

CONCURRENT ONLINE TESTING FOR

MANY CORE SYSTEMS-ON-CHIPS

A Dissertation

by

JASON DANIEL LEE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2010

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4315028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Concurrent Online Testing for Many Core Systems-on-Chips

Copyright 2010 Jason Daniel Lee

CONCURRENT ONLINE TESTING FOR

MANY CORE SYSTEMS-ON-CHIPS

A Dissertation

by

JASON DANIEL LEE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Rabi N. Mahapatra

Committee Members, Duncan M. Walker
 Eun Jung Kim
 Seong G. Choi
Head of Department, Valerie E. Taylor

December 2010

Major Subject: Computer Engineering

iii

ABSTRACT

Concurrent Online Testing for Many Core Systems-on-Chips. (December 2010)

Jason Daniel Lee, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Rabi N. Mahapatra

 Shrinking transistor sizes have introduced new challenges and opportunities for

system-on-chip (SoC) design and reliability. Smaller transistors are more susceptible to

early lifetime failure and electronic wear-out, greatly reducing their reliable lifetimes.

However, smaller transistors will also allow SoC to contain hundreds of processing cores

and other infrastructure components with the potential for increased reliability through

massive structural redundancy. Concurrent online testing (COLT) can provide sufficient

reliability and availability to systems with this redundancy. COLT manages the process

of testing a subset of processing cores while the rest of the system remains operational.

This can be considered a temporary, graceful degradation of system performance that

increases reliability while maintaining availability.

 In this dissertation, techniques to assist COLT are proposed and analyzed. The

techniques described in this dissertation focus on two major aspects of COLT feasibility:

recovery time and test delivery costs. To reduce the time between failure and recovery,

and thereby increase system availability, an anomaly-based test triggering unit (ATTU)

is proposed to initiate COLT when anomalous network behavior is detected. Previous

COLT techniques have relied on initiating tests periodically. However, determining the

iv

testing period is based on a device's mean time between failures (MTBF), and

calculating MTBF is exceedingly difficult and imprecise.

To address the test delivery costs associated with COLT, a distributed test vector

storage (DTVS) technique is proposed to eliminate the dependency of test delivery costs

on core location. Previous COLT techniques have relied on a single location to store test

vectors, and it has been demonstrated that centralized storage of tests scales poorly as the

number of cores per SoC grows. Assuming that the SoC organizes its processing cores

with a regular topology, DTVS uses an interleaving technique to optimally distribute the

test vectors across the entire chip. DTVS is analyzed both empirically and analytically,

and a testing protocol using DTVS is described.

COLT is only feasible if the applications running concurrently are largely

unaffected. The effect of COLT on application execution time is also measured in this

dissertation, and an application-aware COLT protocol is proposed and analyzed.

Application interference is greatly reduced through this technique.

v

DEDICATION

This work is dedicated to the memory of my mother, Karen Culotta Lee.

vi

ACKNOWLEDGEMENTS

 Without the guidance and support of my advisor, Dr. Mahapatra, this work would

not have been possible. The Ph.D. process is rarely a smooth endeavor; however, Dr.

Mahapatra’s encouragement was constant. Additionally, he provided great opportunities

for my professional and personal growth beyond my own research. Highlights included

a multi-year assistantship working for the FAA and various aerospace companies to

make commercial avionics safer and a trip to India to discuss the need for greater

American-Indian research collaboration.

 The complimentary expertise of each of my committee members was also

extremely valuable in creating this work. Drs. Walker, Kim and Choi each provided

useful information and knowledge which improved the quality of my work greatly. They

were always happy to discuss any aspect of research with me.

 Maintaining a group of close friends and co-workers throughout my time here

has also played a vital role in successfully completing this degree. Thank you to the

following people: Praveen, Suman, Nikhil, Suneil, Aalap, Javier, Scott, Ron and Brad.

 On a more personal level, my wife, Jennifer Nicks, deserves all the credit in the

world for keeping me focused with a positive attitude during all of the emotional highs

and lows attempting this degree has brought me. I look forward to our next challenge.

 Finally, I would like to thank my father, Steven Lee, for instilling the importance

of education throughout my life. From an early age, it was our plan for me to obtain a

Ph.D. That goal has been fulfilled.

vii

NOMENCLATURE

ATE Automatic Test Equipment

ATTU Anomaly-Based Test Triggering Unit

BIST Built-in Self Test

COLT Concurrent Online Testing

CMOS Complementary Metal–Oxide–Semiconductor

CNI Core–Network Interface

DFT Design for Test

DTVS Distributed Test Vector Storage

ILP Instruction Level Parallelism

IMA Integrated Modular Avionics

IP Intellectual Property

MTBF Mean Time Between Failure

MTTR Mean Time to Repair

NoC Network-on-Chip

SoC System-on-Chip

TLP Thread Level Parallelism

viii

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

DEDICATION .. v

ACKNOWLEDGEMENTS .. vi

NOMENCLATURE .. vii

TABLE OF CONTENTS .. viii

LIST OF FIGURES ... xi

LIST OF TABLES .. xiii

CHAPTER

 I INTRODUCTION .. 1

 A. Many Core SoC Preliminaries .. 4
 1. Processor Core Simplification ... 5
 2. Networks-on-Chip ... 6
 B. Contributions .. 8

 II RELIABILITY AND TESTING OF SAFETY-CRITICAL SOC 10

 A. Design and Analysis of Safety-Critical SoC 10
 1. Dependability Metrics ... 11
 2. Electronic Failure Mechanisms 13
 B. Traditional Approaches to Testing ... 16
 1. Manufacturer Testing .. 16
 2. Built-In Self Test ... 17
 C. Recent Proposals in Concurrent Online Testing 17
 1. Test Infrastructure IP Cores .. 17
 2. Software-Based Testing .. 20

III ONLINE DETECTION OF CORE FAILURE WITH
 ANOMALY-BASED TEST TRIGGERING UNITS 22

ix

CHAPTER Page

 A. Introduction .. 22
 B. Fault Tolerance and Anomaly-Based Error Detection 26
 1. NoC-Based Fault Tolerance .. 26
 2. Anomaly-Based Error Detection 27
 C. Test Triggering Mechanism ... 28
 1. ATTU Architecture ... 29
 2. Message Monitoring Considerations 30
 3. ATTU Training Period .. 32
 D. Experimental Setup .. 33
 1. Fault Model ... 33
 2. NoC Configuration and Simulation 34
 3. Application Benchmarks ... 36
 E. Experimental Results .. 37
 1. Detection Rate ... 37
 2. Effect of Error Distribution ... 38
 3. Effect of Error Rate ... 39
 4. Effect of L1 Cache Size .. 40
 5. Effect of ATTU Memory .. 41
 6. Effect of Trigger Sensitivity .. 42
 7. ATTU Overhead .. 43
 F. Conclusion .. 43

 IV DISTRIBUTED TEST VECTOR STORAGE 44

 A. Introduction .. 44
 B. Mechanisms of Concurrent Online Test 48
 1. On-Chip Test Controllers .. 48
 2. ISA Testing Extensions ... 50
 3. Software-Based Self Test .. 51
 C. Motivation for Distributed Test Vector Storage 52
 1. Test Delivery Costs Relative to Distance 52
 D. Distributed Test Vector Storage Analysis 54
 1. Interleaving on Tori ... 54
 2. Interleaving Example .. 55
 3. Applying Interleaving to Test Storage 59
 E. Distributed COLT Architecture ... 60
 1. System Components .. 60
 2. Distributed COLT Scheduling Protocol 61
 3. Code-Division Core Test Scheduling 64
 F. Analytical Results .. 65
 1. Network Load Analysis ... 65
 2. Energy Consumption Analysis .. 67

x

CHAPTER Page

 3. Storage Redundancy .. 69
 G. Experimental Setup .. 70
 1. NoC Simulator ... 70
 2. System Architecture .. 72
 3. System Cores ... 73
 H. Experimental Results .. 74
 1. System Test Latency ... 75
 2. Energy Consumption of Test Delivery 78
 3. Effect of Traffic Load on Testing 79
 4. Effect of Core Test Scheduling 81
 5. Distributed Test Controller Overhead 82
 6. Test Vector Memory Overhead 83

 I. Conclusion .. 83

 V APPLICATION-AWARE ONLINE TESTING 85

 A. Introduction .. 85
 B. Application-Aware Online Testing Architecture 88
 1. Test Vector Delivery Blocking 88
 2. Test Vector Storage Redundancy 90
 3. Using These Methods in Combination 92
 C. Experimental Setup .. 93
 1. System Architecture .. 93
 2. Test and Application Parameters 93
 D. Experimental Results .. 94
 1. Application Interference of COLT 94
 2. Test Vector Delivery Blocking 95
 3. Test Vector Storage Redundancy 97
 4. Combination of Blocking and Redundancy 99
 5. Test Controller Overhead .. 101

 E. Conclusion .. 101

 VI CONCLUSIONS .. 103

 A. Future Work ... 105

REFERENCES .. 107

VITA ... 116

xi

LIST OF FIGURES

FIGURE Page

 1 Example 16-core SoC with a 2D 4x4 Mesh NoC Architecture 7

 2 The Relationship Between Dependability and Security 12

 3 The Components of Mean Time to Repair ... 13

 4 Electromigration ... 14

 5 The Bathtub Curve for a Variety of Transistor Sizes 15

 6 The Effect of Hop Distance and Test Volume on Energy Consumption ... 20

 7 CNI with ATTU Architecture .. 30

 8 Message Format ... 31

 9 Training Phase Period .. 32

 10 NoC Topology .. 35

 11 ATTU Performance of Application Sets .. 37

 12 Effect of Error Rate on ATTU ... 39

 13 Effect of L1 Cache Capacity on ATTU ... 40

 14 Effect of Memory Size on ATTU .. 41

 15 ATTU Behavior for Various Values of n ... 42

 16 Growth of Test Delivery Time ... 53

 17 A Core at F6 Retrieving All File Segments Within Radius 2 56

 18 3-interleaving on 5x5 2D-torus .. 58

 19 Distributed COLT Architecture Within a Tile ... 60

xii

FIGURE Page

 20 Distributed COLT Protocol .. 63

 21 Network Load Comparison as Network Size Increases 67

 22 Storage Redundancy for Various Tori Using DTVS 69

 23 Test Application and Delivery Times for Centralized COLT 76

 24 Scalability of System Test Latency in 2D-Tori SoC 77

 25 Scalability of Test Delivery Energy Consumption..................................... 79

 26 Effect of Network Traffic on Test Latency .. 80

 27 Effect of Core Test Scheduling .. 82

 28 Test Vector Delivery Blocking Protocol .. 89

 29 Example of Test Vector Storage Redundancy ... 91

 30 Effect of NoC Traffic on Execution Time ... 95

 31 Comparison of Standard COLT and Test Vector Delivery Blocking 96

 32 Interference Reduction of Storage Redundancy ... 98

 33 Delivery Times of Standard COLT and Storage Redundancy COLT........ 99

 34 Test Delivery Times of All COLT Schemes .. 100

xiii

LIST OF TABLES

TABLE Page

 1 SPEC CPU2006 Benchmark Test Cases .. 36

 2 Effect of Error Distribution on ATTU Performance 38

 3 Energy Consumption Over Various Tori (µJ) .. 68

 4 DTVS Simulation Parameters .. 71

 5 Core Test Information .. 74

 6 Application-Aware COLT Simulation Parameters 94

1

CHAPTER I

INTRODUCTION

 For decades, users of any computer system have enjoyed continued, exponential

performance gains thanks to the diligent work of manufacturers able to predictably

shrink and place more transistors into a single device—known simply as "Moore's Law."

With access to more transistors, computer architects have been able to increase clock

rates and create more sophisticated techniques to optimize the execution of software. In

this environment, replacing hardware without any real change to software led to

significant performance improvements. However, due to approaching physical and

computational constraints, processor design has been forced to retreat from "single core"

complexity and speed. Instead of one large, fast and complex processor executing

software, many small, slow and simple processors within a system-on-chip (SoC) must

now work together to execute software [1].

 Although the path to "many core" processors is relatively straightforward from a

hardware perspective, software must undergo revolutionary changes in order to maintain

performance improvements. Today, commercial software engineers, computer architects

and researchers continue to struggle on how best to transform historically sequential

tasks into parallel-friendly ones apt for many core computation. Additionally, significant

effort is being spent on adding hardware and software mechanisms to simplify the

analysis and debug of this new, parallel software due to its immense complexity.

This dissertation follows the style of IEEE Transactions on Computers.

2

Although the shift from the monolithic processor to many core processors and

the associated revolution in software will remain the salient change in computer design

for the foreseeable future, there are other, equally significant changes occurring in

computer system design as the shrinking of transistors reaches its physical limits. As

transistors shrink, they become more difficult to manufacture consistently and reliably—

transistors across a wafer or within a single die may vary significantly, resulting in

uneven performance, shortened lifetimes or immediate failure [2]. Also, smaller

transistors tend to "leak" more current during periods of inactivity, increasing power

consumption and negating a major advantage of Complementary Metal–Oxide–

Semiconductor (CMOS) design [3].

 This work focuses on the reliability aspect of shrinking transistors in many core

systems. Due to the increased fragility of transistors, lifetime-awareness has emerged as

a new design consideration for many core SoC. The redundancy inherent in many core

SoC design must be exploited to maximize the dependable lifetime of the entire system;

therefore, individual cores within the SoC must be tested and identified as functional or

non-functional throughout the operational lifetime of the system. This allows the SoC to

gracefully degrade as cores fail, leaving functional cores active and separated from failed

components. This process of testing cores throughout the SoC operational lifetime is

called online testing, and online testing may be performed concurrently with the

execution of user applications or separately as a dedicated task.

 Concurrent online testing (COLT) takes advantage of the availability of the many

redundant processing cores within the SoC to manage the testing of a subset of those

3

cores while the remainder continue to execute user applications [4], [5]. By allowing

most of the SoC to remain operational at all times, availability and reliability are

maximized throughout the device's lifetime.

 This dissertation proposes and analyzes COLT techniques specifically designed

for many core SoC. Specifically, a variety of techniques to assist COLT are proposed to:

 minimize system recovery time as failures occur,

 optimize the storage / performance tradeoff of applying tests,

 minimize the interference between testing and the execution of applications, and

 simplify the process of managing test scheduling and application.

These techniques can be encapsulated as lifetime management of SoC; system designers

can create a tradeoff between COLT overhead and system lifetime.

 It is expected that the techniques presented in this dissertation would be most

attractive to safety-critical applications using SoC. Since reliability and availability are

first order requirements for these systems, the overhead required to implement COLT is

justified. Additionally, safety-critical applications are expected to adopt many core SoC

due to the potential for the space, weight and power savings they provide due to their

high level of integration. However, the adoption of these SoC in safety-critical

applications is only possible if techniques such as COLT are feasible to implement and

are effective. The goal of this work is to increase the feasibility and effectiveness of

COLT, thereby allowing new technical capabilities in safety-critical applications.

 The remainder of this chapter introduces the reader to the preliminaries of many

core SoC design, including the transition from complex processing cores to simple

4

processing cores and the necessity of networks-on-chip (NoC). This chapter also

summarizes the contribution of this work.

A. Many Core SoC Preliminaries

 The transition to many core SoC is necessitated by three major obstacles, or

"walls," that preclude the continued development of the monolithic processor [6]. These

walls are:

 The Instruction Level Parallelism (ILP) Wall: The hardware mechanisms

required to execute more instructions in parallel are becoming prohibitively

expensive in terms of area, complexity and power.

 The Memory Wall: The gap between memory speeds and processor speeds

continues to grow. Eventually, a vast majority of processing time will be spent

waiting for data to be retrieved and sent to memory.

 The Power Wall: Increasing the clock frequency and transistor density within

processors is leading to an unsustainable, exponential increase in power

consumption and density.

 It is important to note that these walls interact with each other and exacerbate the

underlying problems that make monolithic processing impossible to continue. For

example, as the gap between memory speed and processing speed increases, processors

must compensate by increasing their instruction windows, the number of instructions

that a processor analyzes at any one time for potential execution, to mask memory

latency [7]. These continually growing instruction windows—an effort to increase the

5

ILP within a processor—result in greater power consumption and are only necessary due

to the memory wall.

 The emergence of many core SoC follows from these obstacles. Instead of

attempting to execute a single thread of instructions as quickly as possible, it is now

necessary to attempt to run as many separate threads as possible simultaneously. This

will alleviate the need to increase clock frequency and ILP, thereby reducing power

consumption within the SoC.

