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ABSTRACT

Algorithms for Large-Scale Internet Measurements. (December 2010)

Derek Anthony Leonard, B.A., Hendrix College

Chair of Advisory Committee: Dr. Dmitri Loguinov

As the Internet has grown in size and importance to society, it has become

increasingly difficult to generate global metrics of interest that can be used to verify

proposed algorithms or monitor performance. This dissertation tackles the problem

by proposing several novel algorithms designed to perform Internet-wide measure-

ments using existing or inexpensive resources.

We initially address distance estimation in the Internet, which is used by many

distributed applications. We propose a new end-to-end measurement framework

called Turbo King (T-King) that uses the existing DNS infrastructure and, when

compared to its predecessor King, obtains delay samples without bias in the presence

of distant authoritative servers and forwarders, consumes half the bandwidth, and

reduces the impact on caches at remote servers by several orders of magnitude.

Motivated by recent interest in the literature and our need to find remote DNS

nameservers, we next address Internet-wide service discovery by developing IRLscan-

ner, whose main design objectives have been to maximize politeness at remote net-

works, allow scanning rates that achieve coverage of the Internet in minutes/hours

(rather than weeks/months), and significantly reduce administrator complaints. Us-

ing IRLscanner and 24-hour scan durations, we perform 20 Internet-wide experi-

ments using 6 different protocols (i.e., DNS, HTTP, SMTP, EPMAP, ICMP and UDP

ECHO). We analyze the feedback generated and suggest novel approaches for reduc-

ing the amount of blowback during similar studies, which should enable researchers

to collect valuable experimental data in the future with significantly fewer hurdles.
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We finally turn our attention to Intrusion Detection Systems (IDS), which are

often tasked with detecting scans and preventing them; however, it is currently un-

known how likely an IDS is to detect a given Internet-wide scan pattern and whether

there exist sufficiently fast stealth techniques that can remain virtually undetectable

at large-scale. To address these questions, we propose a novel model for the window-

expiration rules of popular IDS tools (i.e., Snort and Bro), derive the probability that

existing scan patterns (i.e., uniform and sequential) are detected by each of these

tools, and prove the existence of stealth-optimal patterns.
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CHAPTER I

INTRODUCTION

1.1. Overview

The Internet and the services it supports have grown in importance both econom-

ically and socially in the last decades. However, with this growth the Internet has

become more difficult to manage and improve due to the sheer number of end-hosts

[35],[37],[42] and networks [92], the presence of malicious entities constantly seeking

to exploit users [68], [70], [97], and a general inability to deploy global changes caused

by its decentralized administration [72], [81], [102]. Given these issues, it has be-

come increasingly difficult to perform Internet-wide experiments that are critical to

verifying newly proposed algorithms (e.g., [20], [24]), tracking growth and changes

in the Internet population (e.g., [10], [34]), and monitoring global metrics of interest

(e.g., [35], [81]). In this dissertation we tackle the problem by proposing several novel

algorithms for performing Internet-wide measurements of various types and studying

their impact on remote networks. We next highlight some of the goals we developed

to inform the design of each of the proposed techniques.

As the purpose of Internet measurements is to produce useful data, our first over-

arching goal is to design algorithms that allow for experiments to be performed in a

timely fashion (i.e., days or weeks instead of months) using fairly inexpensive local

hardware, which ensures that progress can be accomplished quickly and makes our

methods accessible to a larger number of researchers. To ensure this is the case, we

The journal model is IEEE/ACM Transactions on Networking.
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do not consider any solution that requires modifying existing protocols or deploying

servers at remote locations, which can be prohibitively expensive and extremely dif-

ficult logistically. Our second goal is to design algorithms that minimize the impact

on remote users and networks while still acquiring the data of interest in a timely

fashion. This generally takes the form of reducing bandwidth consumption at remote

networks and minimizing disk space and CPU cycles for their servers and end-hosts.

Further care must be used to avoid sending large bursts of traffic to individual net-

works, which can congest routers and effectively cause a denial-of-service for remote

users. In short, we are interested in developing algorithms that allow for efficient col-

lection of data without requiring extensive local resources or overburdening remote

networks and their users.

With these goals in mind, the next three chapters in this dissertation present

algorithms with the ability to perform Internet-wide measurements and analyze their

effect on remote networks. The rest of this chapter briefly introduces each of the

topics in turn and describes how they relate to form a unified dissertation.

1.2. Turbo King

We start with distance estimation in the Internet, which has recently become a large

field of study [7], [16], [20], [24], [28], [32], [33], [49], [54], [60], [75], [76], [80], [87],

[98], [99], [109], [111], [118], [126]. Estimates or measurements of latency between

end-hosts can be used to improve the efficiency of networks (e.g., content distribution

networks) and service to end-users (e.g., reduce user-perceived latency or improve

responsiveness in online games). Existing techniques largely consist of virtual coor-

dinate approaches that estimate delay [20], [24], [33], [36], [49], [60], [76], [98], [99],

[111], which are limited by a lack of real-world distance data for verification, and
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methods that employ tracers to measure delay [1], [28], [72], [81], [102], which are

inherently limited by the difficulty of deploying measurement servers throughout the

Internet. Our aim is to bridge this gap by proposing a framework that allows for

accurate latency measurements on an Internet-wide scale without modifying existing

protocols or requiring large-scale deployment of remote sensors.

A natural choice for this endeavor is King [32], which approximates the distance

between end-hosts using the delay between Domain Name System (DNS) servers re-

sponsible for mapping human-readable names to IP addresses of the hosts in question.

However, through an evaluation of King we show that it suffers from non-negligible

estimation bias, inundates remote servers with unnecessary requests (i.e., pollutes

message caches), and incurs significant network overhead that makes it unsuitable for

Internet-wide measurements. We attempt to mitigate these drawbacks by developing

a new system called Turbo King (T-King) that improves on the accuracy of King,

effectively eliminates cache pollution at remote servers, and significantly decreases

network traffic by minimizing the number of queries needed to make distance mea-

surements using DNS. Turbo King starts with a large set of DNS servers collected

from throughout the Internet, from which is taken the closest nameserver to each

end-host for use in the measurement. Once the closest nameservers are selected, T-

King then uses a new measurement algorithm which not only reduces the number of

queries and bandwidth overhead of King by more than 50%, but also achieves higher

accuracy and a factor of N reduction in the number of polluted cache entries at each

remote server for an N ×N latency measurement.

We finish the chapter by evaluating both the prevalence and the effect of bias

incurred by King, then describing a method for building the database of DNS servers

required by Turbo King. To quantify the effect of bias in King, we use a small

50× 50 delay matrix and compare the estimates produced by King to those of Turbo
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King. Our results show that 15% of the measurements are different by more than

10% and 8% by more than 20%, which indicates that the severity of bias in King is

non-negligible though generally mild. We then build the database of DNS servers for

T-King by crawling the reverse DNS tree and discover a set of 216, 843 nameservers,

out of which we find 117, 817 to be recursive and receptive to queries originating from

our subnet. These servers reside in 174 countries, cover over 31, 000 BGP prefixes, and

are responsible for approximately 50% of IP addresses (i.e., 828 million) advertised

in BGP [92]. However, the technique of reverse-crawling the DNS tree discovers only

authoritative nameservers, which omits nearly all of the local DNS servers that are

not part of the DNS tree but are often responsible for performing recursive queries.

Our desire to locate these servers motivated us to search for a new discovery method,

which led to the work described next.

1.3. IRLscanner

A more comprehensive technique for discovering remote hosts is horizontal scanning

[107], which is a method for enumerating (in some set S) all remote hosts that support

a given protocol/service p. This is accomplished by sending packets to destinations

in S and counting positive responses within some time interval. Besides discovering

DNS servers for Turbo King, such a technique has wide applicability and can also be

used to study publicly available services in the Internet (e.g., end-hosts [35], [37],[42],

web sites [10], [34], [52]), understand how botnets are created by Internet worms [17],

[45], [62], [108], and evaluate the prevalence of known security flaws (e.g., DNS [25],

SSH [82]).

Though several Internet-wide service discovery measurements have been pre-

sented in the literature [10], [25], [35], [83], they have been largely focused on ob-
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taining data in some finite amount of time (often months) rather than designing

a high-performance scanner or maximizing politeness at remote networks. In accor-

dance with the high-level goals we set for the algorithms developed in this dissertation,

we maintain three objectives for a good Internet-wide scanning solution. The first

requires efficient usage of local resources, which will ensure that the implementation

supports scan durations T on the order of hours or even minutes. The second ob-

jective is to provide accurate extrapolation of interesting metrics when partial scans,

which are often useful when only the number of hosts is desired instead of their actual

IPs, are performed. The last objective is to maximize politeness at remote networks,

which is accomplished by reducing the burstiness (i.e., instantaneous load of traffic)

sent to target subnets. This serves the dual purpose of avoiding overload for inter-

mediate routers and lowering incidents of wasted investigation effort, false alarms by

Intrusion Detection Systems (IDS), and general administrator annoyance.

After initially showing that previous work does not satisfy our objectives, the

second part of the chapter presents our design of IRLscanner, which is a high-

performance and source-IP scalable framework for service discovery in the Internet.

We show that achieving optimal politeness at remote networks requires a novel algo-

rithm for controlling the order in which IPs are targeted (i.e., a permutation) as well

as an algorithm for parceling targets to local scanning nodes (i.e., a split). The result-

ing techniques space probes to each CIDR subnet s evenly throughout scan duration

[0, T ], even with multiple source IPs. The permutation is also designed to provide

accurate extrapolations using partial scans, which is exhibited by the 1% estimation

error in the number of live hosts IRLscanner incurs after only a 10 second scan (at

a sending rate that would cover the Internet in T = 24 hours). Finally, the goal of

allowing for arbitrarily fast scan durations leads us to several optimizations that help

achieve our objectives. We show that the scope of measurements (i.e., the number of
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IP addresses scanned) can be decreased significantly over that of previous scanners

without significantly affecting results, that retransmissions are largely ineffective and

can be omitted, and that by using much larger timeouts for unresponsive targets we

can capture a wider array of busy/slow hosts in the Internet than was possible before.

Using IRLscanner, in the third part of the chapter we perform 20 Internet-wide

scans that run over 20 times faster than any prior scanner, span three protocols,

and encompass several ports such as DNS (port 53), HTTP (port 80), SMTP (port

25), EPMAP (port 135), and UDP ECHO (port 7). We perform several experiments

that have never been attempted in the literature on an Internet-wide scale, including

targeting several novel ports (i.e., ECHO, EPMAP, SMTP), using different types of

packets (e.g., ACK scanning), and performing the first large-scale OS fingerprinting

study of 44M web servers that respond to port 80. We finish the chapter by presenting

the feedback received during our experiments in an effort to inform others of what

to expect when performing similar studies. Included are a detailed analysis of email

complaints, techniques for using firewall log correlation data to understand the impact

of individual measurements on IDS detection in the Internet, advice for predicting the

potential number of complaints when scanning a particular port, and other methods

for reducing the perceived maliciousness of scans. In the next section we extend our

analysis of the impact of scanning on remote networks in a more formal manner by

focusing on IDS and modeling detection rates in light of various scan patterns.

1.4. Modeling Window-based IDS and Stealth Scanning

One of the difficulties of understanding the impact of horizontal scanning on remote

networks is a lack of information about what administrators consider to be harmful

traffic. Fortunately, as the number of malicious entities in the Internet has grown over
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time [78], [108], many networks now use Intrusion Detection Systems (IDS) to monitor

traffic and detect various forms of potentially malicious activity, including horizontal

scanning that we employ with IRLscanner. When an IDS detects unwanted traffic,

it can cooperate with firewalls to block offending hosts and alert administrators of

the actions taken. To formally analyze horizontal scanning, we model two popular

IDS implementations (i.e., Snort [105] and Bro [12]), study their ability to detect

existing techniques [3], [41], [59], [62], [82], [83], [108], demonstrate that more stealthy

algorithms can be used to scan faster than previous methods while avoiding detection,

and suggest modifications to current IDS that mitigate such algorithms.

While there are several algorithms that can be used by IDS to detect scanning

once past history has been established [43], [95], [113], most existing IDS tools [12],

[44], [74], [84], [105] keep per-flow statistics only for a limited period of time to estab-

lish this history, which is called window-based processing of traffic. Given the large

quantity of data commercial IDS must process, this maintains scalability [56] and

ensures that state will not grow to infinity. To avoid a large number of false positives,

IDS also typically require for a configurable number of packets, called a threshold, to

be received during a particular window before raising an alarm or initiating estimators

such as TRW [43]. Given the purely regenerative [89] nature of window-based pro-

cessing and the need to exceed the threshold, it then becomes possible for a scanner

to avoid detection simply by staying beneath the threshold throughout each window.

However, it is unclear how well current methods avoiding tripping IDS and whether

there are better techniques, which we tackle next.

We start by developing two models for window expiration based on deployed IDS

solutions [12], [44], [74], [84], [105]. The first we call IDS-A, which is based on Snort

[105] and expires the state of all scanning sources every ∆s time units for subnet

s. The second we call IDS-B, which is based on Bro [12] and expires state for each
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individual source i ∆s time units after the last target hit by i. IDS-B selectively

tracks sources that continuously scan and never expires their state, which allows IDS-

B to perform much better than IDS-A at detecting slow scanners. We then analyze

existing scan patterns in light of these IDS models and develop optimal strategies for

avoiding detection.

To aid our analysis, the key metric we introduce is stealth cover time (SCT),

which is the minimum scan duration T that allows a particular Internet-wide scan

pattern X (i.e., permutation, split, and schedule of time instances when packets are

sent) to avoid detection at s. Using SCT, we then define a scanner to be stealth-

optimal (SO) if it simultaneously minimizes the SCT of all CIDR subnets under both

IDS-A/B. We then show that SO patterns exist, define their properties, and derive

their SCT in relation to IDS-A/B so that existing scan patterns (i.e., IP-sequential

[108] and uniform [62], [82], [83], [108]) can be analyzed for their stealth ability. After

deriving the probability that both IDS-A/B detect each scan pattern, we derive their

respective SCT’s and show that the uniform permutation is generally much stealthier

than IP-sequential. However, contrary to common belief [3], [41], [59], we demonstrate

that in some cases IP-sequential is stealthier than uniform against IDS-A (i.e., in all

networks larger than /20) and against IDS-B (i.e., in those larger than /21). As

expected, IDS-B is significantly harder to avoid than IDS-A, and both permutations

require a constant-factor slower scanning as a result. Most significantly, in comparison

to SO patterns we show that the uniform permutation is orders of magnitude slower

under all practical conditions and SO patterns cover both IDS-A/B with the same

SCT. For example, using /16 subnets and default Bro settings, SO scanning has an

SCT that is 1, 209 times smaller than uniform, which results in a reduction in scan

duration T from 3.3 years to 1 day without increasing the probability of detection.

The next part of the chapter deals with implementing the stealth-optimal pat-
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Fig. 1. Organization of this dissertation.

terns derived previously and testing them in the Internet. In practice, SO patterns

can be achieved using the same permutation and split proposed for IRLscanner, but

in order to achieve stealth-optimality against IDS-B a new schedule is required to al-

low for variable sending rates. In fact, the algorithm used in IRLscanner is a special

SO case called unaware with an SCT that is slower against IDS-B than IDS-A. Using

IRLscanner and the newly designed algorithm that is stealth-optimal against both

IDS-A/B, we run three Internet-wide HTTP (port 80) scans using T = 24 hours and

monitor the resulting number of scanning reports generated at the SANS Internet

Storm Center (ISC) [94]. We demonstrate a nearly 40% reduction in reports from SO

scanning over the original unaware IRLscanner, which implies that IDS-B is being

actively used by IDS in the Internet. Our testing also allows us to determine the

optimal parameters for minimizing the number of ISC scan reports, which agree with

our analysis and confirm the proposed models. To round out the chapter, we propose

a new model of scan detection called IDS-C that dynamically increases ∆s with every

packet received and results in significantly reduced effectiveness of SO scan patterns.

The rest of the dissertation is organized as illustrated in Fig. 1. In Chapter

II we present the Turbo King framework for distance estimation in the Internet.

Chapter III contains our design of the IRLscanner Internet-wide service discovery tool
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and subsequent experiments, then Chapter IV tackles modeling Intrusion Detection

Systems and the existence of stealth-optimal scan patterns. We finish with Chapter

V, which summarizes the dissertation and discusses future work.
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CHAPTER II

TURBO KING

2.1. Introduction

Widespread interest in distance estimation in the Internet has recently evolved into

a large field [7], [16], [20], [24], [28], [32], [33], [49], [54], [60], [75], [76], [80], [87],

[98], [99], [109], [111], [118], [126]. The purpose of this research is to estimate or

measure the latency between hosts, which can then be leveraged to provide better

service to end-users and construct more efficient networks. Examples include in-

creasing the responsiveness of online games, efficiently locating the closest server in a

content distribution network, and building topologically-aware P2P networks. While

the existing approaches are promising, obtaining a large-scale1 Internet distance map

for verification of virtual-coordinate approaches [20], [24], [33], [36], [49], [60], [76],

[98], [99], [111] and actual use in deployed applications has proven to be a difficult

task. The aim of this chapter is to introduce a first step in this direction and propose

a framework that allows such a service to be transparently enabled in the current

Internet.

Due to the difficulty of deploying tracers [1], [28], [72], [81], [102] in every possible

network, we choose to build upon an existing technique called King [32] that does

not require any changes to existing protocols or access to remote computers. King

approximates the distance between end-hosts using the delay between DNS servers

1The scale considered in this chapter assumes building an all-to-all delay matrix
between approximately 220, 000 BGP prefixes advertised in the Internet. This is in
contrast to the frequently-used latency maps today [24], [61], [76], [126] that rely on
100− 400 nodes in PlanetLab or 1700− 2500 nodes in the DNS tree.
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authoritative for IP addresses of the hosts in question. While generally accepted as a

sound methodology for estimating delay and used in many papers [5], [6], [15], [21],

[23], [24], [29], [53], [57], [86], [88], [91], [96], [109], [118], [124], King has not been

analyzed for accuracy and pitfalls since the original paper [32], nor has it been involved

in measurements larger than 2500× 2500 nodes. Furthermore, some of the advanced

techniques suggested in [32] have never been implemented and their feasibility in

practice has not been assessed in the literature.

We start the chapter by identifying causes of King’s inaccuracy and evaluating

its suitability for large-scale measurements. We first argue that King incorrectly es-

timates delay when the target DNS zone contains multiple nameservers that are not

geographically close to each other (e.g., outside the target domain and its BGP net-

work). We also find that King can estimate entirely wrong delays when the source

DNS zone uses forwarders, which are stand-alone servers that aggregate queries from

multiple domains. In such cases, King fails to detect the presence and location of for-

warders, in addition to incorrectly measuring the forwarder’s query-processing delay

that must be subtracted from the final measurement. In regard to overhead, King

utilizes a complex multi-step process (see below for the algorithm) that requires nu-

merous queries for each delay measurement and seeding of source DNS servers with

a large number of unwanted entries. As the scale of the experiment increases, cache

pollution becomes a non-trivial issue.

To overcome these drawbacks, we propose a new system called Turbo King (T-

King) that streamlines the process of making distance measurements using DNS,

improves their accuracy, reduces overhead, and almost entirely eliminates cache pol-

lution. The first component of T-King is a large collection of nameservers distributed

throughout the Internet, from which the closest nameserver to each end-host A is

selected for use in the measurement. In the current implementation, we use periodic
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crawls of the DNS tree to find nameservers that can be used in the measurement

and maintain this information in our server. The second component of T-King is

a new measurement algorithm based on several improvements we have made to the

advanced techniques in [32] that mitigate problems caused by forwarders and zones

with multiple authoritative nameservers. Our approach not only reduces the number

of queries and bandwidth overhead of King by more than 50%, but also achieves

higher accuracy and a factor of N reduction in the number of polluted cache entries

at each remote server for an N ×N latency measurement.

We finish the chapter by showing how to build the current database of DNS

servers in Turbo King, examining how likely King is to experience its drawbacks in

practice, and assessing the effect of these drawbacks on King’s delay estimation. We

first perform a reverse DNS crawl to discover a set of 216, 843 nameservers, out of

which we find 117, 817 to be recursive and accepting queries from outside networks.2

These servers reside in 174 countries, cover over 31, 000 BGP prefixes, and are re-

sponsible for approximately 50% of IP addresses (i.e., 828 million) advertised in BGP

[92]. Further analyzing the data, we find that 33% of reverse DNS zones utilize a

nameserver that neither belongs to the same BGP prefix nor the same domain as the

other servers. Additionally, over 32% of recursive servers found in this study use a

hidden forwarder, which suggests that a large fraction of King’s measurements may

be affected by the drawbacks identified in this work. We finish the chapter by quan-

tifying the effect of this bias using a small 50 × 50 delay matrix and comparing the

estimates of King to those of Turbo King. Our results show that 15% of the mea-

surements are different by more than 10% and 8% by more than 20%, which suggests

that the magnitude of bias in King is generally mild, but nevertheless non-negligible.

2Other techniques (such as those in Chapter III) can significantly expand this
database.
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Fig. 2. King estimates the latency from host A to B.

The rest of the chapter is organized as follows. Section 2.2. studies previous

work. Sections 2.3. and 2.4. outline issues with King. Section 2.5. introduces T-King

and Section 2.6. evaluates our method, comparing it to King. Section 2.7. concludes

the chapter.

2.2. Background

The Domain Name System (DNS) [66], [67] is a distributed tree-based database that

allows for the resolution of domain names to various types of data, most notably IP

addresses. The DNS standard [67] also provides for reverse lookup of IP addresses,

which is accomplished through the IN-ADDR.ARPA domain tree. There are several

types of servers and clients that operate on DNS and to avoid confusion we introduce

the following terminology. In this chapter, a recursive resolver is a server that queries

the DNS and returns answers to end-hosts. Nameservers are DNS servers that main-

tain authoritative data about a subset (i.e., zone) of the domain space. Recursive

nameservers act as both a recursive resolver and a nameserver simultaneously. An

open resolver is either a recursive nameserver or a recursive resolver that responds to

recursive queries for arbitrary zones from hosts outside its local network.

