 0.21 0.16 57% 43% 3.40E+08 30.7
1.000 1684.8 0.0556 0.17 0.14 55% 45% 5.75E+08 31.1
1.250 2023.2 0.0482 0.14 0.13 53% 47% 8.63E+08 31.4
1500 2348.6 0.0429 0.13 0.12 52% 48% 1.20E+09 31.7




Table 5-11. Steady data for SL7.5 cases
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c S_kip Pressure
SL7.5_ST2 B Re f DLl p.pess  Friction Drag |4 Nu

1.000 803.0 0.0725 0.25 0.16 61% 39% 2.93E+08 31.3
1500 1118.8 0.0568 0.18 0.13 58% 42% 6.21E+08 31.4
1592 11769 0.0549 0.17 0.13 57% 43% 7.00E+08 315
2.000 1399.8 0.0478 0.15 0.12 56% 44% 1.02E+09 31.7
2500 1673.1 0.0418 0.12 0.11 54% 46% 1.53E+09 32.0
3.000 19354 0.0375 0.11 0.10 52% 48% 2.12E+09 323
3.500 2188.8 0.0342 0.10 0.09 51% 49% 2.80E+09 32.5

c S_kip Pressure

SL7.5 ST2.5 B Re f D.skin ppess  Friction Drag v Nu

0.250 403.0 0.1406 0.53 0.29 65% 35% 3.68E+07 29.9
0.500 708.4 0.0910 0.33 0.20 62% 38% 1.29E+08 30.2
0542 770.1  0.0865 0.30 0.20 61% 39% 1.58E+08 30.3
0.750 984.8 0.0707 0.24 0.17 59% 41% 2.70E+08 30.7
1.000 12434 0.0591 0.20 0.15 57% 43% 454E+08 31.1
1500 1727.0 0.0459 0.14 0.12 53% 47% 9.46E+08 31.8
1.800 2001.8 0.0410 0.12 0.12 52% 48% 1.32E+09 321
2.200 2355.0 0.0362 0.11 0.11 50% 50% 1.89E+09 324

c S_kip Pressure

SL7.5 ST3 B Re f D, skin ppress  Friction Drag Y Nu

0.100 274.8 0.2090 0.84 0.41 67% 33% 1.00E+07 29.0
0.200 486.0  0.1337 0.52 0.29 64% 36% 3.55E+07 294
0.300 678.3 0.1029 0.39 0.23 62% 38% 7.43E+07 29.9
0.309 721.6 0.0994 0.37 0.23 62% 38% 8.64E+07 30.0
0.500 1031.2 0.0742 0.26 0.18 59% 41% 1.88E+08 30.8
0.750 14374 0.0573 0.19 0.15 56% 44% 3.94E+08 315
1.000 1819.0 0.0477 0.16 0.13 54% 46% 6.65E+08 32.0
1.375 2359.6 0.0390 0.12 0.11 52% 48% 1.19E+09 32.6




Table 5-12. Steady data for SL8 cases
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c S_kil_‘l Pressure
SL8_ST2 B Re f B p.pess  Friction Drag v Nu
1.000 8484  0.0650 0.23 0.16 60% 40% 3.31E+08  31.7
1500 1172.6 0.0510 0.17 0.13 57% 43% 6.85E+08  32.0
1524 11913 0.0505 0.17 0.13 57% 43% 7.11E+08  32.0
1.750 13259 0.0466 0.16 0.12 56% 44% 9.05E+08 32.2
2.000 14746 0.0430 0.14 0.12 54% 46% 1.15E+09 324
2500 17613 0.0377 0.12 0.11 53% 47% 1.72E+09  32.8
2.875 19685 0.0347 0.11 0.10 51% 49% 2.21E+09  33.0
3.250 2170.2 0.0323 0.10 0.10 50% 50% 2.75E+09  33.2
c S_,kip Pressure
SL8 ST2.5 B Re f D, skin p.press  Friction Drag v Nu
0.250 4305 0.1232 0.50 0.28 64% 36% 4.19E+07  30.1
0.500 7541 0.0803 0.31 0.20 61% 39% 1.47E+08  30.7
0513 7875 0.0783 0.29 0.19 60% 40% 1.63E+08  30.8
0.750 1046.2 0.0626 0.23 0.17 58% 42% 3.06E+08  31.3
1.000 1319.4 0.0525 0.18 0.15 56% 44% 5.14E+08 31.9
1500 1829.8 0.0409 0.14 0.12 53% 47% 1.07E+09  32.7
2.000 2308.2 0.0343 0.11 0.11 50% 50% 1.80E+09  33.2
c S_kil_‘l Pressure
SL8 ST3 B Re f D, skin p.press  Friction Drag Y Nu
0.100 2955 0.1808 0.78 0.39 67% 33% 1.15E+07 29.1
0.282 7243 0.0903 0.36 0.23 61% 39% 8.47E+07  30.6
0.300 7247  0.0902 0.36 0.23 61% 39% 8.48E+07  30.6
0.500 1098.7 0.0654 0.25 0.18 58% 42% 2.14E+08 316
0.750 1528.8 0.0507 0.18 0.15 55% 45% 4.47E+08 324
1.000 1932.8 0.0423 0.15 0.13 53% 47% 7.54E+08 329
1.250 2318.2 0.0367 0.12 0.12 51% 49% 1.13E+09 334
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5.7 Estimation of Re_,

There are at least two ways to approach the problem of determining Reg; for
these cases. One would be to perform linear or nonlinear stability analysis. The other
would be a more empirical approach where cases were run to bracket the value of Regit
and then as many cases as necessary could be run to determine the value of Regi; to
whatever precision is desired.

Performing linear or nonlinear stability analysis is beyond the scope of the
current work. This was used on the grooved channel problem and communicating
channel problem where the stability analysis was actually performed on plane channel
flow, a more straightforward problem than the current one. It is not clear how applicable
the plane channel stability results would be to double cyclic staggered configuration of
flat tubes.

The empirical approach of bracketing the value is also untenable. As discussed
above, as one approaches Re: from above, that is from cases with oscillations to lower

Re, the time to reach the onset of oscillations increases exponentially. Performing
several solutions with small negative increments of £ is out of the question. Coming the
other direction from known steady solutions with increasing S values, one has no way
of knowing at a particular time in the solution process whether a specific case is steady
or simply has not run long enough to exhibit oscillations.

At the critical point, the solution bifurcates from a steady, laminar solution to an
unsteady, oscillatory solution as Reynolds number is increased from a known steady

solution. The critical point should therefore be a solution to both the steady problem and
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the unsteady problem. The approach here is to predict the intersection point of the Re
versus S curves from both the unsteady and steady data to estimate a value of Re; for a
given case. More specifically, the pseudo-steady Re versus S data were used along
with the unsteady data. The pseudo-steady and steady data form continuous curves, so
either set of data could be used. However, the pseudo-steady data were used because the
Reynolds number range closely matches that of the unsteady data.

Figure 5-6 shows the pseudo-steady and unsteady Re versus S curves for a
typical case. The relationship between Re and g is not linear as seen in the figure. One
option would be to curve fit each curve and then determine from the curve fit equations
the predicted intersection of the curves. However, with so few data points, the curve fits
are not likely to be very accurate. Instead, for the current work, the two points from
each data set for lowest Re and B were used to create a linear curve fit for each curve
and then the intersection point is determined. This is akin to assuming that the slope of
the curve at low Re is equal to the slope of the line formed by these two points.

After the determination of Rec; for each geometric domain, a pseudo data point
was created whereby values for Nu, f, v, and other parameters were determined using
linear regression with the existing steady data set. This new pseudo data point is then
included as the first point in the unsteady data for that domain. (See Table 5-7, Table
5-8, and Table 5-9 above.) Using this pseudo point data helps to illustrate some of the
characteristics of the data in that it represents the intersection of steady, laminar plot and

unsteady, oscillatory plot.
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Figure 5-6. Estimation of Re  from steady and unsteady S v. Re curves.

Table 5-13 lists the estimated Rec; for each domain considered. The value
shown is rounded to tens-place accuracy. The value shown in parentheses is the
calculated value using the curve fit method. Note that along constant St with increasing
S, the values of Recit show a slight increase (less than 3%) for ST2 and ST2.5. For ST3,
the value of Rect is constant within the uncertainty of the values. However, along
constant S_ with increasing St, the values of Regi: show a substantial decrease. From
ST2 to ST3 along SL8, there is a 40% decrease in Reqit. Even considering the
uncertainty involved in determining these values, this trend is clear. As the transverse

spacing of tubes increases, the flow becomes destabilized at a lower Regyit.
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Table 5-13. Estimated values of Re;

SL7 SL75 SL8

ST2 1160 (1157.8) 1180 (1176.9) 1190 (1191.3)
ST25 770 (765.2) 770 (770.1) 790 (787.5)
ST3 720 (724.6) 720 (721.6) 720 (724.3)

5.8 Discussion of Flow Results

5.8.1 General Characterization of the Flow Oscillations

There were several cases for each geometry that demonstrated self-sustained
oscillations. Table 5-7, Table 5-8, and Table 5-9 above list the data for each of these
cases. While the main emphasis of the current work is the effect of oscillatory flow on
heat transfer and pumping power, it is worth noting some characteristic trends shown in
the Strouhal number and in the PTP data.

In general, for a given geometry, the frequency of oscillation increases with
increasing Re while the Strouhal number decreases with increasing Re. For the ST2
cases, the Strouhal number remains relatively constant for each domain with increasing
Re showing a decrease of less than 2% from Re.i; to Re = 2000. However, for the ST2.5
and ST3 cases, the Strouhal number decreases approximately 4% and 8%, respectively,
from Regit to Re = 2000. For the set of domain geometries, for constant S, the Strouhal
number increases with increasing St. For constant Sy, the Strouhal number decreases

with increasing S, .
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In general, the PTP u-velocity increases with increasing Re for each domain

geometry. Asthe PTP is associated with an isolated point in each domain, these results
cannot be compared across the different domain geometries.

The overall trend for any particular geometry is for frequency of oscillation to

increase, Strouhal number to decrease, and PTP to increase with increasing Re.

5.8.2 Skin Friction and Pressure Drag

Skin friction and pressure drag on the flat tubes were calculated for each steady
and unsteady case. Tables 5.7 through 5.12 list the percentage of the total that may be
attributed to each for all unsteady and steady cases.

For all cases, the steady data show approximately 60% skin friction and 40%
pressure drag. After the onset of oscillations, both skin friction and pressure drag
increase, but the percentage of skin friction decreases while the percentage of pressure
drag increases. In general, for all cases, at approximately Re = 2000, the skin friction is
approximately equal to the pressure drag. This is an indication that these cases lie well

within laminar range atRe ., =2000. In the turbulent regime, the pressure drag is

expected to dominate the skin friction.

