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ABSTRACT

Goodness-of-Fit Test Issues in Generalized Linear Mixed Models.

(December 2011)

Nai-Wei Chen, B.B.A., Tunghai University;

M.S., National Central University

Chair of Advisory Committee: Dr. Thomas E. Wehrly

Linear mixed models and generalized linear mixed models are random-effects

models widely applied to analyze clustered or hierarchical data. Generally, random

effects are often assumed to be normally distributed in the context of mixed mod-

els. However, in the mixed-effects logistic model, the violation of the assumption

of normally distributed random effects may result in inconsistency for estimates of

some fixed effects and the variance component of random effects when the variance

of the random-effects distribution is large. On the other hand, summary statistics

used for assessing goodness of fit in the ordinary logistic regression models may not

be directly applicable to the mixed-effects logistic models. In this dissertation, we

present our investigations of two independent studies related to goodness-of-fit tests

in generalized linear mixed models.

First, we consider a semi-nonparametric density representation for the random-

effects distribution and provide a formal statistical test for testing normality of the

random-effects distribution in the mixed-effects logistic models. We obtain estimates

of parameters by using a non-likelihood-based estimation procedure. Additionally,

we not only evaluate the type I error rate of the proposed test statistic through

asymptotic results, but also carry out a bootstrap hypothesis testing procedure to



iv

control the inflation of the type I error rate and to study the power performance of

the proposed test statistic. Further, the methodology is illustrated by revisiting a

case study in mental health.

Second, to improve assessment of the model fit in the mixed-effects logistic mod-

els, we apply the nonparametric local polynomial smoothed residuals over within-

cluster continuous covariates to the unweighted sum of squares statistic for assessing

the goodness-of-fit of the logistic multilevel models. We perform a simulation study

to evaluate the type I error rate and the power performance for detecting a missing

quadratic or interaction term of fixed effects using the kernel smoothed unweighted

sum of squares statistic based on the local polynomial smoothed residuals over x-

space. We also use a real data set in clinical trials to illustrate this application.
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CHAPTER I

INTRODUCTION

In most data analysis, linear models (LMs) have been widely used in cases where the

observed outcome variables are continuous. When the observed outcome variables are

categorical or discrete, generalized linear models (GLMs) possessing nonnormal out-

come distributions and their mean functions (McCullagh and Nelder, 1989; Agresti,

2002) play an important role. Additionally, in practice, clustered or hierarchical data

often occur in many fields, for instance, in the biomedical field where repeated mea-

surements are taken over time on each of many subjects in a sample or in the field of

education where we can group students by the district and measurements are taken

on students within districts. On the above examples, outcome variables are usu-

ally correlated because repeated measurements are made on each subject or subjects

within clusters may exhibit similar characteristics. Therefore, LMs and GLMs are

not applicable in accounting for this dependence.

In the past decade, models including a vector of unobserved subject-specific ef-

fects, namely random effects, in the linear predictor component of the model are

used to deal with multiple sources of variation. In random-effects models, it is of-

ten assumed that conditional on the random effects, the observed outcomes within

each subject or cluster are independent and random parts can be between subjects

or within subjects. Nowadays, linear mixed models (LMMs) and generalized linear

mixed models (GLMMs) are random-effects models used to model normal and non-

normal observed outcomes, respectively. They have been widely applied in many

different fields such as epidemiological studies of diseases, toxicology, and so on (Ver-

The format follows the style of Journal of the American Statistical Association.
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beke and Molenberghs, 2000; Diggle et al., 2002; Molenberghs and Verbeke, 2005).

Undoubtedly, in the context of mixed models, estimation and inference depend

that the structure of random effects is correctly specified. In general, random effects

are unobserved and in most inferential procedures and computation implementation,

random effects are often assumed to be normally distributed in LMMs and GLMMs.

In LMMs, Verbeke and Lesaffre (1997) showed that maximum likelihood estima-

tors (MLEs) for fixed effects and variance components of random effects obtained

under the assumption of normally distributed random effects are consistent, even

when the random-effects distribution is misspecified. Unlike LMMs some research

has been done to discover the impact of misspecifying the random-effects distribution

in the mixed-effects logistic model, a broadly discussed case with binary outcomes in

GLMMs.

Neuhaus et al. (1992) carried out a set of simulation studies to find that when the

distribution of random effects is misspecified and a random-intercept logistic model

is fitted, the MLEs of model parameters for the fixed effects are inconsistent, but

the magnitude of the bias is not large. However, estimates of the variance of the

random-effects distribution exhibit large biases. Heagerty and Kurland (2001) used

the Kullback-Leibler Information Criterion to evaluate the consistency of MLEs of

model parameters on conditional and marginal mean models. The authors showed

that for conditionally specified models, misspecification of the random-effects distri-

bution may lead to seriously biased estimators for a cluster-level (between-subject)

parameter and the intercept term when the variance of the random-effects distri-

bution is large. Agresti et al. (2004) showed that the MLEs for fixed effect and

variance component of the random-effects distribution appear inconsistent when the

true random-effects distribution is a two-points mixture with a large variance in a

simple one-way random-effects model. Litière et al. (2008), through simulations,
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found that MLEs of between-subject parameters for the mean structure may be af-

fected by misspecification of the random-effects distribution when the variance of the

true random-effects distribution is large and estimates of the variance component are

severely affected by misspecification in most situations.

Moreover, Litière et al. (2007) studied the impact of the misspecification of

the random-effects distribution on the type I and type II error rates related to the

Wald test for the mean structure parameters. They found that misspecification of

the random-effects distribution and the variance component of random effects can

severely affect the power of the analysis and the type I error rate related to the tests

for the intercept parameter. Huang (2009) proposed a novel two-step parametric

diagnostic method that makes use of both observed data and a reconstructed data

set induced from the observed data to verify misspecification of the random-effects

model. In terms of one of the simulation results, the author showed that when the

distribution family of random effects is misspecified, the test for the corresponding

variance component of the random-effects distribution tends to be significant but

the proposed test statistic loses power on testing the parameters of fixed effects.

Therefore, an assessment of the goodness of fit of the random-effects distribution

increasingly becomes a study issue in generalized linear mixed models.

On the other hand, since the mixed-effects logistic models have been widely

used for analyzing clustered or naturally hierarchical data with binary outcomes,

methods for assessment of the model fit need to be well developed. Evans and Hosmer

(2004) extended summary statistics used on assessing goodness of fit in the ordinary

logistic regression models to mixed-effects logistic models. The authors showed that

the performance of type I error rates is not good in some situations. Additionally,

Sturdivant (2005) and Sturdivant and Hosmer (2007) proposed a kernel smoothed

unweighted sum of squares statistic by smoothing residuals in the y-space to assess the
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adequacy of the logistic multilevel models. They demonstrated satisfactory adherence

to type I error rates by the proposed statistic. However, for a case with fewer subjects

per cluster, the simulation results showed very limited or no power to detect the

missing quadratic term of fixed effects. Therefore, finding a method for improving

the existing methods of assessment of the model fit in any specified model is worth

being discussed.

The objective of this dissertation includes two independent studies in mixed-

effects logistic models. The first work is to provide a method for testing normality

of the random-effects distribution and the second work is to apply the nonparamet-

ric local polynomial smoothed residuals to improve assessment of the model fit. In

Chapter II, we present a literature review for our two studies. Chapter III of this

dissertation is devoted to our first study. We consider a semi-nonparametric (SNP)

density representation for the random-effects distribution and provide a formal sta-

tistical test that has a close connection to an order selection-type goodness-of-fit test

for testing normality of the random-effects distribution in GLMMs. This test is non-

parametric in the sense that we do not assume a parametric form for the alternative

model. In addition, estimation is fundamental to any hypothesis test. Unlike LMMs

the likelihood function under GLMMs may have no analytic expression and numerical

approximations may be needed. As a result, likelihood-based inference is computa-

tionally challenging and non-likelihood-based estimation is an attractive approach.

Zeger et al. (1988) used the generalized estimating equations (GEEs) approach to

fit subject-specific and population-averaged models. Jiang (2007) and Jiang et al.

(2007) proposed a procedure to solve estimating equations for parameter estimation.

Throughout this study, a non-likelihood-based estimation procedure will be adopted

for estimation of parameters. In a set of simulation studies, we conduct a bootstrap

hypothesis testing procedure to evaluate the power performance and the type I error
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rate for the proposed test statistic. Further, we apply our method to revisit a case

study in mental health (Alonso et al., 2004; 2008).

Chapter IV is devoted to our second study. We apply the nonparametric lo-

cal polynomial smoothed residuals over within-cluster continuous covariates to the

unweighted sum of squares statistic (Hosmer et al., 1997; Sturdivant and Hosmer,

2007) for assessing the goodness-of-fit of the logistic multilevel models, namely, the

mixed-effects logistic models for hierarchical data with binary outcomes. We carry

out a simulation study which is performed to evaluate the type I error rate of the

kernel smoothed unweighted sum of squares statistic by using the local polynomial

smoothed residuals and the power performance for detecting a missing quadratic or

interaction term of fixed effects. Moreover, to illustrate this application, we use a

real data set in clinical trials provided by Cancer Biostatistics Center, Vanderbilt

University. Finally, Chapter V recapitulates all our findings and provides discussions

of future research.
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CHAPTER II

LITERATURE REVIEW

In this chapter, we shall introduce the basic formulation of generalized linear mixed

models and review some selected articles on parameter estimation in detail. Addition-

ally, in this dissertation, one of our studies is related to an application of smoothed

residuals in the logistic multilevel model for model checking. Therefore, we also in-

troduce the original idea through reviewing an application of the smoothed residuals

in the goodness-of-fit test of the ordinary logistic regression model.

2.1 Generalized Linear Mixed Models

Suppose there are m observed subjects (or clusters). Let us denote by yij the jth

response measured, for instance, the jth time point in longitudinal data, for the ith

subject (or cluster), i = 1, . . . ,m and j = 1, . . . , ni. Further, for subject i, condi-

tional on random effects bi, all the responses yij are assumed to be independent with

conditional density belonging to the exponential family (Molenberghs and Verbeke,

2005; Litière et al., 2007),

f(yij|bi;β, φ) = exp

{
yijθij − ψ(θij)

φ
+ c(yij, φ)

}
,

where ψ(·) is a function satisfying E(yij|bi) = ψ′(θij), V ar(yij|bi) = φψ′′(θij), and φ

is a dispersion parameter whose value may be known and c(·, ·) is a known function.

Let µbij = E(yij|bi) = ψ′(θij). A generalized linear mixed model for yij is given by

g(µbij) = g(E[yij|bi]) = xTijβ + zTijbi,
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where g(·) is a monotonically increasing link function depending on known xij and

zij p-dimensional and q-dimensional vectors of fixed covariate values, including the

intercept term; β, a p-dimensional vector of unknown fixed regression coefficients and

bi, a q-dimensional vector of the random effects. The subject-specific effects bi are

generally assumed to be normally distributed with mean zero vector and variance-

covariance matrix D, denoted by f(bi|D) ∼ N(0, D).

In clustered or hierarchical data analysis, the mixed-effects logistic models are

often used to analyze binary outcome data collected in subjects (or clusters). Herein,

we illustrate a special and important mixed-effects logistic model as follows.

Example 1. (Random-Intercept Logistic Model) Suppose the intercept terms bi are

independent and identically distributed random effects. Within the ith subject (or

cluster), binary responses yij are conditionally independent Bernoulli with

logit(µbij) = bi + xTijβ,

where µbij = p(yij = 1|bi,xij) and the dispersion parameter φ is assumed to be 1. This

is a common case of generalized linear mixed models where the conditional exponential

family is Bernoulli, bi is normally distributed with mean zero and variance σ2, and

the link function is the logit-link, namely, the random-intercept logistic model.

2.2 Estimation Procedure

Generally, a random-effects model can be fitted by maximizing the marginal likeli-

hood. The likelihood function is derived as

L(β, D, φ) =
m∏
i=1

∫ ni∏
j=1

f(yij|bi,β, φ)f(bi|D)dbi

=
m∏
i=1

fi(yi|β, D, φ),
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where yi = (yi1, . . . , yini
)T . The likelihood function under GLMMs may have no ana-

lytic expression and it cannot be further simplified. Thus, numerical approximations

may be needed. As a result, likelihood-based inference in GLMMs is computationally

challenging.

So far, several approaches about the inference of GLMMs have been developed.

Based on Bayesian techniques, Zeger and Karim (1991) used Gibbs sampling tech-

niques to take repeated samples from the posterior distributions to avoid the need of

numerical integration, and Booth and Hobert (1999) used Monte Carlo EM algorithm

for maximum likelihood estimation. Moreover, Breslow and Clayton (1993) proposed

not only approximation of the marginal quasi-likelihood using the Laplace method

which leads to estimating equations based the penalized quasi-likelihood for mean

parameters in the marginal model, but also a penalized quasi-likelihood for approxi-

mated inference on mean parameters and realizations of random effects in the condi-

tional model. Lin and Breslow (1996) further developed first-order and second-order

correction procedures for parameter estimation under the penalized quasi-likelihood.

On the other hand, some computational methods based on the non-likelihood view-

point are attractive. Zeger et al. (1988) used the generalized estimating equations

(GEEs) approach to fit subject-specific and population-averaged models. Jiang (2007)

and Jiang et al. (2007) proposed an iterative procedure to solve estimating equations

for parameter estimation. In this section, we review two methods of parameter es-

timation for generalized linear mixed models in detail. One excerpted from Breslow

and Clayton (1993) is an approximation of the quasi-likelihood function in the con-

ditional case; the other one excerpted from Jiang (2007) is an iterative procedure for

solving estimating equations in the marginal case.
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2.2.1 Parameter Estimation in the Conditional Case

When the exact likelihood function is difficult to compute, Breslow and Clayton

(1993) applied the Laplace method for integral approximation to a quasi-likelihood

function and modified the Fisher scoring algorithm developed by Green (1987) for

parameter estimation. This method has been implemented in several statistical pack-

ages.

Herein, we simplify the situation to a specified subject with n response measures.

Suppose that, given a q-dimensional vector b of random effects, the responses y =

(y1, · · · , yn)T are conditionally independent and the conditional mean satisfies

E(y|b) = h(xβ + zb),

where x = (x1, · · · ,xn)T , z = (z1, · · · , zn)T and h(·) is the inverse function of a link

function g(·). Further, suppose that a random-effects vector b has the multivariate

normal distribution with mean 0 and covariance matrix D depending on an unknown

vector of variance components ζ. A quasi-likelihood function can be expressed as

qL(β, ζ) ∝ |D|−
1
2

∫
exp

{
− 1

2φ

n∑
j=1

dj −
1

2
bTD−1b

}
db,

where

dj = −2

∫ µb
j

yj

yj − τ

ajυ(τ)
dτ

is known as the deviance, µbj = E(yj|b), V ar(yj|b) = φajυ(µ
b
j), aj is a known con-

stant, υ(·) is a known variance function, and φ is a dispersion parameter that may or

may not be known. In Bernoulli cases, similar to Example 1, we can consider that

the dispersion parameter φ is fixed at unity.

The approximation of the logarithm of the quasi-likelihood function is obtained

by using the Laplace approximation (see Breslow and Clayton, 1993, page 10–11
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for more details). Maximizing qL(β, ζ) is equivalent to maximizing the penalized

quasi-likelihood (PQL) (Green, 1987) denoted by

−1

2

n∑
j=1

dj −
1

2
bTD−1b.

Differentiating the PQL with respect to β and b to obtain score equations for the

mean parameters as follows,

n∑
j=1

(yj − µbj)xj

ajυ(µbj)g
′(µbj)

= 0

and
n∑
j=1

(yj − µbj)zj

ajυ(µbj)g
′(µbj)

= D−1b.

