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ABSTRACT 

 

Concurrent Online Testing for Many Core Systems-on-Chips. (December 2010) 

Jason Daniel Lee, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Rabi N. Mahapatra 

 

 Shrinking transistor sizes have introduced new challenges and opportunities for 

system-on-chip (SoC) design and reliability. Smaller transistors are more susceptible to 

early lifetime failure and electronic wear-out, greatly reducing their reliable lifetimes. 

However, smaller transistors will also allow SoC to contain hundreds of processing cores 

and other infrastructure components with the potential for increased reliability through 

massive structural redundancy. Concurrent online testing (COLT) can provide sufficient 

reliability and availability to systems with this redundancy. COLT manages the process 

of testing a subset of processing cores while the rest of the system remains operational.  

This can be considered a temporary, graceful degradation of system performance that 

increases reliability while maintaining availability. 

 In this dissertation, techniques to assist COLT are proposed and analyzed. The 

techniques described in this dissertation focus on two major aspects of COLT feasibility: 

recovery time and test delivery costs. To reduce the time between failure and recovery, 

and thereby increase system availability, an anomaly-based test triggering unit (ATTU) 

is proposed to initiate COLT when anomalous network behavior is detected. Previous 

COLT techniques have relied on initiating tests periodically. However, determining the 
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testing period is based on a device's mean time between failures (MTBF), and 

calculating MTBF is exceedingly difficult and imprecise.  

To address the test delivery costs associated with COLT, a distributed test vector 

storage (DTVS) technique is proposed to eliminate the dependency of test delivery costs 

on core location. Previous COLT techniques have relied on a single location to store test 

vectors, and it has been demonstrated that centralized storage of tests scales poorly as the 

number of cores per SoC grows. Assuming that the SoC organizes its processing cores 

with a regular topology, DTVS uses an interleaving technique to optimally distribute the 

test vectors across the entire chip. DTVS is analyzed both empirically and analytically, 

and a testing protocol using DTVS is described. 

COLT is only feasible if the applications running concurrently are largely 

unaffected. The effect of COLT on application execution time is also measured in this 

dissertation, and an application-aware COLT protocol is proposed and analyzed. 

Application interference is greatly reduced through this technique. 
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CHAPTER I 

INTRODUCTION 

 

 For decades, users of any computer system have enjoyed continued, exponential 

performance gains thanks to the diligent work of manufacturers able to predictably 

shrink and place more transistors into a single device—known simply as "Moore's Law." 

With access to more transistors, computer architects have been able to increase clock 

rates and create more sophisticated techniques to optimize the execution of software.  In 

this environment, replacing hardware without any real change to software led to 

significant performance improvements. However, due to approaching physical and 

computational constraints, processor design has been forced to retreat from "single core" 

complexity and speed. Instead of one large, fast and complex processor executing 

software, many small, slow and simple processors within a system-on-chip (SoC) must 

now work together to execute software [1]. 

 Although the path to "many core" processors is relatively straightforward from a 

hardware perspective, software must undergo revolutionary changes in order to maintain 

performance improvements. Today, commercial software engineers, computer architects 

and researchers continue to struggle on how best to transform historically sequential 

tasks into parallel-friendly ones apt for many core computation. Additionally, significant 

effort is being spent on adding hardware and software mechanisms to simplify the 

analysis and debug of this new, parallel software due to its immense complexity. 

____________ 
This dissertation follows the style of IEEE Transactions on Computers. 
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Although the shift from the monolithic processor to many core processors and 

the associated revolution in software will remain the salient change in computer design 

for the foreseeable future, there are other, equally significant changes occurring in 

computer system design as the shrinking of transistors reaches its physical limits. As 

transistors shrink, they become more difficult to manufacture consistently and reliably—

transistors across a wafer or within a single die may vary significantly, resulting in 

uneven performance, shortened lifetimes or immediate failure [2]. Also, smaller 

transistors tend to "leak" more current during periods of inactivity, increasing power 

consumption and negating a major advantage of Complementary Metal–Oxide–

Semiconductor (CMOS) design [3]. 

 This work focuses on the reliability aspect of shrinking transistors in many core 

systems. Due to the increased fragility of transistors, lifetime-awareness has emerged as 

a new design consideration for many core SoC. The redundancy inherent in many core 

SoC design must be exploited to maximize the dependable lifetime of the entire system; 

therefore, individual cores within the SoC must be tested and identified as functional or 

non-functional throughout the operational lifetime of the system.  This allows the SoC to 

gracefully degrade as cores fail, leaving functional cores active and separated from failed 

components.  This process of testing cores throughout the SoC operational lifetime is 

called online testing, and online testing may be performed concurrently with the 

execution of user applications or separately as a dedicated task. 

 Concurrent online testing (COLT) takes advantage of the availability of the many 

redundant processing cores within the SoC to manage the testing of a subset of those 
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cores while the remainder continue to execute user applications [4], [5]. By allowing 

most of the SoC to remain operational at all times, availability and reliability are 

maximized throughout the device's lifetime. 

 This dissertation proposes and analyzes COLT techniques specifically designed 

for many core SoC. Specifically, a variety of techniques to assist COLT are proposed to:  

 minimize system recovery time as failures occur, 

 optimize the storage / performance tradeoff of applying tests, 

 minimize the interference between testing and the execution of applications, and 

 simplify the process of managing test scheduling and application. 

These techniques can be encapsulated as lifetime management of  SoC; system designers 

can create a tradeoff between COLT overhead and system lifetime.  

 It is expected that the techniques presented in this dissertation would be most 

attractive to safety-critical applications using SoC. Since reliability and availability are 

first order requirements for these systems, the overhead required to implement COLT is 

justified. Additionally, safety-critical applications are expected to adopt many core SoC 

due to the potential for the space, weight and power savings they provide due to their 

high level of integration. However, the adoption of these SoC in safety-critical 

applications is only possible if techniques such as COLT are feasible to implement and 

are effective. The goal of this work is to increase the feasibility and effectiveness of 

COLT, thereby allowing new technical capabilities in safety-critical applications. 

 The remainder of this chapter introduces the reader to the preliminaries of many 

core SoC design, including the transition from complex processing cores to simple 
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processing cores and the necessity of networks-on-chip (NoC). This chapter also 

summarizes the contribution of this work.  

A. Many Core SoC Preliminaries 

 The transition to many core SoC is necessitated by three major obstacles, or 

"walls," that preclude the continued development of the monolithic processor [6].  These 

walls are: 

 The Instruction Level Parallelism (ILP) Wall: The hardware mechanisms 

required to execute more instructions in parallel are becoming prohibitively 

expensive in terms of area, complexity and power. 

 The Memory Wall: The gap between memory speeds and processor speeds 

continues to grow. Eventually, a vast majority of processing time will be spent 

waiting for data to be retrieved and sent to memory. 

 The Power Wall: Increasing the clock frequency and transistor density within 

processors is leading to an unsustainable, exponential increase in power 

consumption and density. 

 It is important to note that these walls interact with each other and exacerbate the 

underlying problems that make monolithic processing impossible to continue. For 

example, as the gap between memory speed and processing speed increases, processors 

must compensate by increasing their instruction windows, the number of instructions 

that a processor analyzes at any one time for potential execution, to mask memory 

latency [7]. These continually growing instruction windows—an effort to increase the 
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ILP within a processor—result in greater power consumption and are only necessary due 

to the memory wall. 

 The emergence of many core SoC follows from these obstacles. Instead of 

attempting to execute a single thread of instructions as quickly as possible, it is now 

necessary to attempt to run as many separate threads as possible simultaneously. This 

will alleviate the need to increase clock frequency and ILP, thereby reducing power 

consumption within the SoC. 

1. Processor Core Simplification 

 Historically, processor design's primary goal was to increase ILP. Software was 

viewed as a single, sequential thread of execution. From this perspective, a variety of 

techniques were created to allow more instructions to be evaluated and executed 

simultaneously in order to mask the effects of memory latency. These complementary 

techniques are commonly called out-of-order and speculative execution, and they 

typically require expensive overhead to be realized [7], [8]. However, these techniques 

experience diminishing returns in performance, and their costs grow super-linearly with 

the instruction window. 

 In response to this trend, processor designers now seek to increase thread level 

parallelism (TLP) rather than ILP. Instead of trying to look at a large window of 

instructions in an attempt to dodge memory latency, a processor can simply switch to a 

new thread of execution when an instruction is blocked due to a cache miss. An example 

of this design is the UltraSPARC T1 SoC, which employs eight multi-threaded 

processors [9]. 
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 Processor designs that exploit TLP rather than ILP are attractive for a variety of 

reasons, including the following: 

 the elimination of expensive  and complex out-of-order and speculative 

execution components such as register renaming, instruction windows, commit 

queues, re-order buffers and reservation stations 

 smaller processor footprint 

 can be easily integrated into a many core solution 

 reduces cost of design, analysis and debug of hardware design compared to out-

of-order processors 

2. Networks-on-Chip 

 As the number of processing cores per chip continues to scale, on-chip busses 

will be replaced with networks-on-chip (NoC). Similar to inter-computer networks, NoC 

contain routers, links and network interfaces. Each core within the SoC is attached to a 

core–network interface (CNI), and these CNI communicate with each other via links and 

routers. Unlike on-chip busses which use broadcast messages to communicate, NoC use 

point-to-point communication to deliver information. Fig. 1 illustrates a 16-core SoC 

using a NoC organized as a 2D-mesh. Each intellectual property (IP) core interfaces with 

a CNI, and each CNI is connected to a router. 
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Fig. 1. Example 16-core SoC with a 2D 4x4 Mesh NoC Architecture 

 NoC provide many advantages over busses when the number of cores per chip 

exceeds more than a handful [10], [11]. These advantages include: 

 Lower Contention 

 Lower Power Consumption 

 Standard Interfaces 

 Shorter Wire Lengths 

 Higher Throughput 



 

 

8 

 Fault Tolerance 

 Many of the COLT techniques proposed in this work depend on the existence of 

NoC; NoC provide a regular topology for communication between cores, and they also 

provide a standard protocol for communication. Additionally the NoC acts as a test 

access mechanism between test sources and test sinks. 

B.  Contributions 

 In previous research, COLT has relied on periodic testing to determine if a core 

within the SoC has failed. However, the time between failure and testing may be too 

great for some safety-critical applications depending on the testing period. An on-

demand testing mechanism has been proposed and analyzed, and it is shown that this 

mechanism is effective and relatively inexpensive. This mechanism is described in 

Chapter III. 

