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ABSTRACT

Topics on Regularization of Parameters in Multivariate Linear Regression.

(December 2011)

Lianfu Chen, B.S., University of Science & Technology of China;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Mohsen Pourahmadi

My dissertation mainly focuses on the regularization of parameters in the multi-

variate linear regression under different assumptions on the distribution of the errors.

It consists of two topics where we develop iterative procedures to construct sparse

estimators for both the regression coefficient and scale matrices simultaneously, and

a third topic where we develop a method for testing if the skewness parameter in the

skew-normal distribution is parallel to one of the eigenvectors of the scale matrix.

In the first project, we propose a robust procedure for constructing a sparse esti-

mator of a multivariate regression coefficient matrix that accounts for the correlations

of the response variables. Robustness to outliers is achieved using heavy-tailed t dis-

tributions for the multivariate response, and shrinkage is introduced by adding to the

negative log-likelihood �1 penalties on the entries of both the regression coefficient

matrix and the precision matrix of the responses. Taking advantage of the hierar-

chical representation of a multivariate t distribution as the scale mixture of normal

distributions and the EM algorithm, the optimization problem is solved iteratively

where at each EM iteration suitably modified multivariate regression with covariance

estimation (MRCE) algorithms proposed by Rothman, Levina and Zhu are used. We

propose two new optimization algorithms for the penalized likelihood, called MRCEI

and MRCEII, which differ from MRCE in the way that the tuning parameters for the

two matrices are selected. Estimating the degrees of freedom when penalizing the en-
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tries of the matrices presents new computational challenges. A simulation study and

real data analysis demonstrate that the MRCEII, which selects the tuning parameter

of the precision matrix of the multiple response using the Cp criterion, generally does

the best among all methods considered in terms of the prediction error, and MRCEI

outperforms the MRCE methods when the regression coefficient matrix is less sparse.

The second project is motivated by the existence of the skewness in the data for

which the symmetric distribution assumption on the errors does not hold. We ex-

tend the procedure we have proposed to the case where the errors in the multivariate

linear regression follow a multivariate skew-normal or skew-t distribution. Based on

the convenient representation of skew-normal and skew-t as well as the EM algorith-

m, we develop an optimization algorithm, called MRST, to iteratively minimize the

negative penalized log-likelihood. We also carry out a simulation study to assess the

performance of the method and illustrate its application with one real data example.

In the third project, we discuss the asymptotic distributions of the eigenvalues

and eigenvectors for the MLE of the scale matrix in a multivariate skew-normal distri-

bution. We propose a statistic for testing whether the skewness vector is proportional

to one of the eigenvectors of the scale matrix based on the likelihood ratio. Under

the alternative, the likelihood is maximized numerically with two different ways of

parametrization for the scale matrix: Modified Cholesky Decomposition (MCD) and

Givens Angle. We conduct a simulation study and show that the statistic obtained

using Givens Angle parametrization performs well and is more reliable than that

obtained using MCD.
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CHAPTER I

INTRODUCTION

In Statistics, particularly in the fields of machine learning and inverse problems, reg-

ularization involves introducing additional information about the parameters in order

to solve an ill-posed problem or prevent overfitting. The information usually takes

the form of a penalty for complexity such as bounds on the vector norm of the param-

eters. From the Bayesian point of view, regularization corresponds to imposing prior

distributions on the parameters. In this dissertation, we consider the regularization

of parameters in the context of multivariate linear regression where the �1-norm of

the parameters is adopted as the penalty.

1.1 Multivariate Linear Regression

The multivariate linear regression is concerned with regressing simultaneously sever-

al response variables on the same set of predictor variables. It is commonly used

in chemometrics, econometrics, biological and social sciences [1], [2, chap.6] and

in the analysis of longitudinal and panel data [3, chap.10]. Specifically, let yi =

(yi1, · · · , yiq)T be a q-dimensional response vector and xi = (xi1, xi2, · · · , xip)T be the

p predictors for the ith unit. Then, the multivariate linear regression of yi on the

covariates xi is of the form

yi = BTxi + εi, i = 1, · · · , n (1.1)

where B is the p × q regression coefficient matrix and the errors εi of dimension q

are independent of each other. Let X be the n × p predictor matrix with xT
i in its

The journal model is IEEE Transactions on Automatic Control.
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ith row, Y be the n× q response matrix with yT
i in its ith row and E be the n× q

random error matrix with εTi in its ith row. Writing the regression model (1.1) into

the matrix form yields the following general linear model:

Y = XB+E. (1.2)

As an example, consider a biochemical data which contain chemical measure-

ments on several characteristics of n = 33 individual samples of men’s urine speci-

mens. There are q = 5 response variables: pigment creatinine, concentrations of phos-

phate, phosphorus, creatinine and choline. The goal was to relate these responses to

p = 3 predictors: the weight of the subject, volume and specific gravity. Postulating

a multivariate linear regression seems to be a good starting point to analyze the data;

see [4] for a recent analysis of the data and suitability of the linearity assumption.

In the multivariate regression, the errors in (1.1) are usually assumed to be

independent with mean 0 and covariance matrix Σ. Then, the parameters B and

Σ can be simply estimated by the ordinary least square estimate and the sample

covariance matrix of the residuals, respectively, i.e.,

B̂ols = (XTX)−1XTY S =
1

n

n∑
i=1

(yi − ȳ)(yi − ȳ)T (1.3)

which are the same as their maximum likelihood estimates (MLEs) when εi ∼ N(0,Σ)

[5]. However, there are some drawbacks for the estimators in (1.3):

(a) The estimators are equivalent to regressing each response on the predictors

variables separately [6], so that the estimates may perform suboptimally since

they do not utilize the information that the responses are correlated. It is also

the case that this type of estimate performs poorly in the presence of outliers,

highly correlated response/predictor variables.
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(b) For high-dimensional data, particularly when p and q are larger than n, the

regression coefficient matrix B can not be estimated using the above formula,

since X is not of full column rank. Furthermore, it is known that in this case

the sample covariance matrix is a highly unstable estimator of Σ [7], [8].

In these situations, the traditional estimators for B and Σ with pq and q(q + 1)/2

parameters, respectively, have rather poor performances and are not suitable for

prediction and other purposes, so that one must seek workable alternatives based

on the idea of regularizing these parameters. Historically, this has been done either

individually focusing on B/Σ alone or simultaneously, depending on whether the

dependence between the multivariate responses is ignored or not. We briefly review

some of these developments in the next three sections.

1.2 Estimating B While Ignoring Correlations

A way to fix some of the pitfalls of the ordinary least squares estimator is to reduce

its pq parameters in the regression coefficient matrix B. This can be done either

through dimension-reduction techniques such as reduced-rank regression [9], [10], [11],

criterion-based model selection methods [12], [13], [14], Bayesian model selection [15],

[16], principal components, partial least squares [17], [18] and linear factor regression

[19], [20].

Another approach reduces the number of parameters through regularization

which may force some entries of B towards zero; see [4] for a review. This ap-

proach can be unified and viewed as estimating B by solving the following constraint

optimization problem:

B̂ = argmin
B

{
tr
[
(Y −XB)T (Y −XB)

]}
subject to: C(B) ≤ t, (1.4)
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where C(B) is a scalar function of B.

Of course, different constraints will lead to different estimates forB. An early and

natural constraint is C(B) =
∑

j,k b
2
jk so that (1.4) reduces to solving a ridge regression

problem. The well-known �1-norm constraint, i.e., C(B) =
∑

j,k |bjk| leads to the

Lasso estimate of B proposed by [21]. Using the Lagrangian form, this optimization

problem takes the form

B̂ = argmin
B

{
tr
[
(Y −XB)T (Y −XB)

]
+ λ

∑
j,k

|bjk|
}
. (1.5)

Also, one may assign different weights to different parameters or use the adaptive

Lasso [22] which amounts to setting C(B) =
∑

j,k wjk|bjk|, where w′jks are chosen
adaptively using the data. Some other forms of the constraint function C(B) which

seem to make a compromise between the Lasso and the ridge regression are: the

Bridge regression [23] taking C(B) =
∑

j,k |bjk|γ where 1 ≤ γ ≤ 2; the elastic-net [24]

with C(B) = α
∑

j,k |bjk|+ (1−α)
2

∑
j,k b

2
jk for α ∈ [0, 1].

Group-wise penalty functions are perhaps more suitable for regularizing the mul-

tivariate regression parameters. The first example of its kind is the grouped lasso [4]

with C(B) =
∑p

j=1(b
2
j1+ · · ·+ b2jq)0.5. One could also combine the �1 and �2 penalties

to form the constraint function C(B) = αC1(B) + (1− α)C2(B) for α ∈ [0, 1] where
C1(B) =

∑
j,k |b|jk and C2(B) =

∑p
j=1(b

2
j1+ · · ·+ b2jq)0.5. The first constraint controls

the overall sparsity of the coefficient matrix B and the second imposes a group-wise

penalty on the rows of B which controls the number of predictors entering into the

multivariate regression model [25].

We note that the constraints mentioned so far introduce sparsity only into the

regression coefficient matrix B without accounting for the covariance structure of the

multivariate responses. In other words, they ignore the q(q + 1)/2 parameters in Σ

whose estimation is a problem of great interest in statistics on its own right.
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1.3 Covariance Matrix Regularization

Covariance estimation is an important problem in many areas of statistics dealing

with correlated data. It is well-known that the sample covariance matrix performs

poorly when the number of variables is large relative to the sample size [7], [8]. A

wide range of alternatives to the sample covariance matrix has been developed in the

last decade or so which involve regularizing large covariance matrices.

For unordered multivariate data, an early and common approach is the ridge

regularization which estimates the covariance matrix by an optimal linear combination

of the sample covariance matrix and the identity matrix [8], [26]. Such a regularization

ends up shrinking the eigenvalues of the sample covariance matrix, and provides

more accurate and well-conditioned covariance estimators. Recently, fast alternative

methods have been proposed to construct sparse estimates of the precision matrix by

adding to the normal likelihood a lasso penalty on its off-diagonal entries [27], [28],

[29], [30], [31]. Other approaches include thresholding [32], [33], SPLICE method [34]

and SPACE method [35].

For (time-) ordered data, the regularization usually relies on the modified C-

holesky decomposition of the precision matrix Σ−1. It is known that [36] the entries

of the Cholesky factor are unconstrained and have interpretation as regression coef-

ficients when a variable is regressed on its predecessors. [37] uses a nonparametric

method to smooth the Cholesky factor of the inverse covariance along its subdiago-

nals, and [38], [39] regularize the precision matrix by applying a lasso and adaptive

lasso penalty to the Cholesky factor, respectively. However, imposing sparsity on the

Cholesky factor does not necessarily imply sparsity of the precision matrix and the

sparsity structure in the Cholesky factor could be sensitive to the order of the re-

sponse variables. Other approaches that require a sort of time-order on the variables
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are tapering [40] and banding [41].

1.4 Estimating B While Accounting for Correlations

The aforementioned methods consider either the regularized estimation of the re-

gression coefficient matrix or that of the covariance matrix. In these situations, the

two matrices are usually estimated separately, and the covariance matrix does not

contribute much to the prediction accuracy. To improve the predictive power, one

must take advantage of the correlations among the multivariate response. However,

research in this area is rather scarce and there are only a few papers devoted to this

important area. The authors in [1] proposed the Curds and Whey (CW) method

which predicts a multivariate response vector with Ỹ = Ŷ
OLS

M where Ŷ
OLS

is the

ordinary least square prediction and M is a q × q shrinkage matrix estimated from

the data in a manner which exploits the correlation in the responses. [26] relies on

the idea of ridge regression, and the authors of [42] present a procedure called scout

under the multivariate normal assumption on the response and the predictors, and

apply regularization to the inverse covariance of the joint distribution.

Rothman et al.’s multivariate regression with covariance estimation (MRCE)

method [43] seems to be the first bona fide regularization approach which construct-

s sparse estimates for both matrices simultaneously. They add two separate lasso

penalties to the negative normal log-likelihood and minimize the ensuing objective

function which, up to a constant, is proportional to

g(B,Ω) = tr

[
1

n
(Y −XB)′(Y −XB)Ω

]
− log |Ω|+ λ1

∑
j′ �=j

|ωj′j|+ λ2
∑
j,k

|bjk|,(1.6)

where Ω = (ωjj′) = Σ−1 and λ1, λ2 are the two tuning parameters to be determined

from the data.
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1.5 Overview Structure

It is well known that the normality assumption is too restrictive as it suffers from the

lack of robustness against departures from the normal distribution, particularly when

data shows multi-modality and skewness. Therefore, in this dissertation, we assume

that the errors in (1.1) have a more general distribution. Following [43], the objective

is to construct sparse estimators for the regression coefficient matrix and the scale ma-

trix simultaneously in this setup. In Chapter II, we extend the MRCE method to the

case where the errors in (1.1) follow a multivariate t distribution for accommodating

possible outliers. We construct sparse estimators for both regression coefficient and

precision matrices simultaneously by minimizing the resulting penalized likelihood for

which two algorithms are developed. We conduct a simulation study to assess the

performance of the proposed method and illustrate its application with two real data

analysis. In Chapter III, the MRCE is further extended to the cases where the errors

have a skew distribution for accommodating for the skewness in the data. In Chapter

IV, we focus on the direction of the skew vector and its connection with the principal

components of a skew-normal variate. We study the asymptotic distributions for the

MLEs of the eigenvalues and eigenvectors of the scale matrix. We also propose a

statistic for testing if the skewness parameter is proportional to an0 eigenvector of

the scale matrix. In Chapter V, I will discuss some possible extensions and my future

work.
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CHAPTER II

SPARSE MULTIVARIATE REGRESSION AND COVARIANCE ESTIMATION

2.1 Introduction

Compared to the classical data analysis where the errors in (1.2) are assumed to

be normal, handling outliers seems to be a more important problem in the high-

dimensional data setup that needs special attention, since in the high-dimensional

spaces the data tends to be more sparse which implies that every observation can

appear as an outlier. Furthermore, the notion of which observations are outliers typ-

ically varies between users and problem domains. Thus, the traditional approach of

detection and removal of outliers is not a feasible option and the idea of robust data

analysis might be more suitable alternative. For handling outliers in high dimensions,

one could rely on variety of robust methods such as the M -estimators [44], but we

use the family of multivariate t distributions for robust estimation of the regression

parameters [45], [46]. This approach is of great practical interest since it allows ac-

commodating possible outliers by suitably choosing the tail parameter or the degrees

of freedom. An important advantage of this approach to robustness is its explicit

statement of the probabilistic setting, leading to a clearer interpretation of the result-

s compared to the less explicit, say, M -estimators. The need for robust procedures

is also motivated by the fact that data from heavy-tailed distributions are bound

to have some extreme observations, so that the assumption of normality may not

be plausible or cannot cope with outliers. Important examples of such phenomenon

occur in finance, economics, data network and risk analysis [47], [48]. In such cases,

the multivariate t distribution would give a more robust inference and allows one to

control aspects of the impact of outliers [46], [49].
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In this project, our objective is to construct robust and sparse estimates for

the regression coefficient matrix while discounting the outliers and accounting for

the dependence structure of the responses simultaneously. To this end, we develop

robust versions of the MRCE algorithms when the error vector εi in (1.1) follows a

multivariate t distribution. This provides an extension of the MRCE method in [43]

since the multivariate t distribution approaches the normal distribution as the degrees

of freedom goes to infinity.

Using the hierarchical representation of a multivariate t distribution as the scale

mixture of normal distributions and the EM algorithm, the optimization problem is

solved iteratively where a central role is played by the MRCE algorithms proposed

by [43]. We propose two new optimization algorithms for the penalized likelihood,

called MRCEI and MRCEII, which differ in the way that the two tuning parameters

for the two matrices are selected. Estimating the degrees of freedom when penalizing

the entries of the two matrices presents new computational challenges. The simulation

study and real data analysis demonstrate that the MRCEII, which selects the tuning

parameter of the precision matrix of the multiple response using the Cp criterion,

generally does the best among all methods considered in terms of the prediction

error, and MRCEI outperforms the MRCE algorithms when the regression coefficient

matrix is less sparse.

The remainder of this chapter is organized as follows. We introduce our method-

ology for estimating multivariate regression via penalized t-likelihood in Section 2.2,

and present two MRCE-type algorithms to implement it. In Section 2.3, we con-

duct a simulation study and compare the performance of our method to the MRCE

algorithms. In Section 2.4, we apply our methodology to the datasets of weekly log-

returns of nine US stocks, and the electricity spot prices from Australia. A summary

and discussion of the results are given in Section 2.5.
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2.2 Parameter Estimation via Penalized t-likelihood

In this section, we extend the MRCE algorithms in [43] to the setting where the

errors in the multivariate regression have a multivariate t distribution. We provide

the details for joint estimation of the regression coefficient and precision matrices of

a multivariate regression model using a penalized t-likelihood with unknown degrees

of freedom.