While both skin friction and pressure drag show increases with increasing

Reynolds number, the reported non-dimensional coefficients C, ., and C show

D, press
decreases. This is due to the definitions of these parameters as given in Section 3.6.6.
With increasing Reynolds number, the average inlet velocity (u. ., ) also increases. Bult,

the square of T, . appears in the denominator for each coefficient definition and the
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value of T2 rises faster than the force value. This leads to a decrease in coefficient

inlet
values even though the drag force values are rising.

As described in Section 3.6.6, the integrated values for skin friction and for
pressure drag on the flat tubes were obtained at each time step. The Strouhal number
reported in Table 5-7, Table 5-8, and Table 5-9 is the non-dimensional frequency
associated with u- and v-velocity. The oscillation frequency of both the integrated skin
friction and pressure drag is twice the oscillation frequency of velocity. This is due to
the fact that even though the velocity components at every node in the domain oscillate
at the same frequency, there are phase shifts between the u- and v-velocity at each point
and between the u-velocity at all points and the v-velocity at all points. At a given time
step, the sum of the skin friction and pressure drag also oscillates at a frequency twice

that of the primary variables.

5.8.3 Stream Function Plots

Figure 5-7 shows a series of six plots of the stream function during one period
(7)) of oscillation for SL7.5_ST2.5 at Re=2025.6. These plots are typical of the cases
studied for the current work.

In Figure 5-7, dark blue represents negative values of the stream function while
dark red represents positive values of the stream function. Therefore, blue and red
represent opposite-hand rotation in the figures. The series of figures shows the shedding

of pairs of opposite-hand rotating vortices from the tubes.
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5.8.4 Pumping Power

Figure 5-8 shows non-dimensional pumping power (y ) versus Reynolds number
for all cases grouped by constant transverse spacing. In Figure 5-8, parts (a), (b), and
(c) represent constant transverse spacing ST2, ST2.5, and ST3, respectively. Note that
even though S varies for a given Sr, there is very little variation in pumping power. The
curves are virtually indistinguishable in the plot.

Figure 5-9 shows non-dimensional pumping power (y ) versus Reynolds number
for all cases grouped by constant longitudinal spacing. In Figure 5-9, parts (a), (b), and
(c) represent constant longitudinal spacing SL7, SL7.5, and SL3, respectively. For these
plots, the steady and unsteady data are plotted with different symbols. Here, there is a
clear difference in pumping power with changing Sy for constant S.. The more compact
geometry ST2 requires more pumping power to produce a given Reynolds number than
for ST2.5 or ST3. As an example, for the SL7 cases at Re ~ 2000, the ST2 configuration
w is 68% higher than for ST2.5 and 168% higher than for ST3. If y is used as a cost
indicator, then it is clearly more costly to operate the more compact geometry at a given

Reynolds number.



Figure 5-7. Stream function plots for one period of oscillation (7 ) for SL7.5_ST2.5 at Re=2025.6.
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Figure 5-8. Non-dimensional pumping power (i ) versus Reynolds number: constant Sy plots.
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5.9 Discussion of Heat Transfer Results

The Nusselt number data appear in the tables above for both steady and unsteady
cases. The general trend is for constant St , the Nu decreases slightly (on the order of
3%) with increasing S.. However, for constant S, there is significant increase in Nu as
St as increases. Figure 5-10 shows Nu versus Re for the unsteady SL7.5 cases. The plot
is representative of the other two S_ values, as well. Comparing ST2 to ST3, a
significant increase in Nu at all Re is observed. The ST2.5 case shows different
behavior. It closely tracks the curve for ST3 data until Re 1200, then is almost flat
showing little increase in Nu with increasing Re.

Figure 5-11 shows Nu versus Re for unsteady, steady, and pseudo-steady cases
for SL7.5_ST2.5 geometry. Regi: lies at the intersection of the three plots. The steady
the solutions are true

data for Re > Re_. are pseudo-steady solutions. ForRe < Re

crit crit ?
steady solutions and the curve is flat indicating very little rise in Nu with increasing Re.

For Re=Re_. toRe ~1500, there is an approximate 65% increase in Nu with respect to

crit
pseudo-steady solutions. Recall that the pseudo-steady solutions are obtained with a
modified unsteady code for which flow oscillations are prevented from occurring. The
65% difference in Nu for the unsteady and pseudo-steady curves therefore represents the
effect of flow oscillations on Nusselt number. For Re>1500, the Nu shows little
change with increasing Re. Figure 5-11 is typical of the other domains as well except

that for the SL7.5_ST2.5 geometry, the unsteady curve flattens out more quickly than for

the other geometries.
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Figure 5-11. Nusselt number versus Reynolds number for SL7.5_ST2.5: unsteady and steady data.
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5.10 Discussion of Combined Flow and Heat Transfer

As discussed above, non-dimensional pumping power () is used in the current

work as an indication of cost of operation. The intended use of the flat tube heat
exchanger devices considered in the current work is to transfer energy from one fluid to
another. The purpose of the current work is to shed light upon which combination of
geometry and operating conditions can produce the highest rate of heat transfer at the

lowest cost. With these considerations in mind, a plot of y versus Nusselt number is a

plot of cost versus benefit.

Figure 5-12 shows  versus Nusselt number on semi-log scales for all cases
grouped by constant transverse spacing. In Figure 5-12, parts (a), (b), and (c) represent
constant transverse spacing ST2, ST2.5, and ST3, respectively. The three plots for
Figure 5-12 are very similar. Each shows a near-vertical section at low Reynolds
numbers that corresponds to true steady flow. A vertical line on these plots indicates
that an increase in pumping power is not accompanied by an increase in Nu. Essentially,
there is no benefit for the added cost. This is followed by a section corresponding to
unsteady, oscillatory flow which shows steady increase in Nu for the added cost of
higher v . Forthe ST2.5 and ST3 plots, the plot indicates the beginning of another near-
vertical section at the higher Nu values shown. This is more pronounced for the ST2.5
plot. This indicates that there is a Re range between Rei; and another higher Re that the
oscillatory flow demonstrates benefits by producing higher Nu for relatively modest

increases iny . This will then be followed by a Re range where pumping power will
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increase with little increase in Nu. Presumably, this region of the curve is a precursor to
the turbulent flow regime.

Figure 5-13 shows  versus Nusselt number on semi-log scales for all cases
grouped by constant longitudinal spacing. In Figure 5-13, parts (a), (b), and (c)
represent constant longitudinal spacing SL7, SL7.5, and SL8, respectively. These plots
show that for the geometries tested, the more compact ST2 geometries require more
pumping power to deliver the same Nu as compared to the ST2.5 and ST3 geometries.
As an example, for the SL7 cases at Nu =53, the ST2 configuration y is 189% higher
than for ST2.5 and 437% higher than for ST3. Similar y requirements are indicated for
the SL2.5 and SL8 cases as well.

For one case, SL7.5_ST2.5, additional data were collected to show the shape of
the y versus Nu curve at higher and at lower Re values. Figure 5-14 shows the plot of
this data on semi-log scales similar to Figure 5-12 and Figure 5-13. The oscillatory
unsteady data was extended to Re =2822. Higher Re solutions were attempted, but the
solutions diverged. Some steady Re data was also added at lower Reynolds numbers.
The curve in Figure 5-14 shows four distinct regions. Region 1 shows that for very low
Reynolds number flows, the flow is steady laminar flow and there is a positive slope on
the curve indicating that as pumping power is increased, there is a corresponding

increase in Nu. Region 2 is a near-vertical section that is steady flow at Re < Re In

crit *

Region 2, there is little change in the Nu for the increase in . Region 3 begins at the

critical point and shows a steady increase in Nu for increasedy as Reynolds number
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increases. Region 4 shows an increase in the slope of the curve indicating more
pumping power required for modest Nu gains. It is expected that with similar extensions
of the data sets, the curves for the other eight domains would look similar to that of
Figure 5-14.

Two additional figures show the steady and unsteady regions of Figure 5-14
separately on linear-linear scales. Figure 5-15 shows the two steady regions, while
Figure 5-16 shows the two unsteady regions.

Figure 5-15 shows the near-vertical Region 2 clearly. In this steady-flow region,
the Nusselt number shows an increase from 29.8 to 30.3 (1.7% increase) for a ten-fold
increase in the required pumping power. Based on this data, operation in this steady-
flow region should be avoided.

Figure 5-16 shows that in the first section of unsteady Region 3, the Nusselt
number increases from 30.3 to 46.1 (52% increase) for 2.6 times increase in required
pumping power. Operation in this region is desired because the flow oscillations
produce higher Reynolds numbers for moderate increases in required pumping power.

Figure 5-16 also shows the near-vertical unsteady Region 4. In Region 4, the
Nusselt number increases from 51.2 to 54.9 (7% increase) for a 4.5 times increase in
required pumping power. Operating in this region, one sees an increase in Nusselt
number, but at higher cost than seen in Region 3.

Based on the extended data for SL7.5_ST2.5, operation in Region 3 shown in
Figure 5-14 or Figure 5-16 is most effective on a cost/benefit basis. This region begins

at the critical point where oscillatory flow begins and extends to beginning of Region 4.
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Figure 5-14. Non-dimensional pumping power (i ) versus Nusselt number: SL7.5_ST2.5 (Extended).
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6. SUMMARY

Numerical simulations of flat tube heat exchanger devices operating in flow
regimes in which self-sustained oscillations occur were performed. These unsteady flow
regimes represent transition flow regimes between steady, laminar flow and fully
turbulent flow for the domains studied. The oscillations observed were cyclic in that the
values of flow parameters such as stream-wise or cross-stream velocity at a point varied
with time in a repeating manner.

A computer code was developed to perform the numerical simulations. Spatial
discretization was based upon a Control Volume Finite Element Method (CVFEM).
Temporal discretization was based upon an ESDIRK, a semi-implicit Runge-Kutta
method. Double Cyclic conditions were used to limit the numerical domains to one
module.

Nine geometric domains representing flat tube heat exchanger devices were
defined and tested over a range of Reynolds numbers. Three values of longitudinal tube
spacing (Sp) and three values of transverse tube spacing (St) were used to define the nine
domain geometries. A maximum Reynolds number (Re) of 2000 was established to
keep the study well within the transition range. For each unique domain a critical
Reynolds number (Recrit) was found such that for Re< Regi the flow was steady, laminar
flow and for Re> Regi; the flow exhibited cyclic oscillations.

For each domain, numerical solutions for several cases of unsteady flow, steady

flow, and pseudo-steady flow were obtained. The global pressure gradient (3) was

chosen for each solution. For each unsteady solution, data were collected corresponding
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to Reynolds number (Re), friction factor (f), Strouhal number (Str), normalized

oscillation amplitude (PTP ), tube skin friction coefficient (C, ), tube pressure drag

coefficient (C ), percent tube skin friction, percent tube pressure drag, non-

D, press

dimensional pumping power (y ) and Nusselt number (Nu). For each steady or pseudo-
steady solution, data were collected for the same parameters except for Strouhal number

(Str) and normalized oscillation amplitude (PTP ) as these two pertain only to unsteady
flows.

