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ABSTRACT 

 

Interactive Effects of Geography and Host Plant Species on Genetic and Phenotypic 

Variation of Cotton Fleahopper Populations. (December 2011) 

Apurba Kumar Barman, B.Sc., M.Sc., Assam Agricultural University;                      

M.S., Texas Tech University 

Co-Chairs of Advisory Committee:  Dr. Raul F. Medina 
   Dr. Megha N. Parajulee 

 

The cotton fleahopper, Pseudatomoscelis seriatus (Reuter) is a widely distributed 

insect across the United States. Although, it feeds on several native wild hosts, its 

agricultural importance lies as an economic pest of cotton in several states in the 

southern United States. No studies have addressed intraspecific genetic and phenotypic 

variation of this insect pest at a large geographic scale. 

I examined genetic variation among cotton fleahopper populations associated 

with cotton in different geographic locations across the southern United States (Chapter 

II). Using dominant, neutral, nuclear molecular markers (AFLP, amplified fragment 

length polymorphism) and mitochondrial DNA sequences, I found that overall genetic 

differentiation among different geographic populations, collected from cotton in eleven 

cotton growing states, was low but significant. AFLP revealed the presence of three 

regional groups representing western (Arizona), central (Texas, Oklahoma, Arkansas, 

Louisiana, Mississippi and Alabama), and eastern (Florida, Georgia, South Carolina and 

North Carolina) populations. 
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I examined if there were distinct lineages of cotton fleahoppers associated with 

three of its host plant species: cotton (Gossypium hirsutum), horsemint (Monarda 

punctata) and woolly croton (Croton capitatus) in five different locations of Texas by 

using AFLP markers (Chapter III). I found two distinct host-associated lineages at three 

locations and local panmixia in the other two locations.  

I tested if host preference of cotton fleahoppers were affected by geographic 

variation and prior experience. Conducting choice tests with a Y-tube olfactometer, I 

found that host preference in cotton fleahoppers for horsemint (one of its native host 

plants) is conserved and unaffected by individual‟s prior experience with cotton (Chapter 

IV). 

Finally, I explored the role of host-plant species in morphological differentiation 

of the cotton fleahopper in two locations that differ in presence of distinct host-

associated lineages. Using a geometric-morphometric approach, I detected significant 

effect of host plant and geography on body morphology and wing shape of cotton 

fleahopper populations (Chapter V). Length of antenna and rostrum were two important 

traits associated with morphological divergence of cotton and horsemint associated 

insect populations. Cotton associated individuals had relatively longer antenna and 

rostrum compared to individuals associated with horsemint. 
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CHAPTER I 

INTRODUCTION 

Integrated pest management (IPM) combines several pest control methods, which 

are economically viable, ecologically sustainable and friendly to environment (Smith 

1978). Successful IPM relies on complete understanding of pests and their interactions 

with both biotic and abiotic factors. Considerations regarding economic viability, 

ecological sustainability and environmental impacts are extremely important in the 

design of IPM strategies. Due to the dynamic nature of IPM and the influx of novel 

information pertaining multi-trophic interactions, IPM approaches should be flexible 

enough to evolve over time. In many IPM practices, the effect of the genetic and 

phenotypic variation within insect pest species seems not to be taken into consideration. 

Several studies have described two or more cryptic or sibling species “hidden” within 

the pest population that were thought to be one species (Blair et al. 2005) (cryptic 

species examples). Similarly, several host races have been identified within the insect 

pest species (Bush 1969, Feder et al. 1988, Carroll and Boyd 1992, Emelianov et al. 

2001, Aguin-Pombo 2002, Calcagno et al. 2007, Ohshima 2008, Peccoud et al. 2009). 

The realization that genetic diversity in insect population can be structured by 

geography, host-plant association or a combination of both has led to a series of studies 

addressing the mechanisms underlying genetic divergence. However, very few studies 

have looked at the organization of genetic diversity in economically important insect  
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pests of crops and even fewer have used this information to improve IPM practices. In 

my dissertation research, I have taken several steps to understand intra-specific 

phenotypic and genotypic diversity of an economically important agricultural insect pest 

and discussed the implications of this variation in pest management. 

The present dissertation was built upon the idea that insect pests may possess 

intra-specific variation in their genotype and/or phenotype, which if ignored may impair 

the successful implementation of sound IPM practices. Here, I use the cotton fleahopper, 

Pseudatomoscelis seriatus (Reuter) (Hemiptera: Miridae), as a model species to explore 

intra-specific genetic and phenotypic diversity in geographic and host-associated 

populations. The cotton fleahopper is an economically important pest of cotton in Texas, 

Oklahoma and Arkansas. In 2010, cotton fleahopper infested 4.5 million acres of cotton 

cultivation in the United States with a total loss of 81,048 bales of cotton lint (Williams 

2011). Nationwide, the yield loss was highest in Texas (81% of total loss) and the state 

(Texas) spent about 10 million dollars in treating cotton fleahoppers alone (Williams 

2011). Although the cotton fleahopper is reported to be present in the majority of the 

cotton growing states in the United States, not all cotton-growing states suffer similar 

amount of crop losses due to this insect (Williams 2011). Thus, question arises: why is 

there heavy infestation of cotton fleahoppers in some regions but not in others? In 

Chapter II, I address this question by exploring the geographic population structure of 

the cotton fleahopper in the United States. Data of this kind are useful in order to have 

baseline information on the way in which genetic variation is structured geographically. 

It is likely that genetically distinct pest populations differ in traits relevant to their 
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control. Thus, the organization or structuring of genetic diversity in insect pests may 

provide insights into the variation in effectiveness of some control practices among 

different geographic locations.  

Although the cotton fleahopper derived its name by being associated with cotton, 

this insect has more than 160 host plant species in 35 different families (Esquivel and 

Esquivel 2009). Among these host plants, two native plant species, horsemint (Monarda 

punctata) and woolly croton (Croton capitatus), are the most preferred host plants in 

Texas, both species supporting relatively high populations. Horsemint and woolly croton 

are considered as primary hosts of the cotton fleahopper in Texas and they are 

customarily presumed to be the source of cotton fleahopper populations infesting cotton. 

However, no studies have been conducted to demonstrate if movement of cotton 

fleahopper from any of these two hosts into cotton actually occurs in nature. Studies in 

several insect species (e.g., Rhagoletis pomonella, Ostrinia nubilalis, Acyrthosiphon 

pisum) have shown that insect populations associated with different host plant species 

occurring in sympatry may actually represent distinct host-associated lineages rather 

than being one panmictic population (Feder et al. 1988, Via 1999, Malausa et al. 2007). 

The existence of genetically distinct parasite (e.g. herbivores) lineages on different host 

species (e.g., plants) is referred to as host-associated differentiation (HAD). Presence of 

HAD in cotton fleahopper populations associated with different host plant species 

indicates reproductive isolation among insects associated with different host-plant 

species and may also suggest restricted movement of individuals between host plant 

species. Chapter III explores if cotton fleahopper populations associated with cotton and 
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two of cotton fleahopper‟s wild and native host-plant species (i.e., horsemint and woolly 

croton) are genetically distinct in several geographic locations in Texas.  

 Preference for particular host plant species is considered as one of the key 

factors explaining reproductive isolation among insect populations associated with 

different host plant species. The preference for specific host plants is a fundamental 

behavior of herbivore insect species that allows individuals to increase their fitness and 

advantageously exploit the resources they have available choosing the ones on which 

their fitness could attain its maximum potential. This preference for one host plant to 

another in herbivore insects could be either for feeding, oviposition or for rendezvous 

locations to find mating partners. Host preference in insect herbivores may present 

geographic variation. For example, Helicoverpa armigera populations from different 

geographic regions showed variable host preference in Australia (Firempong and 

Zalucki 1990).  Distant geographic populations of herbivore species may experience 

heterogeneous host plant compositions throughout their distribution range. In such 

situations, insect populations would be expected to prefer the most abundant host plant 

at any given geographical location, either because of more frequent encounters of the 

insect with the most locally common plant species or just because of the adaptive 

evolution in insect population to a predictable resource. In Chapter IV, I explore if host 

preference for horsemint and cotton is modulated by geography in the cotton fleahopper 

and assess if prior experience with a particular plant species may alter the cotton 

fleahopper host plant preference.  
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As noted earlier, both geography and host plant composition may influence 

phenotypic and genotypic variation in insects. For example, behavioral differences in 

herbivorous insect could occur among insects associated with different host plant species 

at different locations. In a similar vein, it can also be hypothesized that geography and 

host plant species, either by itself or in combination, can create morphological variation 

in populations of same species. For example, insect populations from distant geographic 

locations may have unique evolutionary histories and exhibit different morphologies. 

Similarly, morphological variation in insect populations may result from their 

association with host plant species which are different morphologically, anatomically, 

and biochemically. For example, in the goldenrod aphid, Uroleucon sp., populations 

associated with pubescent hosts had longer rostrum and shorter hind tarsi compared to 

populations associated with host plants with glabrous surfaces (Moran 1986). The native 

host plants of the cotton fleahopper considered in this study also vary in terms of their 

surface morphology and chemistry. Then the question arises: are cotton fleahopper 

populations associated with two different host plant species show any morphological 

differences? Also, how these morphological differences in cotton fleahopper populations 

vary geographically?   Chapter V gives an account of my approach to evaluate the effect 

of host plant species and geography in morphological variation of different cotton 

fleahopper populations.  

The overall conclusions from this body of work are summarized in Chapter VI. 

Considering that the cotton fleahopper is an economically important pest in the United 

States, the conclusions I provide are drawn from a pest management perspective. To my 
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knowledge, this is one of the few studies, which have addressed host-associated 

differentiation in an agricultural system and the only one that has done so by exploring 

HAD in a hemimetabolous, non-parthenogen, multivoltine herbivore species. This 

dissertation not only contributes to the overall understanding of the cotton fleahopper‟s 

evolutionary ecology in the United States, but also adds a case study involving a 

homopteran other than Aphididae to the scarce list of host-associated differentiation 

studies in agro-ecosystems. 

  



7 
 

CHAPTER II 

GEOGRAPHIC STRUCTURE OF GENETIC VARIATION OF COTTON 

FLEAHOPPER, Pseudatomoscelis seriatus POPULATIONS  

IN THE UNITED STATES 

Introduction 

 The cotton fleahopper, Pseudatomoscelis seriatus is reportedly a native insect of 

the southern United States and northern Mexico (Knutson et al. 2002). In the United 

States, the cotton fleahopper has a wide distribution, from west (California) to east 

(North Carolina) and north (Nebraska) to south (Texas) (Source: Plant Bug Planetary 

Biodiversity Inventory). Cotton fleahopper is a polyphagous insect, which has been 

reported from more than 160 different host plant species belonging  to 35 different 

families (Esquivel and Esquivel 2009). However, most of the studies related to this 

insect have been conducted due to its association with cultivated cotton (Gossypium 

hirsutum). Cotton as a cultivated crop was introduced to the United States during the 

1600‟s and subsequent cultivation of cotton expanded to most of the southern states 

(Lewis and Richmond 1966). The cotton fleahopper was first reported as a pest during 

the 1920‟s (Reinhard 1926). Currently, cotton is commercially grown in 17 states in the 

US (Fig. 2.1), and cotton fleahopper infestations in cotton have been recorded from 10 

different states, mostly in the south-west and mid-south region (Williams 2011). 

However, the extent of crop losses due to cotton fleahopper infestation is not similar 

across all the states. Cotton in Texas, Oklahoma and Arkansas is affected by cotton 

fleahopper more than the other cotton producing states. Thus, a question arises: are  



8 
 

   
 
Fig. 2.1. Map illustrating areas and relative intensity of cotton production in the United 
States based on upland cotton harvested in 2007. Cotton production intensifies as the 
shading changes from light grey (lowest) through the increasing hues of green (highest) 
(National Atlas, 2011).  
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cotton fleahopper populations in different cotton growing states genetically different or 

are there eco-geographic factors which prevent populations from building up to an 

economic level at some locations? 

No studies have been conducted to evaluate genetic differences among cotton 

fleahopper populations originating from different cotton growing states in the United 

States. Population genetic studies can reveal the presence or absence of genetic 

differentiation among populations. Genetic differences among geographic populations 

could be explained by historical factors (e.g., multiple introductions from distinct 

origins) or by the influence of micro-evolutionary processes such as natural selection, 

genetic drift and gene flow (Roderick 1996). One of the objectives of population genetic 

studies is to detect the presence of genetic structure, i.e. genetic differentiation among 

populations. Genetic structure in natural populations of phytophagous insects can be 

organized by their affiliation to different host plant species and geographic locations or 

sometimes by a combination of both. For example, populations of the fall armyworm, 

Spodoptera frugiperda were found to be genetically differentiated into two strains, based 

on their association with corn and rice (Pashley 1986). Similar examples can be found in 

other agricultural systems where insect populations associated with different host plant 

species have genetically differentiated into distinct host races (Ruiz-Montoya et al. 2003, 

Thomas et al. 2003, Carletto et al. 2009). In contrast to host-mediated genetic 

divergence, population differentiation due to geography requires physical isolation of 

insect populations either due to physical barriers (mountain ranges, deserts, rivers, etc.) 

or due to limited dispersal ability of insects. For example, Medina et al. (2010) showed 
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that the potato tuberworm (Phthorimaea operculella) populations in the western United 

States were genetically differentiated from eastern populations and suggested that 

mountain ranges between eastern and western states (Rocky and Appalachian 

mountains) could be the reason behind the geographically distinct patterns. In this study, 

I examined if the cotton fleahopper populations from different cotton producing states 

were genetically differentiated, I used two types of molecular markers, neutral molecular 

markers, AFLP (amplified fragment length polymorphisms) and mitochondrial gene 

sequences, specifically mtDNA COI sequences. 

The two molecular markers selected in this study are widely used in population 

genetic studies (Grapputo et al. 2005, Ahern et al. 2009, Seyahooei et al. 2011). Gene 

sequences of mitochondrial genome were used to infer both taxonomic relationships and 

phylogeographic patterns of population differentiation (Avise 2004). Since, the mtDNA 

genome is maternally inherited and has lower effective populations sizes, than nuclear 

genomes, the mtDNA also provides unique information such as sex biased dispersal and 

evidence of past population bottlenecks. In addition, mtDNA genes are highly conserved 

and less variable than nuclear genes, which allow researchers to investigate longer 

evolutionary histories when compared to AFLP markers (Ahern et al. 2009). AFLP 

markers are highly variable and tend to reveal  relatively recent population structure, 

which can give insight into contemporary gene flow among populations (Hewitt 2004). 

In this study, using  two different molecular markers, I asked whether 1) geographically 

distant cotton fleahopper populations associated with cotton are genetically 
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differentiated and 2) if there is differentiation among populations, does this 

differentiation follow any geographic pattern? 

 

Materials and methods 

Sample collection and DNA extraction 

 Insect were collected from 1l cotton growing states and one location in Mexico. 

Insects were collected from cotton field(s) in areas where cotton is extensively cultivated 

within each state (Table 2.1). P. seriatus adults were collected during the reproductive 

stage of cotton using a standard sweep net and/or a motorized blower also known as a 

„keep-it-simple‟ (KIS) sampler (Beerwinkle et al. 1997). We used a total of 282 P. 

seriatus individuals for AFLP analyses. For mtDNA analyses, we used a total of 70 

individuals collected from 12 locations (Table 2.1). In the cotton producing states, where 

multiple sites were sampled, we pooled the insects collected from all sites within each 

state and considered it as a single geographic population representing that particular 

state. Insects were preserved in 95% ethanol at 4°C until used for DNA extractions. 