2.2.1 The multivariate t distribution

A q−dimensional random vector Y = (Y1, · · · , Yq)T has a multivariate t distribution,
denoted by tν(μ,Σ), if its probability density function is

f(y; ν,μ,Σ) =
Γ
(
ν+q
2

)
Γ
(
ν
2

)
(νπ)

q
2

|Σ|− 1
2

[
1 +

(y − μ)TΣ−1(y − μ)

ν

]− ν+q
2

, (2.1)

where μ, Σ and ν are called its location, scale matrix and degrees of freedom, respec-

tively. The mean and covariance matrix of the multivariate t distribution are

E(Y ) = μ and Cov(Y ) =
ν

ν − 2
Σ. (2.2)

where ν should be greater than two for the existence of the covariance matrix.

In this project, we rely extensively on the fact that a multivariate t distribution

can be represented as a scale mixture of normals with the mixing variable having a

Gamma distribution [46]. Specifically, our estimation procedure exploits its hierar-

chical representation that if

Y |W = w ∼ N

(
μ,

1

w
Σ

)
and W ∼ Gamma(ν/2, ν/2), (2.3)

then, the marginal distribution of Y is the multivariate t distribution defined in

(2.1) [50].
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Unlike the estimates of the parameters of multivariate normal distribution which

are vulnerable to the outliers, those of the multivariate t are robust and can handle the

outliers or atypical observations, without the need to detecting or removing them. The

degrees of freedom ν controls the kurtosis or heaviness of the tail of the distribution.

When ν = 1, the distribution corresponds to the q-variate Cauchy distribution which

has heavy tails; when ν goes to infinity, the multivariate t distribution approaches

the normal distribution with mean vector μ and covariance matrix Σ. See [46] for

more discussions on the properties of multivariate t distributions and their roles in

robust estimation in variety of situations including the multivariate regression.

2.2.2 The Penalized t-likelihood

We extend the model in (1.1) by assuming that the error εi has a multivariate t

distribution with mean μ = 0, degrees of freedom ν > 2 and scale matrix Σ. In

the following, we also assume that the columns of X and Y are centered so that the

intercept term can be omitted.

Given the covariate matrix X and the response matrix Y , the negative log-

likelihood is proportional to

L(B,Ω, ν) = −2 log Γ
(
ν + q

2

)
+ 2 log Γ

(ν
2

)
+ q log ν − log |Ω|

+
ν + q

n

n∑
i=1

log

(
1 +

1

ν
(yi −BTxi)

TΩ(yi −BTxi)

)
(2.4)

where Ω = Σ−1 is the inverse covariance or precision matrix. We add two �1 penalty

terms on the entries of B and Ω to the negative log-likelihood, and estimate both

matrices simultaneously by minimizing the penalized log-likelihood:

g(B,Ω, ν) = L(B,Ω, ν) + λ1
∑
j′ �=j

|ωj′j|+ λ2
∑
j,k

|bjk|. (2.5)
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The lasso penalties on B and Ω encourage sparsity in their estimates and hence can

reduce the number of parameters. When the number of predictors is large, such a

lasso penalty on the regression coefficient matrix would zero out the irrelevant or

redundant predictors and could improve the prediction accuracy. Moreover, in the

high-dimensional situations where the empirical sample covariance is singular like

when q > n, the lasso penalty on the precision matrix forces the covariance estimate

to be nonsingular and well-conditioned.

Compared to the MRCE algorithms [43], minimization of the penalized negative

likelihood g(B,Ω, ν) is expected to be more complicated. Note that unlike the normal

error case, even when λ1 = λ2 = 0 the maximum likelihood estimates of B and Ω

do not have closed forms [46]. A fast method for optimization of lasso-type problems

is the coordinate descent algorithm [51], but this cannot be applied directly to our

problem since the objective function g(B,Ω, ν) is not convex in either B or Ω.

In this section, we propose iterative methods to find the minimizer of the ob-

jective function through a sequence of estimators using an Expectation Conditional

Maximization (ECM) algorithm [52].

2.2.3 Iterative Optimization Algorithms via ECM and MRCE

Using the conditional Gaussian representation of the multivariate t distribution in

(2.3) and the EM algorithm [53], we solve the optimization problem in (2.5) via

iterative applications of the MRCE algorithms [43].

2.2.3.1 The EM Algorithm and Penalized t-likelihood

The EM algorithm is an iterative procedure for finding the MLE’s of the parameters

in situations where the model depends on some missing or latent variables so that

computing the MLE is not straightforward. The EM algorithm alternates between an
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expectation (E) step and a maximization (M) step [53]. In the E-step, it computes the

expectation of the log-likelihood by replacing the unobservables with their conditional

expectations given the current estimates of the parameters and the data; in the M-

step, it maximizes the expected log-likelihood calculated in the E-step.

We illustrate the EM algorithms by writing the multivariate t distribution as a

scale mixture of normals. Let W1,W2, · · · ,Wn be the missing variables such that

εi|Wi = wi ∼ N(0,Σ/wi), (2.6)

are independent for i = 1, · · · , n, and

W1,W2, · · · ,Wn i.i.d ∼ Gamma
(ν
2
,
ν

2

)
. (2.7)

We augment the data by including the latent variables W ′
is and treat (yi, wi), 1 ≤

i ≤ n as the complete data. Hence in this context, the original observations y′is are

regarded as being incomplete and (2.4) is the negative incomplete-data log-likelihood.

The joint distribution of (yi, wi), 1 ≤ i ≤ n, is called the complete-data likelihood

and the negative penalized complete-data log-likelihood is proportional to

gc(B,Ω, ν) = − log |Ω|+ 1

n

n∑
i=1

wi(yi −BTxi)
TΩ(yi −BTxi) + a(ν)

+λ1
∑
j′ �=j

|ωj′j|+ λ2
∑
j,k

|bjk|, (2.8)

where

a(ν) = 2 log Γ
(ν
2

)
− ν log

(ν
2

)
− 1

n
(ν + q − 2)

n∑
j=1

logwj +
ν

n

n∑
j=1

wj. (2.9)

The optimization problem of g(B,Ω, ν) in (2.5) can be solved by iteratively computing

the minimizer of gc(B,Ω, ν) in (2.8) via an EM algorithm implemented as follows:

E-step: On the (k + 1)th iteration, calculate the conditional expectation of
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the negative penalized complete-data log-likelihood function in (2.8) given the ob-

served data matrix Y and X with the current estimate of the parameters Θ̂(k) =

(B̂(k), Ω̂
(k)
, ν̂(k)).

Since gc(B,Ω, ν) is linear in both wi and logwi, the E-step amounts to simply

replacing these by their corresponding conditional expectations E(Wj|Y ,X, Θ̂(k)) and

E(logWj|Y ,X, Θ̂(k)). Recalling that the gamma distribution is the conjugate prior

distribution forWj, then it is not difficult to show that the conditional distribution of

Wj given the current estimate Θ̂
(k) and the data (X,Y ) is also a Gamma distribution

[52], namely,

Wj|Y ,X, Θ̂(k) ∼ Gamma

(
ν(k) + q

2
,
ν(k) + δ(yj,xj; Θ̂

(k))

2

)
, (2.10)

where

δ(yj,xj; Θ̂
(k)) =

[
yj − (B̂(k))Txj

]T
Ω̂

(k)
[
yj − (B̂(k))Txj

]
, (2.11)

is the Mahalanobis distance between yj and (B̂(k))Txj. Therefore, from (2.10), we

have that

u
(k)
j = E(Wj|Y ,X, Θ̂(k)) =

ν̂(k) + q

ν̂(k) + δ(yj,xj; Θ̂(k))
. (2.12)

To calculate the conditional expectation of logWi, we rely on the fact that if W has

a Gamma(α, γ) distribution, then

E(logW ) = ψ(α) + log γ,

where ψ(s) = [∂Γ(s)/∂s]/Γ(s) is the digamma function. Applying this result to the
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E-step yields

E(logWj|Y ,X, Θ̂(k)) = ψ

(
ν̂(k) + q

2

)
− log

(
ν̂(k) + δ(yj,xj; Θ̂

(k))

2

)

= ψ

(
ν(k) + q

2

)
− log

(
ν(k) + q

2

)
+ log

(
u
(k)
j

)
. (2.13)

See [52] for more details on computing these conditional expectations.

M-step: When all the latent variables are known, the regularization problem

in (2.8) is similar to that considered in [43], except for optimization with respect

to ν. However, since the minimization of (2.8) over the whole parameter space is

challenging, we replace the M-step with a few Conditional-Maximization (CM) steps

listed below.

CM1: Since the degrees of freedom ν is separated from the other parameters, we

update it numerically by

ν̂(k+1) = argminν{a(ν)}. (2.14)

CM2: Given B = B̂(k), solving the optimization problem for Ω in (2.8) is equivalent

to computing

Ω̂
(k+1)

= argminΩ

{
− log |Ω|+ tr{ΩS(k)}+ λ1

∑
j �=j′

|ωjj′ |
}
, (2.15)

where S(k) = 1
n

∑n
i=1wi

[
yi − (B̂(k))Txi

] [
yi − (B̂(k))Txi

]T
. This is the �1 penalized

covariance estimation problem considered in [27], [29], [30] and [31]. We use the fast

graphical lasso algorithm in [29] to solve (2.15).

CM3: Given Ω = Ω̂
(k+1)

, finding the minimizer of gc(B,Ω, ν) with respect to

B is equivalent to minimizing

g̃(B) =
1

n

n∑
i=1

wi(yi −BTxi)
T Ω̂

(k+1)
(yi −BTxi) + λ2

∑
j,k

|bjk|, (2.16)
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which can be solved using a lasso-type algorithm described next.

Define a long vector β of length pq as β = (b11, b21, · · · , bp1, · · · , b1q, b2q, · · · , bpq)T

andXi = Iq×q⊗xT
i , where

′⊗′ is the Kronecker product and Iq×q is the identity matrix.
Consider the Cholesky decomposition of Ω as Ω = LTL, where L is a q × q upper

triangular matrix. Let ỹ = 1√
n
(
√
w1y

T
1L

T ,
√
w2y

T
2L

T , · · · ,√wny
T
nL

T )T which is of

length qn and X̃ = 1√
n
(
√
w1X

T
1L

T , · · · ,√wnX
T
nL

T )T . Then, (2.16) can be rewritten

more compactly as

g̃(β) = ‖ỹ − X̃β‖2 + λ2

pq∑
j=1

|βj|. (2.17)

This is a quadratic minimization problem subject to a linear constraint on the pa-

rameters which is exactly the lasso problem. There are efficient algorithms for solving

this problem for all values of λ; see the homotopy algorithm of [54] and the Lars-lasso

algorithm of [55]. Another simpler algorithm for solving this problem for a fixed λ is

the coordinate descent algorithm. This algorithm finds the minimizer of (2.17), say

β̃, by updating each of its coordinates β̃j, j = 1, · · · , pq, given the others, using

β̃j = T

(
nq∑
i=1

x̃ij(ỹi − ỹ
(j)
i ), 2λ2

)
,

where X̃ = (x̃ij), ỹ = (ỹ1, · · · , ỹnq)T , ỹ(j)i =
∑

k �=j x̃ijβ̃k and T (x, λ) = sgn(x)(|x| −
λ)+. Then it cycles through all β̃

′
js until convergence.

2.2.3.2 Two MRCE Algorithms with t-errors

In this section, first we summarize the EM algorithm for minimizing(2.8) and refer

to it as the MRCEI algorithm. We use the coordinate descent algorithm to solve the

lasso regression problem in (2.17). As in [43],
∑

j,k |b̂ridgejk | is used to scale the test of
convergence in the MRCEI algorithm, where B̂ridge = (XTX + λ2I)

−1XTY , and ε is
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the tolerance parameter , set at 10−4 by default.

MRCEI algorithm: With λ1 and λ2 fixed, initialize the parameters Θ = Θ(0).

On the (k+1)th iteration,

E-step: Estimate the latent variablesWi and logWi by their conditional expectations

as in (2.12) and (2.13).

CM1: Estimate ν = ν̂(k+1) by numerically minimizing the a(ν) in (3.3).

CM2: Update Ω = Ω̂
(k+1)

in (2.15) using the graphical lasso algorithm.

CM3: Update B = B̂(k+1) in (2.17) using the coordinate descent algorithm.

Repeat the E- and CM-steps until the estimates of the parameters converge, that is,∑
j,k |b̂(k+1)

jk − b̂
(k)
jk | ≤ ε

∑
jk |b̂ridgejk |.

The MRCEI is an iterative version of the MRCE method of [43], in the sense that

it repeats CM2 and CM3 steps until convergence. Compared with the MRCE method,

MRCEI is expected to take longer time to converge due to the iterations in the EM

algorithm. This means that, just like the MRCE method, applying MRCEI to high

dimensional data would be computationally expensive or intractable. In practice,

even for smaller p and q, hundreds of iterations for some values of (λ1, λ2) might be

needed for the MRCEI algorithm to converge.

As discussed in Section 2.2.4 below, the tuning parameters λ1 and λ2 in MRCEI

would be selected via K-fold cross-validation over a grid of values of (λ1, λ2). To

reduce the computational cost for choosing the two tuning parameters, we make two

modifications in the above algorithm and propose the faster MRCEII algorithm. The

key and primary modification is to keep λ1 fixed and λ2 variable. The secondary

modification is to replace the coordinate descent algorithm in the CM3 step by the

Lars-lasso algorithm.

MRCEII algorithm: For a fixed value of λ1, initialize the parameters Θ = Θ(0).

On the (k+1)th iteration,
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E-step: Estimate the latent variablesWi and logWi by their conditional expectations

as in (2.12) and (2.13).

CM1: Estimate ν = ν̂(k+1) by numerically minimizing a(ν) in (3.3).

CM2: Update Ω = Ω̂
(k+1)

in (2.15) using the graphical lasso algorithm.

CM3: UpdateB = B̂(k+1) and the value of λ2 in (2.17) using the Lars-lasso algorithm.

Repeat the E- and CM-steps until the estimates of the parameters converge, that is,∑
j,k |b̂(k+1)

jk − b̂
(k)
jk | ≤ ε

∑
jk |b̃ridgejk |, where B̃ridge = (X′X+ λ1I)

−1X′Y .

In MRCEII, for each value of λ1, an estimate of B with a corresponding value of

λ2 will be obtained in the CM3 step. When choosing the tuning parameter, one has

only to consider a few selected values of λ1, rather than a grid of values of (λ1, λ2).

This results in a great reduction of the computational cost so far as iterations are

concerned.

2.2.4 Tuning Parameters Selection

For the MRCEI, we consider a grid of values of (λ1, λ2) and choose the tuning param-

eters (λ1, λ2) via K-fold cross-validation as the minimizer of an unbiased estimate of

the expected prediction error variance described next.

To start, we randomly split the full dataset S = {(xi,yi), i = 1, 2, · · · , n} into
K subsets of about the same size, denoted by Sk, k = 1, 2, · · · , K. For each k, we
use S − Sk as the training set to estimate the parameters and Sk as the test set to

validate. Then, we select the tuning parameters (λ1, λ2) that minimizes the criterion

of mean squared prediction error over all q variables of the response, that is,

(λ̂1, λ̂2) = arg min
(λ1,λ2)

1

Kq

{
K∑
k=1

‖Y (k) −X(k)B̂
λ1,λ2

(−k) ‖2L2

}
, (2.18)

where Y (k),X(k) are the validation response matrix and the predictor matrix formed

by the subset Sk, respectively, and B̂λ1,λ2

(−k) is the corresponding estimate of B using
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MRCEI for the training data S − Sk.

For the MRCEII, we randomly partition the full dataset S into two subsets, the

training set S1 and the validation set S2, and then select the tuning parameters in

two steps. In the first step, for each value of λ1, we follow Efron et al. (2004, p.

17) and simply choose λ2 by the Cp criterion using the training data. That is, λ2 is

chosen as the minimizer of the function

λ2 = arg min
λ2>0

{
RSS

σ̂2
− n+ 2d

}
, (2.19)

where d is the number of nonzero elements in the estimate of β, RSS is the residual

sum of squares of model (2.17) and σ̂2 is the corresponding estimated variance of the

model. At the second step, for each pair of (λ1, λ2) obtained in the first step, we

select the one with minimum mean prediction error over all q responses:

(λ̂1, λ̂2) = arg min
(λ1,λ2)

1

q

{
‖Y ∗ −X∗B̂λ1,λ2‖2L2

}
, (2.20)

where B̂λ1,λ2 is the sparse estimate of B in (2.17) using the Lars-lasso algorithm

for the training set, and Y ∗, X∗ are the validation matrices for the responses and

predictors, respectively.

In the simulation study and the real data analysis, we select λ1 from some pre-

defined set Λ for both MRCEI and II, and λ2 from the same set Λ for MRCEI.