There were several general trends in the data that were identified. First, the
results showed little variation with changing longitudinal spacing (S.), but significant
variation with changes in the transverse spacing (St) for the cases studied. For

oscillating cases for the same domain geometry, both the frequency of oscillation and the

peak-to-peak magnitude of oscillation for primary variables u, v, T, and P increased
with increasing Reynolds number.

The frequency of oscillation for integrated skin friction and pressure drag was
twice the frequency for the primary parameters. This is due to the fact that even though
primary variables oscillate at the same frequency for all nodes in the domain, there are
phase shifts in the oscillations from one location to another. Also, the sum of the
integrated skin friction and pressure drag representing the time varying force on the tube
also oscillates at a frequency twice that of the primary variables.

A method of estimating Reci: was presented. The underlying assumption to this

method is that Regi; lies on both the unsteady and pseudo-steady Re versus S curves.
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The critical Reynolds number was lower for larger values of the transverse spacing (Sr)
meaning that the least compact geometry leads to destabilization of the flow at a lower
Reynolds number for the cases studied.

The data indicate that flow oscillations are responsible for significant increases in
Nusselt number compared to pseudo-steady solutions for the same Reynolds number.
The results underscore the importance of identifying Reci; prior to performing numerical
analysis for domains such as these. For cases of interest where Re<Rei, Steady
analysis may be used and symmetry may be applied along the stream-wise centerline of
the domain. However, for Re>Re;, unsteady analysis must be performed without
imposing symmetry and the solution must be carried past the onset of oscillations to the
point where the oscillations are cyclic in order to achieve accurate results. Large errors
in predicted Nusselt number would occur if one used steady analysis for one of these
unsteady cases.

The data for pumping power versus Nusselt number show four operating regions
with differing characteristics. The results indicate that operation in Region 3 coinciding
with self-sustained oscillations provides the highest Nusselt number for the smallest
required pumping power. This data would provide good guidance for the design of a

heat exchanger device based on the geometry studied.

6.1 Recommendations for Future Work
Recommendations for future work include extending the range of Sy for the
current data set. In the current data, the greatest changes in parameter values followed

changes in the transverse spacing. It is likely that at very high Sy, the flow may not
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exhibit oscillations at all. It would be interesting to increase the range of Sy for one of
the S_ values used in the current study.

The changes in the longitudinal spacing in the current work were too small to
have much impact on the parameter values of interest. The gap between columns of
tubes was varied from Dpj, to 2Dnin but the length of the tube is 6Dpin. It would be
interesting to check S values on the order of 2Dy, t0 6D pmin.

It would also be interesting to use a 3D turbulent code to extent the y versus Nu

curves into turbulent region.
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APPENDIX A*

APPENDIX A presents the entire text of Fullerton and Anand [5].

*Reprinted with permission from “Periodically Fully-Developed Flow and Heat Transfer
over Flat and Oval Tubes Using a Control Volume Finite-Element Method” by T.L.
Fullerton and N.K. Anand, 2010. Numerical Heat Transfer, Part A, vol. 57, pp. 642-
665, Copyright 2010 by Taylor & Francis Group, LLC.
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T. L. Fullerton and N. K. Anand
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A Control Volume Finite-Element Method in conjunction with imposed periodically fully-
developed flow conditions was used to perform a two-dimensional, laminar, steady-flow
numerical study comparing the performance of a flat tube and an oval tube to that of a round
tube in a simulated heat exchanger device for the case of specified heat flux along the tube
walls. The Reynolds number range for the study was 50 to 350. Fluids of Prandtl number
0.7 and 7.0 were considered. For the cases studied, the heat transfer enhancement ratio was
less than one indicating that the round tube outperformed both the flat tube and the oval tube
based on heat transfer considerations alone. However, for all cases studied, the heat transfer
performance ratio was greater than one indicating that if both heat transfer performance and
required pumping power are considered, both the flat tube and oval tube outperformed the
round tube.

1. INTRODUCTION

Tube-in-cross-flow heat exchangers have applications for a myriad of products
and engineering processes. The effects of tube shape and geometric arrangement on
the flow ficld and heat transfer performance of these devices have been studied using
various experimental, numerical, and analytical techniques. Studies have been
performed with various tube shapes such as rectangular, triangular, oval, and flat
with performance usually compared to the performance of round tubes under similar
conditions. These studies present as results the flow field and temperature field, as
well as quantities such as friction factor and Nusselt number. Commonly, such heat
exchanger devices exhibit regular geometric spacing of tubes leading to the develop-
ment of periodically fully-developed flow (PFD) conditions at some distance from
the inlet. For such devices, the majority of tubes lie in flow modules exhibiting
PFD conditions. Therefore, the performance of a given tube-shape and geometric
spacing combination is usually characterized by the performance in a flow module
exhibiting PFD conditions. The main objective of the current work is to demonstrate
that a control volume finite-element method (CVFEM) together with specified PFD
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HEAT TRANSFER OVER FLAT AND OVAL TUBES 643
NOMENCLATURE
a coefficients in discretization equations  Re Reynolds number
A, B, C coefficients in interpolation function T temperature, °K
b generalized source term T local temperature variation, °K
¢ specific heat, J/kg°K u streamwise velocity, m/s
cv control volume v cross-stream velocity, m/s
D diameter of the round tube, m w streamwise length of the flat tube
Dy, hydraulic diameter, m X,y global coordinates
f friction factor XY local coordinates
H channel height, m B global pressure drop per module
k thermal conductivity, W/m°K Y global temperature rise per module
1 height of the flat tube, m r diffusion coefficient
L length of the periodically AP pressure drop per module, N/m?
fully-developed module, m A coefficient in integrated flux expression
rh mass flow rate through the PFD n dynamic viscosity, N-s/m?
module, Kg/s P density, Kg/m®
Nu Nusselt number ¢ general transported scalar variable
Nu average Nusselt number (change in 1] integrated flux
enthalpy) % general field variable
Nu*t heat transfer enhancement ratio
Nu* heat transfer performance ratio Subscripts
P pressure, N/m? ¥4 typical node
Pe element Peclet number nb neighborhood nodes
Pr Prandtl number min minimum
P local pressure variation max maximum
q’ heat flux, W/m? s surface
Q total heat flux added per module, J b bulk

conditions may be used to study fluid flow and heat transfer in heat exchanger
devices with geometrically repeated modules. Imposing PFD conditions allows the
computational domain of interest to be limited to one module exhibiting periodically
fully-developed flow; thus, drastically decreasing mesh size and solution time. In
addition, heat transfer and flow field data for a PFD module establish the lower
bounds for heat transfer coefficient and friction factor, thus providing useful design
information.

For the current work, each two-dimensional computational domain example
consists of a single tube confined between two insulated parallel plates. Constant heat
flux is specified on the surface of the tube. Three tube shapes are considered: round,
flat, and oval. Figure 1 shows the geometry of the computational domains considered
in this study. Once the diameter of the round tube was established, the shapes of the
flat and oval tubes were chosen such that the perimeter, and therefore the heat trans-
fer area, would be equal to that of the round tube. Steady, laminar, two-dimensional
solutions were obtained for a Reynolds number (Re) range of 50-350 for each of the
three computational domains for two different fluids of Prandtl number (Pr), 0.7 and
7.0. The friction factor and local Nusselt number (Nu) distribution along the tube
surfaces were used as bases for comparison between the three configurations.
Two additional parameters, the heat transfer enhancement ratio and the heat transfer
performance ratio, were also used as bases for comparison.
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Figure 1. Computational domain geometries: (¢) round tube; (b) flat tube; and (¢) oval tube. Flow
direction is left to right for each domain geometry.

We will present the general characteristics of the CVFEM used in this work
followed by a discussion of PFD conditions. Code validation data will be presented
along with grid independence results. Finally, we will compare the flow and heat
transfer characteristics for the flat and oval tubes versus the round tube for the Re
range described above.

2. CONTROL VOLUME FINITE-ELEMENT METHOD

For numerical solution of flow and heat transfer problems in general, the goal is
to first solve for streamwise velocity (u), cross-stream velocity (v), pressure (P), and
temperature (7) at discrete locations in the domain of interest. Once the u, v, P,and T
fields have been determined, quantities of interest such as friction factor and Nusselt
number may be calculated. For the current work, a CVFEM was used to solve the
Navier-Stokes equations for two-dimensional (2-D), laminar, constant property,
incompressible, steady-flow cases.

CVFEMs combine features of both finite element (FE) methods and finite
volume (FV) methods. Like FE methods, the domain is discretized into regions called
elements to which material properties are assigned and within which interpolation
functions are defined which describe the variation of velocity, pressure, and tempera-
ture within an element. Like FV methods, control volumes, (CVs) are defined to which
conservation equations in integral form are applied, resulting in sets of algebraic
equations for the domain which may be solved for the u, v, P, and T fields.

There are several 2-D CVFEMs described in the literature. References [1-11]
describe various formulations for 2-D CVFEMs using both triangular- and
quadrilateral-shaped elements. Comparing and contrasting the various versions is
beyond the scope of the current work. The basic method for the particular CVFEM
employed in the current work is the colocated, equal-order, triangular-element
method described by Prakash [1, 2]. Additional material directly influencing the
current work may be found in Sabaas [3-5] and Husain [6]. No originality is claimed
here with respect to the CVFEM method.

For 2-D CVFEMs in general, the computational domain is first discretized as a
set of triangular elements which completely fill the domain without overlap. The
vertices of these triangles are called nodes and are the locations at which u, v, P,
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and T are calculated. For the specific method used, each element is divided into three
equal-area sub-regions by defining links from the element centroid to the midpoint of
each of the three sides, as shown in Figure 2a. Each sub-region is associated with one
of the element’s three nodes. The fact that the domain is meshed with triangles makes
this method a good candidate for the solution of tube-in-cross-flow problems in that
the irregular domain geometry associated with various tube shapes may be meshed
to desired accuracy using triangles. Also, the variables », v, P, and 7 may remain in
their native (x, y) coordinates without coordinate transformation. Other methods
require the transformation of the domain geometry to generalized coordinates to
solve problems with irregular geometry. One description of this method may be
found in Bahaidarah et al. [12].

The domain is further discretized as a set of polygonal CVs such that each node
in the domain has an associated CV. The set of CVs defined in this manner
completely fills the domain without overlap. The CV associated with a given node
is formed from sub-regions of the elements that share that particular node. The
element links of contributing elements form the boundary of the CV for internal
CVs, as shown in Figure 2b. For boundary CVs, the boundary is formed from a
combination of element links and segments of the domain boundary, as shown in
Figure 2c. Integral forms of the various conservation equations are applied to the
CVs resulting in four sets of algebraic equations, one set for each of the unknown
field variables of interest: u, v, P, and 7. If the general variable y represents u, v,
P, or T, then the various conservation equations for the CV associated with Node
P may be written in the following form:

apXp+ Y ansXus = bp (1)
nb

The set of all such equations for all CVs in the domain are solved simultaneously using
an iterative solution technique based on the SIMPLER algorithm [13].