Genomic DNA was extracted using Qiagen® DNeasy kit (Valencia, CA) following the 

manufacturer‟s recommended protocol for animal tissue. DNA concentration and purity 

were measured for each specimen using a NanoDrop spectrophotometer (NanoDrop 

Technologies, Inc., DE). DNA was eluted in 100ul of Qiagen AE buffer. 
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Table 2.1. Information related to P. seriatus populations collected from different cotton growing states in the US 
 

State Population 

code 

Latitude(North) 

dd min 

Longitude (West) 

dd min 

Elevation 

(m) 

Collection date 

(mm-year) 

Arizona AZ 33 01.986 111 34.999 421 July-2010 
Texas TX 

 
30 32.100 96 26.640 72 May-2010 
34 09.300 101 57.000 1066 July-2009 
31 25.320 100 08.400 358 July-2009 

Oklahoma OK 34 37.415 99 53.659 341 June-2010 
Tamaulipas, Mexico MX 26 00.057 97 44.245 17 June-2010 

Arkansas AR 36 03.035 90 22.654 77 June-2010 
36 20.537 90 13.088 87 June-2010 
35 23.609 92 23.405 208 June-2010 

Mississippi MS 
 

33 42.902 90 59.458 39 June-2010 
33 24.454 90 54.673 71 June-2010 

Louisiana LA 
 

32 21.057 91 30.662 33 July-2010 
32 54.643 91 44.833 32 July-2010 

Alabama AL 30 31.632 88 14.558 68 July-2010 
30 38.820 87 45.668 56 July-2010 

Florida FL 30 57.643 85 08.034 59 July-2010 
Georgia GA 31 08.327 84 48.688 49 July-2010 

South Carolina SC 33 41.586 80 41.618 86 July-2010 
33 31.659 80 44.995 63 July-2010 

North Carolina NC 36 12.165 76 26.573 4 July-2010 
35 49.683 77 36.313 36 July-2010 
35 42.379 77 49.728 40 July-2010 
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AFLP procedure  

 Amplified fragment length polymorphisms (AFLP) were generated using the 

protocol proposed by Vos et al.(1995) with slight modifications (see Chapter III for full 

description). The AFLP procedure is the same as the one described in Chapter III, except 

for the selective amplification step. I used three different selective primer pairs: EcoRI-

ACT + MseI-CAT; EcoRI-AAC + MseI-CTC; and EcoRI-ACG + MseI-CAC. The PCR 

parameters were the same used for pre-selective and selective amplification in Chapter 

III. 

Samples were analyzed using capillary electrophoresis. Each reaction was 

prepared by adding 0.5 µL of 400 HD-ROX-size standard (ABI 402985), 9 µL of HiDi 

formamide, and 1 µL of selective PCR amplification product. Samples were analyzed in 

an ABI 3130 genetic analyzer (Applied Biosystems, Forest City, CA). Results from 

capillary electrophoresis were analyzed by GeneMapper® 4.0 (Applied Biosystems, 

Forest City, CA). Electrophenograms in GeneMapper were evaluated using a 1 bp bin 

width. Only fragments between 50 and 400 bp were analyzed. The threshold for peak 

detection was set at 100. Thus, only fragments with relative florescent unit (RFU) of 100 

or more were considered.  

 

AFLP data analysis 

Data obtained from three primer pairs were combined and analyzed as a single 

matrix. The percent polymorphic loci (%P) and expected heterozygosity (He) were 

estimated using GenAlEx 6.3 (Peakall and Smouse 2006). Principal coordinate analysis 
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(PCA) was performed on genetic distances among geographic populations based on 

Nei‟s genetic distance (Nei 1972). Analysis of molecular variance attributed to different 

hierarchical groups was calculated using ARLEQUIN version 3.1 (Excoffier et al. 2005). 

Pairwise FST values and their significance were calculated in ARLEQUIN version 3.1  

(Excoffier et al. 2005).  Bayesian clustering of individual genotypes was performed in 

STRUCTURE 2.3.1 (Pritchard et al. 2000, Falush et al. 2007). The STRUCTURE run 

followed an admixture model, with 10 replicates for each K assuming K= 1 to 10 and 

50,000 burn-in followed by 50,000 MCMC replications. The best estimate of K was 

determined by the method described by Evanno et al. (2005) which takes into account 

the rate of change in the probability of data between successive K [Ln Pr(X|K)] values 

and graphically finds the uppermost hierarchical level of population structure for the 

tested scenario. We evaluated isolation-by-distance (IBD) by regressing genetic distance, 

FST/(1- FST) over transformed (natural log) geographic distance among populations as 

described by Rousset (1997) using GenAlEx 6.3. The significance of the correlation 

coefficient (r2) was calculated with a Mantel test based upon 9999 random permutations. 

 

mtDNA procedure 

 A fragment of ~ 600 base pairs from the mitochondrial COI gene was amplified by 

PCR using the primers C1-J-1718 and TL2-N-3014 (Simon et al. 1994). The PCR 

reaction consisted of a 25µl volume containing 2μl of template DNA, 0.5μl of 50X 

dNTPs, 0.5μl of each primer, 0.5μl of 50X polymerase (Clontech Laboratories, 

Mountain View, CA), 2.5μl of 10X buffer and 18.5μl of PCR grade water. PCR samples 
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were amplified in a GeneAmp 9700 thermocycler (Applied Biosystem, Valencia, CA) 

using the following program: 30 sec at 95C; 45 cycles of 30 sec at 95C, 30 sec at 54C, 

1 min at 72C; 5 min at 72C. Five microliters of PCR product were used for 1% agarose 

gel electrophoresis, to visualize the amplified products and compared them against a 

standard 1 kb ladder (NEB #3232). The amplified PCR products were purified following 

the PEG (polyethylene glycol) purification protocol (Sambrook et al. 1989). Another 

round of agarose gel electrophoresis of the post-purified PCR products was performed to 

test for quality by searching for the presence of multiple band or primer diamers of the 

PCR products. Purified PCR products were sequenced with BigDye® Terminator v1.1 

Cycle Sequencing Kit (Applied Biosystems, Foster City, CA). The sequencing reaction 

was carried out in a final volume of 15μl containing 1.5μl of BigDye Terminator Ready 

Reaction Mix, 2.25μl of Big Dye Sequencing Buffer (5×), 2.25μl of 0.25μM primer, 

3.75μl of water and 5μl of purified PCR product. Cycle sequencing was performed using 

a GeneAmp® PCR System 9700 thermal cycler starting with 2 min at 96 °C, followed 

by 50 cycles of 10 sec at 96 °C, 5 sec at 55 °C and 3 min at 60 °C. Each sample was 

sequenced in both forward and reverse directions using the same primer combination 

used for initial amplification.  

 

mtDNA sequence analysis 

 The mtDNA sequence for each individual was generated in both forward and 

reverse direction. Two sequences (forward and reverse) were then assembled and edited 

to obtain a consensus sequence for each individual using Sequencher 4.8 (Gene Codes 
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Corporation, Ann Arbor, MI). The consensus sequences for all individuals were aligned 

using Clustal-W in MEGA v5 (Tamura et al. 2011). We calculated nucleotide sequence 

diversity, and genetic differentiation among different populations using ARLEQUIN 

version 3.1 (Excoffier et al. 2005). A haplotype network was constructed using 95% 

parsimony criterion as implemented in the program TCS 1.21 (Clement et al. 2000). 

AMOVA was performed to partition overall genetic variation explained by population 

groups and individuals within a population using ARLEQUIN version 3.1 (Excoffier et 

al. 2005). Pairwise value of genetic significance (ΦST) was estimated based on Kimura-

2-parameters using ARLEQUIN version 3.1 (Excoffier et al. 2005). 

 

Results 

Nuclear DNA analysis 

 The three selective primer pairs used for the AFLP analyses of 282 individuals 

yielded a total of 559 bands, of which 71.1% were polymorphic. The number of 

individuals (282) and AFLP bands (559) used in this study were adequate (SESim = 

0.002) to reveal the presence of population structure according to the method described 

by Medina et al. (2006). Molecular diversity as indicated by percent polymorphism was 

highest for the Texas (TX) population and lowest for the Florida (FL) population (Table 

2.2). The expected heterozygosity was similar for all the populations. Principal 

coordinate analysis (PCA) based on Nei‟s genetic distance (Nei 1972) among the 12 

geographic populations sampled revealed that populations were grouped into at least 

four clusters (Fig. 2.2). Out of these four clusters, the cotton fleahopper population 
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Table 2.2. Molecular diversity for geographic populations of cotton fleahopper based on 
AFLP data. P%, percent polymorphic loci; He, expected heterozygosity and SE of 
expected heterozygosity 
 
 
  Populations N %P He SE of He 

AZ 16 59.2 0.104 0.006 
TX 21 71.0 0.110 0.006 
OK 12 59.9 0.108 0.006 
MX 14 57.4 0.102 0.006 
AR 18 67.9 0.109 0.006 
MS 16 64.9 0.108 0.006 
LA 18 66.2 0.109 0.006 
AL 13 55.8 0.105 0.006 
FL 6 36.7 0.096 0.006 
GA 20 66.9 0.107 0.006 
SC 17 60.8 0.108 0.006 
NC 17 60.3 0.109 0.006 
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Fig. 2.2. PCA of 12 geographic populations based on their Nei genetic distances (Nei, 
1972).  
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obtained from Florida (FL) and Arizona (AZ) formed two separate clusters. While 

Georgia (GA), South Carolina (SC) and North Carolina (NC) populations formed one 

cluster and the individuals from the remaining States (i.e., TX, OK, MX, AR, MS, LA, 

and AL) grouped together to form another cluster. Tests for significance of genetic 

differentiation indicated that overall, there was significant, yet little genetic 

differentiation among geographic populations (FST = 0.02; P < 0.0001). Analysis of 

molecular variance (AMOVA) of the12 geographic populations indicated that most of 

the genetic variation existed within populations (97.6%) and the remaining proportion 

(2.4%) of genetic variation was explained by geographic location (Table 2.3). Based on 

the PCA output and STRUCTURE analysis, we grouped the12 geographic populations 

into 3 regional groups (i.e., western, central and eastern) and performed another 

AMOVA. This AMOVA showed that the regional grouping was able to explain 

significant genetic variation (1.9%, FCT = 0.02, P = 0.0008). At the next hierarchical 

level, within region, the geographic population(s) explained significant (FST = 0.01, P < 

0.0001), but small (1.2%) genetic variation (Table 2.4). The pairwise comparisons of FST 

values between populations indicated that all comparisons between AZ and the reminder 

of the geographic populations were significantly different from zero (Table 2.5). Prior to 

Bonferroni correction, 52 out of 66 total pairwise comparisons showed significant F 

statistics. However, the total number of significant pairwise comparisons dropped to 20 

after the correction (Table 2.5). The STRUCTURE analysis showed at least 5 possible 

genetic populations (Fig. 2.3). Although STRUCTURE suggested 5 genetic populations, 

based on the graphical output of STRUCTURE, it appears that three genetic populations  
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Table 2.3. AMOVA of 12 geographic populations without considering regional grouping 
 

Sources of variation df % variation F-statistics P-value 
 

Among geographic  
populations 

11 2.4 0.023 <0.0001 

 
Among individuals  
within population 

 

176 97.6 

 
 
 

 
 
 
Table 2.4. Hierarchical AMOVA of 12 geographic populations after grouping                                        

the populations into three geographic regions 
 
Sources of variation df % variation F-statistics P-value 
 

Among geographic 
regions 

 

2 1.9 0.019 0.0008 

Among populations 
within region 

 
9 1.2 0.012 <0.0001 

Among individuals 
within population 176 96.9   
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Fig. 2.3. Results of STRUCTURE analysis for 12 geographic populations based on 
AFLP markers at K = 5. Individuals are organized by their state of origin and 
represented by two letter state code (see Table 2.1 for population code). A vertical black 
line separates one population from another. 
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Table 2.5. Pairwise FST values (below diagonal) and geographic distance in km (above diagonal) between P. seriatus 
populations collected from 12 locations. Bold face FST values indicate significant population differentiation after Bonferroni 
correction at 0.05 significance level 
 

 AZ TX OK MX AR MS LA AL FL GA SC NC 
AZ - 1468 1092

3 
1548

3 
1982 1919 1876 2218 2497 2523 2857 3215 

TX 0.04 - 544 556 827 576 477 763 1057 1087 1492 1923 
OK 0.04 -0.01 - 980 896 838 817 1181 1436 1458 1766 2126 
MX 0.05 0.01 0.01 - 1352

3 
1054 928 1056 1348 1383 1848 2314 

AR 0.04 0.00 0.01 0.01 - 332 459 671 761 764 915 1233 
MS 0.04 0.00 -0.01 0.01 0.00 - 130 407 607 626 946 1355 
LA 0.05 0.01 0.00 0.02 0.00 0.00 - 370 623 647 1018 1446 
AL 0.07 0.02 0.02 0.03 0.02 0.02 0.02 - 301 334 793 1262 
FL 0.08 0.05 0.05 0.08 0.05 0.04 0.04 0.07 - 37 516 993 
GA 0.05 0.01 0.01 0.03 0.01 0.02 0.02 0.03 0.04 - 479 956 
SC 0.05 0.02 0.01 0.03 0.02 0.02 0.02 0.03 0.03 0.01 - 477 
NC 0.07 0.03 0.02 0.04 0.03 0.02 0.03 0.03 0.03 0.02 0.01 - 
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will make more biological sense in our data. These three genetic populations likely 

correspond to 1) individuals from Arizona, 2) Texas, Oklahoma, Mexico, Arkansas, 

Mississippi, Louisiana and Alabama and 3) Florida, Georgia, South Carolina and North 

Carolina. The autocorrelation analysis (Mantel test) between genetic and geographic 

distance among different geographic populations was significant (r2 = 0.26, P = 0.02) 

(Fig. 2.4).  

 

 

Mitochondrial DNA analysis 

 

  A total of 70 individuals from 12 different geographic populations were 

included in the mtDNA dataset. The primers (forward: CJ-1718, and reverse: NL-2-

3014) amplified 609 bp of the COI gene. The consensus sequence resulted from 

overlapping forward and reverse sequences for individual cotton fleahoppers and 

comparing them for homology with other closely related published mitogenome. I found 

that the obtained sequence represented a segment of the COI gene corresponding to 

2,260 and 2,871 bp of Riptortus pedestris (Hemiptera: Alydidae) obtained from 

GeneBank, accession no. EU427344 (Hua et al. 2008). The amplified COI segment was 

A-T rich (A:33.5%, C:17.1%, G:16.0%, T:33.4%) and the frequency of variable sites 

was 4.1%. There were 15 haplotypes (H1 to H15) in the sampled populations and 1 

haplotype (H1) was present in all of the 12 geographic populations (Table 2.6). The 

relationships among the 15 mitochondrial haplotypes present in the 70 sampled 

individuals were reconstructed with a haplotype network (Fig. 2.5). AMOVA results 

indicated marginal support for population differentiation among geographic populations  
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Fig. 2.4. Isolation-by-distance among 12 geographic populations based on AFLP data. 
Graph showing the result of autocorrelation between genetic and geographic distances 
among different populations. 
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Table 2.6. Variability in mitochondrial DNA sequence of geographic populations of P. seriatus. Number of analyzed 
individuals (N), number of individuals for each haplotype (H1-H15), nucleotide diversity (Pi) and expected heterozygosity 
(He) for each geographic population 
 
Populations N H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 Pi  He 
AZ 6 2       1 1 1 1     2.5 0.0041 
TX 7 5 1   1           2.8 0.0046 
OK 3 3               0.0 0.0000 
MX 5 4    1           2.8 0.0046 
AR 7 6      1         0.9 0.0014 
MS 6 4    2           3.7 0.0061 
LA 5 5               0.0 0.0000 
AL 7 3  1 1 1 1      1    5.2 0.0086 
FL 4 2    1       1    5.3 0.0087 
GA 7 5    2           3.3 0.0055 
SC 5 2    2          1 4.6 0.0075 
NC 8 3     1       3 1  6.3 0.0103 
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Fig. 2.5. Mitochondrial haplotype network for geographic populations of P. seriatus. 
The areas of the circles are proportional to the number of samples sharing each 
haplotype. Lines represent single nucleotide mutations and small back dots represent 
haplotype types not observed in the sample. 
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Table 2.7. Analysis of molecular variance (AMOVA) of P. seriatus populations based 
on mtDNA sequence data 
  

 
Sources of variation  
 

 
d.f. 