Next, we can define a working vector y∗ = (y∗1, . . . , y
∗
n)
T and y∗j = g(µbj) + (yj −

µbj)g
′(µbj) where µbj is computed at current estimates of β and b. The solution to

score equations through Fisher scoring can be expressed as the iterative solution to

the system xTwx xTwz

zTwx D−1 + zTwz


β
b

 =

xTwy∗

zTwy∗

 ,
where w is a n× n diagonal matrix with diagonal terms wj =

[
ajυ(µ

b
j)
{
g′(µbj)

}2
]−1

.

For fixed variance components, parameter estimation of fixed effects and esti-

mation of random effects are obtained in the conditional model. Additionally, the

variance components in D are often unknown and need to be estimated before we

make any inference (see Breslow and Clayton, 1993, page 11–12 for details).

2.2.2 Parameter Estimation in the Marginal Case

In some situations, we may be interested in the marginal mean E(yij) obtained from

averaging the conditional mean E(yij|bi) over the random effects. In this situation,
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the marginal mean can be expressed as

µij = E(yij) = E[E(yij|bi)] =

∫
h(xTijβ + zTijbi)f(bi)dbi,

where h(·) is the inverse function of a link function g(·). Especially, if g(·) is not

the identity link, it is not true that µij = E(yij) = h(xTijβ) (see Molenberghs and

Verbeke, 2005, page 298–301 for more details).

In the case of generalized linear mixed models, the optimal estimating equations

can be denoted by

G∗ =
m∑
i=1

µ̇Ti V
−1
i (yi − µi) = 0,

where yi = (yi1, . . . , yini
)T , E(yi) = µi, and Vi = V ar(yi). In general, the variance

of the response measures, Vi, is assumed known. Jiang (2007) argued that a para-

metric model for Vi may increase the risk of model misspecification which affects the

consistency of parameter estimators. Jiang (2007) and Jiang et al. (2007) proposed

a semiparametric regression model for Vi, which can be used for either a balanced or

an unbalanced data and estimated by the method of moments. In the following, we

sketch this idea.

Let us start by considering a study conducted over a set of visit times t1, t2, · · · , tb.

Suppose that response measures are collected from subject i at the visit times tj,

j ∈ Ji ⊂ J = {1, . . . , b}. Let yi = (yij)j∈Ji
and xi = (xij)j∈Ji

. We assume that

(xi,yi), i = 1, . . . ,m are independent and the mean function is given by

E(yij|xi) = gj(xi,β),

where β is a p× 1 vector of unknown parameters and gj(·, ·) are fixed functions. The

covariance matrix is given by

Vi = V ar(yi|xi),
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whose (j, k)th element is υijk = cov(yij, yik|xi) = E{(yij −µij)(yik−µik)|xi}, j, k ∈ Ji

with µij = E(yij|xi) and µi = (µij)j∈Ji
= E(yi|xi). In addition, let U = {(j, k) :

j, k ∈ Ji for some 1 ≤ i ≤ m}. Suppose that Ljk is the number of different υijks and

υijk = υ(j, k, l), i ∈ I(j, k, l), where I(j, k, l) is a subset of {1, . . . ,m}, 1 ≤ l ≤ Ljk.

For any (j, k) ∈ U , 1 ≤ l ≤ Ljk, we can define

υ̂(j, k, l) =
1

n(j, k, l)

∑
i∈I(j,k,l)

{yij − gj(xi,β)}{yik − gk(xi,β)},

where n(j, k, l) is the cardinality of set I(j, k, l), |I(j, k, l)|, equal to the number of

elements in I(j, k, l). The estimated Vi is given by

V̂i = (υ̂ijk)j,k∈Ji
,

where υ̂ijk = υ̂(j, k, l), i ∈ I(j, k, l).

Once Vis are estimated (or known), we can estimate β by the estimating equa-

tions. When β are estimated (or known), Vi can be estimated by the above proposed

method of moments. This procedure is named as iterative estimating equations, or

IEE. The authors further showed that the IEE estimator is asymptotically as efficient

as the optimal estimator obtained by solving generalized estimating equations with

the true Vis (see Jiang, 2007 and Jiang et al., 2007 for more details).

2.3 Application of Smoothed Residuals in the Ordinary Logistic Models

In practice, the ordinary logistic regression model is widely used in analyzing data

with independent binary outcome variables. Several goodness-of-fit tests for the bi-

nary regression model are available, such as the Pearson residual statistic, the likeli-

hood ratio statistic and the Hosmer-Lemeshow statistic, etc. However, le Cessie and

van Houwelingen (1991) mentioned potential problems of some of these test statistics.
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For instance, the asymptotic distribution of the likelihood ratio test statistic is based

on letting the number of observations in each status tend to infinity and it fails when

there are no replicated measurements. Therefore, they proposed a global test statistic

based on nonparametric kernel methods. In this way, there is no need to partition

the data into subsets, it is possible to deal properly with continuous covariates, and

each observation is treated in the same manner that a weighted average of the stan-

dardized residuals in its neighborhood is calculated. The authors also argued that in

this way, the individual contribution of the observations to the test statistic can be

used as a diagnostic tool to detect the parts of data where the model does not fit. On

the other hand, Hosmer et al. (1997) smoothed the standardized residuals by using

the kernel smoothing weights for the residuals in either the x-space or the y-space. In

the x-space, all covariates are used in developing the weights and in the y-space, the

weights are produced using the relative distances of the model-predicted probabilities

of the outcome. Next, we sketch the idea of Hosmer et al. (1997) as follows.

In the ordinary logistic regression models, assume that we observe n independent

pairs (xi, yi), i = 1, · · · , n, where xTi = (1, x1i, · · · , xpi) denotes vector of (p+1) fixed

covariates for the i subject and yi = 0, 1 denotes an observation of outcome. Hosmer

et al. (1997) suggested weight functions by using the uniform kernel in the x-space

and a cubic weight in the y-space. The x-space weight defining the distance between

subjects i and j is wij =
∏p

k=1 u(xik, xjk) with

u(xik, xjk) =


1 if

|xik − xjk|
sk

≤ cu

0 if
|xik − xjk|

sk
> cu,

where sk is the sample standard deviation of xk and the value of cu =
1

2

(
4

n1/2p

)
.



14

The cubic weights defining the y-space weight can be given by

wij =


1−

(
|π̂i − π̂j|
cci

)3

if |π̂i − π̂j| ≤ cci

0 if |π̂i − π̂j| > cci,

where the constant cci depends on i and is chosen such that
√
n weights are non-

zero for each subject. Then, the authors smoothed standardized residuals by using

r̂si =
∑n

j=1wij r̂j with r̂j =
yj − π̂j√
π̂j(1− π̂j)

and defined the test statistic of goodness-

of-fit by T̂r =
∑n

i=1

r̂2
si

V̂ ar(r̂2
si)

.

Additionally, le Cessie and van Houwelingen (1991) and Hosmer et al. (1997)

suggested that when the models are complicated, the smoothed-residuals-based tests,

compared with some other tests, have greater power for checking goodness-of-fit

of some specified models. Further, Sturdivant (2005) and Sturdivant and Hosmer

(2007) applied the smoothed residuals over y-space in the logistic multilevel model

and showed limited or no power for model checking in some situations. Later, in

Chapter IV, we shall review this application and investigate whether using the local

polynomial smoothed residuals over within-cluster continuous covariates can improve

power performance for checking the adequacy of fit of the logistic multilevel model.
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CHAPTER III

A TEST FOR NORMALITY OF RANDOM EFFECTS IN GENERALIZED

LINEAR MIXED MODELS

3.1 Introduction

In generalized linear mixed models, estimation and inference depend the random-

effects distribution being correctly specified, and have been implemented under the

assumption of normally distributed random effects in many statistical packages. How-

ever, misspecification of the random-effects distribution may result in (1) bias in the

estimates of the mean structure parameters associated with a large variance of ran-

dom effects, (2) bias in the estimates of the variance component of the random-effects

distribution (Neuhaus et al., 1992; Heagerty and Kurland, 2001; Agresti et al., 2004;

Litière et al., 2008), and (3) low power performance in testing the intercept parameter

or the parameters of fixed effects (Litière et al., 2007; Huang, 2009). Recently, some

research has been devoted to detect the departure from the normality assumption of

random effects.

Chen et al. (2002) constructed an informal test of the normality of random

effects by choosing the order of a semi-nonparametric (SNP) estimator based on a

Hermite expansion for GLMMs. The authors considered a Monte Carlo EM algorithm

using a rejection sampling scheme to estimate parameters and applied information

criteria such as AIC, BIC, or Hannan and Quinn’s criterion to find that the perfor-

mance of the SNP approach for detecting a departure from normality is encouraging.

Waagepetersen (2006) used the adaptive rejection sampling to simulate random effects

conditional on the observations and found the empirical distribution function based

on conditional simulated random effects. Then, the author considered a discretized
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version of the Anderson-Darling statistic to assess the goodness of fit of the random-

effects distribution and briefly commented that poor powers only slightly bigger than

the nominal level (5%) are obtained for certain nonnormal distributions of random

effects in a simple random-intercept logistic model. A key to the above methods is

the use of the estimated distribution of random effects for assessing departure from

normality of the random-effects distribution.

On the other hand, Tchetgen and Coull (2006) argued that misspecification of

the random-effects distribution may induce asymptotic bias in the marginal MLEs of

the fixed effect, whereas the conditional MLEs are robust to any misspecification of

the random-effects distribution. They used this property to propose a diagnostic test

based on the difference between the marginal MLEs and conditional MLEs of a sub-

set of the fixed effects in the model to detect misspecification of the random-effects

distribution. In a simulation result, they showed that for relatively large samples

and moderate cluster size, their proposed test statistic is able to detect departures

of the random-effects distribution in most settings. Alonso et al. (2008) proposed a

set of diagnostic tests, two determinant tests and the determinant-trace test, based

on the eigenvalues of the variance-covariance matrix of the maximum likelihood es-

timators to detect misspecification of the random-effects distribution. They found

that the determinant-trace test has a reasonable type I error rate and a good power

performance for all misspecification studies, and all tests perform considerably better

when variance of the random-effects distribution is large. Furthermore, Alonso et

al. (2010) proposed two diagnostic tests based on the information matrix associated

with parameter estimators. They showed that both tests have a satisfactory power

performance when variance of the random-effects distribution is large and sample

size is large in some settings. A key to these methods is the use of the impact of a

misspecified random-effects distribution on the maximum likelihood estimators and
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the inferential procedures.

Lastly, Claeskens and Hart (2009) used the SNP Hermite expansion to approxi-

mate the random-effects distribution and proposed an order-selection goodness-of-fit

test depending on the likelihood function to detect normality of the random-effects

distribution in linear mixed models. In terms of their simulation results, this proposed

order-selection test is fairly conservative, but has good power performance under the

specified alternative distributions of random effects, for instance, a mixture of normal

distributions. The authors also proposed a novel viewpoint that they used informa-

tion from the asymptotic distribution of their proposed test statistic to modify the

penalty term of the traditional AIC criterion. It can be applied by selecting the order

of SNP density representation for the random-effects distribution.

In this chapter, we start with reviewing a robust score statistic involved with

generalized estimating equations for testing the parametric mean function in general-

ized linear models (Aerts et al., 1999) and derive its asymptotic results. We combine

works of Claeskens and Hart (2009) and Aerts et al. (1999) to propose a formal non-

likelihood statistical test for testing the hypothesis of normality of the random-effects

distribution. Additionally, we not only evaluate the type I error rate and the power

of the proposed test statistic by using the parametric bootstrap procedure and cal-

culating the kernel smoothed bootstrap p-value in a simulation study, but also carry

out a test for normality of the random-effects distribution by revisiting a case study

in mental health.

3.2 Robust Score Test Statistic with Estimating Equations

Let us start by recalling an idea of testing the fit of a parametric function which

was applied to test mean functions in GLMs (Aerts et al., 1999). Suppose that the
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observed data (Z1, · · · , Zn) have a joint density of the form κn(z1, · · · , zn; γ(·)), where

κn is known up to γ(·). Their interest is in testing the null hypothesis,

H0 : γ(·) ∈ Ω,

where Ω = {γ(·;θ0) : θ0 = (θ1, · · · , θp) ∈ Θ} and Θ is a subset of a p-dimensional Eu-

clidean space. Under this circumstance, we can consider sequences of approximators

{γ(·; θ1, · · · , θp+r) : r = 1, 2, · · · } as alternative models for γ(·).

In the absence of a likelihood function, we form a set of estimating equations

n∑
i=1

ψr(zi; θ1, · · · , θp+r) = 0p+r,

where ψr is a p + r vector of statistics, r = 0, 1, · · · . Let θ̂0 be the solution to the

set of equations corresponding to r = 0, define δ̂r0 = (θ̂0,0r), and take ξr to be the

length p+ r vector equal to
∑n

i=1ψr(zi; θ̂0,0r). Then, define a robust score statistic

as follows, <0 = 0 and

<r = (ξr)
T
r (Ã−1

nr (δ̂r0))r

×
[
(Ã−1

nr (δ̂r0)B̃nr(δ̂r0)Ã
−1
nr (δ̂r0))r

]−1

×(Ã−1
nr (δ̂r0))r(ξr)r

for r = 1, 2, · · · , where B̃nr(δ̂r0)=
∑n

i=1ψr(zi; θ̂0,0r)ψr(zi; θ̂0,0r)
T and Ãnr(·) is a

(p + r)× (p + r) matrix of partial derivatives of ψr with respect to θ1, θ2, · · · , θp+r.

For a (p+ r)× 1 vector ξr, (ξr)r denotes the subvector of the last r components; for

any above (p+r)×(p+r) matrix Σ, a r×r submatrix can be defined as (Σ)r = UTΣU

where UT = [0r,p, Ip] with Ip the p × p identity matrix and 0r,p the zero matrix of

dimension r × p.

Next, in order to derive the asymptotic distribution of <r, we assume that zis,
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i = 1, . . . , n, are independent observations with expectations µi and variances ζ(µi),

where ζ(·) is some known function. It is obvious that µi is some known function of

a set of parameters. Wedderburn (1974) defined the quasi-likelihood equations (or

generalized estimating equations) as

n∑
i=1

zi − µi
ζ(µi)

· ∂µi
∂δr

=
n∑
i=1

ψr(zi; δr) = 0p+r, (3.1)

where δr = (θ0, θp+1, · · · , θp+r).

In general, the parameter vector δr is defined as the solution to

n∑
i=1

E [ψr(zi; δr)] = 0p+r,

where all expectations are with respect to the true (or unknown) p.d.f., κ(zi). The

idea here is that solving a set of score equations in likelihood models is generalized to

the construction of quasi-likelihood equations. Therefore, as we solve the system of

equations (3.1), it leads to the estimator δ̂r for δr. Moreover, White (1982) proved

that δ̂r is generally a strongly consistent estimator for δ∗r, the parameter vector which

minimizes the Kullback-Leibler Information Criterion (KLIC) and observed that when

the true distribution is unknown, the maximum likelihood estimator is a natural

estimator for the parameters which minimize the KLIC.

Under this viewpoint, suppose that the partial derivatives and appropriate in-

verses exist, we can use the following matrices Ãnr(δr) and B̃nr(δr) to construct the

variance-covariance matrix of the estimator δ̂r0,

Ãnr(δr) =
n∑
i=1

∂

∂δr
ψr(zi; δr),

B̃nr(δr) =
n∑
i=1

ψr(zi; δr)ψr(zi; δr)
T .
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The variance-covariance matrix of the estimator δ̂r0 can be given by

Ã−1
nr (δ̂r0)B̃nr(δ̂r0)Ã

−1
nr (δ̂r0).

Since it includes the information matrix Ãnr(δr) and a correction term B̃nr(δr), it

is called the sandwich variance-covariance matrix (Hardin and Hilbe, 2003). Then,

we have the following crucial asymptotic result by applying Theorem 3.5 of White

(1982).