Applying integral forms of the conservation equations to a given CV involves
determining expressions for the integrated flux of x-momentum, y-momentum,
energy, and mass across the element links that form the CV boundary. Boundary
CVs are special cases involving integrated flux across segments of the domain

M Control Volume. ; ?ﬂwl ngm\e

M ; N

Et E3

"
Domain Boundary
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Figure 2. Element and control volume geometry: (a) typical element; (b) internal CV formed from four
elements; and (¢) boundary CV.
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boundary itself. The integration along the boundary of a particular CV is performed
piece-wise by first calculating the integrated flux across each element link for the
entire set of elements and then assembling the appropriate expressions for the set
of links that form the boundary of a particular CV.

To perform the integrated flux calculations across an element link, expressions for
u- and v-velocity, temperature, and the spatial gradients of pressure are required at
points along the link. Once these expressions are known, Simpson’s Rule or some other
integration technique may be applied to derive an expression for the integrated flux.
Interpolation functions are defined to provide the distribution of velocity, pressure,
and temperature within each element. For the general transported scalar variable ¢
representing streamwise velocity (u), cross-stream velocity (v), or temperature (7)) (but
not pressure (P)), the interpolation function takes the following exponential form:

®(X,Y) = AZ(X)+ BY + C

r (X — Xmax) ] }
where Z(X) = explPe——— —~—| — 1
( ) pUavg { p[ (Xmax - Xmin)

Pe — pUavg(Xmax - Xmin) (2)
r

KXmax = maX(leXL XS)
ijn = min(Xl,Xz,X3)

In Eq. (2), p and T are the density and diffusion coefficient of the fluid, respectively.
Pe is the element Peclet number. The interpolation function is defined in an
element-local coordinate system (X, Y) such that the X-axis is aligned with the aver-
age flow direction within the element, the Y-axis direction is determined by the
right-hand rule, and the origin is located at the element centroid. The
interpolation function is exponential along the X direction and linear along the Y
direction. In this way, the method takes into account the local flow direction within
the element during flux calculations, thus minimizing false diffusion. Xp.x and Xpin
are the maximum and minimum, respectively, of the X coordinate values at the
element’s three nodes as specified in the element-local coordinate system.

The coefficients 4, B, and C in Eq. (2) are not numerical constants. Rather, they
are expressions in terms of the unknown values of ¢ at the element’s three nodes. The
expressions for A, B, and C are determined by assuming that Eq. (2) is valid at each of
the element’s three nodes. Eq. (2) therefore provides an expression for ¢ at a point
(X, Y) within the element in terms of the unknown values of ¢ at the element’s nodes.
If one chooses to use Simpson’s One-Third Rule for the integration of flux along a
link, the expressions for ¢ at the two endpoints and at the midpoint of -each link
may be used to determine the final expression for the integrated flux of ¢ across the
link in terms of the unknown values of ¢ at the element’s three nodes. The integrated
flux across an element link (®y;,;) may be represented as follows:

Dlink = Xid; i=1,2,3 (3)

where ¢, represents the unknown value of ¢ at node 7, and A, represents a numerical
coefficient.
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After the expressions for integrated flux in the form of Eq. (3) are obtained for
the element links, an assembly process is used to combine the expressions for all links
forming the boundary of a given CV. The result is an expression of the form of
Eq. (1), representing conservation of x- or y-momentum or conservation of energy.

Pressure is not a transported scalar, so the method described above is not
directly applicable. A linear interpolation function is used for pressure within an
element along with the conservation of mass equation. Once again, the flux integra-
tions are performed on an element basis and the resulting expressions assembled for
a CV. The result is an equation of the form of Eq. (1) representing conservation of
mass for CVp in terms of the unknown pressure values at Node P and at each of the
neighbor nodes.

Typical boundary conditions for flow problems are specified »- and v-velocity
at the domain inlet, and zero u- and v-velocity at solid boundaries. For heat transfer
problems, either temperature (7) or heat flux (¢") is specified along specified bound-
aries. For boundary CVs, the integrated flux of a variable across the domain bound-
ary is added to the expression in the form of Eq. (1). The boundary conditions are
known numerically, so this process modifies the general source term b, in Eq. (1).

As stated earlier, conservation equations are assembled for each CV for each field
variable of interest (1, v, P, and 7). The resulting sets of equations are solved iteratively
using a combination of the line-by-line procedure and the tridiagonal matrix algorithm
(TDMA). The order of solution is determined by the SIMPLER algorithm.

The above summarizes the characteristics and procedures associated with the
basic CVFEM used in the current work. We will now discuss periodically fully-developed
flow conditions and how to implement these conditions using a CVFEM.

3. PERIODICALLY FULLY-DEVELOPED FLOW (PFD)

Mathematical formulation of PFD and heat transfer is well established and can
be found in Patankar et al. [14] and Kim and Anand [15]. In the discussion to follow,
x represents the streamwise direction, y represents the cross-stream direction, and
L represents the length of the module.

In a periodically fully-developed flow domain, velocity profiles in the stream-
wise direction repeat themselves periodically (u(x, y)=u(x+L, y)=u(x+2L,
y)...and v(x, y)=v(x+L, y)=v(x+2L, y)...), and pressure drop per module
length (B = ML{(—X—M) remains constant. Pressure in a PFD module can be repre-
sented as a combination of global pressure drop per module and local pressure vari-
ation (P(x,y) = — Bx+ P(x,y)). While pressure does not repeat with periodicity, the

local pressure variation does (P(x, y) = P(x + L,y) = P(x+ 2L, y) .. .)). Representing
pressure in terms of global pressure drop per module and local pressure variation
in the Navier-Stokes equations, we get the following expressions for conservation
of x- and y-momentum:

X - momentum

JQu o\ 0P o ( dw\ 0 "
P ox oy) ox Ox “ax oy llay
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Y-momentum

ov  ow\ 0P 9 [ v\ K 9 [ ov s

(v s) = 5w () 5 (5) ®)

Both the x-momentum and y-momentum equations, Eqgs. (4) and (5), respectively,

are written in terms of the spatial derivatives of the locally-varying pressure compo-

nent P. The spatial derivatives of pressure P do not appear explicitly in the equa-

tions. The x-momentum equation, Eq. (4), includes a B term representing the
global pressure gradient in the streamwise direction for the module.

For the case of specified wall heat flux, the temperature values do not repeat
module-to-module for neighboring PFD modules. Rather, the temperature differ-
ences repeat from module to module ((T(x+L, y)— T(x, y)|=[T(x+2L, y)—
T(x+ L, y)]...). Thus, we may define a global temgerature gradient v in the stream-
wise direction for a PFD module as y= T”L’-VL_T” . The global temperature
gradient y for a PFD module of length L may be calculated by performing a global
energy balance on a PFD module as

Q
Y= e, L (6)

We can express the temperature at any point (x, y) in the domain in terms of
a global component involving y and a locally varying component T as
T'(x,y)=yx+TI(x,y). The locally varying component 7 is periodic in the stream-
wise direction (7'(x,y)=T(x+ L,y)=T(x+2L,y)...). Substituting for 7(x,y) in
terms of the global temperature rise and local variation components into the differ-
ential form of the conservation of energy equation for 2-D, steady, laminar flows, we
arrive at a form involving y and 7.

Energy equation

oT oT o (. oT o (. oT d
pCy (uai— va) =3 <ka> + 3 (ka> — pepyyu+ a(ky) (7)

The term —pc,yu is an added source term involving the global temperature
gradient for the PFD module. The second added source term %(ky) is identically
zero if the thermal conductivity k is constant throughout the domain. This second
source term is important for domains including conducting solids such that the ther-
mal conductivity for the solid differs from the thermal conductivity for the fluid [15].
For the current work, the second source term may be ignored. It should be noted
that temperature 7 does not appear explicitly in Eq. (7).

A CVFEM code to implement the above conditions was developed. Rather
than solving for u, v, P, and 7, the PFD version of the code provides the solution
for u, v, P, and T for a single PFD module. The PFD code is based on an existing
code which implements the standard CVFEM algorithms described above. The
required code modifications include the addition of the source terms for the momen-
tum and energy equations as explained above, and the implementation of PFD
boundary conditions in the streamwise direction and no-slip conditions in the

120



HEAT TRANSFER OVER FLAT AND OVAL TUBES 649

transverse direction. The cyclic tridiagonal matrix algorithm (CTDMA) is used in
the iterative solver when operating on rows of nodes aligned in the streamwise direc-
tion. TDMA is used on columns of nodes aligned in the cross-stream direction as for
the standard CVFEM code.

Solution for a PFD module involves first specifying a value of B and solving the
flow problem for u, v, and P. Next, the flow solution is used to calculate 7 for the
domain and the specified heat flux is used to calculate Q. Eq. (6) may then be used
to calculate y. The solution process concludes with the solution for the T field.
Note that for the PFD solution, B is specified rather than velocity. Because of this,
Reynolds numbers cannot be explicitly specified.

Friction Factor for PFD Solution

We are interested in calculating the friction factor and Nusselt number for the
resulting flow and temperature fields. However, with the PFD code, we do not actu-
ally solve for pressure or temperature. Rather, we solve for the locally varying com-
ponents P and T subject to a specified value of B. We must therefore define these
quantities in terms of  and T.

The friction factor (f) may be defined as follows:

AP

=3
PUinlet

f= (8)
The inlet average velocity #i,ey may be calculated by standard methods. The module
pressure drop AP may be calculated in terms of the specified value of p and the
module length L as AP=BL. The friction factor for a PFD module may thus be
calculated in terms of B as follows:

s=PL

=—
PUinter

©)

It should be noted that fis often defined with a factor of 1/2 in the denominator. The
definition of fin Eq. (9) is for compatibility with Kundu et al. [16] and Bahaidarah
et al. [12].

Bulk Temperature and Nusselt Number for PFD Solution

Calculating the Nusselt number requires calculating the bulk temperature at
cross-stream sections of the domain. Because these flows may exhibit recirculation,
the definition of bulk temperature is modified to include the absolute value of velo-
city rather than simply the velocity itself. For the case of PFD flow with specified
surface heat flux, the solution process yields the 7" field rather than the T field. There-
fore, the fluctuating component of the bulk temperature 7' is defined in terms of T
rather than in terms of 7.

= L Tep)lulx,y)ldy
o0 = T ey

(10)
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The Nusselt number is defined as follows.

q'Dy
[i(x) - ?b(x)]k

Nu(x) = (11)

For the current work, the hydraulic diameter D, is taken to be the channel height H.
It can be shown that Nu defined in Eq. (11) in terms of fluctuating temperatures 7'
and T, is directly comparable to the standard definition in terms of actual tempera-
tures 7, and T.

4. CODE VALIDATION

A developing flow (non-PFD) CVFEM code was used to solve standard
validation problems such as the driven cavity, backward-facing step, and Poiseuille
flow. Results for the flow field and for heat transfer performance compared well with
published numerical or analytical data. However, these problems do not involve
irregular geometry such as the tube-in-cross-flow problem.