 COLT depends on stored tests to achieve a sufficiently high level of coverage; 

however, there has been no serious analysis of how the delivery and storage of these 

tests scales with the number of cores per SoC. There has also been no effort in 

identifying techniques that can scale the storage and delivery costs of tests as SoC enter 

the many core era. Chapter IV details the application of a coding theory technique to the 

storage of test vectors, allowing for COLT to become scalable with many core SoC. A 

test protocol is proposed and analyzed, and the hardware overhead associated with this 

protocol is determined. To evaluate the proposed test storage scheme, real IP cores are 

used in the generation, storage and application of test vectors. 
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 To date, there has been no analysis on the effect of COLT on the execution times 

of applications. Through the use of a system simulator employing a NoC as the 

communication infrastructure, this is the first work to measure the effect of COLT on 

NoC traffic and the effect of this increased traffic on software execution times. Based on 

these findings, an application-aware COLT protocol is proposed and analyzed. Chapter 

V details this application-aware COLT protocol. 
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CHAPTER II 

RELIABILITY AND TESTING OF SAFETY-CRITICAL SOC 

 

 This work is primarily targeted at safety-critical applications using many core 

SoC. Although reliability and testing are important for any application, COLT is not 

expected to be necessary for most consumer applications due to their typical 

requirements: maximum performance, lowest cost and minimum power consumption. 

Safety-critical applications share many of the same requirements as most consumer 

applications; however, predictable and dependable operation are of highest importance. 

Therefore, it is expected that the overheads, both at design-time and during operation, 

are justifiable expenses for safety-critical applications.  

 In this chapter, safety-critical SoC design considerations are explored, a brief 

summary of classical electronic testing is provided, and previous work in the 

development COLT techniques are described. This background information is provided 

so that the reader may gain an appreciation for the benefits that COLT provides.  

A.  Design and Analysis of Safety-Critical SoC 

 Before any safety-critical system is certified for use, safety requirements must be 

established and failure possibilities must be understood. Safety requirements are 

typically  quantified in terms of specific system dependability metrics, and failure 

possibilities are typically modeled as a composition of separate failure mechanisms. 

Therefore, it is important to understand how dependability is defined and measured, and 
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it is also important to understand how electronic failures mechanisms are changing as 

transistor sizes shrink. 

1. Dependability Metrics 

 As defined in [12], dependability is a composition of a number of attributes: 

availability, reliability, safety, integrity and maintainability. Fig. 2 illustrates the 

relationship between these attributes and dependability. These attributes are defined as 

follows: 

 Availability: the probability that a component is in a functional state 

 Reliability: the probability that a component functions correctly 

 Safety: the absence of unacceptable damage during component failure, typically 

defined by a regulatory agency 

 Integrity: the inability of the component to be improperly modified 

 Maintainability: the ability of the component to be modified and repaired 

 It can also be seen from Fig. 2 that dependability and security overlap. Although 

security is another extremely important consideration in safety-critical applications, it is 

outside the scope of this work. 
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Fig. 2. The Relationship Between Dependability and Security 

 This work is primarily concerned with availability and reliability. Lifetime 

management of safety-critical SoC aims to ensure that the system maintains maximum 

uptime and the highest probability of correct behavior throughout its operational 

lifetime. 

 Availability can be calculated as the ratio of mean time between failures (MTBF) 

and the sum of MTBF and the mean time to repair (MTTR). Therefore, as MTTR 

increases, availability decreases. It is for this reason that COLT must initiate tests and 

detect failures as quickly as possible. Fig. 3 illustrates the relationship between the 

components of MTTR and their associated events. Here, a fault occurs within the SoC at 

Tfault, and there is some delay between fault occurrence and the manifestation of a error 

at Terror. MTTR is composed of Tdelay, the time between error manifestation and the 

beginning of testing; Ttest, the time required to apply and determine if a fault has 

occurred; and Treconfigure, the time required for the system to return to an error free state. 

A method to increase system availability with COLT is described in Chapter III. 
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Fig. 3. The Components of Mean Time to Repair 

 To address reliability, it is important that the detection rate for faults is extremely 

high. If a fault is left undetected after error, it is extremely difficult to ensure that the 

system can operate correctly. Simply put, a system cannot fix a problem of which it is 

unaware. 

2. Electronic Failure Mechanisms 

 There are a number of failure mechanisms that may affect transistors and 

interconnects throughout their lifetimes. The contribution of each failure mechanism 

depends on a variety of environmental, manufacturing and operational factors; therefore, 

it is extremely difficult to predict how transistors will fail during operation. The most 

well understood failure mechanisms are briefly described here, and COLT seeks to 

detect failures due to these mechanisms: 

 Electromigration: the physical movement of material within an interconnect due 

to increased current density. See Fig. 4 for an illustration of electromigration. 
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 Hot Carrier Injection: permanent damage to the gate oxide due to highly kinetic, 

or "hot," electrons or holes due to the scaling of transistor geometries 

 Negative Bias Temperature Instability: decreased performance affecting 

pMOSFET transistors, due to increased device temperatures and aggressive gate 

oxide manufacturing techniques 

 Gate Oxide Breakdown: also known as dielectric breakdown, this is the 

permanent failure of the gate oxide to act as an electric barrier between source 

and drain in a transistor due to the decreased thickness of the gate oxide 

The above list is not exhaustive. There are numerous other failure mechanisms 

that can potentially affect device behavior and can lead to failure; however, the above 

list represents the most influential failure mechanisms in typical applications. An in-

depth treatment of each of the above wearout mechanisms is provided in [2], [13]. 

 

Fig. 4. Electromigration [2] 
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 Each of these failure mechanisms contribute to the failure of transistors over 

time. As a whole, a population of devices will experience failure rates following a 

"bathtub" curve. In this curve, there are high failure rates at the beginning and the end of 

a device's life. These periods of high failure rates are called early lifetime failure (ELF) 

and electronic wearout, respectively. 

 Fig. 5 illustrates the bathtub curve effect for transistors with sizes of 180nm, 

90nm and 65nm, based on findings reported in [14]. The largest transistors experience 

the longest lifetimes and lowest constant failure rate. It is interesting to note that early 

lifetime failures appear to be independent of transistor size; however, wearout failures 

are heavily dependent on transistor size. Constant failure rates, the bottom of the curve, 

also depend on transistor size; devices built with smaller transistors experience higher 

constant failure rates even during the most dependable period in their lifetime. 

 

Fig. 5. The Bathtub Curve for a Variety of Transistor Sizes [14] 
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 As [14] reports, the period of low failure rates within the bathtub curve is 

dramatically reducing as transistors shrink. At 65nm, it is expected that transistors will 

only experience a period of low failure rates lasting 10 years. Below 65nm, this period is 

expected to be much shorter. This will force safety-critical system designers to account 

for electronic wearout; many safety-critical applications depend on systems operating 

dependably for decades in order for a project to be economically justifiable.  

B.  Traditional Approaches to Testing 

 Electronic testing began as a discipline with the manufacturing of the first 

integrated circuits. In this section, a brief summary of electronic testing is provided to 

describe the strengths and weaknesses of the most widely adopted testing techniques in 

relation to COLT. 

1. Manufacturer Testing 

 For manufacturer testing, external automatic test equipment (ATE) applies pre-

generated tests at very high speeds. Each chip is typically tested in well under 10 

seconds. These pre-generated tests are created from automatic test pattern generators 

(ATPG), which seek to build a minimum set of test vectors that achieve the highest 

possible fault coverage for a specified amount of fault models [15].  

 These fault models include the stuck-at and delay fault models which are of 

primary interest to this work. The delay fault model is very good at detecting electronic 

wearout. Electronic wearout typically manifests as increasing delay in transistors and 



 

 

17 

interconnects, making the delay fault model a natural choice for detecting this kind of 

failure [16], [17], [18], [19]. 

 Manufacturer testing cannot be applied directly to COLT, since online testing 

must be performed in the field where no ATE exist. However, the ATPG used in 

manufacturer testing can be applied to COLT due to the high fault coverage achieved by 

these programs.  

2. Built-in Self Test 

 Built-in Self Test (BIST) removes the need to use ATE to test the entire chip. 

Instead of an ATPG creating tests to be applied by an ATE, BIST is a small on-chip 

mechanism to generate test patterns. Test patterns are usually generated through simple 

means such as shift registers that can produce a very large amount of different test 

patterns. BIST are a good alternative to ATE-based manufacturer testing due to reduced 

costs; however, BIST often struggle with achieving the very high fault coverage rates 

produced by ATPG tests [16]. Therefore, a mixture of BIST-based and ATPG-based 

testing is often used for chip testing. 

C.  Recent Proposals in Concurrent Online Testing 

1. Test Infrastructure IP Cores 

 In addition to processing, memory and interface IP cores being present within a 

many core SoC, it is expected that the SoC will also contain a variety of infrastructure IP 

cores to assist in the management of system operation [20]. These infrastructure IP cores 

can aid in system maintenance, debugging, yield increase, power management and fault 
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containment. Here, the role of infrastructure IP in increasing system reliability is of 

primary interest, and infrastructure IP that assist in COLT are described. 

 Using the NoC as a test delivery infrastructure, researchers have proposed 

reusing infrastructure IP (I-IP) designed originally for manufacturing testing as a tool for 

online testing of the system [20].  These online tests are mainly used for manufacturer 

testing to determine yields, and these tests are not meant to detect and capture wearout 

failures in the field. 

 Taking this concept a step further, [4], [5] constructed a Test Infrastructure IP 

(TI-IP) capable of managing test scheduling, delivery, and intrusion for concurrent on-

line test (COLT) of the SoC.  COLT allows cores in the SoC to be tested in the presence 

of normally executing applications to maximize system availability.   

 The original COLT scheme proposes that the test vectors are stored within the 

TI-IP. Due to the real-time constraints of these applications, COLT is extremely 

sensitive to application intrusion. The first effort to measure the effect of COLT on 

application intrusion is included in this dissertation, and these results are included in 

Chapter V. 

 Microprocessor pipeline on-line testing using distributed on-line BIST and 

periodic check-pointing was investigated and shown to be an effective technique in 

providing high reliability and availability at a reasonable area cost (5.8%) [22]. In this 

scheme, stuck-at fault test vectors are generated for processor components and stored in 

on-chip ROM. It should be noted that distributed BIST discussed in [22] is a different 

concept than DTVS discussed here.  In [22], distributed BIST refers to separate BIST 
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mechanisms for the different pipeline components of a single microprocessor core, 

where distributed test vector storage refers to the separate BIST vector storage units 

across the entire SoC. 

 Yi, Makar and Mitra have proposed CASP: Concurrent Autonomous chip Self-

test using stored test Patterns [16]. Similar to COLT, an on-chip test controller is 

proposed which manages test scheduling, test application and response comparison for 

processing cores of the OpenSPARC T1 chip multi-processor [23]. Their technique 

differs from COLT in that the test vectors are stored off-chip in a nearby flash or hard 

disk drive (HDD) storage system. 

 In [5], the authors identified an eventual problem with the proposed methods of 

COLT: scalability. As the number of cores per chip increases, the size of the NoC must 

also increase creating longer communication distances between cores. This increased 

distance translates into higher communication latency and power consumption. Fig. 6 

illustrates the effect of hop distance and test volume on energy consumption when using 

COLT within a many core SoC. Hop distance produces the most profound effect on the 

energy consumption of test delivery. Therefore, it is extremely important to attempt to 

bound the distance that tests must travel during COLT. Bounding this test delivery 

distance is a major contribution of the work described in this dissertation, and methods 

to achieve this are proposed in Chapter IV. 
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Fig. 6. The Effect of Hop Distance and Test Volume on Energy Consumption [5] 

 Test infrastructure IP cores have gained momentum from a variety of research 

efforts, and it is expected that future safety-critical SoC will employ some form of this 

technique to assist in extending the dependable lifetimes of these systems. Therefore, the 

research effort presented in this dissertation focuses on this method of COLT. 