King [32] uses existing DNS infrastructure to measure the latency between two
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hosts on the Internet. The method relies on the fact that open recursive nameservers

on the Internet will attempt to resolve any valid request, which forces them to query

remote nameservers for the proper response. The time that these queries take to be

processed can be measured to determine the distance between the two nameservers.

In order for the measurements to apply to arbitrary hosts, Gummadi et al. assume

that end-hosts on the Internet are within close proximity to the authoritative DNS

nameserver that maintains DNS information about their IP address. Given this as-

sumption, King approximates the delay between hosts A and B using the latency

between their authoritative servers X and Y as shown in Fig. 2. Heuristics are used

to choose which authoritative nameserver to include in the measurements, the details

of which can be found in [32].

2.3. Understanding Original King

We refer to the main technique proposed by Gummadi et al. in [32] as Original King

(O-King). O-King has been used extensively in the literature [5], [6], [15], [21], [23],

[24], [29], [53], [57], [86], [88], [91], [96], [109], [118], [124] as a way to easily collect

latency information from the Internet; however, no formal or detailed analysis of its

pitfalls exists to date. We first describe the measurement algorithm used by O-King,

which is necessary for understanding its limitations and our proposed system later in

the chapter.

2.3.1 Measurement Algorithm

We start by defining terminology. Throughout the rest of the chapter, a query is

defined as a single DNS request sent to a remote server and an answer is the response

to a query. Queries are either recursive or iterative as defined by the DNS specification
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Fig. 3. O-King query sequence.

[66]. Given time ts when a query is sent and tr when the answer is received for that

query, we define a sample s to be tr − ts. We are now ready to detail the O-King

algorithm that measures delay between two nameservers.

The O-King process is illustrated in Fig. 3, where ns.example.com is a recursive

nameserver chosen by O-King as “close” to the desired IP. In the figure, each query is

labeled as either RQ for recursive query or IQ for iterative query. Answers are labeled

with A. A seed recursive query, which is represented by message numbers 1–4, is sent

to ns.example.com for the target.com domain to ensure direct contact between the

two for subsequent measurements. Messages 5 and 6 show the local latency sample Li

between the O-King client and ns.example.com, which is accomplished by a simple

iterative query that can be repeated to improve accuracy. Illustrated by messages

7–10 is the remote latency sample Ri, which uses a recursive query to measure the

delay from the O-King client to target.com (via ns.example.com) and also can be

repeated. The resulting latency estimate between ns.example.com and target.com

produced by O-King is min {Ri}−min {Li}. One of the features that makes O-King

so attractive is its ease of use; however, it has certain drawbacks that we discuss in

the remainder of this section.
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2.3.2 Zones with Multiple Authoritative Nameservers

In the original specification for DNS [66], [67], it is recommended that authoritative

nameservers be placed in geographically diverse locations on separate networks. Thus,

if connectivity is interrupted at one of the sites, the remaining nameservers would

maintain availability for the zone. Queries for a particular zone are sent to one

address in the group of nameservers, but the decision about which nameserver to

query is left up to the individual resolver implementation. As O-King requires at least

four [32] samples to converge to an accurate measurement, different nameservers are

potentially used for each sample. While this is of little consequence if all nameservers

for a zone are on the same network, in cases where the DNS specification is strictly

followed the samples could be very different, leading to inaccuracy in the final latency

estimation. This issue is illustrated in Fig. 4(a) for three samples taken by the

O-King client, where the authoritative nameservers for the target.com zone are

ns1.target.com, ns2.target.com, and ns1.alt.us.

2.3.3 DNS Forwarders

Another potential issue for O-King measurements is the use of forwarders on the

Internet by system administrators. A forwarder serves as an aggregation point for

DNS queries initiated from within a network that target external destinations. If

a recursive nameserver that is configured to forward messages receives a recursive

query for a zone it has no authority over, it sends the query to the forwarder without

notifying the end-user. The forwarder then resolves the query instead of the recursive

nameserver. This process is illustrated in Fig. 4(b), where direct contact is intended

between ns.example.com and ns1.target.com, but the query is routed through

the forwarder instead. The presence of forwarders is undetectable by O-King and
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Fig. 4. O-King query sequence for two different server configurations.

compromises the assumption that there is direct contact between ns.example.com

and ns1.target.com, leading to an invalid latency estimate.

2.3.4 Cache Pollution

The final concern that arises from the use of O-King is the impact it has on the

nameservers used for latency estimates. While the purpose of an authoritative DNS

nameserver is to provide accurate information about the data under its control to

the global Internet, the purpose of a DNS cache is to reduce latency strictly for local

users, those end-hosts that principally rely on the nameserver to resolve queries on

their behalf. Given that DNS caches are intended to benefit these users, we define

cache pollution to be the insertion of DNS zone data that has not been requested by

a local user into the cache of a nameserver.

O-King uses a seed query to force the recursive nameserver to cache the NS (name-

server) and A (IP address) records of all target authoritative nameservers. While this

is unlikely to cause performance problems on a small scale, initiating billions of O-

King queries could lead to a large proportion of the cache containing information that
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was not requested by local users. Furthermore, local administrators are unlikely to

view this intrusion as benign and may take preventative steps, jeopardizing future

measurements using O-King.

2.4. Understanding Direct King

We refer to the second technique proposed in [32] as Direct King (D-King), which

involves a modification of the O-King measurement algorithm that allows for specifi-

cation of a single nameserver from the target zone. While not mentioned explicitly in

the original paper, all other aspects of D-King (i.e., nameserver selection, end-to-end

estimation assumptions) we assume to be equivalent to O-King. To our knowledge,

only Ballani et al. [6] have partially implemented D-King, which was required for

their study of IP Anycast as deployed by DNS root servers. There was no study or

analysis of D-King in [32]. We start by describing the D-King algorithm and later

discuss some of its drawbacks.

2.4.1 Measurement Algorithm

The D-King latency estimation process is illustrated in Fig. 5, where ns.example.com

is again a recursive nameserver. In contrast to O-King, where the query is sent to one

or more nameservers responsible for the target.com domain, D-King allows the user

to pick a single authoritative nameserver, which in this case is ns1.target.com. To

accomplish this, D-King requires that a domain name be registered and a nameserver

set up to resolve queries for said domain. In the figure, king.com is the example

domain and ns.king.com is its authoritative nameserver.

D-King first requires a seed query to guarantee direct contact between ns.example.com

and ns1.target.com, which is illustrated in the figure by messages 1–4. To do this,
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Fig. 5. D-King query sequence.

D-King initiates a recursive query to ns.example.com for 10-0-0-1.king.com, which

encodes the IP address of ns1.target.com into the query. As ns.king.com is au-

thoritative for the king.com domain, it receives the query and uses the encoded

address to respond that ns1.target.com is authoritative for the query, which is

then cached at ns.example.com. By doing so, ns.example.com will now automat-

ically forward queries for 10-0-0-1.king.com directly to ns1.target.com. Once

the cache is seeded, the actual latency measurements can be taken. Local sample

Li, represented as messages 5 and 6 in the figure, is taken in the same fashion as O-

King. Remote sample Ri, illustrated by messages 7–10, is recorded by sending queries

for random sub-domains of 10-0-0-1.king.com to ns.example.com, which directly

queries ns1.target.com as a result. Since ns1.target.com is not actually authori-

tative for the zone, it responds with an error indication, which is then echoed back

to the D-King client. The final latency estimate produced by D-King is calculated in

the same manner as that in O-King.

2.4.2 Additional Complexity

While D-King indeed eliminates the issue of zones with multiple authoritative name-

servers affecting the latency estimate, the cost of this improvement is that the D-King
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client must explicitly specify the target nameserver, which is not required by O-King.

It is not mentioned in [32] exactly how this should be accomplished, but the same

heuristic approach for discovering a close recursive nameserver applies in this case

as well. Furthermore, a domain must be registered and a nameserver set up to re-

spond to queries in the way D-King requires. One of the major benefits of O-King is

that latency estimates can be obtained from any machine with an Internet connec-

tion, whereas D-King requires this extra infrastructure. The individual must decide

whether the additional complexity is worth the improved accuracy.

2.4.3 DNS Forwarders

Along with O-King, the use of forwarders on the Internet affects D-King latency esti-

mates as well. The D-King client and authoritative nameserver for the measurement

(e.g., ns.king.com in Fig. 4(b)) are separate entities that only communicate through

the query encoded with the IP address of the target nameserver. It is inconsequen-

tial to ns.king.com that a different nameserver (i.e., the forwarder) than the one

intended by the D-King client sends it the query and caches the response. Because of

this lack of communication between the components of the D-King latency estimates,

forwarders remain undetected and affect the results in the same manner as discussed

in the O-King case.

2.4.4 Cache Pollution

The seed query required by D-King plants authoritative data for the registered domain

(e.g., king.com) at the recursive nameserver in a similar fashion to that required by

O-King. However, there are differences in the impact on local DNS caches. The

O-King seed query forces the caching of data for all authoritative nameservers of

the target zone, whereas D-King caches data for a single nameserver. In contrast to
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O-King, where the cached entries might have some future use to the local users, the

D-King entry is only useful to the latency estimate. At the scale of billions of queries,

if D-King is used the nameserver’s cache would contain fewer entries than O-King,

but those entries would be entirely useless to local users.

2.5. Turbo King

In this section we propose Turbo King (T-King) to address the drawbacks previously

highlighted. We start by giving a high-level overview of the system then finish the

section with detailed descriptions of the various components.

2.5.1 Design

Turbo King is a stand-alone service that accepts as arguments the IP addresses of

end-hosts A and B from the Internet and returns the estimated latency from host

A to B. It is currently implemented to resolve single estimate requests for end-host

pairs.

To accomplish this goal, Turbo King maintains a large list S of N nameservers

positioned throughout the Internet, which includes both recursive nameservers and

non-recursive authoritative nameservers found in the DNS hierarchy. This list allows

us to discover the closest nameserver without relying strictly on heuristic methods

or assuming that the authoritative nameserver responsible for A’s IP address is the

closest nameserver to A. Turbo King first uses BGP data [92] to match the IP address

of A to a recursive nameserver. If a match is found, the two are likely to reside in the

same network. If no matching nameserver is found in the same network as the end-

host, we simply find the recursive nameserver that has the longest matching prefix

to A or select the default nameserver authoritative for A’s IP address. Turbo King
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then repeats the same process for B but expands the set of possible nameservers to

include those that are not recursive. This is done because the target nameserver need

not resolve recursive queries for the estimate to succeed.

Given the two nameservers, Turbo King then generates a latency estimate be-

tween them (the algorithm is described below) and returns the result. T-King operates

in one of two modes. The default is passive, whereby T-King waits for requests before

generating latency estimates. Estimates are cached for a configurable amount of time

(e.g., 30 minutes) such that subsequent requests using the same two nameservers do

not trigger a new measurement. This mode puts the least strain on resources as it only

visits popular destinations. The optional mode we call active, in which Turbo King

preemptively takes latency estimates between nameservers on the list so as to eventu-

ally obtain an entire N ×N delay matrix.3 This mode consumes more resources and

possibly produces estimates that are never used, but it reduces the user-perceived

delay and allows the matrix to be directly downloaded for use in applications and

other research studies.

2.5.2 Discovering Nameservers

Turbo King is most effective when its list S of nameservers is large, such that at

least one nameserver is “close” to every IP address that is currently in use on the

Internet. The current version of T-King compiles its list of nameservers by perform-

ing exhaustive crawls4 of the IN-ADDR.ARPA reverse DNS tree using the techniques

3For N = 117, 863 used in the current version and one query per 22 seconds per
DNS server, the entire matrix consisting of 13.8 billion measurements can be built in
30 days.

4Analysis shows that 85% of nameservers found by T-King in Nov. 2006 were
active in Dec. 2007, which suggests that monthly or even annual re-scanning of the
tree should keep the DNS server set relatively fresh.
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Fig. 6. Turbo King query sequence.

introduced in [42]. In contrast to [42], which accepts cached (i.e., non-authoritative)

entries to queries because they are only interested in the number of hosts represented

in the tree, our crawler probes the entire depth of the reverse tree by accepting only

authoritative answers, which maximizes the number of nameservers found. Results

from this crawl are presented in the next section, but we should note that significantly

larger datasets can be built using other techniques (e.g., N = 333, 963 in [64], over

580, 000 in [114], and approximately 4.4M stable servers as shown in Chapter III).

As these results represent a large jump in S and contain more than 10M unreliable

responses, further study is required to validate and use such servers.

2.5.3 Measurement Algorithm

Our proposed algorithm is illustrated in Fig. 6, where Turbo King operates as a

multi-threaded application with both the client and server operations communicating

seamlessly. This allows timestamps to be taken for every packet sent or received by

our software, which reduces the number of queries required to complete an estimate.

During step 1, DNSClient takes a timestamp and initiates a query to ns.example.com

for the domain we control, namely irl-tamu.us. Since DNSServer is listed with the

.us registrar as the authoritative nameserver for this domain, host ns.example.com

recursively queries DNSServer in step 2. At step 3, our software takes another times-

tamp and answers with a referral saying that ns1.target.com is authoritative for
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the query, but sets the TTL for this information to zero, meaning that it should not

be cached [67].5 Nameserver ns.example.com then directly queries ns1.target.com,

which answers with some form of error indication (steps 4–5). That error indication

is forwarded back to DNSClient in step 6, which then takes the third and final times-

tamp, allowing us to estimate the latency between nameservers ns.example.com and

ns1.target.com as d36−d12 where dij is the delay between steps i and j. Thus, Turbo

King is able to determine the latency between ns.example.com and ns1.target.com

without seeding the cache of ns.example.com by judiciously taking timestamps at

every point of communication between ns.example.com and the T-King software.

2.5.4 Detection and Avoidance of Forwarders

While both O-King and D-King are unable to detect forwarders, they are simple to

detect with Turbo King due to its integrated infrastructure and can be eliminated from

the measurement. Because T-King acts as both the client and the server application

for the latency estimate, it simply compares the IP addresses that are used to contact

DNSClient and DNSServer respectively for a particular query. If different IP addresses

are used, T-King excludes the original IP from the list of recursive nameservers and

determines if the forwarder allows for recursion, adding it to the list of possible

nameservers if so. A new closest server to the IP is retrieved from the list of recursive

nameservers and the latency estimate restarts. While there is some small additional

delay in returning an answer to the end-user when in passive mode, the resulting

estimate is not tainted by the presence of a forwarder.

5We found that 35 of the 117, 817 discovered recursive nameservers were either
misconfigured or non-compliant with [67] and ignored zero TTL.
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Table I. Results of reverse DNS crawl (3.8 GHz Pentium 4)

T-King ISC [42]

Month run Nov. 2006 Jul. 2006

Duration (hours) 33.8 240

Queries/Sec 5, 300 (2.3 mb/s) 751 (0.3 mb/s)

Queries Completed 649, 270, 000 N/A

IPs Discovered 439, 431, 355 439, 286, 364

Nameservers 216, 843 89, 592

Recursive Nameservers 117, 817 N/A

2.6. Evaluation

In this section we evaluate the effectiveness of Turbo King for providing accurate la-

tency measurements and its suitability for large-scale studies compared to O-King and

D-King. We start by discussing our efforts to discover a large number of nameservers,

then perform several real-world measurements to compare the three algorithms.

2.6.1 Results from Reverse DNS Crawl

Because of the large number of queries required to complete the IN-ADDR.ARPA crawl,

we designed and implemented a multi-threaded DNS resolver to collect a list of name-

servers and authority data for all zones in the reverse lookup tree. The results of one

particular crawl executed in November 2006 are summarized in Table I, where both

Turbo King and ISC [42] found roughly the same number of IP addresses in the

tree; however, our crawler was approximately seven times faster and discovered 2.4

times more nameservers. Examination of the nameservers we discovered revealed that

117, 817 of them support recursive queries. Using the T-King client, we profiled each



27

Table II. Coverage of the Internet with discovered servers

All Recursive Total

Countries 190 174 232 [40]

AS 13, 017 10, 895 23, 773 [37]

BGP Prefixes 48, 196 31, 059 219, 110 [92]

IPs covered 1, 031, 736, 562 828, 675, 500 1, 642, 441, 178

Web servers 3, 192, 918 2, 659, 379 3, 638, 433

Gnutella peers 1, 734, 483 1, 338, 217 3, 534, 300

of the recursive nameservers in our list and found that 32% use a forwarder to resolve

queries for zones not under their control.

We next study the coverage of the Internet by all discovered nameservers and

the subset of nameservers that are recursive, which is illustrated in Table II. This

data shows that Turbo King contains a nameserver in 190 countries, covering over 13

thousand ASes, 48 thousand BGP prefixes [92], and 1.03 billion IP addresses out of

1.6 billion advertised by BGP [92]. We performed further analysis of how well the

discovered BGP prefixes cover 3.5 million Gnutella peers found in prior work [116]

and 3.6 million web servers (hosting over 6.3 billion webpages) found by our unrelated

web-crawling project. These numbers show that 49% of peers and 88% of web servers

reside in BGP prefixes that contain at least one nameserver discovered by T-King.

For the subset of nameservers that are recursive, Turbo King found nameservers

in 174 countries, representing nearly 11 thousand ASes, 31 thousand BGP prefixes,

and 828 million IP addresses. This resulted in a coverage of 37% of Gnutella peers and

73% of webservers. While T-King is able to find a nameserver in the same network for

a large percentage of end-hosts (especially web servers), the relatively low percentage

of Gnutella peers covered indicates that we should aim to discover more recursive
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resolvers used by home-based Internet connections in the future.

2.6.1.1 Analyzing Zone Authority Data

Of further interest is the percentage of zones in the reverse lookup tree that contain

multiple authoritative nameservers, which we examined by recording the set of name-

servers authoritative for every zone during the IN-ADDR.ARPA crawl. The accuracy of

O-King estimates is only significantly affected if one or more of the nameservers for a

zone is in a different network, making it likely for O-King to produce conflicting re-

sults over multiple samples. We downloaded 219, 110 BGP prefixes from RouteViews

[92] and matched each nameserver’s IP to one or more prefixes, then examined the

nameserver set for every zone in the reverse lookup tree. We found that 49% of reverse

lookup zones contain at least one nameserver in their set that is in a different network.

While this is a striking result, it is possible that the unmatched nameserver could be

in another network under the same administrative control that is well-connected to

the rest of the nameservers in the set.

Accurately determining administrative control for a large number of networks

is difficult, but it stands to reason that if all nameservers for a zone share a single

domain name, they are more likely to be under one organization’s administrative

control. While the process is easy for generic top-level domains (gTLDs), it is signif-

icantly more complex for country-coded TLDs (ccTLDs) as most countries created

sub-domains from which people could purchase their own domains (e.g., .com.es).

We compiled a comprehensive list of these sub-domains for each ccTLD and hereby re-

fer to this list and the set of gTLDs as pay-level domains (PLDs). We again evaluated

the nameserver set for each zone and found that 33% have at least one nameserver in

their authority set that both resides in a different network and has a different PLD

than the other nameservers. It is very likely that the accuracy of O-King queries for
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Fig. 7. Comparison of O-King to D-King for zone with two nameservers.

these zones will be negatively impacted.

2.6.2 Causes of Inaccuracy

In this section we compare O-King and D-King to Turbo King using latency esti-

mates they produce from the Internet. To remove variability caused by differences in

architecture, we implemented all three algorithms using the same timing and socket

mechanisms and ran all of the tests from a single Windows 2003 x64 machine. To

highlight the differences in accuracy, we focus only on the actual latency estimate

between nameservers and note that T-King should perform no worse than O-King

or D-King in selecting a “close” recursive nameserver. In many cases it will perform

better, but we leave such analysis for future work.

2.6.2.1 Zones with Multiple Authoritative Nameservers

To illustrate the impact of authoritative nameservers in different networks on O-King

estimates, we chose a zone with two authoritative nameservers and used O-King



30

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

190 200 210 220

latency (ms)

C
D

F

1

2

3

4

5

(a) latency estimate per sample size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

190 200 210 220

latency (ms)

C
D

F

O-King

NS 1

NS 2

(b) four-sample O-King vs. D-King

Fig. 8. Convergence of O-King estimate for zone with two nameservers.

to generate 100 latency estimates to a target IP in the zone. We then used D-

King to estimate the latency to the two individual authoritative nameservers for the

zone. In Fig. 7(a) the sequence of O-King estimates are individual points and the

two D-King estimates are represented as lines. O-King performs as expected and

vacillates between the two nameservers arbitrarily. This is further demonstrated in

Fig. 7(b), where roughly 60% of the time O-King chose NS 1 as the preferred server.

We confirmed that this behavior also occurs in zones with more than two nameservers,

but omit these examples for brevity.

We next analyze the convergence properties of O-King measurements for zones

with multiple authoritative nameservers. To determine exactly what happens to the

latency estimate when the number of samples increases, we use the measurement data

from above and plot in Fig. 8(a) the CDF of latency estimates for sample sizes one

through five. From inspecting the figure, it quickly becomes apparent that the higher

latency samples are ignored and are effectively removed from the overall estimate as

the sample size increases. This is further illustrated in Fig. 8(b), where the latency
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estimated by O-King using four samples is plotted with D-King measurements using

one sample. As the figure clearly shows, the O-King measurement is nearly identical

to the measurement given by D-King to NS 1.

There are two insights that can be gained from this behavior. The first is that

the requirement of at least four samples per measurement proposed in [32] for O-

King is at least partially due to the natural differences in latency between multiple

authoritative nameservers for a particular zone. In contrast, D-King provides the

same latency estimate with one sample in this case. The second issue is that O-King

always biases its estimates towards the lowest latency nameserver of a zone. While

in some cases this might be the server located closest to the target end-host, there is

no evidence that this happens in the general case.

2.6.2.2 DNS Forwarders

The impact of forwarders on both O-King and D-King latency estimates largely de-

pends on the proximity of the forwarder to the original recursive nameserver. If the

two servers are on the same local network, any additional latency should be rather

small. To quantify the likelihood of this event, we matched both the forwarder and

the original recursive nameserver to their advertised BGP prefixes from RouteViews

[92] and discovered that 45% of the time the two servers did not reside on the same

network. To demonstrate the inaccuracy introduced by the presence of forwarders,

we took 100 latency estimates using all three algorithms from a recursive nameserver

known to use a forwarder to a zone with a single authoritative nameserver (this rules

out effects from multiple authoritative nameservers on O-King). The resulting la-

tency estimates are illustrated in Fig. 9(a), which compares O-King to T-King, and

in Fig. 9(b), which compares D-King to T-King. In both figures O-King and D-King

overestimate latency due to the presence of the forwarder, whereas T-King does not.
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Fig. 9. Forwarder affect on O-King and D-King (single nameserver zone).