For validation with tubes in cross flow, the developing flow (DF) CVFEM
code was used to solve the problem posed by Kundu et al. [16] and referenced by
Bahaidarah et al. [12]. Figure 3 shows the domain of interest consisting of five
regularly-spaced round tubes of diameter D confined between parallel plates
separated by a distance H. Each tube and its surrounding fluid comprise a heat
exchange module (HEM) of length L. An entry section of length L and an exit
section of length 3L are included as part of the domain. Values for D, H, and L were
chosen such that L/D =3 and H/D =2. The surface of the tubes and the confining
walls were subject to the same specified wall temperature. For Re between 50 and
200, both the flow field and temperature field approach PFD flow in HEM #4.
The Reynolds number is defined using the channel height H as the hydraulic
diameter as Re= 2% Developing flow and heat transfer were studied for
Re =50 and Re=200 and the average Nusselt number (Nu) for each HEM that
was calculated. For this problem, Nu is the normalized change of enthalpy from
the inlet to the exit of each HEM. As the flow and temperature approach PFD flow
conditions, Nu converges toward a constant value for a given Reynolds number.

Table 1 shows the results from Kundu et al. [16], Bahaidarah et al. [12], and
from the current work. Table 1 shows good agreement with the previously published
Nu results for this particular tube-in-cross-flow problem.

Entry Exit

Length HEM#1 HEM#2 HEM#3 HEM#4 HEM#5 Length
R e , .

{ 1 i T T ] 1 13
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“ | i I | { 1 J.x
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e »-4 L - L L % L : L 3L -

Figure 3. Computational domain for developing flow test case.
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Table 1. Average nusselt numbers

HEM #2 HEM #3 HEM #3

Re=50

Kundu et al. {16] 9.4 9.4 9.8

Bahaidarah et al. [12] 9.23 9.23 9.23

Current work 9.24 9.24 9.24
Re =200

Kundu et al. [16] 12.5 12.6 12.8

Bahaidarah et al. [12] 12.44 12.43 12.42

Current work 12.50 12.46 12.45

A separate version of the CVFEM code was developed to implement PFD
boundary conditions. The first validation effort for this code was to solve
fully-developed Poiseiulle flow. A computational domain was defined consisting of
parallel plates separated by a distance H subjected to specified heat flux. Several
meshes of increasing node density for the domain were used to solve the flow field
and temperature field and compute the local Nusselt number along the plate using
Eq. (11). As the mesh density increased, the Nusselt number approached the
theoretical value of 140/17 = 2.235 [17]. The finest mesh of 81 x 33 nodes produced
a constant Nu value along the length of the top and bottom walls of 2.234. This
represents an error of —0.04% with respect to theoretical. The cross-stream velocity
profile also showed excellent agreement with theory {17].

Further validation of the PFD code was performed using the developing flow
results described above. The pressure field solution for HEM #4 for Re =50 was
used to extract the value of B. The mesh for HEM #4 was isolated for use in the
PFD code. The value of B was used as input to the PFD code and the flow field
was solved. Excellent agreement with the flow fields was obtained. Figure 4a shows
a comparison of inlet u-velocity profiles for both PFD and DF solutions. The two
profiles are indistinguishable in the plot. The maximum percent error in u-velocity
over all 4,572 nodes was 0.4% and the average percent error was 0.006% over all
nodes. The heat transfer problem with specified wall temperature could not be solved
with the current version of the PFD code for comparison with Kundu et al. [16] or
Bahaidarah et al. [12].

The PFD code was also tested for a specified heat flux problem. Again, the DF
results from above were used. Using the solved flow field for Re =50 from the DF
solution, the temperature field was solved with the DF code using a specified heat
flux on the tube surface and with the channel walls insulated. The same problem
was solved using the PFD code. Figure 4b shows the comparison of local Nu along
the top half of the tube wall. As the DF solution moves downstream from HEM #2
to HEM #3 to HEM #4, the Nusselt number approaches that of the PFD solution.
The DF HEM #4 the plot indicates that the flow is thermally fully-developed for the
DF case within 2%.

For completeness, the DF problem from above was solved with a flat tube
replacing the round tube and the resuilts compared to the PFD code. Similar to
the round tube results, the inlet u-velocity profiles are indistinguishable with the
maximum percent error in u-velocity over all 4,580 nodes at 0.2% and the average
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Figure 4. Comparison of PFD and DF solutions at Re =50: (@) velocity profiles; and () local nusselt
number.

percent error at 0.03% over all nodes. The same exercise was performed with the oval
tube replacing the round tube. Once again, the inlet velocity profiles are indis-
tinguishable with the maximum percent error over all 4,546 nodes at 0.48% and
the average percent error at 0.07% over all nodes.

5. GRID INDEPENDENCE STUDY

For the current work, we are interested in comparing the performance of flat
and oval tubes to that of a round tube with the same perimeter. Figure 1 shows
geometry of the three associated computational domains. To establish grid indepen-
dence, several meshes of increasing node density were constructed for each domain
geometry and solved with the PFD code for B values corresponding to the maximum
Re of interest of approximately 350. The grid independence study was performed for
both Pr=0.7 and Pr=7.0.

Figure 5 shows the element mesh for a round-tube domain. The construction of
this mesh is typical of all the meshes used in the current work. The tube surface was
divided into equal-length straight sections. This established node locations represent-
ing the tube surface. Additional nodes were created along lines of constant x and
constant y using the values of x and y associated with the previously established
tube-surface nodes. This leads to elements and CVs of varying sizes. For regions
of the mesh not influenced directly by the location of the tube-surface nodes, nodes
were created along lines of constant x and y such that the clement sides were
approximately the same length as the straight sections representing the tube surface.

Table 2 shows a comparison of Reynolds numbers, friction factors, and aver-
age Nusselt numbers for these meshes at Re =350 for both values of Prandtl number
considered. Based on these results, it was decided to use Mesh-R #5 for the
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Figure 5. Typical element mesh for a round tube domain.

round-tube cases, Mesh-F #3 for the flat-tube cases, and Mesh-O #4 for the
oval-tube cases. It should be noted that the same meshes were used for both
Pr=0.7 and Pr=7.0. Only the material properties and p values were changed.

As part of the grid independence study, a parallel study of the effect of conver-
gence limit on the results was also performed. Based on the data, it was decided to
use a convergenee limit of 107° for , v, and T

6. PROBLEM DESCRIPTION

To compare the performance of flat tubes and oval tubes to that of round tubes
under similar low conditions, the example problem described below was conceived.
The domain geometries for round, flat, and oval tubes are shown in Figure 1. In each
case, the size of the domain is L X H with the tube centered in the domain. The peri-
meters of the flat and oval tubes are equal to that of the round tube. Constant speci-
fied heat flux is assigned to the tube walls and the channel walls are insulated. Since
the perimeters of the tubes are equal for all computational domains, equal amounts
of energy are imparted to the fluid for all cases.

Calculations were made using the PFD code for seven different mean flow
velocities for each domain for a Reynolds number range of 50-350. These calcula-
tions were performed for fluids of Pr=10.7 and Pr=7.0. For these cases, Reynolds
number is based on the channel height. The Nusselt number is defined by Eq. (11)
above.

For the PFD code, B, not velocity, is the input parameter. Therefore, the
Reynolds numbers for the cases of interest cannot be chosen explicitly. For the
Pr=0.7 cases, an iterative process of choosing B and calculating Re was performed.
The process was stopped when the calculated Re was within 0.5% of the target value
for each of the seven target values.

For the Pr= 7.0 cases, we took advantage of the fact that for steady, laminar
flows in the Re range of interest, the flows for Pr=0.7 and Pr=7.0 arc dynamically
similar if the Reynolds numbers are equal. This being the case, for a given domain
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Table 2. Results of grid independence study

Number Re Friction Friction Average Avg_Nu

Mesh of nodes Re % diff. factor % diff. Nusselt number Y diff.
Round tubes (Pr=0.7)

R #1 1406 330.123 1.221 12.37

R #2 4572 349.729 5.94 1.088 —10.89 12.59 1.71

R #3 7506 353316 1.03 1.066 -2.02 12.65 0.47

R #4 11822 355.37 0.58 1.054 —1.13 12.68 0.27

R #5 13744 355.944 0.16 1.050 -0.38 12.69 0.06

R #6 17114 356.629 0.19 1.046 —0.38 12.70 0.09
Flat tubes (Pr=0.7)

F #1 998 343.575 0.381 10.04

F #2 4580 352.347 2.55 0.362 —-4.99 10.13 0.83

F #3 7972 353.405 0.30 0.36 —0.55 10.14 0.12

F #4 12436 353.873 0.13 0.359 -0.28 10.15 0.06
Oval tubes (Pr=0.7)

O #1 1220 337418 0.563 10.58

O #2 4546 349.064 345 0.526 —6.57 10.65 0.71

O #3 7884 351.019 0.56 0.52 —-1.14 10.66 0.12

O #4 12356 351.998 0.28 0.517 —0.58 10.67 0.06

O #5 17828 352.619 0.18 0.515 -0.39 10.68 0.05
Round tubes (Pr=7.0)

R #1 1406 324.069 1.239 15.22

R #2 4572 343.197 5.90 1.104 -10.90 15.22 —0.01

R #3 7506 346.68 1.01 1.082 —-1.99 15.30 0.53

R #4 11822 348.683 0.58 1.07 -1.11 15.36 0.41

R #5 13744 349.243 0.16 1.067 —0.28 15.38 0.12

R #6 17114 349.787 0.16 1.063 -0.37 15.40 0.11
Flat tubes (Pr=7.0)

F #1 998 340.279 0.384 10.94

F #2 4580 348.963 2.55 0.365 —4.95 10.93 —0.09

F #3 7972 350.01 0.30 0.363 ~0.55 10.96 0.32

F #4 12436 350.475 0.13 0.362 —0.28 10.98 0.17
Oval tubes (Pr=7.0)

O #1 1220 335.535 0.565 12.25

O #2 4546 347.082 3.44 0.528 —6.55 12.22 -0.23

O #3 7884 348.937 0.53 0.523 —0.95 12.25 0.28

O #4 12356 350.138 0.34 0.519 -0.76 12.28 0.22

O #5 17828 350.376 0.07 0.518 -0.19 12.29 0.08

geometry at a chosen Re value of interest, we expect the friction factors to be equal
no matter which fluid we choose. Combining equations for the friction factor and for
the Reynolds number, the following relationship for ;¢ may be developed.

2
Po.7 |M7.0
Bro= B 202 [—] 12
70 07P7.0 Ho.7 (12)

Eq. (12) gives the required value of B for the Pr=7.0 fluid to match the Reynolds
number of the Pr=0.7 fluid for the same domain geometry. This concept was
confirmed by the fact that using B values calculated in this way, the calculated
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Table 3. Nominal and calculated Reynolds numbers

Nominal values Round (calculated) Flat (calculated) Oval (calculated)
50 50.051 50.306 49.808

100 100.087 100.474 99.914

150 150.103 150.558 149.927

200 199.797 200.228 199.791

250 249.467 249.999 249.06

300 299.569 298.972 300.114

350 349.992 349.793 350.043

Re and friction factor values for Pr=7.0 did indeed match the values from the
Pr=0.7 cases.

