
SUBGRADIENT-BASED DECOMPOSITION METHODS

FOR STOCHASTIC MIXED-INTEGER PROGRAMS WITH SPECIAL STRUCTURES

A Dissertation

by

ERIC BENJAMIN BEIER

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2011

Major Subject: Industrial Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/4315047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SUBGRADIENT-BASED DECOMPOSITION METHODS

FOR STOCHASTIC MIXED-INTEGER PROGRAMS WITH SPECIAL STRUCTURES

A Dissertation

by

ERIC BENJAMIN BEIER

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Lewis Ntaimo
Committee Members, Sergiy Butenko

Wilbert Wilhelm
Donald Friesen

Head of Department, César Malavé

December 2011

Major Subject: Industrial Engineering



iii

ABSTRACT

Subgradient-based Decomposition Methods

for Stochastic Mixed-integer Programs with Special Structures. (December 2011)

Eric Benjamin Beier, B.S., Lamar University;

M.E., Texas A&M University

Chair of Advisory Committee: Dr. Lewis Ntaimo

The focus of this dissertation is solution strategies for stochastic mixed-integer programs

with special structures. Motivation for the methods comes from the relatively sparse num-

ber of algorithms for solving stochastic mixed-integer programs. Two stage models with

finite support are assumed throughout. The first contribution introduces the nodal deci-

sion framework under private information restrictions. Each node in the framework has

control of an optimization model which may include stochastic parameters, and the nodes

must coordinate toward a single objective in which a single optimal or close-to-optimal

solution is desired. However, because of competitive issues, confidentiality requirements,

incompatible database issues, or other complicating factors, no global view of the system

is possible.

An iterative methodology called the nodal decomposition-coordination algorithm

(NDC) is formally developed in which each entity in the cooperation forms its own nodal

deterministic or stochastic program. Lagrangian relaxation and subgradient optimization

techniques are used to facilitate negotiation between the nodal decisions in the system with-

out any one entity gaining access to the private information from other nodes. A computa-

tional study on NDC using supply chain inventory coordination problem instances demon-

strates that the new methodology can obtain good solution values without violating private

information restrictions. The results also show that the stochastic solutions outperform the

corresponding expected value solutions.
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The next contribution presents a new algorithm called scenario Fenchel decomposition

(SFD) for solving two-stage stochastic mixed 0-1 integer programs with special structure

based on scenario decomposition of the problem and Fenchel cutting planes. The algo-

rithm combines progressive hedging to restore nonanticipativity of the first-stage solution,

and generates Fenchel cutting planes for the LP relaxations of the subproblems to recover

integer solutions.

A computational study SFD using instances with multiple knapsack constraint struc-

ture is given. Multiple knapsack constrained problems are chosen due to the advantages

they provide when generating Fenchel cutting planes. The computational results are promis-

ing, and show that SFD is able to find optimal solutions for some problem instances in a

short amount of time, and that overall, SFD outperforms the brute force method of solving

the DEP.
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CHAPTER I

INTRODUCTION

Stochastic programming (SP) is a branch of mathematical programming that seeks opti-

mal solutions to mathematical optimization problems containing uncertain data. The field

of stochastic programming includes two stage stochastic problems, multistage stochastic

problems, and problems with chance constraints. This dissertation considers two stage

stochastic problems and that is the focus here. Two stage stochastic programs are SPs with

two distinct sets of decision variables: a first-stage decision vector representing the “here

and now” decisions and a vector of second-stage decision variables, usually called recourse

decisions, which do not have to be decided upon until after the uncertainty in the problem

data has been realized. The general form of a two stage stochastic program is given below:

SP1 : Min c>x+ E[f(ω̃, x)]

s.t. Ax ≥ b

x ∈ Xn1 ,

(1.1)

where E[·] denotes the expectation, and for an outcome ω of ω̃

f(ω, x) = Min q(ω)>y(ω)

s.t. W (ω)y(ω) ≥ h(ω)− T (ω)x

y(ω) ∈ Y n2 .

(1.2)

In the first stage of SP1 (1.1), x denotes the vector of first-stage decisions, c ∈ Rn1 denotes

the first-stage objective cost vector, A ∈ Rm1×n1 denotes the first-stage constraint matrix,

This dissertation follows the style of IIE Transactions.
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b ∈ Rm1 denotes the first-stage right-hand side vector, and Xn1 denotes special restrictions

on the first-stage decisions (such as integral restrictions and upper and lower bounds.) In

the second stage of SP1(1.2), f(ω, x) is called the recourse function, y(ω) denotes the

recourse decision vector for scenario ω, q(ω) ∈ Rn2 is the second-stage objective cost

vector, W (ω) ∈ Rm2×n2 is the recourse matrix, T (ω) ∈ Rm2×n1 is the technology matrix,

h(ω) denotes the second-stage right hand side, and Y n2 denotes special restrictions on the

recourse decisions. In this work, the following assumptions are made on SP1:

(A1) The random variable ω̃ follows a discrete distribution with finite support Ω.

(A2) The first-stage feasible set {Ax ≥ bi, x ∈ Xn1} is nonempty.

(A3) The second-stage feasible set {Wy(ω) ≥ h(ω)− T (ω)x, y(ω) ∈ Y n2} is nonempty

and bounded for all feasible first-stage x.

Assumption A1 ensures that the formulation is tractable, A2 guarantees the existence

of a feasible solution, and A3 is called the “relatively complete recourse” assumption,

which guarantees feasibility of the recourse function for all feasible x. Satisfying A3 can

always be accomplished through careful modelling of the problem of interest, such as the

imposition of suitably penalized artificial variables to ensure constraint feasibility. Given

Assumption A1, let K = |Ω| and assign an ordering k = 1, . . . , K to each realization

ω ∈ Ω, and let pk denote the probability of outcome k. Then (1.1) can be restated:

SP2 : Min c>x+
K∑
k=1

pkf(k, x)

s.t. Ax ≥ b

x ∈ Xn1

(1.3)

where, for realization k = 1, . . . , K, f(k, x) is
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f(k, x) = Min qk>yk

s.t. W kyk ≥ hk − T kx

yk ∈ Y n2 .

(1.4)

Formulation (1.4) represents the general form of a two stage stochastic program with

finite support, where realization k dictates the data for the matrices from the multivariate

random variable. When the sets Xn1 and Y n2 require x and yk to be continuous variables,

SP2 is referred to as a stochastic linear program (SLP). If either set requires all or part of

the decision variables to be integer, SP2 is referred to as a stochastic mixed-integer program

(SMIP). In order to generate tractable problem formulations, the number of realizations can

be limited by restricting how many of these matrices are described by random variables.

When the recourse matrix W k = W,k = 1, . . . , K, the SP is said to have fixed recourse

and otherwise it has random recourse. Similarly, SP2 with T k = T, k = 1, . . . , K are said

to have fixed technology.

Another classification of SP2 considers feasibility of the recourse function. When

f(x, k) is feasible for any x ∈ R SP2 is said to have complete recourse, and the weaker

assumption, relatively complete recourse was already introduced as assumption A3. A

special case of complete recourse problems is called simple recourse. In simple recourse

models n2 = 2n1 and the recourse matrix W k = [I,−I] ∀k (where I denotes the identity

matrix). Two stage SPs with simple recourse have special properties and are among the

simplest SPs to solve.

SP2 can be reformulated as the following deterministic equivalent problem (also re-

ferred to as the extensive form):
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DEP: Min c>x+
K∑
k=1

pkqk>yk (1.5a)

s.t. Ax ≥ b (1.5b)

T kx+W kyk ≥ hk, k = 1, 2, . . . , K (1.5c)

x ∈ X, yk ∈ Y, k = 1, 2, . . . , K. (1.5d)

DEP can be solved directly using a suitable off the shelf optimizer, providing the optimal

solution to (1.3). However, for even moderately dimensioned problems, solving 1.5 directly

can be a daunting task, as the number of variables and constraints in (1.5c) and (1.5d)

grows exponentially in terms of K. For this reason, decomposition approaches are usually

required in order to find solutions in a reasonable amount of time.

There are two main approaches for decomposing SP2. The first, called stagewise de-

composition, involves relaxing the constraints defining the recourse function and approxi-

mating the value of the recourse function by linear approximations. The second approach,

called scenario-wise decomposition uses variable splitting on x allowing K scenario sub-

problems to be formulated. One benefit of scenario-wise strategies is that they can generally

be applied to multi-stage stochastic programs without much alteration.

In the following chapter, this work is motivated by discussing previous work concern-

ing solving SP2. As the theme of this dissertation is focuses on subgradient techniques

for solving SMIPs, a brief review of Lagrangian relaxation and subgradient optimization is

given. Next, some important theory regarding SLPs is reviewed including a description of

the two prevailing decomposition and solution strategies for solving SLP. Finally, some of

the major algorithms for solving SMIPs are reviewed.

Chapter III introduces the nodal decomposition-coordination (NDC) algorithm for

SMIPs. NDC is motivated by a nodal decision structure where each node represents an
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entity with its own optimization model. The nodes in the structure form a group with a

common objective, and each node owns its own optimization model whose parameters and

decision variables are known only to itself except for a small subset of the variables whose

values must be coordinated with some subset of the other nodes. NDC is developed in

order to coordinate these decision variables’s values and the algorithm is tested on a set of

instances describing a supply chain inventory coordination problem.

Chapter III develops a new algorithm called scenario Fenchel decomposition (SFD)

for solving SMIPs based on the progressive hedging algorithm (Rockafellar and Wets,

1991). The algorithm iteratively finds the optimal solution to the LP relaxation of the

SMIP using PHA, and then uses Fenchel cutting planes to separate the noninteger point

from the convex hull of the (integer) scenario subproblems. The algorithm is tested on a set

of randomly generated multidimensional knapsack problems. Finally, Chapter V summa-

rizes the contributions of this dissertation and describes the avenues for ongoing and future

research.
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CHAPTER II

LITERATURE REVIEW

This dissertation focuses subgradient based decomposition methods for stochastic integer

programs. This chapter reviews theory necessary for later chapters and summarizes cur-

rent state-of-the art approaches for solving stochastic programs. To begin, the concepts of

Lagrangian duality and subgradient optimization from linear programming are discussed

followed by a review of optimization methods for stochastic programs.

A. Lagrangian Duality and Subgradient Optimization

Lagrangian relaxation techniques are motivated by mathematical programs whose feasible

region includes a set of constraints which, if relaxed, would result in problem which is much

easier to solve than the original problem. Lagrangian relaxation is a technique commonly

used to relax these complicating constraints in order to have an easier problem to optimize

over. Consider the following linear program (LP):

PLP = min cx (2.1a)

s.t. Ax = b (2.1b)

Dx ≤ d (2.1c)

x ≥ 0. (2.1d)

Assume that constraint (2.1b) is a complicating constraint. Lagrangian relaxation is a well-

known method for relaxing complicating constraints from a LP or mixed-integer program

(MIP) into the objective. This is accomplished by relaxing the constraint into the objective

and penalizing deviations from the constraint. Performing Lagrangian relaxation on (2.1b)
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yields the following form:

PLR(λ) := min
x
cx+ λ(Ax− b)

s.t. Dx ≤ d

x ≥ 0.

(2.2)

where the vector λ is referred to as the Lagrangian multipliers. For a given value of λ,

PLR(λ) (2.2) is known as the Lagrangian relaxation problem. The Lagrangian dual is

formed by finding maximal Lagrangian multipliers for PLR(λ) (2.2). The Lagrangian dual

has the form

PLD := max
λ free

PLR(λ). (2.3)

Due to the presence of a maximization over the the Lagrangian dual problem is sometimes

referred to as the max-min dual problem.

The Lagrangian relaxation and Lagrangian dual problems are well studied in the liter-

ature. They have many properties that are useful in optimization techniques. (The proofs

for these theorems are well documented in the literature and textbooks. See for example

Bazaraa et al. (1993).) The first, known as the weak duality theorem for PLR(λ) readily

allows for computing a lower bound to the optimal solution of P .

THEOREM II.1. Given feasible solutions x to P and λ to PLR(λ), the following relation-

ship holds:

PLR(λ) ≤ PLP (2.4)

Given the weak duality theorem, the question arises of whether it is possible to guaran-

tee that a solution to PLD is optimal for PLP . This is known as the strong duality theorem,

and it is well-known to hold for linear programs of the form PLP .

THEOREM II.2. Assume the feasible region of PLP is nonempty and bounded and PLP

has a finite optimal and let the optimal values to PLD and PLP be P ∗LD and P ∗LP , respec-
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tively. Then

P ∗LD = P ∗LP . (2.5)

Theorem II.2 guarantees that for LPs, an optimum to PLP can be found by solving

PLD. The challenge in solving PLD is in resolving the outer maximization with the inner

minimization. A well-known method for solving the Lagrangian dual is to employ the use

of subgradient optimization. In order to apply subgradient optimization to the Lagrangian

dual problem, the following concavity theorem is necessary:

THEOREM II.3. Assume the feasible region of PLP is nonempty and bounded and PLP

has a finite optimal. Then PLR(λ) is a piecewise linear concave function of λ..

For smooth functions, maximization of a concave function can be done by any of sev-

eral Newton’s method-based algorithms. However, the piecewise linearity of the function

means that PLR(λ) is not everywhere-differentiable over its domain. Fortunately, given

concavity, an adaptation of Newton’s method known as subgradient optimization can be

used to solve PLD.

DEFINITION II.4. Given concave function g(λ), ξ is called a subgradient of g at λ̄ if

g(λ) ≤ g(λ̄) + ξ(λ− λ̄)

Showing that the Lagrangian-relaxed constraint Ax− b in satisfies the requirement for ξ is

a straightforward application of the theorem. The main idea of a subgradient approach is

to use a subgradient in lieu of a gradient in a Newton’s method based approach. A basic

subgradient optimization algorithm for PLD is formally stated in Figure 1.

Choosing a step size in Step 1 of the subgradient algorithm can be done in several

ways. Theoretically, any divergent series that satisfies
∑

t µ
t → ∞, µt → 0 as t → ∞

is sufficient, but the convergence rate of such a choice is usually too slow to be used in

practice. Instead, the step size µt = ρt UB−PLR(λt)
‖Axt−b‖2 , (where UB is an an upper bound on
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Subgradient Algorithm

Step 0 Select an initial point λ0. Let iteration counter t = 0.

Step 1 Let xt denote the inner minimization solution vector from solving PLR(λt). If

Axt − b = 0 stop. λt and xt are optimal for PLD. Otherwise, choose step size µt > 0.

Step 2 Let λt+1 = λt + µt(Axt − b) and return to Step 1.

Fig. 1. A Subgradient Optimization Algorithm

the optimal solution) is typically chosen in practice, as the rate of convergence is faster,

but optimality is not guaranteed. This method is particularly popular when applying La-

grangian relaxation to integer programming problems as optimality cannot be guaranteed

for general integer programs because Theorem II.2 does not hold, introducing a duality gap

between the optimal solution of the Lagrangian dual and the original problem. For details

on the choice of a step size in subgradient optimization methods, see Bazaraa et al. (1993)

or Nemhauser and Wolsey (1999).

A practical problem is often experienced by researchers employing subgradient opti-

mization. If the step size in subsequent iterations is too large, the subgradient step calcu-

lation can return solutions that move between a small number of candidates with no im-

proving solution. This phenomenon is known as solution oscillation, and can be overcome

by the introduction of a regularization term into the objective. The resulting augmented

Lagrangian problem is formally stated as
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PALR(λ) := min
x
cx+ λ(Ax− b) +

ρ

2
|Ax− b|2

s.t. Dx ≤ d

x ≥ 0

λ free,

(2.6)

where ρ is a user-defined scalar. The quadratic regularization term in the objective seeks

to keep the subgradient ascent direction from moving too far from the current xk, thus

reducing the liklihood of solution oscillations in an iterative approach. For details on aug-

mented Lagrangian approaches see, for example Ruszczyński (1986), Rockafellar (1976)

or Ruszczyński (1995)

B. Stochastic Linear Programming

Next, consider instances of (1.3) in which both the first-stage variables (x) and second-stage

variables (y) are continuous. These so called stochastic linear programs (SLP) are among

the simplest SPs to solve because when y ∈ R, the expected recourse function E[f(ω̃, xN)]

is convex Wets (1974).

The first formulation of a stochastic linear program is generally credited to George

Dantzig (Dantzig, 1955), where he introduced the general form of a stochastic linear pro-

gram and pointed out the special structure of the formulation. It wasn’t until much later

that SLP theory was developed that allowed for efficient decomposition strategies for SLPs.

The information contained in this chapter only touches on the basics of stochastic program-

ming. For a thorough treatment, see Birge and Louveaux (1997), Ruszczyński and Shapiro

(2003) or Shapiro et al. (2009).

In general, decomposition methods for two-stage SLPs fall into two categories. The

first, discussed in Section 1 is called stage-wise decomposition which adapts theory from
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Benders decomposition (Benders, 1962) in order to decompose the problem into a single

master problem representing the first-stage decisions and one subproblem for each scenario

which contains the second-stage decisions. The second is called stagewise decomposition,

which uses variable splitting on the first-stage variables to decompose the problem into one

subproblem for each scenario.

1. Stage-wise Decomposition

One of the most well-known decomposition approaches for SLP is Benders decomposition

(Benders, 1962). Notice that the dual of 1.5 exhibits a block-angular structure (Dantzig

and Wolfe, 1960), which is amenable to Dantzig-Wolfe decomposition (DWD) (Dantzig

and Wolfe, 1961). Benders decomposition is a generalized programming method that takes

advantage of dual block angular structures and is often considered to be a dual algorithm to

DWD. Benders decomposition was first applied to stochastic programs with the develop-

ment of the L-shaped algorithm Slyke and Wets (1969). L-shaped methods get their name

because of the shape that the first-stage (x) decision vectors make with each set of scenario

constraints 1.5c-1.5d in the DEP formulation 1.5.

The L-shaped method is an outer linearization technique which relaxes the second-

stage constraints 1.5c-1.5d from DEP and replaces them with linear approximations derived

from scenario subproblems. With this in mind, the L-shaped master problem is defined as

MP : Min c>x+ θ (2.7a)

s.t. Ax ≥ b (2.7b)

αtx+ θ ≥ βt t = 1, . . . , τ (2.7c)

x ∈ Xn1 (2.7d)
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where the optimality cuts 2.7c are derived from dual vectors of the subproblems:

SP(k, x̂) = Min qk>yk

s.t. W kyk ≥ hk − T kx̂

yk ∈ Y n2 .

(2.8)

The L-shaped algorithm is formally stated in Figure 2.

L-Shaped Algorithm

Step 0 Initialize. τ ← 0, ub←∞, lb← −∞. Solve MP to get solution x̂.

Step 1 Solve Subproblems. Solve SP(k, x̂) ∀k. Compute πk, the dual vector. Compute

βτ =
∑K

k=1 π
khk and ατ =

∑K
k=1 π

kT k

Compute ub = min{ub, c>x+
∑K

k=1 p
kf(k, x)}

If ub updated, record xτ as incumbent.

Step 2 Add MP cut and solve. Add cut ατx + θ ≥ βτ to MP. Solve MP, returning

solutions x̂ and θ̂ Compute lb = max{lb, c>x̂+ θ}

Step 3 Check termination conditions. If ub − lb < ε, stop. Report incumbent as

ε-optimal. Else, τ ← τ + 1. Go to Step 1.

Fig. 2. The L-Shaped Algorithm

Several modifications to the L-shaped algorithm exist. The form given is the classic

single cut L-shaped algorithm algorithm. Instead of adding a single cut to MP at each

iteration in Step 2, multiple cuts can be added to the MP at each iteration. At each iteration,
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the multicut L-shaped algorithm of Birge and Louveaux (1988) adds a cut to the master

program for each subproblem k = 1, . . . , K. Theoretically, the benefits of the multicut

version over the single cut version are a reduction in the number of L-shaped iterations, but

in practice, the larger size of the MP makes choosing the best option problem dependent.

Additionally, if the relatively complete recourse assumption (Assumption (A3)) does

not hold, feasibility cuts can be implemented to force the master problem to find feasible

first-stage solutions. Consider the situation where a subproblem k is infeasible with the

given x̂ solution in Step 1. In this case, Step 2 can be modified to compute a feasibility cut

based on the dual extreme ray, which cuts off that x̂ from the feasible region of first-stage

decisions. A complete treatment of the L-shaped algorithm can be found in Slyke and Wets

(1969).