1. Processor Core Simplification

 Historically, processor design's primary goal was to increase ILP. Software was

viewed as a single, sequential thread of execution. From this perspective, a variety of

techniques were created to allow more instructions to be evaluated and executed

simultaneously in order to mask the effects of memory latency. These complementary

techniques are commonly called out-of-order and speculative execution, and they

typically require expensive overhead to be realized [7], [8]. However, these techniques

experience diminishing returns in performance, and their costs grow super-linearly with

the instruction window.

 In response to this trend, processor designers now seek to increase thread level

parallelism (TLP) rather than ILP. Instead of trying to look at a large window of

instructions in an attempt to dodge memory latency, a processor can simply switch to a

new thread of execution when an instruction is blocked due to a cache miss. An example

of this design is the UltraSPARC T1 SoC, which employs eight multi-threaded

processors [9].

6

 Processor designs that exploit TLP rather than ILP are attractive for a variety of

reasons, including the following:

 the elimination of expensive and complex out-of-order and speculative

execution components such as register renaming, instruction windows, commit

queues, re-order buffers and reservation stations

 smaller processor footprint

 can be easily integrated into a many core solution

 reduces cost of design, analysis and debug of hardware design compared to out-

of-order processors

2. Networks-on-Chip

 As the number of processing cores per chip continues to scale, on-chip busses

will be replaced with networks-on-chip (NoC). Similar to inter-computer networks, NoC

contain routers, links and network interfaces. Each core within the SoC is attached to a

core–network interface (CNI), and these CNI communicate with each other via links and

routers. Unlike on-chip busses which use broadcast messages to communicate, NoC use

point-to-point communication to deliver information. Fig. 1 illustrates a 16-core SoC

using a NoC organized as a 2D-mesh. Each intellectual property (IP) core interfaces with

a CNI, and each CNI is connected to a router.

7

CNI

R

CNI

R

CNI

R

CNI

R

CNI

R

CNI

R

CNI

R

CNI

R

CNI

R

CNI

R

CNI

R

CNI

R

CNI

R

CNI

R

CNI

R

CNI

R

IP IP IP IP

IP IP IP IP

IP IP IP IP

IP IP IP IP

Fig. 1. Example 16-core SoC with a 2D 4x4 Mesh NoC Architecture

 NoC provide many advantages over busses when the number of cores per chip

exceeds more than a handful [10], [11]. These advantages include:

 Lower Contention

 Lower Power Consumption

 Standard Interfaces

 Shorter Wire Lengths

 Higher Throughput

8

 Fault Tolerance

 Many of the COLT techniques proposed in this work depend on the existence of

NoC; NoC provide a regular topology for communication between cores, and they also

provide a standard protocol for communication. Additionally the NoC acts as a test

access mechanism between test sources and test sinks.

B. Contributions

 In previous research, COLT has relied on periodic testing to determine if a core

within the SoC has failed. However, the time between failure and testing may be too

great for some safety-critical applications depending on the testing period. An on-

demand testing mechanism has been proposed and analyzed, and it is shown that this

mechanism is effective and relatively inexpensive. This mechanism is described in

Chapter III.

 COLT depends on stored tests to achieve a sufficiently high level of coverage;

however, there has been no serious analysis of how the delivery and storage of these

tests scales with the number of cores per SoC. There has also been no effort in

identifying techniques that can scale the storage and delivery costs of tests as SoC enter

the many core era. Chapter IV details the application of a coding theory technique to the

storage of test vectors, allowing for COLT to become scalable with many core SoC. A

test protocol is proposed and analyzed, and the hardware overhead associated with this

protocol is determined. To evaluate the proposed test storage scheme, real IP cores are

used in the generation, storage and application of test vectors.

9

 To date, there has been no analysis on the effect of COLT on the execution times

of applications. Through the use of a system simulator employing a NoC as the

communication infrastructure, this is the first work to measure the effect of COLT on

NoC traffic and the effect of this increased traffic on software execution times. Based on

these findings, an application-aware COLT protocol is proposed and analyzed. Chapter

V details this application-aware COLT protocol.

10

CHAPTER II

RELIABILITY AND TESTING OF SAFETY-CRITICAL SOC

 This work is primarily targeted at safety-critical applications using many core

SoC. Although reliability and testing are important for any application, COLT is not

expected to be necessary for most consumer applications due to their typical

requirements: maximum performance, lowest cost and minimum power consumption.

Safety-critical applications share many of the same requirements as most consumer

applications; however, predictable and dependable operation are of highest importance.

Therefore, it is expected that the overheads, both at design-time and during operation,

are justifiable expenses for safety-critical applications.

 In this chapter, safety-critical SoC design considerations are explored, a brief

summary of classical electronic testing is provided, and previous work in the

development COLT techniques are described. This background information is provided

so that the reader may gain an appreciation for the benefits that COLT provides.

A. Design and Analysis of Safety-Critical SoC

 Before any safety-critical system is certified for use, safety requirements must be

established and failure possibilities must be understood. Safety requirements are

typically quantified in terms of specific system dependability metrics, and failure

possibilities are typically modeled as a composition of separate failure mechanisms.

Therefore, it is important to understand how dependability is defined and measured, and

11

it is also important to understand how electronic failures mechanisms are changing as

transistor sizes shrink.

1. Dependability Metrics

 As defined in [12], dependability is a composition of a number of attributes:

availability, reliability, safety, integrity and maintainability. Fig. 2 illustrates the

relationship between these attributes and dependability. These attributes are defined as

follows:

 Availability: the probability that a component is in a functional state

 Reliability: the probability that a component functions correctly

 Safety: the absence of unacceptable damage during component failure, typically

defined by a regulatory agency

 Integrity: the inability of the component to be improperly modified

 Maintainability: the ability of the component to be modified and repaired

 It can also be seen from Fig. 2 that dependability and security overlap. Although

security is another extremely important consideration in safety-critical applications, it is

outside the scope of this work.

12

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Dependability Security

Fig. 2. The Relationship Between Dependability and Security

 This work is primarily concerned with availability and reliability. Lifetime

management of safety-critical SoC aims to ensure that the system maintains maximum

uptime and the highest probability of correct behavior throughout its operational

lifetime.

 Availability can be calculated as the ratio of mean time between failures (MTBF)

and the sum of MTBF and the mean time to repair (MTTR). Therefore, as MTTR

increases, availability decreases. It is for this reason that COLT must initiate tests and

detect failures as quickly as possible. Fig. 3 illustrates the relationship between the

components of MTTR and their associated events. Here, a fault occurs within the SoC at

Tfault, and there is some delay between fault occurrence and the manifestation of a error

at Terror. MTTR is composed of Tdelay, the time between error manifestation and the

beginning of testing; Ttest, the time required to apply and determine if a fault has

occurred; and Treconfigure, the time required for the system to return to an error free state.

A method to increase system availability with COLT is described in Chapter III.

13

Fig. 3. The Components of Mean Time to Repair

 To address reliability, it is important that the detection rate for faults is extremely

high. If a fault is left undetected after error, it is extremely difficult to ensure that the

system can operate correctly. Simply put, a system cannot fix a problem of which it is

unaware.

2. Electronic Failure Mechanisms

 There are a number of failure mechanisms that may affect transistors and

interconnects throughout their lifetimes. The contribution of each failure mechanism

depends on a variety of environmental, manufacturing and operational factors; therefore,

it is extremely difficult to predict how transistors will fail during operation. The most

well understood failure mechanisms are briefly described here, and COLT seeks to

detect failures due to these mechanisms:

 Electromigration: the physical movement of material within an interconnect due

to increased current density. See Fig. 4 for an illustration of electromigration.

14

 Hot Carrier Injection: permanent damage to the gate oxide due to highly kinetic,

or "hot," electrons or holes due to the scaling of transistor geometries

 Negative Bias Temperature Instability: decreased performance affecting

pMOSFET transistors, due to increased device temperatures and aggressive gate

oxide manufacturing techniques

 Gate Oxide Breakdown: also known as dielectric breakdown, this is the

permanent failure of the gate oxide to act as an electric barrier between source

and drain in a transistor due to the decreased thickness of the gate oxide

The above list is not exhaustive. There are numerous other failure mechanisms

that can potentially affect device behavior and can lead to failure; however, the above

list represents the most influential failure mechanisms in typical applications. An in-

depth treatment of each of the above wearout mechanisms is provided in [2], [13].

Fig. 4. Electromigration [2]

15

 Each of these failure mechanisms contribute to the failure of transistors over

time. As a whole, a population of devices will experience failure rates following a

"bathtub" curve. In this curve, there are high failure rates at the beginning and the end of

a device's life. These periods of high failure rates are called early lifetime failure (ELF)

and electronic wearout, respectively.

 Fig. 5 illustrates the bathtub curve effect for transistors with sizes of 180nm,

90nm and 65nm, based on findings reported in [14]. The largest transistors experience

the longest lifetimes and lowest constant failure rate. It is interesting to note that early

lifetime failures appear to be independent of transistor size; however, wearout failures

are heavily dependent on transistor size. Constant failure rates, the bottom of the curve,

also depend on transistor size; devices built with smaller transistors experience higher

constant failure rates even during the most dependable period in their lifetime.

Fig. 5. The Bathtub Curve for a Variety of Transistor Sizes [14]

16

 As [14] reports, the period of low failure rates within the bathtub curve is

dramatically reducing as transistors shrink. At 65nm, it is expected that transistors will

only experience a period of low failure rates lasting 10 years. Below 65nm, this period is

expected to be much shorter. This will force safety-critical system designers to account

for electronic wearout; many safety-critical applications depend on systems operating

dependably for decades in order for a project to be economically justifiable.

B. Traditional Approaches to Testing

 Electronic testing began as a discipline with the manufacturing of the first

integrated circuits. In this section, a brief summary of electronic testing is provided to

describe the strengths and weaknesses of the most widely adopted testing techniques in

relation to COLT.

1. Manufacturer Testing

 For manufacturer testing, external automatic test equipment (ATE) applies pre-

generated tests at very high speeds. Each chip is typically tested in well under 10

seconds. These pre-generated tests are created from automatic test pattern generators

(ATPG), which seek to build a minimum set of test vectors that achieve the highest

possible fault coverage for a specified amount of fault models [15].

 These fault models include the stuck-at and delay fault models which are of

primary interest to this work. The delay fault model is very good at detecting electronic

wearout. Electronic wearout typically manifests as increasing delay in transistors and

17

interconnects, making the delay fault model a natural choice for detecting this kind of

failure [16], [17], [18], [19].

 Manufacturer testing cannot be applied directly to COLT, since online testing

must be performed in the field where no ATE exist. However, the ATPG used in

manufacturer testing can be applied to COLT due to the high fault coverage achieved by

these programs.

2. Built-in Self Test

 Built-in Self Test (BIST) removes the need to use ATE to test the entire chip.

Instead of an ATPG creating tests to be applied by an ATE, BIST is a small on-chip

mechanism to generate test patterns. Test patterns are usually generated through simple

means such as shift registers that can produce a very large amount of different test

patterns. BIST are a good alternative to ATE-based manufacturer testing due to reduced

costs; however, BIST often struggle with achieving the very high fault coverage rates

produced by ATPG tests [16]. Therefore, a mixture of BIST-based and ATPG-based

testing is often used for chip testing.

C. Recent Proposals in Concurrent Online Testing

1. Test Infrastructure IP Cores

 In addition to processing, memory and interface IP cores being present within a

many core SoC, it is expected that the SoC will also contain a variety of infrastructure IP

cores to assist in the management of system operation [20]. These infrastructure IP cores

can aid in system maintenance, debugging, yield increase, power management and fault

18

containment. Here, the role of infrastructure IP in increasing system reliability is of

primary interest, and infrastructure IP that assist in COLT are described.

 Using the NoC as a test delivery infrastructure, researchers have proposed

reusing infrastructure IP (I-IP) designed originally for manufacturing testing as a tool for

online testing of the system [20]. These online tests are mainly used for manufacturer

testing to determine yields, and these tests are not meant to detect and capture wearout

failures in the field.

 Taking this concept a step further, [4], [5] constructed a Test Infrastructure IP

(TI-IP) capable of managing test scheduling, delivery, and intrusion for concurrent on-

line test (COLT) of the SoC. COLT allows cores in the SoC to be tested in the presence

of normally executing applications to maximize system availability.

 The original COLT scheme proposes that the test vectors are stored within the

TI-IP. Due to the real-time constraints of these applications, COLT is extremely

sensitive to application intrusion. The first effort to measure the effect of COLT on

application intrusion is included in this dissertation, and these results are included in

Chapter V.

 Microprocessor pipeline on-line testing using distributed on-line BIST and

periodic check-pointing was investigated and shown to be an effective technique in

providing high reliability and availability at a reasonable area cost (5.8%) [22]. In this

scheme, stuck-at fault test vectors are generated for processor components and stored in

on-chip ROM. It should be noted that distributed BIST discussed in [22] is a different

concept than DTVS discussed here. In [22], distributed BIST refers to separate BIST

19

mechanisms for the different pipeline components of a single microprocessor core,

where distributed test vector storage refers to the separate BIST vector storage units

across the entire SoC.

 Yi, Makar and Mitra have proposed CASP: Concurrent Autonomous chip Self-

test using stored test Patterns [16]. Similar to COLT, an on-chip test controller is

proposed which manages test scheduling, test application and response comparison for

processing cores of the OpenSPARC T1 chip multi-processor [23]. Their technique

differs from COLT in that the test vectors are stored off-chip in a nearby flash or hard

disk drive (HDD) storage system.

 In [5], the authors identified an eventual problem with the proposed methods of

COLT: scalability. As the number of cores per chip increases, the size of the NoC must

also increase creating longer communication distances between cores. This increased

distance translates into higher communication latency and power consumption. Fig. 6

illustrates the effect of hop distance and test volume on energy consumption when using

COLT within a many core SoC. Hop distance produces the most profound effect on the

energy consumption of test delivery. Therefore, it is extremely important to attempt to

bound the distance that tests must travel during COLT. Bounding this test delivery

distance is a major contribution of the work described in this dissertation, and methods

to achieve this are proposed in Chapter IV.

20

Fig. 6. The Effect of Hop Distance and Test Volume on Energy Consumption [5]

 Test infrastructure IP cores have gained momentum from a variety of research

efforts, and it is expected that future safety-critical SoC will employ some form of this

technique to assist in extending the dependable lifetimes of these systems. Therefore, the

research effort presented in this dissertation focuses on this method of COLT.

2. Software-Based Testing

 Software-based self test (SBST) performs all testing completely in software.

Both the test controller and actual test application are implemented by standard

processor instructions. Therefore, SBST can be scheduled like any other software task,

21

allowing for the operating system to be aware of testing, and giving the system designer

great flexibility in scheduling online tests.

 SBST is completely non-intrusive in terms of hardware overhead; however,

verifying that high-coverage levels of structural faults can be achieved strictly through

the application of processor instructions is challenging. Several SBST techniques have

been shown to achieve stuck-at fault coverage rates of 80% and above [24].

 For delay fault coverage, a technique has been proposed and evaluated on a

simple, custom processor [25]. SBST techniques have also been proposed for floating

point units, where extremely high stuck-at fault coverage and low memory footprint

have been achieved [26], [27].

 Although SBST is useful for many applications, it is not expected that SBST will

be a complete solution for providing sufficient reliability for safety-critical SoC. Since

tests can only be generated from processor instructions, it is very difficult to achieve

high fault coverage for fault models other than the stuck-at model. For models that are

extremely useful in determining wearout, such as the delay fault model, hardware-based

testing is expected to remain necessary. However, a combination of SBST and hardware-

based COLT will probably yield an acceptable compromise between test development

costs and system dependability.

22

CHAPTER III

ONLINE DETECTION OF CORE FAILURE WITH

ANOMALY-BASED TEST TRIGGERING UNITS

A. Introduction

 As performance requirements and power limitations for safety-critical

applications continually increase, systems designers will be required to use more

complex electronic components such as many-core systems-on-a-chip (SoC). Within the

next decade, it is expected that a single SoC will contain hundreds of interdependent

cores communicating across sophisticated networks-on-chip (NoC). Recently, the Tilera

Corporation began shipping a 64-core SoC [28] using a NoC inspired by the MIT RAW

on-chip network [29]. Although this chip does not target the safety-critical embedded

system domain, it is only a matter of time before this level of technology will be required

in safety-critical applications.

 In addition to the aforementioned rising complexity of electronic hardware

designs, operational lifetimes of these designs are threatened by a variety of factors that

become more influential as feature sizes decrease to 45 nanometers and beyond. These

factors include electro-migration, stress migration, time-dependant dielectric breakdown,

and thermal cycling [30]. These trends present many challenges but also opportunities

for system designers to create quality electronic systems through the use of fault-

tolerance techniques such as redundancy and monitoring in both hardware and software.