Use of Eq. (12) allows the Reynolds number values for a particular domain
geometry to match for both fluids considered. However, the Reynolds number values
for different geometries are not equal. They are, however, well within 0.5% of the
nominal target value. Table 3 lists the nominal target Re values along with the cal-
culated values for the three different computational domain geometries. From this
point forward, we will compare results from different geometries using the nominal
Re values and the nominal Re values will appear on the various data plots of results.

* Since all three domains are symmetric about a longitudinal centerline, the
results should be symmetric about this centerline. This raises the possibility of
imposing symmetric boundary conditions along the longitudinal centerline and
solving only one-half of the domains. However, symmetric boundary conditions
were not used for the cases below. Rather, the entire domain was solved and the
results examined for symmetry. With the solution domain limited to a single PFD
module, the additional solution time associated with solving the entire domain rather
than solving half of the domain was not an issue. In all cases, the expected symmetry
was demonstrated in the resulting u, v, f’, and 7 fields.

7. FLOW RESULTS

Figure 6 presents streamline plots for all cases considered. The streamline plots
for each different domain geometry represent results for both Pr=0.7 and Pr=7.0 at
a given Reynolds number. From the streamline plots it is evident that the steady 2-D
flow field is symmetric about the longitudinal centerline for each domain at each
Reynolds number tested.

Figure 6a for the round tube cases shows that the character of the flow field
changes from Re =50 to Re =150 as the vortices downstream of the tube increase
in size and move downstream from the tube. However, for Re=200 through
Re =350, only minor changes in the streamline plots are observed, mainly in the
separation bubbles near the domain’s upper and lower boundaries.

Figure 6b for the flat tube cases shows changes in the flow pattern throughout
the Reynolds number range of the cases considered in this study. The last two cases,
Re=300 and Re=2350, look very similar to each other, but minor changes are
observed in the size and position of the tube trailing vortices. There appears to be
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Figure 6. Streamling plots for Pr=0.7 and Pr=7.0¢ (a) round tube cases; {5] Mt tube cases; and () oval
tube cases,

a trend toward commonality of the low pattern as Reynolds number increases, but
this commonality is not reached in the Reynolds number range considered in this
study. Perhaps if higher Reynolds numbers were tested, we would see the same
degree of commonality reached as demonstrated by the round and oval tube cases.

Figure 6¢ for the oval-tube cases shows charactenistics similar to those of the
round tube cases. From Re =350 to Re=200, we again see changes in the size and
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position of the vortices downstream of the tube. From Re=250 to Re =350, the
streamline plots remain virtually unchanged except for the size and position of the
separation bubbles near the walls,

The round and oval tubes results show that the flow patterns tend toward a
common pattern as Re increases. The round tube attains this commonality at
Re =200, while the oval tube attains it at Re=250.

Figures Ta-7c¢ show inlet u-velocity profiles for the round, flat, and oval tubes
domains, respectively, for varying Reynolds number. Figure 7d shows the variation
of friction factor with Reynolds number for all three domain geometries. Once again,
due to the dynamic similarity that exists for these flows, the velocity profile plot for
each different domain geometry represents results for both Pr=0.7 and Pr =7.0. The
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Figure 7. Flow resulis for Pr=0.7 and Pr=7.0: {a) round tube velocity profiles; (b) flat tube velocity
profiles; () oval wbe velocity profiles; and (&) friction factor for all tube shapes.
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u-velocity at the domain inlet is normalized with respect to the average inlet velocity
for each Re value considered so that while the velocity magnitudes differ from
Pr=0.7 to Pr="7.0, the normalized velocity values at the same points for the same
Reynolds number are the same.

The velocity profile plots demonstrate the symmetry in the flow solution about
the longitudinal centerline for each domain. For the round tube at Re =100 and
higher, the normalized inlet velocity near the centerline of the domain takes negative
values. This is an indication of the impact of the wake from the upstream module.
This effect is also seen for the flat tube cases, but only for the highest Re in the range
considered in this study (Re = 350). For the oval tube, as Re is increased, negative
normalized velocities exist for Re =200 and higher.

For each of the three domain geometries, as Re increases, the normalized inlet
velocity profiles tend toward a common profile, as suggested by the streamline plots
in Figure 6. For the round tube, Figure 7a shows that the velocity profiles for
Re =200 and higher are virtually identical. For the oval tube, Figure 7¢ shows the
same effect for Re =250 and higher. This effect is less prevalent for the flat tube
for the Reynolds number range tested, as seen in Figure 7b. As explained earlier,
velocity is minimum along the centerline for all three geometries of tubes considered
in this study. Flow accelerates in the passage between the tube surface and channel
wall giving rise to a maximum value in this region. Thus, one can find one maximum
velocity point above the centerline and one below the centerline for all cases. At
higher Re values, the wake effect of upstream module is more significant giving rise
to a larger negative velocity along the centerline.

Friction factor (f) was calculated for all cases using Eq. (9) above. Figure 74
shows plots of f versus Re for all three domain geometries considered. Once again,
the plot represents results for both Pr=10.7 and Pr=7.0. Figure 7d shows that for a
chosen tube shape, the friction factor decreases with increasing Reynolds number as
expected for laminar flows because as the Re value increases, the inertial force
dominates the viscous force. Figure 7d also shows that for a given Reynolds number
in the range tested, the round-tube friction factor is highest, followed by the oval
tube friction factor and then the flat tube friction factor. The size of recirculation
bubble downstream of each tube is impacted by, flow separation and reattachment.
It is evident from Figure 6 that for a given value of Re, the recirculation bubble is
largest for the round tube case and smallest for the flat tube case. This is the reason
for the circular tube case to have the highest value of friction factor, and the flat tube
case to have the lowest value of friction factor for a fixed Re value. As expected, for a
fixed Re value the friction factor value for the oval tube case lies between those for
round and flat tube cases. While the three tubes have equal perimeters, they have
different blockage ratios. The blockage ratios for the round, oval, and flat tubes
are 0.5, 0.35, and 0.22, respectively. The difference in blockage ratios along with
the difference in the general shape of the tubes leads to the higher friction factor
for the round tube.

8. HEAT TRANSFER RESULTS

While the flow results exhibit dynamic similarity for Pr=0.7 and Pr=7.0, the
heat transfer results do not. These results will therefore be presented separately.
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Figure 8. Heat transfer results for Pr-0.7: (@) round tube cases; (b) flat tube cases; (c) oval tube cases; and
(d) average nusselt number.

Figure 8 shows the heat transfer results for Pr=0.7. Figures 8a—c show the local
Nusselt number distribution along the top half of the tube for each of the three
geometries considered in this study for different Reynolds numbers. Due to sym-
metry, the distribution along the bottom half of the tube is identical. In these plots,
0% along the perimeter corresponds to the leading edge of the tube and 100% along
the perimeter corresponds to the trailing edge. Figure 84 shows a comparison of
average Nusselt number as a function of Reynolds number for all three geometries
considered in this study.

The Nusselt number plots display markedly different characteristics. Figure 8a
for the round tube cases shows that the Nusselt number increases from the leading
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edge of the tube reaching a maximum value at a location approximately 42%-45%
along the perimeter. This maximum is followed by decreasing values as the trailing
edge is approached at approximately 80% along the perimeter. A slight increase
of Nu along the final 20% of the perimeter is observed. At the leading edge,
Nu decreases with increasing Re. The peak Nu increases with increasing Re
from 12.5 at Re=150 to 18.0 at Re=350. At the trailing edge, Nu increases with
increasing Re.

Figure 8b for the flat tube cases shows an increase in Nu from the leading edge
of the tube to a maximum value at approximately 22% along the perimeter. This is
the location where the straight section of the tube begins. Following the peak, the
plot shows decreasing Nu values as the end of the straight section is approached.
Along the trailing curved section, we observe a steeper decrease in Nu as the trailing
edge is approached. At the leading edge, Nu decreases with increasing Re. However,
for all Re values, a common peak value of approximately 12.5 is reached. Along the
straight section of the tube, Nu increases with increasing Re. A common minimum
value of Nu is reached at the trailing edge for all Re.

Figure 8¢ for the oval tube cases shows that the lower two Re value curves
show characteristics unlike those for the higher Re. At Re =50, the Nu plot shows
a maximum at the leading edge followed by an almost linear decrease along the
entire perimeter toward the trailing edge. At Re = 100, the maximum Nu once again
occurs at the leading edge followed by a gradual decrease all along the perimeter. For
Re = 150 through Re = 350, the curves show an increase in Nu from the leading edge
to a peak between 22% along the perimeter for Re = 150, to a peak at 38% along the
perimeter for Re = 350. Unlike the round tube results which showed the peaks in a
tight grouping between 42% and 45% along the perimeter, the peaks for the oval tube
cases are spread out. At the leading edge, Nu decreases for increasing Re. The peak
value increases with increasing Re. A slight increase in Nu is observed at the trailing
edge as Re increases.

Figure 84 shows that the average Nusselt number for a given tube shape
increases with increasing Reynolds number. The flat and oval tubes show an
almost linear increase in Nu with increasing Re. However, the round tube plot
shows a sharp increase in the rate of change starting at Re=150. For a given
Reynolds number, the round tube average Nusselt number is highest, followed
by the oval tube and then the flat tube values. In general, Nu increases with Re.
As stated before, the case of the round tube has the highest blockage ratio and
the case of flat tube is the lowest blockage ratio. Thus, flow velocity in passages
between the tube and the channel is highest for the round tube case and lowest
for the flat tube case. Higher velocities lead to thinner momentum and thermal
boundary layers for a constant property fluid flow case. Thinner thermal boundary
layers lead to higher heat transfer coefficients. This is the reason for the round tube
case to have the highest average Nusselt number, and the flat tube case to have the
lowest for a fixed value of Re.

From Figures 8a-8c, we see that even though the amount of energy imparted
to the fluid is equal for all tube shapes, the Nusselt number and therefore the local
heat transfer coefficient vary in distinctly different ways for the three tube shapes.
From the definition of Nu given in Eq. (11) above, if ¢”, D, and k are constant
for all cases, the variation of Nu along the tube surface must be due to variation
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in the temperature difference (i" — T4). Furthermore, for these cases, the bulk

temperature increases steadily but gradually in the streamwise direction. Therefore,
the variations of (T, — T}) are due mainly to variations in the surface temperature.

Because (T Tb) is in the denominator of Eq. (11), we can conclude that at a
location where Nu reaches a local maximum, that the surface temperature is at a
local minimum. Conversely, at a location where Nu is at a local minimum, surface

temperature is at a local maximum.