2. Software-Based Testing 

 Software-based self test (SBST) performs all testing completely in software.  

Both the test controller and actual test application are implemented by standard 

processor instructions.  Therefore, SBST can be scheduled like any other software task, 
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allowing for the operating system to be aware of testing, and giving the system designer 

great flexibility in scheduling online tests. 

 SBST is completely non-intrusive in terms of hardware overhead; however, 

verifying that high-coverage levels of structural faults can be achieved strictly through 

the application of processor instructions is challenging.  Several SBST techniques have 

been shown to achieve stuck-at fault coverage rates of 80% and above [24].   

 For delay fault coverage, a technique has been proposed and evaluated on a 

simple, custom processor [25].  SBST techniques have also been proposed for floating 

point units, where extremely high stuck-at fault coverage and low memory footprint 

have been achieved [26], [27]. 

 Although SBST is useful for many applications, it is not expected that SBST will 

be a complete solution for providing sufficient reliability for safety-critical SoC. Since 

tests can only be generated from processor instructions, it is very difficult to achieve 

high fault coverage for fault models other than the stuck-at model. For models that are 

extremely useful in determining wearout, such as the delay fault model, hardware-based 

testing is expected to remain necessary. However, a combination of SBST and hardware-

based COLT will probably yield an acceptable compromise between test development 

costs and system dependability. 
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CHAPTER III 

ONLINE DETECTION OF CORE FAILURE WITH 

ANOMALY-BASED TEST TRIGGERING UNITS 

 

A.  Introduction  

 As performance requirements and power limitations for safety-critical 

applications continually increase, systems designers will be required to use more 

complex electronic components such as many-core systems-on-a-chip (SoC).  Within the 

next decade, it is expected that a single SoC will contain hundreds of interdependent 

cores communicating across sophisticated networks-on-chip (NoC).  Recently, the Tilera 

Corporation began shipping a 64-core SoC [28] using a NoC inspired by the MIT RAW 

on-chip network [29].  Although this chip does not target the safety-critical embedded 

system domain, it is only a matter of time before this level of technology will be required 

in safety-critical applications.   

 In addition to the aforementioned rising complexity of electronic hardware 

designs, operational lifetimes of these designs are threatened by a variety of factors that 

become more influential as feature sizes decrease to 45 nanometers and beyond.    These 

factors include electro-migration, stress migration, time-dependant dielectric breakdown, 

and thermal cycling [30].  These trends present many challenges but also opportunities 

for system designers to create quality electronic systems through the use of fault-

tolerance techniques such as redundancy and monitoring in both hardware and software. 
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Infrastructure IP cores (I-IP) have been proposed by research as a feasible 

approach to providing services to the SoC, including yield improvements, testing, error 

detection, and IP core configuration management [4], [20], [31].  Infrastructure blocks 

such as Test Infrastructure IP (TI-IP) are a clear choice to improve fault-tolerance of 

SoCs in hardware.   

 Most recently, employing TI-IPs in a NoC-enabled SoC has been shown to be an 

effective means for introducing concurrent on-line testing of systems [5]. Concurrent 

on-line testing (COLT) allows the various IP blocks within a SoC to be tested in-field 

and during normal operation.  An effective and robust COLT implementation monitors 

IP block activity to minimize application intrusion.  This manner of testing maximizes 

both availability and reliability of the system which are primary requirements in safety-

critical applications. 

 IP block and NoC testing, whether done concurrently with applications or as an 

isolated process, is an expensive task in terms of power consumption and performance 

degradation [32].  Performance degradation is especially critical for concurrent testing 

when the applications are subject to real-time constraints.  A better approach to solve 

this problem is to schedule testing as an on-demand task where components within the 

NoC monitor the system for possible errors and only trigger test requests from the TI-IP 

when errors are observed.  However, triggering tests in this manner requires detection 

units that are accurate and inexpensive in terms of area and power consumption. 

 Due to intellectual property limitations, it cannot be assumed that system 

designers are allowed to observe the internal behaviors of the IP blocks directly.  
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Instead, the monitoring devices can only observe the communication among these IP 

blocks. This communication conforms to a pattern during normal operation of the 

applications; however, anomalies in this communication pattern will emerge when errors 

are present.  Monitoring devices distributed across the NoC can localize the likely source 

of error and trigger more extensive tests from the TI-IP. 

 COLT services can be classified into two distinct types: periodic and event-

triggered. Periodic monitoring does not consider the current state or behavior of a 

system, and instead relies on a priori knowledge of system failure rates. Establishing a 

suitable period for testing can be an ambiguous process when working with components 

whose mean time between failure (MTBF) is unknown. Also, testing disrupts the normal 

behavior of a chip, which is problematic for systems operating under real-time 

constraints. Therefore, testing should be reserved to times when abnormal behavior is 

observed. 

 When using COLT schemes employing a periodic testing strategy, system 

designers must balance two conflicting sets of constraints: system quality and reliability 

versus low power consumption and performance.  Increasing the frequency of 

concurrent testing improves system quality and reliability—fault detection time is 

reduced, leading to quicker repair times and availability.  Conversely, decreasing the 

frequency of concurrent testing improves power consumption and performance—

performance improves because applications do not compete with tests for system 

resources as often, and power is conserved through the reduction of testing.  
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 On-demand COLT is designed to minimize fault detection time and application 

intrusion by testing system components only when there is an indication of error.  This 

solution accounts for both fault-tolerant and performance requirements which creates a 

system that maintains its quality throughout its lifetime.  At the time of this research, no 

other such solution exists for concurrent testing. 

 This work introduces communication anomaly based error detection technique in 

NoCs with an efficient test triggering mechanism for concurrent on-line testing of SoCs.  

In particular, it makes the following contributions: 

 Proposed an on-demand test triggering mechanism that optimizes testing 

overhead and intrusion by identifying potentially faulty IP blocks. 

 Proposed a fault-tolerant system within the NoC which improves availability of 

safety-critical SoCs by reducing error detection time. 

 For demonstration, SPEC CPU2006 [33] application benchmarks are executed on 

a NoC-enabled SoC simulator [34] with and without the presence of faults. Our 

experiments show that our test triggering unit detects 81% of errors and can 

initiate tests within 1ms of error detection, on average. 

 The remainder of Chapter II is organized as follows. Section B discusses 

previous and related research in the areas of networks-on-chip, fault-tolerance, and 

anomaly detection.  Section C presents our proposed technique for error detection and 

on-demand test triggering within a NoC.  Section D describes our experimental 

methodology and Section E presents the results of those experiments.  Section F 

concludes with work and discusses future directions for this research. 
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B.  Fault Tolerance and Anomaly-Based Error Detection  

 Current methods of fault tolerance within NoC-based SoC and anomaly-based 

error detection are described in this section for the purposes of background information. 

The anomaly-based test triggering unit presented in this chapter borrows from these 

previous techniques due to their effectiveness and efficiency. 

1. NoC-Based Fault Tolerance 

 Among the many services a NoC provides, this research focuses on 

communication reliability and fault-tolerance support. Fault tolerant on-chip 

communication using stochastic flooding has been investigated in [35]. By using 

stochastic flooding during the transmission of messages over the NoC, spatial 

redundancy is introduced into the system which provides fault tolerance. However, 

stochastic flooding cannot overcome failures within the core or CNI, and its 

effectiveness depends on the NoC topology. 

 On-line fault detection and location in NoC interconnects were explored in [36]. 

In this work, faults within the NoC itself can be determined by using a coding technique 

to send messages. By sending messages in a constrained way, it can be determined 

whether a fault within the NoC has occured at a link or a switch. Debug support via NoC 

monitoring was introduced in [37]. The major focus of this work was to introduce 

debugging capabilities in NoC-based systems; however, the hardware probes required to 

achieve this can also be used for the purposes of fault tolerance. 
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 Concurrent On-Line Test support for on-chip IP cores using Test Infrastructure-

IPs was proposed in [4], [5].  Their technique utilized periodic test triggering for COLT 

initiation. However, determining the appropriate period to initiate testing is difficult 

since it is based on the failure rates of the device. Transistors may fail due to a variety of 

reasons that are extremely difficult to measure through simulation or through direct 

observation; transistor failures depend on process variation and on device operation. To 

address the inefficiencies of periodic COLT, this research proposes to use the 

communication behavior of the NoC to determine the optimal time to initiate testing of 

IP blocks. 

2. Anomaly-Based Error Detection 

 Anomaly-based error detection has been used extensively across many 

application domains including distributed systems and Internet security [38].  However, 

to the best of our knowledge, no research has been done to investigate the effectiveness 

of anomaly-based error detection schemes to minimize test intrusion of COLT and to 

maximize availability of the SoC.  

 Anomaly detection belongs to the class of unsupervised learning techniques 

which do not rely on a priori information of the target system.  This makes anomaly 

detection well suited for many-core SoCs; IP blocks provided by vendors may not 

provide adequate information to use an error detection technique which relies on a priori 

knowledge. Additionally, behavior may change depending on runtime characteristics or 

as software running on the system is modified over time. Relying on a priori knowledge 

under these conditions is costly and complex. 
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 The primary challenge in using an anomaly detection based approach to error 

detection in SoCs is overhead management.  Typical anomaly detectors require a 

prohibitive amount of storage and processing capabilities for an on-chip environment.  

The next section describes our efforts to minimize these overheads while maintaining a 

reasonable level of accuracy.  

C.  Test Triggering Mechanism  

 Our proposed test triggering mechanism relies on observing anomalies in the 

communication among the IP blocks.  Anomaly detection has been used to observe a 

variety of network behaviors, such as malicious intrusion, fault propagation, and 

congestion [38].  It is the purpose of this research to determine the effectiveness of this 

technique for use in NoCs in order to efficiently trigger more robust testing of the IP 

blocks. 

 We assume that a NoC-enabled SoC runs a set of applications which generates a 

communication pattern for each IP block in the SoC.  These communication patterns are 

commonly represented as a set of task graphs operating within the SoC [39].  When the 

applications are running correctly, the communication observed in the NoC conforms to 

the expected task graphs.  When errors are present, unexpected or anomalous 

communication is observed.  The accurate detection of these anomalies is the primary 

goal in the design of our test triggering mechanism. 
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 We propose an n-Anomaly Test Triggering Unit (ATTU) which performs the 

following functions: 

 Records application patterns between IP block and NoC during a non-faulty 

period of operation 

 After pattern recording is complete, continuously observes the communication 

between the IP block and NoC 

 Upon observing n anomalies in this communication, triggers a test request to the 

nearest TI-IP 

 By triggering tests based on the observation of NoC traffic, this work aims to 

reduce the response latency of COLT. This will increase the availability and reliability 

of the system.  