2.2.5 Estimation of The Degrees of Freedom

If the degrees of freedom is known, the CM1 step in the algorithms can be ignored.

Otherwise, one should update the estimate of ν via the CM1 step at each iteration.

However, in our simulations we have noticed that the estimated sequence {ν̂(k)} using
the EM algorithm usually decrease monotonically towards a small positive number

less than 2 which is not compatible with the existence of the covariance matrix of a
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multivariate t distribution. This phenomenon which is mostly due to the monotonicity

of the likelihood function in the EM algorithm [53] is explained in more details next.

Taking the derivative of a(ν) with respect to ν, the optimization problem in (3.3)

is equivalent to solving the equation

ψ
(ν
2

)
− log

(ν
2

)
+
1

n

n∑
j=1

(
u
(k)
j − log(u

(k)
j )

)
− ψ

(
ν(k) + q

2

)
+ log

(
ν(k) + q

2

)
= 1(2.21)

At each iteration, by the monotonicity of the likelihood function in the EM algorithm,

the negative penalized likelihood function will decrease and some entries in the two

matrices of parameters are forced to be zero. After a few warm-up iterations, for

most j′s the sequences formed by
{
δ(yj,xj; Θ̂

(k))
}
k≥1

will decrease. Consequently,

the corresponding sequence
{
u
(k)
j

}
k≥1

will increase and be greater than 1 which makes

the third term in (2.21) to increase, since the function f(x) = x− log(x) is increasing
for x ≥ 1. As shown in [52], the function h(x) = ψ(x) − log(x) is strictly increasing

over (0,∞), hence the sequence
{
ν(k)

}
k≥1 obtained from (2.21) will decrease. Finally,

the decrease in the third term of (2.21) due to the shrinkage of the parameters makes

the estimated degrees of freedom to be a very small number.

Thus, to obtain feasible estimates of the degrees of freedom, in what follows

we ignore the CM1 step in our algorithms, and estimate ν separately using a one-

dimensional search. Estimation of the unknown degrees of freedom of the t dis-

tributions, in general, is an important problem and has been studied by many au-

thors: [46], [52] and [56] consider estimation of ν in an EM framework, while [49]

and [57] utilize method of moments estimators for ν.
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2.3 A Simulation Study

2.3.1 Simulation Design and Models

In this section, we compare the performance of our two algorithms with the MRCE

and the approximate MRCE (ap. MRCE) algorithms in [43] using a simulation study

with a design similar to theirs.

Throughout this section we will have 50 replications, and in each replication a

sparse matrix B is generated by the elementwise product of three matrices:

B = W ∗K ∗Q,

where (W )ij ∼ i.i.dN(0, 1), (K)ij ∼ i.i.dBernoulli(s1) and each row of Q is either

a vector of 1’s or 0’s with a success probability of 1’s equal to s2. Generating B in

this way, we expect (1 − s2)p predictors to be irrelevant for all q responses, and we

expect each predictor to be relevant for s1q of all the response variables. An n × p

predictor matrix X with n = 50 is also generated with rows drawn independently

from N(0,Σx), where (Σx)ij = 0.7|i−j|, as in Yuan et al. (2007) and Peng et al.

(2009b). We consider two models for the scale matrix of the errors as follows,

• AR(1) covariance model with (ΣE)ij = ρ
|i−j|
E

for ρE = 0, 0.5, 0.7 and 0.9.

• Fractional Gaussian Noise (FGN) error covariance model with

(ΣE)ij = 0.5[(|i− j|+ 1)2H − 2|i− j|2H + (|i− j| − 1)2H ]

for H = 0.90 and 0.95.

Then each row of the error matrix E is independently drawn from a multivariate t

distribution tν(μ,ΣE) and the response matrix Y is constructed using Y = XB+E.

To save computation time, we independently generate a validation data of the same
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sample size n = 50 within each replication to estimate the prediction error for the

algorithms as in [43]. This is similar to performing a K-fold cross-validation as in

(3.26) for the MRCEI.

2.3.2 Performance Measures

We measure the performance of various methods in terms of the model error as in [27]

and [43]. For an estimate of regression coefficient matrix B̂, the model error is defined

as

ME(B̂) = tr
{
(B̂−B)′Σx(B̂−B)

}
. (2.22)

The sparsity recognition performance of B̂ is measured by the true positive rate

(TPR) as well as the true negatvie rate (TNR) which are defined as

TPR(B̂,B) =
#{(i, j) : b̂ij �= 0 and bij �= 0}

#{(i, j) : bij �= 0} ,

TNR(B̂,B) =
#{(i, j) : b̂ij = 0 and bij = 0}

#{(i, j) : bij = 0} . (2.23)

The TPR is the proportion of nonzero elements in B that B̂ identifies correctly, while

the TNR measures the proportion of zero elements recognized correctly. One should

consider them simultaneously since B̂ = 0 always has perfect TNR and the OLS

estimate always has perfect TPR.

2.3.3 Results and Discussions

For the AR(1) error covariance model, we consider different combinations of ν, ρE, s1

and s2 from the following ranges: (1) ν = 10, 20, 40, 100, (2) ρE = 0, 0.5, 0.7, 0.9, (3)

s1 = 0.1, 0.5, and (4) s2 = 1; for the FGN model, we have the same design except that

ρE is replaced by the corresponding FGN error covariance model with H = 0.90 and
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0.95. Additionally, the tuning parameters for both error covariance models would be

selected from the set Λ = {10x : x = 0,±1, · · · ,±5}. Since the conclusions drawn
from these two error models are similar, we only report the results for the AR(1) error

covariance model here.

Table 1. Model error for the AR(1) error covariance models for p = q = 20, s1 = 0.1

and s2 = 1. Average and standard errors in parenthesis are based on 50 repli-

cations with n = 50. Tuning parameters were selected using a 10x resolution.

ρE OLS MRCE ap. MRCE MRCEI MRCEII
0.9 16.20 1.01 1.25 1.04 0.74

(0.62) (0.03) (0.10) (0.02) (0.01)
0.7 15.92 2.21 2.30 2.18 1.92

ν = 10 (0.41) (0.06) (0.07) (0.06) (0.01)
0.5 15.38 2.99 3.08 2.92 2.83

(0.31) (0.08) (0.09) (0.07) (0.09)
0.0 15.51 3.60 3.74 3.49 3.32

(0.30) (0.09) (0.09) (0.08) (0.10)
0.9 15.57 0.96 1.05 1.06 0.70

(0.76) (0.04) (0.40) (0.05) (0.03)
0.7 16.30 2.04 2.22 2.12 1.76

ν = 20 (0.47) (0.05) (0.07) (0.06) (0.06)
0.5 16.00 2.78 2.96 2.85 2.61

(0.32) (0.06) (0.08) (0.08) (0.08)
0.0 15.47 3.30 3.50 3.38 3.10

(0.28) (0.07) (0.08) (0.08) (0.09)
0.9 16.46 0.91 1.03 1.02 0.73

(0.56) (0.05) (0.04) (0.06) (0.03)
0.7 15.74 1.96 2.02 2.14 1.82

ν = 40 (0.39) (0.06) (0.06) (0.06) (0.07)
0.5 15.48 2.71 2.67 2.91 2.64

(0.39) (0.07) (0.07) (0.07) (0.08)
0.0 15.70 3.25 3.31 3.53 3.18

(0.32) (0.08) (0.07) (0.08) (0.09)
0.9 16.44 0.88 0.91 0.90 0.68

(0.69) (0.04) (0.03) (0.04) (0.02)
0.7 15.47 1.87 1.93 1.95 1.75

ν = 100 (0.44) (0.05) (0.06) (0.05) (0.06)
0.5 16.29 2.57 2.57 2.68 2.50

(0.33) (0.06) (0.07) (0.07) (0.08)
0.0 15.49 3.10 3.07 3.29 3.01

(0.30) (0.06) (0.08) (0.08) (0.08)
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Table 2. Model error for the AR(1) error covariance models for p = q = 20, s1 = 0.5

and s2 = 1. Average and standard errors in parenthesis are based on 50 repli-

cations with n = 50. Tuning parameters were selected using a 10x resolution.

ρE OLS MRCE ap. MRCE MRCEI MRCEII
0.9 15.33 4.78 6.76 4.80 4.48

(0.57) (0.22) (0.29) (0.26) (0.16)
0.7 15.71 9.70 10.35 9.47 7.77

ν = 10 (0.40) (0.29) (0.31) (0.33) (0.19)
0.5 16.22 12.48 12.02 12.01 9.55

(0.34) (0.26) (0.31) (0.35) (0.21)
0.0 15.15 13.14 12.81 12.61 10.20

(0.24) (0.31) (0.32) (0.32) (0.22)
0.9 15.05 4.39 5.73 4.07 4.13

(0.53) (0.16) (0.20) (0.16) (0.14)
0.7 16.19 8.68 9.03 8.52 7.32

ν = 20 (0.41) (0.26) (0.23) (0.24) (0.17)
0.5 16.00 10.86 10.67 10.83 8.82

(0.39) (0.25) (0.20) (0.24) (0.16)
0.0 15.85 11.34 11.21 11.55 9.51

(0.36) (0.26) (0.23) (0.26) (0.14)
0.9 15.35 4.11 5.74 4.11 4.19

(0.53) (0.15) (0.22) (0.14) (0.10)
0.7 15.35 8.66 9.11 8.28 7.30

ν = 40 (0.51) (0.25) (0.25) (0.24) (0.18)
0.5 16.12 11.17 10.61 10.29 8.83

(0.38) (0.25) (0.24) (0.25) (0.20)
0.0 16.17 11.74 11.07 10.88 9.56

(0.35) (0.30) (0.24) (0.22) (0.21)
0.9 15.21 4.49 5.46 3.93 3.94

(0.47) (0.23) (0.23) (0.13) (0.14)
0.7 15.56 8.41 8.38 7.97 6.95

ν = 100 (0.37) (0.21) (0.23) (0.21) (0.17)
0.5 15.33 10.50 9.87 10.22 8.54

(0.31) (0.20) (0.21) (0.21) (0.18)
0.0 16.00 10.76 10.15 10.74 9.26

(0.33) (0.21) (0.19) (0.21) (0.15)

Tables 1 and 2 present the results of the simulation study for p = q = 20. We

note that, with ν fixed, the model errors increase as ρE decreases , except for the OLS

method. The OLS has by far the largest model errors, indeed, it does the worst among

the methods considered. In addition, the MRCEII algorithm generally outperforms

the other methods in terms of the model error. This seems to be mostly due to
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the alternative method of selecting its tuning parameters. In the MRCEI algorithm,

cross-validation is carried out over a grid of points of (λ1, λ2). Therefore, the selected

tuning parameter (λ̂1, λ̂2) is usually a vertex of the rectangle that contains the optimal

value. In the MRCEII algorithm, we fix λ1 at some pre-defined points and for each

value of λ1, λ2 is selected using the Cp criterion. The tuning parameters selected in

this way allow λ2 to move on the edge of the rectangles so that (λ̂1, λ̂2) is more likely

to be closer to the optimal value in (2.20), leading to smaller model errors.

Table 3. True Positive Rate/True Negative Rate for the AR(1) error covariance models

averaged over 50 replications; n = 50, p = q = 20, s1 = 0.1 and s2 = 1.

Tuning parameters were selected using a 10x resolution.

ρE MRCE ap. MRCE MRCEI MRCEII

0.9 0.92/0.59 0.92/0.61 0.94/0.52 0.92/0.74

ν = 10 0.7 0.87/0.63 0.88/0.64 0.88/0.59 0.85/0.74

0.5 0.84/0.66 0.85/0.65 0.85/0.63 0.82/0.75

0.0 0.82/0.68 0.83/0.66 0.85/0.64 0.81/0.76

0.9 0.93/0.58 0.93/0.61 0.94/0.53 0.92/0.75

ν = 20 0.7 0.90/0.61 0.89/0.62 0.89/0.60 0.86/0.76

0.5 0.87/0.64 0.86/0.64 0.86/0.63 0.83/0.76

0.0 0.85/0.65 0.84/0.66 0.84/0.63 0.80/0.77

0.9 0.94/0.58 0.94/0.62 0.93/0.55 0.91/0.75

ν = 40 0.7 0.90/0.61 0.87/0.63 0.88/0.60 0.86/0.74

0.5 0.87/0.63 0.89/0.63 0.85/0.63 0.82/0.75

0.0 0.84/0.64 0.85/0.65 0.83/0.64 0.79/0.78

0.9 0.93/0.58 0.92/0.60 0.92/0.56 0.91/0.73

ν = 100 0.7 0.89/0.61 0.87/0.63 0.88/0.60 0.87/0.75

0.5 0.87/0.63 0.85/0.63 0.85/0.62 0.84/0.75

0.0 0.85/0.64 0.82/0.65 0.83/0.63 0.82/0.77

When s1 = 0.5, the MRCEI does better than the MRCE and ap.MRCE. In
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particular, the MRCEI has comparable performance to MRCEII when ν = 20, 40 or

100 with highly correlated errors (ρE = 0.9). For the more sparse coefficient matrix

B (s1 = 0.1), when ν is small, the MRCEI tends to have smaller model errors than

the MRCE and ap. MRCE. However, when ν becomes large, they outperform the

MRCEI even though the fitted model is incorrect. This is because as ν goes to infinity

the multivariate t approaches the normal distribution for which the MRCE and ap.

MRCE have outstanding performance for a sparser B.

Table 4. True Positive Rate/True Negative Rate for the AR(1) error covariance models

averaged over 50 replications; n = 50, p = q = 20, s1 = 0.5 and s2 = 1.

Tuning parameters were selected using a 10x resolution.

ρE MRCE ap. MRCE MRCEI MRCEII

0.9 0.92/0.41 0.90/0.43 0.92/0.42 0.93/0.38

ν = 10 0.7 0.87/0.45 0.86/0.44 0.85/0.52 0.90/0.41

0.5 0.87/0.37 0.84/0.46 0.83/0.49 0.88/0.43

0.0 0.85/0.41 0.84/0.45 0.81/0.55 0.87/0.45

0.9 0.93/0.41 0.91/0.45 0.92/0.42 0.93/0.38

ν = 20 0.7 0.87/0.48 0.87/0.44 0.86/0.52 0.90/0.41

0.5 0.86/0.41 0.87/0.42 0.84/0.49 0.89/0.42

0.0 0.84/0.48 0.84/0.48 0.84/0.48 0.86/0.46

0.9 0.93/0.43 0.90/0.49 0.92/0.42 0.94/0.36

ν = 40 0.7 0.87/0.46 0.86/0.47 0.87/0.46 0.90/0.39

0.5 0.87/0.39 0.85/0.47 0.84/0.49 0.88/0.43

0.0 0.85/0.43 0.84/0.48 0.82/0.52 0.87/0.45

0.9 0.93/0.37 0.91/0.42 0.93/0.42 0.94/0.37

ν = 100 0.7 0.87/0.48 0.88/0.45 0.86/0.51 0.91/0.40

0.5 0.85/0.49 0.85/0.48 0.85/0.50 0.89/0.41

0.0 0.83/0.53 0.83/0.53 0.84/0.50 0.88/0.43

The corresponding true positive and negative rates for the AR(1) covariance
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error model are also reported in Tables 3 and 4. We note that, with the degrees of

freedom ν fixed, as ρE decreases, the true positive rates tend to decrease while the

true negative rates tend to increase. Moreover, the MRCE methods and MRCEI have

comparable true positive and negative rates, so the comparison among them should

be based on the model errors. The MRCEII also has comparable true positive rates

with the other methods, but its true negative rates are substantially greater when B

is sparser. Along with the substantially smaller prediction errors, the MRCEII has

an excellent performance when B is sparser. When the coefficient matrix B is not

so sparse, MRCEII seems to be conservative in the sense that it gives a slightly less

parsimonious estimate of B than other methods.

We report the average CPU times in Table 5 over 50 replications when p = q = 20,

s1 = 0.5, ρE = 0.9 and s2 = 1 with ν varying from 10 to 100. All computations were

carried out on a quad-core Intel Xeon 2.5 GHz processor with 10GB of RAM. The

MRCEI algorithm is faster than the MRCEII for larger ν, because in this situation

the MRCEI algorithm takes fewer EM iterations to converge.

Table 5. The average CPU times (in minutes) over 50 replications when p = q = 20,

s1 = 0.5, ρE = 0.9 and s2 = 1.

ν MRCE ap. MRCE MRCEI MRCEII

10 0.32 15.63 20.61 25.12

20 0.29 15.66 3.75 20.29

40 0.27 15.65 1.86 16.79

100 0.22 15.64 1.18 13.92
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2.4 Real Data Analysis

In this section, we illustrate our methods by applying them to two real financial

datasets and compare the results with those using the two MRCE methods.