 
% variation 

 
Φ statistics 

 
P value 
 

Among geographic 
populations 11 5.7 0.06 < 0.0001 

Among individuals 
within population 56 94.3   
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Table 2.8. Pairwise ΦST between geographic populations based on Kimura 2-parameter distance between mtDNA haplotypes. 
No significant differences in ΦST were observed among any pairs 
 

 AZ TX OK MX AR LA MS AL FL GA SC NC 

AZ 0.000            

TX -0.051 0.000           

OK -0.108 -0.132 0.000          

MX -0.051 -0.250 -0.132 0.000         

AR -0.035 -0.033 -0.167 -0.033 0.000        

LA 0.061 -0.171 0.040 -0.171 0.127 0.000       

MS 0.013 0.000 0.000 0.000 -0.055 0.161 0.000      

AL -0.028 -0.099 -0.049 -0.099 0.042 -0.074 0.063 0.000     

FL -0.039 -0.146 0.020 -0.146 0.118 -0.169 0.175 -0.137 0.000    

GA 0.034 -0.183 -0.010 -0.183 0.075 -0.177 0.103 -0.066 -0.143 0.000   

SC 0.319 0.102 0.363 0.102 0.444 -0.056 0.478 0.076 -0.052 0.019 0.000  

NC 0.118 0.125 0.113 0.125 0.212 0.152 0.215 0.009 0.031 0.162 0.251 0.000 
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(ΦST = 0.06, P < 0.0001). The majority of the molecular variation was among individuals 

within a population (94.3%) and only 5.7 % variation was observed among different 

geographic populations (Table 2.7). Different pairwise comparisons of geographic 

populations did not indicate any significant differentiation (Φ ST) in mtDNA sequences 

among any of the geographic populations studied (Table 2.8).  

 

Discussion 

The current study is the first one to report population genetic information of the 

cotton fleahopper. Since the cotton fleahopper has gained importance due to its 

pestiferous association with cotton, this study was aimed at capturing the genetic 

diversity of this pest within the cotton growing areas in the United States. The mtDNA 

data indicated a lack of geographic structure of genetic variation. In contrast, AFLP data 

showed that the 12 different putative geographic populations studied were grouped into 

three broad clusters, viz. western (AZ), central (TX, MX, OK, AR, MS, LA, AL), and 

eastern (FL, GA, SC and NC) clusters (Figs. 2.2 and 2.3). This discrepancy between 

mitochondrial and nuclear DNA data suggests that the current geographic distribution of 

the cotton fleahopper may be relatively new and must have followed the geographic 

expansion of cotton cultivation.  

Gene flow among geographically distant populations can have a homogenizing 

effect, preventing population divergence  (Mallet 2001). However, genetic divergence 

among populations can still occur even in the face of gene flow provided there is local 

adaptation due to strong natural selection and/or high genetic drift due to small 
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population sizes. Due to its relatively wide geographic distribution, the cotton fleahopper 

may be experiencing divergent natural selection at different geographic locations as 

suggested by the geographic mosaic theory of coevolution proposed by Thompson 

(2005b). One of the reasons that could explain the different selection regimes 

experienced by the cotton fleahopper at different locations may have to do with variation 

in the abundance and species composition of alternative hosts in the landscape among 

the different geographic locations. In Chapter III, I indicate how the presence and 

abundance of cotton fleahopper host plants may vary even within the same state. 

Another possibility is that the observed differentiation among geographic populations 

could be caused by variation in insect population sizes, which may lead to differential 

rates of genetic drift at different locations. Population sizes of cotton fleahopper may 

vary among locations not only due to differences in the abiotic (e.g., climate) and biotic 

(e.g., plant health, natural enemies composition) components of the cotton fleahopper 

niche but also due to differences in the severity of pest control measures (e.g. insecticide 

applications). Except for the South-Central region of Texas and the Mississippi Delta, no 

other cotton growing area have been thoroughly surveyed for alternative host plants of 

the cotton fleahopper (Snodgrass et al. 1984, Esquivel and Esquivel 2009). Previous 

reports and my recent survey in several cotton growing states suggest that woolly croton 

(Croton capitatus) and evening primrose (Oenothera speciosa) are two common host 

plants widely distributed across several States.  

The distribution and abundance of the cotton fleahopper‟s cultivated host (i.e., 

cotton) is well documented. Cotton was introduced in the United States during 1600‟s 
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and its cultivation started in Virginia (Lewis and Richmond 1966). Since its 

establishment, its cultivation range expanded westward and intensive commercial 

cultivation was recorded in almost all of the western states by early the 1900‟s. Cotton 

became a major crop in Arizona by 1920 and in California by 1950. Although cotton is 

cultivated in most of the southern belt of the United States, the overall cotton landscape 

is highly fragmented in terms of intensity of cotton cultivation (Fig. 2.1). For example, 

the Texas High Plains, the Mississippi Delta, and North Carolina‟s Coastal Plains are 

where most of the cotton cultivation takes place in the United States. These areas appear 

to be fragmented and isolated by distance. In this study, I collected cotton fleahopper 

populations from these areas. Thus, if one considers only cotton, these samples seem to 

represent fragmented populations of cotton fleahopper across its distribution range in the 

United States. Several studies have suggested that gene flow could be restricted among 

isolated insect populations inhabiting fragmented or geographically isolated landscapes 

(van Dongen et al. 1998a, Knutsen et al. 2000, Ellis et al. 2006, Exeler et al. 2010). Gene 

flow is depended on the dispersal potential of the organism in question and of the 

distance between the fragmented habitats.  Currently, there is no information on the 

dispersal potential of cotton fleahoppers, but field observations indicate that it is a weak 

flier like other members in the group of plant bugs (Miridae) and do not take high 

altitude active flights (Almand et al. 1976). Thus, limited dispersal ability may lead to 

genetic differentiation among geographically isolated populations. Our AFLP data 

showed that the Arizona population of cotton fleahopper is genetically different from the 

other 11 geographic populations sampled. Similarly, the population composed by 
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individuals collected from Florida, Georgia, North and South Carolina, was genetically 

distinct from the remaining populations. In contrast, populations in the Central United 

States (i.e., Texas, Oklahoma, Arkansas, Mississippi, Louisiana and Alabama) were 

genetically similar, suggesting that individuals within this region remain connected 

through gene flow. Other insect species distributed across the United States have shown 

similar patterns of regional genetic structure. For example, the potato tuberworm, 

Phthorimaea operculella (Medina et al. 2010), the pecan nut casebearer, Acrobasis 

nuxvorella (Hartfield et al. 2011), Hessian fly, Mayetiola destructor  (Johnson et al. 

2011), sorghum plant bug, Stenotus rubrovittatus (Kobayashi et al. 2011), Colorado 

potato beetle, Leptinotarsa decemlineata (Grapputo et al. 2005) and the cotton boll 

weevil, Anthonomus grandis (Kim and Sappington 2006), all showed regional 

population structure. 

 The AFLP data showed that there is a positive and significant correlation 

between the genetic and geographic distances among cotton fleahopper populations. The 

isolation by distance (Wright 1943) found in the cotton fleahopper  suggests that 

individuals may not be able to disperse beyond their respective regions (i.e., Arizona, 

Central United States and Eastern United States) and tend to reproduce mostly with 

fleahoppers that occur relatively close. A meta-analysis by Peterson and Denno (1998) 

indicated that phytophagous insects with high mobility show weak IBD, while insects 

with moderate mobility show pronounced or significant IBD. In cases of mobile insect 

pests of agricultural importance such as Ostrinia nubilalis and Hemicoverpa zea, there is 

no genetic differentiation among geographically distant populations (Krumm et al. 2008, 
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Groot et al. 2011). These insects are considered to have panmictic populations even 

though their geographic distributions comprise a relatively large geographic area. This 

could arise due to high dispersal abilities achieved through migratory flights (Franklin et 

al. 2010) or through passive dispersal using wind currents (Michel et al. 2009).  

Alternatively, pest movement associated with human activities may also explain the 

movement of some insect populations (Loxdale and Lushai 1999, Benavides et al. 2005).   

In studying the population structure of agricultural insect pests, it is important to 

consider the diet breadth of the insect species studied. Several agricultural insect pests 

are polyphagous and can utilize different sets of host plant species at different 

geographic locations. Several insects associated with different host-plant species have 

been shown to present host plant associated genetic differentiation or habitat associated 

genetic differentiation (Brunner et al. 2004, Vialatte et al. 2005, Carletto et al. 2009, 

Peccoud et al. 2009, Brunner and Frey 2010). Host-associated differentiation (HAD) is 

the formation of genetically distinct lineages when parasites (e.g., herbivorous insects) 

are associated with different hosts (e.g., host-plant species) (Pashley 1986, Stireman et 

al. 2005, Althoff 2008). In Chapter III, I report the existence of HAD in the cotton 

fleahopper. Thus, the small but significant genetic differentiation observed among 

several geographic locations in our study could be influenced by the presence of 

different sets of host plant species in those locations. If one considers that the cotton 

fleahopper is a native pest in the study area, it could be that before cotton cultivation, 

fleahoppers were associated to different native plants at different locations and may have 

been genetically differentiated. Once cotton was introduced, fleahoppers from these 
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different host-plant species could have switched to cotton, making the current genetic 

differentiation, we found in cotton fleahoppers at different geographic locations an 

artifact of their prior distinct origins. 

 Advances in the development of molecular markers over the last few decades 

have led to an increased number of studies addressing the genetic population structure of 

several groups of organisms (Avise 2004). Currently, both multi-locus nuclear molecular 

markers (e.g., AFLP, microsatellite, SNP) and mtDNA sequence data are widely used in 

population genetic studies. Information gained from population genetic studies have the 

potential to improve insect pest management practices. For example, identification of 

pheromone races (Willett and Harrison 1999) can improve pest control practices based 

on mating disruption and pest monitoring using pheromone traps. Similarly, 

identification of host-associated races in pests and their natural enemies could enhance 

the success of biological control programs (Malausa et al. 2007, Lozier et al. 2008, 

Medina 2011), and help in the design of strategies aimed to reduce the risk of insecticide 

resistance (Denholm and Rowland 1992, Bourguet et al. 2000, Endersby et al. 2006). 

Similarly, knowing the way in which genetic variation is organized may improve the 

design of strategies to delay resistance to transgenic plants that express bacterial toxins 

(Tabashnik 1994, Carriere et al. 2010).  

Nevertheless, very few studies have been able to link population genetic structure 

to specific traits relevant to pest control. It has become clear that individuals belonging 

to the same pest species are far from being genetically and phenotypically homogeneous. 

The next logical step is to investigate how the organization of genetic and phenotypic 
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variation is influenced by ecological and environmental factors and how this variation 

translates into vulnerability of pests to different control practices.     
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CHAPTER III 

GEOGRAPHIC PATTERN OF HOST-ASSOCIATED DIFFERENTIATION IN 

THE COTTON FLEAHOPPER, Pseudatomoscelis seriatus (Reuter) 

 

Introduction 

Interest in ecological speciation of herbivorous insects over the past four decades 

has led to several proposed underlying ecological and evolutionary processes responsible 

for the observed diversity in this group of animals (Berlocher and Feder 2002, Dres and 

Mallet 2002, Bethenod et al. 2005). Host plants can exert strong natural selection on 

herbivorous insects, and may play a key role in the radiation of herbivore insect lineages 

(Ehrlich and Raven 1964, Mopper 1996, Miller et al. 2003, Funk 2010). Shifting of 

herbivore insects to different host plant species followed by adaptations to the newly 

adopted host plant, may lead to reproductive isolation among insect populations 

associated with different host plant species (Martel et al. 2003, Diegisser et al. 2009), 

resulting in host-associated lineages (Dobler and Farrell 1999, Stireman et al. 2005, 

Peccoud et al. 2009). Insects that use different host plant species across their geographic 

distribution are likely to experience divergent selection pressures by host plants at 

different locations (Via 1991, Thompson 1994, Sword et al. 2005). Particularly, 

selection pressure may vary if host plant densities and/or the communities in which the 

insect and its host plants are immersed (i.e., predators, competitors, alternative host 

plants, diseases, etc.) differ across the insect‟s geographic distribution. 
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Variation in the availability and/or abundance of host plant species within an 

herbivore‟s distribution range may generate differences in the pattern of host plant 

specialization or adaptation (Kuussaari et al. 2000). Herbivore populations of the same 

species may be specialized on different host plant species at different locations and yet 

be characterized as a generalist species when its entire geographic distribution is 

considered (Fox and Morrow 1981). Therefore, it is always more realistic to examine 

host-associated differentiation (HAD) throughout the entire geographic distribution of a 

species (Toju 2009). However, fine scale heterogeneity in vegetation composition and 

other ecological factors are often overlooked when studying interspecific interactions. 

A growing number of studies have documented HAD of insect herbivore species 

(Guttman et al. 1981, Carroll and Boyd 1992, Emelianov et al. 2001, Nason et al. 2002, 

Brunner et al. 2004, Stireman et al. 2005, Conord et al. 2006, Ohshima 2008, Dorchin et 

al. 2009). Although the majority of these examples have studied unmanaged or wild 

systems composed of perennial plant species, there are some examples of HAD of 

herbivores in agro-ecosystems (Via 1991, DeBarro et al. 1995, Ruiz-Montoya et al. 

2003, Vialatte et al. 2005, Alvarez et al. 2007). These examples show that HAD in 

herbivore insects is not uncommon in agricultural systems, which are mostly managed 

and prone to relatively high levels of anthropogenic disturbances. 

In the present study we report HAD in the cotton fleahopper, Pseudatomoscelis 

seriatus (Reuter) (Hemiptera: Miridae). Pseudatomoscelis seriatus has numerous host 

plant species, both native wild hosts as well as introduced crop species. Previous studies 

indicate that several aspects of P. seriatus biology such as host plant preference, total 
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developmental time, nymphal mortality and fecundity are differentially influenced by 

their host plant species (Gaylor and Sterling 1976, Beerwinkle and Marshall 1999). The 

objectives of the present study were 1) to detect if host-associated differentiation was 

present in P. seriatus populations associated with three selected host plant species, and 

2) to assess the geographic structure of host-associated differentiation at a regional scale 

(i.e., the state of Texas, USA). This is the first study on any genetic aspect of P. seriatus. 

 

Materials and methods 

The insect 

Pseudatomoscelis seriatus is a native insect of North America. It is considered a 

generalist herbivore reported to feed on ~160 host plants species belonging to 35 

different plant families (Snodgrass et al. 1984, Esquivel and Esquivel 2009). In the 

1920‟s, heavy yield losses of cotton were attributed to P. seriatus in different regions of 

Texas (Reinhard 1926). Presently, P. seriatus occurs in several cotton growing regions 

in the United States, mostly in Texas, Oklahoma, Arkansas, Mississippi and Louisiana. 

Pseudatomoscelis seriatus is a hemimetabolous insect, which complete 8-9 generations 

per year and feeds externally using its sucking mouthparts on tender stems or flowering 

structures of its host plants. It hibernates as eggs, which hatch during March-April 

depending on the rainfall and temperature. After progressing through five nymphal 

instars, P. seriatus remains as an adult for about 12-15 days. A female lays about 10-15 

eggs under the epidermal layer of the stem of its host plants. Adults are not active fliers 

but they may disperse long distances either through wind or by anthropogenic dispersal.  
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Host plants 

For this study, we selected three host plant species of P. seriatus viz., Monarda 

punctata L. (Laminales: Lamiaceae) known as horsemint, cultivated cotton, Gossypium 

hirsutum L. (Malvales: Malvaceae), and Croton capitatus Michx. (Euphorbiales: 

Euphorbiaceae) known as woolly croton. These three host plant species are the most 

common fleahopper host plants at our study sites and they persist for a relatively long 

time during the spring, summer and fall, respectively, maximizing their period of 

interaction with P. seriatus (Almand et al. 1976, Holtzer and Sterling 1980b). Depending 

on local climatic conditions, P. seriatus spends between 3 to 5 generations in each of 

these three host plant species in our study areas. Unlike horsemint and woolly croton, 

cotton is an introduced plant and it is widely cultivated in the study areas. Cotton was 

introduced to Texas in the early 1800‟s and a massive expansion of cotton cultivation 

followed until the 1920s (Lewis and Richmond 1966). The three chosen host plant 

species belong to different families and carry different suits of defensive chemicals 

(Scora 1967, Schmidt and Wells 1990, Williams et al. 2001). These host plant species 

are available to P. seriatus at different times of the year, with some overlapping periods. 