1. ATTU Architecture 

 In this work, we have placed an ATTU within each CNI of the on-chip network.  

Fig. 7 illustrates the inclusion of an ATTU within a typical CNI architecture. 

Distributing these ATTU across the NoC eliminates the communication overhead 

associated with synchronization and management incurred by a centralized scheme, 

which in turn reduces latency and power consumption when determining when and 

where anomalies occur.  Although the ATTU can be located within any component of 

the SoC, placing the ATTU within the CNI allows the ATTU to observe both network 

layer (source, destination, etc) and transport layer (address, command, etc) information 

contained within the messages.  The CNI used in this research communicates with its IP 
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block via the OCP-IP 2.0 protocol standard, which includes address, data, and command 

fields [40].  Note that the inclusion of ATTU does not require the modification of any IP 

blocks. 

 

Fig. 7. CNI with ATTU Architecture  

 Anomaly detection can be implemented in several ways—the simplest 

implementations count events and establish threshold values for defining anomalous 

activity, while more sophisticated methods employ statistical techniques such as 

clustering or maximum likelihood functions [38].  Our implementation uses both simple 

counters and clustering when detecting anomalies in NoC communication. 

2. Message Monitoring Considerations 

 As Fig. 8 illustrates, messages traveling across the NoC contain information 

stored in fields representing multiple layers of communication.  The layers of interest to 

this research are the network and transport layers which contain the following fields: 
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source, destination, address, command, and data.  Each of these fields can be treated as 

an independent dimension in terms of communication behavior.  Each dimension reveals 

certain aspects of communication, and each dimension must be observed for anomalous 

behavior. 

 

Fig. 8. Message Format 

 Whether to use a simple or complex detection method for a dimension depends 

on the cardinality, or size, of that dimension.  For example, the source and destination 

fields have low cardinality and can only be of n values, where n is the number of IP 

blocks in the SoC.  In SoCs which have dozens or hundreds of IP blocks, it is feasible to 

construct small counters for each possible value for source and destination.  

Alternatively, fields like data and address have high cardinality and can be one of 

billions of possible values – constructing counters for each possible address or data value 

is not possible.  Therefore, statistical clustering is used for these dimensions [38].   

 Forming clusters in a single dimension is analogous to forming ranges, which 

may be implemented by storing the lower-most value and upper-most value of the 

ranges.  To further simplify implementation, the proposed ATTU creates a constant 

number of clusters, regardless of application behavior.  As the ATTU observes CNI 

communication, values are stored in empty ranges.  Once all ranges are no longer empty, 
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nearest neighbor ranges are merged to allow for more observations to be recorded.  Once 

these clusters are established, any observation which lies outside of these clusters is 

flagged as an anomaly.  The initial version of the ATTU creates clusters for only the 

address field of the OCP-IP messages. 

3. ATTU Training Period 

 As with most unsupervised learning techniques, the ATTU requires a ―training‖ 

period in order to learn the normal communication behavior of a set of applications.  The 

duration of this training period depends on the complexity of communication behavior 

exhibited by the set of applications run on the SoC.  Assuming a static task set, the 

ATTU requires only one training period before it can effectively monitor the SoC for the 

remainder of its operational lifetime.  Retraining is only necessary when the set of 

applications running on the SoC is changed. Fig. 9 illustrates a typical training phase 

period within the lifetime of a safety-critical system. 

 

Fig. 9. Training Phase Period 
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 It is important to note that the limitations of this proposed technique depends 

exclusively on the accuracy of the anomaly detector.  If the ATTU triggers tests based 

on false positives, then the IP blocks are subject to excessive testing which increases 

power consumption and latency, and ultimately reduces the reliability of the system.  

Oppositely, if the ATTU cannot successfully detect errors, then faulty IP blocks are not 

sufficiently tested. Again, this leads to a system that is unreliable.  Therefore, verifying 

that the ATTU accurately detects errors is the primary goal of our experiments.  

D.  Experimental Setup 

1. Fault Model 

 As an IP block approaches the end of its operational lifetime, permanent failure 

is preceded by increasingly common incidences of transient and intermittent errors. The 

arrival rate and error pattern of these errors depend on the architecture of that particular 

IP block.  When a fault occurs within an IP block, the architecture and application 

determine when that fault will manifest into an observable error in the system. 

 In the absence of this information, we explore the behavior of the ATTU by 

manifesting faults at the IP block-CNI interface with a variety of random distributions 

with respect to arrival behavior and manifestation behavior.  To simulate the arrival of 

errors, uniform, standard normal, Weibull, and Poisson stochastic processes were used.  

The fault effect, or output deviation, was modeled with uniform and normal random 

distributions. 



 

 

34 

 Faults within the NoC architecture – CNI, routers, and links – have been 

addressed by numerous researchers [4], [5], [35], [36] and are not the focus of this 

research.  Therefore, we assume that only the IP blocks will become faulty over their 

operational lifetime. 

 Based on this fault model, we inject faults into the SoC via the IP blocks.  Each 

injected fault is recorded to determine if the ATTU successfully identifies the fault as an 

anomaly.  Additionally, we measure the latency between fault injection and anomaly 

detection within the ATTU. 

2. NoC Configuration and Simulation 

 All NoC simulations are run on NoCSim [34], a SystemC-based cycle-accurate 

simulator [41].   NoC communication is modeled by processor-memory traffic and TI-IP 

tests.  We implement the typical memory organization of NoC-based SoCs; processors 

with on-core L1 caches use the NoC to access L2 cache cores distributed throughout the 

network.  NoC communication therefore primarily consists of memory communication 

resulting from L1 cache misses. 
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Fig. 10. NoC Topology 

 The SoC contains 25 tiles connected by a 5x5 2D torus (a 5-ary 2-cube 

topology).  There are six ARM microprocessor IP blocks which transmit information 

across the network based on memory traces extracted from the SimIT-ARM instruction 

set simulator [42].  These microprocessors access data from 16 memory IP blocks.  The 

three remaining IP blocks are TI-IP which await test requests from the ATTU and 

transmit test vectors upon test request arrival.  Fig. 10 illustrates the NoC topology used 

for all experiments. 

 Each message is divided into three 64-bit flits and is routed across the network 

using a shortest path virtual wormhole switching algorithm.  Each physical channel is 

divided into 8 virtual channels. Credit-based flow control is used for each router and 

CNI, and a buffer depth of 8 flights is used for each virtual channel. 
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3. Application Benchmarks 

 For each simulation, the six ARM processors execute a set of applications in 

order to produce a communication pattern in the NoC.  Table 1 describes the application 

mapping for each test case used in our experiments.  All applications are part of the 

SPEC CPU2006 suite of benchmarks [33].  For our experiments, we run the following 

application sets. 

Table 1. SPEC CPU2006 Benchmark Test Cases 

 mcf hmmer Mix 1 Mix 2 Mix 3 

µP 0 mcf hmmer bzip2 mcf hmmer 

µP 1 mcf hmmer mcf astar astar 

µP 2 mcf hmmer gcc mcf mcf 

µP 3 mcf hmmer astar mcf gcc 

µP 4 mcf hmmer hmmer astar gcc 

µP 5 mcf hmmer hmmer astar astar 

 

 These applications represent a broad variety of benchmarks within the SPEC suite, 

and we have included three mixture cases to determine the effect of heterogeneous 

application load on ATTU behavior. 
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E.  Experimental Results 

1. Detection Rate 

 To maximally explore the behavior of the ATTU, we observe the accuracy and 

test-triggering latency of the ATTU under varying communication patterns, error 

manifestation distributions, and error effect distributions.  Processor-memory 

communication patterns are affected by the application and cache configuration.   

 As described previously, the injected errors are affected by error manifestation 

and effect distributions.  Our experiments determine the sensitivity of the ATTU with 

respect to each of these parameters.  We also determine the effect of varying n, the 

number of anomalies to detect before triggering a test, on the test-triggering latency of 

the ATTU. 

 

Fig. 11. ATTU Performance of Application Sets 
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 Fig. 11 illustrates the average accuracy of the ATTU in terms of detection rate.  

Across the five selected application sets, the ATTU detects approximately 68% to 92% 

of errors manifested in IP block communication. 

2. Effect of Error Distribution 

 Using the random distributions for fault manifestation and effects selected from 

the previous section, we observe ATTU accuracy averaged across the five test cases.  

Table 2 shows the effect of error behavior on ATTU performance.  

Table 2. Effect of Error Distribution on ATTU Performance 

 Fault Effect Distribution 

M
an

ife
st

at
io

n 
D

is
tri

bu
tio

n  Uniform Gaussian 

Uniform 84.2% 76.6% 

Normal 84.1% 79.7% 

Weibull 86.2% 78.5% 

Poisson 85.6% 77.5% 

 

 Here, we see little effect on ATTU behavior due to error distribution; this is 

primarily due to the nature of the application communication between processing and 

memory cores. 
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3. Effect of Error Rate 

 As the effective error rate is increased from 5E-06 to 3E-05, the ATTU detection 

rate is largely unaffected, varying from approximately 80% to 88% accuracy.  However, 

test-triggering latency reduces as error rate increases.  This is an expected result, as more 

errors manifesting in the communication between IP blocks results in more anomalies 

detected. 

 

Fig. 12. Effect of Error Rate on ATTU 

 Fig. 12 shows that test initiation latency reduces by 33% as the error rate 

increases from 5.0E-06 to 3.0E-05. Test initiation latency can be further adjusted by the 

number of anomalous required to trigger tests as discussed later in this section. 
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4. Effect of L1 Cache Size 

 Varying the L1 cache size of each processor IP block changes the memory 

communication observed on the network – larger caches require less L2 cache accesses 

as capacity and conflict misses are reduced.  This reduction in memory traffic as L1 

cache sizes increase results in longer test-triggering delays as seen in Figure 8. 

 

Fig. 13. Effect of L1 Cache Capacity on ATTU 

 Fig. 13 shows that the benchmark set used has little effect on accuracy; however, 

test initiation latency increases from approximately 40µs to over 80µs as the L1 cache 

size increases from 8KB to 32KB.  

  

 

2000

2500

3000

3500

4000

4500

5000

0

10

20

30

40

50

60

70

80

90

100

8KB 16KB 32KB

L
a
te

n
cy

 (
µ

s)

A
cc

u
ra

cy
 (

%
)

hmmer
mcf
mix1
mix2
mix3
avg
delay



 

 

41 

5. Effect of ATTU Memory 

 Fig. 14 shows the effect of ATTU memory on detection accuracy and hardware 

overhead. As the amount of memory dedicated to recording NoC traffic grows, the 

ATTU is able to detect finer-grained anomalies within traffic. This translates into a 14% 

increase in detection accuracy as the number of ternary content addressable memory 

(TCAM) rows increases from 5 to 20. 