The D-King estimate is larger than O-King due to multiple attempts to resolve the

query by the forwarder, a problem that is mentioned in [32] and accounted for in

T-King.

2.6.3 Measurement-based Comparison

To study Turbo King in more depth, we performed 2, 450 latency estimates on the

Internet using 50 recursive nameservers from the previously discovered set for both

T-King and O-King over various measurement sample sizes. From this data we show

that T-King measurements are indeed different from those produced by O-King. We

then show that Turbo King converges to a consistent latency estimate in two samples

instead of the four suggested in [32]. D-King is omitted from this section, but the re-

sults are consistent with those found in the previous section. D-King is more accurate

than O-King, but less so than T-King due to its inability to detect forwarders.
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2.6.3.1 Turbo King versus O-King Estimates

Before comparing Turbo King to O-King in a general case, we first consider the two

algorithms for a target zone with a single authoritative nameserver using a recursive

nameserver that we verified does not use a forwarder. Because we eliminated all of

the factors that skew O-King estimates, the two should produce the same value. The

result is illustrated in Fig. 10(a), with the estimates produced by O-King as data

points and the average estimate by T-King as a line to allow the reader to distinguish

between the two. The figure clearly shows that T-King produces latency estimates

that are equivalent to O-King in such idealized cases.

We next compare the 2, 450 latency estimates produced by Turbo King to those

by O-King, which is shown in Fig. 10(b). To highlight differences between the two,

we generated a ratio of the estimates by dividing O-King’s value by T-King’s, so that

if O-King and T-King produced identical values, the CDF would be a straight line

at one on the x-axis. Note that in this case we used four samples for each estimate
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as suggested in [32]. From the data, 15% of O-King estimates are more than 10%

different from T-King measurements, and 8% of O-King measurements are more than

20% different from those generated by T-King.

2.6.3.2 Convergence of Estimates

Previously, we showed that zones with multiple authoritative nameservers are one

of the reasons O-King requires at least four samples to produce a latency estimate.

In this section, we expand that study by examining the convergence properties of

both T-King and O-King, showing that over a wide range of estimates Turbo King

converges to a consistent estimate with fewer samples than required by O-King. To

accomplish this, we repeated the above 2, 450 latency estimates using sample sizes

varying from one to four for both algorithms. We collected two estimates for each

sample size and calculated the ratio of both O-King to O-King and T-King to T-King.

The goal is to provide consistent estimates for latency, so we plotted the CDF of the

ratio in Fig. 11(a) for O-King and Fig. 11(b) for T-King, with each line representing

the number of samples used to produce the estimate. In the O-King case, illustrated

in Fig. 11(a), improvement in the consistency of estimates is apparent as the number

of samples increases to four, whereas in the Turbo King case (Fig. 11(b)) the greatest

improvement is from one sample to two, with little afterward. From these graphs we

conclude that the recommendation of four samples in [32] is sound for O-King and

that T-King produces an accurate sample using only two samples.

2.6.4 Overhead Analysis

In this section we study the resources required of DNS nameservers and the Internet

for all three algorithms. In particular, we are interested in how the three compare for

large-scale estimates involving more than 100, 000 recursive nameservers discovered
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Fig. 11. Convergence of measured latencies for O-King and T-King.

by Turbo King. We start by examining the number of queries sent to capture the

network overhead, then discuss cache pollution for large-scale measurements.

2.6.4.1 Network Overhead

To study network overhead, we consider the number of queries required to perform

all-to-all latency estimates for the 100, 000 recursive nameservers, which is 10 billion

estimates. In this calculation, we included every query initiated either by or on behalf

of the measurement client, and used the number of samples required to produce

consistent latency estimates: four for O-King and two for D-King and T-King. Due

to the lack of seeding, Turbo King requires 70 billion queries to complete 10 billion

latency estimates. D-King needs 100 billion queries for the measurement, which is

1.43 times more than required by T-King. Finally, O-King uses 150 billion queries, or

2.14 times more than Turbo King and 1.5 times more than D-King. Thus, designing

T-King to be more accurate and to avoid seeding led to a significant reduction in

bandwidth usage.
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We next consider the impact each algorithm has on DNS caches under the same

measurement conditions.

2.6.4.2 Cache Pollution

We examine cache pollution by calculating the total number of DNS records inserted

into the cache of the 100, 000 recursive nameservers. Each entry includes two records,

an NS record and an A (IP address) record. Since O-King causes recursive nameservers

to seed the cache with every authoritative nameserver for a zone, we used the reverse

crawl data to find an average of 2.4 nameservers per zone. Thus, O-King would

cause the insertion of 48 billion entries into cache for the nameservers used in the

measurement. D-King needs a single set of records for each latency estimate, which

means that 20 billion entries would be saved in caches on its behalf. Turbo King

only requires that the local domain (e.g., irl-tamu.us) be cached at each recursive

nameserver, which implies merely 200, 000 total cache pollution entries. To compare,

Turbo King requires 0.0004% of the total entries caused by O-King and 0.001% of

those initiated by D-King, clearly making Turbo King much more appropriate for

large-scale measurement studies.

2.7. Summary

In this chapter we showed that King, a previous distance estimation method, suffers

from non-negligible error when DNS zones employ geographically diverse authori-

tative servers or utilize forwarders, both of which are very common in the existing

Internet. We also showed that King requires insertion of numerous unwanted DNS

records in caches of remote servers (which is called cache pollution) and requires large

traffic overhead when deployed in large-scale. To overcome these limitations, we pro-
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posed the Turbo King latency estimation framework that obtains end-to-end delay

samples without bias in the presence of distant authoritative servers and forwarders,

while consuming half the bandwidth needed by King and reducing the impact of cache

pollution by several orders of magnitude. We also demonstrated through several ex-

periments that Turbo King is more accurate that prior methods.
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CHAPTER III

IRLSCANNER

3.1. Introduction

Characterizing visible services in the Internet (e.g., web sites [10], [34], [52], end-hosts

[35], [37],[42]), discovering and patching servers with critical security vulnerabilities

(e.g., SSH [82], DNS [25]), and understanding how Internet worms create massive

botnets [17], [45], [62], [108] are important research topics that directly benefit from

efficient and scalable scanning techniques that can quickly discover available services

in the Internet.

Our focus in this chapter is on horizontal scanning [107], which is a method for

enumerating (in some set S) all remote hosts that support a given protocol/service p.

This is accomplished by sending packets to destinations in S and counting positive

responses within some time interval. We call a scan complete if each address in S is

probed and partial otherwise. The latter type of scan significantly reduces the burden

on remote networks and is useful when an estimate of the number of responsive hosts

(rather than their IP addresses) is sufficient.

While several large-scale measurements have been conducted in the past [10],

[25], [35], [83], researchers initially considering a similar project are often faced with

delays on the order of months for individual tests to run [10], [83]. During this time,

computational resources of potentially dozens [10] of local machines that could be put

to other uses are tied up. Further complicating the issue is the possibility of facing a

significant number of complaints from hostile network administrators [10], [13], [18],

[25], [30], [35], [82], [83], even for partial measurements. Given these issues, questions
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arise about the feasibility of service discovery [14], especially on sensitive TCP ports.

Evidence suggests that sometimes [35] researchers are even forced to abort planned

activities due to the negative publicity generated by scan traffic.

Since previous work has not explicitly aimed to design a high-performance scan-

ner and/or maximize its politeness, there is no standard by which to judge the quality

or intrusiveness of a scanner. Our first step then is to propose three main objec-

tives that a good Internet-wide scanning solution must satisfy: 1) efficient usage of

resources (i.e., bandwidth, CPU, memory) in complete scans; 2) accuracy of extrap-

olation in partial scans; and 3) maximum politeness at remote networks. The first

objective ensures that the implementation scales well when scan duration T is reduced

to hours or even minutes. The second objective delivers a platform for extremely fast

partial scans with accurate extrapolation of metrics of interest. The last objective

maximally reduces the instantaneous load (i.e., burstiness) applied to target subnets

and controls the rate of IDS activity (i.e., false-positive alarms, wasted investigation

effort, and dynamic firewall blocks against the scanner network) in response to scan

traffic.

We next build a scanner that satisfies these goals and evaluate its performance

in real scans.

3.1.1 Our Contributions

The first part of the chapter analyzes the approaches exposed in the literature to

understand whether they can be used to optimize performance, politeness, and ex-

trapolation ability of an Internet-wide scanner. In addition to realizing that prior

work was not driven by any particular objectives in designing their scanners (be-

sides obtaining the data of interest in some finite amount of time), we also reach the

conclusion that there is no consensus on such important parameters as scan scope,
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permutation, split among source IPs, timeouts, handling of complaints, and monitor-

ing of the scan’s intrusiveness at remote networks.

To overcome this problem, the second part of the chapter presents our design

of IRLscanner, which is a high-performance and source-IP scalable framework for

service discovery in the Internet. The central element of the scanner is a novel per-

mutation/split algorithm, which we show is optimally polite at each CIDR subnet s

as it spaces probes arriving to s equally throughout scan duration [0, T ], even with

multiple source IPs. Extrapolation results with IRLscanner running at its default

rate r (at which it covers the Internet in T = 24 hours) demonstrate that partial

scans of our approach are unbiased, leading to 1% estimation error in the number of

live hosts in just 10 seconds.

Due to the goal of allowing faster scan durations (i.e., minutes/hours) and po-

liteness concerns, IRLscanner incorporates additional features that help it achieve

our objectives. These include a significantly reduced scope of measurements (i.e., one

billion packets fewer) compared to previous scanners, absence of largely ineffective

retransmissions, ability to run with any number of IPs aliased to the same server,

capture of all back-scan and bogus traffic (e.g., from hackers and buggy implementa-

tions), and significantly higher timeouts for unresponsive targets, which allows it to

capture a wider variety of busy/slow hosts in the Internet than was possible before.

Armed with IRLscanner, the third part of the chapter highlights 20 Internet-

wide scans across a wide range of protocols and ports, including DNS (port 53),

HTTP (port 80), SMTP (port 25), EPMAP (port 135), and UDP ECHO (port 7).

In addition to running over 20 times faster than any prior scanner and probing ports

that have never been scanned in the literature (i.e., SMTP, ECHO, EPMAP), we

experiment with several novel techniques (e.g., ACK scanning) and perform the first

large-scale OS fingerprinting study of 44M hosts responding to port 80.
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We finish the chapter by analyzing the feedback generated from our experiments.

This includes a detailed complaint analysis, techniques for monitoring the impact of

scan traffic on IDS activity in the Internet, approaches for a-priori predicting the

amount of blowback in response to scanning a particular port, and various ways for

reducing the perceived maliciousness of the scan.

3.1.2 Ethical Implications

Over the last 2 years, we have closely worked with university officials and taken

numerous steps (see below) in an effort to reduce investigation effort and aggravation

for remote administrators. While our interest in this chapter is purely to expose

the underlying issues of service discovery and make it more accessible to researchers

without damaging remote networks, one concern might be that our scan techniques are

not only maximally polite, but also optimally stealthy against popular IDS packages.

As a result, one could argue that attackers could benefit from our work and thus

inflict certain damage that would not otherwise be possible.

However, we do not believe this to be the case. First, as hackers must constantly

remain two steps ahead of the security community to be able to exploit the imple-

mented defenses, our results are not necessarily novel or useful to them. Instead, we

believe that the discussion and techniques exposed in this chapter might be useful

in building future defenses against scanning worms. Second, stealthier scanning by

itself does not compromise hosts; in contrast, intrusion using malicious payload (e.g.,

delivered through unsolicited packets or email) does. As a result, many networks with

patched hosts and up-to-date IDS signatures of various malware should remain well

protected despite the findings of this chapter. Third, botnets afford hackers such a

diverse pool of IPs that they often do not care to remain stealthy and rely on the

most basic sequential scanning [3], which apparently is sufficient for their purposes.
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Another concern might be that we are collecting information about remote net-

works that their administrators do not wish to make public. We contend that such

information is well-protected by firewalls, and this chapter makes no attempt to trick

or confuse network monitoring devices to gather sensitive data. Further, given the

constant background scanning performed by attackers [78], any data (and likely much

more) we collect is already available to them. However, to ensure privacy, we do not

publicize any information about individual networks collected during our scans and

instead rely only on summary statistics.

3.2. Scanner Design

Beyond the measurement-specific choice of the protocol/port pair that uniquely char-

acterize a service, every researcher considering a horizontal scan must answer a com-

mon set of questions before proceeding. In this section, we turn to several recent stud-

ies [10], [25], [35], [83] that have performed large-scale service discovery to determine

whether these design questions have been definitively answered and our objectives

met.

3.2.1 Scan Scope

We start with the issue of which IP addresses to target when scanning. Define F

to be the Internet IPv4 address space, which consists of n = 232 addresses available

for scanning. While intuition may suggest to probe the entire space to ensure com-

pleteness, certain IPs may not be suitable for scanning. Before delving into details,

define set NR ⊆ F to be all non-reserved destinations [38], I ⊆ NR to be all IANA-

allocated blocks [39], and B ⊆ I to be the set of IPs advertised in BGP prefixes [128]

at the border router of the scanner network.
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To capture the choice of which destinations to target, we define scan scope S to

be the subset of F probed during measurement. As shown in the second column of

Table III, all previous Internet-wide service discovery projects scanned at least the

IANA allocated space I, which is justified [35], [65] by churn in BGP routing tables

and desire to avoid losing responses during the period of the experiment (i.e., 30+

days in Table III). In [10], however, no reason is given for scanning unallocated space,

although there is a slight possibility of new blocks being allocated by IANA during

the measurement.

As we discuss later, sets I and NR may be appropriate for slow scans; however,

faster scanners have little incentive to utilize sets larger than B in the current Internet

since performance concerns (i.e., volume of sent traffic) usually outweigh completeness

of scan results.

3.2.2 Scan Order

The next factor we consider is the order in which IP addresses are scanned. This

is determined by the permutation [108] of space S, which is simply a reordering of

target addresses to achieve some desired result. The chosen permutation controls the

burstiness of traffic seen by remote networks and is a significant factor in both the

perceived politeness of scan traffic and estimation accuracy of Internet-wide metrics

from partial scans. For all discussion below, we assume that target subnets s are full

CIDR blocks (i.e., given in the /b notation).

The most basic approach, which we call IP-sequential, does not shuffle the address

space and probes it in numerical order (e.g., 10.0.0.1, 10.0.0.2, 10.0.0.3, etc.). It is not

only simple to implement, but also routinely used in the Internet [3], [41], [59] and

measurement studies [8], [34]. IP-sequential targets individual subnets s with a burst

of |s| consecutive packets at the rate of n/T before moving on to another network.
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Besides extremely high sending rates to s regardless of its size (e.g., 37 Kpps for

S = I and T = 24 hours), IP-sequential also suffers from poor extrapolation ability.

The main alternative to IP-sequential is the uniform permutation [108] also ex-

tensively used in the literature [10], [25], [82], [83]. This approach draws targets

uniformly randomly from the full address space S and intermingles probes to many

subnets, which reduces instantaneous load on individual networks and produces unbi-

ased random sampling during partial scans. In the literature, the uniform permutation

is usually accomplished by either an LCG (linear congruential generator) [55] or some

encryption algorithm applied sequentially to each element of S (e.g., TEA [82]), both

of which ensure that no IP is probed twice.

The final approach proposed in [35] we call Reverse IP-sequential (RIS) due to

its reversal of bits in the IP-sequential permutation and targeting the same address in

each subnet (e.g., *.*.127.10, *.*.8.10, *.*.248.10, etc.) before moving on to another

address. Intuition suggests that RIS is poorly suited for extrapolation (which we

confirm below), while the uniform permutation fails to deliver packets with maximum

spacing to each subnet. Since no analysis exists to further evaluate the differences

between these three permutation algorithms, making an informed choice remains an

open problem.

3.2.3 Scan Origin

In a bid to obtain multiple vantage points [35] and decrease the time required to

complete the scan [10], past measurement studies have often distributed the burden

of scanning amongst several hosts. We call this process a split, which in the literature

parcels blocks of either contiguous [8], [10] or permuted [35], [83] IP addresses to m

scanning nodes. Column four of Table III contains values for m used previously, with

[35] being the only study that used multiple hosts residing on two different networks
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(four at each location).

The current consensus in the literature is that multiple scanning hosts on a

single network are necessary only if the full assigned scanning bandwidth cannot be

utilized by one host, a condition that is implied in [83] and mentioned explicitly in

[8], [10], [35]. However, it is not clear from these studies how many hosts are needed

to efficiently utilize a link or provide reasonably short scan durations. Further, the

literature does not consider the split’s impact on the perceived politeness of the scan,

which we tackle later in the chapter.

3.2.4 Extrapolation

In many research applications, especially those that monitor growth of the Internet

[35], [42], it is sufficient to obtain the number of live hosts or estimate their charac-

teristics (e.g., mean uptime) rather than a list of their exact IPs. The best approach

in such cases is a partial scan, which produces a tiny footprint at remote networks

and in many cases allows accurate extrapolation of metrics of interest. This requires

that targets within each subnet be randomly selected, without any bias being given

to certain parts of S or particular patterns within probed IP addresses (because the

density of live hosts varies both across the Internet and the last 1 − 2 bytes of the

IP). In addition, non-random probing is often seen by administrators as purposefully

malicious, which in turn leads to unnecessary investigation overhead, firewall blocks,

and complaints.

3.2.5 Implementation

The next pressing issue of service discovery is the method used to send/receive pack-

ets, which significantly impacts the efficiency of the scanner. The easiest imple-

mentation method uses scripts that execute pre-written utilities [34], [83] or existing
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scanners [8]. An alternative is to write a custom scanner for a particular measure-

ment, which opens the possibility of using connectionless sockets [25], [35] for ICMP

or UDP-based scans, connection-oriented TCP sockets [10], and finally raw IP sockets

for TCP SYN scans [82], [83]. While there is no consensus in the scanning literature

on what method to use, [26] suggests that software limitations on packet sending rates

can be overcome using a network subsystem that bypasses the default network stack.

3.2.6 Timeouts and Duration

The next two issues are when to mark a host as unresponsive and what aspects should

determine scan duration T . The former issue comes down to two choices: 1) waiting

a “safe” amount of time before retransmitting [10], [82], [83]; and 2) when to finally

time out and declare targets dead [35]. Note that both incur substantial overhead due

to the need to remember all covered destinations and to maintain numerous timers.

Furthermore, it is unclear what benefit retransmission carries given the low packet

loss on the backbone and whether the increased overhead (i.e., doubling or tripling

the number of sent packets) justifies the potentially minuscule accuracy gains.

Table III lists timeout values that range from 5 to 30 seconds for previous mea-

surements studies. Given the limited number of outstanding sockets, finite bandwidth

and CPU power, and a wide range of possible choices, it remains unclear how to choose

timeouts to simultaneously allow for efficiency and accuracy (e.g., certain busy servers

respond with a 60-second delay, but should they be captured by the scanner?).

After settling the above problems, it is important to ensure that the scan will

complete in such amount of time T that produces the most relevant data without

overburdening local/remote network resources. Of the measurement studies listed

in Table III, only [25] was unencumbered by software/hardware restrictions, while

for others these issues dominated the choice of T . As such, previous measurement
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studies have generally been limited to a tradeoff between small T , few servers m, large

timeouts, and large scan scope. Instead, our goal is to develop a scanner in which the

researcher can control T independently of all other listed parameters.

3.2.7 Negative Feedback

Due to the unsolicited nature of the packets sent by service discovery measurement

studies and the diversity of networks in the Internet, it is inevitable that some tar-

geted hosts will take offense. This often manifests itself in the form of email/phone

complaints from network administrators [10], [18], [25], [35], [82], [83], though the

literature is lacking in details on the exact nature of complaints (e.g., frequency of

legal threats) and specific techniques for dealing with them.

In Table III, we list three of the methods used by previous studies to mitigate

complaints. The first is the use of a blacklist by [35], [82], [83] to exclude the networks

of sensitive/suspicious administrators, which generally avoids repeated complaints

from the same network. The other two approaches boil down to a further reduction in

scope by the omission of network/broadcast IP addresses (i.e., *.*.*.0 and *.*.*.255)

[35], [83] and preemptively blacklisting networks before they complain (e.g., U.S.

government) [25]. While blacklisting complaining parties is undoubtedly a sound

approach, no reasoning or motivating factors have been provided for the other two

methods and it is unclear whether they are indeed necessary.

3.3. IRLscanner

Based on our analysis of scanning literature in the last section, it appears that re-

searchers interested in service discovery projects are faced with scan durations on

the order of months, tying up several machines that could be dedicated to other
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projects, and the likelihood of significant negative feedback that could easily lead to

the measurement being terminated. For example, [35] reports that TCP scans pro-

duce 30 times more complaints than ICMP scans, which has precluded the authors

from conducting them after the first attempt.

Assuming a fixed amount of bandwidth available for scanning, in this section we

seek to alleviate these concerns by designing a service discovery tool we call IRLscan-

ner that allows for very small scan durations T , originates from a single inexpensive

host, and minimizes aggravation of network administrators (both remote and local)

by scanning as politely as possible for a given T .

3.3.1 Scan Scope

We start by determining the scope of IRLscanner. While firewalls and routers rou-

tinely use the Bogons list [22] to filter nonsensical traffic (i.e., reserved and unallocated

blocks), packets destined to unadvertised BGP blocks are also dropped by the scan-

ner’s border router, but only after unnecessarily increasing router load and wasting

scanner resources. Therefore, one expects that only set B should normally produce

valid results or be used for discovering hosts responsive to unicast traffic. However,

given that BGP tables change dramatically in the long-term [65], restricting the scope

to only routable addresses either requires a live BGP feed or potentially allows for

inaccurate representation of the Internet in the resulting measurement.