23

Infrastructure IP cores (I-IP) have been proposed by research as a feasible

approach to providing services to the SoC, including yield improvements, testing, error

detection, and IP core configuration management [4], [20], [31]. Infrastructure blocks

such as Test Infrastructure IP (TI-IP) are a clear choice to improve fault-tolerance of

SoCs in hardware.

 Most recently, employing TI-IPs in a NoC-enabled SoC has been shown to be an

effective means for introducing concurrent on-line testing of systems [5]. Concurrent

on-line testing (COLT) allows the various IP blocks within a SoC to be tested in-field

and during normal operation. An effective and robust COLT implementation monitors

IP block activity to minimize application intrusion. This manner of testing maximizes

both availability and reliability of the system which are primary requirements in safety-

critical applications.

 IP block and NoC testing, whether done concurrently with applications or as an

isolated process, is an expensive task in terms of power consumption and performance

degradation [32]. Performance degradation is especially critical for concurrent testing

when the applications are subject to real-time constraints. A better approach to solve

this problem is to schedule testing as an on-demand task where components within the

NoC monitor the system for possible errors and only trigger test requests from the TI-IP

when errors are observed. However, triggering tests in this manner requires detection

units that are accurate and inexpensive in terms of area and power consumption.

 Due to intellectual property limitations, it cannot be assumed that system

designers are allowed to observe the internal behaviors of the IP blocks directly.

24

Instead, the monitoring devices can only observe the communication among these IP

blocks. This communication conforms to a pattern during normal operation of the

applications; however, anomalies in this communication pattern will emerge when errors

are present. Monitoring devices distributed across the NoC can localize the likely source

of error and trigger more extensive tests from the TI-IP.

 COLT services can be classified into two distinct types: periodic and event-

triggered. Periodic monitoring does not consider the current state or behavior of a

system, and instead relies on a priori knowledge of system failure rates. Establishing a

suitable period for testing can be an ambiguous process when working with components

whose mean time between failure (MTBF) is unknown. Also, testing disrupts the normal

behavior of a chip, which is problematic for systems operating under real-time

constraints. Therefore, testing should be reserved to times when abnormal behavior is

observed.

 When using COLT schemes employing a periodic testing strategy, system

designers must balance two conflicting sets of constraints: system quality and reliability

versus low power consumption and performance. Increasing the frequency of

concurrent testing improves system quality and reliability—fault detection time is

reduced, leading to quicker repair times and availability. Conversely, decreasing the

frequency of concurrent testing improves power consumption and performance—

performance improves because applications do not compete with tests for system

resources as often, and power is conserved through the reduction of testing.

25

 On-demand COLT is designed to minimize fault detection time and application

intrusion by testing system components only when there is an indication of error. This

solution accounts for both fault-tolerant and performance requirements which creates a

system that maintains its quality throughout its lifetime. At the time of this research, no

other such solution exists for concurrent testing.

 This work introduces communication anomaly based error detection technique in

NoCs with an efficient test triggering mechanism for concurrent on-line testing of SoCs.

In particular, it makes the following contributions:

 Proposed an on-demand test triggering mechanism that optimizes testing

overhead and intrusion by identifying potentially faulty IP blocks.

 Proposed a fault-tolerant system within the NoC which improves availability of

safety-critical SoCs by reducing error detection time.

 For demonstration, SPEC CPU2006 [33] application benchmarks are executed on

a NoC-enabled SoC simulator [34] with and without the presence of faults. Our

experiments show that our test triggering unit detects 81% of errors and can

initiate tests within 1ms of error detection, on average.

 The remainder of Chapter II is organized as follows. Section B discusses

previous and related research in the areas of networks-on-chip, fault-tolerance, and

anomaly detection. Section C presents our proposed technique for error detection and

on-demand test triggering within a NoC. Section D describes our experimental

methodology and Section E presents the results of those experiments. Section F

concludes with work and discusses future directions for this research.

26

B. Fault Tolerance and Anomaly-Based Error Detection

 Current methods of fault tolerance within NoC-based SoC and anomaly-based

error detection are described in this section for the purposes of background information.

The anomaly-based test triggering unit presented in this chapter borrows from these

previous techniques due to their effectiveness and efficiency.

1. NoC-Based Fault Tolerance

 Among the many services a NoC provides, this research focuses on

communication reliability and fault-tolerance support. Fault tolerant on-chip

communication using stochastic flooding has been investigated in [35]. By using

stochastic flooding during the transmission of messages over the NoC, spatial

redundancy is introduced into the system which provides fault tolerance. However,

stochastic flooding cannot overcome failures within the core or CNI, and its

effectiveness depends on the NoC topology.

 On-line fault detection and location in NoC interconnects were explored in [36].

In this work, faults within the NoC itself can be determined by using a coding technique

to send messages. By sending messages in a constrained way, it can be determined

whether a fault within the NoC has occured at a link or a switch. Debug support via NoC

monitoring was introduced in [37]. The major focus of this work was to introduce

debugging capabilities in NoC-based systems; however, the hardware probes required to

achieve this can also be used for the purposes of fault tolerance.

27

 Concurrent On-Line Test support for on-chip IP cores using Test Infrastructure-

IPs was proposed in [4], [5]. Their technique utilized periodic test triggering for COLT

initiation. However, determining the appropriate period to initiate testing is difficult

since it is based on the failure rates of the device. Transistors may fail due to a variety of

reasons that are extremely difficult to measure through simulation or through direct

observation; transistor failures depend on process variation and on device operation. To

address the inefficiencies of periodic COLT, this research proposes to use the

communication behavior of the NoC to determine the optimal time to initiate testing of

IP blocks.

2. Anomaly-Based Error Detection

 Anomaly-based error detection has been used extensively across many

application domains including distributed systems and Internet security [38]. However,

to the best of our knowledge, no research has been done to investigate the effectiveness

of anomaly-based error detection schemes to minimize test intrusion of COLT and to

maximize availability of the SoC.

 Anomaly detection belongs to the class of unsupervised learning techniques

which do not rely on a priori information of the target system. This makes anomaly

detection well suited for many-core SoCs; IP blocks provided by vendors may not

provide adequate information to use an error detection technique which relies on a priori

knowledge. Additionally, behavior may change depending on runtime characteristics or

as software running on the system is modified over time. Relying on a priori knowledge

under these conditions is costly and complex.

28

 The primary challenge in using an anomaly detection based approach to error

detection in SoCs is overhead management. Typical anomaly detectors require a

prohibitive amount of storage and processing capabilities for an on-chip environment.

The next section describes our efforts to minimize these overheads while maintaining a

reasonable level of accuracy.

C. Test Triggering Mechanism

 Our proposed test triggering mechanism relies on observing anomalies in the

communication among the IP blocks. Anomaly detection has been used to observe a

variety of network behaviors, such as malicious intrusion, fault propagation, and

congestion [38]. It is the purpose of this research to determine the effectiveness of this

technique for use in NoCs in order to efficiently trigger more robust testing of the IP

blocks.

 We assume that a NoC-enabled SoC runs a set of applications which generates a

communication pattern for each IP block in the SoC. These communication patterns are

commonly represented as a set of task graphs operating within the SoC [39]. When the

applications are running correctly, the communication observed in the NoC conforms to

the expected task graphs. When errors are present, unexpected or anomalous

communication is observed. The accurate detection of these anomalies is the primary

goal in the design of our test triggering mechanism.

29

 We propose an n-Anomaly Test Triggering Unit (ATTU) which performs the

following functions:

 Records application patterns between IP block and NoC during a non-faulty

period of operation

 After pattern recording is complete, continuously observes the communication

between the IP block and NoC

 Upon observing n anomalies in this communication, triggers a test request to the

nearest TI-IP

 By triggering tests based on the observation of NoC traffic, this work aims to

reduce the response latency of COLT. This will increase the availability and reliability

of the system.

1. ATTU Architecture

 In this work, we have placed an ATTU within each CNI of the on-chip network.

Fig. 7 illustrates the inclusion of an ATTU within a typical CNI architecture.

Distributing these ATTU across the NoC eliminates the communication overhead

associated with synchronization and management incurred by a centralized scheme,

which in turn reduces latency and power consumption when determining when and

where anomalies occur. Although the ATTU can be located within any component of

the SoC, placing the ATTU within the CNI allows the ATTU to observe both network

layer (source, destination, etc) and transport layer (address, command, etc) information

contained within the messages. The CNI used in this research communicates with its IP

30

block via the OCP-IP 2.0 protocol standard, which includes address, data, and command

fields [40]. Note that the inclusion of ATTU does not require the modification of any IP

blocks.

Fig. 7. CNI with ATTU Architecture

 Anomaly detection can be implemented in several ways—the simplest

implementations count events and establish threshold values for defining anomalous

activity, while more sophisticated methods employ statistical techniques such as

clustering or maximum likelihood functions [38]. Our implementation uses both simple

counters and clustering when detecting anomalies in NoC communication.

2. Message Monitoring Considerations

 As Fig. 8 illustrates, messages traveling across the NoC contain information

stored in fields representing multiple layers of communication. The layers of interest to

this research are the network and transport layers which contain the following fields:

31

source, destination, address, command, and data. Each of these fields can be treated as

an independent dimension in terms of communication behavior. Each dimension reveals

certain aspects of communication, and each dimension must be observed for anomalous

behavior.

Fig. 8. Message Format

 Whether to use a simple or complex detection method for a dimension depends

on the cardinality, or size, of that dimension. For example, the source and destination

fields have low cardinality and can only be of n values, where n is the number of IP

blocks in the SoC. In SoCs which have dozens or hundreds of IP blocks, it is feasible to

construct small counters for each possible value for source and destination.

Alternatively, fields like data and address have high cardinality and can be one of

billions of possible values – constructing counters for each possible address or data value

is not possible. Therefore, statistical clustering is used for these dimensions [38].

 Forming clusters in a single dimension is analogous to forming ranges, which

may be implemented by storing the lower-most value and upper-most value of the

ranges. To further simplify implementation, the proposed ATTU creates a constant

number of clusters, regardless of application behavior. As the ATTU observes CNI

communication, values are stored in empty ranges. Once all ranges are no longer empty,

32

nearest neighbor ranges are merged to allow for more observations to be recorded. Once

these clusters are established, any observation which lies outside of these clusters is

flagged as an anomaly. The initial version of the ATTU creates clusters for only the

address field of the OCP-IP messages.

3. ATTU Training Period

 As with most unsupervised learning techniques, the ATTU requires a ―training‖

period in order to learn the normal communication behavior of a set of applications. The

duration of this training period depends on the complexity of communication behavior

exhibited by the set of applications run on the SoC. Assuming a static task set, the

ATTU requires only one training period before it can effectively monitor the SoC for the

remainder of its operational lifetime. Retraining is only necessary when the set of

applications running on the SoC is changed. Fig. 9 illustrates a typical training phase

period within the lifetime of a safety-critical system.

Fig. 9. Training Phase Period

33

 It is important to note that the limitations of this proposed technique depends

exclusively on the accuracy of the anomaly detector. If the ATTU triggers tests based

on false positives, then the IP blocks are subject to excessive testing which increases

power consumption and latency, and ultimately reduces the reliability of the system.

Oppositely, if the ATTU cannot successfully detect errors, then faulty IP blocks are not

sufficiently tested. Again, this leads to a system that is unreliable. Therefore, verifying

that the ATTU accurately detects errors is the primary goal of our experiments.

D. Experimental Setup

1. Fault Model

 As an IP block approaches the end of its operational lifetime, permanent failure

is preceded by increasingly common incidences of transient and intermittent errors. The

arrival rate and error pattern of these errors depend on the architecture of that particular

IP block. When a fault occurs within an IP block, the architecture and application

determine when that fault will manifest into an observable error in the system.

 In the absence of this information, we explore the behavior of the ATTU by

manifesting faults at the IP block-CNI interface with a variety of random distributions

with respect to arrival behavior and manifestation behavior. To simulate the arrival of

errors, uniform, standard normal, Weibull, and Poisson stochastic processes were used.

The fault effect, or output deviation, was modeled with uniform and normal random

distributions.

34

 Faults within the NoC architecture – CNI, routers, and links – have been

addressed by numerous researchers [4], [5], [35], [36] and are not the focus of this

research. Therefore, we assume that only the IP blocks will become faulty over their

operational lifetime.

 Based on this fault model, we inject faults into the SoC via the IP blocks. Each

injected fault is recorded to determine if the ATTU successfully identifies the fault as an

anomaly. Additionally, we measure the latency between fault injection and anomaly

detection within the ATTU.

2. NoC Configuration and Simulation

 All NoC simulations are run on NoCSim [34], a SystemC-based cycle-accurate

simulator [41]. NoC communication is modeled by processor-memory traffic and TI-IP

tests. We implement the typical memory organization of NoC-based SoCs; processors

with on-core L1 caches use the NoC to access L2 cache cores distributed throughout the

network. NoC communication therefore primarily consists of memory communication

resulting from L1 cache misses.

35

Fig. 10. NoC Topology

 The SoC contains 25 tiles connected by a 5x5 2D torus (a 5-ary 2-cube

topology). There are six ARM microprocessor IP blocks which transmit information

across the network based on memory traces extracted from the SimIT-ARM instruction

set simulator [42]. These microprocessors access data from 16 memory IP blocks. The

three remaining IP blocks are TI-IP which await test requests from the ATTU and

transmit test vectors upon test request arrival. Fig. 10 illustrates the NoC topology used

for all experiments.

 Each message is divided into three 64-bit flits and is routed across the network

using a shortest path virtual wormhole switching algorithm. Each physical channel is

divided into 8 virtual channels. Credit-based flow control is used for each router and

CNI, and a buffer depth of 8 flights is used for each virtual channel.

36

3. Application Benchmarks

 For each simulation, the six ARM processors execute a set of applications in

order to produce a communication pattern in the NoC. Table 1 describes the application

mapping for each test case used in our experiments. All applications are part of the

SPEC CPU2006 suite of benchmarks [33]. For our experiments, we run the following

application sets.

Table 1. SPEC CPU2006 Benchmark Test Cases

 mcf hmmer Mix 1 Mix 2 Mix 3

µP 0 mcf hmmer bzip2 mcf hmmer

µP 1 mcf hmmer mcf astar astar

µP 2 mcf hmmer gcc mcf mcf

µP 3 mcf hmmer astar mcf gcc

µP 4 mcf hmmer hmmer astar gcc

µP 5 mcf hmmer hmmer astar astar

 These applications represent a broad variety of benchmarks within the SPEC suite,

and we have included three mixture cases to determine the effect of heterogeneous

application load on ATTU behavior.

37

E. Experimental Results

1. Detection Rate

 To maximally explore the behavior of the ATTU, we observe the accuracy and

test-triggering latency of the ATTU under varying communication patterns, error

manifestation distributions, and error effect distributions. Processor-memory

communication patterns are affected by the application and cache configuration.

 As described previously, the injected errors are affected by error manifestation

and effect distributions. Our experiments determine the sensitivity of the ATTU with

respect to each of these parameters. We also determine the effect of varying n, the

number of anomalies to detect before triggering a test, on the test-triggering latency of

the ATTU.

Fig. 11. ATTU Performance of Application Sets

0.5

0.6

0.7

0.8

0.9

1

hmmer mcf mix1 mix2 mix3

D
et

ec
ti

o
n

 R
a
te

Test Case

38

 Fig. 11 illustrates the average accuracy of the ATTU in terms of detection rate.

Across the five selected application sets, the ATTU detects approximately 68% to 92%

of errors manifested in IP block communication.

2. Effect of Error Distribution

 Using the random distributions for fault manifestation and effects selected from

the previous section, we observe ATTU accuracy averaged across the five test cases.

Table 2 shows the effect of error behavior on ATTU performance.

Table 2. Effect of Error Distribution on ATTU Performance

 Fault Effect Distribution

M
an

ife
st

at
io

n
D

is
tri

bu
tio

n Uniform Gaussian

Uniform 84.2% 76.6%

Normal 84.1% 79.7%

Weibull 86.2% 78.5%

Poisson 85.6% 77.5%

 Here, we see little effect on ATTU behavior due to error distribution; this is

primarily due to the nature of the application communication between processing and

memory cores.

39

3. Effect of Error Rate

 As the effective error rate is increased from 5E-06 to 3E-05, the ATTU detection

rate is largely unaffected, varying from approximately 80% to 88% accuracy. However,

test-triggering latency reduces as error rate increases. This is an expected result, as more

errors manifesting in the communication between IP blocks results in more anomalies

detected.

Fig. 12. Effect of Error Rate on ATTU

 Fig. 12 shows that test initiation latency reduces by 33% as the error rate

increases from 5.0E-06 to 3.0E-05. Test initiation latency can be further adjusted by the

number of anomalous required to trigger tests as discussed later in this section.