Fig. 14. Effect of Memory Size on ATTU 

 Additionally, it is observed that the overhead due to increased memory usage by 

the ATTU increases from 11.25K gate equivalents to 12.25K gate equivalents as the 

number of TCAM rows is varied from 5 to 20. 
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6. Effect of Trigger Sensitivity 

 Increasing the number of anomalies an ATTU observes before triggering a test 

from the TI-IP increases the test-triggering latency, shown in Figure 15.  A designer 

including the ATTU should choose n such that the expected test-triggering latency meets 

the reliability and availability requirements of the system. 

 

Fig. 15. ATTU Behavior for Various Values of n 

 Here, it is observed that the test initiation latency increases linearly with n from 

approximately 500µs to nearly 4000µs. 
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7. ATTU Overhead 

 Overhead costs in terms of area and power were measured by synthesizing the 

ATTU using Synopsys Design Compiler [43] and the Virginia Tech VLSI for 

Telecommunications TSMC-0.25µm, 2.5V standard cell library [44], [45].  Realizing an 

ATTU configured for this experimental setup would require an estimated 11.6K gates 

while consuming an estimated 50.8mW of power (leakage power of 4.64µW). 

F.  Conclusion  

 This work proposed an on-demand test triggering mechanism, the ATTU, for 

concurrent on-line test of SoCs.  On-demand COLT of NoC-based safety-critical 

systems offers several advantages over traditional periodic COLT.  Testing of system 

components, an expensive and time consuming task, is reserved to times when 

indications of error within the system exist.  Our exploration of the ATTU under varying 

fault manifestation and effect distributions shows that including this mechanism 

promotes electronic design quality throughout its lifetime reduces fault detection time, 

thereby maximizing system availability.  Future work includes enhancing ATTU and TI-

IP coordination to autonomously diagnose system errors to assist in self-healing 

capabilities. 
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CHAPTER IV 

DISTRIBUTED TEST VECTOR STORAGE 

 

A.  Introduction  

 Multi-core systems-on-chip (SoC), with a handful of complex processing cores 

and integrated peripheral components, are expected to be replaced by many core SoC 

that contain hundreds or thousands of light-weight processing cores, memory and I/O 

subsystems within the next decade. This transition marks a fundamental shift in how 

reliability, availability and testability for these systems will be achieved due to their 

massive redundancy and physical characteristics.  

 These many core SoC will use packet switched networks-on-chip (NoC) for 

inter-core communication, as opposed to the current standard of on-chip busses [1], [10]. 

Notable examples of this architecture include the 100-core TILE-Gx100 from TILERA 

[28], the 80-core Intel Terascale SoC [46], and the 48-core Intel SCC [47] organized as 

24-tiles connected via a NoC mesh.  On a smaller scale, Freescale Semiconductor has 

recently introduced an 8-core device for embedded systems.  This device, the QorIQ 

P4080, uses a propriety switch fabric called CoreNet, which is a NoC providing cache 

coherence and quality-of-service capabilities [48], [49]. 

 As technology scaling has provided new opportunities for massively parallel and 

distributed computation to be performed on a single chip, new reliability challenges have 

also emerged. In addition to the well-understood circuit failures due to manufacturing 

imperfections, SoC components are also more susceptible to early-life failures (ELF) 
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and electronic wear-out—permanent failures that emerge during use – as feature sizes 

scale below 65nm [1], [13], [50]. 

 Electronic wear-out is a combination of several physical degradation 

mechanisms, including electro-migration (EM), hot carrier injection (HCI) and negative 

bias temperature instability (NBTI), that are intensified by smaller feature sizes, higher 

current and power densities, and higher operating temperatures [13]. Because the most 

significant electronic wear-out mechanisms manifest as an increasingly severe delay 

fault at the circuit level, many researchers have proposed the use of SCAN-based delay 

testing for detecting this type of error [4], [16], [51], [52]. Built-in self-test (BIST) 

architectures using pseudo-randomly generated test vectors are effective in discovering 

wear-out in memory elements. Unfortunately, BIST techniques cannot be applied to 

control portions of logic components, such as intellectual property (IP) cores, due to the 

low fault coverage levels provided by logic BIST [16]. 

 Therefore, researchers have noted the need to apply production-quality, high-

coverage SCAN delay test vectors to the cores within SoC once the system has been 

deployed in the field [4], [16].  These tests can be applied as an isolated process – the 

entire system is taken off-line periodically or triggered by an event so that all cores can 

be tested for wear-out [16].  Alternatively, core testing can be performed concurrently 

with normally executing applications [4], [5], [16], [52]. 

 Concurrent on-line test (COLT) exploits the massive structural redundancy of 

multi- and many-core architectures by shutting down some subset of cores within the 

SoC for testing while the remaining cores run user applications as normal. This allows 



 

 

46 

the system to achieve its reliability requirements and maintain an extremely high level of 

availability. The amount of overhead in terms of power consumption, resource and 

network congestion, and chip area costs incurred by testing system components during 

normal operation is known as application intrusion.  Application intrusion must be 

minimized in order for COLT strategies to operate feasibly. 

 In the COLT strategies currently proposed in research, the delivery of test vectors 

from the test source (on-chip test storage or off-chip memory) to the individual cores 

within the SoC is the most significant contributor to testing costs in terms of test latency 

and energy consumption [4], [16]. This problem will only become more critical as the 

number of cores per SoC increases over time. As the distance between test source and 

sink increases for deeply embedded cores, application intrusion in the form of test 

latency, energy and NoC congestion also increases. 

 In this research, we present a distributed test vector storage (DTVS) technique 

for safety-critical SoC that can accommodate storage, power, latency, and availability 

constraints in an optimal fashion.  The on-chip networks we study in this work focus on 

the 2D-torus topology—a popular topology in research and in practice due to its efficient 

hardware implementation, small diameter, and simple routing, but this technique can be 

used in any regular topology.   

 The main contributions of this research are the following: 

 Proposes the use of a formalized, distributed storage technique (t-interleaving on 

tori) to bound the distance test vectors travel within the network, reducing online 

test intrusion 
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 Demonstrates that this scheme can reduce test delivery latency and energy 

consumption by approximately 75% and total network load by 76% for the 

moderately sized NoC simulated in our experiments 

 Proposes a fully distributed COLT scheduling protocol that addresses the 

scalable test vector delivery issues present in current COLT research. 

 Validates the proposed protocol and supporting architecture through three case 

study cores: the OpenRISC processor, an ARM7 processor, and an open-source 

NoC router as the cores to be tested across the SoC 

 Presents an optimal core test ordering, called Code-Division Core Test 

Scheduling, when using distributed test vector storage. By simply ordering which 

subset of cores is tested simultaneously, system test delivery latency and energy 

consumption is reduced by 40% when compared to other core test orderings. 

 The remainder of Chapter IV is organized as follows.  Section B describes 

related work in online testing techniques, specifically focusing on efforts in concurrent 

online testing. Section C briefly motivates the use of distributed test vector storage for 

online testing based on observations of previous work.  Section D describes our 

proposed use of t-interleaving on tori to optimally distribute test vectors across a many-

core SoC such that test vector delivery distances are bounded.  Section E describes the 

proposed distributed concurrent online testing protocol. Section F presents our analysis 

of distributed test vector storage in terms of network traffic load, test delivery latency, 

required energy consumption, and on-chip storage requirements for various SoC 

configurations. Section G describes the experimental setup used to measure the 
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performance of delivering test vectors using the standard single-source approach and the 

described distributed storage technique. Section H presents the results of our 

experiments in terms of test delivery latency, energy consumption, and overheads.  

Finally, Section I summaries this work and describes future directions for research 

regarding this technique. 

B.  Mechanisms of Concurrent Online Test  

 Concurrent online testing is a method of testing SoC components in the field 

such that user-level applications are unaware of this activity.  Researchers have proposed 

various mechanisms to implement COLT in SoC.  In this section, the three most popular 

approaches are described.  In order to provide the high-coverage test delivery, test 

application, response retrieval and comparison traditionally provided by external 

automated test equipment (ATE), on-chip hardware, software and co-designed 

approaches have been evaluated. 

1. On-Chip Test Controllers 

 In [32], the researchers analyzed the costs and benefits of reusing the NoC as a 

test access mechanism (TAM) for each core in the network.  This was proposed as a 

response to the increasing difficulty of accessing deeply embedded cores within a SoC.  

It was shown that a NoC is indeed a feasible TAM due to minimal overheads; however, 

it was noted that test delivery times (and power consumption) depend on the distance 

between the test source and the core to be tested.  Additionally, this variability in test 
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delivery time may not be fully understood, since relatively small 5x7 and 4x8 2D-torus 

topologies were studied in that research. 

 Using the NoC as a test delivery infrastructure, researchers have proposed 

reusing infrastructure IP (I-IP) designed originally for manufacturing testing as a tool for 

on-line testing of the system [20].   

 Bhojwani [4], [5] constructed a Test Infrastructure IP (TI-IP) capable of 

managing test scheduling, delivery, and intrusion for concurrent on-line test (COLT) of 

the SoC.  COLT allows cores in the SoC to be tested in the presence of normally 

executing applications to maximize system availability.   

 The original COLT scheme proposes that the test vectors are stored within the 

TI-IP. Due to the real-time constraints of these applications, COLT is extremely 

sensitive to application intrusion. 

 Microprocessor pipeline on-line testing using distributed on-line BIST and 

periodic check-pointing was investigated and shown to be an effective technique in 

providing high reliability and availability at a reasonable area cost (5.8%) [22]. In this 

scheme, stuck-at fault test vectors are generated for processor components and stored in 

on-chip ROM. It should be noted that distributed BIST discussed in [22] is a different 

concept than DTVS discussed here.  In [22], distributed BIST refers to separate BIST 

mechanisms for the different pipeline components of a single microprocessor core, 

where distributed test vector storage refers to the separate BIST vector storage units 

across the entire SoC. 
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 Yi, Makar and Mitra have proposed CASP: Concurrent Autonomous chip Self-

test using stored test Patterns [16]. Similar to COLT, an on-chip test controller is 

proposed which manages test scheduling, test application and response comparison for 

processing cores of the OpenSPARC T1 chip multi-processor [23]. Their technique 

differs from COLT in that the test vectors are stored off-chip in a nearby flash or hard 

disk drive (HDD) storage system. 

 Consistent with previous research, the time required to test a core was almost 

completely dominated by test vector delivery latency. When using off-chip flash 

memory, 83% of the total test time was consumed by transferring test vectors to the core 

under test. Delivering test vectors via off-chip HDD memory accounted for over 99% of 

the total test time [16]. However, it was successfully demonstrated that CASP is a 

feasible solution to ensure lifetime reliability for certain applications. 

 Operating system and hardware virtualization support is required for any COLT 

scheme to operate invisibly to the system user. The OS/virtualization layer must track 

which cores are available to the operating system for normal applications and to initiate 

task migration when necessary during online test. This topic is addressed in [17], [52] 

and is outside the scope of this work. 