For instance, in College Station, in a typical year, the native spring wild host, horsemint 

(M. punctata L.) becomes available for P. seriatus at the beginning of the growing 

season (April-June), while woolly croton (C. capitatus Michx.) becomes abundant from
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Fig. 3.1 Study locations along with the population structure of P. seriatus in an annual 
precipitation map of Texas. Presence and proportion of the three genotypes of P. seriatus 
is shown in a pie diagram for each location (within each circle, green colour represents 
horsemint genotype in Lubbock, San Angelo and Weslaco, red colour represents 
horsemint/cotton/woolly croton or all depending on the location and blue represents a 
locally distinct population in Corpus Christi). The rainfall map was generated in ArcGIS 
from available annual rainfall data for the state of Texas. 
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May until October. The timing of cotton cultivation varies by location within the state of 

Texas. For example, near College Station, cotton is normally planted during mid-April 

while in Lubbock and San Angelo, planting of cotton is typically optimal in mid-May.  

 

Sample collection 

Insect collections were made from five Texas locations including Lubbock, San 

Angelo, College Station, Weslaco and Corpus Christi (Fig. 3.1 and Table 3.1). All five 

locations are in areas under intensive cotton cultivation. We collected fleahoppers 

associated with cotton, horsemint and woolly croton from several fields (2 to 5 fields per 

host plant species) within each location. In two study locations, Lubbock and San 

Angelo, we did not find woolly croton.     

Pseudatomoscelis seriatus adults were collected during the peak fleahopper 

activity on each host plant (which is the flowering stage of each plant) by using a 

standard sweep net and a motorized blower also known as a „keep-it-simple‟ (KIS) 

sampler (Beerwinkle et al. 1997). The identity of P. seriatus collected from horsemint, 

woolly croton and cotton was confirmed by a mirid systematist (Dr. Joseph C. Schaffner, 

Texas A&M University). Insects were preserved in 85% ethanol at 4°C until used for 

DNA extractions. We used 12-20 fleahoppers per host plant species at each location for 

genetic analyses.
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Table 3.1. Collection location, host plant, population code and geographical information 
(i.e., latitude, longitude, elevation) of P. seriatus populations used in the study 
 

Location Host plant Population 
Code 

Latitude 
(N) 

Longitude 
(W) 

Elevation 
(m) 

Lubbock Horsemint LH 33.571 101.804 967 
   33.489 101.619 874 
 Cotton LC 34.155 101.950 1066 
   33.949 101.695 975 
   33.981 102.078 1005 
   33.641 102.079 1017 

San Angelo Horsemint SH 31.661 100.330 618 
   31.852 100.292 532 
   32.064 100.305 617 
   32.388 100.378 682 
 Cotton SC 31.422 100.140 358 
   32.093 101.353 849 
   31.328 100.161 579 
   31.381 100.332 571 
   31.414 100.073 555 

College Station Horsemint CH 31.423 96.242 58 
   30.842 96.617 85 
   30.535 96.444 72 
   30.692 96.515 70 
   30.706 96.565 79 
 Cotton CC 30.535 96.444 72 
   30.692 96.515 70 
   30.399 96.269 62 
   30.706 96.565 79 
 Woolly croton CW 30.392 90.350 58 
   30.546 96.506 73 
   30.844 96.622 83 

Weslaco Horsemint WH 26.935 98.134 39 
   26.799 98.412 72 
 Cotton WC 26.137 97.958 20 
   26.385 98.253 44 
   26.290 98.333 52 
 Woolly croton WW 26.137 97.958 20 
   26.079 98.078 25 
   26.119 97.968 20 
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Table 3.1. continued 

Location Host plant Population 
Code 

Latitude 
(N) 

Longitude 
(W) 

Elevation 
(m) 

Corpus Christi Horsemint TH 29.253 96.179 30 
   29.442 97.101 102 
   28.950 96.208 15 
 Cotton TC 27.969 97.713 32 
   29.209 96.228 30 
   27.848 97.644 24 
 Woolly croton TW 27.627 97.793 21 
   27.610 97.753 16 
   27.952 97.684 22 
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Genetic methods 

Genomic DNA was extracted from randomly chosen individual specimens using 

Qiagen ® DNeasy kit (Valencia, CA) following the manufacturer‟s recommended 

protocol for animal tissue. DNA concentration and quality were measured for each 

specimen using a NanoDrop spectrophotometer (NanoDrop Technologies, Inc., DE). 

DNA was eluted in 100ul of Qiagen AE buffer. 

  Amplified fragment length polymorphisms (AFLP) markers were generated 

using the protocol proposed by Vos et al.(1995) with slight modifications. Samples were 

randomly arranged in 96-well plates for AFLP analyses. Three to four samples were 

repeated within each plate and the same samples were repeated in all the plates used in 

order to check the reproducibility of our analysis. Restriction digestion and ligation steps 

were performed by adding 5.5 µl of genomic DNA to 5.5 µl of a master mix containing 

1.1 µL of 10x T4 DNA ligase buffer, 1.1 µL of 0.5M NaCL, 0.55 µL of diluted bovine 

serum albumin (1 mg/mL), 0.05 µL of MseI (NEB R0525M), 0.05 µL of EcoRI (NEB 

R0101T), 0.03 µL of T4 DNA ligase (NEB M0202M), 1 µL of MseI and 1 µL of EcoRI 

adaptors (ABI 403077) and 0.61 µL of ultra-pure water (18.2 mega-ohm/cm). The entire 

reaction was left overnight at room temperature for adequate digestion. The next 

morning, each reaction was diluted to 1:18 (11 µL + 189 µL) ratio with buffer TEthin (15 

mM Tris of pH 8.0, 0.1 mM EDTA). Preselective PCR amplification was performed in a 

20 µL reaction containing 4 µL of the diluted restricted/ligated DNA and 16 µL of a 

mixture containing 1 µL of EcoRI and MseI AFLP pre-selective primers mix (ABI 

403078) with 15 µL of AFLP core mix (ABI 402005). The PCR protocol for the pre-
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selective amplification consisted of: 95C for 1 min followed by 20 repetitive cycles of 

95C for 30 s, 56C for 30 s, and 72C for 90 s with a final hold at 75C for 5 min 

followed by a storing temperature of 4C until subsequent procedure. The amplified 

product was diluted 20-fold by adding 190 µL of buffer TEthin to each reaction. 

For selective PCR amplification of restriction fragments, 4 µL of the diluted pre-

selective PCR product was added with 15 µL platinum super mix (Invitrogen 

11306016), 1 µL of primers EcoRI-ACT (ABI 402045) or EcoRI-AAC (ABI 4303053) 

and 1 µL of MseI-CAT (ABI 402018) or MseI-CTC (ABI 402016). The PCR parameters 

were an initial warm-up at 95C for 30 s, 12 cycles of 95C for 10 s, 65C for 40 s with a 

lowering of 0.7C per cycle, 72C for 5 min, followed by 35 cycles of 95C for 11 s, 56C 

for 30 s, 72C for 2 min and finally a hold of 75C for 5 min before storing the samples 

at 4C. 

Samples were analyzed using capillary electrophoresis. Each reaction was 

prepared by adding 0.5 µL of 400 HD-ROX-size standard (ABI 402985), 9 µL of HiDi 

formamide, and 1 µL of selective PCR amplification product. Samples were analyzed in 

an ABI 3130 genetic analyzer (Applied Biosystems, Forest City, CA). Results from 

capillary electrophoresis were analyzed by GeneMapper® 4.0 (Applied Biosystems, 

Forest City, CA) which provides a presence (1) absence (0) matrix for each individual. 

Electrophenograms in GeneMapper were evaluated using a 1 bp bin width. Only 

fragments between 50 and 400 bp were analyzed. The threshold for peak detection was 

set at100. Thus, only fragments with relative florescent unit (RFU) of 100 or more were 

considered.  
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Statistical analysis 

The SESim statistic (Medina et al. 2006) was used to assess the adequateness of 

the number of individuals and AFLP markers used to detect genetic population structure. 

A SESim value lower than 0.05 indicates that a given combination of markers and 

individuals is sufficient to detect the pattern of genetic structuring at the geographic 

scale considered.  

Data obtained from two primer pairs (E/ACT-M/CAT and E/AAC-M/CTC) were 

combined and analyzed as a single matrix. Different population genetic information 

(percent of polymorphic loci and expected heterozygosity) were obtained after analyzing 

the AFLP matrix with GenAlEx 6.3 (Peakall and Smouse 2006). Principal coordinate 

analysis (PCA) was performed by using Nei‟s genetic distance matrix (Peakall and 

Smouse 2006) to visualize the relatedness of different populations in a two dimensional 

coordinate system. An unrooted neighbor joining (NJ) tree was obtained using the 

NEIGHBOR procedure in PHYLIP (Felsenstein 1993). The same distance matrix used 

to generate the NJ tree was bootstrapped 10,000 times using AFLP-SURV (Vekemans 

2002). Bootstrap values were obtained using the majority rule in CONSENSE procedure 

under PHYLIP 3.6 (Felsenstein 1993).  

Genetic differentiation was estimated by calculating FST values (Wright 1969) 

for host-associated populations at each location and also by calculating an overall FST. 

Bayesian clustering of individual genotypes was performed in STRUCTURE 2.3.1 

(Pritchard et al. 2000, Falush et al. 2007). The STRUCTURE run followed an admixture 

model, with 20 replicates for each K assuming K= 1 to 7. 100,000 burn-in and 50,000 
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replications were used. The best estimate of K was determined by the method described 

by Evanno et al. (2005) which takes into account the rate of change in the probability of 

data between successive K [Ln Pr(X|K)] values and graphically finds the uppermost 

hierarchical level of population structure for the tested scenario. Analysis of molecular 

variance (AMOVA) was carried out using ARLEQUIN version 3.1 (Excoffier et al. 

2005) to partition the genetic variation among and within populations. Individuals were 

grouped in three ways and analyzed with AMOVA to understand the effect that location 

and host plants have on genetic variation. The three groups were: 1) overall (host plant 

and locality combinations, i.e., 13 groups accounting for 5 locations and 3 host plants), 

2) among locations (5 groups accounting for 5 locations), and 3) among host plants (3 

groups accounting for 3 host plant species). We evaluated isolation by distance (IBD) by 

regressing genetic distance, FST/(1- FST) over transformed (natural log) geographic 

distance among populations as described by Rousset (1997) using GenAlEx 6.3. The 

significance of the correlation coefficient (r2) was calculated with a Mantel test based 

upon 999 random permutations. 

 

Results 

We obtained DNA of adequate concentration (avg. 63 ng/µl) and quality (2.1, 

260/280 ratio) from individual P. seriatus DNA extractions. AFLP analysis of 196 

individuals with 2 primer combinations (E/ACT-M/CAT and E/AAC-M/CTC) produced 

432 bands. A SESim statistic of 0.028 indicated that this number of bands and 

individuals were sufficient to describe P. seriatus genetic population structure at the  
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scale of this study (Medina et al. 2006). The percentage of polymorphic loci in the 13 

purported P. seriatus populations (refer to Table 3.2 for annotated population 

information) varied from 39.35% (CH population) to 59.26% (TC population). The 

overall FST value for the P. seriatus populations sampled was 0.11, which was 

significantly different from zero (P=0.0001). Within-population variability, as indicated 

by the mean expected heterozygosity, was consistent over all the populations (HE ≈ 

0.08), with the exception of Corpus Christi in which, populations from each of the three 

host plant species showed a higher value (HE ≈ 0.11) (Table 3.2). Pairwise FST values 

show that the Corpus Christi population, which include individuals feeding on 

horsemint, cotton and woolly croton, (i.e., TH, TC and TW, respectively) was the most 

genetically distinct population when compared with populations from the other four 

locations (i.e. Lubbock, San Angelo, College Station and Weslaco) (Table 3.3).  

Principal coordinate analysis (PCA) of all 13 purported populations collected 

from the three host plant species in the five locations considered in this study revealed 

that P. seriatus in Texas was grouped into three distinct clusters (Fig. 3.2). Similarly, 

three defined clusters can be observed when the populations are grouped using a 

neighbor-joining (NJ) tree (Fig. 3.3). Both the PCA and the NJ tree show that at three 

sampling locations (i.e., Lubbock, San Angelo, and Weslaco), P. seriatus populations 

associated with horsemint (i.e., LH, SH and WH) grouped together into a distinct 

horsemint associated cluster regardless of their geographic origin. On the other hand, P. 

seriatus populations from Corpus Christi (i.e., TH, TC and TW) were grouped together 

in a unique cluster regardless of their host plant association. Finally, a third cluster was  
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Table 3.2. Genetic diversity indices based on AFLP data among P. seriatus populations 
as coded according to location and host plant origin 
 

 

 

Location Host Plant Population 
code 

Polymorphic 
loci (%) 

Expected 
heterozygosity 

SE of 
heterozygosity 

Lubbock Horsemint LH 48.15 0.079 0.006 

 Cotton LC 46.06 0.082 0.006 

San Angelo Horsemint SH 52.55 0.077 0.006 

 Cotton SC 49.07 0.080 0.006 

College Station Horsemint CH 39.35 0.075 0.006 

 Cotton CC 45.14 0.081 0.006 

 Woolly 

croton CW 45.83 0.079 0.006 

Weslaco Horsemint WH 47.92 0.082 0.006 

 Cotton WC 45.83 0.076 0.006 

 Woolly 

croton WW 43.06 0.079 0.006 

Corpus Christi Horsemint TH 53.94 0.111 0.007 

 Cotton TC 59.26 0.113 0.007 

 Woolly 

croton TW 58.33 0.115 0.007 
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Fig. 3.2 Principal coordinate analysis of P. seriatus populations. The distance matrix of 
thirteen populations was converted to principal component scores and projected in a two 
dimensional space formed by principal component one (PC1, explains 60% of the 
variation) and principal component two (PC2, explains 22% of the variation). 
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Fig. 3.3 Unrooted neighbor-joining tree of P. seriatus populations collected from three 
host plant species across Texas. Three populations (i.e., LH, SH and WH) grouped 
together based on their host plant association (to horsemint), while three populations 
(i.e., TH, TC and TW) grouped based on their geographic location (i.e., Corpus Christi). 
Bootstrap support (%) from 10,000 iterations is provided for each major node.
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Table 3.3. Pairwise comparisons of P. seriatus populations. Lower diagonal values are FST value and upper diagonal values are 
Nei‟s genetic distance. Values in bold represent significant FST for the respective pair of populations compared. 
 
       Nei‟s genetic distance 
  LH LC SH SC CH CC CW WH WC WW TH TC TW 
LH  0.012 0.006 0.015 0.016 0.012 0.013 0.006 0.017 0.015 0.037 0.033 0.033 
LC 0.098  0.013 0.004 0.005 0.002 0.004 0.018 0.005 0.003 0.021 0.018 0.019 
SH 0.026 0.120  0.018 0.017 0.013 0.016 0.007 0.018 0.016 0.040 0.035 0.035 
SC 0.139 0.000 0.172  0.005 0.004 0.004 0.020 0.005 0.004 0.020 0.018 0.018 
CH 0.142 0.014 0.158 0.019  0.005 0.004 0.021 0.004 0.005 0.020 0.020 0.018 
CC 0.098 0.000 0.118 0.009 0.022  0.004 0.017 0.005 0.004 0.021 0.018 0.019 
CW 0.111 0.000 0.137 0.001 0.017 0.000  0.019 0.003 0.003 0.020 0.019 0.017 
WH 0.020 0.157 0.037 0.191 0.197 0.149 0.166  0.022 0.022 0.043 0.040 0.039 
WC 0.132 0.000 0.151 0.003 0.016 0.000 0.000 0.180  0.004 0.021 0.020 0.019 
WW 0.128 0.000 0.150 0.009 0.028 0.000 0.000 0.193 0.000  0.019 0.018 0.017 
TH 0.240 0.138 0.270 0.141 0.148 0.145 0.131 0.277 0.140 0.131  0.009 0.008 
TC 0.203 0.104 0.229 0.116 0.126 0.110 0.106 0.242 0.114 0.107 0.019  0.008 
TW 0.215 0.117 0.238 0.123 0.131 0.120 0.103 0.254 0.120 0.105 0.009 0.010  

 Pairwise FST value 
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formed by a mixture of populations from all three host plant species (i.e. horsemint, 

cotton and woolly croton) from different locations (i.e., Lubbock, San Angelo, Weslaco, 

and College Station). Similarly, the Bayesian clustering analysis performed in 

STRUCTURE 2.3.1 (Pritchard et al. 2000, Falush et al. 2007) revealed that there are 

three (K=3) distinct genetic populations of P. seriatus in Texas (Fig. 3.4). The 

STRUCTURE output for K=3, revealed a pattern of host-associated differentiation in P. 

seriatus. In three locations (i.e., Lubbock, San Angelo and Weslaco) horsemint 

associated populations (i.e., LH, SH, and WH) were found. In contrast, populations in 

two locations (i.e., College Station and Corpus Christi) were not differentiated based on 

their host plant associations (Fig. 3.4). There was no host-associated differentiation in P. 

seriatus from Corpus Christi. However, P. seriatus from Corpus Christi represented a 

geographically distinct genotype, differentiated from rest of the populations at the four 

other locations.  