An important extension to stage-wise decomposition approaches is the regularized L-

shaped algorithm Ruszczyński (1986). This method augments MP (2.7) with a quadratic

term similar to that seen in the augmented Lagrangian relaxation problem. Direct imple-

mentations of the L-shaped algorithm can result in a sequence of first-stage x points which

converge slowly toward the optimum due to the nature of simplex-based approaches for

solving the MP. The regularized L-shaped algorithm seeks to eliminate this inefficiency by

penalizing new solutions that step too far from the current incumbent.

One final extension of the L-shaped algorithm involves finding solutions when K be-

comes too large for direct application of the L-shaped algorithm. In this case a sampling

method such as the stochastic decomposition algorithm Higle and Sen (1991) can be used.

The algorithm is an internal sampling method that adds another scenario realization in each

iteration to approximate the value of the expected recourse function. Exterior sampling

methods, where a new sample of the random variables is drawn at each iteration are referred

to as sample average approximation (SAA) methods. For a review of SAA algorithms, see

Shapiro (2003).
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2. Scenario-wise Decomposition

As discussed, stage-wise decomposition strategies seek to exploit the temporal form of

a two stage SMIP. The L-shaped method relaxes the second-stage constraints (1.5c) and

(1.5d) and iteratively performs an outer linearization technique, generating the feasibility

cuts (2.7c). In scenario-wise decomposition approaches, scenario subproblems are formed

by copying the first-stage x decision vector K times using variable splitting, and a La-

grangian relaxation approach is typically used to guarantee a feasible solution at termina-

tion.

Consider the form of DEP (1.5). The first-stage decision vector x can be thought of as

“complicating” variables in the sense that if those variables did not exist, the problem would

be directly decomposable into a subproblem for each scenario k = 1, . . . , K consisting of

only the second-stage decisions y. Scenario-wise decomposition approaches seek to find

optimal solutions by using variable splitting on the x variables, giving each scenario k its

own xk variable. This strategy can be thought of as moving the first-stage decisions into the

second stage where the probability measure acts on the objective coefficients in the same

way as it does the yk variables. Following this approach yields the following form:

VSDEP: Min
K∑
k=1

pkck>xk + qk>yk (2.9a)

s.t. Axk ≥ b k = 1, 2, . . . , K (2.9b)

T kx+W kyk ≥ hk, k = 1, 2, . . . , K (2.9c)

x ∈ X, yk ∈ Y, k = 1, 2, . . . , K. (2.9d)

VSDEP decomposes naturally into a subproblem for each k, but solving the resulting

subproblems returns an implementable solution in the general case since the xk solutions

returned cannot be translated into a single optimal x solution to DEP. Requiring equality in
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the xk solutions is a concept known as nonanticipativity. Nonanticipativity is the restriction

that the first-stage (known as here-and-now) decisions must be decided before the realiza-

tion of the random variable is known in the second stage. In the case of scenario-wise

decomposition strategies, nonanticipativity must be enforced explicitly with the addition

of nonanticipativity constraints. Several forms of nonanticipativity exist. Three forms re-

ported in Caroe (1998) are

xk − xk+1 = 0, k = 1, . . . , K − 1

xK − x1 = 0

(2.10a)

xk −
K∑
s=1

psxs = 0, k = 1, . . . , K (2.10b)

xk − xs = 0, k = 1, . . . , K;

s ∈ {1, 2, . . . , K}.
(2.10c)

The form given in (2.10a) represents a cyclical form, equation (2.10b) gives a form

of nonanticpativity in expectation, and (2.10c) chooses a single representative scenario and

enforces that value across all scenarios. In this dissertation, the “in expectation” form given

in (2.10b) will be used. Adding nonanticipativity constraints of the form (2.10b) to VSDEP

(2.9) yields the following deterministic equivalent program.
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SWDEP: Min
K∑
k=1

pkck>xk + qk>yk (2.11a)

s.t. Axk ≥ b k = 1, 2, . . . , K (2.11b)

T kx+W kyk ≥ hk, k = 1, 2, . . . , K (2.11c)

xk −
K∑
s=1

psxs = 0, k = 1, 2, . . . , K (2.11d)

x ∈ X, yk ∈ Y, k = 1, 2, . . . , K. (2.11e)

An optimal solution to DEP2 is the solution vector (x̄, yk) where x̄ =
∑K

k=1 p
kxk. Solv-

ing SWDEP directly is harder than solving DEP since K constraints and K variables have

been added to the problem. However, by using Lagrangian relaxation, SWDEP can be

reformulated into a form whose feasible region is decomposable into K subproblems.

Performing the variable substitution x̄ =
∑K

k=1 p
kxk, relaxing the nonanticipativity con-

straints (2.11d) via Lagrangian relaxation and introducing the Lagrangian penalty vector

λ = {λ1, λ2, . . . , λK} yields the following Lagrangian relaxation formulation:

DEPLR(λ) : Min
K∑
k=1

pkck>xk + qk>yk + λk(xk − x̄) (2.12a)

s.t. Axk ≥ b, k = 1, 2, . . . , K (2.12b)

T kx+W kyk ≥ hk, k = 1, 2, . . . , K (2.12c)

x ∈ X, yk ∈ Y, k = 1, 2, . . . , K. (2.12d)

As with the deterministic case, the Lagrangian dual function becomes

DEPLD = Max
λ free

DEPLR(λ). (2.13)
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For SLPs, subgradient optimization can now be applied to find an optimal solution to SP2

by solving DEPLD.

The progressive hedging algorithm (PHA) presents an augmented Lagrangian ap-

proach for solving SP2 (Rockafellar and Wets, 1991). Adding a quadratic regularization

term yields the following augmented form:

DEPALR(λ) : Min
K∑
k=1

pkck>xk + qk>yk + λk(xk − x̄) +
ρ

2
|xk − x̄|2

s.t. Axk ≥ b, k = 1, 2, . . . , K

T kx+W kyk ≥ hk, k = 1, 2, . . . , K

x ∈ X, yk ∈ Y, k = 1, 2, . . . , K.

(2.14)

Notice that DEPALR now has a feasible region that is decomposable into K subprob-

lems. Assuming an iterative procedure (with counter t) for updating λk as discussed in the

subgradient optimization review define the PHA subproblem as

SPkPHA(λ) : Min pk[ck>xk + qk>yk + λk(xk − x̄t) +
ρkt
2
|xk − x̄t|2] (2.15a)

s.t. Axk ≥ b, k = 1, 2, . . . , K (2.15b)

T kx+W kyk ≥ hk, k = 1, 2, . . . , K (2.15c)

x ∈ X, yk ∈ Y, k = 1, 2, . . . , K, (2.15d)

where x̄t is calculated by taking the weighted sum of the previous iteration’s solution vector

and ρkt is chosen to keep xk from moving too far from x̄t from one iteration to the next.

Given this formulation, PHA is formally stated in Figure 3.
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PHA Algorithm

Step 1: Choose an initial x̄0, step sizes ρk0 and multipliers λk0 and ε > 0. Set PHA

iteration counter t = 0.

Step 2: Solve PkLP (λk) ∀k (2.15). Let the solutions be (x̂kt , ŷ
k
t , λ̂

k
t ). Update x̄t+1 =

K∑
k=1

pkx̂kt .

Step 3: Update λt+1 = λt + ρk(x̂kt − x̄t+1). If
∑K

k=1 p
k||x̂kt − x̄t|| < ε, (x̂kt , ŷ

k
t , λ̂

k
t ) is

optimal for P k
LP (λk); Report optimal solution variables x̂kt and ŷkt and corresponding

objective
K∑
k=1

P k
LP (λk). Otherwise increment t. Go to Step 2.

Fig. 3. The Progressive Hedging Algorithm

C. Stochastic Mixed-Integer Programming

To this point, our treatment of SP has assumed that all variables are continuous. Now con-

sider the case when the sets Xn1 and Y n2 of SP2 (1.3) restrict some or all of the variables

to be integer, in which case SP2 becomes a SMIP. SMIPs are among the most difficult op-

timization models to solve because the expected recourse function E[f(ω̃, x)] of a SMIP

with integer restrictions included in the set Y n2 is in general discontinuous and noncovex

(Blair and Jeroslow, 1982) (Birge and Louveaux, 1997) (Schultz, 1993). This section sum-

marizes some of the important algorithms for SMIP. An extensive review article can be

found in Haneveld and van der Vlerk (1999).

Because solving a SMIP is such a difficult prospect, algorithmic development tends to
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exploit specific types of variables in each stage in order to be able to find solutions within

a reasonable amount of time. Thus algorithms for SMIP can be classified by the types of

variables that they work with. Table I simplifies this classification the major algorithms

discussed here. The first two columns describe the types of variables allowed in the algo-

rithm: C denotes continuous variables, G denotes pure integer, MG denotes mixed-integer,

B denotes pure binary and MP denotes mixed-binary. The third is the name of the algorithm

and author.

Table I. Classification of SMIP algorithms
First Second
Stage Stage Algorithm
Any C L-shaped algorithm (Slyke and Wets, 1969)
C G Grobner basis enumeration (Shultz et al., 1998)

G Branch-and-bound on tender variables (Ahmed et al., 2004)
B C Branch-and-fix coordination (Alonso-Ayuso et al., 2003)

B Dynamic programming (Lageweg et al., 1985)
MB Disjunctive decomposition (D2) (Sen and Higle, 2005)
MB Branch-and-bound with lift and project cuts (Caroe and Tind, 1997)
MG Integer L-shaped (Laporte and Louveaux, 1993)

MG G F-dual L-shaped algorithm (Caroe and Tind, 1998)
MG Dual decomposition(Caroe and Schultz, 1999)
MG Stochastic branch-and-bound (Norkin et al., 1998)

Examination of Table I shows that the types of variables in the SMIP dictate the so-

lution strategy used. The simplest case of SMIP is whenever the second stage has all

continuous variables, in which case the expected recourse function E[f(ω̃, x)] retains its

structure and the L-shaped algorithm can be used. However, integer variables in the first

stage make convergence of the L-shaped algorithm slow in practice.

While the L-shaped algorithm is not able to solve general SMIP models, many re-

searchers adopt the stagewise decomposition framework when developing new algorithms



20

for solving SMIPs. The integer L-shaped method (Laporte and Louveaux, 1993) merges

branch-and-cut with the L-shaped algorithm in order to guarantee convergence of SMIPs

with binary first-stage variables and mixed-binary variables in the second stage. The algo-

rithm begins by relaxing integrality restrictions and initializing a branch-and-bound tree.

The algorithm proceeds by solving the LP relaxation via the L-shaped method and then

branching on variables which violate the integrality restrictions. An illustrative example is

given, but no computational results are reported.

The D2 algorithm (Sen and Higle, 2005) has proven very capable of solving SMIPs

with binary first-stage and mixed-binary second-stage. The algorithm solves the first-stage

problem as a mixed-binary problem and the linear relaxations of the second-stage sub-

problems. The algorithm then uses lift-and-project cuts on the scenario subproblems in

order to eventually arrive at an optimal solution. Computational experiments using the D2

algorithm can be found in Ntaimo and Sen (2008).

The F-dual L shaped algorithm of Caroe and Tind (1998) adapts the L-shaped al-

gorithm to solve SMIP problems with mixed-integer first-stage variables and pure integer

second-stage variables. Instead of using LP-duality ideas to generate optimality cuts, the

authors use IP duality theory. The tradeoff is that the master problem becomes nonlinear,

and the authors suggest some modifications that make the master problem easier to solve

at the expense of optimality.

The next algorithm reviewed is a branch-and-bound algorithm that exploits lift-and-

project cuts (Caroe and Tind, 1997). The algorithm iteratively solves the linear relaxation

of SMIP and generates lift-and-project cuts Balas et al. (1993) to recover integer solutions.

When SMIP has fixed recourse, the authors offer a means by which the cuts generated

for one scenario can be translated to another scenario. Theory is developed for SP2 with

continuous first-stage variables, then extended to the binary first-stage case by employing

branch-and-bound. No computational results are reported.
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A dynamic programming approach can be used to solve some instances of SMIP with

pure binary first and second-stage variables (Lageweg et al., 1985). The approach requires

that the second-stage problem has a very special structure that can be solved using a dy-

namic programming approach. Since the set of problems solvable by the algorithm is, the

method has not seen wide-spread application, but applications to stochastic scheduling, bin

packing and multi-dimensional knapsack problems were demonstrated.

The stochastic branch-and-bound algorithm (Norkin et al., 1998) is able to accommo-

date mixed-integer variables in both the first and second stage of a SMIP. This enumerative

method iteratively partitions the feasible region, forms estimates of the objective based on

those subsets, and then removes subsets that contain no feasible points. The estimates of

the objective are statistical estimates and optimality cannot be finitely guaranteed, but sta-

tistical estimates of the optimality gap are computed at each iteration. Convergence of the

algorithm is illustrated by tests on randomly generated instances from a financial planning

application.

Another enumeration based approach uses the Gröbner basis (Shultz et al., 1998).

The method divides the first-stage feasible region into a countable number of sections by

using properties obtained from the expected recourse function. The authors then make

the argument that the optimal solution must be contained in this countable set, and an

enumeration algorithm is given to find the optimum from amongst the set.

Ahmed et al. (2004) introduce a branch-and-bound approach on the tender variables.

The tender variables are defined as right hand side (hk−T kx) of the second-stage problem.

The authors assume fixed h and T matrices for their method. The algorithm reformulates

SMIP into a global optimization problem in terms of the tender variables. The reformu-

lation results in a semicontinuous function, and the algorithm proceeds by breaking the

function into continuous pieces and searching them for the optimum. Computational re-

sults compare the performance of the proposed algorithm with other methods from the
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literature.

The final two algorithms for SMIP use a scenario-wise decomposition of SP2. The

branch-and-fix coordination algorithm (BFC) of Alonso-Ayuso et al. (2003) can be used

to solve SMIPs with binary first-stage variables and continuous second-stage variables.

The method branches on the first-stage x solutions and uses Dantzig cuts to fix some of

the variables which have not been fixed by the branch-and-bound tree. Computational

experiments are reported for some large scale models.

A well-known algorithm for solving SMIPs using a scenario-wise decomposition

framework is the dual decomposition algorithm (Caroe and Schultz, 1999). The method is

applicable to problems with mixed-integer variables in both the first and second stages. The

problem is decomposed through the use of nonanticipativity constraints and Lagrangian re-

laxation. The Lagrangian dual of the LP-relaxation of the problem is then solved, and

branch-and-bound is used in order to recover integer solutions. A computational study

demonstrates the effectiveness of the algorithm.
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CHAPTER III

NODAL DECOMPOSITION-COORDINATION FOR SMIP WITH PRIVATE

INFORMATION

A. Introduction

Traditional optimization problems assume that there exists some omnipotent governing

body that has access to all the operational information of the system being examined. This

coordinating decision maker can then take all of this information and find a solution that

is globally optimal for the system. In reality, many systems are composed of independent

bodies that are unable or unwilling to reveal their private information regarding their op-

erations to such a decision maker. Thus finding a globally optimal solution when private

information restrictions are in place is an important topic in many areas of operations re-

search, including supply chain coordination and homeland security. One application where

private information is often ignored is in supply chain coordination of inventory and pro-

duction schedules. An issue in supply chain management is inventory control, which deals

with decisions related to how much inventory to keep at each facility and when to reorder

so as to minimize overall inventory ordering and holding costs, service levels, or other

relevant objectives.

Problems that arise when attempting global coordination can be very complex even

when dealing with a single facility. The difficulty is augmented when expanding to supply

chains, and further complicated when considering competitors in the same supply chain,

and unwillingness (or practical difficulties) to share critical information. For instance, de-

mand rates and transport times are random variables, while inventory holding costs, pro-

The notation regarding Lagrangian relaxation in this chapter differs from that used in
Chapter II.
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duction capacity, operational costs, budgets and lead times are typically private information

between competitors. Also, the amount of information that must flow from all firms in the

supply chain to the central decision maker can be very large and frequent. It is evident

from the literature that private data restrictions in coordinated systems are a common con-

cern. However, there still exists a need for methodologies to solve such problems without

relaxing this private information requirement and information uncertainty.

This paper introduces nodal decomposition-coordination (NDC) for optimization

models with the goal of facilitating global coordination under private information restric-

tions and stochastic demand. The approach presented is an iterative methodology, whereby

each entity in the cooperation forms its own nodal problem, which can be a mixed-integer

program (MIP) or stochastic mixed-integer program (SMIP). Lagrangian relaxation and

subgradient optimization techniques are used to facilitate negotiation between the nodal

decisions without any one entity gaining access to the private information of other entities.

In this coordinated system, optimal or close-to-optimal solutions for the system are desired.

This work makes the following contributions to the literature on optimization with

private information restrictions: a) stochastic programming model with private information

restrictions; b) NDC solution methodology for SMIP with private information restrictions;

c) application of the NDC method to supply chain inventory coordination; and d) computa-

tional results demonstrating that close-to-optimal solutions can be obtained using the NDC

method without compromising private information restrictions. To the best our knowledge,

this the first time private information restrictions have been applied to SMIP.

The rest of this paper is organized as follows: In the next section, relevant research

from the literature is reviewed. In Section C a model formulation is given for a general

problem. In Section D the foundation is developed for the NDC method for the general

problem and in Section E the NDC algorithm is presented. Section F introduces a sup-

ply chain inventory control model as a special case of the general model and the solution
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method is applied. Section G discusses solving the models, presents results and draws

conclusions.

B. Related Work

Some algorithms suggesting how to solve optimization problems when global sharing of

information is not allowed exist in the literature. Fox et al. (2000) explains some of the

emerging strategies in supply chain coordination, which employ agents outside of the chain

to coordinate the needs of organizations in the supply chain. The view taken in the paper

is one which considers each agent in the supply chain to be its own intelligent software

system. The authors suggest several traits that the next generation of agile planning systems

should address in order to meet the challenges required. They make the case that such

supply chain software must be distributed, dynamic, intelligent, integrated, responsive,

reactive, cooperative, interactive, anytime, complete, reconfigurable, general, adaptable,

and backwards compatible.

Shehory and Kraus (1998) takes a look at the problem of assigning a group of agents

to a group of tasks. They use a greedy heuristic algorithm for the set covering and set

partitioning problems to aid in grouping the agents into coalitions to solve the set of tasks

to be completed. They demonstrate the effectiveness of their algorithm on a simulation of

assigning a group of agents to a set of precedence constrained tasks.

Cruijssen et al. (2007) give a transportation example and explain how some of the in-

formation sharing concerns affect that industry. In their paper, they discuss the horizontal

cooperation practices in Flanders, Belgium. The study is survey based, and includes re-

sponses from 1537 logistic service providers in the Flemish region which asked them to

agree or disagree with 16 propositions concerning the implementation and effectiveness of

horizontal cooperation. Among the conclusions drawn is that even when customer infor-
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mation (which would ordinarily be closely guarded private information) is required to be

shared among competing companies, the potential reduction in costs and increase in profits

by cooperating with competing firms is attractive to most firms.

Jeong and Leon (2002a) derive a methodology by which to globally solve MIPs dis-

playing a structure that does not allow for some constraints to be globally viewed. The

authors term their methodology ‘cooperative interaction via coupling agents’ (CICA). In

such a problem structure, different entities in a system where a global optimal value is de-

sired are competing for some resource. The method involves using an artificial entity called

a ‘coupling agent’ to handle conflict resolution among entities vying for the use of a shared

resource. The work in Jeong and Leon (2002a) has been expanded upon in several other

papers. In Jeong and Leon (2003) the authors apply their CICA method to coordination of

a facility among business competing for use of the resource. In Jeong and Leon (2005) the

method is applied to solve the minimum makespan problem when a machine is required in

different steps in an assembly line. In Jeong and Leon (2002b) the method is applied to

a system where only two resources are available to produce a final product, but multiple

firms have a stake in the production line.

An interesting problem where private information is often ignored is in supply chain

coordination of inventory and production schedules. A scalable methodology is presented

in Chu and Leon (2009). The method involves using Lagrangian relaxation to take care

of constraints that would be private to certain firms in the supply chain and appropriate

Lagrangian penalty functions are developed to force the method toward a globally optimal

solution. However, the solution strategy presented does not take into consideration the

stochastic nature of the parameters in the model. In Chu and Leon (2008) this procedure is

applied to a deterministic supply chain model. This work develops a new decomposition-

coordination method for the stochastic setting and in essence extends the work of Chu and

Leon (2009). Further, the application describing supply chain coordination of inventory
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and production introduced in Chu and Leon (2009) is used to test the new methodology.