0

400

800

1200

1600

2000

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

T
es

t
L

a
te

n
cy

 (
µ

s)

D
et

ec
ti

o
n

 R
a
te

Error Rate

40

4. Effect of L1 Cache Size

 Varying the L1 cache size of each processor IP block changes the memory

communication observed on the network – larger caches require less L2 cache accesses

as capacity and conflict misses are reduced. This reduction in memory traffic as L1

cache sizes increase results in longer test-triggering delays as seen in Figure 8.

Fig. 13. Effect of L1 Cache Capacity on ATTU

 Fig. 13 shows that the benchmark set used has little effect on accuracy; however,

test initiation latency increases from approximately 40µs to over 80µs as the L1 cache

size increases from 8KB to 32KB.

2000

2500

3000

3500

4000

4500

5000

0

10

20

30

40

50

60

70

80

90

100

8KB 16KB 32KB

L
a
te

n
cy

 (
µ

s)

A
cc

u
ra

cy
 (

%
)

hmmer
mcf
mix1
mix2
mix3
avg
delay

41

5. Effect of ATTU Memory

 Fig. 14 shows the effect of ATTU memory on detection accuracy and hardware

overhead. As the amount of memory dedicated to recording NoC traffic grows, the

ATTU is able to detect finer-grained anomalies within traffic. This translates into a 14%

increase in detection accuracy as the number of ternary content addressable memory

(TCAM) rows increases from 5 to 20.

Fig. 14. Effect of Memory Size on ATTU

 Additionally, it is observed that the overhead due to increased memory usage by

the ATTU increases from 11.25K gate equivalents to 12.25K gate equivalents as the

number of TCAM rows is varied from 5 to 20.

11

11.5

12

12.5

13

13.5

14

14.5

15

0
10
20
30
40
50
60
70
80
90

100

5 10 15 20

G
a
te

 E
q

u
iv

a
le

n
t

(K
)

A
cc

u
ra

cy
 (

%
)

TCAM Rows

hmmer
mcf
mix1
mix2
mix3
avg
Overhead

42

6. Effect of Trigger Sensitivity

 Increasing the number of anomalies an ATTU observes before triggering a test

from the TI-IP increases the test-triggering latency, shown in Figure 15. A designer

including the ATTU should choose n such that the expected test-triggering latency meets

the reliability and availability requirements of the system.

Fig. 15. ATTU Behavior for Various Values of n

 Here, it is observed that the test initiation latency increases linearly with n from

approximately 500µs to nearly 4000µs.

0

1000

2000

3000

4000

0 5 10 15 20 25 30

T
es

t
L

a
te

n
cy

 (
µ

s)

Anomalies Required to Trigger Test (n)

43

7. ATTU Overhead

 Overhead costs in terms of area and power were measured by synthesizing the

ATTU using Synopsys Design Compiler [43] and the Virginia Tech VLSI for

Telecommunications TSMC-0.25µm, 2.5V standard cell library [44], [45]. Realizing an

ATTU configured for this experimental setup would require an estimated 11.6K gates

while consuming an estimated 50.8mW of power (leakage power of 4.64µW).

F. Conclusion

 This work proposed an on-demand test triggering mechanism, the ATTU, for

concurrent on-line test of SoCs. On-demand COLT of NoC-based safety-critical

systems offers several advantages over traditional periodic COLT. Testing of system

components, an expensive and time consuming task, is reserved to times when

indications of error within the system exist. Our exploration of the ATTU under varying

fault manifestation and effect distributions shows that including this mechanism

promotes electronic design quality throughout its lifetime reduces fault detection time,

thereby maximizing system availability. Future work includes enhancing ATTU and TI-

IP coordination to autonomously diagnose system errors to assist in self-healing

capabilities.

44

CHAPTER IV

DISTRIBUTED TEST VECTOR STORAGE

A. Introduction

 Multi-core systems-on-chip (SoC), with a handful of complex processing cores

and integrated peripheral components, are expected to be replaced by many core SoC

that contain hundreds or thousands of light-weight processing cores, memory and I/O

subsystems within the next decade. This transition marks a fundamental shift in how

reliability, availability and testability for these systems will be achieved due to their

massive redundancy and physical characteristics.

 These many core SoC will use packet switched networks-on-chip (NoC) for

inter-core communication, as opposed to the current standard of on-chip busses [1], [10].

Notable examples of this architecture include the 100-core TILE-Gx100 from TILERA

[28], the 80-core Intel Terascale SoC [46], and the 48-core Intel SCC [47] organized as

24-tiles connected via a NoC mesh. On a smaller scale, Freescale Semiconductor has

recently introduced an 8-core device for embedded systems. This device, the QorIQ

P4080, uses a propriety switch fabric called CoreNet, which is a NoC providing cache

coherence and quality-of-service capabilities [48], [49].

 As technology scaling has provided new opportunities for massively parallel and

distributed computation to be performed on a single chip, new reliability challenges have

also emerged. In addition to the well-understood circuit failures due to manufacturing

imperfections, SoC components are also more susceptible to early-life failures (ELF)

45

and electronic wear-out—permanent failures that emerge during use – as feature sizes

scale below 65nm [1], [13], [50].

 Electronic wear-out is a combination of several physical degradation

mechanisms, including electro-migration (EM), hot carrier injection (HCI) and negative

bias temperature instability (NBTI), that are intensified by smaller feature sizes, higher

current and power densities, and higher operating temperatures [13]. Because the most

significant electronic wear-out mechanisms manifest as an increasingly severe delay

fault at the circuit level, many researchers have proposed the use of SCAN-based delay

testing for detecting this type of error [4], [16], [51], [52]. Built-in self-test (BIST)

architectures using pseudo-randomly generated test vectors are effective in discovering

wear-out in memory elements. Unfortunately, BIST techniques cannot be applied to

control portions of logic components, such as intellectual property (IP) cores, due to the

low fault coverage levels provided by logic BIST [16].

 Therefore, researchers have noted the need to apply production-quality, high-

coverage SCAN delay test vectors to the cores within SoC once the system has been

deployed in the field [4], [16]. These tests can be applied as an isolated process – the

entire system is taken off-line periodically or triggered by an event so that all cores can

be tested for wear-out [16]. Alternatively, core testing can be performed concurrently

with normally executing applications [4], [5], [16], [52].

 Concurrent on-line test (COLT) exploits the massive structural redundancy of

multi- and many-core architectures by shutting down some subset of cores within the

SoC for testing while the remaining cores run user applications as normal. This allows

46

the system to achieve its reliability requirements and maintain an extremely high level of

availability. The amount of overhead in terms of power consumption, resource and

network congestion, and chip area costs incurred by testing system components during

normal operation is known as application intrusion. Application intrusion must be

minimized in order for COLT strategies to operate feasibly.

 In the COLT strategies currently proposed in research, the delivery of test vectors

from the test source (on-chip test storage or off-chip memory) to the individual cores

within the SoC is the most significant contributor to testing costs in terms of test latency

and energy consumption [4], [16]. This problem will only become more critical as the

number of cores per SoC increases over time. As the distance between test source and

sink increases for deeply embedded cores, application intrusion in the form of test

latency, energy and NoC congestion also increases.

 In this research, we present a distributed test vector storage (DTVS) technique

for safety-critical SoC that can accommodate storage, power, latency, and availability

constraints in an optimal fashion. The on-chip networks we study in this work focus on

the 2D-torus topology—a popular topology in research and in practice due to its efficient

hardware implementation, small diameter, and simple routing, but this technique can be

used in any regular topology.

 The main contributions of this research are the following:

 Proposes the use of a formalized, distributed storage technique (t-interleaving on

tori) to bound the distance test vectors travel within the network, reducing online

test intrusion

47

 Demonstrates that this scheme can reduce test delivery latency and energy

consumption by approximately 75% and total network load by 76% for the

moderately sized NoC simulated in our experiments

 Proposes a fully distributed COLT scheduling protocol that addresses the

scalable test vector delivery issues present in current COLT research.

 Validates the proposed protocol and supporting architecture through three case

study cores: the OpenRISC processor, an ARM7 processor, and an open-source

NoC router as the cores to be tested across the SoC

 Presents an optimal core test ordering, called Code-Division Core Test

Scheduling, when using distributed test vector storage. By simply ordering which

subset of cores is tested simultaneously, system test delivery latency and energy

consumption is reduced by 40% when compared to other core test orderings.

 The remainder of Chapter IV is organized as follows. Section B describes

related work in online testing techniques, specifically focusing on efforts in concurrent

online testing. Section C briefly motivates the use of distributed test vector storage for

online testing based on observations of previous work. Section D describes our

proposed use of t-interleaving on tori to optimally distribute test vectors across a many-

core SoC such that test vector delivery distances are bounded. Section E describes the

proposed distributed concurrent online testing protocol. Section F presents our analysis

of distributed test vector storage in terms of network traffic load, test delivery latency,

required energy consumption, and on-chip storage requirements for various SoC

configurations. Section G describes the experimental setup used to measure the

48

performance of delivering test vectors using the standard single-source approach and the

described distributed storage technique. Section H presents the results of our

experiments in terms of test delivery latency, energy consumption, and overheads.

Finally, Section I summaries this work and describes future directions for research

regarding this technique.

B. Mechanisms of Concurrent Online Test

 Concurrent online testing is a method of testing SoC components in the field

such that user-level applications are unaware of this activity. Researchers have proposed

various mechanisms to implement COLT in SoC. In this section, the three most popular

approaches are described. In order to provide the high-coverage test delivery, test

application, response retrieval and comparison traditionally provided by external

automated test equipment (ATE), on-chip hardware, software and co-designed

approaches have been evaluated.

1. On-Chip Test Controllers

 In [32], the researchers analyzed the costs and benefits of reusing the NoC as a

test access mechanism (TAM) for each core in the network. This was proposed as a

response to the increasing difficulty of accessing deeply embedded cores within a SoC.

It was shown that a NoC is indeed a feasible TAM due to minimal overheads; however,

it was noted that test delivery times (and power consumption) depend on the distance

between the test source and the core to be tested. Additionally, this variability in test

49

delivery time may not be fully understood, since relatively small 5x7 and 4x8 2D-torus

topologies were studied in that research.

 Using the NoC as a test delivery infrastructure, researchers have proposed

reusing infrastructure IP (I-IP) designed originally for manufacturing testing as a tool for

on-line testing of the system [20].

 Bhojwani [4], [5] constructed a Test Infrastructure IP (TI-IP) capable of

managing test scheduling, delivery, and intrusion for concurrent on-line test (COLT) of

the SoC. COLT allows cores in the SoC to be tested in the presence of normally

executing applications to maximize system availability.

 The original COLT scheme proposes that the test vectors are stored within the

TI-IP. Due to the real-time constraints of these applications, COLT is extremely

sensitive to application intrusion.

 Microprocessor pipeline on-line testing using distributed on-line BIST and

periodic check-pointing was investigated and shown to be an effective technique in

providing high reliability and availability at a reasonable area cost (5.8%) [22]. In this

scheme, stuck-at fault test vectors are generated for processor components and stored in

on-chip ROM. It should be noted that distributed BIST discussed in [22] is a different

concept than DTVS discussed here. In [22], distributed BIST refers to separate BIST

mechanisms for the different pipeline components of a single microprocessor core,

where distributed test vector storage refers to the separate BIST vector storage units

across the entire SoC.

50

 Yi, Makar and Mitra have proposed CASP: Concurrent Autonomous chip Self-

test using stored test Patterns [16]. Similar to COLT, an on-chip test controller is

proposed which manages test scheduling, test application and response comparison for

processing cores of the OpenSPARC T1 chip multi-processor [23]. Their technique

differs from COLT in that the test vectors are stored off-chip in a nearby flash or hard

disk drive (HDD) storage system.

 Consistent with previous research, the time required to test a core was almost

completely dominated by test vector delivery latency. When using off-chip flash

memory, 83% of the total test time was consumed by transferring test vectors to the core

under test. Delivering test vectors via off-chip HDD memory accounted for over 99% of

the total test time [16]. However, it was successfully demonstrated that CASP is a

feasible solution to ensure lifetime reliability for certain applications.

 Operating system and hardware virtualization support is required for any COLT

scheme to operate invisibly to the system user. The OS/virtualization layer must track

which cores are available to the operating system for normal applications and to initiate

task migration when necessary during online test. This topic is addressed in [17], [52]

and is outside the scope of this work.

2. ISA Testing Extensions

 In [51], a hardware/software co-designed approach is presented in order to

provide COLT capabilities to a SoC. Instead of a dedicated on-chip test controller

determining when and how IP cores are tested, the authors extend the ISA of the

processor to give software access to the core’s SCAN chains. These additional

51

instructions, called Access-Control Extension (ACE) instructions, allow software to

control the online testing of cores as a separate process. Software-controlled testing

benefits from increased flexibility; modifying the testing strategy is as simple as

changing the controller software.

 Although software manages the test infrastructure, hardware modification is

required to implement ACE instructions. SCAN chains are expected to already be

present due to design-for-test (DFT) requirements; however, the control structure of the

core must be modified to accept these additional instructions, and extra datapaths are

required to connect the SCAN chains to the instruction pipeline.

3. Software-Based Self Test

 Software-based self test (SBST) performs all testing completely in software.

Both the test controller and actual test application are implemented by standard

processor instructions. Therefore, SBST can be scheduled like any other software task,

allowing for the operating system to be aware of testing, and giving the system designer

great flexibility in scheduling online tests.

 SBST is completely non-intrusive in terms of hardware overhead; however,

verifying that high-coverage levels of structural faults can be achieved strictly through

the application of processor instructions is challenging. Several SBST techniques have

been shown to achieve stuck-at fault coverage rates of 80% and above [24].

 For delay fault coverage, a technique has been proposed and evaluated on a

simple, custom processor [25]. SBST techniques have also been proposed for floating

52

point units, where extremely high stuck-at fault coverage and low memory footprint

have been achieved [26], [27].

C. Motivation for Distributed Test Vector Storage

 Regardless of the mechanisms used to provide COLT, test data storage, delivery

and retrieval is a major consideration in system design. Each of these proposed COLT

designs require some central test data repository. As integration increases, the distances

between test sources and sinks also increase.

 Additionally, it is expected that online testing must occur very frequently for

each core to predict or detect early-life failures – the frequency of core testing is on the

order of seconds [17]. This high frequency testing requires that online testing consume

as little time as possible.

1. Test Delivery Costs Relative to Distance

 As a demonstration of the growing contribution of test delivery to total test time

as integration increases, we evaluate the ratio of test delivery time to test application

time of the OpenRISC CPU core [53] as the delivery distance increases.

 The four cases illustrated in Fig. 16 correspond to test vectors travelling 4 hops, 8

hops, 10 hops, and 12 hops in a 2D-torus based SoC. The test application time for

transition fault testing of the OpenRISC CPU is 1.186ms; however, as the number of

hops increases to deliver these test vectors, the test delivery time increases from 1ms to

2.3ms. At 4 hops, the test delivery time (47%) is roughly equal to test application time

(53%). At 12 hops, 66% of the time required to test the core is dedicated solely to

53

delivering the test vectors to the core under test. This demonstrates the increasing

importance of test delivery costs of COLT as the number of cores per chip scales within

an SoC.

Fig 16. Growth of Test Delivery Time

 Based on these observations, a distributed approach to test data storage may

provide a better solution to the performance-storage tradeoff of test data storage for

online testing. Instead of a single source of test data sending information to each core

across the entire chip, storage redundancy can be used to shorten the effective distance

between test sources and sinks. This research presents a formal approach to assessing

54

this tradeoff – taking advantage of the regular structure of many-core SoCs, this storage

redundancy can be optimally placed to maximize the benefits of distributed test vector

storage.

 Aside from these scalability issues, longer test delivery and response distances

increase the complexity (and potentially decreases the accuracy) of calculating intrusion

costs of on-line testing by the test controller, such as the previously described TI-IP.

Ultimately, this may negatively affect the availability of the system. This motivates the

need to bound test delivery distances for all cores in the SoC.

D. Distributed Test Vector Storage Analysis

1. Interleaving on Tori

 This research focuses on NoC based on the 2D-torus topology, also known as a

k-ary 2-cube (Q2
k). As the Hamming metric has been shown to efficiently describe

relationships between nodes in hypercubes, the Lee metric has been shown to be a

natural description of distances between nodes in tori [54], [55], [56].

 The Lee metric for a 2D-torus of size n x n can be described by (1) and (2) as

follows:

 (1)

 (2)

where wL is the Lee weight of a node A within the 2D-torus, and a0 and a1 are the node’s

positions in the two dimensions. dL is the Lee distance between two nodes in a torus, and

55

like the Hamming distance, it is simply the weight of the difference between the two

nodes. The Lee distance between two nodes can be intuitively described as the number

of hops between two nodes in a torus topology. For a more in-depth discussion of the

torus topology and their properties, please refer to [54], [55].