AMOVA of all 13 purported P. seriatus populations also revealed that genetic 

variation was structured (Table 3.4). When the data were grouped by location or by host 

plant alone, there was not significant population structure. However, host plant groups 

within a locality or location groups within host plants showed significant population 

structure. A Mantel test on log transformed geographic distance and genetic 

differentiation among all the populations showed no correlation (r2=0.013, P = 0.176) 

between these two matrices (Fig. 3.5) discarding the presence of isolation by distance.
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Fig. 3.4 STRUCTURE analysis of P. seriatus populations inferred from AFLP markers. 
Individuals are organized according to the location and within each location, by each 
host plant (horsemint = HMT; cotton = COT and wooly croton = WLC). Three inferred 
genetic clusters (K = 3) are represented by different colour (green, red and blue). Each 
individual is represented by a narrow vertical column, which is divided into coloured 
segments. Segments are in proportion to inferred membership into each of the K inferred 
genetic clusters.    
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Table 3.4. Analysis of molecular variance (AMOVA) result for P. seriatus populations. 
Populations were collected from three host plants (horsemint, cotton and woolly croton) 
in five locations (Lubbock, San Angelo, College Station, Corpus Christi and Weslaco). 
Variation was partitioned in (a) overall (host plants × location), (b) grouped by location 
and, (c) grouped by host plant.  
  
 Source d.f. SS Variance Variation 

(%) 

F-statistics 

(a) Overall  12 925.85 3.34 11.07 0.111** 

 Individuals within 

overall 

183 4912.56 26.84 88.93  

(b) Among locations  4 435.65 

 

1.19 

 

3.92 

 

0.039NS 

 Host plants within 

locations 

8 490.20 

 

2.313 

 

7.62 0.079** 

 Individuals within 

location × host plant 

183 4912.56 

 

26.84 

 

88.45 

 

 

(c) Among host plants 2 225.84 0.68 2.23 0.022NS 

  Locations within  

host plants 

10 700.01 2.87 

 

9.44 0.097** 

 Individuals within 

host plant × location  

183 4912.56 

 

26.84 

 

88.33 

 

 

 
P value indicated by ** and NS represents significant and non-significant F-

statistics, respectively. 
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Fig. 3.5 Correlation between geographical distance and genetic distance among the P. 

seriatus populations in the study area (P = 0.176). 
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Discussion 

The results of this study show host-associated differentiation (HAD) in P. 

seriatus. Interestingly, HAD is not uniformly distributed throughout the geographic 

distribution of this pest in Texas. In three out of five study locations (i.e., Lubbock, San 

Angelo, and Weslaco), P. seriatus shows HAD while in two locations (i.e., College 

Station and Corpus Christi) its populations were not genetically differentiated based on 

their host plant association. Further, P. seriatus populations in Corpus Christi were 

geographically differentiated from the populations in the rest of the locations we 

sampled. Our results indicate a geographic pattern of HAD.  

Several ecological studies have reported a geographic mosaic pattern of host 

plant use in phytophagous insects (Thompson and Cunningham 2002, Berenbaum and 

Zangerl 2006, Conord et al. 2006, Rich et al. 2008, Toju 2009, Brunner and Frey 2010, 

Craft et al. 2010), which is the basis of the geographic mosaic theory of co-evolution 

(Thompson 2005a). Our results show what can be called a geographic mosaic of host-

associated differentiation. In the case of P. seriatus, the observed geographic differences 

in the pattern of HAD could be due to the heterogeneity of the landscape and associated 

ecological factors across the geographic distribution of this insect. The five geographic 

locations in our study represent distinct agro-ecological zones 

(http://www.tpwd.state.tx.us). We observed a significantly lower abundance of 

horsemint near Lubbock, San Angelo, and Weslaco than in College Station and Corpus 

Christi. Lubbock, San Angelo, and Weslaco receive an average annual rainfall of about 

52.5 cm. In contrast, College Station and Corpus Christi receive an average annual  
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precipitation of 87.5 cm (Fig. 3.1), which correlates with a high abundance of horsemint. 

Areas with abundant horsemint have relatively large populations of P. seriatus in 

neighboring cotton fields. In areas receiving low rainfall, horsemint patches are small 

and mainly restricted to low-lying areas or ditches where plants receive more moisture 

(Fletcher 1940). Therefore, P. seriatus populations associated with horsemint plants in 

low rainfall areas are small and relatively isolated from cotton. Small P. seriatus 

populations resulting from low horsemint abundance in Lubbock, San Angelo and 

Weslaco may lead to stronger genetic drift and could promote HAD in this locations.  

The most striking difference among the geographic locations studied was the 

differential presence of woolly croton. Woolly croton is absent or at low numbers in the 

three locations at which HAD was found (Fig. 3.1). This plant species is the primary 

host of P. seriatus during the fall and serves as a hibernating substrate for eggs at the end 

of the cotton season (Almand et al. 1976, Gaylor and Sterling 1977). Thus, woolly 

croton may act as bridge connecting P. seriatus populations from cotton in the fall with 

horsemint in the spring. Therefore, the absence (e.g., in Lubbock and San Angelo) or 

low numbers (e.g., in Weslaco) of woolly croton is likely to keep P. seriatus populations 

in cotton and horsemint reproductively isolated, promoting their genetic differentiation. 

In addition, P. seriatus strongly prefers horsemint and woolly croton to cotton 

(Beerwinkle and Marshall 1999; A. K. Barman, unpublished data) strengthening the 

isolation of P. seriatus populations associated with horsemint and cotton. Host plant 

preference has been invoked as a mechanism keeping herbivorous insects associated 

with different host plant species reproductively isolated (Hokkanen 1991, Feder et al. 
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1994, Cunningham et al. 1999). If strong host plant preference exists, herbivorous 

insects may also track the phenologies of their host plants adding a temporal component 

to their reproductive isolation owing to phenological differences among their host plants.  

Intimate association of insect herbivores with their host plants enables them to 

match their biology with their host plant phenologies. Differences in host plant 

phenology have been found to act as a pre-mating barrier among insect herbivore 

populations associated with different host plant species and thereby facilitate host-

associated differentiation (Feder et al. 1994, Groman and Pellmyr 2000, Berlocher and 

Feder 2002, Dres and Mallet 2002). For example, a difference of ~25 days in fruiting 

phenology between apples and hawthorns translates into reproductive isolation and HAD 

of Rhagoletis pomonella (Feder et al. 1994). The three host plant species we studied (i.e., 

horsemint, cotton and woolly croton) show minimum to no phenological overlap at the 

locations in which we found HAD (i.e., Lubbock, San Angelo, and Weslaco). 

Pseudatomoscelis seriatus life spans last ~32 days (Gaylor and Sterling 1975). In 

Lubbock and San Angelo there is a time difference of ~30-35 days in flowering and 

fruiting phenology between horsemint and cotton which is long enough to reproductively 

isolate P. seriatus populations on these two host-plant species. In contrast, at the 

locations that did not show HAD (i.e., College Station and Corpus Christi) the three host 

plant species had overlapping phenologies.  

Dispersal ability may play an important role in determining genetic population 

structure (Roderick 1996, Peterson and Denno 1998). Although the dispersal ability of P. 

seriatus has not been assessed with any mark-recapture study, personal observations 
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(AKB and CPCS) indicate that P. seriatus is a weak flier, which is consistent with 

reports from other insects in the same family (King 1973, Stewart and Gaylor 1994, Lu 

et al. 2009). Studies addressing airborne dispersal of P. seriatus have shown that very 

few individuals take high altitudinal flight and that in wind tunnels they tend to remain 

attached to their host plant at wind speeds as high as 48km per hour (Almand et al. 

1976). Several studies have shown that habitat fragmentation may lead to increased 

population differentiation of insects by restricting gene flow, particularly if the insect has 

limited dispersal ability (Van Dongen et al. 1998b, Sato et al. 2008). In the locations at 

which HAD of P. seriatus occurs, the distribution of horsemint is fragmented. 

Although both College Station and Corpus Christi P. seriatus populations lack 

HAD, the Corpus Christi population is genetically distinct from all the others (Fig. 3.3 

and 3.4). The genetic differentiation between the Corpus Christi population and the rest 

cannot be explained by isolation-by-distance (Fig. 3.5). In addition, there are no apparent 

geographical barriers between Corpus Christi and remaining study locations. Without 

any further ecological and behavioural studies, it is difficult to speculate why the Corpus 

Christi population would be genetically differentiated from the rest. Perhaps a non-Texas 

propagule of P. seriatus may have colonized Corpus Christi, since marine routes connect 

this area. The overwintering eggs of P seriatus can easily be transported along with plant 

material from other locations. Thus human mediated movement (Kuhnle and Muller 

2011) of P. seriatus populations cannot be ruled out. However, the high genetic diversity 

and higher polymorphism of the Corpus Christ population as compared with the others 

contradicts this hypothesis, suggesting that P. seriatus population in this area may be 
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ancestral to the fleahopper populations in our other study sites (Table 3.2). Future 

research using different molecular markers will be needed to further examine the above 

possibilities. 

In summary, asynchrony in growth phenology among different host plant 

species, lower population abundance of horsemint, strong preference for the native host 

and finally the absence of woolly croton (the preferred hibernating host-plant) may have 

collectively contributed to the observed pattern of HAD of P. seriatus at the 

geographical scope of this study. In conclusion, our results indicate that P. seriatus, 

although considered a widespread generalist, could be a specialist at certain locations. 

Our results suggest that geographic variation in vegetation composition may influence 

population structure of herbivorous insects on different host plant species. Incorporating 

evolutionary ecology information in pest management practices will not only enrich our 

understanding of population genetic processes at a local scale but will also aid in the 

formulation of more efficient and sustained insect management strategies than the ones 

currently in place.
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CHAPTER IV 

HOST PREFERENCE OF COTTON FLEAHOPPER, Pseudatomoscelis seriatus 

(Reuter) IS NOT LABILE TO GEOGRAPHIC ORIGIN AND PRIOR 

EXPERIENCE 

Introduction 

 

Host plant selection is a fundamental behavior in herbivorous insects, which 

allows them to successfully feed, shelter, mate and oviposit (Bernays and Chapman 

1994, Schoonhoven et al. 2005, Bruce and Pickett 2011). The process of host plant 

selection is broadly sub-divided into three major steps that are not always clearly 

delineated: searching (orientation), recognition and selection (landing and probing), and 

finally acceptance (feeding and oviposition) (Visser 1986, Schoonhoven et al. 2005). 

The orientation behavior is mainly dependent on olfactory and/or visual cues from the 

herbivore‟s host plants (Patt and Setamou 2007, Wenninger et al. 2009).  Herbivorous 

insects are able to track specific blends of volatile chemicals (Bruce et al. 2005, 

Schoonhoven et al. 2005). This ability allows them to find their host plants even when 

they occur within diversified, complex habitats where their host plants are surrounded by 

non-host plant species (Bruce and Pickett 2011). Therefore, assessing the olfactory 

orientation of herbivorous insects is the first step towards screening their host-plant 

preference.  

Herbivore‟s host-preference may be subject to geographic variation (Newby and 

Etges 1998, Kawecki and Mery 2003, Verdon et al. 2007, Utsumi et al. 2009). For 
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example, Helicoverpa armigera (Firempong and Zalucki 1990), Malacosoma disstria 

(Parry and Goyer 2004), Drosophila mojavensis (Newby and Etges 1998), Uroleucon 

ambrosiae (Funk and Bernays 2001) and Leptopilina clavipes (Pannebakker et al. 2008) 

show geographic variation in their host preference. Geographic variation in host 

preference in insect herbivores seems to respond to variation in the distribution and 

abundance of their host plant species (Kuussaari et al. 2000). Therefore, herbivore 

populations may specialize and prefer locally abundant host plant species (Fox and 

Morrow 1981, Sword and Dopman 1999). These geographic differences in host plant 

preference may be due to genetic variation among geographic populations (Jaenike 

1990, Via 1990, Singer and Parmesan 1993) and/or due to geographic variation in the 

composition of host-plant species (Bernays and Funk 1999, Funk and Bernays 2001, 

Davis and Stamps 2004, Troncoso et al. 2005). Thus, herbivore insect‟s host preference 

cannot be generalized from observations based on just a few and/or focalized geographic 

locations and it needs to be investigated at multiple geographic locations across the 

entire distribution of the insect.  

Host preference in polyphagous herbivorous insects may vary not only due to 

geographic differences in host plant composition and/or due to genetic variation among 

insect populations, but also due to insect‟s behavioral modification as a result of prior 

experience. Prior experience on a particular host plant may result into induced 

preference of an insect for a host plant they have experienced over another host plant 

they have never encountered (Jermy et al. 1968, Dethier 1982). Induced preference for 

experienced host plants has been shown in several lepidopteran larvae (Jermy et al. 
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1968, Zhang et al. 2007) and in coleopterans (Messina et al. 2009, Coyle et al. 2011). 

Polyphagous insects exhibiting induced preference and distributed across wide 

geographic areas are likely to show greater variation in host preference than insect with 

localized distributions, due to heterogeneity in host plant composition. However, 

variation in host preference is not ubiquitously present in insects. There are insect 

species in which host preference is unchanged (conserved) regardless of geographic 

differences in host composition and prior host exposure (Wehling and Thompson 1997, 

Davis and Stamps 2004, do Valle et al. 2011, Wellenreuther et al. 2011). Thus, host 

selection behavior in phytophagous insects could range from highly variable to strictly 

conserved.  

Several insect pest management (IPM) strategies such as the use of trap crops, 

resistant varieties and botanicals (attractants and deterrents) are based on pest‟s host 

preference behaviors. Thus, investigation into insect‟s host preference will increase 

successes of these IPM strategies. For example, if an insect species is subjected to 

variation in host preference behavior due to induced preference, a trap crop would not be 

as useful to attract insect populations as it would be to attract pests with fixed host 

preferences (Hokkanen 1991, Thaler et al. 2008, Guillemaud et al. 2011, Midega et al. 

2011).  

The cotton fleahopper, Pseudatomoscelis seriatus (Hemiptera: Miridae) is an 

insect pest of cotton, which has a wide distribution in the United States (Henry 1991), 

with more than 160 host plant species belonging to 35 different families (Esquivel and 

Esquivel 2009). However, the host plant complex of this pest varies geographically. In 
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this study, we have selected two locations in Texas, USA: Lubbock and College Station 

(Fig. 4.1). These two locations are 620 km apart and belong to different eco-regions. 

These two locations differ considerably in average annual rainfall and both availability 

and abundance of host plants for P. seriatus. Horsemint (Monarda punctata) is very 

limited in Lubbock, while highly abundant in College Station. Besides, the fleahopper‟s 

primary overwintering host plant, woolly croton (Croton capitauts), is absent in 

Lubbock. Cotton is a cultivated host plant of this insect, common to both locations, but 

more concentrated in Lubbock compared to College Station. 