2.4.1 Predicting Asset Returns

The first real data example we consider is the weekly log-returns of stocks of 9 large

American companies in 2004, which was also analyzed in [27] and [43]. Following

their approaches, we fit a VAR(1) (vector autoregression of order 1) model to the

data:

yt = BTyt−1 + εt, 1 ≤ t ≤ T, (2.24)

where yt is the vector of log-returns of the stocks in week t. Writing (2.24) into the

matrix form as

Y T = Y T−1B+E, (2.25)

where Y T = (yT
2 ,y

T
3 , · · · ,yT

T )
T and Y T−1 = (yT

1 ,y
T
2 , · · · ,yT

T−1)
T makes it a special

case of the multivariate linear regression model (1.2). In [43], it is assumed that the

error in (2.25) has a multivariate normal distribution and apply the MRCE method,

but there is ample empirical evidence in the finance literature that the asset returns

often exhibit heavy-tails.

We model the asset returns data using the multivariate t distribution which has

proved successful in handling the heavy-tailed data in such applications [58], [59].

The MLE of the degrees of freedom is ν̂ = 10.15 using the log-returns data for the

whole year. The other parameters in the model are estimated using the log-returns

of the stocks for the first half of the year (T=26) as the training set, and the rest



29

as the test set. The tuning parameters are selected from the set Λ = {2x : x =

−25,−24, · · · , 10}. For the MRCEI algorithm, we select the tuning parameters via
a 10-fold cross-validation; for the MRCEII, we use the last 10% of the log-returns of

the first half year as the validation data and the remaining 90% as the training data.

The estimated coefficient matrix B̂ using MRCEI turns out to be zero or a fully

sparse estimate, compared with the MRCE and ap. MRCE estimates which have

4/81 and 12/81 nonzero coefficients, respectively. However, the MRCEII estimate of

B reported in Table 6, has 19 nonzero entries, and there are 22 zeros in the estimate

of Ω. The MRCEII, MRCE and ap. MRCE have four common nonzero entries at

the positions (1, 7), (4, 1), (4, 2) and (4, 8) of B. This suggests, for example, the log-

returns for Walmart at week t-1 as a relevant predictor for the Citigroup at week t,

and the log-returns for Ford at week t-1 as a relevant predictor of Walmart, Exxon

and GM at week t.

We evaluate the predictive performance by the average squared prediction error

for each company over the data from the second half of the year, the result is reported

in Table 7. Except for OLS, other methods have comparable performance in terms

of the prediction error, though still the MRCEII is slightly better than the other

methods. This finding is consistent with the results of our simulation study. In

addition, the MRCEI estimating a null model for the data indicates that the signal

from the predictors in this example is relatively weak.

2.4.2 Intraday Electricity Prices

Next, we apply our method to the hourly average electricity spot prices collected in

the Australian state of New South Wales (NSW) from July 2, 2003 to June 30, 2006,

starting at 04:00 and ending at 03:00 each day. The dataset consists of 26352 obser-

vations during a period of T = 1098 days and was previously analyzed in [60] using
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Table 6. Estimated coefficient matrix B using MRCEII.

Wal Exx GM Ford GE CPhi Citi IBM AIG

Wal 0 0 0 0 0 0 0.2289 0.2287 0

Exx 0 0 0 0 0 0 0 -0.1168 0

GM 0 0 0.0237 0 0 0 0 0 -0.0574

Ford -0.1639 0.0336 0 0 0.0092 0 0 -0.0834 0

GE 0 0 0 0 0 0.133 -0.0125 0.0662 0

CPhi 0 0.0505 0 0 0.0597 0 -0.0458 0 0

Citi 0 -0.0101 0.0923 0 0 0 0 0 0

IBM 0 0 0 0 0 0 0 0 0

AIG 0 0 0.0306 0 0 0 -0.0564 0 0

a Bayesian method and skew-t distribution for the data. Unlike other commodity

prices, most electricity spot prices exhibit trend, strong periodicity, intra-day and

inter-day serial correlations, heavy tails, skewness and so on; see [60], [61], [62], [63]

for some empirical evidence. As in [60], we consider the vector of the log spot prices

at hourly intervals during a day as the response vector with q = 24. The exoge-

nous variables which may have effects on the spot prices as the predictors include

a simple linear trend, dummy variables for day types (in total 13 dummy variables,

representing the seven days of the week and some idiosyncratic public holidays) and

eight seasonal polynomials (high order Fourier terms) for a smooth seasonal effect.

Instead of assuming that the covariate effects are the same at all hours within a

day as in [60], we fit a multivariate regression model to the log electricity prices by
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Table 7. Average squared prediction error for each company ×103 based on 26 points.
Standard errors are reported in parenthesis.

OLS MRCE ap. MRCE MRCEI MRCEII

Walmart 0.98(0.27) 0.41(0.11) 0.41(0.11) 0.42(0.12) 0.42(0.11)

Exxon 0.39(0.08) 0.31(0.07) 0.31(0.07) 0.31(0.07) 0.32(0.07)

GM 1.68(0.42) 0.71(0.17) 0.69(0.17) 0.71(0.17) 0.68(0.19)

Ford 2.15(0.61) 0.77(0.25) 0.77(0.25) 0.77(0.25) 0.77(0.25)

GE 0.58(0.15) 0.45(0.09) 0.45(0.09) 0.45(0.09) 0.46(0.09)

ConocoPhillips 0.98(0.24) 0.79(0.22) 0.78(0.22) 0.79(0.22) 0.77(0.21)

Citigroup 0.65(0.17) 0.62(0.13) 0.62(0.13) 0.66(0.14) 0.62(0.13)

IBM 0.62(0.14) 0.49(0.10) 0.47(0.09) 0.49(0.10) 0.43(0.09)

AIG 1.93(0.93) 1.88(1.02) 1.88(1.02) 1.88(1.02) 1.90(1.03)

AVE 1.14(0.14) 0.71(0.12) 0.71(0.12) 0.72(0.12) 0.71(0.13)

regressing the hourly observations during a day on the same covariates:

yi = BTxi + εi 1 ≤ i ≤ T (2.26)

where yi is a 24×1 vector of log electricity prices on day i and xi is the corresponding

vector of the covariates. We assume εi ∼ tν(0,Σ).

The MLE of the degrees of freedom ν is ν̂ = 3.51 using the whole dataset. With

ν fixed at ν̂, we then apply our methods to the model (2.26). To access the predictive

performance via the mean squared prediction error, we retain the observations from

the last 100 days as the test set, while estimating the other parameters using the rest

of the observed spot prices. The set from which we choose the tuning parameters

is Λ =
{
2−10+20(x−1)/39 : x = 1, 2, · · · , 40}. For the MRCEI algorithm, we select the
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tuning parameters via a 10-fold cross-validation; while for MRCEII algorithm, we use

90% of the observations in the first 998 days as the training data and the remaining

10% as the validation data.

Table 8. Average squared prediction error for each hour on a day based on 100 points.

Standard errors are reported in parenthesis.

Time OLS MRCE ap. MRCE MRCEI MRCEII
04:00 0.040(0.006) 0.039(0.006) 0.039(0.006) 0.043(0.006) 0.035(0.005)
05:00 0.042(0.005) 0.041(0.005) 0.041(0.005) 0.045(0.006) 0.036(0.005)
06:00 0.033(0.003) 0.033(0.003) 0.033(0.003) 0.034(0.003) 0.027(0.003)
07:00 0.072(0.008) 0.072(0.008) 0.072(0.008) 0.075(0.008) 0.057(0.006)
08:00 0.115(0.012) 0.114(0.012) 0.114(0.012) 0.122(0.012) 0.099(0.010)
09:00 0.142(0.017) 0.141(0.017) 0.141(0.017) 0.145(0.017) 0.123(0.017)
10:00 0.146(0.015) 0.145(0.015) 0.145(0.015) 0.152(0.014) 0.121(0.013)
11:00 0.132(0.012) 0.130(0.012) 0.129(0.012) 0.139(0.012) 0.104(0.010)
12:00 0.131(0.012) 0.128(0.011) 0.126(0.011) 0.143(0.012) 0.108(0.010)
13:00 0.108(0.010) 0.106(0.010) 0.103(0.009) 0.131(0.012) 0.097(0.009)
14:00 0.100(0.009) 0.095(0.009) 0.089(0.009) 0.136(0.012) 0.094(0.009)
15:00 0.096(0.010) 0.092(0.010) 0.083(0.009) 0.140(0.013) 0.090(0.009)
16:00 0.088(0.009) 0.081(0.008) 0.072(0.007) 0.126(0.012) 0.080(0.008)
17:00 0.129(0.013) 0.118(0.012) 0.107(0.010) 0.167(0.015) 0.107(0.010)
18:00 0.393(0.115) 0.398(0.117) 0.399(0.118) 0.432(0.112) 0.425(0.120)
19:00 0.270(0.036) 0.270(0.036) 0.270(0.037) 0.291(0.035) 0.270(0.038)
20:00 0.143(0.015) 0.142(0.015) 0.143(0.015) 0.154(0.015) 0.130(0.015)
21:00 0.076(0.008) 0.076(0.008) 0.076(0.008) 0.084(0.009) 0.065(0.007)
22:00 0.040(0.004) 0.040(0.004) 0.040(0.004) 0.043(0.004) 0.035(0.004)
23:00 0.104(0.010) 0.104(0.009) 0.104(0.009) 0.111(0.010) 0.091(0.009)
00:00 0.093(0.008) 0.092(0.008) 0.093(0.008) 0.099(0.009) 0.081(0.007)
01:00 0.064(0.005) 0.063(0.005) 0.063(0.005) 0.068(0.006) 0.057(0.005)
02:00 0.060(0.005) 0.060(0.005) 0.060(0.005) 0.063(0.005) 0.052(0.004)
03:00 0.021(0.002) 0.021(0.002) 0.021(0.002) 0.023(0.003) 0.018(0.002)
AVE 0.110(0.006) 0.108(0.006) 0.107(0.006) 0.124(0.006) 0.100(0.006)

The average squared prediction errors based on the observations in the last 100

days are reported in Table 8, where the results using the MRCE methods are also

included for comparison. We see that the ordinary least square estimate performs
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better in this example, and MRCEII still does the best with the smallest overall

prediction error. In addition, MRCEII has the smallest individual mean prediction

errors at most of the times except at the times between 17:00 and 19:00 which is the

evening hours and highly volatile. Moreover, MRCEI does not perform well in this

case, it always has the largest prediction errors.

Table 9. Proportions of zeros in the estimate of the parameters

MRCE ap. MRCE MRCEI MRCEII

B 74/528 70/528 32/528 120/528

Ω 484/576 506/576 296/576 312/576

The proportions of zeros in the estimated regression coefficient matrix as well as

the regularized inverse covariance matrix are presented in Table 9. We see that the

estimated coefficient matrices for all methods are fairly sparse, implying that most

of the covariates do have impact on the hourly spot price. In addition, MRCEII

(I) has the most (fewest) zero entries in the estimated B, while the MRCE and

ap. MRCE give more sparse estimates of the inverse covariance. We report the

positions of nonzero entries in the estimated inverse covariance in Figure 1, we note

that both MRCE methods give block diagonal estimates for the inverse covariance

matrix with nonzero entries concentrated in the middle of the matrix corresponding to

the evening hours. Due to the intraday serial correlations, we expect more correlations

in the precision matrix, so the estimates of Ω using the MRCE methods might be

too simple to capture the conditional dependency structure of the electricity prices.

For MRCEI and II, most of the nonzero entries in the precision matrix are confined

to a diagonal band and the others roughly lie in the upper right (lower) corner. This

can be interpreted as the model trying to relate a spot price to several preceding spot
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prices and similar prices from the same time in the previous day, the kind of model

that was postulated in [60] on ad hoc basis.
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Fig. 1. Positions of nonzero entries in Ω̂ for different methods applied to the electricity

prices; The straight line indicates the diagonal of Ω̂.

2.5 Summary

We have proposed a procedure to construct robust and sparse estimates for the regres-

sion coefficient matrix and the inverse covariance matrix in the context of multivariate

regression with multivariate t distributed errors. This assumption on the errors en-

ables us: (i) to handle the outliers and thus give robust estimates of the parameters

without identifying and removing the outliers, (ii) to embed the recent MRCE algo-

rithms [43] within the EM iterations to optimize a complicated, nonstandard objective
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function . The two optimization algorithms MRCEI and II iteratively compute the

estimates of the parameters for moderate size p, q, and as pointed out in Section 2.2.5,

the unknown degrees of freedom is estimated first and outside these iterations. We

have shown that MRCEII outperforms all the competing methods in terms of the

prediction error and MRCEI outperforms the MRCE and ap. MRCE when the re-

gression coefficient matrix is less sparse. More empirical and theoretical work remains

to be done to compare these methods and to improve the numerical efficiency and

speed of the MRCEI and II algorithms for larger p, q like 100 or so. At present, these

methods including the MRCE are computationally intractable for large numbers of

responses and covariates [43, Section 3.4]. Motivated by the skewness and high corre-

lations in the Australian electricity spot prices, we are currently studying extensions

of MRCE-type algorithms to multivariate skew-normal and skew-t distributions.
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CHAPTER III

REGULARIZATION OF MULTIVARIATE REGRESSION WITH SKEW

ERRORS

3.1 Introduction

Both the multivariate normal and t distributions are symmetric about the mean, but,

in practice, the normality assumption is usually violated because of the presence of

skewness and kurtosis in real data [64], so one may seek more flexible parametric

families of multivariate distributions to represent these features of the data as ade-

quately as possible. Among them, the family of the skew-normal distributions which

generalize the multivariate normal distributions with an extra parameter to regulate

skewness has been widely adopted due to its mathematical tractability and appealing

probabilistic properties similar to those of the normal distributions [65], [66] and [67].

A further extension of the skew-normal distribution is the multivariate skew-t distri-

bution [68] which allows for both nonzero skewness and heavy tails in the distribution.

Some of the probabilistic properties of the skew-t distributions as well as the appli-

cations were investigatedin [69]. For the general background on the skew-normal and

other skew distributions, see [70] and the survey papers [67], [71].

In this project, we assume that the errors ε′is have a multivariate skew-normal

distribution and consider the ”small n, large p and q” problem. Since the MLEs of the

regression coefficient matrix B and the scale matrix Σ of the errors perform poorly

when p and q are large relative to n, it is prudent to regularize the two matrices jointly.

Following [43] and [72], we construct sparse estimators simultaneously for both the

regression coefficient matrix and the inverse scale matrix by adding �1 penalties to

the negative log-likelihood on the entries of these matrices. Taking advantage of
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the stochastic representation of the skew-normal distribution and the ensuing latent

variables, we develop an EM-type algorithm, called MRSN, to iteratively optimize

the resulting penalized likelihood function. Then we extend our method to the case

where the errors follow a multivariate skew-t distribution [69], and a similar algorithm

called MRST is also developed.

Our approach relies on and is closely related to the recent work in [43] in which

sparse estimators for both B and Σ are constructed simultaneously by minimizing

the penalized normal log-likelihood:

g(B,Ω) = tr

[
1

n
(Y −XB)T (Y −XB)Ω

]
− log |Ω|

+λ1
∑
j′ �=j

|ωj′j|+ λ2
∑
j,k

|bjk|, (3.1)

where Ω = (ωjj′) = Σ−1 and λ1, λ2 are the two tuning parameters to be determined

from the data. For example, when εi has a multivariate skew-t distribution, our EM

algorithm leads to minimizing the penalized version of the negative complete-data

log-likelihood: (See Section 3.3 for more details)

Lc(B,Ω,η, ν) =
1

n

n∑
i=1

wi(yi −BTxi)
TΩ(yi −BTxi)− log |Ω|

+
1

n

n∑
i=1

(
zi −√wiη

T (yi −BTxi)
)2
+ a(ν), (3.2)

where Ω,η are defined in Section 3.2.2, (wi, zi) are the two latent variables associated

with yi and

a(ν) = 2 log Γ
(ν
2

)
− ν log

(ν
2

)
− 1

n
(ν + q − 2)

n∑
j=1

logwj +
ν

n

n∑
j=1

wj. (3.3)

Compared with the normal log-likelihood in (3.1), Lc(B,Ω,η, ν) has two additional

terms involving the degrees of freedom ν and the skewness parameter η. When the
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skewness parameter is zero, Lc(B,Ω,η, ν) reduces to the complete-data log-likelihood

for a multivariate t distribution where regularizing B and Ω is studied in [72].

The remainder of this chapter is organized as follows. Some basic properties of

skew-normal and skew-t distributions are reviewed in Section 3.2. In Section 3.3,

we introduce our methodology for estimating multivariate regression via penalized

skew-normal and skew t likelihoods. The selection of tuning parameters is discussed

in Section 3.4. We conduct a simulation study and investigate the performance of the

method in terms of the prediction error (PE) in Section 3.5. In Section 3.6, we apply

our methodology to the electricity wholesale spot prices in Australia.