Result 1. When we have a set of estimating equations (3.1) for unknown param-

eters, δr = (θ0, θp+1, · · · , θp+r) and under some appropriate assumptions shown in

White (1982, page 2–5), the robust score test statistic <r with (ξr)r, (Ã−1
nr (δ̂r0))r, and

(Ã−1
nr (δ̂r0)B̃nr(δ̂r0)Ã

−1
nr (δ̂r0))r has an asymptotic χ2

r distribution.

Further, we define a robust score test statistic analogous to the order selection

test by

T̃n = max
1≤r≤Rn

<r
r
. (3.2)

This test is equivalent to one that H0 is rejected whenever T̃n > Cn and Cn is a

critical value of the statistic T̃n. Aerts et al. (1999) also presented that under H0

and appropriate regularity conditions, T̃n has the same limiting distribution as that

of Tn = max1≤r≤Rn

2(Lr − L0)

r
where Lr denotes the maximized log-likelihood under

the alternative and L0 denotes the maximized log-likelihood under the null if the

likelihood is specified. The limiting distribution of Tn has been shown in Theorem 1

of Aerts et al. (2000). As a result, we can have the limiting distribution of T̃n as the

following.

Result 2. T̃n
d−→ T̃ , as n→∞, with

T̃ = max
r>1

Qr

r
,
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where Qr is equal to χ2
r, χ

2
r = s2

1 + · · ·+ s2
r for all r and s1, s2, . . . ,sr are identically

independent distributed standard normal random variables.

3.3 A Test of Normality of Random Effects in GLMMs

In this section, we shall introduce the semi-nonparametric (SNP) density represen-

tation of the random-effects distribution, use the marginal approach to parameters

estimation, develop a robust score statistic involved with generalized estimating equa-

tions for testing normality of the random-effects distribution in GLMMs, and demon-

strate how to obtain the smoothed bootstrap p-value under a bootstrap hypothesis

test procedure.

3.3.1 SNP Density Representation of the Random-Effects Distribution

Gallant and Nychka (1987) suggested that densities satisfying certain smoothness

restrictions could be approximated by a truncated version of an infinite Hermite series

expansion. This idea has been applied to approximate the distribution of random

effects in some articles (Zhang and Davidian, 2001; Chen et al., 2002; Claeskens and

Hart, 2009).

First, let us recall the generalized linear mixed models in Section 2.1. Assume

that random effects are mutually independent across subject i and denoted by

bi = Jui,

where J is a q × q upper triangular matrix and ui is a q × 1 random vector. Suppose

that ui is a q-variate random vector with density proportional to a truncated Hermite
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expansion around the standard normal density φ,

fM(ui) ∝ P 2
M(ui)φq(ui) =


M∑

|α|=0

aαuα
i


2

φq(ui),

where φq(·) is the density function of Nq(0, Iq), α = (α1, · · · , αq)T , |α| =
∑q

k=1 αq

and uα
i =

∏q
k=1 u

αk
ik . For instance, as ui = (ui1, ui2)

T (q = 2) and M = 2,

PM(ui) = a00 + a10ui1 + a01ui2 + a20u
2
i1 + a11ui1ui2 + a02u

2
i2,

where the number of terms in the expansion is Nq,M =

(
M + q

q

)
= 6.

Then, the density of bi is represented as

fM(bi) ∝ P 2
M(ui)Nq (bi;0,Σ) ,

where ui = J−1bi and Σ = JJT . When M = 0, it reduces to a standard q-variate

normal density, Nq(0, JJT ).

Therefore, when the random-intercept logistic model from Example 1 in Section

2.1 is adopted, the SNP representation of the random-effects distribution can be

simplified as follows,

fM(bi) ∝ P 2
M(ui)N

(
bi; 0, σ

2
)

=

{
M∑
α=0

aαu
α
i

}2

N
(
bi; 0, σ

2
)
,

where ui =
bi
σ

is a random variable and M is the value of the order representing

the degree of the tuning. Specifically, when M = 0, it reduces to a normal density,

bi ∼ N(0, σ2).

3.3.2 Implementation of the Test for Normality of Random Effects

In this part, we consider a random-intercept logistic model which is considered by

some authors (Litière et al., 2007; Alonso et al., 2008; Litière et al., 2008). Let
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yij be the response for subject i, i = 1, 2, · · · ,m, collected at time point tij and ri

be the treatment group to which subject i is allocated. We assume that given a

subject-specific random effect bi, binary responses yij, j = 1, · · · , n are conditionally

independent with conditional probability µbij = p(yij = 1|bi), which satisfies

logit(µbij) = bi + β0 + β1ri + β2tij,

where bi ∼ fM(·) and M is the value of the order representing the degree of the

tuning. Additionally, Zhang and Davidian (2001) showed that order M in the SNP

density representation need be no larger than one or two to approximate complicated

shapes, including multimodality and skewness, via a simulation experiment. Hence,

in this research, our interest lies in testing hypotheses denoted by

H0 : bi ∼ N(0, σ2),

and the alternative, Ha, for instance,

M = 1, f1(bi) ∝ P 2
1 (ui; a0, a1)N

(
bi;σ

2
)

= (a0 + a1ui)
2 1√

2πσ
exp

{
− b2i

2σ2

}
;

M = 2, f2(bi) ∝ P 2
2 (ui; a

∗
0, a

∗
1, a

∗
2)N

(
bi;σ

2
)

=
(
a∗0 + a∗1ui + a∗2u

2
i

)2 1√
2πσ

exp

{
− b2i

2σ2

}
.

Furthermore, for ui ∼ N(0, 1), a reparametrization of PM(·) using the polar coordi-

nate transformation is useful since it ensures that the integral of fM(bi) is equal to

one (Chen et al., 2002). After we do this reparametrization, we can obtain
a0 = cos(ψ1), a1 = sin(ψ1);

a∗0 = cos(ψ1)−
1√
2

sin(ψ1) sin(ψ2), a
∗
1 = sin(ψ1) cos(ψ2), a

∗
2 =

1√
2

sin(ψ1) sin(ψ2),

where ψ1, ψ2 ∈
(
−π

2
, π

2

]
.
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Specifically, under the null hypothesis, H0, we have the marginal mean function

E0(yij) = E {E(yij|bi)}

= E {h(β0 + β1ri + β2tij + bi)}

=

∫
h(β0 + β1ri + β2tij + σui)f(ui)dui

≡ µ0(ri, tij;ϕ0),

where h(x) =
ex

1 + ex
, ϕ0 = (β0, β1, β2, σ)T , and ui ∼ N(0, 1). Define µ0ij = µ0(ri, tij;ϕ0)

and µ0i = (µ0ij)1≤j≤n for subject i. The first derivatives of µ0ij are as follows,

∂µ0ij

∂β0

=

∫
h

′
(β0 + β1ri + β2tij + σui)f(ui)dui,

∂µ0ij

∂β1

= ri

∫
h

′
(β0 + β1ri + β2tij + σui)f(ui)dui,

∂µ0ij

∂β2

= tij

∫
h

′
(β0 + β1ri + β2tij + σui)f(ui)dui,

∂µ0ij

∂σ
=

∫
h

′
(β0 + β1ri + β2tij + σui)uif(ui)dui.

The marginal mean function µ0ij can be approximated by a simple Monte Carlo

method (Jiang, 2007),

µ0ij ≈
1

L

L∑
l=1

h(β0 + β1ri + β2tij + σλil) =
1

L

L∑
l=1

exp(β0 + β1ri + β2tij + σλil)

1 + exp(β0 + β1ri + β2tij + σλil)
,

where λil, l = 1, · · · , L are independent N(0, 1). Again, similar approximations can

be obtained for the first derivatives,

∂µ0ij

∂β0

≈ 1

L

L∑
l=1

exp(β0 + β1ri + β2tij + σλil)

{1 + exp(β0 + β1ri + β2tij + σλil)}2 ,

∂µ0ij

∂β1

≈ 1

L

L∑
l=1

ri
exp(β0 + β1ri + β2tij + σλil)

{1 + exp(β0 + β1ri + β2tij + σλil)}2 ,
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∂µ0ij

∂β2

≈ 1

L

L∑
l=1

tij
exp(β0 + β1ri + β2tij + σλil)

{1 + exp(β0 + β1ri + β2tij + σλil)}2 ,

∂µ0ij

∂σ
≈ 1

L

L∑
l=1

λil
exp(β0 + β1ri + β2tij + σλil)

{1 + exp(β0 + β1ri + β2tij + σλil)}2 .

Then, the generalized estimating equations for estimating ϕ0 can be given by

G∗
0 =

m∑
i=1

µ̇T0iV
−1
0i (yi − µ0i) = 0, (3.3)

where V0i = V ar(yi) is an unspecified (unknown) n×n covariance matrix, 1 ≤ i ≤ m;

µ̇0i =

[(
∂µ0ij

∂β0

)
n×1

(
∂µ0ij

∂β1

)
n×1

(
∂µ0ij

∂β2

)
n×1

(
∂µ0ij

∂σ

)
n×1

]
.

In order to obtain the optimal estimators, we have to know the true covariance

V0i. However, in practice, the true V0is are unknown. We can adopt a method of

moments introduced in Section 2.2.2 to estimate V0is. It can be applied to either

a balanced or an unbalanced data set. For instance, when we consider a case with

balanced data set, if ϕ0 is known, V0i can be estimated by

V̂0i =
1

m

m∑
i=1

(yi − µ0i)(yi − µ0i)
T . (3.4)

Further, Jiang (2007) and Jiang et al., (2007) suggested a procedure, namely, iter-

ative estimating equations (IEE) procedure to obtain the optimal estimators, ϕ̂0 =

(β̂0, β̂1, β̂2, σ̂)T , by iterating between (3.3) and (3.4).

Similarly, under M = 1 and M = 2, we can define marginal mean functions

µ1i = (µ1ij)1≤j≤n and µ2i = (µ2ij)1≤j≤n in each subject i with µ1ij = µ1(ri, tij;ϕ1) and

µ2ij = µ2(ri, tij;ϕ2) where ϕ1 = (β0, β1, β2, σ, ψ1)
T and ϕ2 = (β0, β1, β2, σ, ψ1, ψ2)

T ,

respectively. Then, we form a set of estimating equations with respect to ϕ1 and ϕ2

as follows,

G∗
1(ϕ1) =

m∑
i=1

µ̇T1iV
−1
1i (yi − µ1i) ≡

m∑
i=1

φ1i,
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G∗
2(ϕ2) =

m∑
i=1

µ̇T2iV
−1
2i (yi − µ2i) ≡

m∑
i=1

φ2i.

In addition, we also can derive that

Ãm1 =
m∑
i=1

∂φ1i

∂ϕT1
, B̃m1 =

m∑
i=1

φ1iφ
T
1i,

Ãm2 =
m∑
i=1

∂φ2i

∂ϕT2
, B̃m2 =

m∑
i=1

φ2iφ
T
2i,

which are shown more details in Appendix A. Let ϕ̂0 be the solution to the set of

equations corresponding to M = 0, ϕ̂10 = (ϕ̂0, 0), ϕ̂20 = (ϕ̂0,02), ξ1 be the length

4+1 vector equal to G∗
1(ϕ̂0, 0) and ξ2 to be the length 4+2 vector equal to G∗

2(ϕ̂0,02).

A robust score test statistic is defined by

<M = (ξM)TM(Ã−1
mM(ϕ̂M0))M

×
[
(Ã−1

mM(ϕ̂M0)B̃mM(ϕ̂M0)Ã
−1
mM(ϕ̂M0))M

]−1

×(Ã−1
mM(ϕ̂M0))M(ξM)M , M = 1, 2.

Finally, we construct the proposed robust score statistic analogous to the order selec-

tion test as follows,

TRS,m = max
1≤M≤2

<M
M

for testing normality of random effects in GLMMs. Under the same construction and

using results shown in Section 3.2, as m→∞, TRS,m
d−→ TRS with

TRS = max
1≤M≤2

QM

M
,

where QM is equal to χ2
M , χ2

M = s2
1 + · · · + s2

M for all M and s1, s2, . . . ,sM are

identically distributed independent standard normal random variables.



27

3.3.3 Bootstrap Hypothesis Testing

In this research, we also consider a bootstrap approach to evaluate the performance of

the proposed test statistic. Let T̂RS,m denote a test statistic computed from a sample

of size m and T̂
∗(l)
RS,m denote a bootstrap statistic computed from the lth bootstrap

sample, which is generated under the null hypothesis where l = 1, 2, · · · , B. We

assume that the limiting distribution of T̂
∗(l)
RS,m is the same as the limiting distribution

of T̂RS,m under the null hypothesis.

In our case, when the distribution of random effects is the normal distribution,

the null distribution of the test statistic is approximated by using the conventional

parametric bootstrap approach to obtain the bootstrap p-value for assessing the type

I error rate. It is detailed as follows:

step 1. Generate a random sample b∗i from N(0, σ̂2), i = 1, · · · ,m.

step 2. Generate a random sample uij from U(0,1), i = 1, · · · ,m; j = 1, · · · , n.

step 3. Construct the bootstrap data set (y∗ij, ri, tij) with

y∗ij =


1 if

exp(b∗i + β̂0 + β̂1ri + β̂2tij){
1 + exp(b∗i + β̂0 + β̂1ri + β̂2tij)

} > uij

0 if
exp(b∗i + β̂0 + β̂1ri + β̂2tij){

1 + exp(b∗i + β̂0 + β̂1ri + β̂2tij)
} < uij.

step 4. Compute the test statistic T̂ ∗RS,m from the bootstrap data using all the steps

used in computing T̂RS,m from the original data.

step 5. Repeat step 1 to step 4, B times, and reject H0 at level of significance α if

T̂RS,m exceeds the (1− α) percentile of all bootstrap statistics.

step 6. Repeat step 5 for N simulated data sets to assess the type I error rate.
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Formally, for a test that rejects in the upper tail as in step 5, we can compute the

bootstrap p-value by

P ∗
B = 1− F̂

(
T̂RS,m

)
= 1− 1

B

B∑
l=1

I
(
T̂
∗(l)
RS,m 6 T̂RS,m

)
=

1

B

B∑
j=1

I
(
T̂
∗(l)
RS,m > T̂RS,m

)
,

where F̂ (·) is the empirical distribution function of the bootstrap statistics. When

α(B+1) is an integer, step 5 yields exactly the same test as rejecting when P ∗
B is less

than α.

However, Racine and MacKinnon (2007) argued that when calculating T̂RS,m and

T̂
∗(l)
RS,m is computationally burdensome, and if B is chosen poorly, size distortion and

loss in power may happen. Therefore, the authors provided a tractable way to perform

a classical hypothesis test based on a kernel estimate of the cumulative distribution

function of the bootstrap statistics. Their proposed method is to replace P ∗
B by the

smoothed bootstrap p-value,

P h
B = 1− F̂h

(
T̂RS,m

)
= 1− 1

B

B∑
l=1

K
(
T̂
∗(l)
RS,m, T̂RS,m, h

)
,

where K(·, ·, ·) is a cumulative kernel and h is the bandwidth. Moreover, they claimed

that the greatest advantage of this proposed method is that it uses the information

in the bootstrap statistics more efficiently than the conventional approach and yields

a reasonable type I error rate and delivers solid improvements in power when the

bootstrap sample size B is small.