Figure 9 shows the heat transfer results for Pr =7.0. These results are presented
in the same format as for the Pr = 0.7 results described above. Figures 9a-9¢ showing
the local Nusselt number distribution for Pr=7.0 are similar in shape to their
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Pr=0.7 counterparts, but the peaks have shifted position slightly and the
magnitudes are different. One distinguishing feature of the Pr=7.0 plots compared
to the Pr=0.7 plots is the sharp increase of Nu at the trailing edge of the tube for all
three tube geometries. This is due to the effect of the Prandtl number on the relative
thicknesses of the momentum and thermal boundary layers. The thermal boundary
layer thickness for Pr = 7.0 is much thinner compared to that for Pr=10.7. This leads
to increased heat transfer performance at the trailing edge of the tube for the Pr=7.0
cases as compared to the Pr=0.7 cases, leading to a higher Nusselt number value.
Figure 94 shows that for Pr=7.0, as for Pr=0.7, the average Nusselt number for
the round tube is higher than that for either the flat or the oval tubes for a given
Reynolds number. Also, comparing Figures 84 and 94, the average Nusselt number
for a given tube shape at a given Reynolds number is higher for Pr=7.0 compared
to Pr=0.7.

9. PERFORMANCE COMPARISON OF FLAT AND OVAL TUBES TO THE
ROUND TUBE

To compare flat and oval tubes performance to that for the round tube for a
given Reynolds number based only on heat transfer performance, we define the heat
transfer enhancement ratio (Nu™) as follows:

Nut NUayg noncircular (13)
Nuavg,round

In Eq. (13), Nu,,, represents the average Nu along the perimeter of the top half of
the tube for any of the three tube shapes at the same Reynolds number. Figures 10a
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Figure 10. Heat transfer enhancement ratio versus Reynolds number: (@) Pr=0.7 and (b) Pr=7.0.
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and 105 show plots of Nu* versus Re for Pr=0.7 and Pr=7.0, respectively. In all
cases studied, Nu* was less than one indicating that for a given Reynolds number
the average heat transfer coefficient for the round tube is greater than that for the
flat tube or the oval tube. If one only considers heat transfer performance, the round
tube outperforms both the flat and the oval tubes.

To compare the performance of the three tube shapes based on both heat
transfer and overall flow considerations, we define the heat transfer performance
ratio (Nu*) for a given Reynolds number:

+
Nu* Nu (14)

B [fﬂat or oval/ﬁound] 173

In Eq. (14), Nu™" is the heat transfer enhancement ratio, ffat or ovat 1S the friction
factor for either the flat or oval tube, and f;,unq is the round tube friction factor,
all at the same Reynolds number. The denominator is proportional to the ratio of
pumping power required to maintain the flow in either the flat or oval tubes domain
for a given Reynolds number to that required for the round tube domain. Figures 11a
and 11b show plots of Nu* versus Re for the cases studied at Pr=0.7 and Pr=7.0,
respectively. In all cases studied, Nu* is greater than one indicating that if pumping
power is considered along with heat transfer to compare performance, then either the
flat or oval tubes outperforms the round tube.

10. CONCLUSION

The current work demonstrates the viability of using a CVFEM along with
PFD conditions to study tube-in-cross-flow problems. One of the advantages to

135



664 T. L. FULLERTON AND N. K. ANAND

using a single-module domain with imposed PFD conditions is that the domain is
limited to the domain of interest—entry and exit lengths are not required and mul-
tiple modules are not required. This results in shorter solution times and more
efficient use of available computing resources. Another advantage is that the
resulting solution truly exhibits PFD conditions rather than approximate PFD
conditions.

For the example, problems studied comparing the performance of flat and oval
tubes to that of round tubes, the round tube performed better from a heat transfer
standpoint based on the heat transfer enhancement ratio. However, the heat transfer
performance ratio was greater than one for all cases indicating that if both heat
transfer and pumping power are to be considered, then the flat or oval tube may
be a better choice.
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APPENDIX B - INTERPOLATION FUNCTION FOR ¢ WITHIN AN
ELEMENT

To evaluate the link flux integrals on the LHS of Eq.(3.6), the distributions of ¢,
op/0X and 0g¢/oY along the element links are required. To this end, a nonlinear
interpolation function for ¢is introduced. The equations in Eq.(3.8) are repeated here
for convenience as Eq.(B.1) through Eq.(B.4). Eq.(B.1) is an expression for the value of

the general transported variable ¢ at an (X,Y) location within an element.

#(X,Y) = AZ(X)+BY +C Eq.(B.1)
— 5 (X _Xmax) _
pe = 2o (Xno ~ Xon) Eq.(B.3)

r

X =max(X,, X,, X
max - ( 1 2 3) EQ(B4)
xmin = mln(xl’ XZ’ XS)
Eq.(B.1) is known as the interpolation function for ¢within the element.

Eq.(B.2) defines Z(X) within Eqg.(B.1). Note that Z is a function of X. Eq.(B.3) defines

the element Peclet number. U, in Eq.(B.2) and Eq.(B.3) is the average magnitude of
the element velocity vector for the element’s three nodes. Eq.(B.4) defines Xmax and Xmin
as the maximum and minimum, respectively, of the X-coordinates of the element’s nodes
in the local element coordinate system. Eq.(B.1) through Eq.(B.4) show that the value of
gat a location (X,Y) within the element is dependent upon the element geometry, the

average velocity within the element, and specified material properties.
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Before Eq.(B.1) can be used in the evaluation of link fluxes, the coefficients A, B,
and C must be determined. The coefficients are determined by applying the constraint
that Eq.(B.1) is valid at each of the element’s three nodes. This produces a set of three
equations which may be solved for the coefficients A, B, and C.

¢ =AZ +BY,+C

¢, =AZ,+BY,+C

¢, =AZ,+BY,+C
where Z, =Z(X,)

Eq.(B.5)

While neither the values of ¢at the nodes nor the values of coefficients A, B, or
C are known, the ¢ values will be treated as knowns in Eq.(B.5). Rewriting Eq.(B.5) in

matrix form yields Eq.(B.6).

Z Y 1A )
Z, Y, 1| B|=|¢ Eq.(B.6)
2 2 2
Z3 Y3 1 C ¢3

Solving the three-equation system in Eq.(B.6) for A, B, and C yields the

following expressions.

A=Lg +L¢, + Lo,
B= M1¢1+M2¢2+M3¢3 Eq.(B.7)
C=Ng +N,p, + N3¢3

L =(Y, _Ys)/DET¢
L, =(Y, —Yl)/DET¢ Eq.(B.8)

L =(Y, _Yz)/DET¢
M, =(Z, —Zz)/DET¢

M, = (Z, - Z,)/DET, Eq.(B.9)
M, =(Z,-2,)/DET,
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N, = (Z,Y, - Z,Y,)/DET,
N, = (Z,Y, - Z,Y,)/DET, Eq.(B.10)
N, = (ZY, - Z,Y,)/DET,

DET, =Z,(Y, —Y5) + Z,(Ys = Y)) + Z5(Y, —Y;) Eq.(B.11)

The coefficients A, B, and C are not numerical. Rather, they are expressions in

terms of the unknown ¢ values at the element’s nodes. Use of Eg.(B.1) in conjunction

with Eq.(B.7) through Eq.(B.11) specifies the value of gat an (X, Y) location within the

element in terms of the unknown values of ¢ at the nodes. Specifically, expressions for
¢ may be determined at the element’s integration points.

Expressions for 0¢/0X and 0¢/0Y along the links are also required.

Differentiating Eq.(B.1) with respect to X yields the following expression for 9¢/oX .

%_ pUavg
= _A{—F Z(X)+l} Eq.(B.12)

Differentiating Eq.(B.1) with respect to Y yields the following expression for 64/0Y .

% _g

Eq.(B.13
v q.(B.13)

In Eq.(B.12) and Eq.(B.13), A and B are defined by Eq.(B.7) through Eq.(B.11).
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APPENDIX C - FLUX INTEGRATION FOR ELEMENT LINKS

This appendix discusses the integration of the flux of the general transported

scalar ¢ across element links. The general transported scalar ¢ may represent velocity

components u or v or it may represent temperature (T), but not pressure (P).

M Control Volume
Control Volume for Node P
for Node P

M N

link oc

Element
Centroid

link ob

Lk } p : jK

Domain Boundary

(@) (b) (©

Figure C-1. CVFEM domain discretization: (a) typical element; (b) internal CV; (c) boundary CV.

Figure C-1 shows a typical element, an internal control volume (CV) and a
boundary CV. Each element is defined by an ordered set of three nodes. Each node has
both a global node number (GNN) and an element local node number (LNN) associated
with it. GNN’s are unique within the domain. The possible values for LNN are 1, 2,
and 3. For example, E1{K, P, L} represents the definition of Element 1 (E;) shown in
Figure C-1(b) in terms of the GNN’s K, P, and L. In the definition, the GNN’s are
ordered such that as the perimeter of the triangle is traversed from K to P to L, one

travels in a counter-clockwise direction. The LNN’s are assigned based on the order of
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the GNN’s in the definition of the element. For example, LNN; corresponds with
GNNg, LNN corresponds with GNNp, and LNNj3 corresponds with GNN.

Each element is divided into three equal-area sub-regions by constructing
element links from the element centroid to the midpoints of each of the three sides as
shown in Figure C-1(a). A control volume for a given node is formed from sub-regions
of elements that share that node. Figure C-1(b) shows that the element links form the
outer boundary of an internal CV. Figure C-1(c) shows that for a boundary CV, a
combination of element links and domain boundary segments form the outer CV
boundary.

For a given element link, Simpson’s One-Third Rule is applied to evaluate the
flux integrals. Simpson’s One-Third Rule assumes a parabolic distribution of flux along
the link. To apply Simpson’s One-Third Rule to an element link, the values of the
integrand at the two endpoints of the link and at the midpoint of the link are needed. It
should be noted that since the element links lie within elements and since constant
material properties are assigned to elements in this method, the values of p and T may
be treated as constants in the following expressions. The harmonic mean is not required.

The result of the integration process is an expression for the integrated flux
across each link in terms of numerical coefficients A’s and unknown values of ¢ at the

element’s nodes. These expressions take the form of
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[ @%-N)di=> 27

link oa i=1

[ @ Nd=3 20

link ob

[ @ Ndi=> a4

link oc i=1
In Eq.(C.1), the subscript i corresponds to the element local node numbers.

The values for the coefficients are given by the equations below.

(LZ

oa

ﬂf,oa = mavg,oa + MiY_oa + Ni)_(pvavgz_oa _r) I-iYa +rMiXa
A= Moy o6 (L Zop + MY + Ni) = (0V,g Zgy = TILY, +TM; X,
A% =My 00 (LiZoe + MYy + N = (Vo Zoe ~DLY, +TM, X,

avg,oc oc avg “oc

rﬁavg,ob = p[UsYb - sxb:|
rﬁavg,oc = pl:Uth - :XCJ

7 _ZO+4Zr+Za — _Y0+4Yr+Ya
oa 6 oa 6
5 _LotA4Z,+Zy v Yot A +Yy
ob — ob —

6 6
7 :ZO+4Zt+ZC - :Y0+4Yt+YC
ocC 6 o] 6
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Eq.(C.1)

Eq.(C.2)

Eq.(C.3)

Eq.(C.4)

The m expressions in EQ.(C.3) result from an assumption that the average

element velocity across the link applies at all point locations along the link. Due to the

linear interpolation of element velocity within the element, the average velocity is

represented by the velocity at the midpoint of the link — Point r for link oa, Point s for

link ob, or Point t for link oc. This is why values of U and V were needed only at the

Points r, s, and t on the element links and not at all integration points.
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The expressions for Z and Y in Eq.(C.4) are the result of applying Simpson’s
Rule. The value of the integrand at the midpoint of the link is more heavily weighted in
the integration than the endpoints leading to the factor of 4 on the r, s, and t terms.