3.2 Multivariate Skew-normal and -t Distributions

In this section, we briefly review the families of multivariate skew-normal and skew-

t distributions [65], [68] as well as some of their properties that would be used in

developing the EM-type algorithms.

3.2.1 The Multivariate Skew-normal Distribution

A random vector Y is said to have a q-variate skew-normal distribution if its proba-

bility density function takes the form

f(y;μ,Σ,α) = 2φq(y;μ,Σ)Φ{αTω−1(y − μ)}, (3.4)

where φq(·;μ,Σ) is the pdf of the q-dimensional normal distribution with mean μ and

covariance matrixΣ and Φ(·) is the cdf of the univariate standard normal distribution.
The vector α plays the role of the skewness parameter where for α = 0 the above

density reduces to the multivariate normal, and ω = diag{σ
1
2
11, · · · , σ

1
2
qq} is a diagonal

matrix equal to the square root of the diagonal elements of Σ. We denote this
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distribution by y ∼ SNq(μ,Σ,α) where the parameters μ, Σ and α shall be referred

to as the location parameter, scale matrix and skewness parameter, respectively.

Unlike the multivariate normal densities which are symmetric about the location

parameter, the skew-normal densities in (3.4) are not symmetric, and have the mean

and covariance matrix as

μy = μ+
(2/π)1/2

(1 + ηTΣη)1/2
Ση, Var(y) = Σ− μyμ

T
y, (3.5)

which are different from the parameters μ and Σ where η = ω−1α.

The family of multivariate skew-normal distributions can be obtained from the

multivariate normal using a conditioning method [65]. Specifically, let (V0, V1, · · · , Vq)T

be a (q + 1)-dimensional normal random vector with mean 0 and correlation matrix

R∗ =

⎛
⎜⎝1 δT

δ R

⎞
⎟⎠ .

where δ = (δ1, · · · , δp)T and R is a correlation matrix. It can be shown that

V = (V1, · · · , Vq)T |V0 > 0 ∼ SNq(0, R,α) where α = (1 − δTRδ)−1/2Rδ, and the

multivariate skew-normal family in (3.4) can be generated by the transformation

y = μ+ ωV .

Note that the skew-normal density in (3.4) can be expressed as the form of the

integral, i.e.,

f(y;μ,Σ,α) = 2

∫ ∞

0

φq(y;μ,Σ)φ{[z −αTω−1(y − μ)]}dz

This representation of the skew-normal density suggests using Z|y ∼ N(αTω−1(y −
μ), 1)I(z > 0) as a latent variable when developing the EM algorithm for estimating

the parameters. Generally, for a skew-normal random vector y ∼ SNq(μ,Σ,α), the
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joint distribution for (y, Z) is

f(y, z) = 2φq(y;μ,Σ)φ
{
z −αTω−1(y − μ)

}
;

see [65, p. 718]. Therefore, the conditional distribution of Z given y is

f(z|y) = f(y, z)

f(y)
=
φ
{
z −αTω−1(y − μ)

}
Φ {αTω−1(y − μ)} I(z > 0), (3.6)

which is a truncated normal distribution with the mean equal to

Ẑ = E(Z|y) = ηT (y − μ) +
φ
{
ηT (y − μ)

}
Φ {ηT (y − μ)} . (3.7)

In the EM algorithm for the skew-normal family, the formula (3.7) would be used to

estimate the latent variable in the E-step; see Section 3.3.2.

3.2.2 The Multivariate Skew-t Distribution

[68] defined a new class of multivariate distributions by the transformation

y = μ+W−1/2y� (3.8)

where y� ∼ SNq(0,Σ,α) andW ∼ χ2
ν/ν, independent of y

�. Then the random vector

y has a multivariate skew-t distribution, denoted by y ∼ Stq(μ,Σ,α, ν), with the

density function

f(y;μ,Σ,α, ν) = 2tq(y; ν)T1

{
αTω−1(y − μ)

(
ν + q

Qy + ν

)1/2

; ν + q

}
, (3.9)

where ω is as in Section 3.2.1,

Qy = (y − μ)TΣ−1(y − μ),

tq(y; ν) =
Γ{(ν + q)/2}

|Σ|1/2(πν)q/2Γ(ν/2)
(
1 +

Qy

ν

)−(ν+q)/2

.
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is the density function of a q-dimensional t-variate with degrees of freedom ν and

T1(·; ν+ q) denotes the cdf of scalar t distribution with degrees of freedom ν+ q. The

mean and variance of y are

μy = μ+ bνωδ, ν > 1,

Var(y) =
ν

ν − 2
Σ− ωμyμ

T
yω,

where

bν =
(ν
π

)1/2 Γ
{

1
2
(ν − 1)

}
Γ
(
1
2
ν
) and δ =

ωΣη√
1 + ηTΣη

,

and ν > 2 for the existence of the covariance matrix to exist.

It is known [69] that if y ∼ Stq(μ,Σ,α, ν) is partitioned as

y =

⎛
⎜⎝y1

y2

⎞
⎟⎠ , μ =

⎛
⎜⎝μ1

μ2

⎞
⎟⎠ , Σ =

⎛
⎜⎝Σ11 Σ12

Σ21 Σ22

⎞
⎟⎠ , α =

⎛
⎜⎝α1

α2

⎞
⎟⎠ ,

where y1 has the size h, then the marginal distribuion of y1 still belongs to the

family of multivariate skew-t distributions, i.e., y1 ∼ Sth(μ1,Σ11, α̃, ν). However,

the skewness parameter α̃ is more complicated than α1 and takes the form of

α̃ =
α1 + Σ̃

−1
11 Σ̃12α2

(1 +αT
2 Σ̃22·1α2)1/2

, (3.10)

where Σ̃ = ω−1Σω−1 has the same partition as Σ and Σ̃22·1 = Σ̃22 − Σ̃21Σ̃
−1
11 Σ̃12.

This implies, in particular, that the ith component of y has a univariate skew-t

distribution, whose skewness parameter, denoted by α̃i, is quite different from αi, the

ith entry of α.

As a scale mixture of multivariate skew-normal distributions, the multivariate

skew-t family provides a wider parametric family encompassing the families of multi-

variate normal, skew-normal and t. On the one hand, the skewness parameter in the
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density allows the multivariate skew-t distribution to deal with the asymmetry of the

data; on the other hand, the multivariate skew-t distribution is more robust than the

skew-normal in the sense that it has heavy tails so that it can handle the outliers or

atypical observations, without the need to detecting or removing them. The degrees

of freedom ν controls the kurtosis or heaviness of the tail of the distribution. As ν

goes to infinity, the multivariate skew-t distribution tends to the multivariate skew-

normal distribution; for ν = 1 and Σ = Iq×q, a q × q identity matrix, it becomes the

multivariate skew-Cauchy distribution.

Using the definition of a multivariate skew-t in (3.8) as a scale mixture of mul-

tivariate skew-normals, it is natural to augment the observed data by including the

two latent variables

W ∼ χ2
ν/ν and Z|y ∼ N

(
αTω−1(y − μ), 1

)
I(z > 0),

when developing the EM-type algorithm. For convenience, we denote the pdf for

Gamma(a, b) with mean a/b and variance a/b2 by h(w; a, b), so the density function

for W would be h(w; ν/2, ν/2). Therefore, the joint density for the complete-data

(y, Z,W ) is

f(y, z, w) = 2φq(y;μ,Σ/w)φ
{
z −√wηT (y − μ)

} · h(w; ν/2, ν/2).
The distributions of W and (W,Z) conditional on y are given as follows

f(w|y) = f(y, w)

f(y)
=

2

f(y)
Φ
{√

wηT (y − μ)
}
φq(z;μ,Σ/w) · h(w; ν/2, ν/2), (3.11)

and

f(w, z|y) = 2

f(y)
φ
{
z −√wηT (y − μ)

}
φq(y;μ,Σ/w) · h(w; ν/2, ν/2). (3.12)

The relevant conditional expectations needed for the EM algorithm are given in the
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following proposition:

Proposition 1. Suppose that y ∼ Stq(μ,Σ, ν) with the associated latent variables

W ∼ χ2
ν/ν and Z ∼ N(0, 1)I(z > 0). Then, for any m > 0, we have

E {Wm|y} = C(θ1, r1)T1

(
ηT (y − μ)

√
r1
θ1
; 2r1

)

E {ZWm|y} =
1√
2π
C(θ2, r1) + ηT (y − μ) · E {Wm|y}

where

r1 =
q + ν

2
+m, θ1 =

(y − μ)TΣ−1(y − μ) + ν

2
,

θ2 =
(y − μ)T (Σ−1 + ηηT )(y − μ) + ν

2
,

C(x, y) =

(
1√
2π

)q

· 2

f(y)
· |Σ|−1/2 θr

Γ(r)
· Γ(y)
xy

.

The formula for computing E {Wm|y} can also be found in the Corollary 1 of [73]

where E
{
Wm/2φ[

√
WηT (y − μ)]/Φ[

√
WηT (y − μ)]|y

}
is also calculated instead of

E {ZWm|y}. For completeness, all the details for deriving these two conditional

expectations are given in the Appendix.

3.3 Penalized Skew-normal and Skew-t Log-likelihoods

In this section, we provide the details for joint estimation of the parameters (B,Ω)

of a multivariate regression model in (1.2) using penalized skew-normal and skew-t

log-likelihoods, and the expectation conditional maximization (ECM) algorithm.
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3.3.1 The Penalized Skew-normal Log-likelihood

We assume that the errors ε′is
i.i.d.∼ SNq(0,Σ,α) for 1 ≤ i ≤ n, so the negative

log-likelihood for the observations y1,y2, · · · ,yn is proportional to

L(B,Ω,η) ∝ 1

n

n∑
i=1

(yi −BTxi)
TΩ(yi −BTxi)− log |Ω|

− 2
n

n∑
i=1

log
[
Φ{ηT (yi −BTxi)}

]
. (3.13)

where Ω = (ωij) = Σ−1 and η = ω−1α.

As in [43], we regularize the entries of B and Ω by imposing �1 penalties on them,

and estimate them by minimizing the penalized log-likelihood:

g(B,Ω,η) = L(B,Ω,η) + λ1
∑
j′ �=j

|ωj′j|+ λ2
∑
j,k

|bjk|. (3.14)

When the sample size n is smaller than p and q, the parameters are not estimable

through the maximum likelihood in (3.13) since we do not have enough observations.

By adding the �1 penalties, the parameters that are less important or irrelevant would

be forced to be zero resulting in the reduction of the number of parameters and the

improvement of prediction accuracy. Moreover, the �1 penalty on the precision matrix

ensures the estimate is nonsingular and well-conditioned.

Compared with the penalized normal likelihood in [43], the penalized skew-

normal likelihood function has the additional third term in (3.13) involving the skew-

ness and other parameters. As a result, the optimization of g(B,Ω,η) would be

more challenging. To overcome the difficulty, we rely on the stochastic representa-

tion of skew-normal distributions in Section 3.2.1 and propose an iterative procedure

to minimize g(B,Ω,η) using an extension of EM, called Expectation Conditional

Maximization (ECM) algorithm [74].
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3.3.2 An Optimization Algorithm via ECM

Suppose that Z1, · · · , Zn are the latent variables associated with the observations

y1, · · · ,yn such that Zi|yi ∼ N
(
αTω−1(yi − μ), 1

)
I(z > 0). We treat (yi, Zi), 1 ≤

i ≤ n, as the complete data, while the original observations y′is are viewed as the

incomplete data. The likelihood functions not depending on the latent variables

would be referred as the incomplete-data likelihood. By contrast, the likelihood

function of (yi, Zi) are the complete-data likelihood and we use a subscript c to

distinguish them from the incomplete-data likelihood. Denote Y = (y1, · · · ,yn)
T

and Z = (Z1, · · · , Zn)
T , so the negative complete-data log-likelihood is proportional

to

Lc(B,Ω,η) =
1

n

n∑
j=1

(yi −BTxi)
TΩ(yi −BTxi)− log |Ω|

+
1

n

n∑
j=1

[
Zi − ηT (yi −BTxi)

]2
= tr {ΩS} − log |Ω|+ 1

n
‖Z− (Y −XB)η‖2, (3.15)

where S = 1
n
(Y − XB)T (Y − XB) and ‖ · ‖ is the �2 norm. Adding two penalty

terms on the entries of Ω and B yields the penalized complete-data likelihood which

is

gc(B,Ω,η) = Lc(B,Ω,η) + λ1
∑
i �=j

|ωij|+ λ2
∑
i,j

|bij|. (3.16)

Minimizing the function g(B,Ω,η) in (3.14) is equivalent to minimizing gc(B,Ω,η)

using the EM algorithm [53] which performs an expectation (E) step and a maxi-

mization (M) step alternately until convergence. In the E-step, the expectation of

gc(B,Ω,η) conditional on the observed data Y is evaluated using the current esti-

mates of the parameters Θ = {B,Ω,η}; in the M-step, the expected log-likelihood
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function is minimized over the parameter space. We describe the details as follows:

E-step: On the (k + 1)th iteration, compute the conditional expectation of

gc(B,Ω,η) given the current estimate of the parameters Θ̂
(k) = {B̂(k), Ω̂

(k)
, η̂(k)} and

the observation matrix Y .

In the E-step, we only have to calculate the conditional expectation of Zi given

Θ̂(k) and Y . Using the formula in (3.7), we denote this conditional expectation by

Ẑi = E(Zi|Y , Θ̂(k)). Therefore, the expected log-likelihood, denoted by Qc(B,Ω,η),

is

Qc(B,Ω,η) = tr {ΩS} − log |Ω|+ 1

n
‖Ẑ− (Y −XB)η‖2 +Var(Zi|Y , Θ̂(k))

+λ1
∑
i �=j

|ωij|+ λ2
∑
i,j

|bij| (3.17)

where Ẑ = (Ẑ1, · · · , Ẑn)
T and Var(Zi|Y , Θ̂(k)) is a constant which can be ignored

in the minimization step. Note that the function in (3.17) is not convex in (B,Ω),

but it is convex in one argument when the other is fixed. This suggests an iterative

algorithm alternating between estimation of B and Ω for minimizing it.

M-step: Minimizing Qc(B,Ω,η) over the whole parameter space Θ is compli-

cated, so we replace the M-step with the following three computationally simpler

conditional minimization (CM) steps in which each block of parameters in Θ is min-

imized while the other blocks are fixed [74].

CM1: Given η = η̂(k) and B = B̂(k), minimizing Qc(B,Ω,η) with respect to Ω

is equivalent to solving

Ω̂
(k+1)

= argminΩ

{
− log |Ω|+ tr{ΩS(k)}+ λ1

∑
j �=j′

|ωjj′ |
}
, (3.18)

where S(k) = 1
n

(
Y −XB̂(k)

)(
Y −XB̂(k)

)T

.

This is the �1 penalized covariance estimation problem considered by many au-
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thors including [28], [29], [30] and [31]. The fast graphical lasso algorithm of Friedman

et al. (2008) is adopted to solve (3.18). As shown in [28], the estimate Ω̂
(k+1)

would

remain positive definite as long as S(k) is positive definite.

CM2: Given Ω = Ω̂
(k+1)

and B = B̂(k), η can be simply updated by the

ordinary least estimate:

η̂(k+1) =
(
Ỹ

T
Ỹ
)−1

Ỹ
T
Z, (3.19)

where Ỹ = Y −XB̂(k).

CM3: Given Ω = Ω̂
(k+1)

and η = η̂(k+1), finding the minimizer of gc(B,Ω,η)

with respect to B is equivalent to minimizing, (after some algebra, see the Appendix):

1

n
tr
{
(Y 0 −XB)TΩ0(Y 0 −XB)

}
+ λ2

∑
i,j

|bij|, (3.20)

where Ω0 = Ω̂
(k+1)

+ η̂(k+1)
(
η̂(k+1)

)T

and Y 0 = Y − Ẑ
(
η̂(k+1)

)T

Ω−10 .

As in [72], the equation (3.20) can be rewritten into the form of lasso regression.

Following [43] and [72], we use the coordinate descent (Cod) algorithm [29] for solving

this problem. Other efficient algorithms such as the homotopy algorithm [54] and the

Lars-lasso algorithm [55] can also be applied.

3.3.3 The MRSN Algorithm for Skew-Normal Errors

We summarize the preceding ECM algorithm for minimizing (3.16) and refer to it as

MRSN.

MRSN Algorithm: With λ1 and λ2 fixed, initialize the parameters Θ = Θ(0).

On the (k+1)th iteration,

E-step: Estimate the latent variables Zi by their conditional expectations as in (3.7).

CM1: Given B = B̂(k) and η = η̂(k), update Ω = Ω̂
(k+1)

in (3.18) using the graphical
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lasso algorithm.

CM2: Given B = B̂(k) and Ω = Ω̂
(k+1)

, update η = η̂(k+1) with the least square

estimate in (3.19).