While this is definitely a concern for slow scanners (i.e., T is weeks or months),

our goal is to complete measurements in much shorter periods (i.e., hours) during

which BGP changes can often be neglected. For fast scans, updates pulled from

RouteViews [93] at start time sufficiently approximate the routable space during the

entire experiment. Our analysis of BGP tables during August 2009 discovered less

than 0.1% difference over a 10-day period, with proportionally fewer changes during
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Table IV. Scan set size, Ethernet bandwidth, and packets/second in a 24 hour TCP

SYN scan

Set S Size Reduction Rate (Mbps) Rate (Kpps)

F 4.29B – 33.4 49.7

NR 3.7B 14% 28.8 42.8

I 3.27B 24% 25.4 37.8

B 2.11B 51% 16.4 24.4

T = 24 hours used in our experiments. While for IRLscanner it makes sense to only

probe B, the tradeoff between scope, duration T , and BGP table accuracy must be

determined on a case-by-case basis.

To gauge the potential gains from restricting the scope to routable destinations,

we determine [39], [93] the current state of sets B, NR, and I in late August 2009

and list them in Table IV. While previous scanners achieve a significant reduction

(i.e., by 24%) in the number of sent packets by omitting the reserved/unallocated

space, probing only set B removes almost one billion additional targets and doubles

the performance gains of previous work to 51%. The table also shows the bandwidth

necessary to complete the scan in 24 hours, where all 40-byte SYN packets are padded

to 84-byte minimum-size Ethernet frames, and the corresponding pps (packets per

second) rate.

To implement a scanner with scope B, it is necessary to obtain a timely BGP

dump from either the RouteViews project [93] or the local border router. Given

the desire for small scan durations on inexpensive hardware, checking individual IP

addresses against a list of roughly 300, 000 prefixes must be very efficient. While IP

checking can be accomplished with a balanced binary tree [25] with logarithmic lookup

complexity, IRLscanner uses a 512 MB hash table, where each bit indicates whether
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the corresponding IP is allowed or not. This ensures that checks are accomplished

in O(1) time and improves lookup speed from 923 Kpps (balanced tree) to 11 Mpps

(using a single core of a 2.2 GHz Opteron). Given that most commodity machines

have at least 1 GB of RAM and the rest of our scanner requires only 2 MB of main

memory, this tradeoff allows us to dedicate more computational power to sending

packets and performing other processing as needed.

3.3.2 Scan Order

Despite the constant volume of scanning traffic in the Internet [78], network adminis-

trators generally view this activity as malicious and periodically complain to networks

that originate such traffic [25], [35] [82]. Furthermore, many IDS tools [12], [105], [125]

automatically generate firewall rules against scanning hosts, whether detected locally

or through distributed collaborative systems [71], [94]. With this perception in mind,

researchers must first weigh the benefit gained from performing a service discovery

measurement with the possibility of negative publicity for their institution and/or its

address space being blacklisted at remote networks.

Upon determining to proceed, these negative effects can be reduced for all in-

volved parties by using an address permutation that avoids targeting individual sub-

nets with large bursts of traffic, which often triggers Intrusion Detection Systems

(IDS) and raises concerns of malicious/illegal activity. Since IDS predominantly op-

erates on a per-IP basis, additional reduction in false-alarms is possible by using

multiple source IPs at the scanner host, which we discuss later in this section. While

the uniform permutation [108] is routinely used in scanning applications, no previ-

ous paper has examined the issue of achieving maximal politeness and whether such

methods could be implemented in practice. We address this open problem next.

For a given CIDR subnet s in the Internet, our goal is to maximally reduce the
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Fig. 12. Illustration of AGT.

burstiness of scan traffic seen by s, which is equivalent to maximizing inter-packet

delays for all probes arriving to s. Recalling that n = 232, we define permutations

that return to s with a period n/|s| to be IP-wide at s and those that achieve this

simultaneously for all possible CIDR subnets to be globally IP-wide (GIW). Note that

GIW permutations spread probes to each s evenly throughout [0, T ], which ensures

that all networks are probed at a constant rate |s|/T proportional to their size and

that no s can be scanned slower for a given value of T . This makes GIW optimally

polite1 across the entire Internet.

The simplest GIW technique, which we call an alternating gateway tree (AGT),

is a binary tree of depth 32 where target IPs reside in leaves and all edges are labeled

with 0/1 bits. Traversing the tree, the scanner accumulates individual bits along the

edges into the next IP. Decisions to move left or right at internal nodes (gateways) v

depend on their states θv, which are flipped during each visit to ensure that no IP is

probed twice and that packets alternate between left/right children of each gateway.

Fig. 12 shows the bottom four levels of some random AGT, where the tree in part

(a) generates an IP address ending with bits 011. Part (b) of the figure illustrates the

1While completely refraining from scanning is even more polite, it does not produce
any useful service-discovery results.
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next IP produced by this portion of the AGT, which results in the address ending

with bits 101.

Since balanced binary trees have well-defined rules for calculating the offset of

each internal node, AGTs do not require storing child pointers. Thus, their RAM

overhead is (n − 1)/8 = 512 MB needed to store tuple (θ1, . . . , θn−1) and their com-

putational complexity is 26 memory reads/writes (i.e., 52 total) per generated IP

(assuming depth-31 traversal and 64-bit lookups that yield the first 5 levels of the

tree in one RAM access).

Note that AGT provides the scanner with 2n−1 possible GIW permutations,

which is enormous. In practice, one does not require this much diversity and other

GIW algorithms may be sufficient. One reason to seek alternatives is that AGT

requires saving 512 MB during checkpointing and transmission of the same amount

of seed data to other scanner hosts in distributed implementations. Another reason

is that AGT’s CPU complexity is quite high, which we reduce in our next method.

Assume that s has depth b in the AGT (i.e., n/|s| = 2b) and observe that GIW

patterns must visit all remaining 2b − 1 subnets at depth b before returning to s. In

practice, this means that the permutation must exhibit a full period in the upper

b bits. Since for GIW this holds for all s, the full period must be simultaneously

maintained at all depths 1 ≤ b ≤ 32. Reversing the bits in each IP, we can replace

this condition with a much simpler one – the full period must hold in the lower b

bits. Define bx to be the lower b bits of an integer x and R(x) to be the bit-reversal

function. Then, we have the following result.

Theorem 1. Given a sequence of integers {xk}nk=1, suppose sequence {b(xk)}nk=1 has

a full period for all b = 1, 2, . . . , 32. Then, sequence {R(32xk)}k is GIW.

While there are many possible ways to construct {xk}k, an LCG of the form
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Table V. Benchmark of GIW address generation

Type Bit reversal Rate (IP/sec) State & seed

AGT – 661, 247 512 MB

LCG Bit shifts 10, 729, 920 4 bytes

Two-byte hash 21, 263, 889 4 bytes

xk = axk−1 + c is a natural choice due to its computational efficiency and need for

only a single integer of state. To establish its suitability for Theorem 1, we note

that the conditions for achieving a full period in {xk}k with an LCG are well-known

and require that a − 1 be divisible by 4 and c be odd [47]. We call the resulting

algorithm Reversed LCG (RLCG) and use it with a = 214, 013, c = 2, 531, 011, which

are well-known constants that produce an uncorrelated sequence of random variables.

The random initial seed x0 can then be used to change the scan order across multiple

runs.

To efficiently reverse the bits, we use a 2-byte hash table that flips the order

of bits in 16-bit integers. Therefore, any 32-bit IP can be processed in two memory

lookups (i.e., 26 times faster than AGT); however, the CPU cache often makes this

operation run even faster in practice. Table V benchmarks IP generation of AGT,

naive bit-shifts (32 shifts down and 32 up), and the hash-table technique. Observe

that RLCG with a hash-table runs at double the speed of bit-shifts and beats AGT

by a factor of 32, which is slightly faster than 26 predicted by the analysis above.

3.3.3 Scan Origin

While previous work has split the scan burden among m nodes to decrease total

duration [8], [10], [35], [83] or obtain multiple vantage points [35], no apparent con-

sideration has been given to the possible effect it has on the perceived politeness of the
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measurement. The main objective of a polite split in this chapter is to maintain the

GIW pattern across scanner IPs, which requires a mechanism for not only parceling

the address space to m scanning hosts without burdensome message-passing, but also

ensuring that each subnet s sees scanner IPs in a perfectly alternating and equally-

spaced fashion (e.g., IP1, IP2, IP3, IP1, IP2, IP3, . . . ).

The rationale for using all m sources to scan each s lies in the fact that IDS (both

open-source [12], [105] and commercial [44], [74]) detect scan traffic and throw alarms

in response to perceived malicious activity based on individual source IPs. Therefore,

a particular IP address sending its packets to s faster than other IPs is more readily

detected as it simply stands out from the others. The reason for maximally spacing

probes from different IPs is the same as before – reducing the overall burstiness at

remote subnets – which for large m (i.e., hundreds or thousands) may become non-

trivial. One example of an extremely impolite split is IP-sequential, which scans each

s from a single source IP at rates similar to those in Table IV (i.e., megabits per

second and thousands of pps), regardless of subnet size.

Analysis shows that GIW split does not require a new permutation; however,

individual source IPs must now return to s every mn/|s| packets (i.e., alternating

in some order with a full period m). Synchronizing m hosts using the block-split

algorithms of previous work [8], [10], [35], [83], while sustaining the GIW split is

a difficult problem. We instead introduce a new split algorithm that satisfies our

conditions and requires low overhead/state.

The intuition behind our split, which we call round-robin (RR), is to generate a

single RLCG permutation {zk} and assign target zk to host k mod m. AssumingM is

the set of scanning hosts, RR sends the initial seed x0 to every host i ∈ M, its position

i, and the number of sources m. Each host then generates the entire sequence {zk}k
locally and hits target zi+jm at time (i+ jm)T/n for j = 0, 1, . . . , n/m, the simplicity
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Algorithm 1 RLCG/RR at host i ∈ M
1: x0 = rand() ⊲ Set initial seed x0

2: for k = 1 to n do ⊲ Iterate through all IPs
3: ip = k mod m ⊲ Assigned source IP
4: xk = axk−1 + c ⊲ Advance LCG
5: if (ip == i) then ⊲ Our IP?
6: target = R(xk) ⊲ Reserve bits
7: if (BGP[target]==VALID) then ⊲ In BGP?
8: probe(target) ⊲ Hit destination
9: end if
10: end if
11: sleep(T/n) ⊲ Wait for next packet
12: end for

of which is demonstrated in Algorithm 1. Even with T = 24 hours, subnets are visited

so infrequently (e.g., every 337 seconds for a /24) that perfect synchronization of start

times is not necessary. Furthermore, in scanners running from a single location, all m

IPs can be aliased to the same host and RR-split can be used locally to ensure perfect

synchronization, which is the approach taken by IRLscanner later in the chapter.

From the well-known properties of LCGs [9], we immediately obtain the following

crucial result.

Theorem 2. RR-split with any GIW permutation

scans s with min(|s|,ms) sources, where

ms =
m

gcd( n
|s|
,m)

(1)

and gcd(a, b) is the greatest common divisor of (a, b).

To better understand this result, examine Fig. 13(a) that shows one example of

(1) for |s| = 65536 (i.e., a /16 target subnet). Notice that even values of m lead to

ms ≤ m/2 (triangles in the figure), which reduces the effective number of IPs seen

by each subnet at least by half. The worst choice of m is a power of two, in which

case ms = 1 regardless of m. On the other hand, odd values of m produce the ideal
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Fig. 13. GIW split and extrapolation delay.

ms = m (circles in the figure) and thus achieve a GIW split. We rely on this fact

later in Section 3.4..

3.3.4 Extrapolation

Given the goal of being able to extrapolate the number of responsive hosts and other

properties of open ports from a severely abbreviated scan (e.g., 1−10 seconds instead

of 24 hours), we next examine how the existing and proposed approaches handle this

problem. We split the allocated IANA space into three blocks (i.e., ARIN, RIPE,

and APNIC), roughly corresponding to different geographical zones, and build three

distributions of live IPs from our Internet measurements. Specifically, PMF function

pj(x3, x4) specifies the probability that IP x1.x2.x3.x4 is alive in geographical zone

j ∈ {1, 2, 3}. We then generate a Bernoulli random variable for each IP in the IANA

space and make it alive using the corresponding probability pj(x3, x4).

Using a simulation with T = 24 hours, we scan the assigned distribution of

live/dead hosts using four approaches – uniform, RLCG, IP-sequential, and RIS.

Assuming A is the true number of live hosts in the assignment and Ã(t) is an estimate

at time t, define the relative extrapolation error e(t) = |1 − Ã(t)/A|. Convergence
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Fig. 14. IRLscanner implementation.

to threshold ǫ is established at such time tǫ when estimates for all t ≥ tǫ have error

smaller than ǫ.

Fig. 13(b) plots the expected convergence delay tǫ averaged over 100 iterations.

Observe that both RLCG and uniform converge to 1% error in 10 seconds, while RIS

and IP-sequential take 11 and 16 hours, respectively. This result is easy to explain

since IP-sequential gets trapped in certain CIDR blocks for an extended period and

RIS hits the same last octet 16M times in a row. Furthermore, 0.1% error in Fig.

13(b) can be achieved in 23 minutes for both uniform and RLCG, while the other

two methods require 17+ hours. Even to arrive at 5% accuracy, which takes RLCG

less than a second, RIS requires 6 hours, which makes this method unsuitable for all

but most crude extrapolations.

3.3.5 Implementation

Fig. 14 shows the general structure of IRLscanner. IPs generated by RLCG/RR are

first checked against BGP prefixes and then delivered to the sending module, which

forms raw Ethernet frames and transmits them to a custom network driver (detailed

in [103]), which is capable of saturating a gigabit link with SYN packets (1.4Mpps)

from one Intel Pro/1000 NIC on a 2.2 GHz AMD Opteron system using only 60%
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of a single core. Through this subsystem, we are also able to intercept arbitrary

incoming/outgoing packets and suppress RSTs from the OS TCP/IP stack, which

we make use of later when profiling remote operating systems. All received packets

are saved to disk without inspection and are processed offline. After completing each

scan, this framework continues to listen for incoming packets for several hours to

capture any extremely slow hosts, as well as record any back-scanning packets from

hackers and other potentially interesting entities.

3.3.6 Timeouts and Duration

Previous measurement studies [10], [82], [83] used retransmissions to the unrespon-

sive set of target hosts to minimize false negatives, which we now evaluate in light of

politeness and efficiency. Cursory inspection shows that retransmitting probes to un-

responsive hosts is the violation of the GIW pattern, which is undesirable. Combining

this with the likelihood that many false negatives in the unresponsive set are likely

to be from persistently congested links or over-burdened servers [2] with potentially

sensitive network administrators, politeness concerns suggest that retransmission is

not generally advisable.

From an efficiency standpoint, it should also be noted that the unresponsive

set accounts for 90 − 99% of S (depending on the protocol), which means that a

single timeout-based retransmission would require almost doubling the number of

sent packets. Our experiments show that retransmission not only yields a negligible

increase in found hosts (i.e., by 0.3−1.7% depending on the port and time of day), but

also introduces bias by capturing hosts that come online within the retransmission

timeout.

We next turn to the issue of when the status of an IP address can be determined,

which in related work [10], [35], [82], [83] has occurred at some timeout after the initial
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probe was sent. Considerable effort has been spent deciding on appropriate timeout

values [10], the choice of which affects the number of false negatives due to slowly

responding hosts and the overhead of keeping large amounts of state for outstanding

targets. Given that retransmissions are not required, we avoid this tradeoff entirely

by delaying the classification of IP addresses until after the scan completes.

In practice, we accomplish this by saving all packets incoming to our scanning IP

addresses to disk for later analysis. As there are many packets that are not relevant to

the scan, we note that certain information can be embedded in the packets themselves

to correlate responses with hosts scanned. This option has been used by encoding the

target IP address in ICMP ID fields [35] and DNS queries [25]. For TCP scans, we

take advantage of the sequence number field to encode the target IP, which allows us

to detect invalid and/or malicious replies. While this approach does raise concerns

about hard-disk space and I/O speed, in our experience the 25 GB required would

not be a factor for even very short scan durations (e.g., given 100 MB/s write speed

of modern drives, this volume of data requires a meager 250 seconds of disk I/O).

3.3.7 Negative Feedback

Throughout this section, we have explored and implemented several techniques to

reduce the sending rate (i.e., BGP scope reduction), minimize the burden on remote

networks (i.e., GIW), lower IDS false-alarm rates (i.e., RR-split), and avoid probing

busy servers and non-existent/firewalled hosts with repeat packets (i.e., no retrans-

mission).

In addition to technical solutions outlined above, a political strategy for reducing

complaints and dealing with their aftermath is beneficial. Our general approach in this

pursuit is to make the non-malicious purpose of our scans as transparent as possible

to those remotely investigating our traffic. This includes providing scanning IPs
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with descriptive names (i.e., indicating their research purpose) in the forward/reverse

DNS tree, as well as creation of TXT DNS records pointing to the project web-

page with instructions on how to opt out. With over 123 IPs participating in this

endeavor, special scripts have been written to manipulate IP assignment to various

NIC interfaces and modify DNS records in our authoritative server.

However, the most widely-used means of investigation is through a whois lookup

on offending IP addresses, followed by a direct email to the party listed therein. In

the event a complaint is received, our policy is to reply as quickly as possible with

an explanation of our traffic, a link to the project web-page, and an offer to blacklist

the network. Dynamic blacklisting in IRLscanner is implemented through periodic

reading of a flat file of blocked networks and simply removing them from the BGP

hash table. Under the assumption that network administrators who complain will do

so again later, blacklisted networks are maintained across scans. However, given that

no analysis was provided in prior work [25], [35], [83] to justify preemptively removing

subnets or addresses, our initial scan started with an empty blacklist.

The final issue one must also be aware of is that significant care should be taken

to avoid negatively impacting the local network, where internal stateful firewalls and

IDS are particularly vulnerable (from the load perspective) to large volumes of traffic

destined to billions of unique destinations. We have experienced a number of issues

with department and campus-wide IDS/firewall installations at our institution, which

all had to be manually bypassed for this project to proceed.

3.4. Experiments

In this section, we test our design decisions by performing several Internet-wide scans

using our high performance kernel-level network architecture [103] and present several
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novel scan methods. We defer in-depth analysis of the actual scan data to a later

paper, instead focusing on high-level observations and results.

3.4.1 Overview

As the goal of scanning is to produce the set of hosts offering a given service, each

targeted IP address must eventually be classified into one of four categories. Define

open set O to contain all hosts that responded positively to a scan packet (e.g., a

SYN-ACK to a TCP SYN), closed set C to represent IPs responding negatively using

the same protocol (e.g., a TCP RST to a SYN packet), unreachable set U to consist of

IPs that return ICMP unreachable or TTL expired errors, and dead set D to designate

hosts from which no reply was received at all. Note that excluding bogus responses

and strange firewall/NAT behavior, O ∪ C ∪ U ∪ D = S and the individual sets do

not overlap.

Through development of IRLscanner and in the course of other projects, we

have performed 20 Internet-wide scans since February 2008. To test a wide range of

possibilities and demonstrate the general feasibility of service discovery, we targeted

UDP, TCP, and ICMP protocols on both popular services (e.g., HTTP, DNS) and

those often used for nefarious purposes (e.g., SMTP, EPMAP). Table VI summarizes

our scanning activity. We initially started slowly with a 30-day scan duration from a

single source IP to gauge the feedback, then increased the sending rate over subsequent

scans until we achieved a duration of 24 hours, which is over 20 times faster than any

documented scan of which we are aware [35]. The number of source IPsm varied based

on their availability in our subnet and specific goals of the measurement, generally

ranging from 31 to 123. In comparison, the highest IP diversity in related work was

m = 25 in [10], followed by m = 8 in [35].
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3.4.2 UDP/ICMP Scans

We started with seven DNS scans due to an interest in public recursive DNS servers.

These scans produced between 14.5M and 15.2M responses in each run, which rep-

resents a 30% growth from the 10.5M found in [25] less than 9 months prior. We

discovered a stable set of 4.4M servers that responded to every DNS scan over a pe-

riod of three months, which indicates that the number of consistently available hosts

is far fewer than might be expected from the responses to a single scan.

Of further interest is the reduction in found hosts from 15.2M to 14.7M when

scan duration reduced to 24 hours in DNS3. This suggests that faster scan dura-

tions produce a lower cumulative response among the targets, which in part may be

attributed to the lower possibility of counting the same host multiple times under

different DHCP’ed IPs. To investigate whether previous scanning activity in some

immediate past influences the response rate in subsequent scans, we probed DNS on

four consecutive days in May 2008 (i.e., 96 hours of continuous scanning) and received

roughly the same number of responses in each case, which indicates that the Internet

is basically memoryless (at least at our scan rates).

Our last UDP scan was on ECHO port 7, which simply replies with a verbatim

copy of the received packet and to our knowledge has never been scanned in the

literature. We chose this port as a representative of a sensitive UDP service largely

because of its notoriety for broadcast amplification attacks [63]. Later in the chapter,

we deal with the huge volume of complaints and speculation that ensued in the

cooperative intrusion detection community, but note that even though best practice

is to disable this service, we nevertheless received replies from 321, 675 unique IP

addresses.

Our lone ICMP scan was a simple echo request [35], [83] that garnered 139M
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replies, representing a 20% gain over a similar scan performed in June 2007 [35].

3.4.3 TCP Scans

Our measurements targeted TCP with 11 scans on 3 different ports and two com-

binations of SYN/ACK flags. To our knowledge, TCP has not been scanned in the

literature with T less than three months [10] or with flags set other than SYN [10],

[35], [82], [83].

We start by describing the performed SYN scans in an increasing order of their

sensitivity. We initially scanned HTTP with a duration more than 90 times shorter

than the only previous attempt [10], discovering 30.3M hosts in July 2008 and 44.5M

in August 2009, the latter of which is a 140% increase compared to 18.5M IPs found

in 2006 [10]. The other two services we targeted with SYN scans were SMTP, which

is frequently probed by spammers searching for open relays, and EPMAP, which is

heavily scanned for network reconnaissance prior to attack [63], discovering 17M and

4.9M hosts respectively. Given the large number of Windows hosts in the Internet,

the EPMAP result seems low, which suggests that many ISPs drop traffic on port

135.