2. ISA Testing Extensions 

 In [51], a hardware/software co-designed approach is presented in order to 

provide COLT capabilities to a SoC.  Instead of a dedicated on-chip test controller 

determining when and how IP cores are tested, the authors extend the ISA of the 

processor to give software access to the core’s SCAN chains.  These additional 
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instructions, called Access-Control Extension (ACE) instructions, allow software to 

control the online testing of cores as a separate process.  Software-controlled testing 

benefits from increased flexibility; modifying the testing strategy is as simple as 

changing the controller software. 

 Although software manages the test infrastructure, hardware modification is 

required to implement ACE instructions.  SCAN chains are expected to already be 

present due to design-for-test (DFT) requirements; however, the control structure of the 

core must be modified to accept these additional instructions, and extra datapaths are 

required to connect the SCAN chains to the instruction pipeline. 

3. Software-Based Self Test 

 Software-based self test (SBST) performs all testing completely in software.  

Both the test controller and actual test application are implemented by standard 

processor instructions.  Therefore, SBST can be scheduled like any other software task, 

allowing for the operating system to be aware of testing, and giving the system designer 

great flexibility in scheduling online tests. 

 SBST is completely non-intrusive in terms of hardware overhead; however, 

verifying that high-coverage levels of structural faults can be achieved strictly through 

the application of processor instructions is challenging.  Several SBST techniques have 

been shown to achieve stuck-at fault coverage rates of 80% and above [24].   

 For delay fault coverage, a technique has been proposed and evaluated on a 

simple, custom processor [25].  SBST techniques have also been proposed for floating 
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point units, where extremely high stuck-at fault coverage and low memory footprint 

have been achieved [26], [27]. 

C.  Motivation for Distributed Test Vector Storage  

 Regardless of the mechanisms used to provide COLT, test data storage, delivery 

and retrieval is a major consideration in system design.  Each of these proposed COLT 

designs require some central test data repository.  As integration increases, the distances 

between test sources and sinks also increase. 

 Additionally, it is expected that online testing must occur very frequently for 

each core to predict or detect early-life failures – the frequency of core testing is on the 

order of seconds [17].  This high frequency testing requires that online testing consume 

as little time as possible. 

1. Test Delivery Costs Relative to Distance 

 As a demonstration of the growing contribution of test delivery to total test time 

as integration increases, we evaluate the ratio of test delivery time to test application 

time of the OpenRISC CPU core [53] as the delivery distance increases.   

 The four cases illustrated in Fig. 16 correspond to test vectors travelling 4 hops, 8 

hops, 10 hops, and 12 hops in a 2D-torus based SoC.  The test application time for 

transition fault testing of the OpenRISC CPU is 1.186ms; however, as the number of 

hops increases to deliver these test vectors, the test delivery time increases from 1ms to 

2.3ms.  At 4 hops, the test delivery time (47%) is roughly equal to test application time 

(53%).  At 12 hops, 66% of the time required to test the core is dedicated solely to 
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delivering the test vectors to the core under test. This demonstrates the increasing 

importance of test delivery costs of COLT as the number of cores per chip scales within 

an SoC. 

 

Fig 16. Growth of Test Delivery Time 

 Based on these observations, a distributed approach to test data storage may 

provide a better solution to the performance-storage tradeoff of test data storage for 

online testing.  Instead of a single source of test data sending information to each core 

across the entire chip, storage redundancy can be used to shorten the effective distance 

between test sources and sinks.  This research presents a formal approach to assessing 
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this tradeoff – taking advantage of the regular structure of many-core SoCs, this storage 

redundancy can be optimally placed to maximize the benefits of distributed test vector 

storage. 

 Aside from these scalability issues, longer test delivery and response distances 

increase the complexity (and potentially decreases the accuracy) of calculating intrusion 

costs of on-line testing by the test controller, such as the previously described TI-IP.  

Ultimately, this may negatively affect the availability of the system.  This motivates the 

need to bound test delivery distances for all cores in the SoC. 

D.  Distributed Test Vector Storage Analysis 

1. Interleaving on Tori 

 This research focuses on NoC based on the 2D-torus topology, also known as a 

k-ary 2-cube (Q2
k).  As the Hamming metric has been shown to efficiently describe 

relationships between nodes in hypercubes, the Lee metric has been shown to be a 

natural description of distances between nodes in tori [54], [55], [56].  

 The Lee metric for a 2D-torus of size n x n can be described by (1) and (2) as 

follows:  

                                 (1) 

                (2) 

where wL is the Lee weight of a node A within the 2D-torus, and a0 and a1 are the node’s 

positions in the two dimensions. dL is the Lee distance between two nodes in a torus, and 
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like the Hamming distance, it is simply the weight of the difference between the two 

nodes.  The Lee distance between two nodes can be intuitively described as the number 

of hops between two nodes in a torus topology.  For a more in-depth discussion of the 

torus topology and their properties, please refer to [54], [55]. 

 Understanding the role of Lee metrics in tori is important when considering how 

to optimally distribute a file across a 2D-torus topology.  Any test vector distribution 

scheme that bounds test vector delivery to each core must ensure that the complete set of 

test vectors are within a certain Lee distance to each core.  In other words, the delivery 

of test vectors must be bounded within a certain number of hops within the torus 

topology. We will now discuss how to distribute test vectors across a torus in more 

detail. 

 A file F (in our discussion, F is a set of test vectors) can be evenly divided into a 

set of file segments: F = (F0,F1,…,Fm).  Each core can reconstruct the file F by retrieving 

the file segments from each of its neighbors within a radius r.  It is necessary that for 

each core in the 2D-torus, all cores within that radius store a distinct file segment in 

order for the complete file F to be reconstructed.   

2. Interleaving Example 

 As an example, Fig. 17 depicts an arbitrary core in a large 2D-torus which is 

storing file segment F6 of 13 total file segments.  The neighboring cores within the 

radius r = 2 store the remaining 12 file segments.  When all 13 nodes are combined, a 

Lee sphere is created, and each node within that Lee sphere contains a distinct file 

segment.  It can be clearly seen that the core at F6 can access the entire file F by 
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retrieving data from its neighbors within the radius r. Likewise, it can be imagined that 

these 13 segments are replicated across the entire torus in a symmetric fashion; 

therefore, any core within the torus can access all of file F within the radius r. 

 In order to guarantee every node in the 2D-torus can also access the entire file 

within the same radius, the Lee sphere centered at each node must contain nodes with 

distinct file segments.  The file F must therefore be replicated across the entire torus in a 

spherical manner such that this constraint is satisfied. Replicating the file in this manner 

is a straightforward process and can be done during design time as a one-time cost. Once 

the placement of file segments is made, the process does not need to be repeated. 

F6

F1

F0

F2 F3

F4 F5

F9

F7 F8

F10 F11

F12

 

Fig. 17. A Core at F6 Retrieving All File Segments Within Radius 2 
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 An alternative way of viewing this problem is to realize that replications of the 

same file segment Fi can be no closer than 2r + 1 hops apart. Viewing the problem in this 

way relates file placement to coding theory, which ensures that codewords are a 

minimum distance apart. In this case, that minimum distance is 2r+1, and the codewords 

can be viewed as tiles within the torus. 

 This problem has been solved through t-interleaving on tori.  t-interleaving on 

tori is formally defined by Dr. Jiang as: 

 

Let G be a graph.  By an interleaving, we will mean a vertex coloring, as follows.  

We say that G is interleaved (or there is an interleaving on G) if each vertex of G 

is assigned one of a finite number of distinct colors.  We say that G is t-

interleaved (or there is a t-interleaving on G) if every set of t vertices, forming a 

connected subgraph of G, is colored by t distinct colors. [56] 

 

 For 2D-tori, the minimum number of file segments required to achieve a t-

interleaving on a 2D-torus is |St|, the number of nodes within an interleaving sphere, 

described in (3). 

     

 
 

 
    

 
        

  

 
                  

  
[56]                                

(3) 

 In [56], |St| has been proven to be the lower bound on how many file segments 

must be used to create a t-interleaving on a torus, and |St| must divide n for a n x n 2D-
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torus to be a perfect, or optimal, t-interleaving.  This work studies perfect t-interleavings 

over tori; however, non-perfect t-interleavings can still achieve tight bounds on test 

delivery distances. 

 Looking back at Fig. 2, we see that the core storing file segment F6 is at the 

center of a Lee sphere of radius r = 2, created by a 5-interleaving on that torus (|S5| = 

13). 

 In [56], |St|, the size of a Lee sphere with diameter t, has been proven to be the 

lower bound on how many file segments must be used to create a t-interleaving on a 

torus, and |St| must divide n for a n x n 2D-torus to be a perfect, or optimal, t-

interleaving.  This work studies perfect t-interleavings over tori; however, non-perfect t-

interleavings can still achieve tight bounds on test delivery distances. 

 

Fig. 18. 3-interleaving on 5x5 2D-torus 
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 Fig. 18 depicts another example of t-interleaving on a smaller torus, where each 

numbered tile is a core, connected by routers R.  Specifically, it depicts a perfect 3-

interleaving on a 5x5 2D-torus.  By observation, this example shows that any node 

within the graph can reach all colors within 1 hop.  It also shows that nodes of the same 

color (or number label) are no closer than 3 hops apart.  Another way to view this 

interleaving is to see that every node is the center of a Lee sphere of radius 1, and each 

Lee sphere contains 5 nodes with distinct colors (or numbers). 

3. Applying Interleaving to Test Storage 

 By using t-interleaving on tori for on-chip test vector storage, it is proven that 

any core in the network can access the complete set of test vectors within a defined 

radius.  Bounding this test delivery radius for each core not only guarantees scalability, 

but on-line test intrusion can be much more easily estimated.  The level of intrusion for 

each core no longer depends on proximity to the test source, simplifying scheduling 

decisions for on-line testing. 

 This same technique can be applied to any topology with regular structure 

including meshes and rings.  Other proposed NoC topologies, such as the dense 

Gaussian network [57], are also suitable candidates for using this technique. 
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E. Distributed COLT Architecture 

1. System Components 

 Because the proposed test scheduling protocol is fully distributed, inserting 

dedicated TI-IP tiles into the SoC is unnecessary.  Instead, each tile contains a small test 

controller within the Core-Network Interface (CNI) of each tile. 

 Fig. 19 illustrates the distributed COLT architecture for each NoC tile within the 

SoC. NoC tiles communicate with each other via on-chip routers (R) and CNI. In the 

example system, each NoC tile contains a simple CPU core, such as the OpenSPARC T1 

core, surrounded by DFT SCAN chains.  

 

Fig. 19. Distributed COLT Architecture Within a Tile 
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 Each CNI contains a Test Controller (TC) which implements the proposed 

distributed COLT protocol. The TC contains a nominal amount of buffers to temporarily 

store incoming test vectors and responses from neighboring cores and communicates 

directly with the DFT structures surrounding the core under test. Each tile also contains a 

dedicated Test Vector Memory (TVM) which stores some portion of the complete test 

vector set. The TC is responsible for sending the local test vector subset to neighboring 

cores upon request. 