CM3: Given η = η̂(k+1) and Ω = Ω̂
(k+1)

, update B = B̂(k+1) in (3.20) using the

coordinate descent (Cod) algorithm.

Repeat the E- and three CM-steps until the estimates of the parameters converge, that

is,
∑

j,k |b̂(k+1)
jk − b̂

(k)
jk | ≤ ε

∑
jk |b̂ridgejk |, where B̂ridge = (b̂ridgejk ) = (XTX + λ2I)

−1XTY

is the ridge estimate and the tolerance parameter ε is set at 10−4 by default.

The MRSN algorithm is similar to the MRCE method for the normal data, but

the latter only consists of analogues of the CM1 and CM3 steps. In the MRSN

algorithm, we need an E-step for the estimation of the latent variables and an extra

CM step for estimation of the skewness parameter. Consequently, the MRSN would

take more time to converge than the MRCE. Note that in the absence of asymmetry

where α = 0, the E and CM2 steps are not needed, and the MRSN method would

reduce to the MRCE algorithm for the normal data.

3.3.4 The MRST Algorithm for Skew-t Errors

Now we assume that the errors ε′is in (1.2) have a multivariate skew-t distribution

with the location μ = 0. Let Zi and Wi be the corresponding latent variables for yi

with the negative complete-data log-likelihood as in (3.2). Similar to the skew-normal

case, we construct sparse estimates for both B and Ω by minimizing the penalized

log-likelihood:

gc(B,Ω,η, ν) = Lc(B,Ω,η, ν) + λ1
∑
i �=j

|ωij|+ λ2
∑
i,j

|bij| (3.21)

via the ECM algorithm where Lc(B,Ω,η, ν) is given in (3.2).
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E-step: On the (k + 1)th iteration, calculate the conditional expectation of

gc(B,Ω,η, ν) given the current estimate of the parameters Θ̂
(k) = {B̂(k), Ω̂

(k)
, η̂(k), ν̂(k)}

and the data Y , X.

In the E-step, the three expectations E(Wi|X,Y , Θ̂(k)), E(logWi|X,Y , Θ̂(k)) and

E(Zi

√
Wi|X,Y , Θ̂(k)) are needed and can be evaluated using Proposition 1. Note that

E(Wi|X,Y , Θ̂(k)) and E(Zi

√
Wi|X,Y , Θ̂(k)) have closed forms, but E(logWi|X,Y , Θ̂(k))

does not, so we compute the latter numerically using the method in [75]. Denote these

conditional expectations by

a
(k)
i = E(logWi|X,Y , Θ̂(k)), b

(k)
i = E(Wi|X,Y , Θ̂(k)),

c
(k)
i = E(Zi

√
Wi|X,Y , Θ̂(k)). (3.22)

Plugging them in gc(B,Ω,η, ν), by some algebra, we get the expected log-

likelihood function as

Qc(B,Ω,η, ν) =
1

n

n∑
i=1

b
(k)
i (yi −BTxi)

TΩ(yi −BTxi)

+
1

n

n∑
i=1

⎧⎨
⎩ c

(k)
i√
b
(k)
i

−
√
b
(k)
i ηT (yi −BTxi)

⎫⎬
⎭

2

− log |Ω|+ â(ν) + λ1
∑
i �=j

|ωij|+ λ2
∑
i,j

|bij|. (3.23)

where now

â(ν) = 2 log Γ
(ν
2

)
− ν log

(ν
2

)
− 1

n
(ν + q − 2)

n∑
j=1

a
(k)
j +

ν

n

n∑
j=1

b
(k)
j . (3.24)

Let ỹi =

√
b
(k)
i yi, x̃i =

√
b
(k)
i xi and z̃i = c

(k)
i /

√
b
(k)
i . If we define Ỹ =

(ỹ1, · · · , ỹn)
T , Z̃ = (z̃1, · · · , z̃n)T and X̃ = (x̃1, · · · , x̃n)

T , then the function in (3.23)
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can be written using the matrix notation as

Qc(B,Ω,η, ν) = tr
{
ΩS̃

}
− log |Ω|+ 1

n
‖Z̃− (Ỹ − X̃B)η‖2 + â(ν)

+λ1
∑
i �=j

|ωij|+ λ2
∑
i,j

|bij|. (3.25)

where S̃ = 1
n

(
Ỹ − X̃B

)(
Ỹ − X̃B

)T

.

Since the degrees of freedom ν is separated from the other three blocks of pa-

rameters, the M-step for the skew-t distribution proceed in the following way:

CM1: Given the first three blocks of parameters in Θ = (B,Ω,η, ν), update ν as

ν̂(k+1) by minimizing the function â(ν) in (3.24).

CM2: Given ν = ν̂(k+1), the three blocks of parameters will be estimated using

exactly the same three CM steps as in the MRSN algorithm with the data matrices

X̃, Ỹ and Z̃.

Remark 1: The preceding ECM algorithm for minimizing (3.21) is referred to

as the MRST algorithm. We point out the challenge encountered when estimating

the degrees of freedom ν. In practice, we have noticed that the sequence
{
ν̂(k)

}
usually converges to a small positive number which is less than 2, whereas ν > 2

is required for the covariance matrix to exist. Thus, the estimate of the degrees of

freedom using the MRST algorithm is not satisfactory; the same phenomena occurs

when ε′is have a multivariate t distribution [72]. In most of what follows, we discard

the CM1 step in the MRST algorithm and estimate ν separately via the maximum

likelihood method [69].

Remark 2: When α = 0, the MRST algorithm would reduce to the MRCEI

algorithm [72] which is developed to regularize parameters in the general linear model

when the errors have a multivariate t distribution. Moreover, if α = 0 and ν goes to

infinity, the MRST algorithm would reduce to the exact MRCE method in [43].
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3.4 Tuning Parameters and Performance Measures

We use theK-fold cross-validation to select the tuning parameters over a grid of values

of (λ1, λ2). In the cross-validation, the dataset S = {(xi,yi) : 1 ≤ i ≤ n} is randomly
partitioned into K groups of roughly equal size, denoted by Sk, k = 1, 2, · · · , K. For
each k, we use S − Sk as the training data to estimate the parameters and Sk as

the test set to evaluate the prediction error. Then the tuning parameter (λ1, λ2) is

chosen as the minimizer of the mean squared prediction error over all q variables of

the response, that is,

(λ̂1, λ̂2) = arg min
(λ1,λ2)

1

Kq

{
K∑
k=1

‖Y (k) −X(k)B̂
λ1,λ2

(−k) − μ̂E‖2L2

}
, (3.26)

where Y (k),X(k) are the validation response matrix and the predictor matrix formed

from the subset Sk, respectively, , B̂
λ1,λ2

(−k) is the corresponding estimate of B with the

training data S − Sk and μ̂E is the estimated mean for the errors.

We measure the performance of our methods in terms of the prediction error

(PE) which has the form of

PE(B̂) =
1

n
tr
{
(Y −XB̂− μ̂E)(Y −XB̂− μ̂E)T

}
. (3.27)

The sparsity recognition performance of B̂ is measured by the true positive rate

(TPR) as well as the true negative rate (TNR) which are defined in (2.23).

3.5 A Simulation Study

In this section, through a simulation study we assess and compare the performance

of our method for multivariate regression having skew-t errors with that of the least

square, MRCE [43] for normal and MRCEI [72], for symmetric t distributions, re-

spectively.
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3.5.1 Model Design

Throughout this section we will have 50 replications of the multivariate regression

with n = 50, p = 22 and q = 24 where the p, q are chosen to match the dimensions

of the regression models fitted to the electricity data analyzed in the next section.

In each replication a sparse matrix B is generated as the elementwise product of the

following three matrices:

B = W ∗K ∗Q,

where (W )ij
i.i.d.∼ N(0, 1), (K)ij

i.i.d.∼ Bernoulli(s1) and each row of Q is either a

vector of 1’s or 0’s with a success probability of 1’s equal to s2. Generating B in

this way, we expect (1 − s2)p predictors to be irrelevant for all q responses, and we

expect each predictor to be relevant for s1q of all the response variables. An n × p

predictor matrix X with n = 50 is also generated with rows drawn independently

from N(0,ΣX), where (ΣX)ij = 0.7|i−j|, as in [25] and [27]. We consider the AR(1)

model for the scale matrix of the errors with (ΣE)ij = ρ
|i−j|
E

.

Then each row of the error matrix E is independently drawn from a multivariate

skew t distribution Stq(0,ΣE ,α, ν) and the response matrix Y is constructed using

Y = XB+E. To save computation time, we independently generate a validation data

of the same sample size n = 50 within each replication to estimate the prediction error

for the algorithms as in [43]. This is similar to performing a K-fold cross-validation

for the algorithm.

We consider different combinations of ν,α, ρE, s1 and s2 from the following

ranges: (1) ν = 10, 20, 40, 100, (2) ρE = 0, 0.5, 0.7, 0.9, (3) α = (−1, 1,−1, · · · , 1)T or
1q where 1q is a column vector of ones. (4) s1 = 0.1, 0.5, and (5) s2 = 1. The tuning

parameters λ1 and λ2 are selected from the set Λ = {10x : x = 0,±1, · · · ,±5} using



53

5-fold cross-validation. Since the conclusions drawn for the two skewness vectors of

α are nearly the same, we only present the results for α = 1q here.

Table 10. PE for the AR(1) error covariance with s1 = 0.1, s2 = 1 and

α = (1, 1, 1, · · · , 1)T . Average and standard errors in parenthesis are based
on 50 replications.

ρE OLS MRCE MRCEI MRSN MRST
0.9 2.27 1.26 1.34 1.18 1.11

(0.05) (0.03) (0.02) (0.02) (0.02)
0.7 2.30 1.34 1.45 1.41 1.40

ν = 10 (0.04) (0.02) (0.01) (0.06) (0.01)
0.5 2.27 1.39 1.47 1.53 1.49

(0.03) (0.02) (0.01) (0.01) (0.02)
0.0 2.23 1.43 1.50 1.59 1.58

(0.03) (0.02) (0.02) (0.02) (0.02)
0.9 2.05 1.14 1.18 1.01 1.00

(0.05) (0.01) (0.02) (0.01) (0.01)
0.7 2.00 1.21 1.26 1.25 1.25

ν = 20 (0.03) (0.01) (0.01) (0.01) (0.02)
0.5 1.99 1.28 1.30 1.36 1.34

(0.02) (0.02) (0.01) (0.01) (0.01)
0.0 2.04 1.29 1.28 1.43 1.41

(0.03) (0.02) (0.01) (0.02) (0.01)
0.9 1.89 1.07 1.10 0.96 0.92

(0.04) (0.02) (0.02) (0.02) (0.02)
0.7 1.88 1.13 1.17 1.20 1.16

ν = 40 (0.03) (0.01) (0.01) (0.01) (0.01)
0.5 1.93 1.18 1.21 1.31 1.26

(0.02) (0.01) (0.01) (0.01) (0.01)
0.0 1.88 1.22 1.25 1.36 1.34

(0.02) (0.01) (0.01) (0.01) (0.01)
0.9 1.83 1.07 1.09 0.91 0.90

(0.04) (0.02) (0.02) (0.02) (0.02)
0.7 1.88 1.12 1.14 1.14 1.14

ν = 100 (0.03) (0.01) (0.01) (0.06) (0.01)
0.5 1.91 1.16 1.17 1.25 1.24

(0.02) (0.01) (0.01) (0.01) (0.01)
0.0 1.82 1.19 1.21 1.31 1.32

(0.02) (0.01) (0.01) (0.01) (0.01)
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Table 11. PE for the AR(1) error covariance with s1 = 0.5, s2 = 1 and

α = (1, 1, 1, · · · , 1)T . Average and standard errors in parenthesis are based
on 50 replications.

ρE OLS MRCE MRCEI MRSN MRST
0.9 2.19 1.50 1.45 1.22 1.26

(0.06) (0.02) (0.02) (0.03) (0.02)
0.7 2.23 1.83 1.80 1.58 1.57

ν = 10 (0.04) (0.03) (0.01) (0.02) (0.02)
0.5 2.27 1.98 1.87 1.73 1.69

(0.04) (0.03) (0.02) (0.02) (0.02)
0.0 2.29 2.00 1.99 1.81 1.78

(0.04) (0.02) (0.02) (0.02) (0.02)
0.9 2.05 1.33 1.31 1.10 1.16

(0.05) (0.02) (0.02) (0.02) (0.03)
0.7 2.04 1.61 1.60 1.43 1.44

ν = 20 (0.04) (0.02) (0.02) (0.02) (0.02)
0.5 2.01 1.75 1.68 1.56 1.56

(0.02) (0.02) (0.02) (0.02) (0.02)
0.0 2.01 1.77 1.77 1.62 1.66

(0.03) (0.02) (0.02) (0.01) (0.02)
0.9 1.88 1.26 1.25 1.02 1.02

(0.04) (0.02) (0.02) (0.02) (0.02)
0.7 1.90 1.51 1.52 1.34 1.32

ν = 40 (0.03) (0.02) (0.02) (0.02) (0.02)
0.5 1.86 1.64 1.61 1.48 1.45

(0.02) (0.02) (0.02) (0.02) (0.02)
0.0 1.89 1.67 1.70 1.54 1.54

(0.02) (0.02) (0.02) (0.02) (0.02)
0.9 1.85 1.24 1.20 1.00 0.99

(0.04) (0.02) (0.02) (0.02) (0.02)
0.7 1.85 1.49 1.47 1.30 1.28

ν = 100 (0.03) (0.02) (0.02) (0.06) (0.01)
0.5 1.86 1.60 1.56 1.42 1.41

(0.03) (0.02) (0.01) (0.01) (0.01)
0.0 1.85 1.63 1.62 1.48 1.50

(0.02) (0.02) (0.02) (0.01) (0.01)

3.5.2 Results and Discussion

We report the prediction errors for the AR(1) error covariance in Tables 10 and

11. Note that the OLS always has the largest prediction errors indicating its poor

performance relative to the other methods and, in general, the prediction errors tend
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to increase as ρE decreases. The MRCE method generally outperforms the other

methods in terms of prediction errors when B is more sparse (s1 = 0.1), except for

ρE = 0.9 where the MRSN and MRST have smaller prediction errors. This suggests

that the MRSN and MRST perform well for highly correlated data and more sparseB.

Table 12. TPR/TNR for the AR(1) error covariance averaged over 50 replications with

s1 = 0.1, s2 = 1 and α = (1, 1, 1, · · · , 1)T .

ρE MRCE MRCEI MRSN MRST

0.9 0.93/0.59 0.93/0.57 0.94/0.28 0.98/0.13

ν = 10 0.7 0.88/0.63 0.89/0.61 0.93/0.32 0.95/0.27

0.5 0.85/0.66 0.85/0.64 0.92/0.34 0.92/0.33

0.0 0.82/0.67 0.83/0.62 0.91/0.36 0.91/0.35

0.9 0.93/0.59 0.94/0.53 0.94/0.29 0.97/0.18

ν = 20 0.7 0.89/0.62 0.90/0.59 0.94/0.30 0.94/0.31

0.5 0.85/0.65 0.86/0.63 0.92/0.33 0.93/0.35

0.0 0.83/0.65 0.85/0.62 0.91/0.35 0.91/0.35

0.9 0.94/0.59 0.94/0.54 0.95/0.25 0.96/0.22

ν = 40 0.7 0.90/0.61 0.90/0.59 0.95/0.29 0.93/0.32

0.5 0.87/0.63 0.85/0.61 0.93/0.32 0.92/0.35

0.0 0.85/0.63 0.84/0.63 0.92/0.35 0.91/0.35

0.9 0.84/0.63 0.94/0.56 0.95/0.26 0.97/0.22

ν = 100 0.7 0.86/0.64 0.90/0.59 0.95/0.30 0.93/0.33

0.5 0.88/0.62 0.87/0.61 0.93/0.32 0.91/0.34

0.0 0.92/0.59 0.85/0.62 0.92/0.35 0.91/0.34

On the other hand, from Table 11 it is evident that when B is less sparse (s1 = 0.5),
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the MRSN and MRST perform quite well in that the prediction errors for the two

methods are always smaller than those for the MRCE and MRCEI.

Table 13. TPR/TNR for the AR(1) error covariance averaged over 50 replications with

s1 = 0.5, s2 = 1 and α = (1, 1, 1, · · · , 1)T .