To determine the feasibility of scanning with other types of TCP packets, we

performed three measurements with ACK packets (i.e., SMTPA, EPMAPA, and

HTTPAS), which can be used not only to determine a host’s liveness (i.e., an ACK nor-

mally elicits a RST from non-firewalled hosts), but also to bypass stateless firewalls.

Both SMTPA and EPMAPA were executed concurrently with the corresponding SYN

scan (i.e., two packets were sent to each IP) in order to allow us to detect and charac-

terize firewalls (detailed analysis of results is outside the scope of this chapter). While

SMTPA returned 116M active hosts, EPMAPA produced only 68M responses, which

suggests that filtering is heavily applied on port 135 not only for SYN packets, but
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Table VII. Top 5 devices

Device Found %

Linux (2.4 or 2.6 kernel) 13.0M 32.9

Windows XP/Server 2003 6.3M 15.8

Windows Vista/7/Server 2008 5.6M 14.0

Windows Server 2003 SP2 3.5M 8.9

FreeBSD 1.5M 3.8

for ACKs as well. For HTTPAS, we scanned the entire BGP space with ACK pack-

ets, then immediately followed the resulting RST responses with a SYN packet. We

present our motivation and the results from this previously undocumented approach

in a later section.

3.4.4 Remote OS Fingerprinting

While service discovery projects usually focus on enumerating open set O, further

information about the hosts themselves is often critical to the depth and usefulness

of measurement studies [10], [25]. With the goals of resource efficiency and maximal

politeness at remote networks, in this section we focus on determining the operating

system of the remote hosts in O, which could be used to estimate the global impact

of known security vulnerabilities [68], approximate Internet-wide market share [73],

or track hosts with dynamic IP addresses [25]. The main difficulty in executing such

a study is that most existing tools [77], [122] not only trip IDS alarms and crash older

end-hosts with unusual combinations of TCP/IP flags, but also require substantial

overhead (e.g., 16 packets for Nmap) in Internet-wide use [104], [115]. It is thus not

surprising that large-scale OS profiling has not been attempted in the literature.

Instead of traditional fingerprinting methods, we utilize a single-packet technique
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called Snacktime [104], which exploits OS-dependent features in SYN-ACKs such as

the TCP window, IP time-to-live, and most importantly the length and number of

retransmissions of the SYN-ACK during TCP handshakes. While initial results on

accuracy were promising [104], [115], the non-trivial requirement that outgoing TCP

RST packets be dropped, long period needed to produce an answer (e.g., several min-

utes), and limited database (i.e., 25 signatures last updated in 2003) has previously

restricted its usefulness. Further work that is outside the scope of this chapter is

required to rigorously confirm its accuracy in the Internet, but given that we must

already send a TCP SYN packet to every host in O, modifying the Snacktime tech-

nique for use on an Internet-wide scale would result in no additional sent packets to

enumerate remote OSes.

To implement a scalable Snacktime, we take advantage of our custom network

driver to block outgoing TCP RST packets. Since IRLscanner already captures all

retransmitted TCP SYN-ACK packets, it is the perfect platform for massively paral-

lelizing the Snacktime technique. After a scan completes, we generate the retransmis-

sion delays from the packet dump, then run a custom implementation of the Snacktime

matching algorithm that gives preference to general classes of operating system in the

case of ambiguity and reduces the microsecond precision of retransmission delays to

manage random queuing delays in the Internet. To make the technique more useful,

we processed almost 7K responsive hosts at a large university to manually verify and

increase the database to more than 100 signatures, including the latest Windows ver-

sions (e.g., Vista, 7, Server 2008, Server 2003 SP2), webcams, switches, printers, and

various other devices.

We applied the modified Snacktime technique to HTTP2, which consisted of

|O| = 44.3M hosts that responded with at least one SYN-ACK. We successfully

fingerprinted 39.6M hosts, with 2.3M being excluded due to insufficient retransmis-
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Table VIII. Summary of fingerprinted devices

Device Type Found %

General purpose 32.4M 81.8

Network device 2.7M 6.8

Printer 1.8M 4.6

Networked storage 1.5M 3.7

Media 929K 2.3

Other embedded 287K 0.7

Total 39.6M

sions (i.e., none) and the remaining difference attributable to gaps in our signature

database. The top 5 profiled OSes are given in Table VII, with Linux contributing

32.9% of the total and various Windows implementations consisting of the next sev-

eral slots, which is indicative of their co-dominance in the web-server market. We

provide more detail in Table VIII, where we classified each signature into one of

six categories and calculated summary statistics. Note that general purpose (e.g.,

Linux, Windows) systems consist of nearly 82% of the total, with network devices

(e.g., switches, routers, NAT boxes), networked storage (e.g., NAS, tape drives), and

printers consisting of more than 1M devices each. The media category is comprised

mainly of webcams and presentation devices (e.g., TVs, DVRs, projectors).

To finish this section, we present in Table IX the total number of devices and

their percentage attributed to each class of OS in the general-purpose category, a

result that to our knowledge has not previously been shown in the literature on an

Internet-wide scale. Approximately half of the total consists of Microsoft OSes (5.6%

of which belong to Windows 2000 or older), which is likely due at least partially

to individuals hosting personal web-sites on their home machines. Linux hosts are
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Table IX. General purpose (GP) devices

OS Class Found % of GP

Windows 16.3M 50.2

Linux 13.0M 40.2

BSD/Unix 2.2M 6.7

Mac 862K 2.7

responsible for 40%, which combined with the various related forms of BSD (e.g.,

OpenBSD, FreeBSD), SunOS, and Unix results in nearly 47% of the total and rivals

Microsoft.

3.4.5 Service Lifetime

Another interesting property of Internet services is their average lifetime (uptime)

E[L], which is the mean duration of time a port stays active on a given IP. One tech-

nique [35] is to first estimate the CDF of lifetime L and then compute its mean E[L].

However, avoiding round-off errors and CDF tail cut-off often requires monitoring

the pool of target IPs at frequent intervals (i.e., minutes) and for extended periods

of time (i.e., days), all which contributes not only to higher bandwidth overhead, but

also to more likely aggravation of remote network administrators.

We offer an alternative method that can estimate E[L] using much lower overhead

and overall delay. Modeling each host as an alternating ON/OFF process [121], a set

K of uniformly selected live hosts exhibits a departure rate λ = |K|/E[L] hosts/sec

(a similar result follows from Little’s Theorem). Thus, by probing K twice at time

t and t + ∆, one can estimate λ as p(∆)|K|/∆, where p(∆) is the fraction of hosts

that have disappeared in this interval. Solving p(∆)|K|/∆ = |K|/E[L], we obtain

E[L] = ∆/p(∆).
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The key to this technique is to uniformly randomly select K and simultaneously

ensure maximal politeness of the scan. Leveraging the findings of Section 3.3.4 aimed

exactly at this issue, we first use RLCG to scan the Internet for ∆ time units at some

constant rate r. We then re-generate the same sequence of IPs at the same rate, but

actually send packets only to those targets that have responded in the first scan. Due

to limited space, we omit simulations confirming the accuracy of this method and

discuss only one extrapolation using port 80 and ∆ = 45 seconds. This experiment

covered 1M targets, found |K| = 23.7K live hosts, and yielded E[L] = 50 minutes

(i.e., p(∆) = 1.5%).

3.5. Analysis

While it would be ideal to scan the Internet using different techniques (e.g., IP-

sequential, uniform, GIW) and then assess the collected feedback as a measure of in-

trusiveness of each scan, certain practical limitations typically prevent one from doing

so (e.g., our network administrators have explicitly prohibited scanning activity using

certain non-optimal permutations). Thus, comparison is often only possible through

feedback analysis exposed in publications, which unfortunately is very scarce in the

existing literature. To overcome this limitation, this section introduces a number of

novel metrics related to the perceived intrusiveness of Internet-wide scans, studies

them in detail, and unveils certain simple, yet effective, techniques for reducing the

blowback.

3.5.1 Email Complaints

One of the uncertainties we encountered when initially considering a service discov-

ery project was the number of complaints to expect, particularly as they related to
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Table X. Emails and IPs excluded by service

Service Scans Emails Avg IPs excluded Avg

DNS 7 45 6.4 3.7M 530K

Echo 1 22 22 752K 752K

Ping 1 4 4 1K 1K

HTTP 7 24 3.4 459K 66K

SMTP 2 6 3 262K 131K

EPMAP 2 2 1 65K 32K

Total 20 103 5.15 5.3M 263K

serious threats or resulted in widespread blacklisting of the scanner to the point of

making Internet-wide measurements impossible. In this section, we attempt to clar-

ify the issue by detailing the complaints we received and the effect they had on our

measurements.

Table X contains a summary of email complaints broken down by service type.

Over all 20 scans, we received 103 complaints for an average of 5.15 per scan. Our

initial run (i.e., DNS1) resulted in 10 complaints and more than 2.5M IP addresses

blocked, which is nearly half the total of 5.3M blacklisted over the course of the

project. Most of this initial number came from a single large ISP asking us to block

several /16 residential networks. However, even with the initial burst removed from

the calculation, DNS scans resulted in an average of 172K blacklisted IPs per scan.

The most significant backlash we received was for the ECHO scan (UDP port 7),

which led to 22 complaints and more than 750K blocked IP addresses. In the next

section we provide an explanation for this significant increase, but note here that

UDP scans account for 65% of all complaints, while being responsible for only 40%

of the packets sent.
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Table XI. Email notices by complainant type

Source Cease FYI Total

Human Script Human Script

Individual 14 13 7 8 42

Government 6 2 6 2 16

Corporation 11 5 7 0 23

University 5 3 10 4 22

Total 36 23 30 14 103

In contrast to the experience of [35], where the authors received 30 times more

complaints for a TCP scan than ICMP pings, our TCP measurements produced a

total of 32 complaints over 11 scans, or about three per scan. This is an even more

remarkable result given that we scanned two sensitive ports, used ACK packets that

penetrate stateless firewalls, and clustered six scans in less than a month. While we

cannot explain this discrepancy, our numbers do not support the notion that TCP

scans are more invasive than the other protocols.

We next categorize the received emails in Table XI to show the severity and type

of each complaint. Out of 103 complaints, 59 were demands to cease the activity,

while the other 44 were FYI notifications about a possible virus with no expectation

that the measurement stop. The first row of the table shows that individual users

who monitor a single IP address with a personal firewall (e.g., ZoneAlarm, Norton)

represented 41% of the total complaints (i.e., 42 out of 103), which indicates that

a large portion of these emails cannot be avoided by any means. The remaining

three rows of the table represent complaints received from large network entities,

with universities being the most likely to send an FYI notification and worldwide

government entities comprising only 16% of the total complaints.
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In contrast to [25], we received only four cease demands from U.S. Federal Gov-

ernment entities, none of which were defense-related. Another point of interest is the

number of threats to pursue legal action, though of the three received none of them

turned out to be legitimate. Finally, analysis of emails generated by an automated

script suggests that a large chunk of all received complaints (i.e., 36% in our case)

are seldom reviewed by an actual human given the large amount of background scan

traffic their networks receive [78].

We now determine the impact of email complaints on the scope of subsequent

measurements (i.e., size of S after removing blacklisted networks) by studying the

progression of blacklisted IP addresses in Fig. 15, where scans are assigned numbers

in chronological order. Note that the complaints for the two simultaneous scans (i.e.,

SMTP and EPMAP) are encompassed in a single data point due to our inability to

tell whether the SYN or the ACK portion caused the complaint. Part (a) of the figure

contains the raw number of blacklisted addresses, which did not increase significantly

after we stopped scanning UDP. Part (b) shows the blocked addresses as a percentage

of BGP, where the total number of 5.3M represents only 0.25% of the current space

(the curve is non-monotonic due to the constant expansion of BGP).

3.5.2 Firewall Log Correlation

To gain a broader view of the Internet and decrease the amount of time required to

detect large-scale attacks, online collaborative systems [71], [94] have been developed

to pool data from strategically placed Internet sensors and firewall/IDS logs of various

networks. We focus on the SANS Internet Storm Center (ISC) [94] due to its relatively

large size of 500K monitored IP addresses and detailed publicly available data. An

ISC report consists of an IP address detected as a scanner, its source port, and the

target’s (IP, port) pair. These reports are often shared publicly, although certain fields
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Fig. 15. Progression of blacklisted IPs.

(e.g., destination IP) are obscured to protect the identity of subnets that submit their

logs. Given that these reports represent information about unwanted traffic, they can

be used to gain insight into how our scans are perceived by remote networks.

We examine ISC report summaries for several scans from Table VI. These sum-

maries are compiled daily for each service (e.g., HTTP) and consist of the number of

scanned targets, scanning hosts that targeted that service, and the ratio of packets

that are TCP. We are particularly interested in the first metric as all reports related

to our 24-hour scans should be contained in a single data point.

We downloaded summary data from ISC for one month surrounding a sample

of our HTTP, EPMAP, DNS, and ECHO scans (i.e., 15 days prior and after). The

result is plotted in Fig. 16, where the x-axis labels days in the 30-day window

surrounding each scan and the highlighted points represent the days our scanner was

actively probing that particular port. We happened to scan both HTTP in part (a)

and EPMAP in part (b) on days when ISC experienced roughly a third of its peak

number of daily reports (i.e., 27K compared to 80 − 90K), which is nevertheless an

huge number. The figure also shows that EPMAP clearly stands out as being scanned
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Fig. 16. ISC reports with our scans marked.

with a consistently high amount of daily traffic.

In contrast, parts (c) and (d) for DNS and ECHO show that IRLscanner spiked

report levels well above those of surrounding days. In fact, in the case of ECHO we

produced an extremely anomalous event, raising the total from almost zero to 50K.

Our activity on that port created concerns among network administrators that a new

exploit was under way and/or a virus outbreak was in progress. All this eventually

drew the attention of one of the traffic monitors at ISC, who wrote an explanatory

blog post to calm down the ISC community.

Given the large amount of background noise from many scanning sources (whose
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totals ISC also makes available) in parts (a) and (b) of Fig. 16, we conjecture that

network administrators are more likely to react only to traffic that clearly stands out

(i.e., makes its presence known by its high signal-to-noise ratio) rather than to scans

on sensitive ports. This is confirmed by the fact that attack-reconnaissance port 135

generated the least number of complaints and that the ECHO port, which inherently

represents little real threat to administrators due to the lack of hosts offering this

service and heavy firewall filtering, produced an unusually strong blowback. This

relationship where higher background scan traffic seems to imply fewer complaints

might benefit researchers considering scans on sensitive/popular ports in the future.

3.5.3 Enumerating Contributors

It is well-known [11], [100] that the contributors to ISC and other firewall log corre-

lation systems are vulnerable to losing their anonymity due to the nearly real-time

public display of firewall reports with only the destination IP address omitted. Several

techniques for correlating reports with targeted subnets (which is called contributor

enumeration) have been proposed [11]; however, they require tens of billions of pack-

ets, allow for false positives, and consume multiple days during full enumeration.

Given our high-performance scanner that is capable of locally using multiple IP

addresses, a much simpler attack preys on the source port, destination port, and

source IP address reported in detailed ISC logs, which are displayed for all scanning

hosts that ISC tracks. Probing each IP address in BGP set B with a unique com-

bination of source/destination ports and source IP eliminates the possibility of false

positives and the need to send any extra packets beyond those in B. This can be ac-

complished for the current 2.1B hosts with 128 source IPs by simply rotating through

all 64K source ports and roughly 250 destination ports, which can be hand-picked

from the most-scanned lists to minimize the likelihood of raising suspicion. However,
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by removing the source port from the public report, ISC can render this technique

largely ineffective.

3.5.4 ACK Scans

To prepare their subnet’s data for submission to ISC, many network administrators

rely on firewall log analyzers such as psad [84] to separate scan traffic from innocuous

packets dropped by the firewall. During our analysis, we discovered that many such

tools ignore ACK packets, which suggests that network administrators often do not

consider them to be particularly dangerous. To leverage this intuition, we propose

a scan technique for cases where finding the majority of hosts in open set O, while

significantly reducing IDS detection, is beneficial (e.g., for rarely scanned ports).

The first phase of the technique is a simple ACK scan to every host in B, which

effectively discovers the subset of hosts that are not heavily protected by stateful

firewalls. For every RST received, we verify that it has not been previously probed

using a hash table and then immediately send it a SYN packet to establish whether

the service is open or not. By only targeting hosts that previously responded, this

type of scan reduces the SYN footprint by 94% for HTTP. We performed a single

test measurement (HTTPAS in Table VI), which discovered 31.7M of the 44M total

responsive hosts, while requiring only 125M SYN packets to be sent. ISC data shows

only 4, 746 reports for our IPs during HTTPAS compared to 29, 869 reports collected

for HTTP2, which used the same T and m. This is significant as it amounts to an

84% decrease in the perceived intrusiveness of the scan.

3.5.5 DNS Lookups

We now turn to the last form of feedback we consider in this chapter. While whois

lookups seem to be the predominate form of reconnaissance performed by remote
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Table XII. DNS lookups on scanner source IPs

Scan Reverse Forward Req/sec Servers

HTTP2 3.03M 85.4K 36 47.8K

HTTP3 2.89M 80.1K 34 48.2K

HTTP6 2.85M 66.3K 33 49.2K

network administrators and individuals when they detect a scan, many specialized

tools augment IDS reports and firewalls logs with DNS lookups on offending IPs to

provide more information on the scanning host to the user. While for large networks

this functionality should be disabled (as it allows remote hosts to DoS the network

by loading it up with billions of useless DNS lookups), many personal firewalls and

small subnets implement some form of it.

We tested the frequency of these additional lookups by collecting all incoming

requests for each scanning IP address to our locally controlled authoritative DNS

server. To ensure that each request initiated by a remote entity contacted our name-

server (rather than was answered from a cache), we set the DNS TTL to zero for both

the reverse and forward lookups on scanner IPs/hostnames. After doing so, no RFC

compliant nameserver should maintain our records in their cache.

The result of this collection process for three HTTP scans is contained in Table

XII, which lists the number of reverse lookups for the IP addresses themselves and

forward lookups on the names returned by those queries. We made sure that these

IP addresses were not used for any other purpose but scanning and their names were

not publicized beyond the project web-site. Therefore, forward lookups are almost

certainly due to the common verification technique of determining the consistency

between the forward and the reverse response. While the number of requests slightly

declined for each subsequent scan, the last column shows that the number of unique
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servers in each dataset had the opposite trend. The decline in lookup rates can be

attributed to random noise, long-term caching at non-compliant DNS servers, and

users growing tired of looking up our IPs.

It should be noted that performing DNS queries on scanner IPs potentially reveals

the location (i.e., up to its local DNS server) of the IDS tool unless steps are taken to

increase anonymity (e.g., using a well- publicized DNS forwarding service). The three

scans in Table XII have identified 63, 596 unique DNS servers, out of which 35, 296

were present in each dataset. Further analysis of this data is deferred to future work.

3.6. Summary

In this chapter we developed a high-performance, Internet-wide service discovery

tool called IRLscanner, whose main design objectives were to maximize politeness at

remote networks, allow scanning rates that achieve coverage of the Internet in min-

utes/hours (rather than weeks/months), and significantly reduce administrator com-

plaints. Using IRLscanner and 24-hour scan durations, we performed 20 Internet-wide

experiments using 6 different protocols (i.e., DNS, HTTP, SMTP, EPMAP, ICMP and

UDP ECHO), demonstrated the usefulness of ACK scans in detecting live hosts be-

hind stateless firewalls, and undertook the first Internet-wide OS fingerprinting. In

addition, we analyzed the feedback generated (e.g., complaints, IDS alarms) and sug-

gested novel approaches for reducing the amount of blowback during similar studies.
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CHAPTER IV

MODELING WINDOW-BASED IDS AND STEALTH SCANNING

4.1. Introduction

As the Internet has grown more hostile over time [78], [108], many networks now

deploy Intrusion Detection Systems (IDS) [12], [105] to deal with the constant pressure

of unsolicited traffic and attempts to exploit various vulnerabilities at end-hosts [78].

In its most general form, IDS monitors all inbound/outbound connections to detect

such activities as scanning (e.g., attempts to find open services [3], [43], [78], [107],

[117]), intrusion (e.g., malicious packets that exploit known vulnerabilities [68], [70],

[97]), anomalies (e.g., new communication patterns indicating infection [31], [50],

[106]), and DoS attacks (i.e., suspicious spikes in traffic/connection volume [51], [69]).

In conjunction with firewalls, IDS can block offending hosts and raise alarms to alert

administrators to potentially undesirable activity.

To maintain scalability [56], adapt over time, and keep state from growing to

infinity, many existing IDS tools [12], [44], [74], [84], [105] utilize window-based pro-

cessing of incoming traffic, which entails keeping per-flow statistics only for a limited

period of time and applying IDS detection algorithms to the packets accumulated

during this window. This makes the IDS detection process purely regenerative [89]

and oblivious to any attacks that span multiple windows. One activity whose de-

tection is particularly sensitive to the amount of state in each window is horizontal

scanning, which consists of probing every Internet host on a given port to see if it is

visible outside the firewall (repeating this process on multiple ports achieves vertical

scanning as well).
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To balance accuracy and false-positive rates, an IDS typically requires some min-

imum number of packets in the window before triggering an estimator or raising an

alarm. As observed in [108], a worm could utilize so-called stealthy traffic patterns to

prevent IDS from reaching this threshold, which makes such scans equally powerful

against all underlying estimators. Our main interest lies in horizontal stealth scan-

ning, where the main exposed technique [108] is to scan “very slowly,” potentially

dragging out the process over several months. However, it is unclear whether stealth

scanning is possible at faster rates, in what particular order the IP space should

be probed, and how likely existing IDS packages are to detect such approaches. To

shed light on this issue, we model window rules of two popular IDS implementations

(i.e., Snort [105] and Bro [12]), study the rates at which the existing scan techniques

[3], [41], [59], [62], [82], [83], [108] become stealthy, and explore fundamental IDS

limitations under stealth-optimal scan patterns.

While IDS avoidance in the literature commonly targets vulnerabilities of known

implementations [45], [48], [77], [85], [101] or concealment of abnormal communication

patterns [27], [110], [123], to our knowledge the inherent weaknesses of window-based

IDS have not been analyzed before.