Schneeweiss and Zimmer (2004) describe a made to order production line in which co-

ordination between entities in the system is maintained through the use of external agents.

These external agents shield private information of each node from the other node. Gian-

noccaro and Pontrandolfo (2004) use a contract scheme with revenue sharing to coordinate

the efforts of the members in the supply chain while maintaining private information. How-

ever, such revenue sharing contract schemes have limitations in some industries, as pointed

out in Cachon and Lariviere (2005).

Other applications for which finding a globally optimal solution when private infor-

mation restrictions are in place exist. An example is in matters of homeland security. Chen

et al. (2004) provides a review of relevant areas where information is kept private in a co-

operative arrangement. Application areas mentioned include information sharing across

jurisdictional bounds, terrorist information collection, modeling and analysis, bioterrorism

applications, and border security. The paper proposes the use of current trends in data anal-

ysis and information sharing, including system interoperability, data mining, automated

event monitoring and visualization.

Phillips Jr. et al. (2002) explains structures where militaries, governments, and civilian

companies have to work together in crisis situations, and makes the case that military and

government agencies cannot always divulge information to the private sector. The focus

of the paper is on coalitions which are formed very quickly in the wake of a large scale

crisis such as a natural disaster or terrorist attack. Mendonca (2007) provides a critique

of coordination methods used to solve problems in the chaotic and multi-tasked situation

that arose in response to the 2001 World Trade Center attack and focuses on developing

a set of requirements for computer systems to allow interoperability in future emergency

situations. The paper concludes that for a system to be effective in responding to an ex-

treme disaster situation it needs to focus on the areas of categorization, search, assembly,
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constraint satisfaction, communication, and inference.

There is a limited bank of information in the literature regarding the addition of

stochastic data in formulations of supply chain models. In Santoso et al. (2005), the au-

thors apply sampling strategies based on the sample average approximation methodology

(Shapiro, 2003) to find high quality solutions to two supply chain coordination formula-

tions. Alonso-Ayuso et al. (2003) formulates a two stage binary supply chain problem with

the objective of maximizing expected profit. The model presents the production topology,

plant sizing, product selection, product allocation and vendor selection decisions as 0-1

variables in the first-stage, and a solution strategy based on the Branch-and-Fix Coordina-

tion strategy is proposed. Escudero et al. (1999) develops a model for a manufacturing,

assembly and distribution supply chain with uncertain demand and prices and uses a dual

approach splitting variable scheme to solve the formulation. Petrovic et al. (1999) use the

idea of fuzzy sets to handle stochastic parameters in a serial supply chain structure. The

next section introduces a general problem formulation for problems fitting the nodal deci-

sion structure.

C. Problem Formulation

Consider models with a special nodal decision structure in which each node is responsible

for optimally assigning its resources toward the node’s operations. In this framework, the

nodal structure faces some degree of uncertainty in the last node of the cooperation. Such

a model forms whenever a group of independent entities work together as a corporation or

alliance to reach the common goal of obtaining an optimal global solution to a problem

under uncertainty. Finding a global solution requires that independent nodal decisions

coordinate with other nodes. In this setting, this coordination is represented by a set of

resources or decisions called complicating or linking variables whose allocation must be
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coordinated with other nodes in the system. A pair of nodes who share linking variables

will be called neighbors and the neighbors of node i will be denoted N (i). In the system,

no node is allowed to gain knowledge of the operations (represented in the constraint and

objective function parameters) of any of its neighbors or any other nodes in the system.

1 2

6

5

3

4

Uncertainty

6

Uncertainty

Coordination 

with node 4

z46

Coordination 

with node 5

z56

Fig. 4. Graphical representation of nodal decision structure

Figure 4 depicts an example nodal structure with 6 nodes. The “Uncertainty” box

represents outside influences (exogenous uncertainty) on the system. For example, in the

case of a manufacturing setting demand for final product may not be directly controllable

by the system, and thus would fall into this category. The exploded view of node 6 at

the right emphasizes that there exist linking variables (represented by the double arrow)

between the neighboring node pairs 3 and 6 and 5 and 6. The single arrow at the bottom of

the node represents that some parameters from outside the system influence the operations

of the node.

The nodal decision problem, which takes the form of a two-stage SLP with special

private information constraints can now be formulated. Assume the structure describes a
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corporation withN nodes, numbered 1 toN . For the problems which fit into this modelling

framework the decision problems for nodes 1 throughN−1 take the form of a deterministic

MIP and the decision problem for node N takes the form of a SMIP. The vector zi will

denote the linking variables at node i. For example, in Figure 4, z6 is a vector consisting of

the variables z46 and z56. The nodal stochastic program with private information (NSP-PI)

restrictions can be given as follows:

NSP-PI : Min
N∑
i=1

(
c>i xi + d>i zi

)
+ E[f(ω̃, xN)] (3.1a)

s.t. Aixi +Gizi ≥ bi i = 1, . . . , N (3.1b)

xi ∈ Xi, zi ∈ Zi i = 1, . . . , N (3.1c)

ci, di, Ai, Gi, bi, xi ∈ P(i) i = 1, . . . , N, (3.1d)

where E is the mathematical expectation operator, ω̃ is a multivariate random variable, and

for each outcome ω of ω̃, the recourse function f(ω, xN) for node N is defined as

f(ω, xN) = Min qN(ω)>yN(ω) (3.2a)

s.t. WNyN(ω) ≥ hN(ω)− TN(ω)xN (3.2b)

yN(ω) ∈ Y (3.2c)

qN(ω),WN , TN(ω), VN(ω), hN(ω), yN ∈ P(N). (3.2d)

In NSP-PI (3.1), xi ∈ Rnxi and zi ∈ Rnzi are the first-stage decision vectors for node

i, while ci ∈ Rnxi and di ∈ Rnzi are the first-stage cost vectors. Ai ∈ Rm1
i×nxi and Gi ∈

Rm1
i×nzi are the first-stage constraints and bi ∈ Rm1

i is the first-stage righthand side. The

setsXi and Zi impose possible integer (binary) restrictions on all or some components of xi
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and zi, respectively, in constraints (3.1c). In constraint (3.1d) the set P(i) imposes private

information restrictions on the first-stage problem data for node i.

In the second-stage (recourse) problem (3.2), yN(ω) ∈ RnyN is the recourse decision

vector for node N and qN(ω) ∈ RnyN is the second-stage cost vector. WN ∈ Rm2
N×n

y
N

is the recourse constraint matrix, TN(ω) ∈ Rm2
N×n

x
N is the technology constraint matrix,

VN(ω) ∈ Rm2
N×n

z
N is the node linking constraint matrix, and hN(ω) ∈ Rm2

N is the second-

stage righthand side. The set YN imposes possible integer (binary) restrictions on all or

some components of yN in constraints (3.1c). Like constraint (3.1c), constraint (3.1d)

imposes private information restrictions on the second-stage problem data for node N .

In the above modeling framework the key issue is optimizing the first-stage decisions

(xi, zi) which have to be made without anticipation of future realizations of {qN(ω), TN(ω),

VN(ω), hN(ω)}. After having decided for (xi, zi) and observed {qN(ω), TN(ω), VN(ω),

hN(ω)}, the remaining decisions yN(ω) are made in an optimal way. The constraints (3.1d)

and (3.2d) are termed private information constraints and represent the restriction that the

operations taking place in each node of the system remain private to that node. The im-

position of this constraint causes the model shown to be impossible to formulate in this

explicit form, since no single node nor any overseeing entity is allowed to gather the infor-

mation required to formulate the model directly! For this reason, a nodal decomposition-

coordination approach that preserves the private information constraints will be necessary

in order to generate solutions. The following assumptions are made on NSP-PI:

(A1) The random variable ω̃ follows a discrete distribution with finite support Ω.

(A2) For each node i, the first-stage feasible set {Aixi + Gizi ≥ bi, xi ∈ Xi, zi ∈

Zi, ci, di, Ai, Gi, bi, xi ∈ P(i)} is nonempty.

(A3) For node N , the second-stage feasible set {WNyN(ω) ≥ hN(ω) − TN(ω)xN −

VN(ω)zN , yN(ω) ∈ Y, qN(ω), WN , TN(ω), VN(ω), hN(ω), yN(ω) ∈ P(N)} is
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nonempty and bounded for all feasible first-stage xN .

Assumption (A1) is required to make the problem tractable while assumption (A2) is re-

quired to guarantee the existence of an optimal solution. Assumption (A3) is the so-called

relatively complete recourse assumption in stochastic programming. This assumption can

easily be satisfied by modeling the problem with this assumption in mind, or by adding

appropriate artificial variables and corresponding induced constraints to the second-stage

problem to satisfy relatively complete recourse.

NSP-PI without the private information restrictions falls under two-stage SMIP with

recourse, which is still a vibrant area of study (Ruszczyński and Shapiro, 2003, e.g.). In

that case if the integer restrictions on the yN(ω)’s are relaxed, then the expected recourse

function E[f(ω̃, xN)] is a well-behaved piecewise linear and convex function of xi. Thus

Benders decomposition (Benders, 1962) is applicable (Wollmer, 1980). Otherwise, when

the second-stage variables involve integrality restrictions, E[f(ω̃, xN)] is lower semicontin-

uous with respect to (xN) (Blair and Jeroslow, 1982), and is generally nonconvex (Schultz,

1993). Thus SMIP problems are generally difficult to solve. In this case, in addition to

the computational difficulty that stems from SMIP, NSP-PI involves private information

restrictions. Thus the problem being addressed here is a much more difficult in general.

D. A Decomposition-Coordination Method

We now propose an iterative nodal decomposition-coordination method for NSP-PI that

allows for negotiation between the nodes in the supply chain. As mentioned previously,

formulating NSP-PI explicitly for all nodes is not possible due to the private information

constraints (3.1d) and (3.2d). Observe that the only decision variables linking two nodes

i and j in NSP-PI are zij , and that this variable affects only nodes i and j. These link-

ing variables can be considered as being ‘complicating’ variables in the sense that if each
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node’s decision was allowed to disagree with its neighbors, the problem would decompose

directly into N subproblems. Similar to Chu and Leon (2009), introduce the following

auxiliary variables to facilitate negotiation:

uij: Negotiation variable in node i’s subproblem denoting node i’s proposed value to

node j for variable zij (ui denotes the vector of uij variables.)

vij: Negotiation variable in node i’s subproblem denoting node j’s proposed value to

node i for variable zij (vi denotes the vector of vij variables.)

For a given node i, substitute the variables uij in (3.1) for zij to represent the node’s

complicating decision vector with its neighbor j, and vij for zij to denote the corresponding

decision vector for neighbor j. In order to solve the original problem, uij and vij must be

equal for each pair of neighboring nodes i and j. To achieve this, one can implement one

of several equivalent negotiation constraints. Two are given below:

uij = z̄ij (3.3a)

uij − vij = 0. (3.3b)

The first form (3.3a) forces equality of the negotiation variable in each subproblem to

some third value. The constraint works because uij is found in the subproblem of each pair

of neighboring nodes. In practice, the value z̄ij can be set by taking the average 1
2
(uij+vij),

which is the approach implemented here. The second constraint set is a constraint that

directly forces each pair of coordination variables to agree.

Using these new variables and equation, a variable splitting technique can be applied to

(3.1) to getN decoupled subproblems. The resulting subproblem for node i 6= N becomes:
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NSP-PI2(i) : Min c>i xi + d>i ui (3.4a)

s.t. Aixi +Giui ≥ bi (3.4b)

uij = z̄ij j ∈ N (i) (3.4c)

xi ∈ Xi, ui ∈ Zi, vi ∈ Zi (3.4d)

ci, di, Ai, Gi, bi, xi ∈ P(i) (3.4e)

and, for node N:

NSP-PI2(N) : Min c>NxN + d>NuN + E[f(ω̃, xN)] (3.5a)

s.t. ANxN +GNuN ≥ bN (3.5b)

uij = z̄ij j ∈ N (i) (3.5c)

xN ∈ XN , uN ∈ ZN , vN ∈ ZN (3.5d)

cN , dN , AN , GN , bN , xN ∈ P(N) (3.5e)

where, for a particular realization ω ∈ ω̃:

f(ω, xN) = Min qN(ω)>yN(ω) (3.6a)

s.t. WNyN(ω) ≥ hN(ω)− TN(ω)xN (3.6b)

yN(ω) ∈ Y (3.6c)

qN(ω),WN , TN(ω), VN(ω), yN(ω) ∈ P(N). (3.6d)

Lagrangian relaxation can now be applied to relax constraints (3.4c) into the objec-

tive. By choosing appropriate penalty parameters, negotiation between nodes i and j can
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be achieved. The solution procedure will require solving two subproblems at each node:

a coordinated subproblem which takes into account the propositions made by node (i)’s

neighbors by penalizing deviations from z̄ij in node (i)’s decisions, and a non-coordinated

subproblem that requires that the (i)’s neighbors receive exactly the compromise target

value z̄ij . In each iteration all nodes will first solve their non-coordinated problems. Then,

each node will solve their coordinated problem and pass their requests for order and de-

livery quantities to their neighbors for the next iteration. The procedure will be further

explained after these two subproblems are defined.

For each node i define the non-coordinated subproblem (NCP) as the optimization

problem specific to the node that is required to satisfy exactly the compromise value. For

consistency and convenience whenever a variable is treated as data, determined based on

the node (i)’s neighbors, it will be designated as such with the ˆ notation. Then substituting

for z̄ij in NSP-PI2(i) 3.4 for node i results in the following non-coordinated subproblem

for node 1 6= N :

NCP(i) : Min c>i xi + d>i ẑi (3.7a)

s.t. Aixi +Giẑi ≥ bi (3.7b)

xi ∈ Xi (3.7c)

ci, di, Ai, Gi, xi ∈ P(i) (3.7d)

and for node N :
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NCP(N) : Min c>NxN + d>N ẑN + E[f(ω̃, xN)] (3.8a)

s.t. ANxN +GN ẑN ≥ bN (3.8b)

xN ∈ XN (3.8c)

cN , dN , AN , GN , xN ∈ P(i) (3.8d)

An issue with feasibility can arise when solving NCP(i). Infeasibility can occur in

cases where the compromise value resulting from node (i)’s neighbor’s requests generates

value for the linking variables which causes NCP(i) to become infeasible. One method to

maintain feasibility is to add an artificial variable to 3.7b and penalize it in the objective.

This method is adopted later in the computational study section of this paper.

Next the coordinated subproblem (CP) needs to be defined. Contrary to NCP, the coor-

dinated problem for node i allows for deviations from the compromise quantities negotiated

with its neighboring nodes (j ∈ N (i)) in the cooperation. An augmented Lagrangian ob-

jective function is adopted for CP. Let µij denote the Lagrangian multipliers associated

with the negotiation constraints (3.3a) in CP for node (i)’s neighbors For each j ∈ N (i),

let the Lagrangian relaxed constraints be defined as

Uij = uij − ẑij. (3.9)
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Note that in the equation ẑij is known (data) based on calculations from node (i)’s neigh-

bors j ∈ N (i). Then CP for node i 6= N can be stated as follows:

CP(i) : Min c>i xi + d>i ui +
∑
j∈N (i)

(
µij|Uij|+

ξij
2
U2
ij

)
(3.10a)

s.t. Aixi +Giui ≥ bi (3.10b)

xi ∈ Xi, ui ∈ Zi (3.10c)

ci, di, Ai, Gi, xi ∈ P(i) (3.10d)

and for node N :

CP(N) : Min c>NxN + d>NuN +
∑

j∈N (N)

(
µNj|UNj|+

ξNj
2
U2
Nj

)
+ E[f(ω̃, xN)] (3.11a)

s.t. ANxN +GNuN ≥ bN (3.11b)

xN ∈ XN , uN ∈ ZN (3.11c)

cN , dN , AN , GN , xN ∈ P(N) (3.11d)

The term |.| in the objectives of (3.10) and (3.11) denotes the absolute value, and ξij is

a user defined scalar that keeps node i’s decisions from straying too far from the current

compromise solution ẑij .

Now consider the calculation of the µij penalties using a subgradient optimization pro-

cedure. To update the penalties using subgradient optimization, a lower and upper bound

on the global optimal value is required. However, due to the private data restrictions (con-

straints (3.10d)) it is not possible to know each node’s objective function value! A novel

way to calculate the bounds without violating the private data requirements will now be

presented.

PROPOSITION III.1. Let UB denote an upper bound on the global optimal value, and
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let NCP∗i denote the optimal value to NCP (3.7) for node i ∈ N . Then UB =
∑N

i=1NCP∗i

Proof. NCP∗i is an upper bound for each node i since a subset of the decision variables are

fixed at some feasible values. The result follows by summing the NCP∗i values for all the

nodes.

PROPOSITION III.2. Let LB denote a lower bound on the global optimal value, and

let CP∗i denote the optimal value to CP(i) (3.10) ignoring the augmented penalty terms

( ξij
2
U2
ij) for node i. Then LB =

∑N
i=1CP∗i

Proof. Since each nodal CP(i) is a relaxation of the original problem, by dropping the

penalty terms from the objective and summing over all the nodes the result follows.

While the bounds given in Propositions III.2 and III.1 would be appropriate for use as

the lower and upper bounds, doing so violates private information constraints (3.7d and

3.10d) since this would require nodes to give their optimal values to all other nodes. To

circumvent this problem, penalties will be passed between nodes during the negotiation

process. Intuitively, these penalties should be based on the difference between what is best

for the node and what would be best for the node’s neighbors. Thus, for each node i define

πi to be the compensation that node i would be willing to pay to have their optimal solution

accepted over the its neighbor’s proposed solutions. Then the bounds on the global optimal

value can be calculated by having all nodes i and j exchange the penalty values πi without

having to relate the objective values for either of its subproblems.

COROLLARY III.3. For each node i = 1, . . . , N , let LB and UB be as defined in

Propositions III.2 and III.1. Then

UB − LB =
N∑
i=1

πi. (3.12)
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Proof. For each node, let πi = NCP∗i − CP∗i . where CP∗i and NCP∗i are as defined in

Proposition III.2 and III.1, respectively. Then

UB− LB =
∑n

i=1
NCP∗i −

∑n

i=1
CP∗i

=
∑n

i=1

(
NCP∗i − CP∗i

)
=
∑n

i=1
πi

Corollary III.3 allows the calculation of UB − LB for use in the subgradient procedure

using only the penalty values πi,∀i ∈ N without gaining access to each node’s objective

(cost) value information.

One other piece of information is required in order to appropriately update the La-

grangian penalties: a measure of the infeasibility of the current solution in terms of the

relaxed constraints. In practice, this is typically accomplished by squaring the norm of the

violated constraints. In this case, this is accomplished by requiring each node to pass a

single value calculated as follows:

si =
∑
j∈N (i)

(ûij − ẑij)2 (3.13)

where ûij is the current solution.

Next it is proven that the objective functions of all CPi’s are suitable for employing

subgradient optimization. Recall that in the objective function of CPi the relaxed linking

constraints (3.3a) appear with the µ penalty terms as defined in equation (3.9). For the cost

function in (3.1), the Lagrangian relaxation function for node i 6= N , denoted φi(µ), is

given by

φi(µ) = Min c>i xi + d>i zi +
∑
j∈N (i)

µij |(uij − ẑij)| (3.14)

and for node N :
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φN(µ) = Min c>NxN + d>NzN +
∑

j∈N (N)

µNj |(uNj − v̂Nj)|+ E[f(ω̃, xN)] (3.15)

The presence of the the penalty terms µij |(uij − v̂ij)| in CPi is clearly nonlinear due to the

presence of the absolute value function |.|. To linearize it, a standard variable substitution

technique can be employed. For each |u− v̂|, replace |u− v̂| by u+ − u− in the objective,

and add the constraint u − û = u+ − u−, u+, u− ≥ 0 to the formulation. Next observe

that since the objective of CP(i) consists of linear functions, the subproblem in each node

i = 1, . . . , N , φi(µ) is concave. Therefore, subgradient optimization is appropriate for

this setting. However, it is important to note that there may be a duality gap between

the subgradient optimal solution and the optimal solution to NSP-PI due to the integer

restrictions on the decision variables. The Lagrangian dual objective for node i is given by

φi = Max
µ

φi(µ). (3.16)

Next, the appropriate subgradients to use in the subgradient procedure must be de-

fined. This will be based on the coordinated problems CPj (3.10). Recall that for a con-

cave function f : Rm 7→ R a subgradient s(x̄) ∈ Rm of f at x̄ ∈ Rm must satisfy

f(x)− f(x̄) ≤ s(x̄)(x− x̄).