Due to the burden of computing our proposed test statistic for testing normality

of the random-effects distribution, we shall implement this smoothed bootstrap test

procedure to evaluate the type I error rate and the power performance of the proposed

test statistic in the simulation study. Furthermore, we also apply it to the analysis

of a case study.
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3.4 Simulation Study

Some work with the generalized linear mixed model has been on the study of mis-

specification. It indicates that misspecification of the random-effects distribution

associated with a large variance component of random effects has influence on pa-

rameter estimation and testing parameters of fixed effects. In the following, we carry

out a simulation study with 500 simulated data sets to evaluate the performance of

TRS,m that we propose to detect a misspecified random-effects distribution in Sec-

tion 3.3.2 when a normal random intercept is assumed. Data are generated from the

random-intercept logistic model (Litière et al., 2007; Alonso et al., 2008; Litière et

al., 2008) given by

logit(µbij) = bi + β0 + β1ri + β2tij, (3.5)

where yijs are responses for subject i, collected at time point tij and ri is the treatment

group to which subject i is allocated with i = 1, . . . ,m, m = 50, 100, 200; j = 1, . . . , n;

ri = I(i ≤ m

2
); β0 = −8, β1 = 2 and β2 = 1 which is the same setting as in Alonso

et al. (2008). For each situation, we determine the proportion of cases in which a

significant result is detected at a nominal 5% significance level. When the random

effects are generated from a normal distribution, this proportion corresponds to the

type I error rate; otherwise, it represents the power of the test. Additionally, in

our simulation study, we shall concentrate on scenarios in which variances of the

random-effects distribution (σ2) are large or extremely large, such as 16, 32, 48 or 64.

3.4.1 Type I Error Rate via Asymptotic Results

In this part, we evaluate the influence of cluster size and magnitude of the variance

component of random effects on the quality of asymptotic results for the proposed

test statistic. We consider three cluster sizes (n), namely, number of repeated mea-
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surements per cluster (or subject) with different time points tij as follows:

(1) n = 5, tij = (−0.1, 0, 0.1, 0.2, 0.3),

(2) n = 10, tij = (−0.4,−0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5),

(3) n = 15, tij = (−0.7,−0.6,−0.5,−0.4,−0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7).

The results shown in Table 1 indicate that the test exhibits a reasonable type I error

rate in most sample sizes and cluster sizes with an extremely large variance of the

random-effects distribution (σ2 = 64). However, in the scenario of less large or large

variance (σ2 = 16 or 32), it shows a considerable inflation on the type I error rate even

if we try to enhance the amount of information available by increasing the cluster size

or sample size.

Table 1. Results of the type I error rate using the asymptotic distribution of TRS,m for

three cluster sizes when σ2=16, 32, 48 and 64.

σ2 = 16 σ2 = 32

Distribution n m = 50 100 200 m = 50 100 200

5 0.132 0.196 0.234 0.058 0.072 0.120

Normal 10 0.106 0.200 0.184 0.074 0.112 0.200

15 0.118 0.180 0.210 0.092 0.114 0.192

σ2 = 48 σ2 = 64

Distribution n m = 50 100 200 m = 50 100 200

5 0.018 0.046 0.072 0.016 0.048 0.060

Normal 10 0.032 0.072 0.104 0.036 0.058 0.096

15 0.046 0.072 0.130 0.036 0.062 0.082
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In other words, when the variance component of random effects becomes ex-

tremely large and either cluster size or sample size is moderate, the proposed test

TRS,m with the ordinary p-value will tend to be less liberal. In this situation, the

proposed test is appropriate for testing normality of random effects when the true

distribution of random effects is unknown.

3.4.2 Type I Error Rate via Smoothed Bootstrap Test

In order to improve the inflation of the type I error rate shown in Section 3.4.1,

the smoothed bootstrap test procedure introduced in Section 3.3.3 is adopted to

evaluate the type I error rate of the proposed test TRS,m. Additionally, Racine and

MacKinnon (2007), in terms of their simulation experiment, observed that a smoothed

bootstrap test will overreject when h is sufficiently small and underreject when h is

sufficiently large and the smoothed p-value becomes less sensitive to h when the

bootstrap sample size (B) increases. Herein, to avoid overrejection when h is too

small and underrejection when h is too large, we try selected bandwidths not far from

h = 1.575B−4/9 which Racine and MacKinnon (2007) used when the test statistic was

asymptotically the standard normal, and the cumulative standard Gaussian kernel is

adopted. For each simulated data set, the smoothed bootstrap p-value is calculated

by

K(w) =

∫ w

−∞
k(W )dW,

where k(W ) is the standard normal density and w = (T̂RS,m − T̂
∗(l)
RS,m)/h.

First, we use the bootstrap sample size B = 60 to conduct a small experiment

for the cluster size n = 5 and tij = (−0.1, 0, 0.1, 0.2, 0.3). Table 2 reveals that there is

no severe overrejection or underrejection and the inflation of type I error rate shown

in Table 1 has been improved, even for the less large variance scenario (σ2 =16).
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Table 2. Results of the type I error rate using the smoothed bootstrap test

procedure with bootstrap sample size B=60 for cluster size n=5 and

tij=(−0.1, 0, 0.1, 0.2, 0.3) when σ2=16, 32 and 64.

σ2 = 16 σ2 = 32

Distribution h m = 50 100 200 m = 50 100 200

0.10 0.068 0.064 0.062 0.052 0.056 0.048

Normal 0.25 0.068 0.064 0.062 0.054 0.056 0.048

0.50 0.068 0.064 0.064 0.052 0.056 0.048

σ2 = 64

Distribution h m = 50 100 200

0.10 0.046 0.040 0.038

Normal 0.25 0.046 0.042 0.036

0.50 0.036 0.042 0.036

Second, we consider another situation with a data set that has cluster size n = 6

with tij = (0, 1, 2, 4, 6, 8) (Alonso et al., 2008). Table 3 also indicates that the type

I error rate has been well-controlled compared with the prespecified 5% significance

level for all sample sizes. Moreover, in Table 4, we observe that performance of the

proposed test statistic under the smoothed bootstrap test procedure seems to become

much better when the bootstrap sample size increases. Overall speaking, we believe

that the proposed test TRS,m with the smoothed bootstrap p-value is reliable for

testing normality of the random-effects distribution on this specified model (3.5).
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Table 3. Results of the type I error rate using the smoothed bootstrap test procedure

with bootstrap sample size B=60 for cluster size n=6 and tij=(0, 1, 2, 4, 6, 8)

when σ2=16 and 32.

σ2 = 16 σ2 = 32

Distribution h m = 50 100 200 m = 50 100 200

0.10 0.038 0.038 0.038 0.040 0.062 0.054

Normal 0.25 0.036 0.040 0.038 0.042 0.062 0.054

0.50 0.038 0.040 0.042 0.040 0.062 0.056

Table 4. Results of the type I error rate using the smoothed bootstrap test procedure

with bootstrap sample size B=100 for cluster size n=6 and tij=(0, 1, 2, 4, 6, 8)

when σ2=16 and 32.

σ2 = 16 σ2 = 32

Distribution h m = 50 100 m = 50 100

0.10 0.044 0.048 0.054 0.056

0.25 0.042 0.048 0.054 0.060

Normal 0.50 0.042 0.048 0.054 0.056

0.75 0.040 0.046 0.056 0.056

1.00 0.040 0.046 0.056 0.054

3.4.3 Power Analysis via Smoothed Bootstrap Test

In this part, we evaluate the power performance of the proposed test statistic TRS,m.

Herein, six alternative distributions of random effects, including mixture, skewed or

heavy-tailed distributions, are generated and adjusted with variance 16 or 32. These

distributions are listed as follows:
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(1) Mixture normal distribution of 0.3N(−1, 12) + 0.7N(6, (21.41/0.7)2),

(2) Skewed mixture distribution of 0.25N(14, 102) + 0.75χ2(4),

(3) Discrete distribution with p(bi = 1) = 1/6, p(bi = 2) = 1/2 and p(bi = 3) = 1/3,

(4) Gamma distribution with shape 1/2 and scale 8,

(5) t distribution with degrees of freedom 4,

(6) Lognormal distribution.

In addition, all simulation results are based on the bootstrap smoothed test

procedure with bootstrap sample size B = 60 and generated data with cluster size

n = 6 and tij = (0, 1, 2, 4, 6, 8). Table 5 exhibits a large power for bimodal or

multimodal alternatives, especially, when the random-effects distribution possibly

follows a skewed mixture distribution or a discrete distribution with 3 support points.

Table 5. Results of the power performance of bimodal and multimodal alternatives us-

ing the smoothed bootstrap test procedure with bootstrap sample size B=60

for cluster size n=6 and tij=(0, 1, 2, 4, 6, 8) when σ2=16 and 32.

σ2 = 16 σ2 = 32

Distribution h m = 50 100 200 m = 50 100 200

Mixture 0.10 0.366 0.568 0.622 0.480 0.632 0.744

Normal 0.25 0.366 0.576 0.626 0.496 0.642 0.742

0.50 0.364 0.576 0.618 0.500 0.648 0.734

Skewed 0.10 0.750 0.774 0.802 0.790 0.840 0.902

Mixture 0.25 0.756 0.782 0.802 0.800 0.846 0.900

0.50 0.760 0.786 0.806 0.808 0.852 0.900

0.10 0.814 0.842 0.874 0.906 0.936 0.954

Discrete 0.25 0.814 0.844 0.874 0.908 0.936 0.952

0.50 0.824 0.844 0.874 0.908 0.936 0.952
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However, in Table 6, it shows that when the random-effects distribution possibly

follows a skewed or heavy-tailed unimodal alternative, the proposed test TRS,m has

poor power for testing normality of random effects for this specified model (3.5),

especially in a scenario of the less large variance (σ2=16) t distribution.

Table 6. Results of the power performance of skewed and heavy-tailed alternatives us-

ing the smoothed bootstrap test procedure with bootstrap sample size B=60

for cluster size n=6 and tij=(0, 1, 2, 4, 6, 8) when σ2=16 and 32.

σ2 = 16 σ2 = 32

Distribution h m = 50 100 200 m = 50 100 200

0.10 0.076 0.082 0.086 0.078 0.082 0.096

Gamma 0.25 0.078 0.082 0.088 0.078 0.084 0.096

0.50 0.076 0.080 0.086 0.080 0.084 0.096

0.10 0.058 0.062 0.074 0.070 0.072 0.094

t 0.25 0.058 0.060 0.074 0.068 0.076 0.098

0.50 0.058 0.060 0.070 0.068 0.076 0.102

0.10 0.078 0.082 0.088 0.094 0.094 0.100

Lognormal 0.25 0.080 0.082 0.088 0.092 0.098 0.104

0.50 0.080 0.082 0.088 0.092 0.098 0.110

Nevertheless, Litière et al.(2008) showed that an asymmetric mixture of two nor-

mals random-effects distribution has more severe influence than some non-normal uni-

modal random-effects distributions on maximum likelihood estimators of the between-

subject effect under assumption of normality of random effects. As a result, it is nec-

essary that a proposed test has power for detecting this misspecified random-effects

distribution. Fortunately, our proposed test is very powerful for detecting this type

of misspecification of the random-effects distribution.
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3.5 Application

In this section, we shall apply our proposed test to revisit a data set obtained from

a case study in mental health (Alonso et al., 2004). Alonso et al. (2008) had ap-

plied their proposed tests on testing normality of the random-effects distribution to

this data set. The data collection is briefly sketched as follows. In this case study,

the authors studied the effect of risperidone compared to an active control for the

treatment of chronic schizophrenia on 128 patients. During the period of the trial,

half of patients were assigned to the treatment group; the others were assigned to the

control group. Each patient was measured at the following time points: 0, 1, 2, 4, 6

and 8 weeks. For each measurement, the patient’s mental condition was classified as

normal to mildly ill (y = 1) or moderately to severely ill (y = 0) where y is a binary

response variable. In our analysis, we consider two data structures as follows:

(1) The balanced data is the part of original data set (66 patients) without any

missing measured responses at each time point.

(2) The unbalanced data set is the original data set (128 patients) where some

patients had missing observed responses at some time points.

Earlier, someone proposed a straightforward diagnostic tool, using empirical

Bayes (EB) estimates of random effects to detect departures from normality. We

review this basic idea as described by Molenberghs and Verbeke (2005, page 268) as

follows. Let us recall the conditional density of response variables shown in Section

2.1. The estimation of random effects is based on their posterior distribution with

the following density distribution,

fi(bi|yi,β, D, φ) =
fi(yi|bi,β, φ)f(bi|D)∫
fi(yi|bi,β, φ)f(bi|D)dbi

, i = 1, 2, · · · ,m.
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The estimator of random effects, b̂i, is the value of bi that maximizes fi(bi|yi,β, D, φ)

where the unknown parameters, β, D and φ, have been replaced by their maximum

likelihood estimators based on the likelihood function shown in Section 2.2.

Alonso et al. (2008) provided a histogram plot of the EB estimates of random

effects based on the specified model (3.5) for the unbalanced (original) data set shown

on the right of Figure 1. Herein, we also provide a histogram plot of the EB estimates

for the balanced data set shown on the left of Figure 1. Obviously, it seems to reveal

that normality of random effects is questionable on these two data sets. However, it

can be shown that in generalized linear mixed model, the empirical Bayes estimates

no longer follow a normal distribution, even while the random-effects distribution is

correctly specified as normal (Litière et al., 2007; Alonso et al., 2008).

Figure 1. The distribution of empirical Bayes estimates of random effects based on

the specified model (3.5) for balanced and unbalanced data sets in mental

health study.

Therefore, in order to avoid making an error, we should use a formal proce-

dure to test normality of the random-effects distribution. In the following, we ap-

ply our proposed test statistic and adopt the smoothed bootstrap test procedure to



38

test normality of random-effects by approximating the random-effects distribution

by the SNP Hermite expansion in the random-intercept logistic model (3.5) shown

in Section 3.4. Furthermore, in practice, for the purpose of obtaining a more reli-

able smoothed bootstrap p-value, we can apply a bandwidth selection method that

Racine and MacKinnon (2007) suggested, maximum likelihood cross-validation, to

search an appropriate bandwidth for smoothing the cumulative distribution function

of the bootstrap test statistics. It can be implemented by using a package, npud-

ist(np), in R and the smoothed bootstrap p-value is calculated based on the selected

bandwidth.

Parameter estimates shown on Table 7 are obtained from fitting the specified

model (3.5) under the assumption of normally distributed random effects (H0) that

we showed in Section 3.3.2. The proposed test statistic leads to T̂RS,m = 2.2814 for

the balanced data set and T̂RS,m = 13.9173 for the unbalanced data set.

Table 7. Estimates of parameters under IEE procedure and the proposed test statis-

tic value, T̂RS,m, on testing normality of random effects for balanced and

unbalanced data sets in mental health study.

Intercept Treatment Time Standard Test

Effect Effect Deviation (bi) Statistic

β̂0 β̂1 β̂2 σ̂ T̂RS,m

Balanced Data Set -5.6109 1.3887 0.6245 4.3026 2.2814

Unbalanced Data Set -8.2952 2.1769 0.4051 5.0805 13.9173

Then, we carry out the smoothed bootstrap test procedure to test normality of

the random-effects distribution. On this step, we not only calculate the smoothed

bootstrap p-value but also inspect the stability of the bootstrap parameter estimates.
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Results of the bootstrap parameter estimates are shown on Table 8 and Table 9

for balanced and unbalanced data sets, respectively. Overall speaking, when the

bootstrap size increases, the bootstrap parameter estimates become consistent for

both types of data sets; however, the variability of the bootstrap parameter estimates

are not very stable for the treatment effect, namely, the between-subject effect for

the unbalanced data set.

Table 8. Mean and standard deviation (S.D.) of bootstrap parameter estimates with

bootstrap sample size B=50, 100, 200, 300, 400 and 500 for the balanced

data set in mental health study.

Bootstrap Intercept Treatment Time Standard

Size Effect Effect Deviation (bi)

B β̂boot0 β̂boot1 β̂boot2 σ̂boot

50 -5.4827 1.1668 0.6292 3.8264

(0.8536) (0.7039) (0.1004) (0.6152)

100 -5.5574 1.2039 0.6292 3.8633

(0.8436) (0.5952) (0.1027) (0.6181)

200 -5.4758 1.2338 0.6255 3.8600

(0.8236) (0.5142) (0.1138) (0.6209)

300 -5.4227 1.2320 0.6183 3.8449

(0.8411) (0.4991) (0.1138) (0.6328)

400 -5.3873 1.2094 0.6155 3.8310

(0.8204) (0.5143) (0.1098) (0.6125)

500 -5.3965 1.2200 0.6164 3.8466

(0.8290) (0.4950) (0.1114) (0.6208)

*S.D. of bootstrap parameter estimates are within parentheses.
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Table 9. Mean and standard deviation (S.D.) of bootstrap parameter estimates with

bootstrap sample size B=50, 100, 200, 300, 400 and 500 for the unbalanced

data set in mental health study.