4.1.1 Formalization

We start the chapter by establishing stealth-scan objectives and their relationship to

window-based IDS. We use the Flash-worm [108] model for the attacker and assume

that it controls m ≥ 1 source IPs (e.g., a botnet). In the first phase of the attack,

the botnet scans the entire Internet for unprotected hosts. It then infects them in the

second phase by attempting delivery of malicious payload only to vulnerable targets.

The crux of this approach is the ability of the first phase to maximize penetration of

IDS installations and remain undetected (i.e., stealthy). To understand whether this
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is possible without knowing subnet boundaries or specifics of deployed tools, we first

must expose rules for scanner operation and IDS window expiration.

We define a scan pattern X to be a combination of three algorithms – permutation

(i.e., order of probed IPs), split (i.e., partitioning of targets between m zombies), and

schedule (i.e., time instances when each IP is probed). During Internet-wide scans,

the uniform permutation [62], [82], [83], [108] is generally considered better than

IP-sequential [3], [41], [59] in terms of instantaneous load on target networks and

stealthiness; however, it is currently unknown how likely IDS is to detect either one,

what impact split/schedule have on stealth, and whether superior approaches exist.

Among the deployed IDS solutions [12], [44], [74], [84], [105], window expiration

follows two main principles, which can be inferred from product source code and

documentation. In a model we call IDS-A (e.g., Snort [105]), window expiration at

subnet s occurs every ∆s time units and resets the state of all scanning sources.

In a model we call IDS-B (e.g., Bro [12]), the window of each source i resets ∆s

time units following the last target hit by i. Due to its selective tracking of sources

that continuously scan, IDS-B performs much better than IDS-A at detecting slow

scanners.

Equipped with the formalization above, we next introduce the concept of stealth

cover time (SCT) T s
X , which is the minimum scan duration T that allows a particular

Internet-wide scan pattern X to avoid detection at s. A scanner is then called stealth-

optimal (SO) if it simultaneously minimizes the SCT of all CIDR subnets under both

IDS-A/B. To examine the specific performance improvements and whether developing

a stealth-optimal algorithm is worth the effort, we first derive its expected gains over

the existing patterns and assess whether they are significant.
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4.1.2 Analysis

To gauge the relative stealth of different methods, define pattern X to be k-faster

in s than Y if T s
X = T s

Y /k, i.e., its SCT is k times smaller than Y ’s. We start the

analysis by deriving the probability that both IDS-A/B detect the commonly used

permutations in scanning (i.e., IP-sequential and uniform) under pre-permutation

[10], [77] and post-permutation [8], [35], [58], [59], [62], [83], [120], [119], [127] splits.

Results show that the number of botnet IPs m makes no difference when used with a

pre-permutation split; however, under a post-permutation split both methods become

m-faster with m IPs in every subnet s.

This suggests a simple technique that may significantly increase the stealthiness

of a botnet. In this method, each infected host that does not reside behind a NAT

uses ARP to sniff unused IPs on its subnet and alias them to its own NIC. Assuming

the number of stolen IPs is j, the scan from this host becomes not only j-faster (i.e.,

can increase the speed by a factor of j for the same level of detection), but also much

harder to map to the correct host without administrator access to ARP packets and

MAC-layer addresses.

We next derive the SCT of both IP-sequential and uniform algorithms, showing

that the latter is generally much stealthier than the former; however, we also identify

cases when the SCT of the uniform permutation scales quadratically with subnet size

and may exceed that of IP-sequential in sufficiently large networks. In fact, we show

examples where IP-sequential is stealthier than uniform against IDS-A in all networks

larger than /20 and against IDS-B in those larger than /21. Also, as expected, both

permutations find IDS-B significantly harder to avoid and require a constant-factor

slower scanning.

From this analysis, we additionally find that SO patterns not only similarly
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benefit from ARP hijacking, but are also orders of magnitude faster than uniform

under all practical conditions and can cover both IDS-A/B equally fast. In /16 subnets

and default Bro settings, stealth-optimal scanning is 1,209-faster than uniform, which

is equivalent, for example, to a reduction in scan duration T from 3.3 years to 1 day

while keeping the detection probability the same. Assuming T = 24 hours and

networks no larger than a /16, SO can avoid the open-source version of Snort [105]

using just m = 12 IPs, Bro [12] using 24 IPs, and Bro TRW [12] using 455 IPs,

assuming their respective default settings. With a 12K-node botnet, where each host

hijacks just 10 local IPs using ARP, a stealth scanner can cover the Internet in one

day and remain undetected in all /8 networks operating Snort/Bro/TRW with their

default parameters.

This observation prompts us to examine whether it is possible to achieve stealth

optimality in practice and at what cost/overhead.

4.1.3 Stealth Scanner

We next design a class of stealth-optimal algorithms and test them over the Internet.

We first show that SO patterns must incorporate not only a new permutation, but

also a different split and schedule. The general class of SO permutations contains

2n−1 unique elements, where n = 232 is the size of IP space, and requires 512 MB of

seed state to be communicated to each scanning host. Given this overhead, one may

consider these methods impractical and unthreatening for the Internet. However, we

also show that an attacker can use a subset of all SO permutations and distribute

state to each scanning host using just 12 bytes.

The overhead of actually generating these SO permutations consists of two arith-

metic operations and two RAM lookups, whose combination runs at over 20M per

second on commodity hardware. Both split and schedule are local modifications ap-
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plied by individual source IPs to the main permutation delivered to them from the

botmaster and incur very little additional cost. The new split algorithm ensures that

each subnet s sees all m source IPs in a round-robin fashion, while the new schedule

guarantees optimal scanning against IDS-B. Both consume almost no CPU unless

scanning rates are exorbitantly high.

We test the developed stealth-optimal framework in three Internet-wide HTTP

(port 80) scans using T = 24 hours and observe how SO patterns impact the gener-

ation of scanning reports at the SANS Internet Storm Center [94]. Our results show

that almost 40% of the reports can be suppressed using SO patterns aimed at IDS-B

rather than IDS-A. This not only suggests that IDS-B is actively deployed in the In-

ternet, but also unveils the optimal parameters for reducing the detection footprint.

These parameters agree with our analysis and support the proposed models.

We finish the chapter by proposing a simple, yet effective, model of IDS operation

that dynamically changes ∆s, which results in reduced effectiveness of SO scanners.

4.2. Related Work

Significant effort has been expended in the area of designing better IDS to detect

malicious behavior, which can be broadly classified into three thrusts. The first is

signature-based detection [46], [79], [90], which checks incoming packets against a

database of known exploits. The second, anomaly-based detection [31], [50], [106],

relies on deviation in network traffic from an established normal pattern. The third

approach we call pattern-based detection [43], [95], [113], which depends on inherent

qualities of scanners (e.g., excessive failed connections).

The area of IDS avoidance, which is the focus of this chapter, can be partitioned

along the same three dimensions. The most common directions for evading IDS
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involves sending malicious packets that do not match the signature database [48],

[77], [85], [101]. Public tools such as nmap [77] rely on incorrect reconstruction

of the packet by IDS (e.g., IP-level fragmentation [85], incorrect checksums, TTL

tricks [101]), as well as the ability of the attacker to hide its identity and/or packet

contents (e.g., source-address spoofing, confusing IP options and flags [85], [101], and

polymorphic worms [48] that modify the payload of every packet).

The second IDS-avoidance approach relies on concealing abnormal communica-

tions to bypass anomaly detectors [27], [110], [123]. Attackers can mimic the normal

traffic of exploited applications (e.g., matching sending rate [27] and pattern of pack-

ets sent [110]) or modify scan rates [123] to avoid appearing like a propagating worm.

The last direction, which is the topic of this chapter, works against pattern-based

detectors by leveraging the specifics of IDS algorithms and designing scan patterns

that never reach a detection threshold. We are aware of only one effort in this area, in

which [45] alternates between known alive hosts and unexplored space to manipulate

the TRW [43] detection algorithm.

4.3. Formalizing Scanning

In this section, we outline the goals of a large-scale scanner, introduce three funda-

mental elements of a scan that determine its performance, and set forth assumptions

on the various types of IDS. We then discuss stealth-optimal scans and their proper-

ties.

4.3.1 Scan Objectives

Assume F = {0, 1, . . . , n} is the IPv4 address space, where n = 232, and S is the set

of all CIDR networks. As discussed in [108], one of the most effective penetration
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Fig. 17. Illustration of permutation/split (m = 3).

models used by an attacker (i.e., the Flash worm) relies on a two-phase scan/infect

approach. The first phase scans F using m source IPs in some set M (e.g., a subset

of the attacker’s botnet) to build a list of vulnerable targets V . The second phase uses

zombie hosts in another set M′ to attempt infection of V using a new exploit (either

simultaneously or at some later time). Sets M and M′ may overlap if exposure

during the first phase does not reduce the infection performance of each IP during

the second phase.

As there is no need for newly infected hosts to scan the entire Internet, they

perform a quick scan of the local network (e.g., the corresponding BGP prefix) and

then stop. Due to the short duration of the infection phase (hours rather than weeks)

and limited local scanning, this attack is difficult to stop once it starts and infections

are hard to detect after phase two is over.

For a given budget m and fixed scan duration T , we assume the attacker’s goal

is to minimize its detection probability at each CIDR subnet s (i.e., maximize its

stealthiness) during the first phase of the attack. The problem of delivering malicious

payload is implementation/exploit-dependent and outside the scope of this chapter.

Due to the static nature of set M, we are also not concerned with sub-allocating the
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scan space dynamically to each newly infected host as commonly studied in worm

propagation [62].

4.3.2 Scan Patterns

Any Internet-wide scan pattern can be decomposed into three principle elements –

permutation, split, and schedule. The existing literature [8], [10], [35], [68], [70], [82],

[83], [97] has glanced over the first two elements, but without any formalization or

analysis. Given a list of items F , a permutation is a one-to-one mapping function

g1 : F → {1, 2, . . . , |F|} that simply shuffles the elements in F . We often denote

the permuted sequence by F ′ = g1(F). Permuting the IP space is highly beneficial

because it reduces the instantaneous load on target networks, increases delays between

packets entering IDS, and generally lowers the detection probability. It can also

control randomness and correlation among the destinations within each s.

We define a split as a many-to-one function g2 : F → M that assigns the elements

of list F to scanner IPs. One can view this as a partition of F into non-overlapping

lists F1, . . . ,Fm, where Fi is given to host i ∈ M. If each of Fi is an ordered subset

of F , we call this arrangement a block-split. In the context of the Internet, a pre-

permutation scanner [10], [77] first applies partitioning g2 to F and then permutes

each Fi using some algorithm g1 to produce the final assignment F ′
i = g1(Fi) of

source i. A post-permutation scanner [8], [35], [58], [59], [62], [83], [119], [120], [127]

first applies permutation g1 to F and then partitions list F ′ using g2 into F ′
1, . . . ,F ′

m.

This is schematically shown in Fig. 17, where the pre-permutation scanner (left side)

uses a block-split, while the post-permutation one (right side) does not.

The final issue is to determine how each host i probes its target set F ′
i so as

to complete the scan by a certain time T . To allow i to periodically send packets

faster or slower than its average rate ri = |F ′
i |/T , define a schedule to be a many-
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to-one function g3 : F ′
i → [0, T ] that decides the exact time instances at which i hits

each of its assigned targets. While all existing scanners draw elements from F ′
i with a

constant inter-probe delay 1/ri, additional (bursty) patterns will be discussed shortly.

4.3.3 Window-based IDS

To understand the relationship between detectability of a scan and its probing rate

r, one first requires a model of IDS. In what follows, we formalize two window-based

detection rules that are loosely based on popular IDS packages [12], [44], [74], [105]

and firewall-log analyzers [84]. Since scalability [56] generally requires that IDS expire

state and operate in windows of finite size, other high-performance IDS designs are

also likely to fall under one of the two categories studied here.

Our first model, which we call IDS-A, stems from the rules of Snort [105] and

its commercial implementations [44], [74]. For each source IP i ∈ M sending packets

into a given subnet s ∈ S protected by an IDS, define Cs
i (t) to be the count of unique

targets seen by the IDS from i in the interval [0, t]. Since keeping infinite history

of hosts contacted by i incurs substantial RAM/CPU overhead and fails to properly

discount outdated information, IDS-A periodically resets i’s state as illustrated in

Fig. 18. Here, random process Cs
i (t) increases by 1 for each new target hit by i,

returns to state 0 every ∆s time units, and absorbs in some pre-defined threshold

state as ≥ 1 that triggers an IDS alarm or some internal estimation algorithm (e.g.,

TRW [43], CBCRL [95]), which we assume always detects the scanner once invoked.

Our second model, which we call IDS-B, is derived from the techniques used by

Bro [12] and certain firewall-log analyzers [84]. In this method, Cs
i (t) represents the

number of unique unresponsive targets hit by i in the interval [0, t]. Unlike IDS-A,

this model expires i’s state only if it does not probe any new unresponsive targets for

∆s time units. Assuming the worst-case scenario where none of the targets respond,
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Fig. 19. Process Cs
i (t) of IDS-B.

this logic can be described by Fig. 19, where the expiration timer of i resets to ∆s

upon each state transition.

For the same parameter set, IDS-B is stricter than IDS-A in the sense that any

scanner detected by the latter is always detected by the former. Similarly, a scanner

avoiding IDS-B always avoids IDS-A. However, IDS-B achieves this improvement

at the expense of maintaining a separate timer for each i and stochastically higher

overhead (i.e., longer lists of seen targets) in steady-state. Default parameters (∆s, as)

of deployed open-source and commercial IDS-A/B are summarized in Table XIII.

4.3.4 Stealth

We are now ready to formalize the detectability of a scan and its stealthiness. Let

I ⊆ S be the set of all IDS-equipped networks, where each element of I is a full CIDR

block (often written in the /x notation). Then, we have the following classification.
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Definition 1. A network s ∈ I is called size-trivial if m(as − 1) ≥ |s|, unavoidable

if as = 1, and normal otherwise.

Size-trivial subnets can be covered with fewer than as packets per source IP,

which means they pose no threat of detection if the scanner can probe them while

perfectly load-balancing between its IPs in M. In contrast, unavoidable networks

raise an alarm on the very first probe (e.g., darknets, personal firewalls) and thus

cannot be avoided in practice by any scanner. Define IST , IU , IN to be pair-wise

non-overlapping sets of respectively size-trivial, unavoidable, and normal networks in

I.

Define r = n/T to be the scanning rate. Then, for each source IP i ∈ M, let

τ si = inf{t > 0 : Cs
i (t) = as|Cs

i (0) = 1} (2)

be the amount of time it takes s to detect i (i.e., the hitting time of Cs
i (t) onto state

as after the IDS sees the first packet from i). Let As
i (r) be an indicator variable

of detection event τ si < T and As(r) =
∑

i∈M As
i (r) be the number of source IPs

detected by subnet s ∈ I in [0, T ]. Then, ρs(r) = P (As(r) ≥ 1) is the probability

that network s detects the scan at rate r.

Assume X is a pattern that scans all IPs in F . Then, define the stealth-cover

time (SCT) T s
X of a normal subnet s ∈ IN to be the minimum scan duration T that

allows X to avoid detection at s. Recalling that r = n/T , observe that T s
X = inf{t ≥

0 : ρs(n/t) = 0}. Note that the concept of SCT applies only to normal subnets since

size-trivial networks can be scanned without detection in T s
X = 0 and unavoidable

networks require T s
X = ∞, neither of which is helpful in establishing the performance

of scanning algorithms.

Definition 2. A scan pattern X is called k-faster in s ∈ IN than Y if it exhibits k
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Table XIII. Parameters of common IDS

Type Name ∆s (sec) as

IDS-A Snort [105] 60 5

Juniper [44] 120 50

NIKSUN [74] 300 200

IDS-B Bro [12] 600 20

Bro TRW [43] 1800 4

Psad [84] 3600 5

times smaller SCT, i.e., T s
X = T s

Y /k. It is called IP-scalable if it is m-faster in all

s ∈ IN with m source IPs than with one.

It is usually safe to assume that the scanner remains oblivious to individual IDS

parameters (∆s, as) and CIDR subnet boundaries in set I. However, from the analysis

of common IDS implementations (e.g., Bro-TRW [43] requires at least 4 samples for

its estimator), one may possess a uniform lower bound β on parameter as. In that

case, we call a scanner β-aware if 2 ≤ β ≤ as holds simultaneously for all normal

subnets s ∈ IN and no larger bound is known. If β = 2, we call the algorithm unaware

since it benefits from no additional knowledge.

Definition 3. A β-aware scan pattern X is called stealth-optimal (SO) if for both

IDS-A/B it 1) achieves ρs(r) = 0 in all size-trivial networks; and 2) minimizes the

SCT of all normal subnets, i.e.,

∀s ∈ IN : T s
X = min

Y
T s
Y (3)
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4.3.5 Existence

To understand optimal patterns, we next derive a lower bound on minY T s
Y in (3)

and show that there exists a local (i.e., as seen by each s) arrival pattern of packets

that achieves it under both IDS-A/B. Later in the chapter, we develop a scanner that

implements this pattern globally (i.e., simultaneously in all CIDR subnets).

Theorem 3. The SCT of s ∈ IN is lower-bounded by

min
Y

T s
Y ≥ |s|∆s

m(β − 1)
. (4)

Proof. For a given scan duration T , the average number of probes sent from source

IP i to s per ∆s-interval is bi = |F ′
i(s)|∆s/T , where F ′

i(s) is the set of addresses in s

assigned to i. From the pigeonhole principle, observe that if bi is larger than β − 1,

then there will be at least one ∆s-interval with β targets. Since the scanner does not

know the actual as, it must assume that detection is avoided if and only if bi ≤ β− 1

for all i, i.e.,

max
i∈M

|F ′
i(s)|∆s

T
≤ β − 1, (5)

where
∑

i∈M |F ′
i(s)| = |s|. Therefore, the SCT of any method Y must be bounded

T s
Y ≥ maxi∈M |F ′

i(s)|∆s

β − 1
≥ |s|∆s

m(β − 1)
, (6)

which leads to the desired result in (4).

To show that SO patterns exist locally, suppose each source i shapes its traffic

to s into bursts of β − 1 packets separated by an intra-IP gap

δsintra =
Tm(β − 1)

|s| . (7)

As illustrated in Fig. 20(a), this pattern initially raises target count Cs
i (t) to
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Fig. 20. Stealthy β-aware probing seen by s.

β−1 and then follows it up with the proportionally-stretched gap in (7). Detection is

avoided for IDS-B if and only if δsintra ≥ ∆s. As discussed earlier, IDS-B is stricter than

IDS-A, which means that the scanner also automatically avoids IDS-A. Combining

the two cases and solving δsintra ≥ ∆s for T , this pattern exhibits the same SCT for

both types of IDS

T s
O =

|s|∆s

m(β − 1)
, (8)

which is optimal as it equals the lower bound in (4). While the existence of global SO

patterns may not be immediately obvious, they will be shown later in the chapter.

Examining (8), notice that the optimal SCT is a linear function of subnet size

|s| and all IDS parameters, unlike the uniform permutation (studied in the next

section), whose SCT sometimes scales as |s|2. Furthermore, SO patterns are not only

IP-scalable, but also (β − 1)-faster than any unaware pattern.

4.3.6 Improvements

One drawback to the SO pattern is its inability to control the distance between probes

from different IPs, which for large m (e.g., hundreds or thousands) may lead to non-

trivial spikes in flow and packet intensity at individual subnets. Since β is usually

small (i.e., no larger than 4 from Table XIII), normal intra-burst spikes are of much
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less concern. To prevent IP-burstiness from raising suspicion, triggering DoS filters,

and potentially losing packets due to congestion, we next define a more stealthy class

of scan algorithms.

Definition 4. SO patterns that minimize the burstiness of arriving traffic at each

s ∈ S are called smooth and stealth-optimal (SSO).

As shown in Fig. 20(b), SSO maximizes the inter-IP delay between adjacent

bursts and keeps it constant at

δsinter =
T (β − 1)

|s| . (9)

Since size-trivial networks can never detect SO scanners, SSO can additionally

reduce burstiness within such networks by spacing its intra-IP probes as far as possible

(i.e., utilize unaware probing for s ∈ IST ).

Finally, the last desirable feature of a scanner is random sampling of the internal

space within each subnet s. To properly capture this, define for any list L operator bL

to retain the lower b bits of its elements. Then, for all valid permutations, the items

in bF ′ are distributed uniformly in [0, 2b− 1]; however, this sequence may be strongly

correlated and/or almost deterministic, which is highly undesirable as it attracts the

attention of administrators and tools trained to react to obvious scanning patterns.

Definition 5. SSO patterns for which bF ′ approximates an iid sequence of uniform

variables in [0, 2b−1] for all 1 ≤ b ≤ 32 are called uncorrelated, smooth, and stealth-

optimal (USSO).

4.4. Analysis of Existing Methods

Our goal in this section is to analyze two popular methods for scanning the Internet

– IP-sequential [3], [41], [59] and uniform [62], [82], [83], [108] – and compare them
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to stealth scanners defined in the previous section. We not only derive the detection

probability ρs(r) for both IDS-A/B, but also develop a unifying modeling framework

that covers both pre/post-permutation splits.

4.4.1 IP-sequential

Our first studied method, which we call IP-sequential, does not permute the IP space

(i.e., F ′ = F), uses a block-split that partitions F into m equal-size chunks, and

sends packets from each i with constant spacing δ = 1/ri = Tm/n. Note that both

pre/post permutation splits are equivalent for this method and each subnet s (smaller

in size than n/m and not falling on the boundary between adjacent source IPs) is

scanned by a single i ∈ M assigned to it.