PROPOSITION III.4. Consider the dual objective function φi (3.16) for node i. Then

si(ūi) =
∑
j∈N (i)

∣∣(ūij − v̂ij)∣∣ (3.17)

is a subgradient of φi(µ) at µ̄ij for node i, provided ūi is feasible to CPi.

Proof. Given µ̄ij , let the optimal solution to φi(µi) (3.14) be (x̄i, ūi) for i 6= N . For any
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µi, let the optimal solution be (xi, ui). Then φi(µi) (3.14) becomes:

φi(µ̄i) = c>i x̄i + d>i ūi +
∑
j∈N (i)

µ̄ij |(ūij − v̂ij)| .

And for any µij ,

φi(µi) = c>i xi + d>i ui +
∑
j∈N (i)

µij |(uij − v̂ij)| .

Then
φi(µi)− φi(µ̄i) = c>i xi + d>i ui +

∑
j∈N (i)

µij |(uij − v̂ij)| −c>i x̄i + d>i ūi +
∑
j∈N (i)

µ̄ij |(ūij − v̂ij)|


≤ c>i x̄i + d>i ūi +

∑
j∈N (i)

µij |(ūij − v̂ij)| −c>i x̄i + d>i ūi +
∑
j∈N (i)

µ̄ij |(ūij − v̂ij)|


=
∑
j∈N (i)

∣∣(ūij − v̂ij)∣∣(µij − µ̄ij),
where the inequality comes from replacing the minimal values from φ(µi) with (x̄i, ūi).

Thus it holds,

φi(µi)− φi(µ̄i) ≤
∑
j∈N (i)

∣∣(ūij − v̂ij)∣∣(µij − µ̄ij)
The proof for node i = N is similar; the expectation drops out after the inequality.

Now that it has been proven that subgradient optimization can be applied to this prob-

lem, a solution procedure can be formally outlined. The regularization term is added and

the Lagrangian penalties are updated using subgradient optimization. In the iterative pro-

cess, let k be the iteration index for parameters that depend on the iteration. Then, for each
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constraint of type (3.3a) in the objective with associated penalty µk, the penalty between

supplier node i ∈ α(j) and j is updated using the following scheme:

µk+1
ij = µkij + δkij

∣∣(uij − ẑij)∣∣,
where

δkij =
λk(
∑N

i=1πi)∑N
i=1 si

and λk is a user defined scalar initialized to some value 0 < λ0 < 2.

Several heuristics for updating λk have been proposed in the literature. A common

scheme for updating λ is to halve λk whenever the best lower bound found has failed to

increase in some fixed number of iterations. However, preliminary computational experi-

ments suggested that this approache converged too slowly to be practical. For this reason,

another approach was adopted for this paper.

Consider the heuristic found in Caprara et al. (1999), which allows for the value of

λ to increase or decrease based on the rate of convergence. After a predefined number of

iterations, the value of λ is decreased if a large enough change in the lower bound was

seen, and it is increased if some level of change was not seen. In this case, since access

to the lower bound is explicitly prohibited by the private information constraints, the idea

from Caprara et al. (1999) is implemented based on a change in the gap between the upper

bound and lower bound. Let π̂k =
∑n

j πj be the value found in iteration k. Then

λk =


1.5λk−1, if π̂k−1

π̂k−2 < γ1;

λk−1/2, if π̂k−1

π̂k−2 > γ2;

λk−1, otherwise

where 0 < γ1 < γ2 < 1.

It should be noted that in this case one can consider splitting λk into λkij for each

j ∈ α(i) and updating at each node i separately. At each iteration, the node has access
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to its own upper and lower bounds. In implementing the algorithm, one could allow each

node to change its own λ value at each iteration based on the change in its lower bound or

gap as described for the global λ value above. However, in this paper, this was not done

since if any member in the cooperation became ‘greedy’ and had the power to choose its

λ-updating scheme, it could artificially change its lambda value to gain an advantage over

the other nodes.

E. NDC Algorithm

The subgradient algorithm, referred to as the nodal decomposition-coordination algorithm

(or NDC algorithm for short), for finding the global solution to NSP-PI is now presented.

In this implementation, a central authority referred to as the central control is used to

calculate the
∑

i πi and
∑

i si values and distribute them to all nodes. The algorithm is

formally stated in Figure 5.

Recall that for linear programs, given a good choice of starting λ0 and a strategy to

update λk that satisfies the requirements mentioned in Section D, it can be guaranteed

that, in theory, the algorithm will converge to the global optimal solution. However, it

is well documented in the literature that finding such a “good” starting λ0 and updating

rule is very problem specific and no general rule that works well for all problems exists.

Therefore, traditional Lagrangian relaxation implementations either choose a very small

λ0 value, which leads to long runtimes but optimal or very close to optimal solutions, or

a larger value, which leads to faster run times but often falls short of optimality. For the

computational experiments described later, the second approach was chosen.

One of the assumptions of this algorithm is that every “compromise” solution set in

the NCPs is feasible. This feasibility can be maintained through artificial variables with

carefully chosen penalties, but there is a particular danger in this framework that can result.
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NDC Algorithm

Step 0. Initialization. Set k = 0 and choose λ0, ξ and ε > 0. For each i = 1, . . . , N :

(a) Set µij(k) = 0 for all j ∈ N (i) in CPi; (b) Set v̂ij = 0 for all j ∈ N (i) in CPj .

Step 1. Solve the coordinated problems and pass information. For i = 1, . . . , N :

Solve CP(i) (3.10). Pass requests (uij) to neighboring nodes j ∈ N (i).

Step 2. Solve the non-coordinated problems. For i = 1, . . . , N , use (v̂ij) to set (z̄ij)

values in NCP(i) (3.7), and then solve NCP(i).

Step 3. Solve the coordinated problems and pass information. For i = 1, . . . , N :

Set (z̄ij) in CP(i) and solve CP(i); calculate πi and si; share πi and si with central

control.

Step 4. Share information Calculate the sum π̂k =
∑

i πi and
∑

i si at central con-

trol. Pass values to nodes i = 1, . . . , N .

Step 5. Termination. If π̂k − π̂k−1 < ε, stop. Report the solution to NCP(i) as the

best implementable solution found.

Step 6. Pass information and perform updates. Send π̂k to all nodes. Update λk, if

necessary. For i = 1, . . . , N calculate µij(k+ 1) for all j ∈ N (i). Set k ← k+ 1 and

go to Step 2.

Fig. 5. The Nodal Decomposition-Coordination Algorithm
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When penalties imposed on the relaxed constraints grow too quickly due to a λ0 or ξ that

is too large, the algorithm can converge to a suboptimal point. High values for µ and ξ

at each node make it too expensive for the node to choose any solution vector that differs

from the compromise proposals. At each iteration, the nodes simply agree to supply the

compromise solution ẑ. This solution may be unimplementable because it can cause arti-

ficial variables to enter the basis at termination. In this case, initialization of the penalties

should be adjusted such that the penalties grow at a slower rate or the artificial variables’

penalty values in NCP should be adjusted.

F. A Supply Chain Application

Computational experiments on the NDC Algorithm were performed using an application

from the supply chain setting. The problem studied is the supply chain inventory coordi-

nation problem (SCICP) with private information restrictions. For this problem, the nodal

structure in Figure 4 takes the form of a supply chain where each node represents a facility

that receives raw materials from other nodes (called the node’s suppliers) and sends a fin-

ished good to another node (called the node’s buyer.) Thus, a finished good from one node

is a raw material to another.

Figure 6 gives a graphical representation of the supply chain system being studied.

The left side shows a global view of the supply chain. The supply chain shown shows three

levels of nodes, which will be referred to as echelons. The arrows represent the flow of

finished good products from supplier nodes to buyer nodes, and the bottom box represents

the demand from the consumer.

The right half of Figure 6 shows an exploded view of the internal processes of an arbi-

trary node j. The Work-in-process oval represents the decisions made concerning the value-

added processes on the raw materials, which flow in from the supplier nodes at the top. The
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Fig. 6. Graphical representation of a supply chain

Raw Material and Finished Good ovals represent the decisions regarding inventory levels

of raw materials and finished goods at the node in each time period. The rounded rectangle

surrounding the nodal representation emphasizes that the parameters and decisions gov-

erning the operations carried out within the node are private information. The following

notation will be used to formulate SCICP on this supply chain structure.

Indices

i: Index for facilities (or good types)

j: Index for facilities (or good types)

`: Index for facilities (or good types)

t: Index for planning periods

n: Index for last facility in the supply chain

ω: Index for demand outcome of a multivariate random variable ω̃
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Sets

T : Set of planning periods

N : Set of facilities (or good types) in the system

α(j): Set of immediate predecessors (suppliers) of facility j

β(j): Index denoting the immediate successors (buyers) of facility j

P(j): Set of parameters that are private to facility j

ω̃: Set of all possible (outcomes) scenarios ω

Parameters and Functions

SRijt(x): Cost for facility j to order x units of raw materials from facility i

in period t

SFjt(y): Cost for facility j to produce y units of finished product in period t

HR
ijt(x): Holding cost at facility j for x units of raw material i at the end of

period t

HF
jt(y): Holding cost at facility j for y units of finished goods j at the end of

period t

mij: Amount of material i required to make one unit of good j at facility j

dt(ω): Demand for the end product in period t under scenario ω

M : a very large number; should be defined to be greater than all possible

objective costs realizable by the system

h−nt: Cost to outsource a unit of end product in period t after demand

realization

h+
nt: Inventory cost for a unit of end product in period t after demand

realization

hInt: Cost to replace inventory used to satisfy demand which was not met

by the first-stage decision.
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Decision Variables

IRijt: Raw material inventory type i held at facility j at end of period t

IFjt : Finished good inventory at facility j at the end of period t

xijt: Amount of raw material i to send from facility i to facility j in period t

(xij = [xij1, ..., xij|T |]
>, xj = [x1j, ..., x|N |j]

>: and x = [x1, ..., x|N |]
>)

yjt: Production quantity of finished goods to make at facility j in period t

(yj = [yj1, ..., yj|T |]
> and y = [y1, ..., y|N |]

>)

z−nt(ω): Excess demand not satisfiable by the first-stage decision that is to be

satisfied by outsourcing under scenario ω

zInt(ω): Excess demand not satisfiable by the first-stage decision that is to be

satisfied by pulling stock from inventory under scenario ω

z+
nt(ω): Extra units of stock allocated in the first-stage that are to be kept in

inventory under scenario ω

In describing the flow of materials in this system, it is important to note that each node

can have multiple buyer nodes within the supply chain but produces only one “finished

good” product. This finished good can be thought of as a subassembly required by the next

node in a production system to create the next subassembly, thus, a finished good from

one node becomes a raw material to its buyer. At the final node, where the demand is

viewed, the finished good is referred to as the “final product.” It is assumed that the cost for

transporting a final product from one node to a buyer node is absorbed by the buyer node.
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Based on the above notation, the SCICP can be stated as the following two-stage SMIP:

SCICP : Min
∑
j∈N

∑
t∈T

{ ∑
i∈α(j)

(SRijt(xijt) +HR
ijt(I

R
ijt)) + SFjt(yjt) +HF

jt(I
F
jt)
}

+ E[f(xn, ω̃)] (3.18a)

s.t. IRij(t−1) + xijt − IRijt −mijyjt = 0, ∀j ∈ N , i ∈ α(j), t ∈ T (3.18b)

IFj,t−1 + yjt − IFjt −
∑
`∈β(j)

xj`t = 0, ∀j ∈ N , t ∈ T (3.18c)

SRijt(·), SFjt(·), HR
ijt(·), HF

jt(·), mij ∈ P(j), ∀j ∈ N , i ∈ α(j), t ∈ T

(3.18d)

IRijt, I
F
jt , xijt, xj`t, yjt ≥ 0, ∀j ∈ N , i ∈ α(j), ` ∈ β(j), t ∈ T (3.18e)

IRijt, I
F
jt , xijt, xj`t, yjt Integer, ∀j ∈ N , i ∈ α(j), ` ∈ β(j), t ∈ T (3.18f)

where, for a particular scenario (outcome) ω ∈ ω̃ of ω̃ for facility n (last facility, i = n) :

f(xn, ω) = Min
∑
t∈T

{
h−ntz

−
n,t(ω) + h+

ntz
+
nt(ω) + hIntz

I
nt

}
(3.19a)

s.t. z−nt(ω) + zInt(ω)− z+
nt(ω) ≥ dt(ω)− xn`t, ` ∈ β(n),∀t ∈ T (3.19b)

− zInt(ω) ≥ −IFnt, ∀t ∈ T (3.19c)

z−nt(ω), zInt(ω), z+
nt(ω) ≥ 0, ∀t ∈ T (3.19d)

z−nt(ω), zInt(ω), z+
nt(ω) Integer, ∀t ∈ T (3.19e)

The objective function (3.18a) prescribes finding the minimum production and inven-

tory costs, plus the expected cost regarding inventory recourse decisions. Constraint (3.18b)

describes the balance between the inventory of on-hand of raw materials, order quantities

and production quantities, while constraint (3.18c) describes the balance between the in-

ventory on hand of finished goods/sub-assemblies, production quantities, and outbound

flow of finished goods/sub-assemblies. Constraint (3.18d) describes the private data re-
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strictions, that is, it enforces that certain data parameters are only known by the facility

where those parameters are set. Constraint (3.18e) enforce the non-negativity restrictions

on the decision variables and constraint (3.18f) enforces integrality restrictions.

In the subproblem, the objective function (3.19a) prescribes finding the minimum costs

associated with accounting for the randomness in the demand for a given scenario. Con-

straint (3.19b) describes the balance between demand realization, first-stage production de-

cision, emergency product acquisition, and inventory variables. In this model the first-stage

inventory decisions offer their inventory to satisfy future demand. The model assumes that

there is a cost associated with unsatisfied demand for the end product (e.g. outsourcing or

last minute production at some higher cost). Constraint (3.19c) ensures that no more inven-

tory than is available can be assigned to make up for excess demand in any period. Finally,

constraints (3.19d) enforce the non-negativity requirements on the decision variables and

constraint (3.19e) enforces integrality restrictions.

In SCICP, the objective cost functions in (3.18a) are intentionally left in a general

format to stress the adaptability of the NDC algorithm to different types of supply chains.

Two classes of cost functions will now be discussed. The first is a pure linear cost function

and the second is a mixed-integer cost function. For both cases, the following shared

notation is used:
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Cost Parameters

CR
ij : Setup cost at facility i for ordering from facility j

cRij: Per unit cost at facility i for ordering from facility j

hRij: Per unit holding cost at facility i to hold raw material of type j from

one time period to the next

CF
i : Fixed production setup cost at facility i.

cFi : Per unit setup cost at facility i.

hFi : Per unit holding cost at facility i to hold one unit of its own finished

product/subassembly from one time period to the next

1. Linear Cost Functions

Linear cost functions are the most straightforward value functions, and the ones considered

in the test instances solved in this paper. For this case, the value functions given in (3.18a)

of SCICP are:

SRijt(xijt) = cRijtxijt

SFit (yit) = cFityit

HR
ijt(I

R
ijt) = hRijI

R
ijt

HF
jt(I

F
jt) = hFj I

F
jt

Incorporating the value functions for the linear case into SCICP yields the following
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model:

SCICPL : Min
∑
i∈N

∑
t∈T

{ ∑
j∈β(i)

(CR
ijtx

B
ijt + cRijtxijt + hRijtI

R
ijt) + CF

it y
B
it + cFityit + hFitI

F
it

}
+ E[f(xn, ω̃)]

s.t. Constraints (3.18b)− (3.18e)

where, for a particular demand realization ω of ω̃ for the facility n (last facility, i = n),

f(x, ω) is as given in formulation (3.19).

Decomposing the problem assuming a linear objective function is a direct application

of the decomposition laid out in section (D). For each facility i ∈ N the following value

function describes the objective function for that node, and in the case of node n, describes

the first-stage objective portion:

Vi =
∑
t∈T

{ ∑
j∈β(i)

(cRijtxijt + hRijtI
R
ijt) + cFityit + hFitI

F
it

}
.

2. Fixed Charge Cost Functions

In the case where placing an order and producing a product for a given time period requires

some setup cost, SCICP is a mixed-binary problem whose objective function includes a

fixed charge. Using the notation given in F, the value functions in the objective (3.18a) of

SCICP becomes:

SRijt(xijt) =


CR
ijt + cRijtxijt if xijt > 0

0 otherwise

SFit (yit) =


CF
it + cFityit if yit > 0

0 otherwise
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HR
ijt(I

R
ijt) = hRijI

R
ijt

HF
jt(I

F
jt) = hFj I

F
jt

In practice, it is common that the linear parts cRijtxijt and cFityit in the above cost func-

tions are ignored. In this case, setting cRijt = 0 and cFit = 0 gives the desired model.

To implement SRijt(xijt) and SFit (yit), it is necessary to define two new decision vari-

ables:

xBijt =


1 if xijt > 0

0 otherwise

yBit =


1 if yit > 0

0 otherwise

Incorporating these refined value functions into SCICP yields the following model:

SCICPFC : Min
∑
i∈N

∑
t∈T

{ ∑
j∈β(i)

(CR
ijtx

B
ijt + cRijtxijt + hRijtI

R
ijt) + CF

it y
B
it + cFityit + hFitI

F
it

}
+ E[f(xn, ω̃)] (3.21a)

s.t. Constraints (3.18b)− (3.18e)

xijt −MxBijt ≤ 0 ∀i ∈ N , j ∈ β(i), t ∈ T (3.21b)

yit −MyBit ≤ 0 ∀i ∈ N , t ∈ T (3.21c)

xBijt, y
B
it ∈ B (3.21d)

In SCICPFC constraint (3.21b) assigns a binary variable that equals one if raw materials

j are ordered in period t at facility i. Constraint (3.21c) assigns a binary variable that

equals one if good i is produced in period t. Finally, constraint (3.21d) gives the binary
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restrictions on the additional decision variables. The value of M must be chosen such that

it is large enough to allow for the binary variable being set to 1 to maintain feasibility of

the constraint for all possible values of xn,j,t and yn,t.

G. Experiments

In order to test the efficacy of the NDC Algorithm, a number of random test instances of the

SCICP problem were created. Each instance includes two forms: a stochastic problem in

which the demand is represented by a set of random variables, and a deterministic version

in which the demand is taken to be the expected value of those random variables. The

stochastic version will be referred to as the stochastic problem and the expected value

problem will be referred to as the EV problem. Generation of random instances for testing

will be discussed, followed by a discussion of the results.

1. Instance Generation

The algorithm was tested on a number of randomly generated test instances. The instances

have different sizes and all parameters were randomly generated. In the instances, mij was

sampled from a uniform distribution between one and five and costs were sampled from

truncated normal distributions. The cost for ordering was sampled using a mean of 100

and standard deviation of 30 and the cost for production was sampled using a mean of 200

and standard deviation of 50. Inventory holding costs per time period for raw materials

were sampled from a truncated normal distribution with mean 40 and standard deviation of

15 and for finished goods from a truncated normal distribution with mean 50 and standard

deviation of 15. As mentioned in Section D, in order to get a solution for each of the

non-coordinated problems, an artificial variable was added and penalized in the objective.

This penalty value was calculated by finding an upper bound of the cost to manufacture
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Fig. 7. Graphical representation of instances sized 10-1

one finished good at the top echelon of nodes and propagating that cost through the system

based on the number of raw materials used to create the lower tiers’ finished goods. These

parameters were decided upon through experimentation.

The instances are named according to their size. Each instance includes a number of

echelons which ranged from two to four. Each of the instances was created over a six-time

period time horizon. For example, an instance referred to as having size 5-10-1 would

have five nodes in the top echelon, 10 intermediate nodes, and a final node which sees the

demand. The three test sizes chosen were 10-1, 10-20-1 and 10-15-10-1. For the interested

reader, the structure of the each of the instances is shown graphically in Figures 7 - 9.