Bootstrap Intercept Treatment Time Standard

Size Effect Effect Deviation (bi)

B β̂boot0 β̂boot1 β̂boot2 σ̂boot

50 -7.6770 2.1603 0.3622 4.9766

(1.4157) (0.0137) (0.1293) (1.0344)

100 -7.8241 2.1619 0.3772 5.0622

(1.3785) (0.0135) (0.1296) (1.0463)

200 -7.8916 2.1612 0.3692 5.1815

(1.4206) (0.0146) (0.1449) (1.0852)

300 -7.8428 2.1581 0.3652 5.1712

(1.4219) (0.0508) (0.1424) (1.0784)

400 -7.7877 2.1581 0.3577 5.1430

(1.4253) (0.0446) (0.1436) (1.0774)

500 -7.7700 2.1547 0.3558 5.1412

(1.4439) (0.0899) (0.1468) (1.1011)

*S.D. of bootstrap parameter estimates are within parentheses.

Additionally, Figure 2 and Figure 3 show empirical and smooth kernel estimates

of a distribution function for the bootstrap test statistics for balanced and unbalanced

data sets, respectively. For the unbalanced data set, it is clear that the smooth

kernel estimate is much better than the estimate based on the empirical distribution

function, especially, when the bootstrap sample size is small. For instance, when

B = 50, for the test statistic, 8, the empirical p-value is 0.000, while the smoothed

p-value is 0.042; for the test statistic, 13.917, the empirical p-value is 0.000, while the

smoothed p-value is 0.018.
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Figure 2. Empirical and kernel estimates of a distribution function for bootstrap test

statistics with bootstrap sample size B = 50, 100, 200, 300, 400 and 500 in

the analysis of the balanced data set in mental health study.



42

0 5 10 15

0
.2

0
.4

0
.6

0
.8

1
.0

B=50

Bootstrap Test Statistics

C
D

F

Smooth CDF
Empirical CDF

0 5 10 15

0
.2

0
.4

0
.6

0
.8

1
.0

B=100

Bootstrap Test Statistics

C
D

F

Smooth CDF
Empirical CDF

0 5 10 15

0
.2

0
.6

1
.0

B=200

Bootstrap Test Statistics

C
D

F

Smooth CDF
Empirical CDF

0 5 10 15

0
.2

0
.6

1
.0

B=300

Bootstrap Test Statistics

C
D

F

Smooth CDF
Empirical CDF

0 5 10 15

0
.2

0
.6

1
.0

B=400

Bootstrap Test Statistics

C
D

F

Smooth CDF
Empirical CDF

0 5 10 15

0
.2

0
.6

1
.0

B=500

Bootstrap Test Statistics

C
D

F

Smooth CDF
Empirical CDF

Figure 3. Empirical and kernel estimates of a distribution function for bootstrap test

statistics with bootstrap sample size B = 50, 100, 200, 300, 400 and 500 in

the analysis of the unbalanced data set in mental health study.
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Further, from the analyzed results exhibited on Table 10, we observe that the

smoothed bootstrap p-values become much more stable when the bootstrap sample

size increases. No matter which bootstrap sample size, it provides the same decision

with only a small difference in the magnitude. The results suggest that the balanced

data set provides insufficient evidence that the random-effects distribution departs

from normality. On the other hand, the unbalanced data set provides sufficient evi-

dence at 5% significance level that normality of the random-effects distribution does

not hold. Interestingly, the conclusion based on our proposed test for the unbalanced

(original) data set is different from that (p-value > 0.75) of Alonso et al. (2008) who

assumed that the missing data generating mechanism is missing at random (MAR)

making their likelihood approach a valid option. Since the sample size of this case

study is not large and there are missing values, the results based on our proposed test

statistic and bootstrap test procedure may be more convincing.

Table 10. Results of normality test of the distribution of random effects under the

smoothed bootstrap procedure in mental health study.

Bootstrap Sample Size (B)

50 100 200 300 400 500

Balanced Data Set

Smoothed p-value 0.3886 0.3480 0.3443 0.3457 0.3651 0.3624

Selected bandwidth 0.6493 0.4781 0.3699 0.3868 0.5001 0.4720

Unbalanced Data Set

Smoothed p-value 0.0179 0.0095 0.0049 0.0067 0.0050 0.0040

Selected bandwidth 2.1799 1.6152 1.0017 0.4024 0.2675 0.2859
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3.6 Discussion

In this chapter, we investigate a diagnostic test for the random-effects distribution

without assuming any parametric form. We propose a robust score test analogous to

the order selection test that is not likelihood-based for testing the distributional as-

sumptions on the random-effects distribution in generalized linear mixed models. The

proposed test statistic involved generalized estimating equations and an estimating

procedure (IEE) that can be applied to analyze either a balanced or an unbalanced

data set. However, the IEE procedure (Jiang, 2007; Jiang et al., 2007) is limited only

to the situation where the outcomes are independently clustered.

Through a simulation study, we discover that the smoothed bootstrap test (Racine

and MacKinnon, 2007) combined with a parametric bootstrap procedure can indeed

reduce or eliminate the inflation of the type I error rate under non-optimal band-

widths. Even so, the issue of finding the optimal bandwidth may need to be explored.

In addition, results of preliminary studies of power demonstrate satisfactory power

to detect misspecification of the random-effects distribution when unobserved ran-

dom effects have a distribution with obvious multiple modes; on the other hand, it

does not hold for a unimodal distribution of random effects which is highly skewed

or heavy-tailed in a specified random-intercept logistic model. As a result, it also

would be useful to study whether similar results hold for more complex models when

a complex experiment is designed for clinical research.

Moreover, since we just focus on the balanced data structure in our simulation

study, for an unbalanced data set where there are missing outcomes, it is not clear

how reliable the proposed test is, especially with a high percentage of missing out-

comes. Nevertheless, in this situation, we believe that our proposed non-likelihood

test may be more reliable than a likelihood-based test. Overall, except for possible
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restrictions described above, no matter whether the sample size is small or moderate,

our proposed test statistic using the smoothed bootstrap test procedure performs

well for testing misspecification of the random-effects distribution, especially when

the true distribution of random effects is a mixture.
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CHAPTER IV

LOCAL POLYNOMIAL SMOOTHED RESIDUALS APPLIED TO ASSESS THE

LOGISTIC MULTILEVEL MODEL

4.1 Introduction

In recent years, mixed-effects logistic models have been widely used for analyzing

clustered binary data or naturally hierarchy data. Again, estimation and inference

depend on the model being correctly specified. Therefore, methods for assessment of

model fit need to be well developed. Evans and Hosmer (2004) extended summary

statistics used to assess goodness-of-fit in the ordinary logistic regression, such as

unweighted sums of squares and Pearson statistics, to the mixed-effects logistic model.

Their simulation results indicated that the performance of the type I error rate is not

good in some situations. Pan and Lin (2005) developed model-checking techniques

for generalized linear mixed models based on the cumulative sums of residuals over

covariates or predicted values of the response variable. They indicated that a faulty

functional form of a fixed covariate may cause a plot of the cumulative residuals

against the predicted values to exhibit a systematic tendency.

Additionally, Sturdivant (2005) and Sturdivant and Hosmer (2007) proposed a

kernel smoothed unweighted sum of squares statistic by smoothing residuals in the y-

space to assess the adequacy of the logistic multilevel (hierarchical) regression model,

namely, a mixed-effects logistic model for hierarchical data. Their simulation results

demonstrated satisfactory adherence of the type I error rate of their proposed statistic.

However, especially, for settings with fewer subjects per cluster, the simulation results

showed very limited or no power to detect a missing quadratic term of fixed effects.

Moreover, Lin et al. (2008) adopted a local nonparametric smoothing method for
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assessing population-averaged models with longitudinal binary data. Their proposed

test statistic is based on smoothing the standardized residuals and has satisfactory

power property for models with both categorical and continuous covariates. One of

its advantages is that it can avoid the dependence on the kernel weights obtained

by the partition of the predicted probabilities from the fitted model or the covariate

space (Hosmer et al., 1997).

In this chapter, we extend the nonparametric local polynomial smoothed residu-

als over continuous covariates to the unweighted sum of squares statistic for assessing

the goodness-of-fit in the logistic multilevel regression model. We investigate whether

it can improve and enhance the power performance for detecting some specified al-

ternative models. The remainder of this chapter is organized as follows. In Section

4.2, we review a kernel smoothed unweighted sum of squares statistic by smoothing

residuals over y-space in the logistic multilevel regression models and briefly intro-

duce how to implement the multivariate local polynomial smoothing technique on

smoothing residuals over continuous and within-cluster covariates. In Section 4.3, a

simulation study is performed to evaluate the type I error rate of the kernel smoothed

unweighted sum of squares statistic by using the local polynomial smoothed residuals

and the power analysis for detecting a missing quadratic or interaction term of the

fixed effects. Finally, we carry out an application to a real data set.

4.2 Goodness-of-fit Tests for the Logistic Multilevel Models

4.2.1 Multilevel Models for Binary Data

We first consider a two-level model for binary outcomes with a single covariate. For

instance, in the field of education, suppose we have data consisting of students (level

one) indexed by j = 1, · · · , ni in different districts (level two) indexed by i = 1, · · · ,m.



48

We observe yij, a binary response for student j in district i and xij, a covariate at the

student level. The combined two-level logistic model accounting for the clustering

structure by adding a random intercept across level two, namely cluster, can be

written as

logit(µbij) = β0i + β1xij, (4.1)

where β0i = β0 + b0i with b0i ∼ N(0, σ2
0). When adding both a random intercept and

a random slope across level two, it can be written as

logit(µbij) = β0i + β1ixij, (4.2)

where β0i = β0 + b0i with b0i ∼ N(0, σ2
0) and β1i = β1 + b1i with b1i ∼ N(0, σ2

1).

Additionally, for instance, model (4.2) can be rewritten as follows,

logit(µbij) = (β0 + β1xij) + b0i + b1ixij

or

logit(µb) = xβ + zb,

where z is aN×2m design matrix for the random effects withN = n1+n2+· · ·+nm, b

is a 2m×1 vector of random effects and b ∼ N(0,Ω) with a block diagonal covariance

matrix.

The standard assumption is that conditional on the random effects, at level one,

yij ∼ Bernoulli(µbij) and yijs are independent. More specifically, one can consider the

decomposition (Molenberghs and Verbeke, 2005),

yij = µbij + εij ⇔ y = µb + ε,

where y is a N × 1 vector of the binary responses with N = n1 + n2 + · · · + nm, µb

is the vector of the related probabilities, and ε has mean zero and variance given by
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the diagonal matrix of binomial variances conditional on the random effects.

For parameter estimation, we can consider the use of Bayesian techniques, algo-

rithms involving quasi-likelihood, or numerical integration, such as Gaussian quadra-

ture, to optimize the likelihood function. In practice, procedures for estimating pa-

rameters of the logistic multilevel model are available in many statistical software

packages, such as R, SAS, Stata, and so on. One of the popular methods involves

the penalized quasi-likelihood (PQL) estimation in conditional models (Breslow and

Clayton, 1993) which was reviewed in Section 2.2. Although this procedure may

suffer from some bias in parameter estimates, there are some suggested methods to

reduce the bias (Lin and Breslow, 1996; Goldstein and Rasbash, 1996). Nevertheless,

an advantage of this method is that it is easily implemented and involves less compu-

tational effort. Through a simulation experiment, Austin (2010) showed that except

for some special situations, parameter estimation under this method is still reliable.

Evans and Hosmer (2004) and Sturdivant and Hosmer (2007) used the SAS

GLIMMIX macro to carry out their study. In this research, we shall use glmmPQL

in statistical package R to implement a version of PQL estimation. It also can be

used to fit the logistic multilevel model with multivariate normal random effects.

4.2.2 Goodness-of-Fit Test Statistic

There are various goodness-of-fit test statistics available in the ordinary logistic re-

gression model (Hosmer et al., 1997). Sturdivant (2005) extended some of these

statistics by using smoothed residuals in the logistic multilevel model. One of them is

the Pearson kernel smoothed statistic and the other one is based on the unweighted

sum of squares statistic given by

S =
m∑
i=1

ni∑
j=1

(yij − µ̂bij)
2. (4.3)
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Sturdivant (2005) and Sturdivant and Hosmer (2007) not only modified the un-

weighted sum of squares statistic (4.3) by using the smoothed rather than raw resid-

uals but also produced expressions to approximate the moments of the statistic by

using the approximation of the residuals in terms of the level one errors. Then,

the authors used these moments to form a standardized statistic, which should have

an asymptotic standard normal distribution when the model is correctly specified.

Herein, we shall review and sketch some of their derived results.

Firstly, under model (4.2), an approximation of the estimated residual in terms

of the residual using the penalized quasi-likelihood (PQL) parameter estimation is

given by

ê = y − µ̂b ≈ y −
[
µb − g + M(y − µb)

]
= (I−M)(y − µb) + g,

where M = AQ[QTAQ + Σ]−1QT with Q = [x z] and A = diag[µbij(1 − µbij)],

g = AQ[QTAQ + Σ]−1Σδ with δ = [β b]T , and

Σ =

 0 0

0 Ω−1

 .
Then, the vector of kernel smoothed residuals in the y-space can be given by

êm = Γê,

where Γ is the matrix of smoothing weights as follows,


λ11 λ12 · · · λ1N

...
...

...
...

λN1 λN2 · · · λNN

 ,
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with N = n1 + n2 + · · ·+ nm and λij is produced by using the kernel density,

λij =

K

(
|µ̂bi − µ̂bj|

h

)
∑

jK

(
|µ̂bi − µ̂bj|

h

) ,

where K(· ) is the kernel density function and h is the bandwidth weighting the

residuals.

Secondly, the kernel smoothed unweighted sum of squares statistic is defined as

Sm = êTmêm

≈
[
(I− M̂)(y − µb) + ĝ

]T
ΓTΓ

[
(I− M̂)(y − µb) + ĝ

]
,

with the approximate mean and variance as the following,

E(Sm) = tr
{

(I− M̂)TΓTΓ(I− M̂)Â
}

+ ĝTΓTΓĝ,

V ar(Sm) = V ar(eTψe) + V ar(qTe) + 2Cov(eTψe, qTe)

=
N∑
i=1

{
ψ2
iiâi(1− 6âi)

}
+ 2tr

(
ψÂψÂ

)
+ qT Âq

+2
N∑
i=1

ψiiqiµ̂
b
i(1− µ̂bi)(1− 2µ̂bi),

where e = y−µb, ψ = (I−M̂)TΓTΓ(I−M̂), qT = 2ĝTΓTΓ(I−M̂)T , ψii, and âi are

the ith diagonal elements of matrices ψ and Â, and qi and µ̂bi are the ith elements of

vectors q and µ̂b.

Under the null hypothesis that the model was correctly specified, the authors

assumed that the kernel smoothed unweighted sum of squares test statistic

ZSm =
Sm − E(Sm)√
V ar(Sm)

has approximately a standard normal distribution. However, Sturdivant (2005) had
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showed that the assumption of the asymptotic standard normal distribution was

problematic in many of their simulation settings. Especially, the behavior in the

tail departed from the standard normal distribution.