The IP-sequential permutation is guaranteed to avoid IDS-A if and only if each

source allows no more than β−1 inter-packet gaps within any interval [t, t+∆s), which

is equivalent to δ(β − 1) ≥ ∆s. For IDS-B, this condition is much more conservative

since none of the inter-packet delays δ can be smaller than ∆s. Combining the two

cases, we have the IP-sequential SCT as

T s
Q =

∆sn

mζ
, where ζ =















β − 1 IDS-A

1 IDS-B

. (10)

Notice from (10) that sequential scanning is IP-scalable and (β−1)-faster against

IDS-A than IDS-B. However, unlike SO, this pattern does not automatically avoid all

size-trivial networks. Only subnets with |s| < as fall into this category and m cannot

be used to expand it. In terms of SCT performance, sequential is n(β− 1)/ζ|s| times

slower than SO in each s. Given a /16 subnet with Bro’s default β = 4, SO is

65, 536-faster than IP-sequential against IDS-A and 196, 608-faster against IDS-B.
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In terms of probing rates, IP-sequential scans each s at

max
( n

mT
,
|s|
T

)

(11)

packets per second (pps). Depending on the scan duration T , this rate may become

quite noticeable in comparison to the background traffic and may lead to easy detec-

tion. For T = 24 hours, the first term of (11) is 49.7/m Kpps, regardless of the target

subnet size. For the same T , the SO pattern’s rate is max(n/m|s|, 1) times smaller at

s. For m = 10, this ratio is 6, 553 for /16 networks (i.e., 0.76 pps) and 1.67M for /24

subnets (i.e., one packet every 337 seconds). However, if both the botnet and target

network s are large (i.e., m|s| ≈ n), the scan rate of IP-sequential might not be too

far from optimal, which is possibly one of the reasons for its widespread use in the

Internet [3].

4.4.2 Uniform Pattern

The main drawback to the sequential permutation is that it does not explore other

subnets before hitting the same s with repeat packets. Uniform scanning improves

upon this basic algorithm by spreading packets between random subsets of the In-

ternet. We call a permutation function g1 on list F uniform if the probability that

each i ∈ F moves into position j ∈ [1, |F|] is 1/|F|. All existing uniform scanners

use block-split and constant inter-packet delays δ = Tm/n.

Consider a particular subnet s with |s| IPs that need to be scanned in [0, T ].

The uniform permutation randomly scatters these |s| targets throughout a discrete

set D, which equals F ′
i for pre-permutation, where i is the host scanning s, and F ′

for post-permutation. This is illustrated in Fig. 21, where the IPs in s are marked
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Fig. 21. Uniform model (m = 4, |s| = 4).

with black dots and all the remaining IPs are gray. Defining

ω =















1 pre-permutation

m post-permutation

(12)

the size of set D is |D| = ωn/m.

Assuming n ≫ 1, the shuffle can be viewed as occurring in time rather than inside

a discrete set D. This transformation simplifies understanding of the derivations

below and does not impact any IDS detection probabilities. Specifically, imagine that

source IPs scan the Internet sequentially (rather than concurrently) as shown at the

bottom of Fig. 21. Then, the time instances when s sees probes from M can be

viewed as uniformly random in the time interval [0, ωT ].

4.4.3 Uniform Detection Probability

We start by analyzing how the uniform pattern delivers packets to individual networks

and develop a simple model for the detection probability in IDS-A. We later extend

this result to IDS-B.
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Theorem 4. For T ≫ ∆s, the probability that a normal subnet s ∈ IN with IDS-A

detects a uniform scanner is

ρsA(r) ≈ 1−
(

as−1
∑

j=0

(|s|
j

)

qj(1− q)|s|−j
)1/q

(13)

where q = ∆s/ωT .

Proof. From the discussion in Section 4.4.2 and Fig. 21, each address from s has

the same probability q = ∆s/ωT of falling into a given bin of size ∆s. Ignoring the

last potentially incomplete bin of each user (which we can do since ∆s ≪ T ), the

number of probes sent to s in bin [j∆s, (j + 1)∆s) ⊆ [0, ωT ] is a binomial variable

W s
j ∼ B(|s|, q). Define φs

bin = P (W s
j ≥ as) to be the probability that s detects the

scan in a given bin j. Since
∑1/q

j=1 W
s
j = |s|, the variables from different bins are

dependent; however, for large T/∆s, one can treat them as approximately iid, which

leads to

ρsA(r) ≈ 1− (1− φs
bin)

1/q. (14)

Substituting the CDF of W s
j in (14), we get (13).

Fig. 22 compares simulations to (13) as four of the main parameters of the

model change. Numerical results indicate that (13) is accurate to within 1% as long

as T ≥ 100∆s. Part (b) shows one example where T = 10∆s is insufficiently large,

which results in some discrepancy for values of as ∈ [30, 35].

From the analysis of (13), observe that ρs(r) is a function of product ωT , which

automatically means that uniform scanning is IP-scalable against IDS-A if and only

if it uses post-permutation split. Otherwise, the detection probability stays constant

regardless of m and the scanner ends up wasting IPs without improving its stealthi-

ness.

We now turn our attention to IDS-B and its detection probability. Our first step
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Fig. 22. Comparison of post-permutation IDS-A model (13) to simulations (default

parameters |s| = 28,∆s = 60 sec, as = 4, and m = 1).
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is to understand inter-probe delays {Y s
k }k seen by s from M in our continuous model

in Fig. 21.

Theorem 5. Inter-probe delays Y s
1 , . . . , Y

s
|s|−1 are identically distributed random vari-

ables with E[Y s
k ] = ωT/|s| and the following CDF tail

P (Y s
k ≥ y) =

(

1− y

ωT

)|s|

, 0 ≤ y ≤ ωT. (15)

Proof. First, notice that the uniform permutation is equivalent to randomly distribut-

ing |s| points on the ring of length ωT . Since there are |s| inter-probe gaps on the

ring, their mean is simply E[Y s
k ] = ωT/|s|. Second, the probability that a given

address from s falls in the interval [t, t+ y) ⊆ [0, ωT ] is y/ωT . Then, the probability

that none of the addresses from s land into [t, t+y) is P (Y s
k ≥ y) = (1−y/ωT )|s|.

We omit simulations showing that (15) is very accurate. Instead, we define

χs = P (Y s
k < ∆s) and proceed to the next result.

Theorem 6. For (|s| − as)(1− χs)/m → ∞, the probability that IDS-B at a normal

subnet s ∈ IN detects a uniform scanner is asymptotically

ρsB(r) ≈ 1− e−(|s|−as+1)(1−χs)χ
as−1

s . (16)

Proof. Define Js
k to be an indicator variable of event Y s

k < ∆s. Then, P (Js
k = 1) =

1 − P (Js
k = 0) = χs. Since IDS-B needs as − 1 consecutive 1s in set {Js

k}k to arrive

into state as, define

Xs
k =















1 Js
k = Js

k+1 = . . . = Js
k+as−2 = 1

0 otherwise

(17)

to be an indicator of a detection event occurring at time k + as − 2. Denoting by

l = |s|−as+1 the size of set {Xs
k}k, we have that Xs =

∑l
k=1X

s
k is the total number
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of detections in [0, ωT ] and ρs(r) = P (Xs ≥ 1).

Before deriving this probability, note that we need to analyze only those consec-

utive runs of 1s in sequence {Js
k}k that follow a 0 and start no later than position l.

Indeed, supposing that this set contains Z zeroes, Xs is non-zero if and only if any of

the Z runs of 1s that immediately follow a zero has length at least as − 1. All other

runs provide redundant information and can be removed from consideration.

Define Vj to be the value of Xs
k following the j-th zero in set {Js

k}lk=1. We then

obtain

Xs =
Z
∑

j=1

Vj. (18)

From the Chen-Stein theorem [4] and treating set {Js
k}k as approximately iid,

variable Xs converges to the Poisson distribution with rate λ = E[Xs] = E[Z]E[V s
1 ]

as E[Z] → ∞. Noticing that E[Z] = l(1 − χs) and E[V s
1 ] = χas−1

s , we get λ =

l(1− χs)χ
as−1
s , which immediately leads to ρs(r) ≈ 1− e−λ in (16).

We should make three observations about this derivation. First, for small |s| and

large as, the dependency in set {Js
k}k may be strong enough for ρs(r) to disagree with

the model (which arises because
∑

k Y
s
k ≤ ωT and set {Y s

k }k is not iid); however,

in the limit (16) is exact. Second, we have replaced Z with its expectation in the

Chen-Stein method; however, simple but tedious math shows that E[eaZ ] for binomial

Z behaves almost the same as eaE[Z] as E[Z] → ∞. Finally, although each delay Y s
k

may span several source IPs, condition (|s| − as)(1 − χs)/m → ∞ ensures that each

IP gets enough 0s in {Js
k}k to invoke the Chen-Stein theorem and keeps the overall

result asymptotically accurate.

Fig. 23 compares simulations to (16) under the same default conditions as in

Fig. 22. Results show that T,m, and |s| do not influence the accuracy of the model
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Fig. 23. Comparison of post-permutation IDS-B model (16) to simulations (default

parameters |s| = 28,∆s = 60 sec, as = 4, and m = 1).
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if threshold as is small compared to |s| (i.e., the error is below 0.1% for as = 4

and subnet sizes as small as 28). However, significantly larger as create too much

dependency among consecutive delays {Y s
k }k leading up to detection and result in a

more serious mismatch with the model (shown in part (b) of the figure). Increasing

|s| or lowering as fixes the problem.

As with IDS-A, uniform scanners are IP-scalable against IDS-B if and only if

they use post-permutation split, which can be inferred from the ωT term in (15).

Since our analysis shows that pre-permutation carries no benefit, we omit its further

discussion in the rest of the chapter.

4.4.4 Uniform Cover Time

We next examine the time needed for the uniform permutation to cover a particular

subnet. In order to determine this metric, we first relax the definition of SCT since

uniform scanners can never achieve ρs(r) = 0 with finite T . For a patternX, define the

ǫ-SCT T s
X(ǫ) of a normal subnet s ∈ IN to be the minimum duration T in whichX can

reduce the detection probability at s below ǫ, i.e., T s
X(ǫ) = inf{t ≥ 0 : ρs(n/t) ≤ ǫ}.

We similarly relax the definition of k-faster and IP-scalable to operate in terms of

ǫ-SCT instead of SCT.

This leads to the following approximation.

Theorem 7. Define c = 1/(β − 1). Then, for ǫ → 0 and |s| ≫ β, the ǫ-SCT of a

β-aware uniform permutation is asymptotically

T s
U(ǫ) ≈

α|s|∆s

ω















eη1(β!)−c IDS-A

eη2η−1
3 IDS-B

(19)
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where

α =
( |s|
− log(1− ǫ)

)c

, η1 = W (−c(β!)c/α), (20)

η2 = W (−c/α), η3 =
∞
∑

j=0

(αeη2)−j

j + 1
, (21)

and W (.) is Lambert’s function.

Proof. Since ρs(r) = ǫ is asymptotically small, one can make a number of approxi-

mations that greatly simplify inversion of (13) and (16). For small x, we use Taylor

expansions (1− x)y ≈ e−xy, 1− e−x ≈ x, and log(1− x) ≈ −x. We also neglect β in

comparison to |s|, i.e., |s| − β ≈ |s|.

Without a-priori knowledge of as, a uniform scanner must assume that counter

Cs
i (t) reaching β triggers detection for both IDS-A/B. This means (13) and (16) must

undergo inversion with as replaced by β. For IDS-A and constant |s|, observe that

ǫ → 0 implies q → 0 and the leading term of φs
bin is

φs
bin ≈

(|s|
β

)

qβ(1− q)|s| ≈
(|s|
β

)

eβ log q−|s|q. (22)

Recalling that ρsA(r) ≈ 1− (1− φs
bin)

1/q, we have

log(1− ǫ) ≈ log(1− φs
bin)

q
≈ −φs

bin

q
. (23)

Using (22) in (23) and taking log of both sides, we get

log
(−β! log(1− ǫ)

|s|β
)

≈ (β − 1) log q − |s|q. (24)

This equation is of the general form ay+ b log y = c, where y = q, whose solution

using Lambert’s W (.) function is given by

y = exp
[

−W
(aec/b

b

)

+
c

b

]

. (25)
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Fig. 24. Relative error between the binary-search SCT and its closed-form approxima-

tions (|s| = 216,∆s = 60 sec, m = 1).

Applying this result to (24) and recalling that q = ∆s/ωT , we arrive at the first

line of (19).

For IDS-B, observe that (16) can be written as

− log(1− ǫ) ≈ |s|(1− χs)χ
β−1
s . (26)

Since χs → 0, we have log(1− χs) ≈ −χs and

log
(− log(1− ǫ)

|s|
)

≈ −χs + (β − 1) logχs, (27)

which again has shape ay + b log y = c for y = χs. Solving (27), we get χs = e−η2/α.

Expanding χs = 1− (1− q)|s| and applying log to both sides, we have

log(1− e−η2

α
)

|s| ≈ log(1− q) ≈ −q =
−∆

ωT
. (28)

Substituting − log(1 − z) = z(1 + z/2 + z2/3 + . . .) with z = e−η2/α into (28),

we end up with the second line of (19).

Fig. 24 shows the relative error between approximations (19) and the corre-
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sponding ǫ-SCT found using binary search on models (13), (16) as ǫ → 0. For β = 2,

the latter is so close to the former that their relative difference is initially less than

10−5, which falls below Matlab’s default precision for binary search and explains why

it does not improve as ǫ → 0. The other two curves in each subfigure show monotonic

decay as a function of ǫ, with the IDS-B model generally agreeing better with the

original than IDS-A. This arises from the extremely crude approximation in Theo-

rem 7 to the binomial distribution in (13). For larger β, the error is generally more

pronounced and decays slower since the magnitude of the omitted terms is higher;

however, in all cases in the figure it stays below 2.4% (including ǫ = 0.5).

4.4.5 Discussion

We finish this section by analyzing the relative performance of the various algorithms.

As ǫ → 0, the numerous constants in (19) disappear. Specifically, α becomes large

and η1 → 0, η2 → 0, η3 → 1, which leads to

T s
U(ǫ) ≈

|s|1+c∆s

ωγǫc
, where γ =















(β!)c IDS-A

1 IDS-B

.

First, observe that uniform is SCT-slower against IDS-B by a factor of (β!)c than

against IDS-A. This term is always no smaller than 2 and is approximately (β/e)1+c

for β ≫ 1. While for IP-sequential this ratio is always β − 1 and for SO it is 1, the

uniform permutation splits these two extremes somewhere in the middle as β → ∞.

Second, notice that T s
U(ǫ) is proportional to |s|1+c, which may scale quite aggres-

sively as |s| becomes large (e.g., quadratically for β = 2). Because of this, uniform

becomes SCT-slower than IP-sequential for any s with |s| > n0, where

n0 =
(nγǫc

ζ

)
β−1

β

, (29)
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which has not been previously documented and is quite counter-intuitive.

For β = 2, this translates into n0 =
√
γnǫ. Assuming the desired detection prob-

ability ǫ = 10−3 (i.e., on average, one in 1, 000 subnets detects the scan), IP-sequential

is faster against IDS-A on any network with more than 2, 930 IPs and against IDS-B

with more than 2, 072 IPs (i.e., these roughly map to /20 and /21 subnets). However,

as β increases, (29) quickly rises as well. For β = 4, the corresponding thresholds

are 14.1M (IDS-A) and 9.9M (IDS-B), which are large enough (i.e., /8 or bigger) to

conclude that uniform is superior to IP-sequential in all but a handful of cases. Its

average probing rate |s|/T of each s is also much better than IP-sequential’s.

Third, even though for some scan patterns two sets of IDS-A parameters are

equivalent if ratio ∆s/(as−1) (i.e., the average allowed gap between packets) remains

constant, this is not the case against the uniform permutation. Lowering ∆s while

keeping the ratio constant actually increases the uniform cover time and makes IDS-

A perform better at detecting the scanner. Thus, for example, combination (15, 2) is

much stricter than Snort’s default (60, 5) even though both allow on average 1 scan

packet per 15-second interval.

Our final observation is that the stealth-optimal pattern is

π(ǫ) =
T s
U(ǫ)

T s
O

=
|s|c(β − 1)

γǫc
(30)

times SCT-faster than uniform. This ratio is plotted in Fig. 25 for two subnet sizes.

In both subfigures, (30) for IDS-A starts at |s|/2ǫ for β = 2 and converges toward e

as β → ∞. For IDS-B, it starts at double the IDS-A value and never drops below

its global minimum π0 = e log(|s|/ǫ) achieved at β0 = π0/e + 1. This shows that

regardless of β, the SO pattern is at least π0-faster against IDS-B than uniform. For

the examples in the figure, this is 33.8 and 48.9, respectively.

In summary, this section has shown that the uniform pattern performs signif-
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Fig. 25. Ratio π(ǫ) for ǫ = 10−3.

icantly worse than might have been expected, especially when β is small. For the

default β = 4 and ǫ = 10−3 used in this section, SO scanners in /16 subnets are 419-

faster than uniform when facing IDS-A and 1,209-faster when facing IDS-B, which

leads to our next topic of how to leverage these findings in practice and achieve

SCT-optimality globally.

4.5. Stealth Scanning

To show that a stealth-optimal scanner is possible and test it in practice, this section

develops permutation, split, and scheduling algorithms for achieving USSO simulta-

neously in all CIDR subnets. To keep track of the various pieces and how they map

to our earlier definitions, assume SO(β,m) is the set of stealth-optimal patterns for

some β ≥ 2 and m ≥ 1. We define sets SSO(β,m) and USSO(β,m) similarly.

4.5.1 Permutation

Our first goal is to tackle the simplest case SO(2, 1). We start by formulating a

condition that is simpler to satisfy, show its equivalence to SO(2, 1), and then develop
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methods that achieve it.

Definition 6. For s ∈ S, any permutation that returns to s with a period of n/|s|

is called IP-wide at s. A permutation that achieves this for all s is called globally

IP-wide (GIW).

It is not difficult to show that a permutation covers every s in time |s|∆s if and

only if it is GIW. Since this SCT is optimal for β = 2 and m = 1, we obtain that set

GIW = SO(2, 1). To implement GIW, visualize permutation F ′ as a binary tree of

depth 32, where target IPs reside in leaves and all edges are labeled with 0/1 bits.

A permutation can be viewed as a process that traverses the tree and accumulates

individual bits along the edges into the next IP. Decisions to move left (L) or right

(R) at internal gateways v depend on their state θv, which must be altered each time

to ensure that all generated IPs are unique. If the state of each visited node is flipped

during traversal, we call this structure an alternating gateway tree (AGT). Fig. 26(a)

shows the bottom four levels of some random AGT whose next generated IP address

ends with bits 011 and the other after that with 101.

Since balanced binary trees have well-defined rules for calculating the offset of

each internal node, AGTs do not require storing child pointers. Thus, their RAM

overhead is (n − 1)/8 = 512 MB needed to store tuple (θ1, . . . , θn−1) and their com-

putational complexity is 26 memory reads/writes (i.e., 52 total) per generated IP

(assuming depth-31 traversal and 64-bit lookups that yield the first 5 levels of the

tree in one RAM access).

Theorem 8. A permutation is SO(2, 1) if and only if it can be realized by an AGT.

Furthermore, |SO(2, 1)| = 2n−1.

Proof. For the first part, induction on the depth of each subnet in AGT shows that

it is equivalent to GIW, which in turn is equivalent to SO(2, 1). For the second part,
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notice that the number of unique AGT permutations is simply the number of unique

seeds (θ1, . . . , θn−1), which trivially equals 2n−1.

Note that 2n−1 is smaller than the total number of permutations of F (i.e., n!),

but nevertheless enormous (i.e., 101,292,913,986). In practice, one does not require this

much diversity in their ability to scan the IP space and other algorithms with fewer

unique permutations are quite sufficient. One reason to seek alternatives is that AGT

requires huge overhead during checkpointing and transmission of state in distributed

implementations. Another reason is that AGT’s CPU complexity is quite high and

leaves room for improvement, which we achieve next.

Recalling that bx is the lower b bits of x, define bx̄ to be bx with its bits reversed

and consider our next result.

Theorem 9. Given a sequence of integers {xk}nk=1, suppose {bxk}k have full periods

for all b = 1, 2, . . . , 32. Then, permutation {32x̄k}k is GIW.

Proof. Assume that s has depth b in the AGT (i.e., n/|s| = 2b) and observe that GIW

patterns must visit all remaining 2b − 1 subnets at depth b before returning to s. In

practice, this means that the permutation must exhibit a full period in the upper

b bits. Since this holds for all s, the full period must be maintained at all depths

1 ≤ b ≤ 32. Reversing the bits in each IP, we replace this condition with a much

simpler one – the full period must hold in the lower b bits, which is equivalent to the

statement of the theorem.

While complex dependency between the elements of {xk}k is possible, we limit

ourselves to Markovian sequences xk = h(xk−1). This keeps scanner overhead minimal

– both state xk and seed x0 consist of one integer and the CPU complexity is that

of computing h(.) and reversing the bits. To maximize the speed of generating the
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Fig. 26. Illustration of AGT and SSO(2, 2).

permutation, one natural choice is to consider only linear h(.), which leads us to the

concept of an LCG (linear congruential generator). Recall that LCGs are recurrences

xk = axk−1 + c, whose well-known properties yield the following.

Theorem 10. An LCG {xk}k satisfies Theorem 9 if and only if a− 1 is divisible by

4 and c is odd.

We call the resulting permutation Reversed LCG (RLCG) and note thatRLCG ⊆

GIW . To efficiently reverse the bits, one can use a 2-byte hash table that flips the

order of bits in 16-bit integers. Therefore, any 32-bit IP can be processed in two

memory lookups (i.e., 26 times faster than AGT); however, the CPU cache often

makes this operation run even faster in practice.

4.5.2 Split

We now augment GIW with a novel split algorithm that puts it into set SSO(2,m).

While block-split has been frequently used in related work, its ability to regulate

the burstiness of different source IPs at each s is lacking. Indeed, block-split can be

visualized as m AGTs assigned to m scanner hosts, where each AGT starts with a

different seed. However, synchronizing the order and schedule of m trees to ensure

perfectly non-bursty operation at each s is a challenging problem.
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To overcome this setback, we introduce a new partitioning scheme called round-

robin (RR) that assigns the j-th element of F ′ to host j mod m. The corresponding

scheduler in each host i ∈ M needs to know the main seed x0, its own position i,

and the total number of scanner IPs m. It then generates the entire sequence {zk}k
locally and hits target zi+jm at time (i + jm)T/n for j = 0, 1, . . . , n/m. Note that

perfect synchronization of start times is unnecessary as inter-IP delays at each s are

quite large (e.g., 337 seconds at /24 and 1.31 seconds at /16 for T = 24 hours).