Each instance was generated with three uniformly-distributed independent outcomes of the

random demand in each time period.

For stochastic programs with discrete probability distributions, it is possible to formu-

late an equivalent single large scale IP called the deterministic equivalent problem (DEP).
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Fig. 8. Graphical representation of instances sized 10-20-1

This is accomplished by explicitly handling the expectation in SCICP (3.18) by including

decision variables for each realization of the random variables in the formulation. For this

study the DEPs were formulated for both the coordinated and non-coordinated problems in

the last node and solved directly in CPLEX.

Traditional optimization methods would begin by taking the average of the random

demand and forming a deterministic expected value (EV) IP for the last node. To illustrate

the increase in complexity between the EV and DEP formulations, consider the instances

of size 10-15-10-1. The EV problems for the last node would contain 330 variables and

198 constraints while the DEP problems contained 13452 variables and 8946 constraints.

To justify this increase in problem size and complexity, the effect of using the EV solution

in favor of the stochastic problem solution was simulated by calculating the value of the

stochastic solution (VSS). In stochastic programming, the VSS is usually calculated using

optimal values to a stochastic mixed-integer program’s EV problem and its recourse ver-
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Fig. 9. Graphical representation of instances sized 10-15-10-1

sion. To accomplish this, the private information constraints were relaxed, which allowed

for a single stochastic global problem to be formulated. Expected values for the demand

were then calculated and the deterministic global problem was formulated. By solving the

deterministic global problem and fixing the optimal solution vector in the global stochastic

problem, a measure of the expected cost of using the expected values for the demand could

be determined. The VSS was then calculated by subtracting the value obtained by solving

the global stochastic problem without fixing any variables. It must be emphasized that these

two global problems were formulated for illustrative purposes only. In practice, neither of

the problems can be formulated, as doing so violates the private information constraints.

2. Computational Results

The NDC Algorithm was implemented using C++ and the CPLEX 12 Callable Library

(IBM ILOG CPLEX, 2009) and tests were run on a Dell X5355 computer with Intel(R)
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323 Xeon(R) X processors at 2.66 GHz each with 12.0 GB of RAM. The inputs for the

algorithm were an IP model describing the non-coordinated problem at each node and an

IP descibing the coordinated problem at each node, both in MPS file format. For the SIP

nodes, the MPS files were large scale stochastic programs in their deterministic equivalent

form. In addition to the nodal problems a text file to facilitate the negotiation between

nodes was also created.

As private information restrictions are essential to the motivation of the NDC Algo-

rithm, it is important to consider the information that was necessary to achieve this negoti-

ation. The global information contained in the file included the total number of nodes and

the number of time periods. For each node, the information contained in the file was which

nodes in the chain were its suppliers, which nodes in the supply chain were its buyers, and

what variables in each of that node’s subproblems represented the coordination variables

(proposed order and purchase quantities.)

As described in Section D, the linearisation of the absolute values in equations (3.9)

added two variables to the formulation for each coordination variable. In this implementa-

tion of the algorithm, those variables were also listed as inputs. However, these variables

were only used to facilitate the passing of order and delivery proposals between a node

and its neighbor; thus the integrity of private information at each node was preserved. In

practice, each node would solve its own problem, and would internally be able to calculate

the discrepancies between its own optimal solution and the coordination proposals corre-

sponding to its neighbors’ order requests and delivery proposals.

For each of the three test sizes, the results for six replications are reported. For each

instance, two versions were created: one which maintained the private data restrictions,

and another which ignored those constraints in order to find the best possible solution for

comparison purposes. Relaxing the private information constraints allowed the creation of

a single large scale stochastic mixed-integer program. The objective value solution to these
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Table II. Computational results size 10-1
Instance 1 2 3 4 5 6

Iterations 1398 1024 925 1014 1261 910

Runtime (sec) 3600 3600 3600 3600 3600 3600

NDC Solution 65.754 49.164 39.160 54.642 44.744 61.136

Global solution 65.135 48.563 38.579 53.975 44.207 60.624

Gap % 0.95% 1.24% 1.51% 1.24% 1.21% 0.84%

VSS 8.638 5.902 9.112 9.017 6.295 9.164

VSS % 13.26% 12.15% 23.62% 16.71% 14.24% 15.12%

Table III. Computational results size 10-20-1
Instance 1 2 3 4 5 6

Iterations 915 1093 833 1022 902 768

Runtime (sec) 3600 3600 3600 3600 3600 3600

NDC Solution 239.325 220.463 270.933 241.905 251.947 243.543

Global solution 235.650 216.925 262.037 237.581 244.048 234.646

Gap 1.56% 1.63% 3.39% 1.82% 3.24% 3.79%

VSS 28.131 21.061 34.639 25.826 15.395 14.291

VSS % 11.94% 9.71% 13.22% 10.87% 6.31% 6.09%

is reported as the Global solution while the objective value corresponding to the problem

with private information restrictions is reported as the NDC solution. Solution values have

been scaled down by a factor of 106 for convenience.

Rows one and two of the Tables II - IV give the number of iterations of the NDC al-

gorithm performed and the runtime of the algorithm, respectively. For all instances, a time

limit of one hour was imposed and all instances ran for the full duration. Preliminary com-

putational results had the initial values of ξ and λ (chosen in step 0 of the NDC algorithm)

set higher and some of the smaller instances were terminating in less than an hour. How-

ever, it was found that the solution quality was improved when these initial values were set

lower and the algorithm was allowed to run the full hour. The results reported here reflect
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Table IV. Computational results size 10-15-10-1
Instance 1 2 3 4 5 6

Iterations 987 1023 1016 1038 1047 1026

Runtime (sec) 3600 3600 3600 3600 3600 3600

NDC Solution 1883.568 1725.142 1622.519 1720.257 1743.123 1833.221

Global solution 2162.723 1985.647 1834.955 1968.002 2054.538 2144.210

Gap 10.33% 9.36% 4.14% 5.67% 3.97% 5.21%

VSS 279.155 260.505 212.436 247.745 311.415 310.989

VSS % 14.82% 15.10% 13.09% 14.40% 17.87% 16.96%

that approach.

Information describing the output from solving the problems is given in rows three

through five of each table. Table II gives the information for the instances of size 10-1.

The results show that the gap between the NDC algorithm’s solution and the global solu-

tion averages 1.16%. It is important to emphasize that this gap would not be computable

in practice because the private information requirements make formulation of the global

problem impossible. For testing purposes, these constraints were relaxed in order to pro-

vide evidence supporting NDC’s ability to find good solutions. For the instances of size

10-20-1, the average solution gaps from the global solution were found to be 2.57% and

for size 10-15-10-1, the average was 6.45%. Since protecting private information while

seeking close-to-optimal solutions was the goal of this study, these gaps were deemed rea-

sonable.

Rows six and seven give the VSS calculations as described in the previous subsection.

For the instances of size 10-1, the VSS averaged 10.85% over the (determinstic) EV prob-

lem, for size 10-20-1 this gap was 9.69%, and for the largest size, the average VSS gap

was 15.37%. These values give two insights. First, they give a clear reason for including

probability distributions to model uncertain parameters in optimization models: if a deci-

sion maker uses absolute values to describe the problem data, he can expect his decisions to
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result in an objective value that is at least 10 - 15% higher than optimal. This phenomenon

is expected in these types of problems, as the solution to a stochastic integer program gen-

erally gives a more robust solution than its corresponding EV problem. The second insight

it provides supports the use of NDC with random data over the current standard practice.

In practice, solving a nodal decision problem such as SCICP would begin by finding the

expected values of the demand and then relaxing, at least partially, the private information

restrictions. Depending on the solution strategy employed, a solution would be generated

whose objective would be at least as far from optimality as the VSS difference. The NDC

algorithm allows a decision maker to formulate a more realistic model of the system by the

inclusion of random parameters and beat the optimality gap reported by VSS solution, in

most cases by a wide margin.
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Fig. 10. Scaled convergence plot of three instances

Some insight into the behavior of the algorithm can also be gained by viewing a plot

showing the convergence of the algorithm. As traditional upper and lower bounds are not
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readily available in the NDC algorithm, Figure 10 instead displays the difference between

the upper and lower bounds at each iteration (which were calculated as π̂ in Step 4 of the

algorithm.) The gaps have been converted into percentages from their respective global

optimal solution for comparison purposes and are plotted against the iteration number.

Each trendline represents the first instance given in Tables II-IV.

An initial version of the NDC algorithm was implemented without the regularization

term found in the coordinated subproblem. In contrast to the fairly smooth convergence

rate seen in Figure 10, the solution gap suffered from solution oscillations that resulted in a

graph that showed gaps that spent hundreds of iterations oscillating between two values for

the gap. This phenomenon was particularly bad for the largest instances of size 10-15-10-

1. In this version of NDC, note that the solutions start very far from the optimal solution,

but in less than a quarter of the iterations performed reach a point where the gaps slowly

converge toward the optimal global solution.

H. Conclusion

This paper presents a nodal decomposition-coordination method for stochastic programs

where the decisions are distributed among multiple stakeholders, all of whom have restric-

tions on the data known to them about the other stakeholders. Further, no omnipotent

entity with access all information on the system exists. Despite these private information

restrictions, optimal or close to optimal decisions are required. The algorithm presented

here exploits the properties of Lagrangian relaxation and subgradient optimization to allow

for each stakeholder to solve its own subproblems and coordinate with other stakehold-

ers without violating privacy restrictions on the problem data. A computational study on

a supply chain inventory coordination problem shows that the proposed methodology can

obtain solution values that are within 10% of the optimal solution without violating private
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information restrictions. In addition, the results reveal that stochastic solutions outperform

the corresponding expected value solutions.

Solving stochastic integer programs is a very hard prospect, and most algorithms are

very dependent on the structure of the problem to guarantee tractability and convergence.

For this work, the stochastic data was used to formulate the deterministic equivalent prob-

lem and then solved using an integer programming solver directly. The number of random

variable realizations for each time period was limited in order to make the subproblems

solvable within a reasonable amount of time. Thus extensions to this work include the de-

velopment and implementation of decomposition algorithms for solving the nodal stochas-

tic integer programs. Finally, this work is applicable to other important applications in ad-

dition to supply chain logistics such as homeland security applications, which often carry

with them inherent security constraints that are often difficult to resolve. Other applica-

tions might include transportation of goods over long distances which includes loading and

offloading to different modes of transportation along the way which are run by different

firms.
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CHAPTER IV

SCENARIO FENCHEL DECOMPOSITION

A. Introduction

In two-stage stochastic integer programming (SIP) a decision must be made here-and-now

(first-stage) before future uncertainty is realized. Future uncertainty is modeled using a

probability distribution of the random variables. A recourse decision (second-stage) is

made after the uncertainty is resolved. A two-stage SIP formulation can be given as fol-

lows:
SIP2: Min c>x+ E[f(ω̃, x)]

s.t. Ax ≥ b

x ∈ X.

(4.1)

In problem SIP2, x denotes the first-stage decision vector, c ∈ <n1 is the first-stage cost

vector, b ∈ <m1 is the first-stage righthand side, f(ω̃, x) is the recourse function with ω̃

being a multivariate random variable, and E denotes the mathematical expectation operator

satisfying E[|f(ω̃, x)|] < ∞ for all x ∈ {Ax ≥ b, x ∈ X}. A ∈ <m1×n1 is the first-stage

constraint matrix, and X defines binary restrictions on some components of x.

In this work, it is assumed that the underlying probability distribution of ω̃ is discrete

with a finite number of realizations (scenarios) k and corresponding probabilities pk, k =

1, 2, . . . , K. Thus for a given scenario k, the recourse function f(k, x) is given by the

following second-stage mixed-integer program (MIP):

f(k, x) = Min qk>yk

s.t. W kyk ≥ hk − T kx

yk ∈ Y.

(4.2)
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In formulation (4.2), yk ∈ <n2 is the recourse decision variable vector, qk ∈ <n2 is the

recourse cost vector, W k ∈ <m2×n2 is the recourse matrix, T k ∈ <m2×n1 is the technology

matrix, and hk ∈ <m2 is the righthand side. The set Y defines binary restrictions on some

components of yk. Now SIP2 can also be stated as the following deterministic equivalent

problem (DEP), which will be used in the scenario decomposition:

DEP: Min c>x+
K∑
k=1

pkqk>yk

s.t. Ax ≥ b

T kx+W kyk ≥ hk, k = 1, 2, . . . , K

x ∈ X, yk ∈ Y, k = 1, 2, . . . , K.

(4.3)

DEP is a large-scale MIP, which makes a decomposition approach a necessity for most

practical sized problems. Decomposition approaches for SIP2 traditionally fall under one

of two categories: stage-wise decomposition or scenario-wise decomposition. Stage-wise

decomposition strategies are usually based on Benders decomposition (Benders, 1962) or

L-shaped decomposition (Slyke and Wets, 1969). This paper relies on the scenario-wise

decomposition strategy for SIP2 that uses Fenchel cutting planes Boyd (1994a). Solving

a scenario decomposed SIP2 is difficult because traditional methods require solving the

subproblem MIPs several times. In addition, the existence of a duality gap introduced

by the decomposition due to dualizing some of the constraints, makes optimality hard to

guarantee outside of a branch-and-bound scheme.

The contribution of this work is a new solution methodology for SIP that decomposes

SIP2 scenario-wise via Lagrangian relaxation, uses progressive hedging Rockafellar and

Wets (1991) to solve the LP relaxation, and Fenchel cutting planes to solve the scenario

subproblems. We refer to this methodology as scenario Fenchel decomposition or simply,

SFD. Because Fenchel cutting planes are generally expensive to compute, this approach is
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suitable for SIP with special structure such as knapsack constraints, which can be exploited

by the Fenchel cutting plane approach. The SFD algorithm is derived and tested on SIP2

with multiple knapsack constraints. Knapsack constraints appear in many applications of

SIP such as investment planning (Carraway et al., 1993; Henig, 1990), transportation and

scheduling (Kleywegt and Papastavrou, 1998, 2001) and chance constrained SIP (Claro

and Sousa, 2010).

The rest of the paper is organized as follows: Section B describes related work on

solutions strategies for SIP2 and a review of the literature involving Fenchel cuts. Section

C reviews preliminaries on scenario decomposition while Section D lays out the framework

for generating Fenchel cuts for SIP2. The SFD algorithm is formally described in Section

E and preliminary computational results reported in Section F. Finally, a summary of the

paper is given in Section G.

B. Related Work

This section begins by discussing briefly scenario-wise decomposition approaches and fol-

lows it up with a summary of related work involving Fenchel cutting planes. Scenario-wise

decomposition strategies for SIPs use variable splitting procedures on the first-stage deci-

sion variables to create nonanticipativity constraints, and then relax them using Lagrangian

relaxation. As described previously, two-stage SIPs describe two sets of decisions and it is

important that the first-stage solution be the same for all scenarios. Nonanticipativity con-

straints are a way of enforcing the first-stage solution to be the same for all the scenarios

before the realization of the random variables in the second-stage. Nonanticipativity con-

straints are then relaxed using Lagrangian relaxation and algorithms are developed which

seek to find a solution to the Lagrangian dual.
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Caroe and Schultz (1999) proposed dual (scenario) decomposition for SIPs. In their

approach, the Lagrangian multipliers associated with the relaxed nonanticipativity con-

straints are updated from one iteration to the next by a subgradient optimization approach.

While several approaches are valid, the bundle method of Kiwiel (1990) is a popular

choice in such a framework. While solving stochastic linear programs (SLPs) using the

Lagrangian dual was a well-known strategy for SLPs before Caroe’s work, it is important

to note that since the dual decomposition algorithm relies on the Lagrangian dual, it may

not be possible to find the (integer) optimal solution to SIP2 because of the existence of the

duality gap for the Lagrangian dual of an IP (Nemhauser and Wolsey, 1999). For this rea-

son, Carøe implements a branch-and-bound procedure within his algorithm to force finite

convergence to the integer optimal. Another formal treatment of the dual decomposition

algorithm can be found in Louveaux and Schultz (2003).

Rockafellar and Wets (1991) develop the progressive hedging algorithm (PHA) for

scenario decomposed SLPs. In each iteration, the algorithm sets a single target nonantic-

ipative value based on the previous iteration’s solution. While the convergence of PHA

subproblems to a nonanticipative first-stage solution is not based on Lagrangian duality,

the form of the subproblem is similar to the dual decomposition subproblem and only dif-

fers by the inclusion of a quadratic term penalizing moving too far from the nonanticipative

value from one iteration to the next. The PHA algorithm has been successfully applied to

SLPs for different applications such as operation planning problems in hydrothermal power

systems (Santos et al., 2009).

A number of papers exist which use PHA to find good solutions for SIPs. Haugen

et al. (2001) apply PHA to the SIPs for the lot sizing problem. The authors exploit the

quick convergence of PHA to a (possibly nonoptimal) integer solution, and then fix those

integer values in the DEP and use LP techniques to find their final solution. The authors

conclude that their algorithm is able to find good solutions to their test instances quickly,
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and note that solving their PHA subproblems exactly only adds to the computational effort

and does not improve solution quality.

Watson et al. (2010) use a variant of PHA to find good solutions for two-stage stochas-

tic programs with chance constraints. The authors perform two relaxations, first on the

chance constraints, and then on the nonanticipativity constraints. The authors present their

algorithm as a heuristic and conclude that their algorithm finds acceptable solutions to

some network flow problems and aircraft sustainability planning problems. Watson and

Woodruff (2010) develop a number of innovations to PHA for the stochastic resource al-

location problem. The authors admit the inability to reach optimality for problems with

discrete variables, so instead present their improvements as a heuristic for finding good

solutions. The paper addresses how to choose algorithmic parameters that tend to perform

well in PHA and suggest methods for improving convergence and detecting cycling.

Escudero et al. (2011) apply a Lagrangian dual approach to the stochastic set packing

problem (SSPP) with randomly distributed objective coefficients. The form of SSPP that

the authors solve is a knapsack constrained problem with a risk measure minimizing the

risk of any scenario performing under some specified threshold. The authors develop an

algorithm that returns good feasible solutions with smaller gaps than can be achieved by

solving using a brute force approach.

Other general knapsack constrained stochastic programs have received attention in the

literature. Carraway et al. (1993) develop an algorithm for solving a single stage knapsack

problem in which the returns are described by normal random variables. Their approach

uses dynamic programming and branch-and-bound to guarantee optimality, and computa-

tional experiments are shown to outperform other approaches. Kleywegt and Papastavrou

(1998) introduce the dynamic and stochastic knapsack problem (DSKP.) DSKP is a mul-

tistage stochastic problem in which items arrive into the system according to a Poisson

arrival process. A decision is made when an item arrives to be accepted or rejected into the
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knapsack and rejecting an item incurs a penalty. Several forms of the problem are presented

and properties of the problems are derived for the case where the weights are all identical.

In Kleywegt and Papastavrou (2001) the authors relax the identical weight assumption and

develop properties regarding the structure of the problem.

Henig (1990) study an investment problem where a limited quantity of funds is to

be invested and the objective is to maximize the chance that a target value is achieved.

The authors present a solution approach using dynamic programming for problems with

normally distributed benefits. Extensions to mean risk and mean variance measures are

also discussed. A multiobjective metaheuristic for solving mean-risk stochastic knapsack

problems is presented in Claro and Sousa (2010). The authors suggest the multiobjective

approach in order to relieve difficulties associated with the incorporation of mean risk ob-

jectives into discrete optimization problems. Computational experiments are reported that

show that their metaheuristic produces good solutions.

This paper develops a new PHA approach combined with Fenchel cutting planes.

Fenchel cutting planes are a class of deep cutting planes derived using Fenchel dual-

ity in convexity theory (Rockafellar, 1997) that take advantage of the maximum separa-

tion/minimum distance duality. Fenchel cuts were first suggested in Boyd (1994a), and a

number of characteristics are derived in Boyd (1994b), Boyd (1995). The most important

results from Boyd’s work are that Fenchel cutting planes are facet defining and that the use

of Fenchel cuts in a cutting plane approach yields an algorithm with finite convergence.

He also highlights the fact that generating a Fenchel cut for binary programs is computa-

tionally expensive in general; therefore, problems with special structure are desirable to

achieve fast convergence. Computational experiments demonstrating the effectiveness of

Fenchel cuts are presented in Boyd (1993) for knapsack polyhedra and in Boyd (1994b) for

pure binary problems.