Since the kernel smoothed unweighted sum of squares statistic, Sm, has a quadratic

form that would have an asymptotic chi-squared distribution and the scaled chi-

squared distribution is a commonly used approximation for distributions of non-

negative random variables (Cox and Hinkley, 1974), we suggest that the asymptotic

distribution of Sm can be approached by a scaled chi-squared distribution with the

same moments,

cSm ∼ χ2(ν),

where c =
2E(Sm)

V ar(Sm)
and ν =

2 {E(Sm)}2

V ar(Sm)
. Moreover, we also provide another way to

transform the possible scaled chi-squared statistic to a standard normal statistic. We

can use the fact that

cStranm =

[(
cSm
ν

)1/3

+
2

9ν
− 1

](
9ν

2

)1/2

is approximately a standard normal variate (Stuart and Ord, 1987).

Later, in a part of Section 4.3, we carry out a short simulation experiment for

determining which asymptotic distribution of the kernel smoothed unweighted sum

of squares statistic, Sm, is approached in the logistic multilevel model.

4.2.3 Local Polynomial Smoothed Residuals

Ruppert and Wand (1994) developed the general theory for multivariate local poly-

nomial regression in the usual situation that the covariate has p-dimensional compact

support in Rp. Generally, when we use the nonparametric smoothing method in the

multidimensional situations, boundary modifications in higher dimensions are a very
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difficult task. Fan and Gijbels (1996) argued that an advantage of local polynomial

fitting is that with local polynomial fitting no boundary modifications are required,

and this is an important merit, especially when dealing with multidimensional situa-

tions.

In this part, we introduce how to obtain a smoothing function of ê with re-

spect to continuous and within-cluster covariates by local polynomial estimation.

Let us start by assuming that we have m clusters (or subjects). For each cluster,

1 ≤ i ≤ m, there are ni binary outcome values yi = (yi1, · · · , yini
)T and a ni × p

covariate matrix x∗i = (xi1, · · · ,xini
)T with p-dimensional covariate vector xini

. For

simplicity, in model (4.1), suppose that ni = n for all i and total observationsN = mn.

Conditional on the random effects, let µbi = E(yi|xi, b0i) = (µbi1, µ
b
i2, · · · , µbin)T , and

β = (βb0, β1, · · · , βp)T . The logistic multilevel model specifies that logit(µbi) = xiβ

with xi = (1,x∗i ).

Local linear regression estimates the population regression function by β̂b0 where

(β̂b0, β̂1, · · · , β̂p) minimize

m∑
i=1

n∑
j=1

{
yij − βb0 − β∗T (xij − x0)

}2
Kh(xij − x0),

where β∗ = (β1, · · · , βp), and Kh(· ) is a p-variate kernel function. Then, the multi-

variate nonparametric local polynomial estimator of f(x0) = E(y|x0, b0i) with degree

1, β̂b0, is given by

f̂(x0) = aT1 (tTx0
wx0tx0)

−1tx0wx0y = sx0y,

where y = (yT1 , · · · ,yTm)T , sx0 = aT1 (tTx0
wx0tx0)

−1tx0wx0 , a1 is a (p + 1) × 1 vector
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having 1 in the first entry and zero elsewhere, tx0 is a N × (p+ 1) matrix given by

tx0 =



1 (x11 − x0)
T

1 (x12 − x0)
T

...
...

1 (xmn − x0)
T


,

and wx0 = diag [Kh(x11 − x0), · · · , Kh(xmn − x0)] with h = diag(h2
1, · · · , h2

p). Here

x0 is an arbitrary but fixed interior point of the domain of x∗ and Kh(· ) is a multi-

variate kernel function. Furthermore, we can define the local polynomial smoothed

residuals (Lin et al., 2008) as follows,

êm = sê,

where s = [sTx11
, sTx12

, · · · , sTxmn
]T .

4.3 Simulation Study

In order to study whether the local polynomial smoothed residuals improve upon the

unweighted sum of squares statistic for assessing the goodness-of-fit of the logistic

multilevel model, we also carry out a simulation study of the control of the type I

error rate and power analysis by using the smoothed residuals over y-space. When

we smooth residuals in the y-space, the bandwidth, h, 1
2

√
N or 1

4

√
N , controlling the

number of observations with non-zero weights, is adopted according to the suggestion

of Sturdivant and Hosmer (2007). Additionally, we consider the cubic kernel function

(Fowlkes, 1987; Hosmer et al., 1997; Sturdivant, 2005; Sturdivant and Hosmer, 2007)

given by

K(u) =


1− |u|3 if |u| < 1

0 if |u| ≥ 1.
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Moreover, Austin (2010) implemented a simulation study to show that when

glmmPQL is used to analyze data with five observations per cluster in the R package,

there appears to be severe bias in estimation of parameters. However, parameter

estimation becomes much stable when the number of observations per cluster are

greater than ten. Due to this limitation, we adopt dimension of each simulated data

set as follows:

Case 1: 10 clusters with 10 observations per cluster and total observations N = 100,

Case 2: 15 clusters with 10 observations per cluster and total observations N = 150,

Case 3: 25 clusters with 8 observations per cluster and total observations N = 200,

Case 4: 20 clusters with 20 observations per cluster and total observations N = 400.

Further, the logistic multilevel models including either random intercept or ran-

dom intercept and slope are considered in the simulation study. To evaluate the type

I error rate, we determine the proportion of 500 simulated data sets where significant

results, at 1%, 5% and 10% significance levels are detected; the power performance

is evaluated at a 5% significance level.

4.3.1 Type I Error Rate for the Random Intercept Model

In this part, we investigate the performance of cSm, ZSm and cStranm , when we smooth

the residuals in the y-space to determine an appropriate asymptotic distribution of

Sm in the logistic multilevel model. Then, we assess the type I error rate of the

kernel smoothed unweighted sum of squares statistic based on the nonparametric

local polynomial smoothed residuals over continuous and within-cluster covariates.

We consider a logistic multilevel model (under the null hypothesis) with random
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intercept across level two, namely cluster,

logit(µbij) = β0 + β1xij + β2ξij + β3ci + b0i,

where ci is a cluster-level covariate, xij and ξij are covariates within the cluster-

level, and b0i is the random part over the cluster-level. The cluster-level covariate

is generated such that the values taken on are randomly perturbed z-scores about

the standard normal cumulative probability i/(m + 1) where m is the number of

clusters and i = 1, 2, · · · ,m (Evans and Hosmer, 2004). Two covariates within the

cluster-level, xij and ξij follow a uniform distribution (-1,1) and the standard nor-

mal distribution, respectively. The random intercept follows normal distribution with

mean zero and variance 0.49. The vector of parameters is set as (β0, β1, β2, β3) equal

to (0, 0.9, 0.5, 0.7). Additionally, bandwidths (h1, h2) from (0.5, 0.5) to (1.5, 1.5) by

(0.25, 0.25) are adopted when we use the local polynomial technique to smooth resid-

uals over continuous and within-cluster covariates .

First, through a short simulation experiment shown in Table 11, we find that

the performance of cSm for controlling the type I error rate is relatively better than

cStranm and ZSm . On the other hand, although the performance of cStranm and ZSm do

not differ significantly in our simulation settings, the distribution of cStranm is much

closer to the standard normal distribution, especially the behavior in the tail, than

that of ZSm presented in Figure 4 and Appendix B. Moreover, in Table 12, it clearly

shows that the assumption of the standard normal distribution of ZSm (Sturdivant,

2005; Sturdivant and Hosmer, 2007) may be questionable and the transformed scaled

chi-squared variables can replace it.

Overall, we believe that the scaled chi-squared distribution for the asymptotic

distribution of Sm is the most appropriate one in our simulation settings. Therefore,

we shall use cSm to evaluate performance of the kernel smoothed unweighted sum of
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squares statistic by using the local polynomial smoothed residuals on the goodness-

of-fit test in the logistic multilevel models.

Table 11. Comparisons of the type I error rate for three types of asymptotic distribu-

tions of the kernel smoothed unweighted sum of squares statistic by smooth-

ing residuals in the y-space.

Case 1 Case 2

(N = 100)(10, 10) (N = 150)(15, 10)

α 0.1 0.05 0.01 α 0.1 0.05 0.01

cSm 0.090 0.044 0.006 cSm 0.092 0.044 0.012
1
4

√
N ZSm 0.078 0.036 0.006 ZSm 0.074 0.036 0.012

cStranm 0.074 0.034 0.004 cStranm 0.074 0.036 0.008

cSm 0.094 0.038 0.008 cSm 0.104 0.050 0.014
1
2

√
N ZSm 0.068 0.034 0.010 ZSm 0.080 0.048 0.020

cStranm 0.070 0.034 0.010 cStranm 0.072 0.042 0.012

Case 3 Case 4

(N = 200)(25, 8) (N = 400)(20, 20)

α 0.1 0.05 0.01 α 0.1 0.05 0.01

cSm 0.100 0.052 0.006 cSm 0.098 0.044 0.010
1
4

√
N ZSm 0.082 0.046 0.006 ZSm 0.076 0.032 0.010

cStranm 0.086 0.036 0.006 cStranm 0.080 0.036 0.006

cSm 0.110 0.060 0.012 cSm 0.098 0.048 0.012
1
2

√
N ZSm 0.078 0.056 0.018 ZSm 0.088 0.042 0.014

cStranm 0.080 0.040 0.008 cStranm 0.092 0.042 0.012
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Figure 4. Normal QQ plots of test statistic values of Case 1 under (1)ZSm and

(2)cStranm : the smoothed residuals over y-space based on 1
4

√
N and 1

2

√
N

are shown on the top and bottom panels, respectively.

Table 12. P-values of normality checking of Case 1 for (1)ZSm and (2)cStranm .

Anderson-Darling Cramer-von Mises

1
4

√
N (1) 0.0015 0.0068

(2) 0.3035 0.3257
1
2

√
N (1) 0.0008 0.0058

(2) 0.3988 0.6544
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Second, Table 13 reveals that when using the local polynomial smoothed residuals

over continuous and within-cluster covariates, for all selected bandwidths the type I

error rates of Sm compared with a scaled chi-squared distribution are well controlled

at significance levels of 1%, 5% and 10% in the logistic multilevel model with only

random intercept. On average, the type I error rates do not appear either too liberal

or conservative in most situations.

Table 13. Results of the type I error rate of Sm by using local polynomial smoothed

residuals are computed based on the scaled chi-squared distribution cSm.

Case 1 Case 2

(N = 100)(10, 10) (N = 150)(15, 10)

α 0.1 0.05 0.01 α 0.1 0.05 0.01

(h1 , h2) (h1 , h2)

(0.50 , 0.50) 0.106 0.044 0.006 (0.50 , 0.50) 0.094 0.040 0.008

(0.75 , 0.75) 0.088 0.036 0.008 (0.75 , 0.75) 0.108 0.062 0.016

(1.00 , 1.00) 0.090 0.048 0.010 (1.00 , 1.00) 0.104 0.054 0.012

(1.25 , 1.25) 0.094 0.048 0.008 (1.25 , 1.25) 0.092 0.054 0.008

(1.50 , 1.50) 0.098 0.058 0.012 (1.50 , 1.50) 0.096 0.052 0.012

Case 3 Case 4

(N = 200)(25, 8) (N = 400)(20, 20)

α 0.1 0.05 0.01 α 0.1 0.05 0.01

(h1 , h2) (h1 , h2)

(0.50 , 0.50) 0.106 0.044 0.008 (0.50 , 0.50) 0.090 0.054 0.010

(0.75 , 0.75) 0.086 0.058 0.010 (0.75 , 0.75) 0.096 0.040 0.008

(1.00 , 1.00) 0.088 0.042 0.008 (1.00 , 1.00) 0.094 0.050 0.010

(1.25 , 1.25) 0.096 0.040 0.008 (1.25 , 1.25) 0.100 0.060 0.014

(1.50 , 1.50) 0.098 0.056 0.008 (1.50 , 1.50) 0.102 0.058 0.014
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4.3.2 Power Analysis for the Random Intercept Model

Through a set of simulations, Hosmer et al. (1997) showed that the unweighted sum

of squares statistic has a reasonable power for detecting a missing quadratic effect in

the ordinary logistic regression models. However, it is far clear that the smoothed

kernel unweighted sum of squares statistic by smoothing residuals in the y-space

would detect such a departure in the fixed effects portion of the model with the

random effects (Sturdivant, 2005; Sturdivant and Hosmer, 2007). In Section 4.3.1, we

have known that the kernel smoothed unweighted sum of squares statistic by using

local polynomial smoothed residuals over continuous and within-cluster covariates

rejects the null model appropriately under the null hypothesis. Next, we study its

power performance in detecting a missing within-cluster quadratic term in the logistic

multilevel model. The alternative model is assumed to be

logit(µbij) = β0 + β1xij + β1qx
2
ij + (β2ξij + β3ci + b0i). (4.4)

Herein, we determine β0, β1, and β1q by using logit(µ(x)) = β0 +β1x+β1qx
2 to choose

a strong or moderate quadratic term (Hosmer et al., 1997). We use µ(−0.5) = 0.05,

µ(1) = 0.95, and µ(−1) = 0.40 to choose (β0, β1, β1q) equal to (−3.23, 1.67, 4.5)

for a strong quadratic term. On the other hand, µ(−0.5) = 0.05, µ(1) = 0.95, and

µ(−1) = 0.1 are used to choose (β0, β1, β1q) equal to (−2.34, 2.57, 2.71) for a moderate

quadratic term.

The power performance for detecting a missing within-cluster quadratic term in

each case is shown in Table 14 for strong and moderate quadratic terms. Based on

the reported results, the local polynomial smoothed residuals enhance the power of

Sm in detecting a missing quadratic term. In the situation of a strong quadratic term,

even when the sample size is small, using the local polynomial smoothed residuals
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is still better than using the smoothed residuals over y-space. As for the situation

of a moderate quadratic term, when the sample size increases to a large one, using

the local polynomial smoothed residuals presents an obvious increase on power. On

average, the performance of the kernel smoothed unweighted sum of squares statistic

for detecting a missing quadratic term can be significantly improved when we apply

the local polynomial technique to smooth residuals over within-cluster covariates.

Additionally, Sturdivant (2005) also showed that the smoothed kernel unweighted

sum of squares statistic by smoothing residuals in the y-space has no real power for

detecting the omission of an interaction term in the fixed effects portion of the model

with the random effects. Thus, in the following part, we shall investigate whether the

power performance of Sm by using the local polynomial smoothed residuals can make

an improvement on detecting a missing within-cluster interaction term.

In the first part of this discussion, we consider that the null model is logit(µbij) =

β0 + β1xij + βddij + β2ξij + β3ci + b0i. The alternative model is assumed to be

logit(µbij) = β0 + β1xij + βddij + β1dxijdij + (β2ξij + β3ci + b0i), (4.5)

where dij follow a Bernoulli distribution with probability 0.5. Similarly, we determine

β0, β1, βd and β1d by using logit(µ(x, d)) = β0 + β1x+ βdd+ β1dxd to choose a strong

interaction term. In terms of µ(−1, 0) = 0.1, µ(−1, 1) = 0.1, µ(1, 0) = 0.2 and

µ(1, 1) = 0.9, we choose (β0, β1, βd, β1d) equal to (−1.792, 0.406, 1.792, 1.792).

Unfortunately, the results shown in Table 15 reveal that there is no improvement

in the power performance of Sm by using local polynomial smoothed residuals for

detecting a missing within-cluster interaction term of fixed effects between Bernoulli

and continuous covariates.
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Table 14. Results of the power performance of detecting a missing strong or moderate

within-cluster quadratic term of fixed effects when the alternative model

(4.4) is assumed.