 Understanding the role of Lee metrics in tori is important when considering how

to optimally distribute a file across a 2D-torus topology. Any test vector distribution

scheme that bounds test vector delivery to each core must ensure that the complete set of

test vectors are within a certain Lee distance to each core. In other words, the delivery

of test vectors must be bounded within a certain number of hops within the torus

topology. We will now discuss how to distribute test vectors across a torus in more

detail.

 A file F (in our discussion, F is a set of test vectors) can be evenly divided into a

set of file segments: F = (F0,F1,…,Fm). Each core can reconstruct the file F by retrieving

the file segments from each of its neighbors within a radius r. It is necessary that for

each core in the 2D-torus, all cores within that radius store a distinct file segment in

order for the complete file F to be reconstructed.

2. Interleaving Example

 As an example, Fig. 17 depicts an arbitrary core in a large 2D-torus which is

storing file segment F6 of 13 total file segments. The neighboring cores within the

radius r = 2 store the remaining 12 file segments. When all 13 nodes are combined, a

Lee sphere is created, and each node within that Lee sphere contains a distinct file

segment. It can be clearly seen that the core at F6 can access the entire file F by

56

retrieving data from its neighbors within the radius r. Likewise, it can be imagined that

these 13 segments are replicated across the entire torus in a symmetric fashion;

therefore, any core within the torus can access all of file F within the radius r.

 In order to guarantee every node in the 2D-torus can also access the entire file

within the same radius, the Lee sphere centered at each node must contain nodes with

distinct file segments. The file F must therefore be replicated across the entire torus in a

spherical manner such that this constraint is satisfied. Replicating the file in this manner

is a straightforward process and can be done during design time as a one-time cost. Once

the placement of file segments is made, the process does not need to be repeated.

F6

F1

F0

F2 F3

F4 F5

F9

F7 F8

F10 F11

F12

Fig. 17. A Core at F6 Retrieving All File Segments Within Radius 2

57

 An alternative way of viewing this problem is to realize that replications of the

same file segment Fi can be no closer than 2r + 1 hops apart. Viewing the problem in this

way relates file placement to coding theory, which ensures that codewords are a

minimum distance apart. In this case, that minimum distance is 2r+1, and the codewords

can be viewed as tiles within the torus.

 This problem has been solved through t-interleaving on tori. t-interleaving on

tori is formally defined by Dr. Jiang as:

Let G be a graph. By an interleaving, we will mean a vertex coloring, as follows.

We say that G is interleaved (or there is an interleaving on G) if each vertex of G

is assigned one of a finite number of distinct colors. We say that G is t-

interleaved (or there is a t-interleaving on G) if every set of t vertices, forming a

connected subgraph of G, is colored by t distinct colors. [56]

 For 2D-tori, the minimum number of file segments required to achieve a t-

interleaving on a 2D-torus is |St|, the number of nodes within an interleaving sphere,

described in (3).

[56]

(3)

 In [56], |St| has been proven to be the lower bound on how many file segments

must be used to create a t-interleaving on a torus, and |St| must divide n for a n x n 2D-

58

torus to be a perfect, or optimal, t-interleaving. This work studies perfect t-interleavings

over tori; however, non-perfect t-interleavings can still achieve tight bounds on test

delivery distances.

 Looking back at Fig. 2, we see that the core storing file segment F6 is at the

center of a Lee sphere of radius r = 2, created by a 5-interleaving on that torus (|S5| =

13).

 In [56], |St|, the size of a Lee sphere with diameter t, has been proven to be the

lower bound on how many file segments must be used to create a t-interleaving on a

torus, and |St| must divide n for a n x n 2D-torus to be a perfect, or optimal, t-

interleaving. This work studies perfect t-interleavings over tori; however, non-perfect t-

interleavings can still achieve tight bounds on test delivery distances.

Fig. 18. 3-interleaving on 5x5 2D-torus

59

 Fig. 18 depicts another example of t-interleaving on a smaller torus, where each

numbered tile is a core, connected by routers R. Specifically, it depicts a perfect 3-

interleaving on a 5x5 2D-torus. By observation, this example shows that any node

within the graph can reach all colors within 1 hop. It also shows that nodes of the same

color (or number label) are no closer than 3 hops apart. Another way to view this

interleaving is to see that every node is the center of a Lee sphere of radius 1, and each

Lee sphere contains 5 nodes with distinct colors (or numbers).

3. Applying Interleaving to Test Storage

 By using t-interleaving on tori for on-chip test vector storage, it is proven that

any core in the network can access the complete set of test vectors within a defined

radius. Bounding this test delivery radius for each core not only guarantees scalability,

but on-line test intrusion can be much more easily estimated. The level of intrusion for

each core no longer depends on proximity to the test source, simplifying scheduling

decisions for on-line testing.

 This same technique can be applied to any topology with regular structure

including meshes and rings. Other proposed NoC topologies, such as the dense

Gaussian network [57], are also suitable candidates for using this technique.

60

E. Distributed COLT Architecture

1. System Components

 Because the proposed test scheduling protocol is fully distributed, inserting

dedicated TI-IP tiles into the SoC is unnecessary. Instead, each tile contains a small test

controller within the Core-Network Interface (CNI) of each tile.

 Fig. 19 illustrates the distributed COLT architecture for each NoC tile within the

SoC. NoC tiles communicate with each other via on-chip routers (R) and CNI. In the

example system, each NoC tile contains a simple CPU core, such as the OpenSPARC T1

core, surrounded by DFT SCAN chains.

Fig. 19. Distributed COLT Architecture Within a Tile

61

 Each CNI contains a Test Controller (TC) which implements the proposed

distributed COLT protocol. The TC contains a nominal amount of buffers to temporarily

store incoming test vectors and responses from neighboring cores and communicates

directly with the DFT structures surrounding the core under test. Each tile also contains a

dedicated Test Vector Memory (TVM) which stores some portion of the complete test

vector set. The TC is responsible for sending the local test vector subset to neighboring

cores upon request.

 The TC is not directly responsible for managing power consumption of the core

or the system during test mode. Researchers have proposed that NoC-based SoC can

manage power consumption by implementing a power management (PM) unit within

each CNI or router [4], [58], [59]. This PM can manage power consumption of its

associated NoC tile by throttling network traffic and the TC.

 Because multiple NoC tiles may initiate tests simultaneously, a token-based

protocol is used to manage the distributed TC. This protocol is detailed in the next

section.

2. Distributed COLT Scheduling Protocol

 This research proposes a simple distributed COLT scheduling protocol that

allows each tile to manage its own self-test. The TC of each CNI implements the test

scheduling protocol as illustrated as a state machine in Fig. 20. We propose a token-

based protocol where the individual SoC tiles are organized into one or more token

rings. Any tile possessing a token can initiate self-test and respond to test results as

62

necessary. The rest of this section details token generation, test application and response,

and token passing.

 Token Generation: Depending on the operating and SCAN test characteristics of

the CPU cores within the SoC, multiple cores may be tested simultaneously without

violating the system power budget and application requirements. The number of cores

that may be tested simultaneously is determined by the system architects and is system

and application dependent. If n cores can be tested simultaneously, then the system is

initiated with n tokens distributed across the NoC tiles. The cores of the SoC are divided

into n token rings such that each ring contains one token and each core is a member of

one token ring. It is possible that rings may contain an unequal number of cores

depending on system characteristics. Cores without tokens remain in the WAIT FOR

TOKEN state before initiating COLT locally.

 Core Test: Once a tile possesses a token, the TC enters the INITIATE TEST state

and may begin a local core test. Before actual testing can begin, it may be necessary to

unload the core of its current task and migrate this task to an alternate core. The TC will

request the other pieces of the test vector set from neighboring tiles and will begin

applying SCAN tests to the test wrapper during the TEST IN PROGRESS state. All test

vectors are applied and responses are compared until test completion. Once the TC is in

the TEST COMPLETE state, it will determine whether the testing has passed or failed

based on a standard response comparison.

 Test Response: If the test has passed, the system can be configured so that the

core may resume its task as described in [52]. If the testing has failed, the TC enters the

63

Fault-Tolerance Response (FT RESPONSE) state and the appropriate action is taken.

For instance, an appropriate response would be to disable the faulty core and replace it

with a cold spare if one is available. Alternatively, a faulty core can be disabled and

system operation resumes in a degraded state.

Fig. 20. Distributed COLT Protocol

64

 Token Passing: Once this action is complete, or if the test passes, the TC enters

the WAIT TO SEND TOKEN state. Token passing may be initiated periodically or due to

specific system events. In [17], researchers have found that detecting hard failure

requires very frequent testing. They note that test periods must be on the order of

seconds (1-10 seconds) in order for checkpointing schemes [22] to be effective at rolling

the core back to a correct state. Testing cores this frequently requires that system

designers consider the impact of COLT application intrusion, including test delivery

costs when applying stored test vectors.

3. Code-Division Core Test Scheduling

 Given that it will be possible for some many-core SoC to test multiple cores

simultaneously, optimizing which cores can be tested simultaneously for latency,

network congestion, power consumption and thermal effects is a critical consideration

for COLT.

 As described in Section D, a many-core SoC which uses a NoC with a regular

topology such as the 2D-torus, can be represented as a set of Lee-metric error correcting

codes. Each code contains a set of NoC tiles located by each codeword. For example,

Fig. 18 shows a 25-core SoC that contains 5 different error correcting codes. Each code

is labeled by a distinct number – the tiles that are labeled 1 all belong to the same error

correcting code. By the definition of error correcting codes, each tile belonging to the

same code must be t hops apart.

 Because each tile belonging to the same code—tiles that will be tested

simultaneously—are t hops apart, and each core under test must access test vectors from

65

at most t – 1 hops away, there exist no resource conflicts due to test. In other words, any

tile in the SoC will send its segment of the test vector to only one requesting core under

test at any time. This design constraint greatly simplifies the testing architecture; no dual

ported TVM are required, and there is no need to broadcast or multicast test vector

segments across the network. Therefore, Code Division Core Test Scheduling dictates

that only cores belonging to the same error correcting code may be tested

simultaneously.

 However, there are fundamental limits to this test ordering scheme. No more

than n cores in an n x n 2D-torus SoC can be tested simultaneously, otherwise resource

conflicts will occur. Also, if only one core can be tested at a time, the order in which

cores are tested will have no effect on testing performance, neglecting user application

effects.

F. Analytical Results

1. Network Load Analysis

 For evaluating total network load of test vector delivery on a 2D-torus NoC-

based SoC, we have developed the following equations.

 The first Vtraffic equation, (4), describes the total network load for a centralized,

single source test vector storage scheme, where Btest is the size of the test vector set in

bytes, TIIP is the location of the test vector source, and Coreij is each core in the SoC.

In centralized COLT, Vtraffic is determined by the Lee distance dL, defined in (2), between

the TIIP and each core to be tested.

66

 (4)

 The second Vtraffic equation, (5), describes the total network load for a t-

interleaved distributed test vector storage scheme for a 2D-torus of size n x n. Again,

Btest is the size of the test vector set in bytes, and |St| is the number of segments the test

vector set is split into. h signifies the number of hops from each test source node to the

test requesting node.

 (5)

 Using these equations, Fig. 21 shows the reduction in total network load when

using t-interleaving compared to single source test storage. For the 5x5 and 10x10 tori,

3-interleaving was used, whereas 4-interleaving and 5-interleaving was used for the 8x8

and 13x13 tori, respectively. The greatest network load reduction of 76% can be

observed for the 13x13 torus. Greater network load reductions can be achieved for

larger tori due to the ever increasing test vector delivery distances of the centralized

scheme.

67

Fig. 21. Network Load Comparison as Network Size Increases

 The results shown in Fig. 21 are a promising trend for using COLT with

DTVS—the benefits increase with SoC size.

2. Energy Consumption Analysis

 Numerous studies have shown that energy consumption of a NoC is directly

proportional to the amount of traffic (flits) being transmitted in that network [58], [59].

To calculate energy consumption relating to delivering test vectors across the NoC, we

use a standard flit-based energy calculation adapted from [58], with 90nm NoC

component energy parameters from [60]. Namely, each flit is 256 bits long, and the

network operates at a frequency of 1GHz.

 Equation (6) states the amount of energy consumed per flit transmitted.

0

50000

100000

150000

200000

250000

300000

5x5 8x8 10x10 13x13

T
o
ta

l
N

et
w

o
rk

 L
o
a
d

 (
K

B
)

2D-torus sizeSingle TIIP

Distributed

68

 [58] (6)

where h is the number of hops the flit travels, Ei is the energy consumed in the tile in-

port, Eo is the energy consumed in the tile out-port, Esw is switching energy, and Elink is

the energy consumed by the network links.

Table 3. Energy Consumption Over Various Tori (µJ)

 Single Source t-interleaved Energy Reduction

5x5 54.31 18.10 67%

8x8 231.74 72.42 69%

10x10 452.61 72.42 84%

13x13 988.50 235.36 76%

 Table 3 describes the energy savings due to the limited network traffic resulting

from t-interleaving. From this, we observe an average energy reduction of 74% when

distributed storage is used for these four cases.

 It is also observed from Table 3 that using t-interleaving to store tests for the 8x8

and 10x10 tori results in equal energy consumption for test delivery, despite their

unequal network sizes. This is due to the fact that 3-interleaving is used for the 10x10

torus (Lee spheres of size 5 are created), and 4-interleaving is used for the 8x8 torus

(spheres of size 8 are created). In other words, smaller but more numerous spheres are

created for the 10x10 torus, reducing the distances that test vectors travel across the chip

69

when compared to the 8x8 torus configuration. The ultimate effect of these disparate

sphere sizes is that the smaller spheres created for the 10x10 torus negate the higher

energy consumption requirements induced by the larger 10x10 torus topology.

3. Storage Redundancy

 For an n x n 2D-torus, the amount of redundancy r introduced into the network

through perfect t-interleaving is described by the following equation:

 (7)

This equation simply computes the number of Lee spheres embedded within the torus.

Fig. 22. Storage Redundancy for Various Tori Using DTVS

0

5

10

15

20

25

5x5 8x8 10x10 13x13

R
ed

u
n

d
a
n

cy

2D-torus size

t = 3 t = 4 t = 3 t = 5

70

 Fig. 22 shows the redundancy requirements for various t-interleaving schemes

over different size 2D-tori using equation 2. In fact, for any n x n 2D-torus, the

minimum required level of redundancy for a perfect t-interleaving is simply n since |St|

must divide n.

 In Fig. 22, it is observed that the larger 13x13 torus requires less redundancy than

the smaller 10x10 torus. This is due to the fact that 3-interleaving is used for the 10x10

torus (Lee spheres of size 5 are created), and 5-interleaving is used for the 13x13 torus

(Lee spheres of size 13 are created). The 10x10 torus configuration contains 100 total

nodes, and the test vectors are replicated across the 20 spheres created. The 13x13 torus

configuration has 169 total nodes, and the test vectors are replicated across the 13

spheres created. Therefore, tests are replicated seven more times in the 10x10 torus

configuration than the 13x13 torus configuration.

 If less redundancy is desired, a designer may simply construct a sub-optimal t-

interleaving over a torus. Another method to reduce redundancy requirements is to store

file segments in only some nodes while still bounding test delivery distance. However,

the main limitation of on-line testing noted in research literature has been test delivery

distance and not storage.

G. Experimental Setup

1. NoC Simulator

 To measure the performance of using this distributed test vector technique, we

simulate a NoC-based SoC using the NoCSim on-chip network simulator [34]. NoCSim

71

is a SystemC cycle-accurate simulator which models IP cores, on-chip routers, CNI, and

network links for any network topology to form a complete system. It takes as input an

XML document which specifies the system topology and composition, and it reports

activity latency, resource utilization and energy consumption.

 Table 4 describes the baseline simulation configuration and parameters used

during our experiments.

Table 4. DTVS Simulation Parameters

SoC Topology 2D Torus: 25, 64, 100, 169 cores

Test Vector Set Size See Table 3

Network Configuration 64-bit flits, 8 flits per packet, 8 VCs per

link, 8 flit buffer depth, 1 GHz, wormhole

routing, credit-based flow control

Process Technology 90nm

 The simulated on-chip network utilizes 64-bit links, and each IP core can

transmit information in 64-byte packets. The test vector sets used in all experiments are

256KB in size; therefore, 4096 packets of information are transmitted from test source to

test sink. The measurement of energy consumption is based on energy formulas

developed in [58], and energy parameters developed in [60] which considers a system

using 90nm technology.