Since Boyd’s pioneering work, only a few authors have adopted Fenchel cutting planes
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in their work. In Sáez (2000), the author uses Fenchel cutting planes to improve the bounds

obtained from Lagrangian relaxation solutions to MIPs. The author also shows that Fenchel

cutting planes always dominate Lagrangian cuts. More recently, Ramos and Sáez (2005)

use Fenchel cutting planes to solve deterministic capacitated facility location problems.

The authors again compare the use of Fenchel cuts to Lagrangian cuts in finding good

relaxation bounds for their problem.

Ntaimo (2011) adapt the cuts in Boyd (1993) for two-stage SIPs under a stage-wise

decomposition setting. The author derives two forms of the cuts: one on the (x, y) vari-

able space, and another that derives the cuts in the y space and then lifts them to the (x, y)

variable space. Computational experiments are run using both forms of the cuts in a Ben-

ders decomposition framework, and the results suggest that Fenchel cuts outperform the

disjunctive decomposition algorithm (Sen and Higle, 2005) for some large-scale instances.

C. Preliminaries

This paper merges the decomposition and solution approach of PHA with a cutting plane

approach using Fenchel cutting planes. First, SIP2 is decomposed into the necessary sce-

nario decomposed subproblems for use in a PHA framework. First, the x variables are split

once for each scenario. This introduces K new vectors of variables xk, k = 1, 2, . . . , K

to the problem. For the first-stage constraints Axk ≥ b, the constraint set is duplicated K

times, once for each new x variable. The substitution of xk for x is straightforward in the

second-stage constraints. In the objective function, adding the copies xk, k = 1, 2, . . . , K

can be thought of as moving the x variables to the second-stage, where the probability mea-

sure acts on the objective coefficients in the same way that it does the coefficients of the

second-stage variables.

The other step is adding nonanticipativity constraints to the problem. After creating
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the duplicate xk, k = 1, 2, . . . , K variables to SIP2, it becomes apparent that an optimal

solution to the new problem is only feasible to SIP2 if all variables xk, k = 1, 2, . . . , K

are equal. As described in Caroe (1998), there are several valid choices in how to achieve

nonanticipativity. Some choices for nonanticipativity constraints for SIP2 (4.3) are:

xk − xk+1 = 0, k = 1, . . . , K − 1

xK − x1 = 0

(4.4a)

xk −
K∑
s=1

psxs = 0, k = 1, . . . , K (4.4b)

xk − xs = 0, k = 1, . . . , K;

s ∈ {1, 2, . . . , K}.
(4.4c)

The nonanticipativity constraints given in (4.4a) represent a cyclic representation of the

constraints, (4.4b) represents nonanticipativity in the expectation, and (4.4c) achieves non-

anticipativity by choosing a single subproblem and enforcing its solution across all sub-

problems. The scenario decomposed problem can be stated as follows:

DEP2: Min
K∑
k=1

pk
(
c>xk + qk>yk

)
s.t. Axk ≥ b, k = 1, 2, . . . , K

T kxk +W kyk ≥ hk, k = 1, 2, . . . , K

xk −
K∑
s=1

psxs = 0, k = 1, 2, . . . , K

xk ∈ X, yk ∈ Y, k = 1, 2, . . . , K.

(4.5)

Performing Lagrangian relaxation on the nonanticipativity constraints in DEP2 yields

a problem whose constraint set is separable into K subproblems. For purposes of generat-

ing Fenchel cutting planes, it is useful to define the feasible region of each MIP subproblem
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separately, as follows:

Zk := {xk, yk| Axk ≥ b

T kxk +W kyk ≥ hk

xk ∈ X, yk ∈ Y }.

(4.6)

Performing the variable substitution x̄t =
∑K

s=1 p
sxs and using the notation for Zk

from (4.6) gives the following Lagrangian relaxation subproblem, for k = 1, . . . , K:

Dk(λ) : Min pk[c>xk + qk>yk + λk
(
xk − x̄t

)
]

s.t. xk, yk ∈ Zk.

(4.7)

The Lagrangian relaxation of DEP2 can then be expressed as

D(λ) =
K∑
k=1

Dk(λ) (4.8)

and the Lagrangian dual with respect to the nonanticipativity constraints is then given as:

Max
λ free

D(λ). (4.9)

As mentioned previously, the PHA subproblem differs from the dual decomposition

subproblem by the inclusion of a quadratic term in the objective that hedges against choos-

ing a solution that is too far from the current incumbent solution. At iteration t, let x̄t

denote the current incumbent solution. The PHA subproblem at iteration t is formally

given as follows:

Pk(λk) : Min pk[c>xk + qk>yk + λk
(
xk − x̄t

)
+
ρk

2

(
xk − x̄t

)2
]

s.t. xk, yk ∈ Zk

(4.10)

where ρk is a parameter chosen to keep xk close to x̄t from one iteration to the next. In our

approach, the LP relaxations of P k(λk) will be solved by PHA. Let the sets XLP and YLP
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denote X and Y , respectively, with the integer requirements relaxed. The LP-relaxation of

the PHA subproblem feasible region Zk(λk) yields the following feasible region:

Zk
LP := {xk, yk| Axk ≥ b

T kxk +W kyk ≥ hk

xk ∈ XLP , y
k ∈ YLP}

(4.11)

and the PHA subproblem can be expressed as

PkLP (λk) = Min pk[c>xk + qk>yk + λk
(
xk − x̄t

)
+
ρk

2

(
xk − x̄t

)2
]

s.t. xk, yk ∈ Zk
LP .

(4.12)

PHA can be used to solve a scenario decomposed SLP that has been reformulated as

in (4.12). The algorithm is a proximal point method (Rockafellar and Wets, 1991) that

computes a new target point at each iteration based on the first-stage solutions of all the

subproblems. PHA is formally stated in Figure 11.
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PHA Algorithm

Step 1: Choose an initial x̄0, step sizes ρk0 and multipliers λk0 and ε > 0. Set PHA

iteration counter t = 0.

Step 2: Solve PkLP (λk) ∀k (4.12). Let the solutions be (x̂kt , ŷ
k
t , λ̂

k
t ). Update x̄t+1 =

K∑
k=1

pkx̂kt .

Step 3: Update λt+1 = λt + ρk(x̂kt − x̄t+1). If
∑K

k=1 p
k||x̂kt − x̄t|| < ε, (x̂kt , ŷ

k
t , λ̂

k
t ) is

optimal for P k
LP (λk); Report optimal solution variables x̂kt and ŷkt and corresponding

objective
K∑
k=1

P k
LP (λk). Otherwise increment t. Go to Step 2.

Fig. 11. The PHA Algorithm

One limitation of PHA is that convergence is only guaranteed for SLP. This paper

seeks to use the convergence results of PHA for SIP2 by incorporating Fenchel cutting

planes into the algorithm. In the following section, Fenchel cuts are developed for (4.12)

with the goal of recovering the convex hull of scenario problem (4.10) in the neighborhood

of the optimal solution.

D. Scenario Fenchel Decomposition

Scenario Fenchel decomposition (SFD) combines the PHA algorithm with a cutting plane

method exploiting Fenchel cuts. Fenchel cutting planes are chosen because they are capable

of recovering faces of the convex hull of binary programs, which is the structure inherent

in SIP2. The goal is to construct the convex hull of integer points in the neighborhood of
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the optimal solution so that by solving (4.12) with enough Fenchel cuts added, the optimal

solution can be found without having to use branch-and-bound to guarantee optimality. To

begin, the foundations for Fenchel cutting planes on scenario decomposed subproblems are

developed followed by a description of how the cuts can be derived.

Finding an integer solution to SIP2 via PHA is a hard prospect since each of the

K subproblems are IPs and therefore the existence of a duality gap from dualizing the

nonanticipativity constraints in general requires implementing a branch-and-bound scheme

to guarantee optimality. Instead of working with the IP subproblems directly, the method

described here seeks the optimal solution by a cutting plane approach on the LP relaxations

of the subproblems. Cutting plane approaches are useful for solving IPs since the optimal

solution to an LP over the convex hull of an IP coincides with the optimal solution to the

IP. To achieve this, consider using Fenchel cutting planes to recover (at least partially) the

convex hull of integer points of Pk(λ). Fenchel cutting planes, which are shown in Boyd

(1993) to be deep cuts, will be used to recover integer solutions to the IP subproblems

without ever solving them as IPs. The Fenchel cuts described below are derived for the

feasible regions Zk
LP (4.11).

The SFD algorithm derived here will employ the PHA algorithm in order to find a

nonanticipative solution for the K subproblems PkLP (λk) and Fenchel cuts will be used to

separate non-integer solutions from Zk
LP . Starting from the LP relaxations of the scenario

subproblems PkLP (λk), Fenchel cuts will now be given for each scenario subproblem with

the goal of recovering the convex hull of feasible integer points in the neighborhood of

the optimal solution to Pk(λk). The Fenchel cuts presented here for PkLP (λk) are adapted

from Ntaimo (2011), where they are used to solve stochastic programs under stage-wise

decomposition. Fenchel cuts are adapted here for scenario subproblems.

Let (x̂k, ŷk, λ̂k) be a solution to PkLP (λk) and let CONV (·) denote the convex hull

of feasible integer points for an IP. A Fenchel inequality is constructed in such a way as
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to find a hyperplane that separates the non-integer point (x̂k, ŷk) to a hyperplane pass-

ing through a point in CONV (Pk(λk)) without cutting off any feasible integer points in

CONV (Pk(λk)). The following theorem describes the criteria which guarantees the exis-

tence of such a Fenchel inequality.

THEOREM IV.1. Let (x̂k, ŷk) ∈ Zk
LP be given. Define g(k, αk, βk) = Max {αk>xk +

βk>yk | (xk, yk) ∈ CONV (Zk
IP )} and let δ(k, αk, βk) = αk>x̂k + βk>ŷk − g(k, αk, βk).

Then there exists vectors αk and βk for which δ(k, αk, βk) > 0 if and only if (x̂k, ŷk) /∈

CONV (Zk
IP ).

The proof is given in Boyd (1994a) and is omitted from this paper. The result of The-

orem IV.1 is that given a solution (x̂k, ŷk) to PkLP , if δ(k, αk, βk) > 0, then there exists

a valid inequality that will separate (x̂k, ŷk) from the integer-feasible region Zk. The in-

equality derived in such a way is of the form αk>xk + βk>yk ≤ g(k, αk, βk) and is called

a Fenchel inequality. When generating a Fenchel inequality, it is desirable to maximize

the distance between (x̂k, ŷk) and the hyperplane αk>xk + βk>yk ≤ g(k, αk, βk) without

cutting off any integer points in CONV (Zk
IP ). This requires maximizing δ(k, αk, βk). The

following corollary is useful to ensure that this maximization is possible.

COROLLARY IV.2. The function δ(k, αk, βk) is piecewise linear and concave.

Proof. Piecewise linearity is obvious as δ(k, αk, βk) is a linear function of αk and βk.

Concavity can be shown by applying the definition:

λδ(k, αk1, β
k
1 ) + (1− λ)δ(k, αk2, β

k
2 ) =

λαk1x̂
k + λβk1 ŷ

k − λg(k, αk1, β
k
1 ) + (1− λ)αk2x̂

k + (1− λ)βk2 ŷ
k − (1− λ)g(k, αk2, β

k
2 ) =

(λαk1 + (1− λ)αk2)x̂k + (λβk1 + (1− λ)βk2 )ŷk − λg(k, αk1, β
k
1 )− (1− λ)g(k, αk2, β

k
2 ) ≤

(λαk1 +(1−λ)αk2)x̂k+(λβk1 +(1−λ)βk2 )ŷk−λg(k, λαk1 +(1−λ)αk2, λβ
k
1 +(1−λ)βk2 )

While any (αk, βk) that gives a positive δ(k, αk, βk) will provide a valid Fenchel in-

equality, finding such an (αk, βk) requires a search of the (αk, βk) space constrained to a
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convex set Πα,β . Maximizing the function δ(k, αk, βk) provides such a search and returns

the deepest cutting plane possible. This maximization provides a maximal Fenchel inequal-

ity, which is a Fenchel cutting plane (or Fenchel cut) and separates (x̂k, ŷk) from Zk
LP . To

generate a Fenchel cut, a solution to the following optimization problem is required:

δk = max
(αk,βk)∈Πα,β

{
αk>x̂k + βk>ŷk − g(k, αk, βk)

}
, (4.13)

where the maximization is done over a linearly defined domain Πα,β and

g(k, αk, βk) = max
(xk,yk)∈CONV (ZkIP )

{
αk>xk + βk>yk

}
. (4.14)

Once found, the Fenchel cut separating the non-integer point (x̂k, ŷk) from CONV(ZkIP ) is:

αk>xk + βk>yk ≤ g(k, αk, βk) (4.15)

Note that the cut (4.15) passes through a point in CONV (ZK
IP ) (found in 4.14), and is a

facet of CONV (Sk).

Solving (4.13) is not a trivial task. As a result of Corollary IV.2, it is suggested in Boyd

(1994a) that generalized programming or a proximal ascent procedure such as subgradient

optimization can be used to solve (4.13) and generate a Fenchel cut. For this work, a

generalized programming method based on Benders decomposition is used. The method

uses a master problem (given below) to construct a linear approximation of the subproblem

space while the subproblem returns feasible integer points from Zk
IP (4.6).
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Fenchel Cut Generation Subroutine (FCG)

Step 0. Initialization.

Let (x̂k, ŷk) ∀k be given. Set t = 0, `0 = −∞, u0 = ∞, and choose ε′ > 0 and

(αk0, β
k
0 ) ∈ Πα,β .

Step 1. Solve Subproblem and Compute Lower Bound.

Use (αkt , β
k
t ) to form and solve subproblem (4.17) to get solution (xkt , y

k
t ) and ob-

jective value g(k, αkt , β
k
t ). Let dt = (x̂k − xkt )

>αkt + (ŷk − ykt )>βkt . Set `t+1 =

Max {dt, `t}. If `t+1 is updated, set incumbent solution δk = dt and

(αk∗, βk∗, g(k, αk∗, βk∗)) = (αkt , β
k
t , g(k, αkt , β

k
t )).

Step 2. Solve Master Problem.

Use (x̂k, ŷk) and subproblem (4.17) solution (xkt , y
k
t ) to form and add constraint

(4.16b) to master program. Solve master program to get an optimal solution

(θt, αkt , β
k
t ). Set uk+1 = Min{θt, ut}. If ut+1− `t+1 ≤ ε′, stop and declare incumbent

solution ε′-optimal. Otherwise, set t = t+ 1 and go to Step 1.

Fig. 12. The Fenchel Cut Generation Subroutine

δkτ = Max
αk,βk∈Πα,β

θ (4.16a)

s.t. − θ + (x̂k − xkt )>αk + (ŷk − ykt )>βk ≥ 0, t = 1, · · · , τ. (4.16b)

Given an optimal solution (θt, α
k
t , β

k
t ) to (4.16) at iteration t, (xkt , y

k
t ) is the optimal solution

to the following subproblem:
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g(k, αkt , β
k
t ) = Max αk>t xk + βk>t yk

s.t. (xk, yk) ∈ CONV (Zk
IP ).

(4.17)

Adopting a Benders decomposition framework, a method for generating Fenchel cuts is

stated in Figure 12.

E. Decomposition Algorithm

SFD Algorithm

Step 1: Initialization.

Set SFD iteration counter τ = 0.

Step 2: Find nonanticipative solution.

Solve PHA, which returns solutions (x̂kτ , ŷ
k
τ ) ∀k.

Step 3: Check Integrality.

If (x̂kτ , ŷ
k
τ ) ∈ ZIP ∀k, end. Report (x̂kτ , ŷ

k
τ ), k = 1, 2, . . . , K as optimal.

Step 4: Add Fenchel Cuts.

For each k such that (x̂kτ , ŷ
k
τ ) /∈ {0, 1}n1+n2: Use FCG to obtain δkτ , αkτ and βkτ . If

δkτ = 0 ∀k, terminate; (x̂kτ , ŷ
k
τ ) ∈ CONV (Zk

IP ). Otherwise for k = 1, 2, . . . , K if

δkτ > 0, add Fenchel cut αk>τ xk + βk>τ yk ≤ g(k, αkτ , β
k
τ ) to PkLP (λ), which separates

(x̂kτ , ŷ
k
τ ) from CONV (Zk

IP ). Set τ = τ + 1 and go to Step 2.

Fig. 13. The Scenario Fenchel Decomposition Algorithm
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The SFD algorithm is formally stated in Figure 13. The algorithm adds Fenchel cutting

planes to Pk(λk) in order to recover the convex hull of integer points in the neighborhood of

the optimal solution. This methodology allows the convergence properties of PHA for SLPs

to apply to SIP2. The integer optimum can be found provided the convex hull of Pk(λk) (in

the neighborhood of the optimal solution) can be found, which adding a sufficient number

of Fenchel cuts will accomplish.

In order to prove that SFD is a tractable algorithm, it is useful to notice that the al-

gorithm consists of two main parts: finding a nonanticipative first-stage solution to the LP

relaxations using PHA, and generating a Fenchel cut using FCG. Assuming these two steps

terminate finitely, SFD will also terminate finitely. Recall that a Fenchel cut for a scenario

subproblem describes a facet of the convex hull of that subproblem. Since by definition the

convex hull must have a finite number of facets, generating the facets one at a time will

necessarily have a finite number of steps. The following lemma and theorem provide the

necessary finite termination properties for FCG and PHA.

LEMMA IV.3. Assume Zk 6= ∅ and in Step 0 of FCG, Πα,β is the unit sphere of an

arbitrary norm. Then FCG terminates in a finite number of iterations.

Lemma IV.3 follows from Theorem 3.2 in Boyd (1995) where the author shows that

when Πα,β is defined by the unit sphere of an arbitrary norm, only a finite number of

Fenchel cuts describing the same face can be generated.

THEOREM IV.4. PHA applied to a SLP terminates in a finite number of iterations with

an optimal solution.

Theorem (IV.4) is proven in numerous places in the literature (Birge and Louveaux

(1997), Ruszczyński and Shapiro (2003), Rockafellar and Wets (1991)) and so the proof

is omitted from this paper. Finite termination of SFD is guaranteed by Lemma IV.3 and

Theorem IV.4. SFD is essentially an algorithm which applies PHA to the linear relaxations
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of a set of scenario decomposed subproblems. In each iteration, the feasible space of the

subproblems contract toward the convex hull of optimal integer points to SIP2. Formal

treatment of this claim is given in Theorem IV.5.

THEOREM IV.5. SFD, applied to SIP2 (4.1), terminates with a solution

(x̂, ŷ) ∈ CONV (SIP2) whose optimal objective value coincides with the optimal objec-

tive value to SIP2.

Proof. Optimality of the subproblems P k
LP (λk) in each step of PHA is guaranteed by The-

orem IV.4. Further, generating a Fenchel cut by FCG terminates in a finite number of steps

by Lemma IV.3 so generating a Fenchel cut for each subproblem whose solution is non-

integer can be done in a finite amount of time. Therefore, each iteration of SFD terminates

finitely.

Since at each iteration in which an integer solution to a subproblem is not found by

PHA a Fenchel cut describing a face of the subproblem is added, and since there are a

finite number of faces to the convex hull of an IP, SFD will terminate in a finite num-

ber of iterations. Thus, the nonanticipative solution returned in the final iteration of PHA

(x̂k, ŷk) ∈ CONV (SIP2). Since IP theory states that the optimal objective value to an IP

P coincides with the optimal objective of optimizing over the convex hull of P , equality

of the objective returned by PHA to the optimal integer solution of SIP2 is also guaran-

teed.

Theorem IV.5 guarantees that SFD will converge to a solution in CONV (SIP2) in a

finite number of iterations. However, in practice the computational effort required to find

the optimal solution may be too great to justify solving to optimality. In FCG, a Fenchel

cut is generated on the (x, y) space based on the current (x̂, ŷ) solution. It was observed

that multiple iterations of SFD may be required before a significant change in x̄t was seen.

This situation occurs when a Fenchel cut generated in an iteration of SFD is deep in the
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y-space but not in the x-space. Once x̄ changes, some of these cuts become redundant. For

this reason, limiting either the run time or number of iterations is recommended for large

scale problems. In the computational study, presented below, a two hour run time limit was

imposed and the optimality gap remaining at termination is reported.