The present study explored whether P. seriatus shows variation in host 

preference. We specifically asked: 1) does host plant preference of P. seriatus vary 

geographically; and 2) do prior experience result in induced preference to host plants in 

P. seriatus?  

 

Materials and methods 

Insect  

The cotton fleahopper is a small (3-4 mm long) sucking insect. It completes its 

lifecycle (from egg to adult mortality) in 32-40 days. Adults are weak fliers and live up 

to 10-15 days. In this study we used adult insects of either sex. Insects were collected 

either using a sweep net or with an aspirator directly from the host plant. Host preference 

bioassays were conducted within 2-3 hours after insect collection to avoid mortality. 

Only active, healthy adults were used in bioassays. 
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Fig. 4.1. Map indicating annual rainfall and two geographic locations for  host 
preference study.
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Host plant  

We selected two host plant species, horsemint (Monarda punctata) and cotton 

(Gossypium hirsutum), for evaluating olfactory preference of cotton fleahopper. 

Horsemint is a native wild host plant species of cotton fleahopper in the study area. 

Although horsemint is a perennial species, fresh aboveground biomass can only be seen 

in our study areas from early April to late June. Horsemint plants are 0.3 to 1.5 m tall 

depending on the habitat. Each stem bears an apical dense whorl of flowers.  We used a 

bouquet of 3-4 stems, wrapped with cotton wool at the bottom and soaked in water in a 

glass beaker as one of the odor sources for olfactometer bioassays. Cotton is a cultivated 

crop in the study areas and pre-flowering (squaring) stage of the plant is susceptible to 

cotton fleahopper attack (Reinhard 1926, Ring et al. 1993). We used 3-4 cotton 

branches, bearing flower buds as another odor source in olfactometer bioassays. 

Approximately equal amount of plant material from both plant species were put within 

the bioassay arena. The control treatment consisted of an empty glass beaker of the same 

size and with same amount of water used in the other treatments.  

 

Olfactometer setup 

A glass Y-tube olfactometer was used (12 cm common tube, 5 cm arms, and 1.3 

cm internal diameter; Analytical Research System, Gainesville, FL) to conduct the 

bioassays. The odor sources and/or control treatment were placed in a glass chamber (15 

cm internal diameter, 32 cm tall), with two openings. The glass chamber was airtight to 

prevent any exchange of volatiles. One opening of the glass chamber was connected to 
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the air-delivery system (Analytical Research System, Gainesville, FL), which allowed 

air flow through the glass chamber. The other opening of the glass chamber was 

connected to an arm of the Y-tube. Thus the two arms of the Y-tube olfactometer 

received odors coming out of the two glass chambers. Charcoal-filtered air was flowing 

through the two arms of the Y-tube at constant rate (l liter/minute, 18.5 psi) throughout 

the experiment.  

 

Bioassay 

 Air was released for 10-15 min prior to the bioassay so that plant odors travel 

through the arms of the Y tube. A paper straw (equal in length to the longer arm of the 

Y-tube) was placed on the floor of the long arm of the Y-tube to facilitate movement of 

cotton fleahoppers to the point of rendezvous (where long and two short arms meet). In 

earlier trials without the paper straw, we found that fleahopper adults were incapable of 

walking on the glass surface of the Y-tube and could not make a choice. Adult cotton 

fleahoppers were placed individually on the rear tip of the paper straw inside the long 

arm of the Y-tube. Cotton fleahopper individuals took from 30 sec to 5 min to travel 

between the points of release and choice. Fleahoppers took more than 7 min to arrive to 

the rendezvous point were considered as non-respondents and were not included in the 

analysis. We allowed 3 additional minutes of response time for fleahoppers to make a 

choice (i.e., landing into either one of the two arms of Y-tube). When an individual 

stayed for more than 1 min in any of the arms, we consider it a „choice‟. Orientation 

behavior was observed on each individual fleahopper adult only once. About 30-50 
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individuals were tested for each set of experiments. For every experiment, the 

orientation (left to right) of the Y-tube was changed by flipping it after testing a series of 

5 consecutive individuals, in order to avoid any orientation biased behaviors. Prior to 

each bioassay, we also tested if fleahoppers show any particular orientation to either of 

the two arms in the absence of odor sources, and found no significant deviation from the 

expected ratio (0.05). After each experiment, the Y-tube, glass chambers and connecting 

tubes were washed with ethanol and subsequently with water, and air-dried to remove 

any residual odors from previous assays. Two sets of bioassays were conducted during 

2009 and 2010.  

 

Effect of geography 

In this study we evaluated preference of cotton fleahopper to horsemint and 

cotton in two geographic locations i.e., Lubbock and College Station. At each location, 

cotton fleahopper adults were collected from horsemint during May (College Station) 

and June (Lubbock). Insect collections were made from relatively pure patches (ranging 

from 0.3 to 30 m2) of horsemint at both locations. Since we observed both nymph and 

adults in the plants, we assumed that the collected individuals were completing their life 

cycle in horsemint. To test if host-preference varies at each location, three pairs of 

treatments were offered to the collected adult fleahoppers: 1) horsemint vs. air, 2) cotton 

vs. air, and 3) horsemint vs. cotton.  
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Effect of prior experience  

This study was done during the summer of 2010 in College Station, where both 

cotton and horsemint are abundant. In College Station, horsemint grows naturally during 

April-May and cotton is planted during mid-April. Cotton fleahoppers (nymphs and 

adults) were collected from horsemint patches close to cotton fields. We called this the 

„source population‟ because we used individuals from this population and reared them 

on cotton and horsemint in confinement. We tested the host-preference of the source 

population as described in the previous experiment (See Effect of Geography section 

above). Two similar source populations were collected from the same location and 

released fleahopper nymphs and adults into two field cages where cotton or horsemint 

plants were growing free of fleahoppers. We allowed about 50 days to pass to ensure 

that any fleahopper introduced in the cage as an adult was dead and that the offspring of 

these adults completed at least one generation on their respective host inside the cage. 

After 50 days, newly emerged adult fleahoppers were collected using an aspirator from 

their respective host plant inside the cage. Thus, adult cotton fleahoppers use in these 

bioassays experienced either cotton or horsemint during the entire duration of their 

immature stages before conducting the experiments. We refer this fleahoppers as “host-

associated populations” (i.e. horsemint-associated population or cotton-associated 

population). An average of 50 adults from each host-associated population were tested in 

the Y-tube olfactometer using the same treatment combinations used for testing for 

geographic differences (see above). This design allowed us to test if host-preference of 

cotton fleahopper was influenced by prior host plant experience. 
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Statistical analysis 

Host-preference data were analyzed as percent response using chi-square analysis 

(α = 0.05) under the null hypothesis that cotton fleahopper oriented with an expected 

probability of 0.5 for each treatment (Proc FREQ, SAS 2006). 

 

Results 

Test for effect of geography 

Cotton fleahoppers from both Lubbock and College Station preferred horsemint 

to cotton. In Lubbock (Fig. 4.2A) 70 per cent of tested individuals preferred horsemint to 

cotton (χ2 = 16.0; df = 1; P < 0.001). Similarly, in College Station (Fig. 4.2B) 68 per cent 

of tested individuals preferred horsemint to cotton (χ2 = 12.96; df =1; P = 0.0003). A 

significantly larger proportion of individuals preferred horsemint over the control (air) in 

both Lubbock and College Station. In contrast, preference of cotton fleahopper to cotton 

was non-significant when tested against the control.  

Test for effect of prior experience 

Source population:  80 per cent of the individuals from the source population 

(Fig. 4.3A) preferred horsemint to cotton (χ2 = 30.5; df = 1; P < 0.0001). When 

individuals were allowed to choose between horsemint and the control, significant 

preference for horsemint was observed while there was no preference to cotton when 

tested against the control.  

Horsemint-associated population: Individuals of this population spent their all 

life stages on horsemint. 84 per cent of the individuals from the horsemint-associated 



 
 

 

 

 

Fig. 4.2. Olfactory preference of two geographic populations of cotton fleahopper to cotton and horsemint. A. Lubbock 
population. B. College Station population. Statistically significant χ2 test is indicated as either *=P<0.05 or **=P<0.0001. 
Number within parentheses on the left side of each test indicates number of individuals tested. 
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Fig. 4.3. Olfactory preference of cotton fleahopper population with and without prior experience to cotton. A. Source 
population B. horsemint-associated population and C. cotton-associated population. Statistically significant χ2 test is indicated 
as either *P<0.05 or **P<0.0001. Number within parentheses on the left side of each test indicates number of individuals 
tested.  
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populations (Fig. 4.3 B) preferred horsemint to cotton (χ2 = 22.2; df = 1; P < 0.0001). 

When individuals were allowed to choose between horsemint and the control, significant 

preference for horsemint was observed while there was no preference to cotton when 

tested against the control.  

Cotton-associated populations: This population consists of individuals, which 

completed their all life stages on cotton. 76 per cent of the individuals from the cotton-

associated populations (Fig. 4.3 C) preferred horsemint to cotton (χ2 = 28.4; df = 1; P < 

0.0001). When individuals were allowed to choose between horsemint and the control, 

significant preference for horsemint was observed. There were a statistically significant 

proportion of individuals that preferred cotton over air. 

 

Discussion 

Our results indicate that the cotton fleahopper prefers horsemint to cotton 

regardless of its geographic origin and prior experience. In 5 independent experiments, 

an average of 76 per cent of tested individuals preferred horsemint to cotton. The 

previous study by Beerwinkle and Marshall (1999) also found that cotton fleahopper 

strongly prefers horsemint over cotton and suggested its potential use as a trap crop. 

Unlike our study, Beerwinkle and Marshall, and others (Van Tol et al. 2002, Midega et 

al. 2011), focus their studies on insects collected from a single geographic location and 

recommended pest management options based on their host-preference results.  Since, 

host-preference may vary among geographic populations of herbivore insect pests, 
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development of trap crop strategies should consider testing multiple geographic 

populations.  

The influence of locally abundant host plants in insect host preference has been 

documented in several instances where insect populations are adapted to the locally most 

abundant host plant and prefer it over other potential hosts (Harrison 1987, Newby and 

Etges 1998, Funk and Bernays 2001, Kawecki and Mery 2003, Gotthard et al. 2004, 

Ferrari et al. 2006, Logarzo et al. 2011). Since the cotton fleahopper is a widely 

distributed, highly polyphagous insect and the abundance of its host-plant species varies 

geographically, this insect herbivore is bound to use different host-plant species at 

different geographic locations. If preference for a particular host is not a fixed trait then 

we expect to find differences in host preference among geographic populations of cotton 

fleahopper. However, contrary to this expectation, our results indicate that there was no 

difference in host-preference between geographic populations (Fig. 4.2A and B). The 

two locations we picked (i.e., Lubbock and College Station) belong to two distinct eco-

regions and both differ in terms of annual rainfall (Fig. 4.1) and abundance of cotton and 

horsemint. Horsemint is limited in Lubbock, whereas abundant in College Station. 

Similarly, the area under cotton cultivation in Lubbock is larger than in College Station 

(USDA-NASS 2010).  In spite of the differences between the two locations we studied, 

cotton fleahopper preferred horsemint to cotton in both Lubbock and College Station.  

Our study also shows that preference of cotton fleahopper to horsemint is 

unaffected by insect‟s prior experience with cotton. Although both adult and nymphs 

spent their life on cotton, cotton fleahoppers exhibited preference to horsemint over 
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cotton when given a choice (Fig. 4.3 C). This indicates that host preference in cotton 

fleahopper is not inducible by learning; rather it seems to be a conserved behavior in this 

insect species. Similar results have been documented in several studies where host 

preference of polyphagous or oligophagous herbivorous insects does not change due to 

prior host experience (Janz et al. 2009, Kuhnle and Muller 2011, Midega et al. 2011).  

Thus, cotton fleahopper‟s host preference could be an evolutionarily conserved feature 

which is not affected by geographic differences in available host plants (Wehling and 

Thompson 1997) and prior experience (Kawecki and Mery 2003). This fixed host 

preference could be due to the evolutionary history of the cotton fleahopper and 

horsemint. The consistent preference for horsemint in cotton fleahopper could be the 

result of a longer association of this pest with horsemint than with cotton. The cotton 

fleahopper and horsemint, both are native to the southern United States (Henry 1991, 

Turner 1994, Knutson et al. 2002). In contrast, large-scale cultivation of introduced 

cotton in the southern United States dates back only to late 1600 (Lewis and Richmond 

1966). Thus, the cotton fleahopper has been interacting with horsemint for longer time 

than with cotton. This long association with horsemint might have resulted in higher 

fitness of this insect in horsemint than in cotton. For example, cotton fleahopper took 

shorter to complete its life cycle and laid significantly more eggs in horsemint than in 

cotton (Gaylor and Sterling 1976, Holtzer and Sterling 1980a). Thus, it is not surprising 

that the cotton fleahopper present fixed preference for horsemint as found by our study. 

This as well as previous studies have shown that native host plants are preferred over 

cotton by the cotton fleahopper (Holtzer and Sterling 1980a, Beerwinkle and Marshall 
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1999). One could ask then why the fleahopper is found in cotton. The relatively high 

abundance of cotton compared to its native wild hosts may explain in part the presence 

of this insect in cotton. Although cotton may not be the host on which this insect has the 

highest fitness, its abundance may compensate for its relatively low resource quality. 

There are several examples in which herbivore insects choose plants on which their 

fitness is relatively low, but on which they get ecological advantages such as protection 

from natural enemies (Gratton and Welter 1999, Singer et al. 2004, Diamond and 

Kingsolver 2010), and/or a predictable food resource (González-Megías and Gómez 

2001). Thus, host preference might not be strictly required for an herbivore to establish 

its association with a widely cultivated crop. In our study system, cotton is a sub-optimal 

host plant for the cotton fleahopper (Gaylor and Sterling 1976). However, its relatively 

high abundance makes it a predictable resource. In this scenario, the evolution of host 

preference for cotton might be unnecessary for the fleahopper due to this crop‟s 

extensive cultivation. In contrast, cotton fleahopper preference for wild hosts will be 

maintained due to its (insects) optimal fitness on these host-plants and their (wild host 

plants) limited abundance.  

Our data suggest that wild hosts of the cotton fleahopper could be utilized as a 

pest management tool. For example, horsemint could be used as a trap crop, or to 

develop kairomone baits etc. This kind of cultural management options hold promises in 

the current cotton pest management scenario in Texas, where insecticide applications are 

unwarranted due to the introduction of transgenic Bt-cotton and successful boll weevil 

eradication program. Unlike the introduced polyphagous Helicoverpa armigera, which 
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may not be feasible to control through trap crops due to their induced host preferences 

(Cunningham et al. 1998, Cunningham et al. 1999), the conserved host preference of the 

cotton fleahopper suggests that trap crops could be a management option for this native 

pest.
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CHAPTER V 

MORPHOLOGICAL VARIATION IN COTTON FLEAHOPPER 

POPULATIONS:  GEOMETRIC MORPHOMETRIC APPROACHES TO 

QUANTIFY THE INTERACTIVE EFFECT OF HOST PLANT AND 

GEOGRAPHY 

 

Introduction 

Phytophagous insects have been a subject of interest in studying host plant 

mediated morphological divergence (Carroll and Boyd 1992, Adams and Funk 1997, 

Diegisser et al. 2007, Nosil 2007). Since host plants present several layers of defense to 

protect themselves from herbivorous insects, insects need to overcome these barriers in 

order to utilize plants as a food resource. One of the defensive barriers phytophagous 

insects encounter is the host plant‟s surface morphology (Bernays et al. 1991). Host 

plant‟s surface morphology can be characterized by toughness and hairiness. Especially, 

hairiness of leaves or stems has shown to be an important morphological character which 

poses problems for an insect‟s attachment, movement and access to food (Bernays et al. 

1991, Medeiros and Moreira 2002). Therefore, insects need to develop adaptations to 

some morphological structures of plants in order to increase their survival and fitness. 

Studies of insect species within the order Hemiptera (specifically in Aphididae) have 

shown morphological changes in response to plant trichomes (Moran 1986, Gorur 2003). 

Similarly, insect‟s tarsi may be selected for better attachment and locomotion on specific 

plant surfaces. For example, shorter hind tarsi in Uroleucon aphids is related to plant 
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surfaces with long trichomes (Moran 1986). These examples indicate that host plants can 

be the source of strong natural selection and induce morphological adaptations in insect 

populations. 