72

2. System Architecture

 For our experiments, we evaluate the performance differences between applying

COLT with a centralized TI-IP architecture and the proposed distributed architecture for

NoC-based SoCs organized as 2D-tori.

 For the 2D-torus based systems, four systems are constructed for our

experiments: a 25-node SoC in a 5x5 torus topology, a 64-node SoC in a 8x8 torus

topology, a 100-node SoC in a 10x10 torus topology, and a 169-node SoC in a 13x13

torus topology. For each system, we simulate the behavior of delivering test vectors to

each node in the system using a standard centralized approach described in [4], [5] and

the proposed distributed protocol based on t-interleaving. We allow n cores to be tested

simultaneously in each n x n configuration. For example, five cores are tested

simultaneously in the 5x5 torus system.

 For the 5x5 and 10x10 torus systems, 3-interleaving is used to distribute the test

vectors across the network; the test vector set is split into 5 pieces, and each node can

access all test vectors within 1 hop. For the 8x8 torus, 4-interleaving is used, therefore

the test vector set is split into 8 pieces, and each node can access all test vectors within 2

hops. Finally, the 13x13 torus system uses 5-interleaving to distribute the test vectors.

In this scheme, the test vector set is split into 13 pieces, and each node can access all test

vectors within 2 hops.

73

3. System Cores

 To assess the effectiveness of distributed test vector storage, this research

considers the testing of the following IP cores: the OpenRISC CPU [53], the

ARM7TDMI CPU [61], and a NoC router [62]. Both the OpenRISC and ARM7 cores

are simple, in-order processing cores that are representative of the trend towards many,

small processers in many-core SoC. The NoC router is an open-source design from the

Stanford Concurrent VLSI Architecture Group which includes RTL and testbenches

[62].

 Each core was synthesized using Synopsys Design Compiler [43] with the

Synopsys 90nm Generic Library [63], and scan chains were automatically inserted after

synthesis. For each design, one scan chain is inserted. After synthesis, the ATPG tool,

Synopsys Tetramax [64], was used to generate delay tests based on worst-path delay

information. Fault coverage exceeded 97% for each design. To measure test time, the

application of test vectors into each design was simulated at the gate level using an

automatically generated testbench from the ATPG tool and the synthesized netlist.

Table 5 summarizes the delay testing information for each of these cores. The size of

each design is represented in gate equivalents (Gate Eq.).

74

Table 5. Core Test Information

Core Gate Eq. Vectors Volume Test Time

OpenRISC 773133 626 154KB 1186 µs

ARM7 34522 587 137KB 293.9 µs

Router 38617 121 65KB 60.9µs

 From Table 5, it is observed that the OpenRISC core is by far the most complex

IP core of the three cores analyzed for this research, and the OpenRISC core also has the

longest test application time of the three cores. Although the router is almost as large as

the ARM7 core in terms of gate equivalents, its test application time is much shorted due

to the simplicity of its architecture.

H. Experimental Results

 The goal of any concurrent online testing scheme is to minimize application

intrusion. Therefore, the system impacts of COLT are measured in terms of system test

latency – the amount of time required to test all cores of the SoC, and system test energy

consumption, which is critical in safety-critical embedded applications. Additionally, the

effect of the order of core testing is measured to determine the effect of network and

resource contention on system test latency. Finally, the Test Controller (TC) portion of

the CNI, which implements the proposed distributed COLT scheduling protocol is

synthesized to determine area and power overhead.

75

1. System Test Latency

 System test latency, or the amount of time required to test each core of the SoC

using COLT, is a critical parameter in determining the feasibility of including a COLT

scheme in a SoC.

 As a baseline case, we executed the centralized COLT protocol on systems

composed of the OpenRISC, ARM7, and NoC router cores described in Section G. The

test delivery time for each case is the average delivery time for testing all cores in the

SoC. Fig. 23 illustrates the results of this experiment.

 The relative overhead of test delivery is highest in the NoC router design: in the

13x13 SoC, the average time required for delivery of test vectors to the router under test

accounts for 90% of the total testing time. For the ARM7 processor, test delivery time

accounts for roughly 70% of the total testing time across the SoCs of varying size.

Testing the OpenRISC processors requires the longest total time on average; however,

test delivery time accounts for approximately 50% of the total test time across all studied

SoCs.

76

Fig. 23. Test Application and Delivery Times in Centralized COLT

 Fig. 23 illustrates the performance differences between using a standard

centralized COLT protocol and the proposed approach when testing the ARM7

processor core. In each n x n SoC, n tiles are replaced with TI-IP when using the

centralized COLT scheme as described in [4] to ensure that n cores are tested

simultaneously throughout the simulation for fairness.

 For the 5x5 2D-torus system, distributed COLT can test each core of the system

in 412µs, while the centralized COLT scheme requires 972µs to test each core of the

entire system. This equates to a 58% reduction in system test time when using

distributed COLT. System test latency improvements increase with SoC size as Fig. 24

0

500

1000

1500

2000

2500

3000

5x5 8x8 10x10 13x13

L
a
te

n
cy

 (
µ

s)

2D-Torus Size

Test Time
Delivery Time

O
pe

nR
IS

C

A
R

M
7

R
ou

te
r

77

shows; at the 169-core 13x13 SoC, distributed COLT can test each core in 390µs, while

centralized COLT requires 1558µs. This equates to a 75% reduction in system test time.

 In safety-critical applications with real-time constraints, shortening the system

test time as much as possible is critical to ensuring that tests and applications can meet

their deadlines.

Fig. 24. Scalability of System Test Latency in 2D-Tori SoC

 From Fig. 24, it is observed that test time for each core is constrained by the

circuit’s test application time when using DTVS. When using the centralized COLT

scheme, total test time is bounded by the delivery of test vectors. Furthermore, the

delivery time for each core increases linearly when using a centralized scheme, unlike

DTVS, which shows no increase in delivery time as the system scales.

0

200

400

600

800

1000

1200

1400

1600

1800

5x5 8x8 10x10 13x13

L
a
te

n
cy

 (
µ

s)

2D-Torus Size

Test Time
Delivery TimeD
TV

S
C

en
tra

liz
ed

78

2. Energy Consumption of Test Delivery

 Increasing test vector delivery distances affect energy consumption due to test,

just as latency is affected as demonstrated in Section VIII.A. Energy consumption is a

critical factor of many safety-critical applications, since a substantial portion of these

applications run on mobile systems where a finite amount of energy is available.

Network energy parameters used in these experiments are based on the results obtained

in [58], [60]. In the following experiments, a test vector set of 256KB in size is

assumed.

 Fig. 25 illustrates the effect of SoC size on energy consumption during COLT.

Note that energy consumption is represented on a log scale due to the exponential

growth of energy consumption as SoC size increases.

 For the 5x5 2D-torus system, using the proposed distributed COLT protocol

results in a 83% reduction in energy consumption for an entire system test. Please note

that the energy consumption for Distributed COLT within a 5x5 Torus system is 0.85mJ

and therefore cannot be seen on the graph. As with latency, energy consumption

improves as the SoC size increases. For the 13x13 SoC, energy consumption is reduced

by 93%.

79

Fig. 25. Scalability of Test Delivery Energy Consumption

 Reducing the energy consumption by an order of magnitude across all SoC sizes

analyzes is a significant factor in determining whether using COLT with DTVS is

feasible for safety-critical SoC. Many safety-critical applications have very constrained

energy and power budgets, and any savings in energy translate into more technically

capable systems.

3. Effect of Traffic Load on Testing

 Since this research focuses on concurrent online testing, it is important to study

the effects of other network traffic on test delivery. We model background application

traffic by injecting flits into the network at varying levels. These flits are generated with

random destinations to produce ―white noise‖ background traffic. We vary this load

from no traffic to 0.5 flits/cycle/node in increments of 0.1 flits/cycle/node.

1

10

100

1000

10000

5x5 8x8 10x10 13x13

E
n

er
g
y
 C

o
n

su
m

ed
 (

m
J
)

(l
o
g
 s

ca
le

)

2D-Torus Size

Distributed COLT

Centralized COLT

80

 For this experiment, each core of the SoC initiates an on-line self-test with

distributed test vector storage, using the same 2D-torus configurations described in

Section VII.B. Before initiating the first on-line test, a warm-up time of 1000 cycles was

used to bring router activity to a steady state.

Fig. 26. Effect of Network Traffic on Test Latency

 Fig. 26 illustrates the results of these experiments. We see that up to a

reasonable level of background traffic (0.3 flits/cycle/node), test delivery latencies are

not greatly affected. For the 25-core 5x5 2D-torus SoC, latency is increased by 21%,

from 23ms to 29ms. For the 64 and 100-core SoC, latencies are increased by 28% and

25% respectively from no traffic to 0.3 flits/cycle/node. At 0.4 flits/cycle/node in these

SoC, network saturation effects begin to dominate network behavior. For the 169-core

13x13 2D-torus SoC, latency doubles from 17ms to 34ms between no traffic and 0.3

0

10000

20000

30000

40000

50000

60000

5x5 8x8 10x10 13x13

L
a
te

n
cy

 (
µ

s)

2D-Torus Size

0 (flits/cycle/node)

0.1 (flits/cycle/node)

0.2 (flits/cycle/node)

0.3 (flits/cycle/node)

0.4 (flits/cycle/node)

81

flits/cycle/node added traffic. An injection rate of .4 flits/cycle/node with uniformly

random destinations in the 13x13 2D-torus completely saturated the network; therefore,

results for that case are not shown.

4. Effect of Core Test Scheduling

 Distributed test vector storage allows a core under test to access the complete test

vector set stored across its neighbors within a certain radius. Specifically for torus-based

on-chip networks, a communication pattern in the form of a Lee-metric sphere of radius

r centered at the core under test is created. In other words, the core under test will

communicate with neighboring cores at most r hops away. Therefore, no two cores with

overlapping Lee-metric spheres of radius r should be tested simultaneously. This

experiment shows the effect of testing cores with overlapping test vector communication

compared to using the proposed Code-Division Core Test Scheduling; the time to test all

cores of the SoC using a standard centralized approach is also included for the purposes

of comparison.

 Fig. 27 illustrates the effect of resource conflicts due to improper core test

ordering. For this experiment, four scheduling algorithms are used to determine which

cores of a 5x5, 8x8 and 10x10 2D-torus based SoC are tested simultaneously: Random,

Code, Linear, and Centralized. In the random scheduler, cores are chosen at random to

be tested such that each core is tested once until the entire SoC is tested; this algorithm is

used as a baseline for comparison. Simulations using the random scheduler were run

until a latency result converged. The Code scheduler is the proposed algorithm described

in Section D. The Linear scheduler simply tests all n cores of a n x n SoC line-by-line.

82

 The Centralized scheduler is the algorithm assumed by previous research and

does not use distributed test vector storage.

Fig. 27. Effect of Core Test Scheduling

 As Fig. 27 shows, the proposed Code-Division based algorithm reduces system

test latency by approximately 40% compared to both the random and linear schedulers.

This demonstrates that resource conflict, in terms of network congestion and shared test

vector memory usage, is a significant contributor to system test latency.

5. Distributed Test Controller Overhead

 To determine the area and power costs of including the distributed COLT-based

Test Controller (TC) in each CNI of the system, and HDL model of the TC was

developed. This model was functionally verified using Verilog testbenches.

0

200

400

600

800

1000

1200

5x5 8x8 10x10

L
a
te

n
cy

 (
µ

s)

2D-Torus Size

Centralized
Random
Linear
Code

83

 The HDL model was synthesized using Synopsys Design Compiler [43] and the

Synopsys 90nm Generic Library [63]. The gate count of the TC was estimated to be

5.8K, while power consumption was estimated to be 6.2mW. This overhead includes the

realization of the scheduling state machine, test vector and response buffers, core state

buffers to save the microprocessor state, and test controller mechanisms such as the

SCAN test interface.

6. Test Vector Memory Overhead

 As stated in previous sections, more on-chip storage will be required to

implement the distributed test vector storage scheme used with the proposed distributed

COLT protocol when compared to centralized schemes. For most systems, n copies of

the test vector set will need to be stored on-chip for a SoC of size n x n. However, as on-

chip cache sizes increase exponentially as feature size shrinks, test vector storage will

consume a relatively small percentage of on-chip memory.

 For example, a 25-core SoC using the OpenRISC processor core would require

approximately 770KB of test vector storage using distributed COLT. Due to these

increased storage requirements, this research envisions that distributed COLT will be

most applicable for safety-critical applications.

I. Conclusion

 Concurrent online test of many-core SoC is only feasible if application intrusion

is sufficiently reduced, allowing user applications to function correctly while detecting

the formation of hard errors due to early-life failure and electronic wear-out quickly.

84

Previous research has shown that the most significant contributor to application intrusion

is the delivery of test vectors to each core within the system. In addition, this research

has demonstrated that the greatest contributor to application intrusion of COLT is the

delivery of test vectors, based on the testing of two processing cores and an on-chip

router.

 We propose the use of t-interleaving to optimally distribute test vectors across

the SoC to minimize the impact of online testing on system functionality. By

minimizing and bounding the distances test vectors must travel across a chip, system

designers can better estimate how testing will intrude into system applications.

Additionally, test vector delivery latency and energy consumption is dramatically

reduced, allowing for thorough online testing to be used in low-power and energy

efficient systems.

85

CHAPTER V

APPLICATION-AWARE ONLINE TESTING

A. Introduction

 Many safety-critical systems, including avionics and automotive systems, are

rapidly integrating more functionality into single devices. These devices can host

applications of many levels of criticality, termed mixed-criticality systems, in order to

reduce the space, weight and power (SWaP) costs of such systems. Within avionics, this

trend is called Integrated Modular Avionics (IMA); a single IMA system can control

every aspect of the aircraft and replaces many separate single-function systems [65].

Within the next decade, these embedded systems will transition from multi-core

systems-on-chip (SoC) to many-core SoC using a network-on-chip (NoC) for inter-core

communication, replacing the typical on-chip bus used today [benini]. These many-core

systems will contain dozens to hundreds of processing, memory and interface cores

capable of running many applications simultaneously.

 Beyond these functional changes, physical changes will accelerate over the next

decade. As feature sizes shrink to 32nm and below, these systems become more

susceptible to early life failure (ELF) and electronic wearout [1], [13]. To mitigate

against this increasing vulnerability, these devices will require frequent, online testing to

ensure sufficient reliability and availability [4], [5], [16].

 The design requirement for online testing is already entering today's safety-

critical embedded devices. For example, the Freescale MPC564xL platform allows for

86

online SCAN testing and diagnosis in the event that a system component experiences

hard failure due to wearout in the field [66].

 Previous research has proposed Concurrent Online Testing (COLT), which

allows for online tests and user applications to run on the SoC concurrently [1], [4], [5],

[16]. COLT satisfies the reliability requirements met by online testing while also

providing a sufficient level of system availability.

 A key design aspect for COLT is application interference—the costs associated

with online testing that include additional energy consumption, increased NoC traffic

load, and core under test (CUT) downtime. The work described in previous chapters has

attempted to optimize these costs; however, little work has been done in measuring the

effect of COLT on application execution times.

 Measuring and bounding application execution times in safety-critical systems is

extremely important. These systems typically have hard realtime requirements, and any

application that misses its deadline could cause catastrophic failure. Therefore, the effect

of COLT on application execution times must be well understood.

 Any COLT technique requires the delivery of test vectors from test sources to the

CUT, and this delivery process manifests as increased NoC traffic. We have measured

the effect of increased NoC traffic due to COLT on application execution times from the

MiBench embedded benchmark suite [67] using the experimental setup described in

Section D. Automotive, telecommunication, networking and security applications were

chosen to represent safety-critical applications. Execution times of a variety of

87

benchmarks increased by an average of 17% while under interference, motivating the

need to understand the effect of COLT on applications.

 In this work, we propose and analyze application-aware online testing of many-

core SoC. By respecting the deadline requirements of safety-critical applications during

COLT, we allow the system designer to make a tradeoff between test speed and

execution time stability.

 This work makes the following contributions:

 To the best of our knowledge, this is the first analysis of the effect of online

testing on application execution time, a primary aspect of application intrusion

 Two methods for minimizing interference during online testing are proposed and

analyzed: Test Vector Delivery Blocking and Test Vector Storage Redundancy

 Overhead of proposed schemes determined by implementing distributed test

controller

 The remainder of Chapter V is organized as follows: Section B describes COLT

and explains the need for distributed COLT solutions for many-core SoC. Section C

introduces the proposed methods of minimizing application interference and the

associated system architecture. Section D details the experimental platform, system

assumptions and experiment set, and Section E presents the results of the evaluation in

terms of testing and application performance and overhead. Concluding remarks are

presented in Section F.