(1) Strong Quadratic Term

Case 1 Case 2 Case 3 Case 4

(N = 100) (N = 150) (N = 200) (N = 400)

(10, 10) (15, 10) (25, 8) (20, 20)

Smooth over y-space
1
4

√
N 0.102 0.128 0.140 0.232

1
2

√
N 0.180 0.222 0.288 0.452

Local Polynomial Smooth over x-space

(h1 , h2)

(0.50 , 0.50) 0.546 0.820 0.952 1.000

(0.75 , 0.75) 0.658 0.876 0.966 1.000

(1.00 , 1.00) 0.592 0.810 0.938 0.998

(1.25 , 1.25) 0.524 0.778 0.924 1.000

(1.50 , 1.50) 0.418 0.642 0.820 0.998

(2) Moderate Quadratic Term

Case 1 Case 2 Case 3 Case 4

(N = 100) (N = 150) (N = 200) (N = 400)

(10, 10) (15, 10) (25, 8) (20, 20)

Smooth over y-space
1
4

√
N 0.018 0.016 0.020 0.020

1
2

√
N 0.022 0.042 0.048 0.078

Local Polynomial Smooth over x-space

(h1 , h2)

(0.50 , 0.50) 0.096 0.204 0.346 0.684

(0.75 , 0.75) 0.154 0.268 0.402 0.738

(1.00 , 1.00) 0.148 0.238 0.336 0.694

(1.25 , 1.25) 0.130 0.222 0.296 0.592

(1.50 , 1.50) 0.114 0.174 0.260 0.494
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Table 15. Results of the power performance of detecting a missing strong within-cluster

interaction term of fixed effects between Bernoulli and continuous covariates

when the alternative model (4.5) is assumed.

Case 1 Case 2 Case 3 Case 4

(N = 100) (N = 150) (N = 200) (N = 400)

(10, 10) (15, 10) (25, 8) (20, 20)

Smooth over y-space
1
4

√
N 0.018 0.022 0.024 0.022

1
2

√
N 0.030 0.040 0.044 0.062

Local Polynomial Smooth over x-space

(h1 , h2)

(0.50 , 0.50) 0.020 0.032 0.036 0.068

(0.75 , 0.75) 0.032 0.046 0.050 0.084

(1.00 , 1.00) 0.032 0.050 0.046 0.064

(1.25 , 1.25) 0.042 0.046 0.058 0.078

(1.50 , 1.50) 0.036 0.038 0.048 0.070

On the other hand, we also consider that the null model is logit(µbij) = β0 +

β1xij + βδδij + β3ci + b0i. The alternative model is assumed to be

logit(µbij) = β0 + β1xij + βδδij + β1δxijδij + (β3ci + b0i), (4.6)

where δij follow a uniform distribution (−3, 3). Again, we determine β0, β1, βδ and

β1δ by using logit(µ(x, δ)) = β0 + β1x + βδδ + β1δxδ to choose a strong interaction

term. Based on µ(−1,−3) = 0.1, µ(−1, 3) = 0.1, µ(1,−3) = 0.2 and µ(1, 3) = 0.9,

we choose (β0, β1, βδ, β1δ) equal to (−0.896, 1.301, 0.299, 0.299).

Interestingly, Table 16 indicates that when the the sample size is large with a

moderate or large cluster size, for the wider selected bandwidths, the power perfor-

mance of Sm by using local polynomial smoothed residuals is improved for detecting a
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missing strong within-cluster interaction term of fixed effects between two continuous

covariates.

Therefore, on average, we believe that the smoothed kernel unweighted sum

of squares statistic by using the local polynomial smoothed residuals still has an

advantage in detecting a missing strong within-cluster interaction term in some special

situations.

Table 16. Results of the power performance of detecting a missing strong within-cluster

interaction term of fixed effects between two continuous covariates when the

alternative model (4.6) is assumed.

Case 1 Case 2 Case 3 Case 4

(N = 100) (N = 150) (N = 200) (N = 400)

(10, 10) (15, 10) (25, 8) (20, 20)

Smooth over y-space
1
4

√
N 0.024 0.028 0.032 0.032

1
2

√
N 0.028 0.046 0.070 0.078

Local Polynomial Smooth over x-space

(h1 , h2)

(0.50 , 0.50) 0.016 0.044 0.052 0.138

(0.75 , 0.75) 0.046 0.074 0.102 0.224

(1.00 , 1.00) 0.078 0.104 0.156 0.282

(1.25 , 1.25) 0.090 0.126 0.136 0.320

(1.50 , 1.50) 0.094 0.150 0.188 0.370

4.3.3 Power Analysis for the Random Intercept and Slope Model

In this part, we carry out a short discussion in the logistic multilevel model including

random intercept and slope across level two, namely cluster. First, we assume a model
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(under the null hypothesis) is given by

logit(µbij) = β0 + β1xij + β2ξij + β3ci + b0i + b1iξij.

All parameter and generated data settings are the same as we adopted in Section

4.3.1 except that b1i follows normal distribution with mean zero and variance 0.1225.

Moreover, we assume that b0i and b1i are uncorrelated. The results shown in Table 17

show that the type I error rates compared with those of the model without random

slope seem to become conservative at all significance levels when the kernel smoothed

unweighted sum of squares statistic is adopted by using the local polynomial smoothed

residuals over covariates. For larger sample sizes and wider selected bandwidths, the

type I error rate for a significance level 5% test becomes much more reasonable.

Second, we study the power performance of Sm by using the local polynomial

smoothed residuals for detecting a missing within-cluster quadratic term in the logistic

multilevel model with random intercept and slope. The alternative model is assumed

to be

logit(µbij) = β0 + β1xij + β1qx
2
ij + (β2ξij + β3ci + b0i + b1iξij). (4.7)

All parameter settings of model (4.7) are the same as those used in model (4.4).

The power performance for detecting a missing within-cluster quadratic term shown

in Table 18 does not differ much from results of the model without random slope

presented in Table 14.

Overall, we conclude that applying the local polynomial smoothed residuals to

the kernel smoothed unweighted sum of squares statistic can be a good choice for

detecting a missing quadratic term in the logistic multilevel model including either

random intercept or random intercept and slope.
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Table 17. Results of controlling type I error rate of Sm by using local polynomial

smoothed residuals are computed based on cSm when the model includes

random intercept and slope.

Case 1 Case 2

(N = 100)(10, 10) (N = 150)(15, 10)

α 0.1 0.05 0.01 α 0.1 0.05 0.01

Smooth over y-space

1
4

√
N 0.084 0.036 0.012 1

4

√
N 0.086 0.048 0.008

1
2

√
N 0.108 0.056 0.008 1

2

√
N 0.096 0.046 0.018

Local Polynomial Smooth over x-space

(h1 , h2) (h1 , h2)

(0.50 , 0.50) 0.064 0.026 0.004 (0.50 , 0.50) 0.064 0.038 0.002

(0.75 , 0.75) 0.078 0.048 0.006 (0.75 , 0.75) 0.072 0.042 0.010

(1.00 , 1.00) 0.068 0.036 0.010 (1.00 , 1.00) 0.088 0.040 0.004

(1.25 , 1.25) 0.084 0.032 0.008 (1.25 , 1.25) 0.078 0.036 0.008

(1.50 , 1.50) 0.074 0.042 0.012 (1.50 , 1.50) 0.074 0.032 0.004

Case 3 Case 4

(N = 200)(25, 8) (N = 400)(20, 20)

α 0.1 0.05 0.01 α 0.1 0.05 0.01

Smooth over y-space

1
4

√
N 0.118 0.062 0.010 1

4

√
N 0.084 0.050 0.006

1
2

√
N 0.152 0.072 0.012 1

2

√
N 0.094 0.048 0.010

Local Polynomial Smooth over x-space

(h1 , h2) (h1 , h2)

(0.50 , 0.50) 0.068 0.034 0.006 (0.50 , 0.50) 0.076 0.046 0.006

(0.75 , 0.75) 0.080 0.040 0.006 (0.75 , 0.75) 0.076 0.044 0.004

(1.00 , 1.00) 0.068 0.032 0.006 (1.00 , 1.00) 0.086 0.048 0.014

(1.25 , 1.25) 0.080 0.042 0.016 (1.25 , 1.25) 0.078 0.044 0.006

(1.50 , 1.50) 0.078 0.048 0.008 (1.50 , 1.50) 0.082 0.048 0.016
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Table 18. Results of the power performance of detecting a missing strong or moderate

within-cluster quadratic term of fixed effects when the alternative model

(4.7) with random intercept and slope is assumed.

(1) Strong Quadratic Term

Case 1 Case 2 Case 3 Case 4

(N = 100) (N = 150) (N = 200) (N = 400)

(10, 10) (15, 10) (25, 8) (20, 20)

Smooth over y-space
1
4

√
N 0.030 0.052 0.066 0.104

1
2

√
N 0.060 0.112 0.218 0.308

Local Polynomial Smooth over x-space

(h1 , h2)

(0.50 , 0.50) 0.490 0.774 0.930 1.000

(0.75 , 0.75) 0.584 0.832 0.936 0.998

(1.00 , 1.00) 0.538 0.766 0.898 0.996

(1.25 , 1.25) 0.436 0.716 0.888 0.992

(1.50 , 1.50) 0.378 0.590 0.784 0.974

(2) Moderate Quadratic Term

Case 1 Case 2 Case 3 Case 4

(N = 100) (N = 150) (N = 200) (N = 400)

(10, 10) (15, 10) (25, 8) (20, 20)

Smooth over y-space
1
4

√
N 0.012 0.020 0.024 0.018

1
2

√
N 0.034 0.050 0.088 0.098

Local Polynomial Smooth over x-space

(h1 , h2)

(0.50 , 0.50) 0.060 0.152 0.256 0.578

(0.75 , 0.75) 0.114 0.186 0.290 0.616

(1.00 , 1.00) 0.098 0.172 0.254 0.590

(1.25 , 1.25) 0.086 0.140 0.218 0.514

(1.50 , 1.50) 0.074 0.126 0.156 0.362
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4.4 Application

In this section, we illustrate the application of the nonparametric local polynomial

smoothing residuals over continuous and within-cluster covariates on the unweighted

sum of squares statistic for assessing the goodness of fit in the logistic multilevel

models. We use part of real data set from a clinical trial, called “support“, from

the Cancer Biostatistics Center, Vanderbilt University. The objective of the support

(Study to Understand Prognoses Preferences Outcomes and Risks of Treatment) was

to improve decision-making in order to address the growing national concern over the

loss of control that patients have near the end of life and to reduce the frequency

of a mechanical, painful, and prolonged process of dying (see http://www.icpsr.

umich.edu/icpsrweb/ICPSR/studies/02957/ for details). In our analysis, there are

392 patients taken from the support data set. We consider the hierarchical structure

of patients (level one) in 8 clusters (level two; health status of patients), such as

cirrhosis, coma, colon cancer, lung cancer, etc. The outcome of interest is whether

or not patients die in the hospital during the period of the trial. Part of covariates

which can be used to assess the physiological status of patients are listed as follows,

(1) Wblc: White blood cell count Day 3,

(2) Crea: Serum creatinine Day 3,

(3) Resp: Respiration rate Day 3,

(4) Temp: Temperature – average of all patients’ temperature (celsius) Day 3.

On the other hand, in order to select appropriate bandwidths, we re-define a

leave-one-out cross-validation method (Hart, 1997) as the follow by using µ̂
b(i)
ij the
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nonparametric smoother of E(yij|xij,bi) for all data except the ith (level two) cluster,

CV (h) =
1

N

m∑
i=1

ni∑
j=1

(
yij − µ̂

b(i)
ij

)2

,

where h is the smoothing parameter for the local polynomial estimate µ̂
b(i)
ij shown in

Section 4.2.3 and N = n1 +n2 + · · ·+nm. The cross-validation smoothing parameter

is the value of h by minimizing CV (h). Additionally, we subjectively focus on six

logistic multilevel models listed in Table 19 for demonstrating the application. For the

model including the higher-order term, we can try to add a higher-degree component

to the related covariate in computing the nonparametric local polynomial estimator.

Furthermore, we not only implement the model checking by using the kernel smoothed

weighted sum of squares statistic where parameter estimates of the model are based

on the PQL estimation from glmmPQL in R, but also use glmer which is based on

the adaptive Gaussian-Hermite approximation to the likelihood in R to fit models

and obtain the corresponding AIC, BIC and deviance.

Table 19. List of six logistic multilevel models with the random intercept for demon-

strating the application.

Model 1: logit(µbij) = β0 + βwWblcij + βcCreaij + b0i
Model 2: logit(µbij) = β0 + βwWblcij + βcCreaij + βw2Wblc2

ij + b0i
Model 3: logit(µbij) = β0 + βwWblcij + βcCreaij + βc2Crea2

ij + b0i
Model 4: logit(µbij) = β0 + βrRespij + βtTempij + b0i
Model 5: logit(µbij) = β0 + βrRespij + βtTempij + βr2Resp2

ij + b0i
Model 6: logit(µbij) = β0 + βrRespij + βtTempij + βt2Temp2

ij + b0i

First, we carry out a cross-validation procedure to select the appropriate band-

widths based on 30 × 30 grid points in the lower terms of each model. The selected

values of the smoothing parameter are shown in Table 20.
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Table 20. Results of the selected values of smoothing parameter based on the cross–

validation method for each model.

(hWblc, hCrea) (hResp, hTemp)

Model 1 (6.6460,4.5408) Model 4 (9.3448,3.9082)

Model 2 (8.3398,4.5408) Model 5 (11.5172,3.6153)

Model 3 (10.0336,1.8446) Model 6 (10.7931,4.2012)

Second, for each model, the kernel smoothed unweighted sum of squares statistic

and the corresponding p-value compared with the scaled chi-squared distribution are

presented in Tables 21 and 22. The results are based on the selected values of the

smoothing parameter in each model. In terms of reported p-values, we find that

model 1, model 2, and model 3 provide an adequate fit; however, model 4, model 5,

and model 6 do not fit adequately.

In analysis of this example, we believe that the kernel smoothed unweighted

sum of squares statistic by using the local polynomial smoothed residuals is reliable

for the model checking. For instance, in our analysis, parameter estimates based on

PQL estimation do not differ from those converged estimates based on the adaptive

Gaussian-Hermite approximation to the likelihood. Therefore, all test results based

on the stable and reasonable PQL estimation are acceptable. Additionally, in the

cases shown in Table 22, we observe that when adding a higher-order effect into a

non-adequate model, the model checking results still reveal no improvement on the

lack of fit even if the higher-order effect is significant. Overall, the model 1 can be

selected as the most appropriate model among six fitted models by using AICs and

results of the model checking.
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Table 21. Results of the model fit based on glmmPQL and glmer and model checking

based on Sm by using local polynomial smoothing residuals over within

continuous cluster-level covariates for Model 1, Model 2 and Model 3.

Model 1

Covariates Estimates S.E. p-value

Intercept -2.0409 (-2.0873) 0.4482 (0.4606) 0.0000 (0.0000)

Wblc 0.0385 (0.0394) 0.0198 (0.0205) 0.0525 (0.0545)

Crea 0.5129 (0.5525) 0.1190 (0.1238) 0.0000 (0.0000)

cŜm E(Ŝm) Var(Ŝm) p-value of χ2
ν

9.9499 0.9550 0.2264 0.2732

AIC BIC Deviance

423.9 439.8 415.9

Model 2

Covariates Estimates S.E. p-value

Intercept -1.7191 (-1.7578) 0.5323 (0.5474) 0.0013 (0.0013)

Wblc -0.0217 (-0.0223) 0.0597 (0.0617) 0.7160 (0.7183)

Crea 0.5044 (0.5137) 0.1190 (0.1237) 0.0000 (0.0000)

Wblc2 0.0022 (0.0023) 0.0021 (0.0022) 0.2906 (0.2957)

cŜm E(Ŝm) Var(Ŝm) p-value of χ2
ν

8.7523 0.8516 0.1996 0.2948

AIC BIC Deviance

424.8 444.7 414.8

Model 3

Covariates Estimates S.E. p-value

Intercept -2.3343 (-2.3870) 0.5178 (0.5327) 0.0000 (0.0000)

Wblc 0.0371 (0.0379) 0.0199 (0.0206) 0.0639 (0.0661)

Crea 0.8311 (0.8470) 0.2891 (0.2997) 0.0043 (0.0047)

Crea2 -0.0495 (-0.0504) 0.0389 (0.0405) 0.2048 (0.2133)

cŜm E(Ŝm) Var(Ŝm) p-value of χ2
ν

15.9619 2.0132 0.5931 0.2936

AIC BIC Deviance

424.6 444.5 414.6

*Estimation and inference based on glmer are within parentheses.
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Table 22. Results of the model fit based on glmmPQL and glmer and model checking

based on Sm by using local polynomial smoothing residuals over within

continuous cluster-level covariates for Model 4, Model 5 and Model 6.