Several phytophagous insects are widely distributed, likely following the 

geographic distribution of their host plants or due to passive dispersal through wind, 

water, etc. Currently, human transportation has also contributed in the expansion of 

some phytophagous insects‟ distributions. Thus, the same insect species can be found in 

geographically distant locations. Geographically distant or isolated insect populations 

may go through separate evolutionary trajectories depending on the differential strength 

of local micro-evolutionary forces such as genetic drift, natural selection and gene flow 

among populations. It is well documented that insect populations respond to spatial 

variation such as differences in latitude and longitude (Scharf et al. 2009), and evolve 

into morphologically distinct ecotypes (Sota et al. 2007, Seabra et al. 2009, Tantowijoyo 

and Hoffmann 2011). In geographically isolated insect populations, gene flow may be 

limited which can further lead to their genetic differentiation. Thus geographically 

isolated populations are likely to have unique evolutionary histories. 

 The combined effects of host plant selection and local adaptation may influence 

morphological traits of geographically isolated populations of phytophagous insects in 

different ways. An approach to tease apart the effects of local adaptation (i.e., 

geography) and host-plant mediated natural selection will be to consider replicated pairs 

of divergent host pairs in the multiple geographic locations. Documenting similar 

patterns of morphological divergence in populations across the same selection gradient 
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(i.e., different host plant species) at different geographic locations will be evidence of 

strong host-mediated natural selection (Schluter 2000). 

Simultaneously quantifying both the effect exerted by host-plant selection and by 

geographic variation on the morphology of phytophagous insects can be achieved by 

using a generalized model of divergent selection (GMDS). This model is able to 

simultaneously quantify the effect of both host-plant selection and local adaptation on 

the observed pattern of evolutionary diversification (Langerhans and DeWitt 2004, 

Langerhans 2010). According to this model, one will be able to measure an organism‟s 

characters (morphological, behavioral, etc.) relevant to interacting selection gradients 

and to investigate shared and unique responses of organisms across different selection 

regimes by performing a multivariate analysis of variance (MANOVA). The broad 

applicability of GMDS lies on the fact that it can be used for various characters (e.g., 

morphological, behavioral etc.) across broad taxonomic units, which experience the 

same set of selection gradients (e.g., selection by different host-plant species) at multiple 

locations. 

This study focuses on a phytophagous insect, Pseudatomoscelis seriatus 

(Hemiptera: Miridae) and two of its primary host plant species, horsemint (Monarda 

punctata) and cotton (Gossypium hirsutum) in two distinct eco-regions of Texas (i.e., 

Lubbock and College Station). The objectives of this study were 1) to evaluate if host 

plants exert differential natural selection on morphological traits of P. seriatus, and 2) to 

quantify the contribution of host plant species and geography in the evolution of 
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morphological traits in P. seriatus. I used traditional and geometric morphometric data 

to address these questions.  

 

Materials and methods 

Insect and host plants  

 Pseudatomoscelis seriatus, known as the cotton fleahopper, is a generalist 

forager reported to feed on more than 160 host plant species from 35 families (Esquivel 

and Esquivel 2009). Through its sucking mouthparts, P. seriatus mostly feeds on plant 

reproductive structures and occasionally on tender stems of plant terminals. It is native 

to the southern United States and northern Mexico and its current range extends from 

Baja California in the west to North Carolina in the east. P. seriatus completes one 

generation (egg to adult) within 32-40 days depending on the prevailing temperatures 

and feeding host. There are five immature stages (nymphs) and nymphs are restricted to 

using the same plant where they eclose. Thus, P. seriatus intimately interact with the 

same host plants for most of their lives, though adults are winged and can disperse 

across potential hosts. Available host species vary in abundance in time and space and 

these plant species vary chemically, nutritionally, and morphologically.  

 Since all recorded host plants of P. seriatus do not occur at any given location, 

the insect is found in abundance only on 3-4 dominant host plants at any given location. 

In my two study locations, College Station and Lubbock, I selected populations of P. 

seriatus feeding on cotton (Gossypium hirsutum, Malvaceae) and horsemint (Monarda 

punctata, Lamiaceae). Among these two host plants, horsemint is a native wild plant, 
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Fig. 5.1. Scanning electron microscopy (SEM) picture showing surface morphology of 
plant-parts utilized by P. seriatus in the two selected host plants. Cotton stem (upper 
left), cotton flower bud or square (upper right), horsemint stem (lower left), and 
horsemint florets (lower right).
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and support a higher number of P. seriatus individuals than cotton, which is a cultivated 

crop. These two host plants potentially offer different environments to P. seriatus in 

terms of defensive chemical and surface morphology (Fig. 5.1). While horsemint is a 

native plant in the study areas, cotton was introduced to the east coast during the early 

1600‟s as a commercially cultivated crop and later on expanded to the study areas 

(Lewis and Richmond 1966). Additionally, cotton and horsemint are good candidates to 

study diversification because these hosts are known to influence survival, fecundity and 

development of P. seriatus (Gaylor and Sterling 1976), and P. seriatus morphometry 

(head capsule width) is known from previous work to vary among individuals raised on 

cotton and horsemint (Suh 2007). 

 

Study sites 

 The two locations we studied, Lubbock and College Station, are 621km apart and 

belong to distinct eco-regions in which cotton cultivation follows different patterns 

within the state of Texas, USA.  College Station (N 30.5391; W 96.4491; elevation 80 

m) receives an annual average rainfall of 100 cm, while Lubbock (N 33.6946; W 

101.7351, elevation 985 meter) is a comparatively arid area, receiving 48 cm of rainfall 

annually (Fig. 5.2). The two host plant species, horsemint and cotton are spatially and 

temporally more apart in Lubbock compared to College Station, where phenologies of 

the plants and geographic distributions overlap significantly.
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Fig. 5.2. The two study locations, Lubbock and College Station, representative of areas 
with low rainfall and areas with high rainfall, respectively.
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Sampling and data acquisition 

 Insect samples were collected by sweep-net during the summer of 2010.   From 

each host plant at each location, 30-40 individual P. seriatus adults were preserved in 

80% ethanol until sample preparation. Only females were used for subsequent 

measurements, because sexual dimorphism exists in P. seriatus. Females tend to be 

bigger than male (AKB, unpublished data). I also focused on females because of their 

role in host plant selection for oviposition. Thus, females are ultimately responsible for 

the success of their offspring. To study morphological variation of P. seriatus, I selected 

several body appendages such as antenna, legs, and mouthparts (rostrum), because these 

appendages directly interact with host plant surfaces and are also involve in the 

utilization of host plants as a food source.  Insects were dissected under a stereoscope to 

separate body appendages. Each of the dissected body appendages were temporarily 

slide-mounted using glycerol as a mounting medium, affixed to a cover slip, and pressed 

flat onto a slide to reduce measurement error due to orientation and depth of focus. 

Slide-mounted body appendages were photographed using an AxioCam® MRc attached 

to an EMS-2 stereomicroscope illuminated by CL1500 ECO lamp (Carl Zeiss, Inc., 

Thornwood, New York) at 50× magnification, resulting in a resolution of 488.5 

pixels∙mm
-1.  

 

Morphometric methods  

Traditional measurement: We selected 13 body parameters (individual lengths of 

the 1st through  4th antennal segments, summed length of 1st through 3rd rostral segments,
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Table 5.1. Cotton fleahopper morphological traits considered for traditional 
morphometric analysis  
 

 
Morphological traits 
 

 
Abbreviated code 

 
 
Length of 1st antennal segment  

 
A1 

Length of 2nd antennal segment A2 
Length of 3rd antennal segment A3 
Length of 4th antennal segment A4 
Total length of first 3 rostral segments R123 
Length of last rostral segment R4 
Length of fore femur FL1 
Length of fore tibia FL2 
Length of fore tarsus FL3 
Length of hind femur HL1 
Length of hind tibia HL2 
Length of hind tarsus HL3 
Width of hind femur HL1W 
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length of the last segment of rostrum, length of fore femur, fore tibia, fore tarsus, length 

of hind femur, hind tibia, hind tarsus, and hind femur width) to be used in a traditional 

morphometric analysis (Table 5.1). The length and width of these body parameters were 

measured by digitizing points on captured images using the software tpsDIG, version 2.1 

(Rohlf 2006) . Distances were calculated from point coordinates in Excel (online 

accessory information File 1).  All linear distances measured were log transformed 

(Lande and Arnold 1983). Size was calculated as the geometric mean of the log data in 

Excel. 

Geometric Shape measurement: Shape data were generated from forewings (Fig. 

5.3 A and B). Shape information generated from insect forewings has been used 

extensively to detect variation among populations associated with host plants (Kuussaari 

et al. 2000, Bruce et al. 2005, Patt and Setamou 2007, Bruce and Pickett 2011).  Either 

one of the two forewings was slide-mounted and fixed with cover slip. A picture of the 

dorsal side of the forewing was taken under 25× magnification as described above.  

 

Statistical analysis 

 Traditional (linear distances) and geometric (landmark coordinates) data were 

analyzed separately, as is classically done, because each data set has an alternative, 

internally consistent, scaling of their covariance space (Rohlf and Corti 2000).  

However, multiple morphometric data sets on the same specimens are not likely to be 

independent.  I therefore additionally explored a method to fuse data from differently 

scaled spaces, described below, to see if more statistical power (and analytical clarity)
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Fig. 5.3. Positions of landmarks on the forewing of the cotton fleahopper. A. Original 
picture with landmarks and outlines. B. Landmarks of 55 coordinates used to describe 
wing shape (tpsRELW analysis of 117 individuals).

Corium 

Clavus Membrane 

A 

B 
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could be achieved, and to see if interesting forms of trait integration were evident 

between body and wing morphology. 

 Traditional data were log transformed and the geometric mean of the log-data was 

calculated to serve as a measure of body size. Log-data were converted to shape data with 

a standard orthogonalization method (Burnaby 1966), which is equivalent to regressing 

size on log distances and saving residuals.  A multivariate analysis of covariance 

(MANCOVA) was performed to estimate the nature and magnitude of shared and unique 

aspects of diversification across hosts (host main effect, host×region interaction), the 

general effect of region, and allometric covariates (e.g. host×size, region×size). Non-

significant covariate terms were dropped from the final statistical models.  Discriminant 

analysis (both linear and quadratic) was performed with canonical scores from the host 

effect, to provide a measure of classification success.  Validation by jackknifing (one-

removal) was performed to verify significance of the discriminant functions.  The sample 

size for traditional morphometrics was 117 specimens.  All statistics were conducted in 

JMP 9.0 (SAS Institute, Cary, NC) and verified by replication in Excel spreadsheets. 

 For geometric shape data, principle components of superimposed coordinates 

were calculated using the covariance matrix, and major components that collectively 

summarized 99% of the data (22 of 106) were retained for further analysis.  The 22 

principle components (=shape variables) were analyzed as described above for the 

traditional morphometric data, by the method of Langerhans and DeWitt  (2004). Linear 

and quadratic discriminant analyses were performed above with jackknife procedure. 

Sample size for geometric wing shape was 113 specimens.  Statistics were calculated in 
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JMP and Excel. Procrustes analysis was conducted.  Non-shape effects of location, size, 

and orientation were removed from the raw coordinate data by translating, scaling and 

rotating each conformation to best fit with the consensus, or average conformation, 

rotated to its major axis.  I used stereographic projection to flat shape space using 

tpsRelw (Rohlf 2006) and treated semilandmarks and landmarks equivalently.  Deficient 

dimensionality (4 dimensions lost for superimposition, and one lost for each 

semilandmark) was corrected by omitting null vectors following principle components 

analysis.   

 The combined dataset represents a fused dataset generated from only shape data 

from both traditional and geometric data.  The traditional and geometric data were fused 

by scaling each respective data block to true rank.  True rank is the number of truly 

independent dimensions in a data space (DeWitt, in review). Higher total variance might 

be explained and more meaningful insights could be drawn by using a fused dataset 

rather than using either traditional or geometric datasets alone. For example, the true rank 

(number of principal components needed to summarize 99% of the variance in my 

dataset) of the traditional shape and geometric shape data was 11 and 22, respectively. 

Thus, the fused dataset originally consisted of 33 principal components. 

 

Results 

 Overall, analysis of all three types of datasets (traditional measurement, geometric 

shape, and combined shape data) indicated that there was a significant effect of both host-

plant (shared effect) and region (unique effect) on morphological variation of P. seriatus. 
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The shared effect and unique effect explained (η2) an average of 48.4 and 53.8% of 

observed variation in the study organism, respectively. The MANCOVA also indicated 

that host-plant × region, which is also another form of unique effect, had a significant 

effect on P. seriatus morphology and explained an average of 42.1% variation across the 

three datasets. Detailed results from all three datasets are as follows. 

 

Traditional morphology  

 The result of MANCOVA on traditional morphology data shows that effect of 

host-plant was significant (F = 3.48, df = 13, 94, P = 0.0002), i.e., being associated with 

two different host plants, correlates with P. seriatus individuals differing morphologically 

(Table 5.2). The canonical variate derived for shared effect (host-plant) also showed 

diversification for two host-plant associated insect populations (Fig. 5.4). Examination of 

the canonical loadings for effect of host-plant revealed at least three distinct 

morphological changes: individuals associated with cotton have longer antenna, longer 

rostrum and narrower femur compared to individuals associated with horsemint. The 

direction of morphological changes with respect to host-plant was consistent in the two 

studied regions. Two sources of variation, region and the interaction term (region × host-

plant) can be considered as unique aspects of P. seriatus morphological divergence. The 

MANCOVA indicated that there were significant effect of both region (F = 617, df = 13, 

94, P < 0.0001) and region × host-plant (F = 3.25, df = 13, 94, P = 0.0004) on 

morphological divergence of P. seriatus populations. The discriminant function analysis 

(DFA) based on the 13 linear measurements classified insects by their host-plant 



 
 

 

 
 

Table 5.2. Results of MANCOVA on traditional body size measurement data of P. seriatus  
 

Test for Factors F df P (η2) Partial variance 
explained (% ) 

DFA  
(LD) 

DFA 
(QD) 

Shared 
divergence 

Host 3.48 13, 94 0.0002 32.5     72.6 83.2 

Unique 
divergence 

Region 6.17 13, 94 <0.0001 46.0      84.1 91.2 

Host × Region 3.25 13, 94 0.0004 31.0  
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Table 5.3. Results of MANCOVA on wing geometric shape measurement data of P. seriatus  
 
Test for Factors F df P (η2) Partial variance 

explained (%) 
DFA (LD) DFA (QD) 

Shared 
divergence 

Host 4.09 22, 89 <0.0001 50.3 80.3 96.6 

Unique 
divergence 

Region 5.23 22, 89 <0.0001 56.4 85.5 100 

Host × Region 2.86 22, 89 0.0003 41.4  
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Table 5.4. Results of MANCOVA on combined data (wing shape and traditional shape data) of P. seriatus 

 
Test for Factors F df P (η2) Partial variance 

explained (%) 
DFA (LD) DFA (QD) 

Shared 
divergence 

Host 3.70 30, 67 <0.0001 62.3 88.2 100.00 

Unique 
divergence 

Region 3.23 30 <0.0001 59.1 82.4 100.00 
Host × Region 2.63 30, 67 0.0005 54.1  
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Fig. 5.4. Loadings of 13 morphological traits on the axis of divergence based on the 
correlation between traits measurement and canonical score. Abbreviation of 
morphological traits are indicated in Table 5.1 of this chapter. 
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association, with the null hypothesis of 50 per cent being correctly classified to either of 

the two host-plant groups by chance. The DFA result classified 72.6% of the individuals 

correctly to their respective group. Similarly, another DFA classified 84.1% of the 

individuals correctly to their respective region-group. 