88

B. Application-Aware Online Testing Architecture

 In previously proposed method of distributed COLT, application interference

through the NoC was not considered. Following the distributed COLT protocol

described in Chapter IV, a core under test would request test vectors from its

neighboring tiles, and those neighboring tiles would respond immediately. In a non-

critical environment, ignoring this interference may be acceptable. However, if hard

deadlines must be met to avoid catastrophic failure, then the distributed COLT protocol

must consider the case where one or more neighboring tiles cannot respond with test

vectors immediately.

 In this work, we describe two complimentary methods of allowing safety-critical

applications and online tests to run concurrently within a many-core SoC while

minimizing interference. These two methods are termed Test Vector Delivery Blocking

and Test Vector Storage Redundancy and are described in the following subsections.

1. Test Vector Delivery Blocking

 Test Vector Delivery Blocking is the simple method of requiring any tile running

a safety-critical application to complete its task before delivering test vectors to a core

under test. This differs from previously proposed COLT techniques that begin the

delivery of test vectors immediately upon request.

 In order to alert the test controller within the CNI that a safety-critical application

is running, we propose adding a memory-addressable test configuration register to the

CNI which provides software access. When an application enters a safety-critical

89

section, a "safety-critical" flag within the configuration register is set to TRUE, denying

any test request from neighboring tiles to be satisfied. Once the safety-critical section of

the application completes, the "safety-critical" flag is set to FALSE, and any pending test

requests can then be fulfilled.

 From the perspective of the core under test, test request messages are sent to its

neighbors seeking test vectors, and the CUT begins to receive these test vectors from

neighboring tiles that are not currently running safety-critical software. If any of its

neighbors are running safety-critical software, the CUT is blocked from receiving the

complete test vector set and running a full test.

TEST_VECTORS

TEST_VECTORS

TEST_VECTORS

DELIVERY_DONE

DELIVERY_DONE

TEST_REQ

TEST_VECTORS

TEST_REQ

CUTSource 1 Source 2

Safety-Critical Section

Fig. 28. Test Vector Delivery Blocking Protocol

90

 Fig. 28 illustrates a simple example of a CUT requiring test vectors from two

neighbors where one neighbor is in a safety-critical section during a test request.

2. Test Vector Storage Redundancy

 Test Vector Storage Redundancy is the method of using erasure codes to

eliminate the requirement that a core under test must access all of its neighbors' test

vectors to construct a complete test vector set. An erasure code is an error-correcting

code of length n, created from a k-length message (where n > k) such that the original

message can be constructed from a subset of the n parts. The simplest example of an

erasure code is the parity code of length k+1, where a k-length message is appended with

an additional term—the sum of the terms of the original message. If any one term of the

k+1 code is missing, the original message can be recovered.

 This coding technique can be used for the distributed storage of test vectors

across a SoC. Instead of directly dividing the complete test vector set into k segments

and distributing it as proposed in Chapter IV, the test vector segments can be encoded

into an erasure code of length n, and these n segments are distributed.

 The cost of using storage redundancy include increased storage requirements

equal to the code rate selected and the decoding circuitry required to transform the

encoded test vectors into their original form. In the case of parity codes, this circuitry is

extremely small and simple, and it can be considered negligible.

91

S2
CUT

S0

P0

S3

S1

Test Vector Set

S0 S1 S2 S3

Parity

P0

Fig. 29. Example of Test Vector Storage Redundancy

 Fig. 29 illustrates an example where one neighbor, S3, is running safety-critical

software; however, the CUT can access its three other neighbors and can construct a

complete test vector set without delay. This is possible because the test vector set is

originally divided into four segments, and a fifth, redundant segment is created through

parity generation to form an erasure code. These five segments are stored within each

SoC tile through 3-interleaving, as done in the example shown in Fig. 18. Through the

generation of a parity code, the full test vector set can be constructed from any four of

the five segments.

 Test Vector Storage Redundancy provides flexibility and fault-tolerance to

distributed COLT. A CUT may lose one of its test vector sources, either temporarily or

permanently, and still retain the capability to access its complete test vector set.

92

3. Using These Methods in Combination

 Depending on application-specific requirements, either of these methods can be

used in isolation, or both can be used in combination. A system that has very strict

storage overhead requirements is better suited to using Test Vector Delivery Blocking

only. Whereas, a system that has very strict online test deadlines but can tolerate some

level of application interference will prefer to use Test Vector Storage Redundancy.

 Strictly using storage redundancy, application interference still may occur.

Consider the situation where storage redundancy can tolerate one neighbor running

safety-critical code during a test request. However, in a particular instance, more than

one neighbor of a CUT is running safety-critical software. In this situation, all but one

of the tiles running safety-critical software must begin sending test vectors to the CUT

immediately. This can be considered a "best effort" approach to avoiding interference.

 If Test Vector Delivery Blocking and Test Vector Storage Redundancy are used

in combination, the situation above can be avoided if necessary. Storage redundancy

allows a CUT to test itself using only a subset of its neighbors, and even if that subset is

not available, delivery blocking can be enabled. Using these methods in combination

can provide a good compromise between testing performance and application

performance, and we evaluate each of these possibilities in Section D.

93

C. Experimental Setup

1. System Architecture

 To measure the performance of the proposed COLT methods, we simulate a 100-

core NoC-based SoC using the NoCBench on-chip network and system simulator [34].

NoCBench is a SystemC cycle-accurate simulator which models processor and memory

IP cores, on-chip routers, CNI, and network links for any network topology to form a

complete system. Table 6 describes the baseline simulation configuration and parameters

used during our experiments.

2. Test and Application Parameters

 The test vector sets used in all experiments are 256KB in size; therefore, 4096

packets of information are transmitted from test source to test sink during each COLT

instance. To simulate safety-critical software, we have constructed a schedule of 10 task

frames, where each frame has a duration of 200µs, and we vary the proportion of frames

that are safety-critical within a schedule. Typical values are used for NoC parameters,

and a 100 core SoC is simulated to understand the behavior of COLT in a many core

SoC. These NoC and system parameters are described in Table 6.

94

Table 6. Application-Aware COLT Simulation Parameters

SoC Topology 100 cores with 2D-torus

Test Vector Set Size 256KB, 5 segments

Network Configuration 64-bit flits, 8 flits per packet, 8 VCs per link, 8 flit buffer

depth, 1 GHz, wormhole routing

Processor Core SPARC-V8, 32KB L1 I/C Caches

D. Experimental Results

 To evaluate the COLT methods proposed in this work, we focus on measuring

the duration of application interference of COLT under varying levels of application

criticality. Each of the two methods proposed—Test Vector Delivery Blocking and Test

Vector Storage Redundancy—are evaluated in isolation and in combination. Overheads

of these methods, in terms of test vector storage requirements and test controller area and

power consumption, are also evaluated against previously proposed COLT techniques.

1. Application Interference of COLT

 As described in Section I, it is important to note the effect of application

execution time due to COLT. By running actual benchmarks with COLT from the

embedded MiBench suite [67] representing automotive, telecommunications, networking

and security applications, we are able to observe the effect of COLT on execution times.

As shown in Fig. 30, we have observed an average increase of 17% in execution times

during COLT interference. An exception to this is the automotive application bitcount,

95

which experienced only a 6% increase in execution time. This is due to bitcount's

instruction composition, which includes very little memory transactions and is therefore

fairly immune to NoC traffic interference [67].

Fig. 30. Effect of NoC Traffic on Execution Time

 In general, a common increase in execution time is observed across each of these

benchmarks when COLT runs concurrently with applications. This increase in execution

time could have profound effects for a safety-critical system which relies on hard

deadlines to avoid catastrophic failure.

2. Test Vector Delivery Blocking

 Fig. 31 illustrates test delivery time for Standard COLT and Test Vector Delivery

Blocking COLT over varying levels of software criticality. Additionally, the amount of

time that Standard COLT interferes with safety-critical software is overlaid with the

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

SU
SA

N

B
IT

C
O

U
N

T

C
R

C
32

G
SM

.E
N

C

G
SM

.D
EC

D
IJ

K
ST

R
A

SH
A

N
o

rm
a

li
ze

d
 E

x
ec

u
ti

o
n

 T
im

e

No Interference

COLT Interference

Auto Telecom Net Security

96

delivery time data. As expected, Standard COLT shows no change in test delivery time;

however, the amount of interference increases with the amount of safety-critical

software running on the SoC. If test vector delivery is blocked during safety-critical

sections of software, an increase in test delivery time is observed; however, there is no

interference between COLT and safety-critical software.

Fig. 31. Comparison of Standard COLT and Test Vector Delivery Blocking

 As seen in Fig. 31, test vector delivery time increases from approximately 24µs

to 34.1µs, an increase of 42%, as the SoC's proportion of safety-critical software

increases from 0% to 90%. When the proportion of safety-critical software is 40%, the

increase in test delivery time is 26%.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

20000

22000

24000

26000

28000

30000

32000

34000

36000

0 20 40 60 80 100

In
te

rf
er

en
ce

 (
n

s)

T
es

t
D

el
iv

er
y
 T

im
e

(n
s)

Safety-Critical Section %

Standard COLT

Blocking COLT

Interference

97

3. Test Vector Storage Redundancy

 By using redundancy in test vector storage and delivery, the CUT only requires a

subset of its neighbors to access the complete test vector set. In these experiments, the

test vector set was divided into 4 segments, and one parity segment was generated as

described in the example in Section B. This redundancy introduces a 20% overhead in

test vector storage.

 As Fig. 32 shows, using storage redundancy with COLT allows for a significant

reduction in application interference under a variety of safety-critical loads. The greatest

reduction in interference occurs between safety-critical section proportions of 10% and

70%; the average reduction of interference in these systems is 47%. Once the proportion

of safety-critical software exceeds 70%, the benefits of storage redundancy are reduced

due to the fact that most cores of the SoC are executing safety-critical software most of

the time—interference is largely unavoidable.

98

Fig. 32. Interference Reduction of Storage Redundancy

 Apart from application interference, it is also important to observe the effect of

using storage redundancy with COLT on test vector delivery times. As Fig. 33 shows,

test vector delivery times decrease as the proportion of safety-critical software increases.

On average, the test delivery time is increased by 15%. This may seem counter-intuitive;

however, an explanation is found when looking at the nature of storing and delivering

redundant test vectors.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 20 40 60 80 100

In
te

rf
er

en
ce

 (
n

s)

Safety-Critical Section %

Standard COLT

Redundancy COLT

99

Fig. 33. Delivery Times of Standard COLT and Storage Redundancy COLT

 When the proportion of safety-critical software is low (30% or less), a significant

portion of the test vector traffic is redundant information—the parity segment as

described in Section B. This redundancy increases the effective test vector delivery time

of COLT. This redundant traffic may be used to verify the correctness of the test vector

traffic in the event of transmission or storage errors, but that benefit is outside the scope

of this dissertation.

4. Combination of Blocking and Redundancy

 As described in Section B, both proposed schemes can be implemented together

to allow both blocking and redundancy during COLT. In isolation, we have observed

that blocking removes interference but has increasing test delivery times as the amount

of safety-critical software increases. Alternately, storage redundancy has a decrease in

20000

22000

24000

26000

28000

30000

32000

34000

0 20 40 60 80 100

T
es

t
D

el
iv

er
y
 T

im
e

(n
s)

Safety-Critical Section %

Standard COLT

Redundancy
COLT

100

test delivery time as the amount of safety-critical software increases, and it also provides

a reduced level of interference when compared to Standard COLT.

Fig. 34. Test Delivery Times of All COLT Schemes

 Fig. 34 compares the test delivery times of all schemes: Standard COLT, Test

Vector Delivery Blocking, Test Vector Storage Redundancy, and the combination of the

two. We observe that the test vector delivery times of the combination (Block+Red

COLT) remains relatively stable under all safety-critical proportions.

 The combination suffers from the relatively high delivery times of the storage

redundancy scheme during low amounts of safety-critical software. However, when the

proportion of safety-critical sections exceeds 50%, the combination outperforms Test

20000

22000

24000

26000

28000

30000

32000

34000

36000

0 20 40 60 80 100

T
es

t
D

el
iv

er
y

 T
im

e
(n

s)

Safety-Critical Section %

Blocking COLT
Redundancy COLT
Block+Red COLT
Standard COLT

101

Vector Delivery Blocking in isolation. It is important to note that the combination

eliminates all application interference, just as blocking in isolation does.

5. Test Controller Overhead

 To determine the area and power costs of adding the Test Vector Delivery

Blocking and Test Vector Storage Redundancy schemes to the distributed COLT-based

Test Controller (TC) in each CNI of the system, an HDL model of the TC was

developed. This model was functionally verified using Verilog testbenches.

 The HDL model was synthesized using Synopsys Design Compiler [43] and

Oklahoma State University’s 45nm FreePDK library [68]. The gate count of the TC was

estimated to be 6.1K, while power consumption was estimated to be 6.52mW. This

represents an approximately 5% increase in area and power costs over the standard

distributed COLT-based TC proposed in Chapter IV.

E. Conclusion

 We present and analyze two methods for mitigating application interference

during COLT. Test Vector Delivery Blocking allows certain test sources to withhold

test vectors when they are running safety-critical software. Test Vector Storage

Redundancy uses erasure coding to provide a CUT with access to the complete test

vector set with only a subset of its neighbors.

 Based on our observations, the strengths and weaknesses of these approaches

have been found. Test Vector Delivery Blocking appears to be the method of choice

when the amount of safety-critical software running on the SoC is low. If there is a large

102

proportion of safety-critical software running on the SoC, then Test Vector Storage

Redundancy or a combination of both schemes are the most appropriate choice.

103

CHAPTER VI

CONCLUSIONS

 This dissertation presents a variety of techniques which assist COLT in becoming

a more effective and feasible solution to achieve reliability and availability in safety-

critical SoC. This research has focused on shortening the time between failures and test

initiation, and it has also focused on optimizing the storage/performance tradeoff of

delivering tests in many core SoC.

 An on-demand testing mechanism, the ATTU, has been proposed and analyzed,

and it is shown that this mechanism is effective and relatively inexpensive. Experiments

show that the ATTU can detect approximately 80% of errors originating in processing

cores that eventually manifest as NoC traffic anomalies. Based on system needs, a

system designer can vary the amount of memory used to monitor and record the history

of NoC traffic, allowing for course or fine-grain anomalous patterns. Additionally, the

ATTU can be configured to trigger tests based on the number of anomalies detected.

 COLT depends on stored tests to achieve a sufficiently high level of coverage;

however, there has been no serious analysis of how the delivery and storage of these

tests scales with the number of cores per SoC. There has also been no effort in

identifying techniques that can scale the storage and delivery costs of tests as SoC enter

the many core era. This research has applied a coding theory technique to distributed the

storage of test vectors across the SoC, allowing for COLT to become scalable with many

core SoC. By distributed the test vectors in this manner, any core within the SoC can

104

access the complete test vector set within a bounded distance. A DTVS test protocol is

proposed and analyzed, and the hardware overhead associated with this protocol is

determined. To evaluate the proposed test storage scheme, real IP cores are used in the

generation, storage and application of test vectors. Through experiments, it has been

shown that test delivery latency can be reduced by up to 90% for many core SoC, and

the reduction in test latency improves as the number of cores per SoC grows.

Additionally, a core test scheduling based on code division has been analyzed, and

experiments show that test delivery latency can be reduced by 50% over other schedules

possibly employed by DTVS.

 To date, there has been no analysis on the effect of COLT on the execution times

of applications. Through the use of a system simulator employing a NoC as the

communication infrastructure, this is the first work to measure the effect of COLT on

NoC traffic and the effect of this increased traffic on software execution times.

Experiments show that application execution time can increase by 17% on average

across a set of benchmarks while COLT is in operation. This increase in execution time

has the potential to create serious consequences for safety-critical systems that depend

on hard deadlines being met. Based on these findings, an application-aware COLT

protocol is proposed and analyzed. Two methods of modifying COLT are proposed: test

vector delivery blocking and test vector storage redundancy. These methods can either

be used in isolation or in combination. Experiments show that application interference

can be eliminated completely, or it can be reduced significantly based on the needs of

the system designer. The increase in test delivery time by avoiding application

105

interference can increase beyond 40%; however, this is an acceptable tradeoff if

application interference cannot be tolerated.

A. Future Work

 There are several additional avenues for improvement of COLT that follow from

the work described in this dissertation. To date, there has been no research effort in

analyzing the security aspects of COLT. It is important to understand the vulnerabilities

introduced by COLT, and adoption of COLT will depend on the ability of system

designers to ensure that malicious attacks to the COLT mechanisms do not jeopardize

the system.