The above expressions allow calculation of integrated fluxes across all links of
all elements in the domain without regard to which links form the boundary of which
CV. The results of these calculations are the stored A ’s which are multipliers for the
unknown ¢values. Assembling an equation of the form Eq.(3.13) for a CV is a matter
of recognizing which pair of links from contributing elements forms the boundary of the
CV.

However, another step is required in preparation for this assembly process.
Looking again at Figure C-1, it is seen that for each element that contributes to a given
CV, there are two element links that form part of the CV boundary. The method for
assigning the direction of link normals guarantees that one link will have an outward
normal and the other will have an inward normal with respect to the CV. The LHS of
Eq.(3.6) represents the net efflux through the CV boundary. That the net efflux is of
interest is significant in that it implies that the link normal for each link forming the
boundary of the CV should be outward.

If the CV under consideration is associated with the element’s LNNj, then links
oc and oa form part of the boundary of the CV. With respect to the CV, the normal of

oc is outward and the normal of oa is inward. It can therefore be said that the net

efflux through the CV boundary contributed by the element in question is
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{flux through oc }—{flux through oa}. Similarly, for the CV associated with LNN,, the

total efflux contributed by the element is {flux through oa }—{flux through ob}. For

the CV associated with LNNs, the total efflux contributed by the element is {flux

through ob }—{flux through oc}. These conditions may be expressed in the following

equations.

®, = (4™ _ﬂfOb)¢i Eq.(C.5)

In Eq.(C.5), @, represents the total efflux contribution from an element to the CV

associated with element local node i.

If coefficients are defined as

A, = 4" -3
Ay = A8 2 Eq.(C.6)
P R

then an element’s contribution to the three CV’s associated with it can be represented as

O AL A A4
O, = Aél Azrz Aés 9, Eq.(C.7)
O, Ay Ay Ay

Eq.(C.7) represents the total efflux contribution of this element to the three CV’s
associated with it in terms of numerical coefficients and the unknown ¢ values at the
element’s three nodes.

When the equation for a CV is assembled, it will be of the form
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a4, +Zb:anb = jj SdA Eq.(C.8)
n A

For numerical stability, the Scarborough criterion specifies that

2. [aw|

‘ <1 for all equations and <1 for at least one equation Eq.(C.9)
a
p

If Eq.(C.7) is used to evaluate element contributions to CV’s, when the
contributions from all contributing elements are added to form the a; coefficients, in
general, the Scarborough criterion will not be met. However, with an adjustment to the
original conservation equation, the Scarborough criterion can be met. Rather than

subjecting each CV to Eq.(C.8), we will use the modified form of Eq.(C.10).

Z{j (O -N)dl}—qﬁpjnﬁ-ﬁds:ﬂsaA Eq.(C.10)

i=1 [ link
This is the conservation of ¢, equation for CV, in modified form. The second

term on the LHS represents the product of ¢, and the continuity equation for CV,.

Since the value of Irﬁ-ﬁds is identically zero, the value of the second term is zero and

the conservation equation is virtually unchanged from the form in Eq.(C.8). However,
Prakash [18] showed that this transforms the resulting Eq.(C.8) into a form such that the
coefficients meet the Scarborough criterion for stability.

Rather than assembling the CV equation and then performing the adjustment, the

adjustment can be performed at the element level by redefining the diagonal terms in the
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A’ matrix above. If II, is defined as the mass flow rate out of the pair of links

associated with local node i, and define the product IT.¢ as shown in Eq.(C.11),

I = (AL + A, + A3, Eq.(C.11)

then subtracting Eqg.(C.11) from Eq.(C.7) above results in the following equation.

q)l - 1_11¢1 Au A12 A13 ¢1
O, -ILp, 1= Ay Ay A ? Eq.(C.12)
(Da - H3¢3 A31 Azz A33 ¢3

A= _(Allz + Al’s) A, = A1’2 A= A1,3
A, = _(A2’1 + Azrs) A, = Aél Azs = Aés Eq.(C.13)
A33:_(A3’1+A3,2) A31:A3'1 Ay :A3'2

Eq.(C.12) represents expressions for the modified efflux of ¢ from the links of a
given element to the CV’s associated with it. If used consistently for all elements, then
upon assembling the CV conservation equations in the form of Eq.(3.13), each equation

will meet the Scarborough criteria.
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APPENDIX D - CV COEFFICIENT ASSEMBLY PROCESS

A value of ¢ is associated with every CV. lIts value is influenced directly by the

values of ¢ at neighboring nodes. The neighbor nodes for any CV are the nodes forming
the elements that contribute to the CV. The ultimate goal is to form an algebraic

equation of the form of Eq.(D.1) for each CV.

AP +Zanb o = Dp Eq.(D.1)
nb

To form Eq.(D.1) for a CV, the sum of the integrals of flux through the element
links forming the boundary is needed. In proceeding, it is assumed that these integrated
fluxes have been calculated for all element links in the domain and they are available in
the form of Eq.(C.12) for each element. The assembly process is a matter of
determining which elements contribute to the CV and which pair of element links from
each of these elements form a part of the CV boundary and adding the contributing
integrated fluxes.

An element is defined as an ordered set of three global node numbers. Locally,
for each element, these are known as 1, 2, and 3. A list of contributing elements for a
CV may be assembled by searching the list of all element definitions for the global node
number associated with that CV. If the CV number appears in an element’s node list,

that element contributes to the CV. The position of the CV number in a contributing
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Control Volume
for Node P

Figure D-1. Typical internal CV formed from four elements.

K

Figure D-2. Exploded view of Figure D-1 showing individual elements.
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element’s node list determines which expression for flux from Eq.(C.12) is used in the
assembly process. This is best illustrated with an example.

Figure D-1 shows an interior CV formed by contributions from four elements.
The global node numbers are shown as K, L, M, N, and P with the CV number being P.
The neighbors of P are K, L, M, and N and therefore expression for the total efflux is
expected to be in terms of ¢ at these nodes.

Figure D-2 shows the four elements in detail. The ordered sets of nodes defining

the elements are
El{L, K, P} EZ{M, L, P} E3{P, N, M} E4{N, P, K} Eq.(D.2)

The element local node numbers come from the placement in the list. For
example, for E;, local node number LNN; corresponds to global node number GNN|,
LNN, corresponds to GNNg, and LNNs; corresponds to GNNp. So, in the above
derivation of Eq.(C.12), the local node numbers are used, but they correspond to GNN’s
from the element definition.

The assembly process will be illustrated for the internal CV shown in Figure D-1
and Figure D-2. The same process applies for boundary CV’s, but additional terms must
be added to account for flux through the domain boundary.

For E1, GNNp corresponds to LNN3 . Therefore, the flux contribution from E; is
given by Eq.(C.12) with i =3.

Flux Contribution from E, to CV, = AZ ¢, + AZ¢, + AZ ¢, Eq.(D.3)
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Eq.(D.3) can be rewritten in terms of GNN’s by replacing the subscripts on ¢’s with the
corresponding global node number.

Flux Contribution from E, to CV, = AZd + AZd + AL, Eq.(D.4)

Similar expressions can be obtained for the flux contributions from E; through E4

using i=3 for E,, i=1 for E3, and i=2 for E,.

Flux Contribution from E, to CV, = Alz¢,, + Az + Az d, Eq.(D.5)
Flux Contribution from E, to CV, = A7d, + A7, + AZ 4, Eq.(D.6)
Flux Contribution from E, to CV,, = Alidy, + Ay + Asi Eq.(D.7)

Adding Eq.(D.4) through Eq.(D.7) and gathering terms gives the following

expression for the total efflux through the boundary of CV,.

Total Efflux = a,¢, +a, ¢_+a, @, +ayd, +ad
A=Ay + A7 +AT+ A
E E
a — 1 + 2
C=AL A Eq.(D.8)

_EZ E3
ay = Ay T A3

— E3 E4
ay = Ay Ay
—_ El E4
A = Ay + Ay

Comparing Eq.(D.8) to the LHS of Eq.(D.1), a,, a,,, a,,anda, are recognized as the

1

a,'s.
The above process may be performed on each CV in the domain and a
corresponding equation of the form of Eq.(D.1) derived. For internal CV’s, the total

efflux through the CV boundary is represented by the LHS of Eq.(D.8). For boundary

CV’s, additional terms are required.
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APPENDIX E - INTERPOLATION FUNCTION FOR PRESSURE (P)

Pressure is assumed to vary linearly within elements. For linear interpolation,
one may choose to work with the domain global coordinate system or the element local
coordinate system. Choosing the domain global coordinate system for pressure
interpolation allows calculation of the coefficients one time rather than during each
solution iteration. (In general, the element local coordinate system changes with each
iteration as the values of element velocity are updated.)

It is assumed that the pressure variation within an element may be described by
an equation of the form

P(x,y)=Ax+By+C Eq.(E.1)
By applying the constraint that Eq.(E.1) is valid at each of an element’s three nodes, the
following set of three equations is obtained

P =Ax +By, +C
P, = Ax, + By, +C Eq.(E.2)
P, =Ax; + By, +C

Similar to the discussion of the interpolation function for ¢ in Appendix B,
neither the P’s nor the coefficients A, B, or C are known. However, by considering the

P’s to be knowns, the coefficients to be unknowns, and solving for the coefficients in

terms of the P’s, the expressions for the coefficients take the following form.

A= AR+ AP, + AP,
B=B,P +B,P,+B,P, Eq.(E.3)
C=C,P+C,P,+C,P,



153

(yz_yg) (ys_yl) (yl_yz)
—\J2 )3/ =73 Ji7 =21 _J27 Eq.(E.4
A DET, % DET, A DET, G(E4)
P P P
P P P
DETp :X1(y2_y3)+xz(y3_y1)+xs(y1_y2) Eq'(E'7)

Eq.(E.1) in conjunction with Eq.(E.3) through Eq.(E.7) gives the pressure at any
location (x, y) within the element. However, this is not particularly helpful in
formulating the equations to solve for nodal pressures.

Recall that oP/ox and oP/dy appear in the source integrals for the momentum
equations. Differentiating Eq.(E.1) with respect to x and then separately with respect to

y, the following expressions for the derivatives are obtained.

S~ A= AR+ AP AP £q.(E)
X
P g B,P, +B,P, + B,P, Eq.(E.9)

The nodal pressures appear explicitly in the above expressions for the
derivatives. These expressions in conjunction with the continuity equation may be used

to derive CV conservation equations which may be solved for nodal pressures.
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