 

Geometric shape  

 The MANOVA of geometric shape data on the right forewing of P. seriatus 

showed that host plant has a significant effect on the observed morphological divergence 

(F = 4.09, df = 22, 89, P < 0.0001) (Table 5.3). Relative warp analysis of wing shape 

coordinates showed that overall; wings of individuals associated with horsemint are 

narrower at their proximal end than wings of cotton associated individuals (Fig. 5.5). We 

found a significant effect of two unique aspects on P. seriatus wing shape divergence: 

region (F = 5.23, df = 22, 89, P < 0.0002) and region × host-plant (Table 5.3). The first 

DFA, based on host-plant effect correctly classified 80.3% of the individuals into their 

respective host-plant groups. Similarly, the second DFA based on region effect correctly 

classified 85.5% of the individuals into their respective region groups. 

 

Combined   

 The combined dataset consist of shape information obtained from both traditional 

morphology and wing shape data. The shape data from traditional morphology data was 

extracted by subtracting the size information from the original form information. PCA
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Fig. 5.5. Visualization of fore wing shape variation of two host-associated groups in thin 
plate spline transformation grid (10x). A. cotton associated individuals, B. horsemint 
associated individuals.

A 

B 
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analysis indicated that 99% of the variation was explained by 11 and 22 PCs in 

traditional shape data and wing shape data, respectively. These two dataset (i.e., 

traditional shape and wing shape) were then combined based on their true ranking and 

PCA on this combined data indicated that 99% of the variation was explained by 30 PCs. 

Thus, at least 3 overlapping PCs were detected between the two datasets suggesting a 

case of phenotypic integration. Based on the 30 PCs, we conducted MANOVA, which 

indicated that there was a significant effect of host (F = 3.7, df = 30, 67, P < 0.0001), 

region (F = 3.23, df = 30, 67, P < 0.0001) and their interaction, host × region (F = 2.63, 

df = 30, 67, P = 0.0005) (Table 5.4). The DFA based on host effect, correctly classified 

88.2 % of the individuals to two host groups. Similarly, 82% of the individuals were 

correctly classified into their respective region groups in another DFA while region was 

considered as an effect on morphological variation.   

 

Discussion 

 Cotton fleahopper populations associated with two different host plant species 

showed divergence in both body size and wing shape. Variation in the magnitude of 

these morphological differences was also observed between two relatively distant 

geographic locations. The estimate of partial variance explained (η2) by host plant 

species alone was almost equal to the variance explained by geographic location alone 

for both body size and wing shape. However, when considered together (fused data) the 

analysis suggested a greater role of host plant species than of geographic location in 

explaining morphological variance among the studied cotton fleahopper populations. In 
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addition, the combined dataset provided more discriminatory power (88.2% success in 

discriminant function analysis, DFA) than any of the individual data sets (i.e., either 

traditional morphometric or wing geometric-morphometric) to correctly classify cotton 

fleahopper individuals to their respective host plant or region. The most important result 

of this study was to detect significant morphological differences between cotton and 

horsemint associated populations in replicated locations, which supports the notion that 

host plant species can act as a strong agent of natural selection in phytophagous insects.  

Phytophagous insects feeding on different host plant species generally encounter 

variable environments in terms of morphological, biochemical and anatomical host-plant 

features (Bernays et al. 1991). Cotton and horsemint belong to two unrelated plant 

families and their surface morphologies vary significantly. In general, cotton has dense, 

coarse, long trichomes (hirsute hairs), while horsemint appears to be glabrous (lack of 

hairs) (Fig. 5.1). Projecting the loadings of insect‟s morphological traits in a common 

canonical axis indicated that 3 morphological traits had high character values (threshold 

=0.4) (Fig. 5.4). These three morphological traits (i.e., 3rd and 4th antennal segment and 

the last rostrum segment) showed higher loading for cotton associated fleahoppers; 

whereas, width of hind-femur had relatively higher loading for horsemint associated 

fleahoppers. Based on the host plant‟s surface morphology (i.e., presence of hirsute hairs 

in cotton), increased rostrum length was expected for cotton associated fleahoppers. 

However, variation in antennal length was not expected. The longer antenna of cotton 

associated individuals also could be the result of allometric relationship with insect‟s 

body size. 
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Body size in insects has been shown to correlate with nutritional quality of their 

food resources. For example, insects receiving higher quality food could develop larger 

body size and therefore, several body appendages might grow longer. Therefore, longer 

antennal length or other variation in body size could be just an effect of nutrition rather 

than selection on morphological traits. A similar idea was suggested by Suh (2007) as an 

explanation for head-capsule differences in cotton fleahopper nymphs fed on different 

host plant species. In another example, individuals of the cabbage aphid (Brevicorynye 

brassicae) feeding on turnip (Brassica campestris) were found to be larger than 

individuals feeding on green cabbage (B. oleracea), and morphological measurement of 

different body appendages indicated a positive correlation with body size (Ruiz-

Montoya et al. 2005). Thus, morphological difference among insect populations feeding 

on different host plant species could be the result of phenotypic plasticity. 

Although, morphological divergence in phytophagous insects has been studied 

more in the context of insect-host plant interactions, an equally important aspect of 

morphological divergence in phytophagous insect is their interaction with geography. 

Insect populations can be locally adapted owing to variations in climatic conditions and 

to environmental differences such as heterogeneity in host plant composition, host-plant 

abundance, predator and/or parasitoid composition and abundance. Geographically 

isolated populations may also have different evolutionary histories such as occurrence of 

stochastic events generating bottlenecks, differences in the level of genetic drift, amount 

of gene flow with nearby populations and different degrees of local adaptation. In the 

case of cotton fleahopper, I found a strong influence of geography on both insect body 
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size and wing shape. Morphological traits such as the length of antenna and rostrum 

were longer in College Station than in Lubbock cotton fleahopper populations. This 

body size variation in College Station populations was similar to what we saw in the 

case of cotton associated populations, which indicate that College Station populations of 

cotton fleahopper are more like the “cotton type” and Lubbock populations are more like 

the “horsemint type”. Further studies will be needed to verify if this geographic trend in 

morphology among fleahoppers associated with different host-plant species still persists 

after reciprocal transplant experiments among populations from both locations. 

Geometric morphometric analysis of insect wing shape variation has been a 

common approach used to differentiate interspecific and intra-specific populations 

(Campos et al. 2011, Jorge et al. 2011). Especially, this approach has been able to detect 

subtle differences in wing shape, which could also be used as diagnostic tools in 

resolving taxonomic problems such as species/sub-species identification (Tofilski 2008). 

Wing shape sometimes can be more reliable to detect subtle differences than traditional 

measurements of body size. For example, larval food of a neotropical butterfly, 

Heliconius erato influenced wing shape more than body size and therefore wing shape 

was used to discriminate the host plant used by this butterfly (Jorge et al. 2011). The 

wing shape data (based on landmark coordinates) for cotton fleahopper used in the 

current study were also highly reliable to assign individuals into their respective host 

plant group. Thus, I was able to classify cotton fleahopper individuals to their correct 

host plant group with 80% success. Visualization of wing shape differences of two host-

associated groups in a thin plate spline transformation grid indicated that fore wings of 
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cotton fleahoppers associated with cotton had a broad base, while wings of horsemint 

associated individuals appear to be more slender and elongated. The typical hemelytrons 

(fore wing of true bug) consist of three segments: corium, clavus and membrane (Fig. 

5.3 A). We visualized considerable shape variation in clavus shape between the two host 

associated groups, where horsemint associated individuals had narrower clavus 

compared to cotton associated individuals. I restrain from interpreting the observed wing 

shape variation between the two host-associated groups I studied without knowing the 

flight aero dynamics involved in this insect flight. I believe these results may raise future 

inquiry and hypotheses regarding wing shape and its relation to dispersal in this insect. 

It was suggested that insect diet can influence insect‟s wing shape more than its 

body size (Jorge et al. 2011). If such a suggestion holds to be true then it would be 

possible to use wing shape information in identifying the host-plant of origin of 

migratory pest populations. Pest individuals can be reared under laboratory/field 

conditions to obtain base line information on wing shape associated with their host 

plants and these data could be used to determine the origin of individuals from natural 

populations. Wing shape could also be used to understand population structure and to 

understand the dynamics of insect migration at local scales (Schachter-Broide et al. 

2004). Identification and correct classification of insect populations is important in pest 

management. Geometric-morphometric studies have resolved several cases of cryptic 

species or sub-species, which are not only useful for identification of sub-populations of 

insect pest species (Shiao 2004, Kitthawee and Dujardin 2010, Lyra et al. 2010), but also 

helpful in differentiating biological control agents used for suppression of insect pests 
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(Querino et al. 2002). Another potential area for using the findings of geometric-

morphometric data on insect‟s morphological traits would be in the breeding of crop 

cultivars against insect pests. For example, several studies have indicated that glabrous 

(hairless) cotton cultivars are more vulnerable to cotton fleahopper injury than the 

hirsute type (Lukefahr et al. 1970, Walker et al. 1974). If considerable variation in cotton 

fleahopper morphology exists in natural populations as shown in this study, breeding 

approaches need to consider this variation in insects to prevent failure of developed 

cultivars.  These examples and my current work suggest that geometric-morphometric 

approaches can differentiate subtle morphological variation in insect populations and 

attest to the power to capture such variation. Incorporating information on the interactive 

effect of host-plant species and geography on morphology of pest and natural enemies 

will allow us to fine tune our pest management strategies. 
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CHAPTER VI 

 

SUMMARY, SIGNIFICANCE, AND FUTURE DIRECTIONS 

 

This dissertation research was undertaken to understand the movement of cotton 

fleahopper in agroecosystems. I started with the idea that wild host plants were the 

source of cotton fleahopper populations infesting cotton. However, the cotton fleahopper 

is a highly polyphagous insect (more than160 reported host plants). Thus, the number of 

potential sources was staggering and there were temporal asynchrony and spatial 

heterogeneity in the potential host plant species. These observations suggested that 

perhaps the importance of different host plant species for the fleahopper varied at 

different locations. To select the host plant species for this study, I surveyed locally 

abundant host plant species for presence of cotton fleahopper in several eco-regions in 

Texas and selected three plant species (i.e., horsemint, woolly croton and cotton) on 

which fleahopper populations were abundant enough to conduct the study.  

 Insect movement can be detected either directly by using physical marking 

systems (e.g., florescent dye, proteins, pollen, etc.) or indirectly by using molecular 

markers. While physical markers provide direct measurement of movement of dispersal 

potential in real time, molecular markers provide information on historical patterns of 

movement among insect populations. Both approaches have their utility depending on 

the questions being asked. Direct measurement of movement is challenging, especially 

with small insects. Thus, indirect measurements of movement have become the method 

of choice. When molecular markers are used to estimate insect movement, we are 
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actually measuring the gene flow among populations rather than the physical movement. 

I developed AFLP markers to assess gene flow among cotton fleahopper populations 

from cotton, horsemint and woolly croton. Lack of gene flow among individuals 

associated with different host-plant species is referred as host-associated differentiation 

(HAD). I found host-associated differentiation in the cotton fleahopper, where a distinct 

fleahopper genotype is associated with horsemint. However, the presence of this distinct 

genotype in this insect is affected by geography, suggesting that HAD is a population 

rather than a species trait. John N. Thompson discussed this possibility for the first time 

in 1994 referring to co-evolution, within the context of his geographic mosaic 

theory(Thompson 1994). In a similar vein, what I found can be referred to as the 

geographic mosaic of HAD as it shares the same theoretical underpinnings. My data 

validate this theoretical approach in an agricultural cropping system for the first time.  

 The presence of HAD in the cotton fleahopper indicates that individuals 

associated with one of its host-plant species (i.e., horsemint) were reproductively 

isolated from individuals associated with cotton. This suggests that gene flow and 

perhaps dispersal from horsemint to cotton was negligible. Lack of gene flow has been 

found in other agricultural pests associated with different host plant species (even when 

host plants are adjacent to each other), such as the cereal aphid, the beet armyworm and 

the pea aphid. However, these other studies only explored the effect of host-plant species 

on genetic variation without incorporating local geographic variation. The implications 

of HAD in agroecosystems are vast, yet largely unexplored. Several common 

agricultural pest management practices could be affected by the presence of HAD. For 
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example, genetically distinct populations among different host-plant species may exhibit 

differences in phenotypic traits relevant to their control. I have found that size and shape 

of key morphological traits of the cotton fleahopper such as, rostral length, wing shape 

and antennal length vary significantly among cotton fleahoppers associated with 

different plant species and the magnitude of this difference is modulated by geography. 

Host plant association could also influence other phenotypic traits of insect pest such as 

insecticide resistance, resistance to transgenic crops, vulnerability to natural enemies and 

to entomopathogens. The magnitude of the phenotypic differences in insect populations 

could also be modulated by geography. Having found host-associated and 

geographically distinct populations in cotton fleahopper it is possible that these 

populations may exhibit differential vulnerabilities and tolerances to several control 

measures.  

 Prior to this study, no genetic information was available for the cotton 

fleahopper. I have not only provided evidence of genetic variation among host associated 

populations in this study but I have also established baseline genetic information of this 

pest in cotton across most of its geographic distribution in the United States. I found that 

the cotton fleahopper in cotton shows a macro-geographic structure of its genetic 

variation. This structuring appears to be relatively new and may have occurred after the 

introduction of cotton, suggesting that genetically distinct populations could evolve in 

relatively short time (~200 years). Other insect species have been reported to 

differentiate genetically in comparable time scales (e.g., the apple maggot, and the soap 

berry bug). If such time scale is common for genetic differentiation to happen in pest 
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populations, this has important implications in agroecosystems since most of the 

agricultural crops in the new world are around 200 years old if not older.  

The findings from the current research work open up several potential future 

studies, which could help in explaining genetic differences among insect populations and 

aid in cotton fleahopper management. Historically, the fleahopper population in cotton 

has been smaller in north-western part of Texas (Lubbock and San Angelo), while 

fleahopper population have been found to be significantly larger in the south-eastern part 

of Texas (College Station and Corpus Christi). Owing to this spatial difference in insect 

abundance, the current economic threshold level for fleahopper also differs in the two 

cotton growing regions. It would be informative to know whether the cotton fleahopper 

populations in these two regions differ in their potential to inflict damage to cotton. 

Although cotton associated fleahoppers in both regions are genetically similar, the 

source of these populations seem to be different. In Lubbock and San Angelo, cotton 

infesting fleahopper populations may disperse from host plants other than horsemint, 

while in College Station and Corpus Christi, the fleahopper infesting cotton may come 

from horsemint and/or woolly croton. Future research should explore, 1) what are the 

other potential host plants in Lubbock and San Angelo which can contribute to cotton 

infesting fleahoppers?, 2) what are the hibernating host plants of cotton fleahoppers in 

Lubbock and San Angelo, since woolly croton is absent in those areas?, 3) is cotton itself 

a hibernating host for the cotton fleahopper?, and 4) what is the state of genetic variation 

in cotton fleahopper populations associated with host plant species other than the three 

considered in this study? The results of behavioral experiments showed that preference 
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for horsemint in fleahopper population remain unchanged irrespective of geographic 

location, genotype (identified through AFLP) and prior experience. I tested two 

horsemint associated populations with two different AFLP genotypes, one from Lubbock 

and another form College Station and found that the preference for horsemint was 

similar in both genotypes. However, I was not able to test the fleahopper associated with 

cotton in Lubbock. It would be interesting and informative to explore the host preference 

of fleahoppers associated with cotton in Lubbock and San Angelo. Since in these 

locations cotton associated populations are genetically distinct from horsemint 

associated populations and one would be able to explore if genetically distinct, cotton 

associated population have lost the preference for horsemint and specializes on cotton 

only. Since different genotypes may have differential phenotypic expression, one could 

test if different genotypes of fleahoppers have differences in insecticide tolerance, 

differences in life history traits, and differences in dispersal potential. Presence of 

regional populations of fleahopper across the cotton growing areas in the United States 

raises the possibility that there might be differences in level of insecticide tolerance, and 

magnitude of polyphagy among these populations. Future studies should consider these 

possibilities by formulating appropriate experiments in contexts of cotton fleahopper‟s 

importance as a pest of cotton. 

As I have discussed, presence of genetic differentiation among insect populations 

may influence several pest management practices. Integrated pest management (IPM) 

programs that aim to be realistic and sustainable should therefore consider this 

phenomenon more explicitly. In the past few decades, ecology has found an important 
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place in pest control practices and theory. The time has come for evolution to find its 

place in our pest management practices and paradigms. 
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