Since there is only one AGT and inter-packet delays are fixed, RR-split ensures

that any GIW permutation that visits each s /∈ IST with all m IPs is SSO(2,m). We

next examine what values of m ≥ 2 guarantee this condition.

Theorem 11. RR-split with any GIW permutation scans each s with min(|s|,ms)

sources, where

ms =
m

gcd( n
|s|
,m)

(31)

and gcd(a, b) is the greatest common divisor of (a, b).

Proof. Examine permutation {zk}k and assume it is GIW. For a given subnet s,

observe that its IPs appear in this list with a period n/|s|, which follows from the

definition of GIW. Assuming wj ∈ M is the j-th IP that hits s, we have

wj =
(

wj−1 +
n

|s|
)

mod m, j = 1, 2, . . . (32)

This recurrence is an additive-only LCG whose period [9] is given by (31), which

means that the number of sources scanning s is the smaller of its size and ms.

Defining N to be the set of natural numbers, this observation leads to the follow-

ing.
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Theorem 12. RR-split with any GIW permutation is SSO for odd m, i.e., ∀k ∈ N :

GIW/RR ⊆ SSO(2, 2k−1). Furthermore, set SSO(β, 2k) is empty for any k, β ∈ N.

Proof. Since odd m produces ms = m and even m leads to ms ≤ m/2, the first part

of this theorem follows from Theorem 11 and the discussion immediately preceding

it.

The second part we prove by contradiction using β = m = 2 (generalization to

larger values is straightforward and omitted for brevity). Suppose s sees an equally

spaced SSO(2, 2) sequence of packets from two alternating source IPs as shown on

top of Fig. 26(b). Without loss of generality, assume the first packet that arrives to s

is destined to its left child, whose SSO(2, 2) pattern is also drawn in the figure right

below that of s. Now notice that this combination of patterns is mutually exclusive,

which means that SSO(2, 2) cannot be achieved globally by any algorithm.

While GIW permutations coupled with even m and block-split keep the method

in set SO(2,m), such choices of m are quite disastrous with RR-split as they at least

double the pattern’s SCT and make it no longer optimally stealthy. Selecting m as

a power of 2 is the worst choice of all such options as it produces ms = 1 for all s

smaller than n/m.

4.5.3 Schedule

We now build upon GIW/RR to achieve SSO(β, 2k−1) for any β ≥ 2 and k ∈ N. We

first explain this algorithm using the AGT and then transform it to the RLCG. Define

d = 32−⌊log2(m(β − 1))⌋ to be the depth at which subnets become size-trivial. The

main challenge in achieving SSO(β,m) is to send β − 1 back-to-back probes to each

s above level d, but then spread out and use unaware probing below d. Using AGT,

this can be accomplished by traversing the tree β − 2 times and flipping gateways



115

Algorithm 2 SSO(β,m) at each source IP

1: d = 32− ⌊log2(m(β − 1))⌋ ⊲ Size-trivial depth
2: start = rand() ⊲ Initial seed
3: totalB = 0 ⊲ Total bursts generated
4: while start != EOS do
5: for j = 0 to β − 2 do
6: lcg[j].Init(start) ⊲ Set the seed
7: lcg[j].Skip(j2d) ⊲ Jump forward
8: end for
9: for k = 1 to 2d do ⊲ Iterate through 2d bursts
10: ip = totalB mod m ⊲ Assigned source IP
11: totalB++ ⊲ Next burst
12: for j = 0 to β − 2 do
13: x = lcg[j].Next() ⊲ Advance LCG
14: if (x != EOS) AND (ip is ours) then
15: y = ReverseBits(x)
16: if y is valid then
17: probe(y) ⊲ Hit destination
18: end if
19: end if
20: end for
21: Sleep(T (β − 1)/n) ⊲ Wait for next burst
22: end for
23: start = lcg[β − 2].Current() ⊲ Get current state
24: end while

only at depth no smaller than d. The last (β − 1)-st traversal flips all 32 gateways

along the path to ensure that the next burst proceeds according to GIW.

The above algorithm can be implemented using β−1 RLCGs maintained by each

source IP. Specifically, assume that the main RLCG is in position k in its permutation

{zk}k and that the scanner needs to generate the next β − 1 targets y0, . . . , yβ−2 in

a burst. The first target y0 is simply zk. Since the remaining β − 2 destinations do

not change the top d levels of the tree, they can be found in the permutation where

{zk}k returns to the same subnet at level d. This is equivalent to skipping forward

by 2d elements each time. This leads to

yj = zk+j2d , j = 0, 1, . . . , β − 2. (33)

To avoid having to re-generate the entire sequence for each burst, the scanner
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operates with β − 1 LCGs, each pointing to a different part of the original sequence

as shown in Lines 6-7 of Algorithm 2. After an LCG wraps back to the original seed,

it returns a special EOS (end of sequence) IP address. Algorithm 2 applies RR-split

at the burst rather than packet level in Lines 9-20 and the LCGs are advanced for

every packet in a burst (transmitted or not) in Line 13. Our last note is that target

y in Line 16 may be invalid if it falls outside the scanned space (e.g., IANA-allocated

IP blocks).

4.5.4 Correlation

Our last step is to check RLCG for correlation and determine whether its targets are

sufficiently randomized. With a properly designed LCG, sequence {xk}k is uniformly

random and uncorrelated, with the exception of having full periods in all lower b

bits. It then follows that its bit-reversed version {zk}k is also uniformly random and

uncorrelated, with the exception of having full periods in all upper b bits. Thus, it

could be argued that among all GIW sequences, RLCG is as uncorrelated as one can

expect to achieve. One common test for correlation in random number generators is

to examine adjacent pairs (zk, zk+1) of elements in B(b) = bF ′ and plot them on a

2D plane. Generally, the closer the number of unique points on the plot, which we

call diversity, to 22b and the quicker this is achieved, the better the sequence. For

example, IP-sequential’s set B(b) consists of n/2b repeated patterns of 2b numbers

each, i.e., {0, 1, 2, . . . , 0, 1, 2, . . .}. The corresponding IP-sequential plot is a straight

line with diversity 2b as shown in Fig. 27(a).

As this chapter was being written, we became aware of another such pattern [35],

which we call reverse IP-sequential (RIS). The recurrence of this approach is xk =

xk−1 + 1 and the permutation is given by zk = (32x̄k) XOR Q, where Q is some con-

stant. While this pattern is GIW, its intra/inter-subnet targets are far from random.
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Its set B(b) consists of 2b runs of n/2b constants, i.e., {x1, x1, x1, . . . , x2, x2, x2, . . .},

whose diversity is 2b+1. In practice, this means that the scanner hits the same target

in all /(32 − b) networks before moving on to another address. The corresponding

correlation plot is shown in Fig. 27(b).

In contrast, the uniform permutation in part (c) of the figure exhibits a much

more random pattern and diversity 9, 231 in the first 10K elements of B(b). We do not

plot more points since it clutters the graph, but note that diversity rises to 64, 841

in the first 300K elements of B(b). Part (d) of the figure shows that RLCG with

carefully chosen parameters (e.g., a = 214, 013 and c = 2, 531, 011) also covers the

entire 2D plane without much bias and numerical results place its diversity at 9, 235

among the same 10K points (for the larger sample, it is 64, 861). Additional tests

(omitted for brevity) using the distribution of zk+1−zk, the autocorrelation function,

and larger b confirm that RLCG satisfies the randomness definition of USSO.

4.5.5 Vertical Scans

USSO patterns can be extended to probe multiple ports at little additional cost.

Assume that an attacker needs to scan the entire Internet on K unique ports. We

use the general defense mechanism of Snort to outline how this could be done. One

component of Snort, discussed earlier in the chapter, monitors horizontal scans by

counting the number of local IPs contacted by each remote host. Another (inde-

pendent) component counts how many ports on each internal IP have been hit from

external sources in the same window ∆s. Once this counter reaches some threshold

P , Snort detects a vertical port-scan.

To bypass both components simultaneously, the idea is to modify USSO to hit

each target yj in (33) on exactly P − 1 unique ports. If a given scan pattern requires

time T in one horizontal scan to avoid detection, the hybrid method above achieves



119

the same detection footprint and covers K ports in ⌈KT/(P − 1)⌉ time units, which

is a significant improvement over performing K full scans.

4.6. Experiments

In this section, we build a scanner based on USSO patterns and perform several

Internet-wide scans to study detection rates at remote networks as β changes.

4.6.1 Methodology

Testing open-source Snort [105] and Bro [12] in our lab has confirmed the validity

of the IDS model proposed in this chapter and showed that stealth-optimal scan-

ning indeed bypassed both systems as long as target counter Cs
i (t) was never allowed

to reach its threshold as. We have also validated that β-aware scanning, first in-

troduced in this chapter, performed significantly better against Bro than unaware

scanning. While these results are encouraging, it is unclear whether β-aware pat-

terns are stealthier in the actual Internet and how much IDS-B has been deployed.

To answer these questions, one requires a fast Internet scanner and ability to verify

detection rates at remote networks.

To address the first issue, we designed a high-performance scanner that uses raw

IP packets (TCP SYN, ICMP, or UDP) to cover the Internet using USSO. While

details of our implementation are presented in the last chapter, it should be noted

that to reduce synchronization complexity and decrease cost we alias the m scanning

IPs to one host and probe only the BGP-routable space (i.e., 2.11B destinations).

Using T = 24 hours and TCP SYN packets, this amounts to approximately 16 Mbps

of traffic (including MAC-layer overhead).

The second issue, however, is more challenging since verification of detection by
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remote systems is complicated by our lack of knowledge about the location of IDS,

the size and boundaries of the networks they protect, customization of parameters

∆s and as, and most importantly lack of access to remote alert logs. Fortunately,

certain network administrators participate in online collaborative systems [71], [94],

whereby they submit firewall and IDS logs for aggregation and public consumption in

an effort to reduce the time necessary to detect distributed scans or large-scale worm

attacks.

For the SANS Internet Storm Center (ISC) [94] that we focus on in this chapter,

network administrators preprocess their logs and submit packet headers that have

been deemed suspicious by either their IDS or firewall log analyzer [84]. Reports

compiled against our IPs and posted by ISC allow us to determine the exact number

of alarms/reports raised against a particular scan.

4.6.2 Results

We performed three tests in August 2009, each employing USSO and consisting of a

full Internet-wide HTTP SYN scan. We chose TCP as attackers are more likely to

target TCP services in the Internet and because of the evidence in [25], [35] suggesting

that administrators are more sensitive to TCP than other protocols (in fact, [35] notes

that TCP scans are 30 times more likely to receive complaints than ICMP scans). We

use T = 24 hours, which is 90 times faster than any prior Internet-wide TCP scan in

the literature [10], and m = 61 IPs available in our subnet.

The first scan (i.e., HTTP1) establishes a baseline for comparison and uses the

unaware pattern (i.e., β = 2). From Table XIV, observe that HTTP1 attracts a

combined total of 29K reports for all m IP addresses. Since all three scans run at

the same average rate per IP, they should result in the same amount of ISC activity,

unless IDS-B devices exist among ISC contributors. Since the lowest known detection
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Table XIV. ISC reports

Scan T m β Reports Hosts Found

HTTP1 24h 61 2 29, 869 44.3M

HTTP2 24h 61 4 18, 470 44.0M

HTTP3 24h 61 5 23, 969 44.5M

threshold for IDS-B is 4 (see Table XIII), we skip β = 3 and directly test in HTTP2

the impact of β = 4. This leads to a 38% reduction in the number of reports, which

confirms that IDS-B does in fact exist in the Internet and is responsible for a large

fraction of overall detection.

We finish our evaluation by increasing β to 5 in HTTP3, which results in 5.5K

additional alarms compared to HTTP2. The only explanation for this increase is

IDS-B with as = 4, which gets tripped by our scanner with β = 5 but not β = 4.

It can then be concluded that almost half of 11.4K IDS-B reports in the table are

generated from networks with as = 4, coincidentally the default value in Bro. The

remaining 5.9K IDS-B alarms in the table come from networks with as ≥ 5, whose

less-prevalent existence was anticipated given the values in Table XIII.

It should also be noted that the majority of the 18K reports in HTTP2 are likely

from unavoidable networks and those with extreme combinations (∆s, as), such as

those of Psad and TRW in Table XIII. The total number of email complaints we

received over these three scans was 11, none of which were generated by automated

tools. In fact, most of these came from end-users relaying messages from their personal

firewalls (such as ZoneAlarm and Norton).

All three scans find approximately the same number of alive web servers, which

shows that parameter β in the range 2− 5 does not have much impact on the ability

of a scanner to find open services in the current Internet.
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Fig. 28. Process Cs
i (t) of IDS-C.

Table XV. Comparison of RAM Usage

Juniper Bro

Method as ∆s RAM as ∆s RAM

IDS-A 50 120s 247 KB 20 600s 514 KB

IDS-B 50 120s 305 KB 20 600s 649 KB

IDS-C 50 2.4s 78 KB 20 31.5s 202 KB

4.7. Defense

Observe that SO leverages the fact that it costs nothing for the scanner to raise the

counter Cs
i (t) to as−1 and then wait for ∆s units before sending another burst. This

allows it to scan both IDS-A/B at an average rate of (as − 1)/∆s packets per second

(pps), which contributes to its optimal stealth cover time across the entire Internet

(i.e., full scans finish quicker).

To discourage such exploits, we propose a new model called IDS-C that linearly

increases the timeout duration based on the current state of counter Cs
i (t), as shown

in Fig. 28. This modification allows IDS-C to detect all scanners with long-term rates

faster than 1/∆s pps, even if they utilize SO. In practice, this means that IDS-C can

lower its interval ∆s by a factor of as − 1 while offering the same stealth protection

against SO as IDS-A/B. This in turn leads to smaller RAM overhead since entries in

the table expire quicker and unique-target lists are shorter.

To verify these conclusions, we perform a simulation using CAIDA’s 1-hour trace
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with 9.6M flows and 117M packets from an OC48 link [19]. We record all transitions

made by the three types of IDS in response to incoming traffic to a popular /16 target

subnet, as well as the steady-state amount of RAM being used by each algorithm.

For this comparison, we utilize Juniper’s and Bro’s default IDS settings from Table

XIII as examples of low and high alarm rates (i.e., 3/hour and 50/hour, respectively).

Table XV shows that the typical savings in terms of RAM for IDS-C in comparison

to the other two methods amounts to 60 − 75%. Since the list of targets tracked by

IDS for each source IP is smaller, the CPU overhead needed to verify that incoming

packets belong to an existing target is also lower.

4.8. Implications

This chapter investigated a potentially sensitive issue of avoiding IDS and dissected

the algorithms of currently deployed window-based tools. While our interest is purely

to propose a novel model of IDS operation and understand its fundamental limitations,

one concern might be that attackers could benefit from stealth-optimal scan patterns

exposed in this work and thus could inflict certain damage that would not otherwise

be possible.

However, we do not believe this to be the case. First, as hackers must constantly

remain two steps ahead of the security community to be able to exploit the imple-

mented defenses, our results are not necessarily novel or useful to them. Second,

scanning by itself does not compromise hosts; instead, intrusion using malicious pay-

load (e.g., delivered through unsolicited packets or email) does. As a result, many

networks should remain well protected despite the findings of this chapter. Third,

botnets afford hackers such a diverse pool of IPs that they often do not care to re-

main stealthy and rely on the most basic sequential probing [3], which apparently is
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sufficient for their purposes.

This chapter should be viewed as analyzing the worst-case scenario of a Flash

worm and its coordinated delivery of new exploits from a large set of IPs. The main

challenge in defending against this kind of attack lies in the impossibility of lowering

IDS thresholds and triggering their estimators sooner. While setting the threshold

to 1 packet detects all scanners, it also raises the false-positive rate beyond the level

that typical administrators can manage [112]. Our findings therefore emphasize the

importance of deploying algorithms that provide higher accuracy, produce lower false-

positive rates, and require fewer packets. The reality of the situation, however, is that

Snort and its derivatives continue to account for an overwhelming majority of the IDS

market (contrary to what might be inferred from Table XIV, which is a limited sample

of Internet IDS). Algorithms such as Bro TRW [43] not only improve Snort by using

the IDS-B model, but also by applying a much better estimator to observed traffic.

4.9. Summary

This chapter introduced a novel formalization of scanner algorithms and IDS detec-

tion rules related to horizontal scanning. We thoroughly investigated the detection

probability of previous scan patterns and brought awareness to the existence of low-

overhead algorithms for stealth-optimal scanning, which can remain undetected at

much faster rates compared to the known approaches. We also suggested a simple,

yet effective, technique for making windows-based IDS expiration rules robust against

stealth-optimal scanners. This method is versatile and can be applied to any existing

or future implementation, regardless of the actual detection algorithm.
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CHAPTER V

SUMMARY AND FUTURE WORK

5.1. Summary

This dissertation was motivated by a need for efficient algorithms capable of per-

forming Internet-wide measurement studies using existing or inexpensive resources.

We next summarize our contributions in this area, considering each chapter of the

dissertation in turn.

5.1.1 Turbo King

Distance estimation and topological proximity in the Internet have recently emerged

as important problems for many distributed applications [1], [24], [28], [49], [72], [76],

[98], [99], [111]. Besides deploying tracers and using virtual coordinates, distance is

often estimated using end-to-end methods such as King [32] that rely on the existing

DNS infrastructure. However, the question of accuracy in such end-to-end estima-

tion and its ability to produce a large-scale map of Internet delays had never been

examined. We tackled this problem initially by showing that King produces biased

latency estimates given common DNS deployments of geographically diverse author-

itative servers and forwarders, requires significant cache pollution at remote servers,

and employs large traffic overhead for Internet-wide measurements. To overcome

these drawbacks while still using the ubiquitous DNS infrastructure, we proposed the

Turbo King latency estimation framework that obtains end-to-end samples without

suffering from the bias endured by King. Turbo King also reduces cache pollution

of remote servers by several orders of magnitude and consumes half the bandwidth
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required by King. We performed several experiments to validate our claims about

King and to demonstrate that T-King is more accurate than prior methods.

5.1.2 IRLscanner

Motivated by our need with Turbo King to discover many remote nameservers, recent

interest in the literature [10], [25], [35], [83], and the many apparent obstacles, we

next tackled the problem of performing Internet-wide service discovery measurements.

Given the design objectives of maximizing politeness at remote networks, allowing

Internet-wide scans that complete in hours on commodity hardware, and allowing

for accurate extrapolations in partial scans, we developed a novel permutation/split

algorithm and several other features that culminated in IRLscanner. To verify its

effectiveness, we used IRLscannerand 24-hour scan durations to perform 20 Internet-

wide experiments spanning ICMP, UDP (i.e., DNS, ECHO), and TCP (i.e., HTTP,

SMTP, EPMAP) and targeting both very popular ports (i.e., DNS, HTTP) and those

used by hackers and scammers (i.e., UDP ECHO, SMTP, EPMAP). In addition, we

performed the first Internet-wide OS fingerprinting of HTTP servers, presented an

alternative method for determining server uptime, and used ACK scans to stealthily

detect live hosts behind stateless firewalls. We concluded this chapter by analyzing the

various forms of feedback received during our measurements (e.g., email complaints,

IDS alarms, DNS lookups) in an effort to inform researchers interested in similar

studies.

5.1.3 Modeling Window-based IDS and Stealth Scanning

Our interest in horizontal scanning derived from working on IRLscanner and a desire

to understand its effect on remote networks led us to explore IDS, which have become

ubiquitous in the defense against virus outbreaks, malicious exploits of OS vulnerabil-
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ities, and botnet proliferation. While an IDS is often used by network administrators

to detect reconnaissance scans preceding attempted penetration, it was previously un-

known how likely an IDS was to detect a given Internet-wide scan pattern and whether

fast stealth techniques existed that could largely remain undetected at Internet-scale.

We tackled this problem first by proposing a simple analytical model for the window-

expiration rules of popular IDS tools (i.e., Snort and Bro), then used a variation of the

Chen-Stein theorem to derive their respective detection probabilities for existing scan

techniques (i.e., uniform and sequential). When finally showed through both analysis

and several Internet-wide experiments that stealth-optimal patterns exist and are ef-

fective, then proposed a simple modification to existing algorithms that proved both

highly effective and provided a more efficient use of resources under real-world traffic.

5.2. Future Work

As demonstrated by both experiments and analysis, the work presented in this disser-

tation allows for the possibility of significant additional research. We consider three

different areas of future work in turn.

5.2.1 Turbo King

Future work includes running T-King in active mode to generate the first Internet-

wide all-to-all map of distances between BGP networks, which given the Internet’s

current size would require more than 40B measurements. Given this data, it also

involves evaluating the plethora of distance estimators proposed in the literature,

eventually releasing the distance map to other researchers for their use as well. Fur-

ther, while a static map of distances would be useful, deployed applications require

updated latencies that capture the current state of the ever-changing Internet. Future
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work also includes deploying a system that provides approximate real-time estimates

of distance, then using the resulting data would to study changes in latency over time

in the Internet. This work then culminates in leveraging the knowledge gained by

analyzing current techniques and our experience with measuring latencies to create

a system that combines both theoretical approaches and actual latency estimates in

the Internet.

5.2.2 IRLscanner

Future work involves more in-depth analysis of scan data from the 20 Internet-wide

scans already performed. Further development of IRLscanner through exploring

methods for reducing B to avoid scanning unproductive networks would allow for

shorter durations, which would result in a more accurate snapshot of service avail-

ability. Future work also includes expanding RLCG/RR to provide optimal spacing

for multiple destination ports (i.e., in hybrid vertical/horizontal scanning), which

would allow us to enumerate and maintain an updated count of the number of hosts

offering every available service. Finally, based on the promise shown by our initial

OS fingerprinting, future work includes enhancing and developing new methods for

operating systems and individual service fingerprinting.

5.2.3 Modeling Window-based IDS and Stealth Scanning

Future work involves detection of combined horizontal-vertical scan patterns, which

can be used to confuse current IDS and avoid detection. It also includes develop-

ing more robust techniques for detecting distributed scans originating from multiple

source IP addresses, which is critical to making stealth-optimal scans infeasible. Fi-

nally, future work involves a deeper analysis of IDS-C, development of more advanced

techniques to thwart steal-optimal scans, and comparison of IDS RAM overhead un-
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der various types of traffic to understand the practical limitations of window sizes in

current IDS.
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