ρE MRCE MRCEI MRSN MRST

0.9 0.91/0.45 0.91/0.43 0.94/0.32 0.98/0.11

ν = 10 0.7 0.87/0.42 0.86/0.48 0.91/0.34 0.94/0.24

0.5 0.85/0.40 0.84/0.50 0.89/0.36 0.91/0.33

0.0 0.80/0.52 0.81/0.53 0.87/0.41 0.90/0.34

0.9 0.92/0.41 0.92/0.44 0.94/0.32 0.97/0.16

ν = 20 0.7 0.86/0.47 0.86/0.47 0.92/0.34 0.93/0.29

0.5 0.85/0.43 0.84/0.49 0.90/0.35 0.91/0.33

0.0 0.82/0.51 0.84/0.47 0.89/0.40 0.90/0.34

0.9 0.93/0.40 0.92/0.44 0.94/0.32 0.97/0.17

ν = 40 0.7 0.88/0.44 0.86/0.49 0.92/0.33 0.93/0.30

0.5 0.86/0.43 0.84/0.51 0.90/0.34 0.91/0.33

0.0 0.83/0.52 0.83/0.51 0.89/0.40 0.90/0.34

0.9 0.93/0.40 0.93/0.43 0.94/0.31 0.96/0.22

ν = 100 0.7 0.87/0.46 0.86/0.49 0.92/0.33 0.92/0.31

0.5 0.86/0.44 0.87/0.44 0.90/0.35 0.91/0.33

0.0 0.84/0.47 0.82/0.55 0.88/0.39 0.90/0.35

The corresponding true positive rates (TPR) and true negative rates (TNR) for

the AR(1) error covariance are reported in Tables 12 and 13. We note that, with

ν fixed, the positive (negative) rates tend to decrease (increase) as ρE decreases.
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Additionally, the true positive rates for the MRSN and MRST are very large while

the true negative rates are very small. Therefore, the regularization methods for the

skew distributions give more conservative estimates for B in the sense that B̂ is less

sparse.

3.6 Real Data Analysis

In this section, we re-examine the hourly average electricity spot prices from Australia

with the general linear model in (2.26). The profile plot of the observations in the

first month (Figure 2) appears to be symmetric around the mean except that some

skewness is observed at the times 08:00, 17:00-19:00 when the electricity prices are

highly volatile. Because of the apparent skewness in the profile plot, it may be more

reasonable to model the error as εi ∼ St24(0,Σ,α, ν). We apply the MRST algorithm

to this model to get sparse estimators for B and Ω as well as to improve the prediction

accuracy.

The MLE of the degrees of freedom ν is ν̂ = 5.04 using the whole dataset. With

ν fixed at ν̂, we then apply the MRST method to the model (2.26). To access the

predictive performance via the mean squared prediction error, we retain the obser-

vations from the last 100 days as the test set, while estimating the parameters using

the rest of the observed spot prices. We select the tuning parameters (λ1, λ2) via a

5-fold cross-validation from the set Λ =
{
2−10+20(x−1)/39 : x = 1, 2, · · · , 40}. In the

case when the Lars-lasso algorithm is used in the CM3 step, we use 80% of the ob-

servations in the first 998 days as the training data and the remaining 20% as the

validation data. In what follows, for ease of notation, we refer to the results using

Lars-lasso and Cod algorithms in the CM3 step as Lars-lasso and Cod, respectively.

The average squared prediction error for each hour in a day for the last 100 days
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Fig. 2. The profile plot of the hourly electricity wholesale prices. The solid dark curve

is the mean profile.

are plotted in Figure 3. While the overall average prediction errors are similar around

the hour of 18 pm which is the most skewed or volatile period, the real differences

emerge away from this time. In fact, the overall average prediction error using the

Cod turns out to be 0.075 which is the smallest among all the methods considered.

(However, the estimate for neither B nor Σ is sparse.

From Figure 2, since most individual skewness parameters appear to be small,

we consider a model with all the elements in the skewness parameter α fixed at zero

except for α5, α15, α16, α17. The prediction errors corresponding to this special fixed

choice, labeled Cod-fix and Lars-fix, and other models are plotted in Figure 3. Here

again Cod-fix has the smallest hourly prediction errors. To assess the meaning and
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Fig. 3. The average squared prediction error for each hour on a day based on 100

points.

relevance of the skew vector of the fitted model, we compare it with the skewness

parameters of the marginal distributions for each component in Y and expect them

to agree with the skewness parameter of the estimated density plot for each univariate

component. From the marginal skewness parameters (dashed line) in Figure 4 (left

panels), it is evident that these are all negative for the estimated models using Cod

no matter if α is fixed and very different from those using Lars-lasso which are all

positive. In addition, the marginal skewness parameters for the model using Lars-fix

present the similar pattern to the estimated α. To determine which one of them

describe the skewness of the data best, we examine the marginal density plot for each

component of Y and find that all the subseries are right-skewed except the first two
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components of Y . This indicates that the estimated marginal skewness parameters

should be positive for all the components of Y expect the first two. From this point

of view, it seems that the fitted model using Lars-lasso, whose the marginal skewness

parameters are all positive, is more plausible.
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(c) alpha partially fixed using Cod
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(d) alpha partially fixed using using Lars−lasso
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Fig. 4. The estimated skewness parameters using different models and algorithms (The

dash line is the marginal skewness parameter and the solid line is the estimate

for α). (a) Lars-lasso without fixing α (b) Lars-lasso with α fixed (c) Cod

without fixing α (d) Cod with α fixed.

3.7 Summary

We have proposed an iterative procedure to construct sparse estimates for the regres-

sion coefficient and precision matrices simultaneously when the errors in the general
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linear model are skewed. The assumption of the skew-normal or skew-t distribution on

the errors provides a more flexible probabilistic distribution and enables us to handle

the possible skewness in the data. Two algorithms, namely MRSN for skew-normal

and MRST for skew-t, which extend the MRCE [43] and MRCEI [72] algorithms are

developed to iteratively compute the estimate of the parameters. As pointed out in

Section 3.3.4, we are encountered with the same problem as the authors of [72] when

estimating the degrees of freedom and suggest estimating it outside the iterations.

We have shown the the MRST outperforms the MRCE and MRCEI in terms of pre-

diction error when (1) B is less sparse or (2) B is sparse but Σ is highly correlated.

However, the MRST and MRSN seem to be conservative in that the estimate of B

is less sparse than that using MRCE and MRCEI. We have also noticed that the es-

timated skewness parameter sometimes is far away from the true value. Our further

work would focus on improving the estimation of the skewness parameter.
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CHAPTER IV

TESTING PROPORTIONALITY OF THE SKEWNESS VECTOR AND

EIGENVECTORS OF MULTIVARIATE SKEW-NORMAL DISTRIBUTIONS

In Chapter III, we have introduced the family of multivariate skew-normal distribu-

tions with the densities given by (3.4). In this chapter, we focus on the principal

component analysis of a skew-normal variable and its connection to the canonical

variates. We denote the scale matrix and covariance matrix of a multivariate skew-

normal variate by Ω and Σ respectively and refer η = ω−1α as the skewness vector.

For ease of notation, we simply denote z ∼ SNp(0,Ω,α) by z ∼ SNp(Ω,α).

4.1 Introduction

An important property of the family of the skew-normal distributions is that it is

closed under the linear transformation. As in [66], there exists a canonical transform

y = Wz such that y ∼ SNp(ξ
�, I,α�) where W = (w1, w2, · · · , wp)

′ is a p× p real ma-
trix and at most one element of α� is nonzero. This linear transformation converts the

multivariate skew-normal vector into the one whose components are independent and

defines a so-called canonical form of multivariate skew-normal distribution. Without

loss of generality, we assume that α� = (α�
1, 0, · · · , 0)′. Consequently, the canonical

variates w′1z, · · · , w′pz are independent and the coefficients w′is should satisfy

w1 =
η√
η′Ωη

, w′iΩwi = 1, w′iΩwj = 0, i �= j.

Interestingly, the canonical variates are closely related to the principal components

of z when one of the eigenvectors of Ω is proportional to the skewness vector η as

shown by the Proposition 2.1 of [76] which is stated below:
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Proposition 2.1: Let z ∼ SNp(Ω,α) and Γ′ be a p × p matrix whose columns

γ1, · · · , γp are normalized eigenvectors ofΩ corresponding to the eigenvalues λ1, · · · , λp
with γj ∝ η for some j. Then the principal components of z are independent, pro-

portional to the canonical variates, and the variance of z can be represented as

Var(Z) = Γdiag

{
λ1, · · · ,

πλj + η′η(π − 2)λ2j
π(1 + λjη′η)

, · · · , λp
}
Γ′.

The proposition shows that if the skewness vector is proportional to an eigenvector

of Ω the eigenvectors of Σ would be the same as those of Ω so that the principal

components of z are proportional to the canonical variates and thus independent. In

this case, the distributions for the principal components of z are very simple: only

one of them is skew-normal and the others are normal.

In this project, we focus on the connection between the canonical variates and

principal components of a skew-normal variate as well as the asymptotic properties of

the eigenvectors for the maximum likelihood estimate (MLE) of Ω. We firstly inves-

tigate the asymptotic distributions for the MLEs of the eigenvectors and eigenvalues

and show that these asymptotic distributions would be the same as those when z

is normal. Our primary goal is to develop a statistic for testing whether one of the

eigenvectors of Ω is proportional to η, i.e.,

H0 : γj ∝ η for some j vs. Ha : γj �∝ η for any j. (4.1)

To develop a statistic for testing (4.1), instead, we consider p simpler the individual

proportionality testing problems between each eigenvector γj and η, i.e.,

H
(j)
0 : γj ∝ η vs. H(j)

a : γj �∝ η, j = 1, · · · , p. (4.2)

Then a statistic for testing (4.1) is developed based on the likelihood ratio test (LRT)

statistic for testing (4.2).
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The chapter is organized as follows. In section 4.2, we briefly review the maxi-

mum likelihood estimation of the parameters for multivariate skew-normal distribu-

tion and discuss the asymptotic distributions for the estimates of the eigenvectors

and eigenvalues of Ω and Σ. In Section 4.3, we establish the LRT statistic for the

hypothesis test in (4.2) and propose a statistic for testing the hypothesis in (4.1). In

Section 4.4, we conduct a simulation study to access the performance of the statistic

we have proposed. Some comments and conclusions are included in Section 4.5.

4.2 Distributions of the Eigenvalues and Eigenvectors

In this section, we review the procedure for maximizing the skew-normal likelihood

and give the asymptotic distributions for the eigenvalues and eigenvectors of the MLEs

of Ω. For simplicity, we assume that all the eigenvalues λ′is are different.

4.2.1 Maximum Likelihood Estimate of Θ = (Ω,η)

To start with, denote its MLE of Θ by Θ̂ = (Ω̂, η̂). Suppose we have n i.i.d. obser-

vations z1, · · · , zn from SNp(Ω,α), so the log-likelihood function is

�(Θ) = constant− n

2
log |Ω| − n

2
tr
{
Ω−1S0

}
+

n∑
i=1

log [Φ(η′zi)] (4.3)

where S0 =
1
n

∑n
i=1 ziz

′
i. Taking derivative of �(Θ) with respective to Ω yields

Ω̂ =
1

n

n∑
i=1

ziz
′
i. (4.4)

By plugging Ω̂ into �(Θ), one can obtain the MLE of η by numerically maximizing

the profile likelihood:

�(η) =
n∑

i=1

log [Φ(η′zi)] (4.5)
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Then the matrix of the eigenvectors Γ and eigenvalues Λ of Ω can be estimated by

Γ̂ = (γ̂1, · · · , γ̂p) and Λ̂ = diag{λ̂1, · · · , Λ̂p} using the spectral decomposition of Ω̂:

Γ̂Λ̂Γ̂′ = Ω̂, Γ̂Γ̂′ = Ip,

where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p ≥ 0.

4.2.2 Asymptotic Distributions with Γ̂ and Λ̂

When z ∼ SNp(Ω,α), it is known that Ω̂ = 1
n

∑n
i=1 ziz

′
i has a Wishart distribution

with the scale matrix Ω and degrees of freedom 1 [77]. This implies that the asymp-

totic distributions of the eigenvectors and eigenvalues would be the same as those for

Ω when zi is normal [78]. Therefore, we have

Proposition 2. Suppose z1, z2, · · · , zn ∼ SNp(Ω,α) with ξ known. Let γ̂
′
is and

λ̂′is be the MLEs of the eigenvectors and eigenvalues of Ω defined in Proposition

2.1 of [76]. Then
√
n(γ̂i − γi) and

√
n(λ̂i − λi) for 1 ≤ i ≤ p are mutually and

asymptotically independent. Their limiting distributions are

√
n(λ̂i − λi) ∼ N(0, 2λ2i )

√
n(γ̂i − γi) ∼ Np (0,Σγi) (4.6)

where Σγi = λi
∑

k �=i
λk

(λk−λi)2
γkγ

′
k.

Remark 1: It is easy to show that the eigenvalues and the eigenvectors of the

common sample covariance matrix estimator S = 1
n−1

∑n
i=1(zi− z̄)(zi− z̄)′ for Σ have

the same asymptotic distributions as those of Ω̂ since
√
nΩ̂ and

√
nS have the same

limiting distribution.

Remark 2: The authors of [79] have computed the expected Fisher information

matrix for Θ and show that it is singular in the absence of asymmetry. To get the

asymptotic distribution of the eigenvectors of Σ̂ = Ω̂ − μ̂μ̂′, we assume that α �= 0.
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Then U
Δ
=
√
n(Σ̂−Σ) is also asymptotically normal with mean 0 but the covariance

structure is not as simple as that for Ω̂. One can determine it using the Delta

method and apply Theorem 3.1.7 in [80, pp. 297] to get the asymptotic distributions

for the eigenvectors and eigenvalues of Σ̂. This approach can be exploited to derive

the asymptotic distributions of the eigenvectors and eigenvalues for Ω̂ and Σ̂ in the

general cases when the location parameter is included in the skew-normal density.

4.3 The LR Test Statistic

In this section, we propose the likelihood ratio statistic for testing whether the skew-

ness vector η is proportional to one of the eigenvectors γ′js. The LRT statistic for the

hypothesis H
(j)
0 in (4.2) is

Tj = −2[�(Θ̂0)− �(Θ̂)] ∼ χ2
p−1, (4.7)

where Θ̂0 and Θ̂ are the MLEs for the parameters under the null hypothesis H
(j)
0 and

its alternative, respectively. This statistic has an approximate chi-square distribution

with degrees of freedom p − 1 [81]. To test whether one of the eigenvectors of Σ is

proportional to η, we use

T = min
1≤j≤p

Tj,

as the test statistic. At the significant level of αF , we would reject H0 in (4.1) if

T > χ2
αF ,p−1, (4.8)
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where χ2
αF ,p−1 represents the 100(1− αF )th percentile of χ

2
p−1. In this case, the true

type I error for testing H0 is bounded by αF since

PH0(T > χ2
αF ,p−1) = P

(
T > χ2

αF ,p−1,
p⋃

j=1

H
(j)
0 |H0

)

=

p∑
j=1

P
(
T > χ2

αF ,p−1, H
(j)
0 |H0

)

=

p∑
j=1

P
H

(j)
0
(T > χ2

αF ,p−1)P (H
(j)
0 |H0)

≤
p∑

j=1

P
H

(j)
0
(Tj > χ2

αF ,p−1)P (H
(j)
0 |H0)

=

p∑
j=1

αFP (H
(j)
0 |H0) = αF .

The second equality above holds because the null hypotheses H
(j)
0 for 1 ≤ j ≤ p are

mutually exclusive.

The log-likelihood function for n observations z1, · · · , zn is given by

�(Θ) = constant− n

2
log |Ω| − n

2
tr
{
Ω−1S0

}
+

n∑
i=1

log {Φ(η′zi)} . (4.9)

Under the alternative hypothesis H
(j)
a , Ω and η can be simply estimated by their

MLEs as in (4.4) and (4.5). Under the null hypothesis H
(j)
0 : η ∝ γj, we have η = bγj

for some b and the corresponding likelihood function is

�(Θ1) = constant− n

2
log |Ω| − n

2
tr
{
Ω−1S0

}
+

n∑
i=1

log
{
Φ(bγ′jzi)

}
, (4.10)

where Θ1 = (Ω, b). The analytic maximization of �(Θ1) over Θ1 is a challenging

problem due to a constraint imposed on an eigenvector of Ω. As an alternative, one

could accomplish the task numerically with the gradient supplied to an optimization

algorithm, but based on our experience such a procedure does not guarantee that
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the estimate of Ω is positive definite. A possible way to overcome this difficulty

is to reparametrize the matrix Γ of eigenvectors is expressed in terms of a product

of the Givens rotation matrices [82], [83], [84]. More precisely, let Q = p(p − 1)/2

and θ = (θ1, θ2, · · · , θQ)′, with θj ∈
(−π

2
, π
2

)
be the vector of the angles. Then the

orthogonal matrix Γ can be rewritten as

Γ(θ) =

p−1∏
m1=1

p∏
m2=m1+1

G
(m1,m2)
k (θk) = G

(1,2)
1 (θ1) · · ·G(1,p)

p−1 (θp−1)G
(2,3)
p (θp) · · ·G(p−1,p)

Q (θQ)

where k = m2 −m1 + (m1 − 1)(p−m1/2) and G
(m1,m2)
k (θk) is a rotation matrix with

the elements given by

[
G

(m1,m2)
k (θk)

]
i,j
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos(θk), if i = j = m1 or m2

sin(θk), if i = m1 or j = m2

− sin(θk), if i = m2 or j = m1

1, if i = j �= m1 and i = j �= m2

0, otherwise.