 The TC is not directly responsible for managing power consumption of the core 

or the system during test mode.  Researchers have proposed that NoC-based SoC can 

manage power consumption by implementing a power management (PM) unit within 

each CNI or router [4], [58], [59]. This PM can manage power consumption of its 

associated NoC tile by throttling network traffic and the TC. 

 Because multiple NoC tiles may initiate tests simultaneously, a token-based 

protocol is used to manage the distributed TC. This protocol is detailed in the next 

section. 

2. Distributed COLT Scheduling Protocol 

 This research proposes a simple distributed COLT scheduling protocol that 

allows each tile to manage its own self-test. The TC of each CNI implements the test 

scheduling protocol as illustrated as a state machine in Fig. 20.  We propose a token-

based protocol where the individual SoC tiles are organized into one or more token 

rings.  Any tile possessing a token can initiate self-test and respond to test results as 
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necessary. The rest of this section details token generation, test application and response, 

and token passing. 

 Token Generation: Depending on the operating and SCAN test characteristics of 

the CPU cores within the SoC, multiple cores may be tested simultaneously without 

violating the system power budget and application requirements. The number of cores 

that may be tested simultaneously is determined by the system architects and is system 

and application dependent. If n cores can be tested simultaneously, then the system is 

initiated with n tokens distributed across the NoC tiles. The cores of the SoC are divided 

into n token rings such that each ring contains one token and each core is a member of 

one token ring. It is possible that rings may contain an unequal number of cores 

depending on system characteristics. Cores without tokens remain in the WAIT FOR 

TOKEN state before initiating COLT locally. 

 Core Test: Once a tile possesses a token, the TC enters the INITIATE TEST state 

and may begin a local core test. Before actual testing can begin, it may be necessary to 

unload the core of its current task and migrate this task to an alternate core. The TC will 

request the other pieces of the test vector set from neighboring tiles and will begin 

applying SCAN tests to the test wrapper during the TEST IN PROGRESS state. All test 

vectors are applied and responses are compared until test completion. Once the TC is in 

the TEST COMPLETE state, it will determine whether the testing has passed or failed 

based on a standard response comparison.  

 Test Response: If the test has passed, the system can be configured so that the 

core may resume its task as described in [52]. If the testing has failed, the TC enters the 
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Fault-Tolerance Response (FT RESPONSE) state and the appropriate action is taken.  

For instance, an appropriate response would be to disable the faulty core and replace it 

with a cold spare if one is available. Alternatively, a faulty core can be disabled and 

system operation resumes in a degraded state. 

 

Fig. 20. Distributed COLT Protocol 
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 Token Passing: Once this action is complete, or if the test passes, the TC enters 

the WAIT TO SEND TOKEN state. Token passing may be initiated periodically or due to 

specific system events.  In [17], researchers have found that detecting hard failure 

requires very frequent testing.  They note that test periods must be on the order of 

seconds (1-10 seconds) in order for checkpointing schemes [22] to be effective at rolling 

the core back to a correct state.  Testing cores this frequently requires that system 

designers consider the impact of COLT application intrusion, including test delivery 

costs when applying stored test vectors. 

3. Code-Division Core Test Scheduling 

 Given that it will be possible for some many-core SoC to test multiple cores 

simultaneously, optimizing which cores can be tested simultaneously for latency, 

network congestion, power consumption and thermal effects is a critical consideration 

for COLT. 

 As described in Section D, a many-core SoC which uses a NoC with a regular 

topology such as the 2D-torus, can be represented as a set of Lee-metric error correcting 

codes.  Each code contains a set of NoC tiles located by each codeword. For example, 

Fig. 18 shows a 25-core SoC that contains 5 different error correcting codes. Each code 

is labeled by a distinct number – the tiles that are labeled 1 all belong to the same error 

correcting code. By the definition of error correcting codes, each tile belonging to the 

same code must be t hops apart. 

 Because each tile belonging to the same code—tiles that will be tested 

simultaneously—are t hops apart, and each core under test must access test vectors from 



 

 

65 

at most t – 1 hops away, there exist no resource conflicts due to test. In other words, any 

tile in the SoC will send its segment of the test vector to only one requesting core under 

test at any time. This design constraint greatly simplifies the testing architecture; no dual 

ported TVM are required, and there is no need to broadcast or multicast test vector 

segments across the network. Therefore, Code Division Core Test Scheduling dictates 

that only cores belonging to the same error correcting code may be tested 

simultaneously. 

 However, there are fundamental limits to this test ordering scheme.  No more 

than n cores in an n x n 2D-torus SoC can be tested simultaneously, otherwise resource 

conflicts will occur. Also, if only one core can be tested at a time, the order in which 

cores are tested will have no effect on testing performance, neglecting user application 

effects. 

F.  Analytical Results  

1. Network Load Analysis 

 For evaluating total network load of test vector delivery on a 2D-torus NoC-

based SoC, we have developed the following equations. 

 The first Vtraffic equation, (4), describes the total network load for a centralized, 

single source test vector storage scheme, where Btest is the size of the test vector set in 

bytes, TIIP is the location of the test vector source, and Coreij is each core in the SoC.   

In centralized COLT, Vtraffic is determined by the Lee distance dL, defined in (2), between 

the TIIP and each core to be tested. 
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 (4) 

 The second Vtraffic equation, (5), describes the total network load for a t-

interleaved distributed test vector storage scheme for a 2D-torus of size n x n.  Again, 

Btest is the size of the test vector set in bytes, and |St| is the number of segments the test 

vector set is split into.  h signifies the number of hops from each test source node to the 

test requesting node. 

         

 
 
 
 

 
 
      

    
                                        

 
 
 
 

   

     

    
  

 

      
      

 

 
 
  

   
 

          

  (5) 

 Using these equations, Fig. 21 shows the reduction in total network load when 

using t-interleaving compared to single source test storage.  For the 5x5 and 10x10 tori, 

3-interleaving was used, whereas 4-interleaving and 5-interleaving was used for the 8x8 

and 13x13 tori, respectively.  The greatest network load reduction of 76% can be 

observed for the 13x13 torus.  Greater network load reductions can be achieved for 

larger tori due to the ever increasing test vector delivery distances of the centralized 

scheme. 
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Fig. 21. Network Load Comparison as Network Size Increases 

 The results shown in Fig. 21 are a promising trend for using COLT with 

DTVS—the benefits increase with SoC size. 

2. Energy Consumption Analysis 

 Numerous studies have shown that energy consumption of a NoC is directly 

proportional to the amount of traffic (flits) being transmitted in that network [58], [59].  

To calculate energy consumption relating to delivering test vectors across the NoC, we 

use a standard flit-based energy calculation adapted from [58], with 90nm NoC 

component energy parameters from [60].  Namely, each flit is 256 bits long, and the 

network operates at a frequency of 1GHz. 

 Equation (6) states the amount of energy consumed per flit transmitted. 

0

50000

100000

150000

200000

250000

300000

5x5 8x8 10x10 13x13

T
o
ta

l 
N

et
w

o
rk

 L
o
a
d

 (
K

B
)

2D-torus sizeSingle TIIP

Distributed



 

 

68 

 

                               [58]   (6) 

where h is the number of hops the flit travels, Ei is the energy consumed in the tile in-

port, Eo is the energy consumed in the tile out-port, Esw is switching energy, and Elink is 

the energy consumed by the network links. 

Table 3. Energy Consumption Over Various Tori (µJ) 

  Single Source  t-interleaved Energy Reduction 

5x5 54.31 18.10 67% 

8x8 231.74 72.42 69% 

10x10 452.61 72.42 84% 

13x13 988.50 235.36 76% 

 

 Table 3 describes the energy savings due to the limited network traffic resulting 

from t-interleaving.  From this, we observe an average energy reduction of 74% when 

distributed storage is used for these four cases. 

 It is also observed from Table 3 that using t-interleaving to store tests for the 8x8 

and 10x10 tori results in equal energy consumption for test delivery, despite their 

unequal network sizes.  This is due to the fact that 3-interleaving is used for the 10x10 

torus (Lee spheres of size 5 are created), and 4-interleaving is used for the 8x8 torus 

(spheres of size 8 are created).  In other words, smaller but more numerous spheres are 

created for the 10x10 torus, reducing the distances that test vectors travel across the chip 
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when compared to the 8x8 torus configuration.  The ultimate effect of these disparate 

sphere sizes is that the smaller spheres created for the 10x10 torus negate the higher 

energy consumption requirements induced by the larger 10x10 torus topology.  

3. Storage Redundancy 

 For an n x n 2D-torus, the amount of redundancy r introduced into the network 

through perfect t-interleaving is described by the following equation: 

  
  

    
 (7) 

This equation simply computes the number of Lee spheres embedded within the torus. 

Fig. 22. Storage Redundancy for Various Tori Using DTVS 
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 Fig. 22 shows the redundancy requirements for various t-interleaving schemes 

over different size 2D-tori using equation 2.  In fact, for any n x n 2D-torus, the 

minimum required level of redundancy for a perfect t-interleaving is simply n since |St| 

must divide n. 

 In Fig. 22, it is observed that the larger 13x13 torus requires less redundancy than 

the smaller 10x10 torus.  This is due to the fact that 3-interleaving is used for the 10x10 

torus (Lee spheres of size 5 are created), and 5-interleaving is used for the 13x13 torus 

(Lee spheres of size 13 are created).  The 10x10 torus configuration contains 100 total 

nodes, and the test vectors are replicated across the 20 spheres created.  The 13x13 torus 

configuration has 169 total nodes, and the test vectors are replicated across the 13 

spheres created.  Therefore, tests are replicated seven more times in the 10x10 torus 

configuration than the 13x13 torus configuration. 

 If less redundancy is desired, a designer may simply construct a sub-optimal t-

interleaving over a torus. Another method to reduce redundancy requirements is to store 

file segments in only some nodes while still bounding test delivery distance. However, 

the main limitation of on-line testing noted in research literature has been test delivery 

distance and not storage. 

G.  Experimental Setup 

1. NoC Simulator 

 To measure the performance of using this distributed test vector technique, we 

simulate a NoC-based SoC using the NoCSim on-chip network simulator [34].  NoCSim 
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is a SystemC cycle-accurate simulator which models IP cores, on-chip routers, CNI, and 

network links for any network topology to form a complete system. It takes as input an 

XML document which specifies the system topology and composition, and it reports 

activity latency, resource utilization and energy consumption. 

 Table 4 describes the baseline simulation configuration and parameters used 

during our experiments. 

Table 4. DTVS Simulation Parameters 

SoC Topology 2D Torus: 25, 64, 100, 169 cores  

Test Vector Set Size See Table 3 

Network Configuration 64-bit flits, 8 flits per packet, 8 VCs per 

link, 8 flit buffer depth, 1 GHz, wormhole 

routing, credit-based flow control 

Process Technology 90nm 

 

 The simulated on-chip network utilizes 64-bit links, and each IP core can 

transmit information in 64-byte packets.  The test vector sets used in all experiments are 

256KB in size; therefore, 4096 packets of information are transmitted from test source to 

test sink.  The measurement of energy consumption is based on energy formulas 

developed in [58], and energy parameters developed in [60] which considers a system 

using 90nm technology. 
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2. System Architecture 

 For our experiments, we evaluate the performance differences between applying 

COLT with a centralized TI-IP architecture and the proposed distributed architecture for 

NoC-based SoCs organized as 2D-tori. 