Model 4

Covariates Estimates S.E. p-value

Intercept -1.2895 (-1.3227) 0.4981 (0.5103) 0.0100 (0.0095)

Resp 0.0189 ( 0.0192) 0.0129 (0.0133) 0.1457 (0.1471)

Temp -0.0622 (-0.0626) 0.0975 (0.0999) 0.5237 (0.5312)

cŜm E(Ŝm) Var(Ŝm) p-value of χ2
ν

37.5774 1.5011 0.2768 0.0019

AIC BIC Deviance

451.9 467.8 443.9

Model 5

Covariates Estimates S.E. p-value

Intercept -0.2422 (-0.2519) 0.7872 (0.8037) 0.7585 (0.7540)

Resp -0.0740 (-0.0757) 0.0571 (0.0582) 0.1953 (0.1936)

Temp -0.0764 (-0.0773) 0.0989 (0.1009) 0.4404 (0.4436)

Resp2 0.0018 ( 0.0019) 0.0011 (0.0011) 0.0967 (0.0956)

cŜm E(Ŝm) Var(Ŝm) p-value of χ2
ν

35.7047 1.3438 0.2922 0.0005

AIC BIC Deviance

451.2 471.0 441.2

Model 6

Covariates Estimates S.E. p-value

Intercept -1.5114 (-1.5482) 0.4958 (0.5087) 0.0025 (0.0023)

Resp 0.0129 ( 0.0132) 0.0132 (0.0137) 0.3294 (0.3339)

Temp -0.1951 (-0.1973) 0.1131 (0.1169) 0.0854 (0.0915)

Temp2 0.2373 ( 0.2418) 0.0702 (0.0728) 0.0008 (0.0009)

cŜm E(Ŝm) Var(Ŝm) p-value of χ2
ν

21.0582 1.0955 0.2488 0.0174

AIC BIC Deviance

440.0 459.0 430.0

*Estimation and inference based on glmer are within parentheses.
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Finally, from the fitted results of model 1, we conclude that within each cluster

(health status of patients), white blood cell count and serum creatinine are positively

associated with the probability of dying for patients near the end of life; further, when

patients in the status of coma have the largest estimated random intercept (1.268),

it reveals that the probability of dying in the status of coma is relatively higher than

other statuses of patients.

4.5 Discussion

In this chapter, we apply the local polynomial smoothed residuals which had been

discussed in the population-averaged model with longitudinal binary data to the lo-

gistic multilevel model which contains the random-intercept part or both random

intercept and slope on the model checking. Through a simulation study, in our

simulation settings, we discover that the power performance of the kernel smoothed

unweighted sum of squares statistic can be significantly improved by the local polyno-

mial smoothed residuals over within-cluster continuous covariates compared with the

smoothed residuals over y-space on checking the adequacy of some specific models.

However, there are some limitations in this approach. For instance, we ignore the

effect of within-cluster (level one) categorical variables and between-cluster (level two)

variables on smoothing residuals in the logistic multilevel model. This may be a reason

why there is no power for detecting a missing strong within-cluster interaction term of

fixed effects between Bernoulli and continuous covariates. Therefore, in this situation,

we may have to assume that the lack of fit resulted from the incorrect modelling of

within-cluster continuous covariates, so there is no mutual interaction between the

categorical and continuous variables. On the other hand, a test statistic based on

stratification by within-cluster categorical covariate or between-cluster covariate can
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be further discussed in the logistic multilevel model.

Moreover, when there are many different within-cluster covariates included in

the model, the implementation of this approach is time consuming in the analysis of

the case study. Although we can consider smoothing residuals according to some vari-

ables, choosing a suitable subset of covariates is difficult and subjective. Therefore,

combining this approach with the mechanism of variable selection may be needed.

Nevertheless, in most situations, the kernel smoothed test statistic by using the lo-

cal polynomial smoothed residuals seems to provide a global and reliable measure of

goodness-of-fit test on the model checking in the logistic multilevel model.



75

CHAPTER V

CONCLUSION

We investigate the methodology to detect misspecification of the random-effects dis-

tribution in generalized linear mixed models and the application of the local polyno-

mial smoothed residuals on the goodness-of-fit test of the logistic multilevel models

throughout the research presented in this dissertation. We summarize our findings

and discuss avenues for future research as follows.

When we account for the correlated binary outcomes within subjects (or clus-

ters) by modeling random-effects models, estimation and inference depend that the

structure of random effects is correctly specified. In most situations, we often assume

that random effects are normally distributed. However, recent research exhibits that

inferences for the linear predictor parameters and estimation for the variance com-

ponent of random effects are seriously affected by the violation of normality of the

random-effects distributions, when the true random-effects distribution is not a nor-

mal distribution with a large variance component. In addition, since random effects

are unobserved, it is hard to use a straightforward diagnostic tool, for instance, the

histogram plot of the empirical Bayes estimates of random effects, to check depar-

tures from normality in either linear mixed models (Verbeke and Molenberghs, 2000)

or generalized linear mixed models (Litière et al., 2007; Alonso et al., 2008).

As a result, one of our studies concentrates on developing a formal test for test-

ing the normality of the random-effects distribution in generalized linear mixed mod-

els. Our proposed robust score test analogous to the order selection test for testing

the distributional assumptions of random effects without any parametric form is not

likelihood-based. It is motivated by constructing a test statistic involved with gen-

eralized estimating equations and approximating the distribution of random effects



76

based on the semi-nonparametric density representation. Throughout our study, in

order to control the type I error rate, we adopt the smoothed bootstrap test with a

parametric bootstrap procedure to replace the test formed by using the asymptotic

results of the test statistic in a random-intercept logistic model.

Our investigations reveal that the proposed test statistic has large power to

detect the violation of normality of random effects when the true unobserved random

effects follow a distribution with multiple modes. Unfortunately, it has no power

when the true distribution of the random effects follows a unimodal highly skewed

or heavy-tailed distribution. Since we approximate the random-effects distribution

with a large variance component by the semi-nonparametric Hermite expansion of

the standard normal density, it is desired to further explore whether a unimodal

highly skewed or heavy-tailed distribution of random effects with the large variance

can be distinguished from a normal distribution in this way. Additionally, we also

can try to construct the test statistic under a likelihood-based Wald test and use the

Monte Carlo EM algorithm for parameter estimation to explore whether there is any

improvement on the power performance in future research.

Although the smoothed bootstrap test provides a good control of the type I

error rate under non-optimal bandwidth in our study and we can use npudist(np)

in R to search for an appropriate bandwidth in practice, the issue of finding the

optimal bandwidth is still worthy of further exploration to enhance the reliability

of the smoothed bootstrap test. As for the bootstrap approach, we could discuss

other resampling approaches since resampling data may blindly lead to the test with

very low power and performance of the test under parametric bootstrap might not

be superior when the model is not correctly assumed (Lee, 1994; Shao and Tu, 1995;

Aerts and Claeskens, 2001).

Moreover, we can extend our proposed test statistic to detect another type of
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misspecification of random effects in a future study, for instance, incorrectly ignor-

ing a random slope, random intercept variance depending on a binary covariate or

autocorrelated random effects occurring between repeated measurements within a

subject (or cluster). Since the generalized linear mixed models are widely used to

analyze nonnormal outcome variables in many fields, the development of a suitable

diagnostic tool for detecting misspecification of random effects including the violation

of normality of the random-effects distribution would be useful and encouraged.

On the other hand, the objective of the second study is to apply the nonpara-

metric local polynomial smoothed residuals over within-cluster continuous covariates

to the unweighted sum of squares statistic for checking adequacy of a logistic multi-

level model, namely, a mixed-effects logistic model for hierarchical data with binary

outcomes. As asserted in the discussion part of Chapter IV, the kernel smoothed

test statistic formed by using the local polynomial smoothed residuals provides a

global and reliable measure for the model checking. It performs better than the ker-

nel smoothed test statistic by using the smoothed residuals over y-space. Especially,

it has significant improvement of power for detecting a missing strong within-cluster

quadratic term in the logistic multilevel model containing either the random-intercept

part or both random intercept and slope. Furthermore, our investigations also indi-

cate that when the cluster size or sample size increases, the power for detecting a

missing moderate within-cluster quadratic term or strong interaction term between

two within-cluster continuous covariates gradually increases.

Finally, as discussed in Section 4.5, without ignoring the effect of within-cluster

(level one) categorical variables and between-cluster (level two) variables on smooth-

ing residuals, a kernel smoothed test statistic based on stratification by within-cluster

categorical or between-cluster covariates in the logistic multilevel model can be fur-

ther considered. In addition, the bandwidth selection mechanism over y-space in
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the logistic multilevel model still deserve to be formally explored (Sturdivant and

Hosmer, 2007) and extending the kernel smoothed test statistic by using the local

polynomial smoothed residuals to detect misspecification of random effects is also

worthy of attempt in future study.
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APPENDIX A

DERIVATIONS OF SOME COMPONENTS OF <M IN CHAPTER III

As M=1, the marginal mean function is defined as the follow,

E1(yij) =

∫
h(β0 + β1ri + β2tij + σui) (a0 + a1ui)

2 f(ui)dui

≡ µ1(ri, tij;ϕ1),

where h(x) =
ex

1 + ex
, ui ∼ N(0, 1), ϕ1 = (β0, β1, β2, σ, ψ1)

T , a0 = cos(ψ1), and

a1 = sin(ψ1).

Let

Q
(β0)
1i =

[(
∂2µ1ij

∂β0∂β0

) (
∂2µ1ij

∂β1∂β0

) (
∂2µ1ij

∂β2∂β0

) (
∂2µ1ij

∂σ∂β0

) (
∂2µ1ij

∂ψ1∂β0

)]T
,

Q
(β1)
1i =

[(
∂2µ1ij

∂β0∂β1

) (
∂2µ1ij

∂β1∂β1

) (
∂2µ1ij

∂β2∂β1

) (
∂2µ1ij

∂σ∂β1

) (
∂2µ1ij

∂ψ1∂β1

)]T
,

Q
(β2)
1i =

[(
∂2µ1ij

∂β0∂β2

) (
∂2µ1ij

∂β1∂β2

) (
∂2µ1ij

∂β2∂β2

) (
∂2µ1ij

∂σ∂β2

) (
∂2µ1ij

∂ψ1∂β2

)]T
,

Q
(σ)
1i =

[(
∂2µ1ij

∂β0∂σ

) (
∂2µ1ij

∂β1∂σ

) (
∂2µ1ij

∂β2∂σ

) (
∂2µ1ij

∂σ∂σ

) (
∂2µ1ij

∂ψ1∂σ

)]T
,

Q
(ψ1)
1i =

[(
∂2µ1ij

∂β0∂ψ1

) (
∂2µ1ij

∂β1∂ψ1

) (
∂2µ1ij

∂β2∂ψ1

) (
∂2µ1ij

∂σ∂ψ1

) (
∂2µ1ij

∂ψ1∂ψ1

)]T
.

When we have a case with balanced data structure, V1i can be defined by

V1i =
1

m

m∑
i=1

(yi − µ1i)(yi − µ1i)
T .
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We obtain the derivatives of φ1i with respect to ϕ1 = (β0, β1, β2, σ, ψ1)
T ,

∂φ1i

∂β0

= Q
(β0)
1i V −1

1i (yi − µ1i)− µ̇T1iV −1
1i

(
∂V1i

∂β0

)
V −1

1i (yi − µ1i)− µ̇T1iV −1
1i

(
∂µ1i

∂β0

)
,

∂φ1i

∂β1

= Q
(β1)
1i V −1

1i (yi − µ1i)− µ̇T1iV −1
1i

(
∂V1i

∂β1

)
V −1

1i (yi − µ1i)− µ̇T1iV −1
1i

(
∂µ1i

∂β1

)
,

∂φ1i

∂β2

= Q
(β2)
1i V −1

1i (yi − µ1i)− µ̇T1iV −1
1i

(
∂V1i

∂β2

)
V −1

1i (yi − µ1i)− µ̇T1iV −1
1i

(
∂µ1i

∂β2

)
,

∂φ1i

∂σ
= Q

(σ)
1i V

−1
1i (yi − µ1i)− µ̇T1iV −1

1i

(
∂V1i

∂σ

)
V −1

1i (yi − µ1i)− µ̇T1iV −1
1i

(
∂µ1i

∂σ

)
,

∂φ1i

∂ψ1

= Q
(ψ1)
1i V −1

1i (yi − µ1i)− µ̇T1iV −1
1i

(
∂V1i

∂ψ1

)
V −1

1i (yi − µ1i)− µ̇T1iV −1
1i

(
∂µ1i

∂ψ1

)
.

Then, Ãm1 and B̃m1 can be derived.

Similarly, as M = 2, the marginal mean function is defined as the follow,

E2(yij) =

∫
h(β0 + β1ri + β2tij + σui)

(
a∗0 + a∗1ui + a∗2u

2
i

)2
f(ui)dui

≡ µ2(ri, tij;ϕ2),

where h(x) =
ex

1 + ex
, ui ∼ N(0, 1), ϕ2 = (β0, β1, β2, σ, ψ1, ψ2)

T , a∗0 = cos(ψ1) −
1√
2

sin(ψ1) sin(ψ2), a
∗
1 = sin(ψ1) cos(ψ2), and a∗2 =

1√
2

sin(ψ1) sin(ψ2). Again, we

follow the same procedure as M = 1, we also can obtain the derivatives of φ2i with

respect to ϕ2 = (β0, β1, β2, σ, ψ1, ψ2)
T and construct Ãm2 and B̃m2.
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APPENDIX B

ADDITIONAL RESULTS OF NORMALITY CHECKING FOR TWO

ASYMPTOTIC DISTRIBUTIONS IN CHAPTER IV

Table 23. P-values of normality checking of Case 2 to Case 4 for (1)ZSm and (2)cStranm .

Anderson-Darling Cramer-von Mises

1
4

√
N (1) 0.0056 0.0068

Case 2 (2) 0.8889 0.8334
1
2

√
N (1) <0.0001 <0.0001

(2) 0.2440 0.1908

Anderson-Darling Cramer-von Mises

1
4

√
N (1) 0.0006 0.0008

Case 3 (2) 0.2368 0.2262
1
2

√
N (1) 0.0002 0.0009

(2) 0.1403 0.1762

Anderson-Darling Cramer-von Mises

1
4

√
N (1) 0.1012 0.1902

Case 4 (2) 0.8806 0.8834
1
2

√
N (1) 0.0024 0.0056

(2) 0.5956 0.5955
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Figure 5. Normal QQ plots of test statistic values of Case 2 under (1)ZSm and

(2)cStranm : the smoothing residuals over y-space based on 1
4

√
N and 1

2

√
N

are demonstrated on the top and bottom panels, respectively.
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Figure 6. Normal QQ plots of test statistic values of Case 3 under (1)ZSm and

(2)cStranm : the smoothing residuals over y-space based on 1
4

√
N and 1

2

√
N

are demonstrated on the top and bottom panels, respectively.
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Figure 7. Normal QQ plots of test statistic values of Case 4 under (1)ZSm and

(2)cStranm : the smoothing residuals over y-space based on 1
4

√
N and 1

2

√
N

are demonstrated on the top and bottom panels, respectively.
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