For example, for p = 2, Γ is

Γ(θ) = G
(1,2)
1 (θ1) =

⎡
⎢⎣ cos(θ1) sin(θ1)

− sin(θ1) cos(θ1)

⎤
⎥⎦ .

With this parametrization, the likelihood function for Θ2 = (Λ,θ, b) is

�(Θ2) = constant− n

2

p∑
i=1

log λi − n

2
tr
{
Γ(θ)Λ−1Γ′(θ)S0

}
+

n∑
i=1

log
{
Φ[bγ′j(θ)zi]

}
. (4.11)

After some algebra, we have λ̂i = γ′i(θ)S0γi(θ) for i = 1, · · · , p and the profile

likelihood for (θ, b) is

�(θ, b) = constant− n

2

p∑
i=1

log [γ′i(θ)S0γi(θ)] +
n∑

i=1

log
{
Φ
[
bγ′j(θ)zi

]}
. (4.12)
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We compute the gradient of �(θ, b) in the Appendix and maximize �(θ, b) numerically

to obtain the MLEs for θ and b.

Another way of parametrization relies on the modified Cholesky decomposition

of Ω. It is convenient to reparametrize the problem by writing

Ω−1 = A′diag{exp(ρ)}A = A′DA

η = bγj

where ρ = (ρ1, · · · , ρp)′ and A is an upper triangular p× p matrix with the diagonal

elements equal to 1. The log-likelihood for the parameter Θ3 = (A, ρ, b) given by

�(Θ3) = constant− n

2

n∑
i=1

ρi − n

2
tr {A′DAS0}+

n∑
i=1

log {Φ(bγ′izi)} . (4.13)

can be maximized numerically with its gradient applied to improve the efficiency (See

the Appendix).

4.4 A Simulation Study

In this section, we conduct a simulation study to evaluate the performance of the

proposed LR test statistic under two scenarios: (1) H0 is true and (2) Ha is true. The

empirical type I error rates and the empirical powers are computed, respectively, at

the significant level αF based on N = 1000 replications. Different combinations of n,

αF and p are considered: n = 50, 100, 250, 1000; αF = 0.05, 0.10 and p = 2, 3. The

details of the procedures for simulating data are described below:

(1) Construct a p × p orthogonal matrix Γ = (γ1, · · · , γp) using the product of

rotation matrices with all the rotation angles equal to π
3
, and use Λ = diag{1, 2}

for p = 2 and Λ = diag{1, 1.5, 2} for p = 3 as the matrix of the eigenvalues.

Then the true scale matrix is determined by Ω = ΓΛΓ′.
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(2) Randomly permutate the eigenvectors γ′ks to obtain a new orthogonal matrix

Q = (q1, · · · ,qp) where qk is the kth column of Q. Let q̄ =
1√
p

∑p
k=1 qk be the

mean of the eigenvectors of unit length and denote the acute angle formed by

η and qk as πk ∈
[
0, π

2

]
. Define the distance between η and Q by

D(η, Q) = min
k
{πk}.

Set η = (1− a0)q1 + a0q̄ where 0 ≤ a0 ≤ 1 controls the extent to which η and

q′ks are far away from the null hypothesis H0 in terms of the minimum angle

between η and q′ks. More specifically, we have

cos(π1) =
η′q1

‖η‖ =
1− a0 +

a0√
p√(

1− a0 +
a0√
p

)2

+ p−1
p
a20

cos(πk) =
η′qk

‖η‖ =

a0√
p√(

1− a0 +
a0√
p

)2

+ p−1
p
a20

, 2 ≤ k ≤ p. (4.14)

leading to D(η, Q) = π1, an increasing function of a0. When a0 = 0, D(η, Q) =

0 implying that η is proportional to one of eigenvectors of Ω; when a0 = 1,

π′ks are all equal, so η is in the equiangular direction of γ′ks. In the simulation

study, we have considered five different values for a0 : 0, 0.25, 0.5, 0.75, 1.

(3) Generate zi ∼ SNp(0,Ω, α) for 1 ≤ i ≤ n and compute the MLEs for the param-

eters in the full model as in (4.4) and (4.5). Similarly, under H
(j)
0 compute the

MLEs for the parameters by maximizing �(Θ0) numerically with two different

ways of reparametrization of Ω.

(4) For each j, 1 ≤ j ≤ p, compute the test statistic Tj = −2[�(Θ̂l) − �(Θ̂)] with

the p-value pj = Pr
(
χ2
p−1 > Tj

)
. If there exist a j0 such that pj0 > αF , count

= count + 1.
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(5) Repeat (3) and (4) for N times and compute the ratio = count/N.

We report the estimated ratios corresponding to different values of a0 in Tables 14

and 15 for p = 2 and p = 3, respectively. The first column of the tables corresponds to

the empirical type I errors, while the others correspond to the empirical powers with

varying degrees of departure from the null hypothesis. We see that the powers tend

to increase as either a0 or n increases. The type I errors for Givens Angle agree with

the nominal value of the significant level very well, although they are slightly smaller

than αF . However, the type I errors for Modified Cholesky Decomposition (MCD)

tends to decrease as n increases and are larger than the nominal αF especially when

p is large and n is small. In addition, we note that all the ratios for the Givens Angle

are larger than those for the MCD. This indicates that the test statistic using MCD

are more likely to reject H0 than the statistic using Givens Angle. The performance

of the MCD can be explained by the fact that there are p more parameters in (4.13)

than (4.12). Therefore, when we maximize them numerically, (4.13) is more likely to

obtain a local maximizer than (4.12) leading to a larger value of Tj.

4.5 Data Analysis

The data we analyze is the Australian Institute of Sport (AIS) data examined in [85],

which contains various biomedical measurements on n = 202 Australian athletes. To

illustrate our test, we apply it to subsets of the AIS where the skew-normal distribu-

tion is fitted to the variables.

(a) z = (Ht,Bmi)′. Because the MLE for the location parameter is ξ̂ = (180.51, 19.98)′,

the variable z is ”centered” by subtracting ξ̂ such that the location parameter for the

variable z̃ = z− ξ̂ is roughly 0. The test statistic for H0 is 0.019 with pvalue = 0.890,

so we fail to reject the null hypothesis.
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Table 14. Type I error rates and power when nominal αF = 0.05 and p = 2

Modified Cholesky Decomposition

n a0 = 0 a0 = 0.25 a0 = 0.5 a0 = 0.75 a0 = 1

50 0.065 0.108 0.284 0.488 0.584

100 0.088 0.210 0.576 0.875 0.918

250 0.056 0.389 0.901 0.999 0.999

1000 0.050 0.914 1 1 1

Givens Angle

n a0 = 0 a0 = 0.25 a0 = 0.5 a0 = 0.75 a0 = 1

50 0.040 0.092 0.252 0.401 0.481

100 0.053 0.199 0.553 0.823 0.874

250 0.046 0.387 0.900 0.999 0.999

1000 0.047 0.914 1 1 1

(b) z = (Ht,Bfat)′. The MLE for the location parameter is ξ̂ = (182.48, 5.73)′

and consider z̃ = z − ξ̂ as the variable. The test statistic for H0 is 19.03 with

pvalue < 0.001, so we reject the null hypothesis.

(c) z = (Ht,Bmi,Bfat)′. The MLE for the location parameter is ξ̂ = (182.86, 76.07, 5.85)′

and consider z̃ = z − ξ̂ as the variable. The test statistic for H0 is 47.72 with

pvalue << 0.001, so we reject the null hypothesis.

4.6 Summary

We investigated the asymptotic distributions for the eigenvalues and eigenvector of

the MLEs for Ω and Σ, and proposed a statistic to test if one of the eigenvectors
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Table 15. Type I error rates and power when nominal αF = 0.05 and p = 3

Modified Cholesky Decomposition

n a0 = 0 a0 = 0.25 a0 = 0.5 a0 = 0.75 a0 = 1

50 0.226 0.259 0.381 0.498 0.558

100 0.208 0.266 0.578 0.866 0.909

250 0.113 0.371 0.866 0.995 0.998

1000 0.051 0.850 1 1 1

Givens Angle

n a0 = 0 a0 = 0.25 a0 = 0.5 a0 = 0.75 a0 = 1

50 0.026 0.043 0.114 0.191 0.204

100 0.049 0.114 0.405 0.619 0.562

250 0.044 0.294 0.825 0.973 0.962

1000 0.043 0.849 1 1 1

of Ω is proportional to the skewness parameter η. The simulation study shows that

the parametrization using the Givens Angle performs better than using the Modified

Cholesky Decomposition for small p. However, as p increases, the number of parame-

ters in the profile likelihood would increase quadratically. In this situation, numerical

maximization of the profile likelihood is not so reliable since the algorithm would

more likely converge to the local maximum resulting in a higher ratio of rejecting the

null hypothesis.
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CHAPTER V

CONCLUSIONS, EXTENSIONS AND FUTURE WORK

5.1 Regularization of Parameters in Multivariate Linear Regression

In Chapter II and III, instead of imposing the usual normality assumption on the

errors, we assume that they have a multivariate t/skew-normal/skew-t distribution

and propose an iterative procedure to construct the sparse estimators for both B and

Ω in this setup. This extends the MRCE methods [43] and provides a more plausible

way to improve the prediction accuracy when the data have outliers or, particular-

ly, exhibit skewness. However, from the simulation study in Chapter III, we have

noticed that the skewness parameter estimated through the regularization method

sometimes is very different from the true one. In this case, the interpretation of the

estimated skewness parameter is difficult since it may not agree with the shape of da-

ta. Moreover, the algorithms we have developed are very time consuming especially

when p and q are large. Therefore, our future work would focus on how to obtain a

better estimate of the skewness parameter in the framework of regularization as well

as improve the numerical efficiency.

Our methods can be further extended the multivariate linear mixed model (MLM-

M) where a random effect is also included in (1.2) with different assumptions on the

joint distribution of the random effect and errors [73].

5.2 Principal Component Analysis of a Skew-normal Variable

In Chapter IV, we investigate the asymptotic distributions of the eigenvalues and

eigenvectors for the MLE of the scale matrix of the skew-normal distributions. We

develop a statistic for testing whether the skewness vector is proportional to an eigen-
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vector of the scale matrix based on the LR test statistic. We conclude that the

reparametrization via the Givens Angles performs better than that via the Modi-

fied Cholesky Decomposition. As discussed in Chapter IV, the maximization of the

log-likelihood function under the null hypothesis should be done numerically. As

the dimension increases, the MLEs obtained from the numerical maximization are

less reliable because they are more likely to be the local maxima. More theoretical

work should be done in the future for the MLEs under the null hypothesis when the

dimension is moderate or large.
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APPENDIX A

PROOF OF PROPOSITION 1

For ease of notation, let θ = r = ν
2
. The computation of the conditional expec-

tations relies on the following result in [69]:

Lemma. If W ∼ Gamma(r, θ), then for any b ∈ R,

E
{
Φ(b
√
W )

}
= T1

(
b

√
r

θ
; 2r

)
.

Using the density functions in (3.11) and (3.12), we have

E {Wm|Y } =
2

f(y)

∫ ∞

0

wmΦ{√wηT (y − μ)}φq(z;μ,Σ/w) · h(w; ν/2, ν/2)dw

=
2

f(y)

∫ ∞

0

wmΦ{√wηT (y − μ)}
(

1√
2π

)q ∣∣∣∣Σw
∣∣∣∣
−1/2

·

exp
{
−w
2
(y − μ)TΣ−1(y − μ)

}
· 1

Γ(r)
wr−1 exp{−wθ}θrdw

= (2π)−
q
2
2|Σ|−1/2
f(y)

θr

Γ(r)

∫ ∞

0

Φ{√wηT (y − μ)}wm+r+ q
2
−1 exp(−wθ1)dw

= C(θ1, r1)

∫ ∞

0

Φ{√wηT (y − μ)}h(w; θ1, r1)dw

= C(θ1, r1)T1

(
ηT (y − μ)

√
r1
θ1
; 2r1

)
.
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and

E {ZWm|Y } =
2

f(y)

∫ ∞

0

∫ ∞

0

zwmφ
{
z −√wηT (y − μ)

}
φq(y;μ,Σ/w) ·

h(w; ν/2, ν/2)dzdw

=
2

f(y)

∫ ∞

0

wmφq(y;μ,Σ/w) · h(w; ν/2, ν/2) ·∫ ∞

0

zφ
{
z −√wηT (y − μ)

}
dzdw

=
2

f(y)

∫ ∞

0

wmφq(y;μ,Σ/w) · h(w; ν/2, ν/2)
[√

wηT (y − μ) ·

Φ{√wηT (y − μ)}+ 1√
2π

exp

{
−1
2
w(y − μ)TηηT (y − μ)

}]
dw

= ηT (y − μ) · E {Wm|Y }+ 1√
2π
C(θ2, r1).
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APPENDIX B

COMPUTATION OF (3.20)

Expanding gc(B,Ω,η) in (3.15)and ignoring the terms unrelated to B yields

gc(B) =
1

n
tr{(Y −XB)TΩ(Y −XB)}+ 1

n
tr{(Y −XB)TηηT (Y −XB)}

− 1
n
tr
{
(Y −XB)ηZT + ZηT (Y −XB)T

}
.

=
1

n
tr{(Y −XB)T (Ω+ ηηT )(Y −XB)− (Y −XB)ηZT

−ZηT (Y −XB)T}

Then (3.20) can be obtained by completing the square for (Y −XB).
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APPENDIX C

THE GRADIENT OF �(θ, B) IN (4.11).

The calculation of the partial derivative of �(θ, b) is straightforward. For ease of

notation, let

ζ0(x) = log {2Φ(x)} and ζm(x) =
dm

dxm
ζ0(x) (m = 1, 2, · · · ).

so we have

∂�(θ, b)

∂b
=

n∑
i=1

ζ1
{
bγTj (θ)zi

}
γTj (θ)zi

∂�(θ, b)

∂θk
= −n

p∑
i=1

γTi (θ)S0

[
Γ(θk)

]
i

γTi (θ)S0γi(θ)
+ b

n∑
i=1

ζ1
{
bγTj (θ)zi

} [
Γ(θk)

]T
j
zi

where θk =
(
θ1, · · · , θk + π

2
, · · · , θQ

)T
and [A]k denotes the kth column of the matrix

A.
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APPENDIX D

THE GRADIENT OF �(Θ3) IN (4.12).

Before we calculate the partial derivatives, we introduce the vec(·) operator which
stacks the columns of a matrix and the v(·) operator which only stacks the upper

triangular of a matrix. We denote the [p(p + 1)/2] × p2 elimination matrix by H

such that v(Ω) = Hvec(Ω). The computation of the partial derivatives is lengthy but

straightforward:

∂�(Θ3)

∂b
=

n∑
i=1

ζ1(bγ
T
j zi)γ

T
j zi

∂�(Θ3)

∂ρ
= −n

2
1p +

n

2
diag{D ◦ (ASA)T}+ b

∂γTj
∂ρ

n∑
i=1

ζ1(bγ
T
j zi)zi

∂�(Θ3)

∂Au

= −n(DAS0)u + b
∂γTj
∂Au

n∑
i=1

ζ1(bγ
T
j zi)zi

where ◦ is the elementwise product, Bu is defined asBu = (b12, b13, b23, · · · , b1p, · · · , bp−1,p)T

for a p× p matrix B. To get the derivatives of γTj with respective ρ and Au, we con-

sider the partial derivative of vecT (Γ) with respective ρ and Au. By some algebra, we

have

∂vecT (Γ)

∂ρ
=

∂vT (V )

∂ρ

∂vecT (Γ)

∂v(V )
= Ddiag

{
eT1 , e

T
2 , · · · , eTp

}
(A⊗ A)HT ∂vec

T (Γ)

∂v(V )

∂vecT (Γ)

∂Au

=
∂vT (V )

∂Au

∂vecT (Γ)

∂v(V )

=

[
∂vecT (AT )

∂Au

{(DA)⊗ Ip}+ ∂vecT (A)

∂Au

{Ip ⊗ (DA)}
]
HT ∂vec

T (Γ)

∂v(V )

where V = Ω−1, ⊗ is the Kronecker product and ∂vecT (Γ)
∂v(V )

can be determined by the

Lemma 3.1.4 [80, pp. 295] since Γ is also the eigenvector matrix of V . Therefore,
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∂γT
j

∂ρ
and ∂vT (V )

∂Au
are the matrices consisting of p columns, from (j − 1)p+ 1 to j · p, of

∂vecT (Γ)
∂ρ

and ∂vecT (Γ)
∂Au

, respectively.
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