F. Computational Results

This section reports computational results to demonstrate the ability of SFD to find solu-

tions for several two-stage SIPs. SFD was implemented in C++ using the CPLEX 12.1

Callable Library (IBM ILOG CPLEX, 2009) and Microsoft Visual Studio 2010. In each

iteration of SFD, the CPLEX Quadratic optimizer was used to solve PHA and the updating

rules given in Step 2.3 of SFD were implemented as stated to update the PHA objective

penalties. Initial PHA parameters ρ were chosen as suggested in Watson and Woodruff

(2010), where the authors suggest using the c values from SIP2 (4.1). Computational

experiments were run on a DELL Optiplex GX620 3.0 GHz computer with 3.5 GB of

RAM. Benchmark results are compared with generating the DEP (4.3) and solving using

the CPLEX MIP solver. The design of experiments is explained in the next subsection 1

followed by the computational results, which are reported in subsection 2.

1. Design of Experiments

Since generating a Fenchel cut requires solving an IP (usually multiple times), exploiting

special problem structures can yield significant computational advantages over solving a

general IP. For this reason, SFD was tested on randomly generated SIPs with pure binary

decisions variables and multiple knapsack constraints in both the first- and second-stage.

As noted in Ntaimo (2011), this choice of problems allows for the FCG subroutine proce-

dure to be simplified in the following way. At the beginning of the FCG subroutine, SFD
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provides solution (x̂k, ŷk). For each element of (x̂k, ŷk) which is 0, the corresponding αk

or βk can be set to 0 for the duration of the FCG.

The problems each have a 10 knapsack constraints in the first-stage and 20 knapsack

constraints in the second-stage and each scenario has equal probability of occurrence. The

instance data were randomly generated using the uniform distribution. Knapsack weights

were generated by sampling from uniform(2, 8). Objectives function values were gen-

erated similar to Watson and Woodruff (2010) in that the first-stage costs were chosen

to be much higher than the second-stage costs. Cost functions for the first-stage vari-

ables were sampled from uniform(400, 650). Second-stage costs were sampled from

uniform(6, 16). In order to generate tight knapsack constraints, the righthand side value

for each constraint was generated by finding the maximum knapsack weight (Wmax) for

the constraint and sampling from uniform(2 + 2Wmax, 4Wmax).

Computational experiments were run on four test sets. Each test set had a constant

number of variables and four subsets in which the number of scenarios was varied. Each of

the subsets contain five randomly generated instances. The problem names follow a naming

convention that describes the problem size. The first numeral of the name describes the

number of first-stage variables, the second describes the number of second-stage variables,

the third describes the number of scenarios.

2. Results

We now report results from computational experiments performed using the SFD algo-

rithm. In Watson and Woodruff (2010), the authors note that the parameter ρ need not stay

constant throughout the PHA procedure. Initial testing on the problem instances showed

that reducing the quadratic term ρ whenever the objective improvement slowed offered

computational advantages. For many instances, it was observed that a good first-stage sce-

nario solution could be found that coincided with one large subset of the scenarios, and
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another solution was good for another subset of the scenarios. In each iteration of SFD,

PHA can have difficulty moving too far from the target x̄t solution when ρ is too large.

This results in SFD performing non-improving iterations of PHA. Initial tests showed that

reducing ρ whenever objective improvement slows alleviated this issue for the instances.

Table V. Results of test set 1

CPLEX SFD
Instance Time Gap % Time Gap % FCG % PHA % Iters # FCs
knaps.10.20.25.a 7200.0 0.71 2568.4 0.00 18.50 81.50 71 1216
knaps.10.20.25.b 7200.0 1.05 3467.4 0.00 12.44 87.56 88 1194
knaps.10.20.25.c 7200.0 0.67 6091.3 0.00 12.52 87.48 87 1137
knaps.10.20.25.d 7200.0 0.71 3098.8 0.00 16.02 83.98 72 1329
knaps.10.20.25.e 7200.0 0.74 3728.0 0.00 11.64 88.36 61 1079
Average 7200.0 0.78 3790.8 0.00 14.22 85.78 76 1191
knaps.10.20.50.a 7200.0 2.30 7200.0 0.61 10.56 89.44 46 2261
knaps.10.20.50.b 7200.0 6.19 7200.0 0.05 15.97 84.03 57 2561
knaps.10.20.50.c 7200.0 3.76 7200.0 0.02 18.86 81.14 57 2471
knaps.10.20.50.d 7200.0 5.01 7200.0 0.03 16.48 83.52 53 2332
knaps.10.20.50.e 7200.0 6.26 7200.0 0.03 15.76 84.24 63 2628
Average 7200.0 4.70 7200.0 0.15 15.53 84.47 55 2451
knaps.10.20.75.a 7200.0 5.28 7200.0 0.31 23.12 76.88 44 3231
knaps.10.20.75.b 7200.0 5.76 7200.0 0.44 21.33 78.67 42 3131
knaps.10.20.75.c 7200.0 6.76 7200.0 0.64 22.25 77.75 45 3347
knaps.10.20.75.d 7200.0 5.67 7200.0 0.72 24.00 76.00 44 3266
knaps.10.20.75.e 7200.0 4.62 7200.0 0.58 20.84 79.16 42 3142
Average 7200.0 5.62 7200.0 0.54 22.31 77.69 43 3223
knaps.10.20.100.a 7200.0 5.94 7200.0 0.57 34.96 65.04 43 4290
knaps.10.20.100.b 7200.0 6.83 7200.0 1.19 39.98 60.02 45 4500
knaps.10.20.100.c 7200.0 6.80 7200.0 0.51 41.97 58.03 48 4781
knaps.10.20.100.d 7200.0 7.80 7200.0 0.58 40.60 59.40 43 4291
knaps.10.20.100.e 7200.0 8.05 7200.0 0.77 38.25 61.75 45 4499
Average 7200.0 7.08 7200.0 0.72 39.15 60.85 45 4472
knaps.10.20.150.a 7200.0 9.39 7200.0 2.30 50.65 49.35 40 5986
knaps.10.20.150.b 7200.0 6.00 7200.0 1.13 47.76 52.24 39 5804
knaps.10.20.150.c 7200.0 9.39 7200.0 3.44 53.62 46.38 42 6300
knaps.10.20.150.d 7200.0 11.25 7200.0 2.97 51.14 48.86 38 5695
knaps.10.20.150.e 7200.0 7.68 7200.0 1.90 50.10 49.90 41 6149
Average 7200.0 8.74 7200.0 2.35 50.65 49.35 40 5987
knaps.10.20.200.a 7200.0 9.31 7200.0 4.27 56.73 43.27 36 7185
knaps.10.20.200.b 7200.0 10.18 7200.0 4.10 44.15 55.85 33 6600
knaps.10.20.200.c 7200.0 8.19 7200.0 4.23 37.85 62.15 29 5800
knaps.10.20.200.d 7200.0 12.23 7200.0 4.91 45.07 54.93 31 6200
knaps.10.20.200.e 7200.0 8.44 7200.0 3.92 46.33 53.67 32 6400
Average 7200.0 9.67 7200.0 4.28 46.02 53.98 32 6437

Computation of the optimality gap for SFD required special attention. Since SFD is a

Lagrangian relaxation technique SFD provides an upper bound solution at the end of every

iteration. A lower bound on the optimal solution is not readily available except on the



85

Table VI. Results of test set 2

CPLEX SFD
Instance Time Gap % Time Gap % FCG % PHA % Iters # FCs
knaps.20.30.25.a 7200.0 1.68 7200.0 0.07 33.08 66.92 92 2208
knaps.20.30.25.b 7200.0 1.40 7200.0 0.28 19.90 80.10 65 1615
knaps.20.30.25.c 7200.0 2.53 7200.0 0.38 30.12 69.88 78 1950
knaps.20.30.25.d 7200.0 1.72 7200.0 0.34 26.91 73.09 73 1825
knaps.20.30.25.e 7200.0 1.43 7200.0 0.02 26.34 73.66 81 1938
Average 7200.0 1.75 7200.0 0.22 27.27 72.73 78 1907
knaps.20.30.50.a 7200.0 4.17 7200.0 1.54 30.92 69.08 49 2450
knaps.20.30.50.b 7200.0 2.34 7200.0 1.03 27.23 72.77 47 2340
knaps.20.30.50.c 7200.0 3.57 7200.0 2.10 29.21 70.79 42 2100
knaps.20.30.50.d 7200.0 2.33 7200.0 1.23 24.87 75.13 41 2050
knaps.20.30.50.e 7200.0 3.15 7200.0 1.53 29.47 70.53 47 2349
Average 7200.0 3.11 7200.0 1.49 28.34 71.66 45 2258
knaps.20.30.75.a 7200.0 5.96 7200.0 2.12 37.47 62.53 37 2769
knaps.20.30.75.b 7200.0 5.20 7200.0 2.24 49.82 50.18 38 2840
knaps.20.30.75.c 7200.0 5.21 7200.0 2.64 32.97 67.03 35 2622
knaps.20.30.75.d 7200.0 5.66 7200.0 2.68 38.31 61.69 33 2475
knaps.20.30.75.e 7200.0 5.41 7200.0 2.51 29.70 70.30 38 2850
Average 7200.0 5.49 7200.0 2.44 37.65 62.35 36 2711
knaps.20.30.100.a 7200.0 5.95 7200.0 3.06 43.96 56.04 34 3400
knaps.20.30.100.b 7200.0 7.24 7200.0 3.66 53.22 46.78 32 3200
knaps.20.30.100.c 7200.0 6.85 7200.0 2.91 61.25 38.75 31 3100
knaps.20.30.100.d 7200.0 6.48 7200.0 2.90 41.81 58.19 32 3192
knaps.20.30.100.e 7200.0 6.96 7200.0 3.63 66.67 33.33 33 3300
Average 7200.0 6.70 7200.0 3.23 53.38 46.62 32 3238
knaps.20.30.150.a 7200.0 10.26 7200.0 5.77 61.03 38.97 25 3750
knaps.20.30.150.b 7200.0 7.94 7200.0 4.64 68.80 31.20 25 3750
knaps.20.30.150.c 7200.0 10.15 7200.0 5.54 68.97 31.03 29 4350
knaps.20.30.150.d 7200.0 9.22 7200.0 6.60 55.82 44.18 24 3600
knaps.20.30.150.e 7200.0 8.32 7200.0 5.37 57.57 42.43 27 4050
Average 7200.0 9.18 7200.0 5.59 62.44 37.56 26 3900
knaps.20.30.200.a 7200.0 10.98 7200.0 7.48 50.91 49.09 21 4200
knaps.20.30.200.b 7200.0 9.53 7200.0 7.33 48.28 51.72 22 4400
knaps.20.30.200.c 7200.0 11.56 7200.0 7.91 54.90 45.10 23 4600
knaps.20.30.200.d 7200.0 12.22 7200.0 5.11 56.47 43.53 26 5200
knaps.20.30.200.e 7200.0 10.18 7200.0 7.02 66.46 33.54 24 4800
Average 7200.0 10.89 7200.0 6.97 55.40 44.60 23 4640

rare occasion that SFD returns an integer solution (which would coincide with the optimal

solution.) For this reason, a rounding heuristic was required to compute a lower bound

for SFD whenever optimality was not achieved. This lower bound was found in all of the

instances to be greater than or equal to the lower bound returned at termination of solving

the DEP with CPLEX. The lower bound solutions can be found in Appendix A.

The tables are organized as follows: the time required to solve the DEP directly using

the CPLEX MIP solver and optimality gap remaining are given in the first two columns
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and four columns are used to describe the solution time using SFD. Note that there are two

main steps in the SFD algorithm. First, SFD finds a nonanticipative solution for the linear

relaxations of the subproblems (with added Fenchel cuts), and then the algorithm generates

a Fenchel cut for each subproblem that returns a non-integer solution. In the tables, the

first of the SFD columns gives the total runtime for the SFD algorithm, the second gives

the gap remaining at termination and the final two columns give the proportion of time

spent generating Fenchel cuts and solving PHA iterations, respectively. The bolded rows

in each each table give the average of the columns for the preceding five replications.

At termination, SFD was able to beat the CPLEX gap for all of the instances reported.

From Table V, note that SFD was able to find the optimal solution to the 25 scenario

subproblems in about an hour on average, while CPLEX was unable to solve any of the

instances to optimality in the two hour time limit. Additionally, for the 50 scenario and 100

scenario problems, the optimality gap left by SFD was under 1% for all but one instance,

which was significantly smaller than the CPLEX gaps of 4.7% and 7%, respectivly. The

relationship between the CPLEX gap and the SFD gap continues throughout Tables VI -

VIII, with each solution method seeing an increase in their gaps as the size of the problems

was increased. The fact that SFD outperformed solving the DEP directly for all of the test

instances is promising, as SFD uses only Fenchel cutting planes to seek integer solutions

while the CPLEX solver has a host of cutting planes and computational efficiencies at its

disposal.

The tests reported in Tables V - VIII provide insights into the performance of SFD

as the number of scenarios increase. In Table V, SFD had no gap remaining for the 25

scenario problem, and a slight increase was seen when doubling the number of scenarios

to 50, and again to 100. The change from the 100 scenario problems to the 200 scenario

problems increased the gap by more than 5 times, which is interesting since the test sets

in Tables VI - VIII seem to have a relatively linear relationship between the size of the
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Table VII. Results of test set 3

CPLEX SFD
Instance Time Gap % Time Gap % FCG % PHA % Iters # FCs
knaps.30.40.25.a 7200.0 2.33 7200.0 0.49 50.93 49.07 88 2191
knaps.30.40.25.b 7200.0 2.00 7200.0 0.44 41.65 58.35 89 2225
knaps.30.40.25.c 7200.0 2.13 7200.0 0.82 37.40 62.60 81 2017
knaps.30.40.25.d 7200.0 1.91 7200.0 0.58 49.06 50.94 91 2255
knaps.30.40.25.e 7200.0 1.75 7200.0 0.75 45.33 54.67 97 2409
Average 7200.0 2.02 7200.0 0.62 44.87 55.13 89 2219
knaps.30.40.50.a 7200.0 4.23 7200.0 3.42 37.44 62.56 42 2100
knaps.30.40.50.b 7200.0 2.15 7200.0 2.50 36.27 63.73 46 2300
knaps.30.40.50.c 7200.0 3.88 7200.0 2.66 40.05 59.95 39 1950
knaps.30.40.50.d 7200.0 3.33 7200.0 2.27 43.56 56.44 51 2550
knaps.30.40.50.e 7200.0 3.49 7200.0 2.90 48.76 51.24 45 2250
Average 7200.0 3.42 7200.0 2.75 41.22 58.78 45 2230
knaps.30.40.75.a 7200.0 5.42 7200.0 2.86 52.05 47.95 32 2400
knaps.30.40.75.b 7200.0 6.37 7200.0 3.15 52.85 47.15 36 2700
knaps.30.40.75.c 7200.0 6.14 7200.0 3.32 59.28 40.72 35 2625
knaps.30.40.75.d 7200.0 7.49 7200.0 4.51 50.10 49.90 34 2550
knaps.30.40.75.e 7200.0 6.39 7200.0 4.53 43.38 56.62 29 2175
Average 7200.0 6.36 7200.0 3.67 51.53 48.47 33 2490
knaps.30.40.100.a 7200.0 9.33 7200.0 5.60 74.18 25.82 28 2800
knaps.30.40.100.b 7200.0 6.79 7200.0 4.71 68.32 31.68 27 2700
knaps.30.40.100.c 7200.0 7.29 7200.0 4.10 70.84 29.16 23 2300
knaps.30.40.100.d 7200.0 8.03 7200.0 5.01 71.47 28.53 28 2800
knaps.30.40.100.e 7200.0 7.86 7200.0 5.32 55.79 44.21 25 2500
Average 7200.0 7.86 7200.0 4.95 68.12 31.88 26 2620
knaps.30.40.150.a 7200.0 9.35 7200.0 7.13 59.48 40.52 22 3300
knaps.30.40.150.b 7200.0 10.70 7200.0 7.62 71.75 28.25 24 3600
knaps.30.40.150.c 7200.0 10.03 7200.0 7.58 69.39 30.61 21 3150
knaps.30.40.150.d 7200.0 8.78 7200.0 6.47 67.07 32.93 22 3300
knaps.30.40.150.e 7200.0 7.58 7200.0 5.99 60.14 39.86 21 3150
Average 7200.0 9.29 7200.0 6.96 65.57 34.43 22 3300
knaps.30.40.200.a 7200.0 10.76 7200.0 7.25 49.38 50.62 20 4000
knaps.30.40.200.b 7200.0 13.87 7200.0 7.58 42.46 57.54 19 3800
knaps.30.40.200.c 7200.0 10.14 7200.0 7.08 47.45 52.55 18 3600
knaps.30.40.200.d 7200.0 9.47 7200.0 7.39 50.46 49.54 20 4000
knaps.30.40.200.e 7200.0 11.44 7200.0 7.61 46.08 53.92 18 3600
Average 7200.0 11.14 7200.0 7.38 47.17 52.83 19 3800

optimality gap and number of scenarios.

Another interesting trend exposed by increasing the number of scenarios is in the

proportion of time spent generating Fenchel cuts versus the amount of time finding nonan-

ticipative solutions to the LP relaxations. In general, SFD spent more time in the PHA

section of the algorithm than in generating Fenchel cuts for instances with a small number

of scenarios and the proportion evened out as the scenarios were increased. This is logical,

since generating a FC requires solving an integer program several times, so when there are
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Table VIII. Results of test set 4

CPLEX SFD
Instance Time Gap % Time Gap % FCG % PHA % Iters # FCs
knaps.40.50.25.a 7200 2.75 7200 1.58 54.79 45.21 79 1975
knaps.40.50.25.b 7200 2.35 7200 1.40 55.95 44.05 87 2145
knaps.40.50.25.c 7200 1.46 7200 0.94 49.11 50.89 75 1805
knaps.40.50.25.d 7200 1.51 7200 0.80 56.08 43.92 91 2275
knaps.40.50.25.e 7200 0.82 7200 0.95 43.49 56.51 87 2129
Average 7200 1.78 7200 1.13 51.88 48.12 84 2066
knaps.40.50.50.a 7200 4.17 7200 4.18 43.05 56.95 40 2000
knaps.40.50.50.b 7200 3.92 7200 3.53 34.83 65.17 32 1600
knaps.40.50.50.c 7200 3.56 7200 2.62 52.37 47.63 46 2288
knaps.40.50.50.d 7200 3.54 7200 2.88 42.74 57.26 42 2100
knaps.40.50.50.e 7200 4.77 7200 3.89 46.95 53.05 38 1900
Average 7200 3.99 7200.0 3.42 43.99 56.01 40 1978
knaps.40.50.75.a 7200 7.07 7200 4.84 54.78 45.22 30 2250
knaps.40.50.75.b 7200 8.21 7200 6.26 39.68 60.32 27 2025
knaps.40.50.75.c 7200 7.88 7200 4.39 73.40 26.60 29 2175
knaps.40.50.75.d 7200 5.96 7200 4.08 49.91 50.09 29 2175
knaps.40.50.75.e 7200 7.07 7200 4.61 67.84 32.16 27 2025
Average 7200 7.24 7200 4.84 57.12 42.88 28 2130
knaps.40.50.100.a 7200 7.57 7200 5.57 71.55 28.45 24 2400
knaps.40.50.100.b 7200 7.67 7200 5.73 68.66 31.34 21 2100
knaps.40.50.100.c 7200 8.19 7200 6.18 67.42 32.58 25 2500
knaps.40.50.100.d 7200 7.33 7200 5.45 54.15 45.85 20 2000
knaps.40.50.100.e 7200 7.15 7200 5.13 68.02 31.98 24 2400
Average 7200 7.58 7200 5.61 65.96 34.04 23 2280
knaps.40.50.150.a 7200.0 9.44 7200.0 7.51 55.10 44.90 20 3000
knaps.40.50.150.b 7200.0 8.24 7200.0 6.96 67.78 32.22 16 2400
knaps.40.50.150.c 7200.0 9.74 7200.0 8.18 61.48 38.52 19 2850
knaps.40.50.150.d 7200.0 8.93 7200.0 6.98 67.91 32.09 18 2700
knaps.40.50.150.e 7200.0 10.41 7200.0 8.53 62.09 37.91 18 2700
Average 7200.0 9.35 7200.0 7.63 62.87 37.13 18 2730
knaps.40.50.200.a 7200 11.45 7200 8.30 29.67 70.33 15 3000
knaps.40.50.200.b 7200 9.96 7200 7.59 49.98 50.02 18 3600
knaps.40.50.200.c 7200 13.74 7200 7.46 56.06 43.94 17 3400
knaps.40.50.200.d 7200 11.54 7200 7.75 44.28 55.72 16 3200
knaps.40.50.200.e 7200 12.23 7200 7.58 52.78 47.22 14 2800
Average 7200 11.78 7200 7.74 46.56 53.44 16 3200

more (scenario) subproblems, more IPs must be solved. The exception to this trend was the

last instance of test set 4 (Table VII) and all of test set 4 (Table VIII). For these instances,

the proportion of time spent in PHA and FCG was relatively even. The reason for this

seems to be the effect that increasing the number of variables has on the number of IPs that

must be solved to generate a Fenchel cut on each scenario subproblem.