 As electronic wearout becomes a greater concern for safety-critical SoC,

designing tests to be applied by COLT specifically for wearout will become a necessity.

Currently, tests are generated based on fault models which capture the behavior of

wearout failure but do not capture the emergence of those failures. As a specific

example, the small-scale delay fault is a good candidate fault model for detecting

electronic wearout. However, the delay fault model assumes that these faults can

manifest anywhere within the system with equal probability—an assumption that is not

accurate for electronic wearout. Wearout is more likely to occur in highly active, hot

areas of the chip, and tests can be generated to specifically target these regions.

Another major area of future work includes a full-scale test of COLT within a

real safety-critical SoC. The work described in this dissertation has measured the

performance of COLT using only a few real IP cores as an experimental basis; however,

real safety-critical SoC will contain many different IP cores. This increased system

106

complexity should reveal new challenges in applying COLT in safety-critical SoC and

drive new areas of research.

A rarely discussed but extremely important consideration of COLT is the effect

of testing on a core’s temperature profile. It is well understood that testing leads to

increased core temperatures due to increased switching activity, and this elevated

temperature may remain for dozens of milliseconds after testing completes due to the

relatively high thermal time constant of electronic devices. This ―afterglow‖ of core

temperature can have adverse performance effects for applications running immediately

after COLT. To this point, all COLT research assumes that applications may begin

running on a tested core immediately after COLT has been completed. Studying this

thermal effect and creating techniques to mitigate this limitation will be extremely

important to advancing the feasibility of COLT in future devices.

107

REFERENCES

[1] S. Borkar, ―Thousand Core Chips—A Technology Perspective,‖ Proc. IEEE/ACM

Design Automation Conf. (DAC ’07), pp. 746-749, 2007.

[2] A.W. Strong, E. Wu, R.P. Vollertsen, J. Sune, G. LaRosa, and T. Sullivan,

"Reliability Wearout Mechanisms in Advanced CMOS Technologies," IEEE Press

Series on Microelectronic Systems, S.K. Tewksbury and J.E. Brewer, eds., Wiley-

IEEE Press, Aug. 2009.

[3] J. Kao, S. Narendra, and A. Chandrakasan, "Subthreshold Leakage Modeling and

Reduction Techniques," Proc. IEEE/ACM Conf. Computer-Aided Design (ICCAD

’02), pp. 141-148, 2002.

[4] P. Bhojwani and R. Mahapatra, ―An Infrastructure IP for On-Line Testing of

Network-on-Chip Based SoCs,‖ Proc. IEEE Int’l Symp. Quality Electronic Devices

(ISQED ’07), pp. 867-872, 2007.

[5] P. Bhojwani and R. Mahapatra, ―A Robust Protocol for Concurrent On-Line Test

(COLT) of NoC-based Systems-on-a-Chip,‖ Proc. IEEE/ACM Design Automation

Conf. (DAC ’07), pp. 670-675, 2007.

[6] R. Ronen, A. Mendelson, K. Lai, S.L. Lu, F. Pollack, and J.P. Shen, "Coming

Challenges in Microarchitecture and Architecture," Proc. of the IEEE, vol. 89, no.

3, pp. 325-340, Mar. 2001.

[7] O. Mutlu, J. Stark, C. Wilkerson, and Y.N. Patt, "Runahead Execution: An

Alternative to Very Large Instruction Windows for Out-of-Order Processors,"

108

Proc. 9th Int’l Symp. High-Performance Computer Architecture (HPCA ’03), pp.

129-140, 2003.

[8] J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative

Approach, 3rd Ed., Morgan Kaufmann, 2003.

[9] R. Hetherington, "The UltraSPARC T1 Processor - Power Efficient Throughput

Computing," white paper, Sun Microsystems, Dec. 2005.

[10] L. Benini and G. De Micheli, ―Networks on Chip: A New SoC Paradigm,‖ IEEE

Computer, vol. 35, no. 1, Jan. 2002.

[11] W.J. Dally and B. Towles, "Route Packets, Not Wires: On-Chip Interconnection

Networks," Proc. IEEE/ACM Design Automation Conf. (DAC ’01), pp. 684-289,

2001.

[12] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr, "Basic Concepts and

Taxonomy of Dependable and Secure Computing," IEEE Trans. Dependable and

Secure Computing, vol. 1, no. 1, pp. 11-33, Jan.-Mar. 2004.

[13] J. Bernstein, M. Gurfinkel, X. Li, J. Walters, Y. Shapira, and M. Talmor,

―Electronic Circuit Reliability Modeling,‖ Microelectronics Reliability, vol. 46, no.

12, pp. 1957-1979, Dec. 2006.

[14] M. White and Y. Chen, Scaled CMOS Technology Users Guide, tech. report JPL

08-14, Jet Propulsion Lab., California Institute of Technology, 2008.

[15] M.L. Bushnell and V.D. Agrawal, Essentials of Electronic Testing for Digital,

Memory and Mixed-Signal VLSI Circuits, Springer, 2000.

109

[16] Y. Li, S. Makar, and S. Mitra, ―CASP: Concurrent Autonomous Chip Self-Test

Using Stored Test Patterns,‖ Proc. Design, Automation, and Test in Europe (DATE

’08), pp. 885-890, 2008.

[17] Y. Li, O. Mutlu, and S. Mitra, ―Operating System Scheduling for Efficient Online

Self-Test in Robust Systems,‖ Proc. IEEE/ACM Int’l Conf. Computer-Aided

Design (ICCAD ’09), pp. 201-208, 2009.

[18] D. Lorenz, G. Georgakos, and U. Schlichtmann, "Aging Analysis of Circuit

Timing Considering NBTI and HCI," Proc. 15th IEEE On-Line Testing Symp.

(IOLTS ’09), pp. 3-8, 2009.

[19] M. Agarwal, V. Balakrishnan, A. Bhuyan, K. Kim, B. Paul, W. Wang, B. Yang, Y.

Cao, and S. Mitra, "Optimized Circuit Failure Prediction for Aging: Practicality

and Promise," Proc. IEEE Int’l Test Conf. (ITC ’08), pp. 1-10, 2008.

[20] Y. Zorian, ―Guest Editor’s Introduction: What is Infrastructure IP?,‖ IEEE Design

& Test of Computers, vol. 19, no. 3, pp. 3-5, May-June 2002.

[21] P. Bhojwani and R. Mahapatra, ―Core Network Interface Architecture and Latency

Constrained On-Chip Communication,‖ Proc. IEEE Int’l Symp. Quality Electronic

Devices (ISQED ’06), pp. 363-368, 2006.

[22] S. Shyam, ―Ultra Low-Cost Defect Protection for Microprocessor Pipelines,‖ Proc.

ACM ASPLOS, pp. 73-82, 2006.

[23] Sun Microsystems, "OpenSPARC," http://www.opensparc.net, June 2010.

110

[24] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, ―Software-Based Self-

Testing of Embedded Processors,‖ IEEE Trans. Computers, vol. 54, no. 4, pp. 461-

475, Apr. 2005.

[25] V. Singh, M. Inoue, K.K. Saluja, and H. Fujiwara, ―Instruction-Based Self-Testing

of Delay Faults in Pipelined Processors,‖ IEEE Trans. Very Large Scale

Integration, vol. 14, no. 11, pp. 1203-1215, Nov. 2006.

[26] G. Xenoulis, D. Gizopoulos, M. Psarakis, and A. Paschalis, "Instruction-Based

Online Periodic Self-Testing of Microprocessors with Floating-Point Units," IEEE

Trans. Dependable and Secure Computing, vol.6, no.2, pp.124-134, Apr.-June

2009.

[27] D. Gizopoulos, "Online Periodic Self-Test Scheduling for Real-Time Processor-

Based Systems Dependability Enhancement," IEEE Trans. Dependable and Secure

Computing, vol.6, no.2, pp.152-158, Apr.-June 2009.

[28] Tilera Corporation, "Tilera," http://www.tilera.com, June 2010.

[29] M.B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodra, B. Greenwald, H.

Hoffman, P. Johnson, J.W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N.

Shnidman, and V. Strumpen, "The Raw Microprocessor: A Computational Fabric

for Software Circuits and General-Purpose Programs," IEEE Micro, pp. 25-35,

Mar. 2002.

[30] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers, "Exploiting Structural

Duplication for Lifetime Reliability Enhancement," Proc. 32nd Int’l Symp.

Computer Architecture (ISCA ’05), pp. 520-531, 2005.

111

[31] L. Bolzani, M. Rebaudengo, M.S. Reorda, F. Vargas, and M. Violante, "Hybrid

Soft Error Detection by Means of Infrastructure IP Cores," Proc. IEEE Int’l On-

Line Testing Symp. (IOLTS ’04), pp. 79-84, 2004.

[32] E. Cota, L. Carro, F. Wagner, and M. Lubaszewski, ―Power-Aware NoC Reuse of

the Testing of Core-Based Systems,‖ Proc. IEEE Int’l Test Conf. (ITC ’03), pp.

612-621, 2003.

[33] J.L. Henning, "SPEC CPU2006 Benchmark Descriptions," ACM SIGARCH

Computer Architecture News, vol. 34, no. 4, pp. 1-17, Sept. 2006.

[34] S.K. Mandal, N. Gupta, A. Mandal, J. Malave, J.D. Lee, and R. Mahapatra,

"NoCBench: A Benchmarking Platform for Network on Chip," Proc. Workshop

Unique Chips and Systems (UCAS ’09), pp. 1-6, 2009.

[35] T. Dumitras and R. Marculescu, "On-Chip Stochastic Communication," Proc.

Design, Automation and Test in Europe (DATE ’03), pp. 790-795, 2003.

[36] C. Grecu, A. Ivanov, R. Saleh, E.S. Sogomonyan, and P. Pande, "On-Line Fault

Detection and Location for NoC Interconnects," Proc. IEEE Int’l On-Line Testing

Symp. (IOLTS ’06), pp. 145-150, 2006.

[37] C. Ciordas, T. Basten, A. Radulescu, K. Goossens, and J.V. Meerbergen, "An

Event-Based Monitoring Service for Networks on Chip," ACM Trans. Design

Automation of Electronic Systems, vol. 10, no. 4, pp. 702-723, Oct. 2005.

[38] A. Webb, Statistical Pattern Recognition, E. J. Arnold, 1999.

112

[39] J. Hu and R. Marculescu, "Energy- and Performance-Aware Mapping for Regular

NoC Architectures," IEEE Trans. Computer-Aided Design of Integrated Circuits

and Systems, vol. 24, no. 4, pp. 551-562, Apr. 2005.

[40] OCP-IP Organization, "OCP International Partnership," http://www.ocpip.org,

June 2010.

[41] OSC Initiative, "SystemC," http://www.systemc.org, June 2010.

[42] W. Qin, "SimIt-ARM," http://simit-arm.sourceforge.net, June 2010.

[43] Synopsys, "Design Compiler 2010,"

http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/DesignCom

piler2010-ds.aspx, June 2010.

[44] J.B. Sulistyo, J. Perry, and D.S. Ha, Developing Standard Cells for TSMC 0.25um

Technology Under MOSIS DEEP Rules, tech. report TR VISC-2003-01, Dept.

Electrical and Computer Engineering, Virginia Tech Univ., 2003.

[45] J.B. Sulistyo and D.S. Ha, "A New Characterization Method for Delay and Power

Dissipation of Standard Library Cells," VLSI Design, vol. 15, no. 3, pp. 667-678,

2002.

[46] Intel Corp., "Intel Tera-scale Computing Research Program,"

http://www.intel.com/research/platform/terascale, June 2010.

[47] Intel Corp., "Intel Tera-scale Single-Chip Cloud Computer,"

http://techresearch.intel.com/articles/Tera-Scale/1826.htm, June 2010.

[48] ―Embedded Multicore: An Introduction,‖ white paper, Freescale Semiconductor,

July 2009.

113

[49] Freescale Semiconductor, "Freescale Semiconductor QorIQ P4080

Communications Processor,"

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?fastpreview=1&cod

e=P4080, June 2010.

[50] S. Borkar, ―Designing Reliable Systems from Unreliable Components: The

Challenges of Transistor Variability and Degredation,‖ IEEE Micro, pp. 10-16,

Nov.-Dec. 2005.

[51] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco, ―Software-Based Online

Detection of Hardware Defects: Mechanisms, Architectural Support, and

Evaluation,‖ Proc. IEEE/ACM Int’l Symp. Microarchitecture (MICRO ’07), pp.

97-108, 2007.

[52] Y. Li, and S. Mitra, ―VAST: Virtualization-Assisted Concurrent Autonomous Self-

Test,‖ Proc. IEEE Int’l Test Conf. (ITC ’08), pp. 1-10, 2008.

[53] D. Lampret, OpenRISC 1200 IP Core Specification, tech. report, OpenCores, 2001.

[54] B. Broeg, B. Bose, Y. Kwon, and Y. Ashir, ―Lee Distance and Topological

Properties of k-ary n-cubes,‖ IEEE Trans. Computers, vol. 44, no. 8, pp. 1021-

1030, Aug. 1995.

[55] B. Broeg, B. Bose, and V. Lo, ―Lee Distance, Gray Codes, and the Torus,‖

Telecommunication Systems, vol. 10, nos. 1-2, pp. 21-32, Jan. 1998.

[56] A. Jiang, M. Cook, and J. Bruck, ―Optimal Interleaving on Tori,‖ SIAM Journal of

Discrete Math, vol. 20, no. 4, pp. 841-879, Dec. 2006.

114

[57] C. Martinez, E. Vallejo, R. Beivide, C. Izu, and M. Moreto, ―Dense Gaussian

Networks: Suitable Topologies for On-Chip Multiprocessors,‖ Int’l Journal of

Parallel Programming, vol. 34, no. 3, pp. 193-211, June 2006.

[58] Y. Jin, E. Kim, and K. Yum, ―Peak Power Control for a QoS Capable On-Chip

Network,‖ Proc. Int’l Conf. Parallel Processing (ICPP ’05), pp. 585-592, 2005.

[59] L. Shang, L.S. Peh, and N.K. Jha, ―PowerHerd: A Distributed Scheme for

Dynamically Satisfying Peak-Power Constraints in Interconnection Networks,‖

IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 25,

no. 1, pp. 92-110, Jan. 2006.

[60] A. Banerjee, R. Mullins, and S. Moore, ―A Power and Energy Exploration of

Network-on-Chip Architectures,‖ Proc. IEEE Symp. Networks-on-Chip (NOCS

’07), pp. 163-172, 2007.

[61] N. Chang, K. Kim, and H.G. Lee, ―Cycle-Accurate Energy Consumption

Measurement and Analysis: Case Study of ARM7TDMI,‖ Proc. Int’l Symp. Low

Power Electronics and Design (ISLPED ’00), pp. 195-190, 2000.

[62] Stanford Concurrent VLSI Architecture Group, "Open Source Network-on-Chip

Router RTL, http://nocs.stanford.edu/router.html, June 2010.

[63] Synopsys, "Synopsys 90nm Generic Library,"

http://www.synopsys.com/Community/UniversityProgram/Pages/Library.aspx,

June 2010.

115

[64] Synopsys, "Synopsys Textramax ATPG,"

http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/TetraMAX

ATPG.aspx, June 2010.

[65] C. Spitzer, ed., Avionics: Development and Implementation, CRC Press, 2007.

[66] Freescale Semiconductor, "MPC564xL: 32-Bit Power Architecture

Microcontrollers for Chassis and Safety Applications,"

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC564xL,

June 2010.

[67] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R.B. Brown,

"MiBench: A Free, Commercially Representative Embedded Benchmark Suite,"

Proc. IEEE 4th Workshop Workload Characterization (IISWC ’01), pp. 3-14,

2001.

[68] J. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. Davis, P. Franzon, M.

Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal, "FreePDK: An Open-Source

Variation-Aware Design Kit," Proc. Int’l Conf. Microelectronic Systems

Education, pp. 173-174, 2007.

116

VITA

Jason Daniel Lee was born in Thibodaux, Louisiana, USA. He attended the

Louisiana School for Math, Science, and the Arts (LSMSA), a state supported residential

high school for gifted and talented students. Upon graduation in 2000, he was selected

by the faculty as the top student in math and computer science for his class. He then

received his Bachelor of Science degree in computer engineering from Texas A&M

University in 2004, Magna Cum Laude. He was invited to return to the Department of

Computer Science and Engineering for graduate work and completed the Doctor of

Philosophy in computer engineering in 2010. His research interests include fault-tolerant

systems, network-on-chip (NoC) and many-core architecture, electronic design

automation and testing.

 Jason Lee may be reached at Department of Computer Science and Engineering,

Texas A&M University, TAMU 3112, College Station, TX 77843. His email is

jdlee@tamu.edu.