Another trend is revealed by considering the effect that increasing the number of vari-

ables has across problems instances with the same number of scenarios. Consider the
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Fig. 14. Convergence plot for instance 10.20.25.a

output presented in Tables V - VIII for the problems with a set number of scenarios. On

average, the gap in the SFD solution increases somewhat linearly as the problem size in-

creases from one table to the next while the gaps returned by CPLEX from solving the DEP

stay relatively constant as the number of variables increases. To gain insight into the rate

of convergence of each solution method, consider the following graphs of the upper and

lower bounds.

Figures 14, 15 and 16 display the upper and lower bounds for both solving the DEP

directly using CPLEX (DEP UB and DEP LB) and using SFD (SFD UB and SFD LB). The
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Fig. 15. Convergence plot for instance 20.30.100.a

figures use the iterations corresponding to SFD, and are not based on time. The CPLEX

bounds corresponding to the SFD iterations were obtained by sampling the CPLEX output

at regular intervals corresponding to the number of SFD iterations completed in the time

limit. As seen in the figures, the CPLEX solver begins by adding several cuts to the LP

relaxation problem, giving it a tighter upper bound in the first iteration, but then is slow to

improve its upper bound after the first few iterations. The lower bounds from CPLEX have

a similar trend: they find a good solution early in the branch-and-bound tree, but then are

slow to improve upon that solution. By contrast, the upper bound for SFD shows a fairly
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linear convergence rate. As mentioned before, a lower bound for SFD was not available

at every iteration, so the lower bound shown across all iterations is the result of applying

the rounding heuristic on the solution returned in the final iteration of SFD. The graphs

of convergence seem to suggest that SFD has a fairly reliable convergence rate toward the

optimal solution, while solving the DEP can continue on for a very long time with no

improvements to either the upper or lower bound.
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Fig. 16. Convergence plot for instance 40.50.200.a

To summarize, the results of the computational study suggest that SFD solves multi-

dimensional (0-1) knapsack problems better than solving the DEP directly using CPLEX.
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SFD seems to perform best on instances with a smaller number of variables in the first and

second stages where it found optimal or very close to optimal solutions for many of the in-

stances. For larger instances, SFD still outperforms solving the DEP, and trends in the data

suggest that the gaps will continue to close at a faster rate than CPLEX given longer run

times. This result is promising, as SFD is an algorithm which seeks to recover the convex

hull using nothing but Fenchel cuts and does not have many of the state of the art advance-

ments of a commercial solver like CPLEX. The inclusion of branch-and-bound on some or

all of the variables or additional cutting planes could yield even better results. Exploration

of these ideas is left as future work.

G. Conclusion

This paper introduces a new scenario decomposition method for solving stochastic (0-1)

two-stage SIPs. The method uses Fenchel cutting planes on scenario decomposed SIPs in

order to iteratively recover the convex hull of integer points in the neighborhood around

the optimal solution. This approach allows for convergence results from PHA for SLPs

to be applied to SIPs and a computational study was presented which provides empirical

evidence to support this claim. This work opens up new avenues for future research. As

mentioned in section 2 some of the instances solved using SFD required more time from

PHA than in generating Fenchel cuts. Using Fenchel cuts with faster implementations of

PHA or with other methods for solving scenario decomposed SIPs may yield better results.

It was also noted that for the instances with a larger number of variables the proportion of

time required for generating Fenchel cuts increased.

Continued work focuses on reducing the amount of time required to find nonanticipa-

tive first-stage solutions. One potion would be to implement Fenchel cuts within a branch-

and-bound algorithm (such as the dual decomposition algorithm of Caroe and Schultz
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(1999).) Branching on the first-stage variables in particular should help minimize the num-

ber of SFD iterations for cases when there is little or no change in the first-stage solution

vector. In such a scheme the FCG subroutine would be useful in recover integral second-

stage variables, whereas the branch-and-bound algorithm would provide integer first-stage

variable values. Another option for recovering a nonanticipative solution would use the

L-shaped method Slyke and Wets (1969). While the L-shaped method uses a stage-wise

decomposition approach, a Fenchel cut generated on a scenario subproblem provides a cut

suitable for the corresponding second-stage subproblem.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

This dissertation investigated new subgradient-based solution approaches for two stage

SMIPs. Stochastic programming, in particular stochastic programming with integer vari-

ables is a rich and challenging subset of the mathematical programming field that continues

to challenge researchers. Research in this area is important because the inclusion of random

parameters into mathematical programming problems yield solutions that hedge against un-

favorable future events, which can lead to larger profits and smaller losses when extreme

scenarios occur.

The first major contribution of this work was the development of a new method for de-

composition and coordination of complex systems of decision makers under private infor-

mation restrictions. Until the work described here, other authors focused on either relaxing

the private information requirements in some way through the use of an intermediary or

the solution methods were highly heuristic. The nodal decompositon-coordination (NDC)

method can also be considered heuristic since optimality cannot be claimed (due to the

duality gap from the Lagrangian relaxation approach) but it was demonstrated that NDC

results still beat the still often used deterministic solution.

One of the practical challenges in the supply chain inventory coordination instances

was guaranteeing feasibility of the noncoordinated problems. In the SCICP instances, artifi-

cial variables were included to enforce feasibility, which caused some numerical instability

in the NDC iterations. The choice of the artificial variables and the step sizes dramatically

affected the convergence rate of the algorithm. Testing NDC on applications without this

infeasibility drawback could yield better results in terms of gap from the global optimal.

The NDC algorithm opens new avenues for future research. For this study, the number

of realizations of the random demand was limited so that the DEP could be formulated and
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solved directly at each step. Implementing a more sophisticated SMIP algorithm to solve

the SMIP subproblems would dramatically increase the ability of NDC to solve realistic

sized instances and would allow for the inclusion of more random parameters describing

the model. However, as discussed in Chapter II, choosing an algorithm for solving a SMIP

is very dependent on where the random variables appear in the problem as well as the types

of decision variables, so careful modelling of more realistic problem instances is required.

The second contribution of this thesis was the Scenario Fenchel Decomposition

method, which uses Fenchel cutting planes in coordination with the progressive hedging

algorithm to arrive at the optimal solution. The method was tested on multidimensional

knapsack polyhedra in order to take advantage of the special structures that knapsack poly-

hedra afford the Fenchel cutting plane subroutine. Computational results demonstrate that

the algorithm was able to beat attempts at solving the DEP directly.

The algorithm differs from other algorithms in literature. Instead of relying on an

enumeration scheme such as branch-and-bound, the algorithm converges toward an opti-

mal solution with the use of Fenchel cuts alone. While improvements may be realized by

imposing branch-and-bound on some of the variables, that was not the approach here, and

convergence of the algorithm was promising. The SFD algorithm demonstrates the ability

of Fenchel cuts to recover the convex hull of scenario subproblems for SMIP.

Ongoing work on SFD focuses on improving the speed at which nonanticipative so-

lutions are found. Computational experiments on the algorithm displayed that there are

improvements to be made. The PHA algorithm took a much higher percentage of time than

was expected by the authors, so new methods need to be explored such as using branch-and-

bound on the first-stage variables. The use of branch-and-bound on the first-stage variables

would also offer a convenient lower bound (feasible integer solution) whenever the branch

and bound tree returns an integer first-stage decision vector, a phenomenon that is rare in

the current SFD implementation. Another option for recovering nonanticipative first-stage
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decisions is solving the LP relaxed problem with the L-shaped method. Fenchel cuts can

then be generated for the scenario subproblems and added to the second stage subproblems

for the next L-shaped iteration.

Additionally, the algorithm has only been tested on randomly generated multidimen-

sional knapsack constrained problems. Since knapsack constrained problems are common

in applications such as transportation, scheduling, investment planning, and capacity ex-

pansion, an interesting extension would be to test the ability of SFD to solve some problems

from those applications.
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A. and Shapiro, A., editors, Stochastic Programming, volume 10 of Handbooks in Oper-

ations Research and Management Science, pages 213 – 266. Elsevier, Amsterdam, The

Netherlands.

Mendonca, D. (2007). Decision support for improvisation in response to extreme events:

Learning from the response to the 2001 world trade center attack. Decision Support

Systems, 43(3), 952–967.



102

Nemhauser, G. and Wolsey, L. (1999). Integer and Combinatorial Optimization. Wiley-

Interscience, New York.
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APPENDIX A

ADDITIONAL PROBLEM INFORMATION FOR SFD COMPUTATIONS

The problems studied in section F are randomly generated stochastic problems with

multiple knapsack constraints. The problems are of the form:

knaps: Min c>x+ E[f(ω̃, x)]

s.t. Ax ≤ b

x ∈ Bn1 ,

(A.1)

where, for a given scenario k, the recourse function f(k, x) is given by the following

second-stage mixed-integer program (MIP):

f(k, x) = Min qk>yk

s.t. W kyk ≤ hk − T kx

yk ∈ Bn2.

(A.2)

Tables IX - XII are organized as follows: CPLEX LB denotes the best integer decision

found while solving the DEP. SFD LB denotes the objective from the best integer decision

after applying a rounding heuristic on the SFD solution. DEP Nodes denotes the number

of nodes explored while attempting to solve the DEP using CPLEX. LP Gap is the gap

between solving the linear relaxation of the DEP and the best known integer solution to the

problem (taken from the lower bound calculations).
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Table IX. Additional problem information from test set 1

CPLEX DEP
Instance LB SFD LB Nodes LP gap
knaps.10.20.25.a 3229.0 3229.0 2799900 4.40%
knaps.10.20.25.b 3292.6 3292.6 3845800 4.94%
knaps.10.20.25.c 3158.7 3158.7 3768700 4.00%
knaps.10.20.25.d 3248.1 3248.1 3743100 3.85%
knaps.10.20.25.e 3276.2 3276.2 3207300 4.40%
Average 3472960 4.32%
knaps.10.20.50.a 4520.6 4520.6 2040600 7.66%
knaps.10.20.50.b 4447.3 4447.3 4761800 8.34%
knaps.10.20.50.c 4087.6 4087.6 3352100 8.49%
knaps.10.20.50.d 4070.9 4070.9 2170400 8.50%
knaps.10.20.50.e 4393.7 4396.6 2657400 8.84%
Average 2996460 8.37%
knaps.10.20.75.a 5141.0 5141.0 3753800 8.11%
knaps.10.20.75.b 5150.6 5153.9 2768400 8.92%
knaps.10.20.75.c 5241.7 5241.7 2791500 9.98%
knaps.10.20.75.d 4889.5 4891.3 858100 8.26%
knaps.10.20.75.e 5242.2 5242.2 3022100 6.76%
Average 2638780 8.40%
knaps.10.20.100.a 5932.9 5932.9 1966000 9.63%
knaps.10.20.100.b 6047.7 6060.6 539500 9.81%
knaps.10.20.100.c 6394.4 6425.0 2085700 9.37%
knaps.10.20.100.d 5759.0 5764.4 768200 10.72%
knaps.10.20.100.e 5826.7 5830.9 1648600 11.15%
Average 1401600 10.13%
knaps.10.20.150.a 7580.0 7765.8 240943 10.94%
knaps.10.20.150.b 8021.9 8028.7 518400 9.21%
knaps.10.20.150.c 8076.6 8116.1 390200 11.81%
knaps.10.20.150.d 7125.3 7246.7 954800 13.05%
knaps.10.20.150.e 7764.4 7829.4 317600 9.64%
Average 484389 10.93%
knaps.10.20.200.a 10224.6 10249.7 672900 11.23%
knaps.10.20.200.b 10087.0 10155.6 321000 11.91%
knaps.10.20.200.c 10085.6 10109.4 271310 10.89%
knaps.10.20.200.d 10085.9 10299.1 911900 13.21%
knaps.10.20.200.e 9962.3 10006.2 285600 10.58%
Average 492542 11.56%
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Table X. Additional problem information from test set 2

CPLEX DEP
Instance LB SFD LB Nodes LP gap
knaps.20.30.25.a 3484.3 3484.3 6577600 3.98%
knaps.20.30.25.b 3558.3 3558.3 7993700 3.93%
knaps.20.30.25.c 3530.8 3530.8 6278000 4.96%
knaps.20.30.25.d 3433.7 3433.7 3654000 4.51%
knaps.20.30.25.e 3552.3 3552.3 4606500 4.28%
Average 5821960 4.33%
knaps.20.30.50.a 4450.5 4454.3 3396700 6.86%
knaps.20.30.50.b 4636.4 4636.4 2237500 5.76%
knaps.20.30.50.c 4538.1 4538.1 4109300 6.86%
knaps.20.30.50.d 4467.7 4467.7 1962600 5.69%
knaps.20.30.50.e 4542.3 4542.3 4151400 6.89%
Average 3171500 6.41%
knaps.20.30.75.a 5421.3 5425.9 1418700 8.71%
knaps.20.30.75.b 5359.4 5359.4 775900 7.56%
knaps.20.30.75.c 5395.4 5395.4 2104600 7.28%
knaps.20.30.75.d 5483.7 5491.6 2034400 7.41%
knaps.20.30.75.e 5618.0 5618.0 1313600 8.43%
Average 1529440 7.88%
knaps.20.30.100.a 6289.8 6292.4 2007800 7.96%
knaps.20.30.100.b 6753.5 6767.2 1565700 9.47%
knaps.20.30.100.c 5919.7 5926.4 1594400 9.50%
knaps.20.30.100.d 6347.4 6351.1 1480800 8.92%
knaps.20.30.100.e 5888.4 5919.8 506000 9.67%
Average 1430940 9.10%
knaps.20.30.150.a 7966.1 8050.3 961700 12.34%
knaps.20.30.150.b 8702.9 8726.1 1198800 10.39%
knaps.20.30.150.c 8394.6 8478.1 372900 11.67%
knaps.20.30.150.d 8278.8 8335.1 759200 10.88%
knaps.20.30.150.e 8490.3 8496.0 899400 11.34%
Average 838400 11.32%
knaps.20.30.200.a 9846.5 9979.7 610100 11.41%
knaps.20.30.200.b 10523.7 10595.7 669800 10.60%
knaps.20.30.200.c 10271.4 10344.9 525900 12.52%
knaps.20.30.200.d 10898.3 11326.7 281000 10.05%
knaps.20.30.200.e 10566.3 10596.5 508000 11.67%
Average 518960 11.25%
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Table XI. Additional problem information from test set 3

CPLEX DEP
Instance LB SFD LB Nodes LP gap
knaps.30.40.25.a 3531.0 3531.0 3128400 5.08%
knaps.30.40.25.b 3569.5 3569.5 2297000 4.50%
knaps.30.40.25.c 3613.0 3613.0 2412000 4.40%
knaps.30.40.25.d 3544.4 3544.4 4380000 3.99%
knaps.30.40.25.e 3658.1 3658.1 2798900 4.44%
Average 3003260 4.48%
knaps.30.40.50.a 4799.6 4799.6 1997200 7.39%
knaps.30.40.50.b 4747.3 4747.3 2352800 6.04%
knaps.30.40.50.c 4651.3 4653.1 1803400 6.91%
knaps.30.40.50.d 4668.9 4669.0 2311800 6.48%
knaps.30.40.50.e 4687.5 4692.5 1082400 6.87%
Average 1909520 6.74%
knaps.30.40.75.a 5612.7 5617.6 887800 7.55%
knaps.30.40.75.b 5644.3 5651.6 1039800 8.19%
knaps.30.40.75.c 5543.0 5547.7 1138400 8.40%
knaps.30.40.75.d 5611.9 5615.5 1168500 9.71%
knaps.30.40.75.e 5728.2 5728.7 1230000 8.38%
Average 1092900 8.44%
knaps.30.40.100.a 6507.8 6542.5 751400 11.09%
knaps.30.40.100.b 6755.8 6759.8 980500 9.43%
knaps.30.40.100.c 6291.0 6307.5 780000 9.48%
knaps.30.40.100.d 6477.8 6485.0 845000 9.84%
knaps.30.40.100.e 6386.7 6423.0 591500 9.07%
Average 789680 9.78%
knaps.30.40.150.a 8819.5 8864.0 405300 10.98%
knaps.30.40.150.b 9003.0 9043.0 286600 12.80%
knaps.30.40.150.c 8999.0 9055.8 253200 12.61%
knaps.30.40.150.d 8761.3 8800.9 497800 10.63%
knaps.30.40.150.e 8766.2 8781.9 338700 9.49%
Average 356320 11.30%
knaps.30.40.200.a 11391.8 11567.4 391500 10.83%
knaps.30.40.200.b 10999.6 11439.6 352500 11.40%
knaps.30.40.200.c 10163.6 10317.8 239000 9.95%
knaps.30.40.200.d 10751.1 10796.7 243900 10.29%
knaps.30.40.200.e 10754.2 10986.5 259600 10.16%
Average 297300 10.53%
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Table XII. Additional problem information from test set 4

CPLEX DEP
Instance LB SFD LB Nodes LP gap
knaps.40.50.25.a 3700.3 3700.3 2254700 5.61%
knaps.40.50.25.b 3670.1 3670.1 2443800 4.90%
knaps.40.50.25.c 3665.8 3665.8 1919600 4.80%
knaps.40.50.25.d 3651.4 3651.4 1708400 3.95%
knaps.40.50.25.e 3687.5 3687.5 1771600 4.75%
Average 2019620 4.80%
knaps.40.50.50.a 4839.7 4839.8 1929000 8.33%
knaps.40.50.50.b 4725.2 4725.2 1749700 7.07%
knaps.40.50.50.c 4775.0 4777.0 1205900 7.12%
knaps.40.50.50.d 4713.1 4719.6 983200 6.37%
knaps.40.50.50.e 4820.7 4823.4 1491500 7.74%
Average 1471860 7.32%
knaps.40.50.75.a 5759.0 5766.2 1001400 8.61%
knaps.40.50.75.b 5708.9 5721.0 811600 9.85%
knaps.40.50.75.c 5582.1 5589.3 536400 9.73%
knaps.40.50.75.d 5631.4 5642.3 1001900 7.39%
knaps.40.50.75.e 5687.5 5689.1 1315000 9.72%
Average 933260 9.06%
knaps.40.50.100.a 6680.6 6709.4 770600 9.41%
knaps.40.50.100.b 6665.2 6672.3 838000 9.30%
knaps.40.50.100.c 6761.4 6766.9 565500 10.08%
knaps.40.50.100.d 6727.8 6743.5 640400 9.62%
knaps.40.50.100.e 6643.2 6655.5 664000 8.92%
Average 695700 9.47%
knaps.40.50.150.a 8928.8 8977.3 284100 11.00%
knaps.40.50.150.b 8675.0 8693.7 476200 9.91%
knaps.40.50.150.c 9028.2 9075.4 390000 11.38%
knaps.40.50.150.d 8714.9 8756.1 435900 10.39%
knaps.40.50.150.e 9224.9 9256.6 750800 11.80%
Average 467400 10.90%
knaps.40.50.200.a 11467.4 11674.9 200268 11.07%
knaps.40.50.200.b 11739.2 11850.0 327400 10.55%
knaps.40.50.200.c 11022.6 11500.3 229500 10.39%
knaps.40.50.200.d 11195.4 11445.0 237500 10.49%
knaps.40.50.200.e 10854.8 11222.5 221400 9.64%
Average 243214 10.43%
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