 For the 2D-torus based systems, four systems are constructed for our 

experiments: a 25-node SoC in a 5x5 torus topology, a 64-node SoC in a 8x8 torus 

topology, a 100-node SoC in a 10x10 torus topology, and a 169-node SoC in a 13x13 

torus topology.  For each system, we simulate the behavior of delivering test vectors to 

each node in the system using a standard centralized approach described in [4], [5] and 

the proposed distributed protocol based on t-interleaving. We allow n cores to be tested 

simultaneously in each n x n configuration. For example, five cores are tested 

simultaneously in the 5x5 torus system.  

 For the 5x5 and 10x10 torus systems, 3-interleaving is used to distribute the test 

vectors across the network; the test vector set is split into 5 pieces, and each node can 

access all test vectors within 1 hop.  For the 8x8 torus, 4-interleaving is used, therefore 

the test vector set is split into 8 pieces, and each node can access all test vectors within 2 

hops.  Finally, the 13x13 torus system uses 5-interleaving to distribute the test vectors.  

In this scheme, the test vector set is split into 13 pieces, and each node can access all test 

vectors within 2 hops. 
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3. System Cores 

 To assess the effectiveness of distributed test vector storage, this research 

considers the testing of the following IP cores: the OpenRISC CPU [53], the 

ARM7TDMI CPU [61], and a NoC router [62].  Both the OpenRISC and ARM7 cores 

are simple, in-order processing cores that are representative of the trend towards many, 

small processers in many-core SoC.  The NoC router is an open-source design from the 

Stanford Concurrent VLSI Architecture Group which includes RTL and testbenches 

[62].   

 Each core was synthesized using Synopsys Design Compiler [43] with the 

Synopsys 90nm Generic Library [63], and scan chains were automatically inserted after 

synthesis.  For each design, one scan chain is inserted.  After synthesis, the ATPG tool, 

Synopsys Tetramax [64], was used to generate delay tests based on worst-path delay 

information.  Fault coverage exceeded 97% for each design.  To measure test time, the 

application of test vectors into each design was simulated at the gate level using an 

automatically generated testbench from the ATPG tool and the synthesized netlist.  

Table 5 summarizes the delay testing information for each of these cores.  The size of 

each design is represented in gate equivalents (Gate Eq.). 
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Table 5. Core Test Information 

Core Gate Eq. Vectors Volume Test Time 

OpenRISC 773133 626 154KB 1186 µs 

ARM7 34522 587 137KB 293.9 µs 

Router 38617 121 65KB 60.9µs 

 

 From Table 5, it is observed that the OpenRISC core is by far the most complex 

IP core of the three cores analyzed for this research, and the OpenRISC core also has the 

longest test application time of the three cores. Although the router is almost as large as 

the ARM7 core in terms of gate equivalents, its test application time is much shorted due 

to the simplicity of its architecture. 

H.  Experimental Results  

 The goal of any concurrent online testing scheme is to minimize application 

intrusion. Therefore, the system impacts of COLT are measured in terms of system test 

latency – the amount of time required to test all cores of the SoC, and system test energy 

consumption, which is critical in safety-critical embedded applications. Additionally, the 

effect of the order of core testing is measured to determine the effect of network and 

resource contention on system test latency. Finally, the Test Controller (TC) portion of 

the CNI, which implements the proposed distributed COLT scheduling protocol is 

synthesized to determine area and power overhead. 
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1. System Test Latency 

 System test latency, or the amount of time required to test each core of the SoC 

using COLT, is a critical parameter in determining the feasibility of including a COLT 

scheme in a SoC.  

 As a baseline case, we executed the centralized COLT protocol on systems 

composed of the OpenRISC, ARM7, and NoC router cores described in Section G. The 

test delivery time for each case is the average delivery time for testing all cores in the 

SoC. Fig. 23 illustrates the results of this experiment.   

 The relative overhead of test delivery is highest in the NoC router design: in the 

13x13 SoC, the average time required for delivery of test vectors to the router under test 

accounts for 90% of the total testing time.  For the ARM7 processor, test delivery time 

accounts for roughly 70% of the total testing time across the SoCs of varying size.  

Testing the OpenRISC processors requires the longest total time on average; however, 

test delivery time accounts for approximately 50% of the total test time across all studied 

SoCs. 
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Fig. 23. Test Application and Delivery Times in Centralized COLT 

 Fig. 23 illustrates the performance differences between using a standard 

centralized COLT protocol and the proposed approach when testing the ARM7 

processor core. In each n x n SoC, n tiles are replaced with TI-IP when using the 

centralized COLT scheme as described in [4] to ensure that n cores are tested 

simultaneously throughout the simulation for fairness.  

 For the 5x5 2D-torus system, distributed COLT can test each core of the system 

in 412µs, while the centralized COLT scheme requires 972µs to test each core of the 

entire system.  This equates to a 58% reduction in system test time when using 

distributed COLT.  System test latency improvements increase with SoC size as Fig. 24 
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shows; at the 169-core 13x13 SoC, distributed COLT can test each core in 390µs, while 

centralized COLT requires 1558µs.  This equates to a 75% reduction in system test time.   

 In safety-critical applications with real-time constraints, shortening the system 

test time as much as possible is critical to ensuring that tests and applications can meet 

their deadlines. 

 

Fig. 24. Scalability of System Test Latency in 2D-Tori SoC 

 From Fig. 24, it is observed that test time for each core is constrained by the 

circuit’s test application time when using DTVS.  When using the centralized COLT 

scheme, total test time is bounded by the delivery of test vectors.  Furthermore, the 

delivery time for each core increases linearly when using a centralized scheme, unlike 

DTVS, which shows no increase in delivery time as the system scales. 
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2. Energy Consumption of Test Delivery 

 Increasing test vector delivery distances affect energy consumption due to test, 

just as latency is affected as demonstrated in Section VIII.A. Energy consumption is a 

critical factor of many safety-critical applications, since a substantial portion of these 

applications run on mobile systems where a finite amount of energy is available.  

Network energy parameters used in these experiments are based on the results obtained 

in [58], [60].  In the following experiments, a test vector set of 256KB in size is 

assumed. 

 Fig. 25 illustrates the effect of SoC size on energy consumption during COLT.  

Note that energy consumption is represented on a log scale due to the exponential 

growth of energy consumption as SoC size increases. 

 For the 5x5 2D-torus system, using the proposed distributed COLT protocol 

results in a 83% reduction in energy consumption for an entire system test.  Please note 

that the energy consumption for Distributed COLT within a 5x5 Torus system is 0.85mJ 

and therefore cannot be seen on the graph.  As with latency, energy consumption 

improves as the SoC size increases.  For the 13x13 SoC, energy consumption is reduced 

by 93%.   
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Fig. 25. Scalability of Test Delivery Energy Consumption 

 Reducing the energy consumption by an order of magnitude across all SoC sizes 

analyzes is a significant factor in determining whether using COLT with DTVS is 

feasible for safety-critical SoC. Many safety-critical applications have very constrained 

energy and power budgets, and any savings in energy translate into more technically 

capable systems. 

3. Effect of Traffic Load on Testing 

 Since this research focuses on concurrent online testing, it is important to study 

the effects of other network traffic on test delivery.  We model background application 

traffic by injecting flits into the network at varying levels.  These flits are generated with 

random destinations to produce ―white noise‖ background traffic.  We vary this load 

from no traffic to 0.5 flits/cycle/node in increments of 0.1 flits/cycle/node. 
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 For this experiment, each core of the SoC initiates an on-line self-test with 

distributed test vector storage, using the same 2D-torus configurations described in 

Section VII.B.  Before initiating the first on-line test, a warm-up time of 1000 cycles was 

used to bring router activity to a steady state.  

Fig. 26. Effect of Network Traffic on Test Latency 

 Fig. 26 illustrates the results of these experiments.  We see that up to a 

reasonable level of background traffic (0.3 flits/cycle/node), test delivery latencies are 

not greatly affected.  For the 25-core 5x5 2D-torus SoC, latency is increased by 21%, 

from 23ms to 29ms.  For the 64 and 100-core SoC, latencies are increased by 28% and 

25% respectively from no traffic to 0.3 flits/cycle/node.  At 0.4 flits/cycle/node in these 

SoC, network saturation effects begin to dominate network behavior.  For the 169-core 

13x13 2D-torus SoC, latency doubles from 17ms to 34ms between no traffic and 0.3 
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flits/cycle/node added traffic.  An injection rate of .4 flits/cycle/node with uniformly 

random destinations in the 13x13 2D-torus completely saturated the network; therefore, 

results for that case are not shown. 

4. Effect of Core Test Scheduling 

 Distributed test vector storage allows a core under test to access the complete test 

vector set stored across its neighbors within a certain radius. Specifically for torus-based 

on-chip networks, a communication pattern in the form of a Lee-metric sphere of radius 

r centered at the core under test is created. In other words, the core under test will 

communicate with neighboring cores at most r hops away. Therefore, no two cores with 

overlapping Lee-metric spheres of radius r should be tested simultaneously.  This 

experiment shows the effect of testing cores with overlapping test vector communication 

compared to using the proposed Code-Division Core Test Scheduling; the time to test all 

cores of the SoC using a standard centralized approach is also included for the purposes 

of comparison. 

 Fig. 27 illustrates the effect of resource conflicts due to improper core test 

ordering.  For this experiment, four scheduling algorithms are used to determine which 

cores of a 5x5, 8x8 and 10x10 2D-torus based SoC are tested simultaneously: Random, 

Code, Linear, and Centralized. In the random scheduler, cores are chosen at random to 

be tested such that each core is tested once until the entire SoC is tested; this algorithm is 

used as a baseline for comparison. Simulations using the random scheduler were run 

until a latency result converged. The Code scheduler is the proposed algorithm described 

in Section D. The Linear scheduler simply tests all n cores of a n x n SoC line-by-line. 
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 The Centralized scheduler is the algorithm assumed by previous research and 

does not use distributed test vector storage. 

 

Fig. 27. Effect of Core Test Scheduling 

 As Fig. 27 shows, the proposed Code-Division based algorithm reduces system 

test latency by approximately 40% compared to both the random and linear schedulers.  

This demonstrates that resource conflict, in terms of network congestion and shared test 

vector memory usage, is a significant contributor to system test latency.  

5. Distributed Test Controller Overhead 

 To determine the area and power costs of including the distributed COLT-based 

Test Controller (TC) in each CNI of the system, and HDL model of the TC was 

developed. This model was functionally verified using Verilog testbenches.  
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 The HDL model was synthesized using Synopsys Design Compiler [43] and the 

Synopsys 90nm Generic Library [63]. The gate count of the TC was estimated to be 

5.8K, while power consumption was estimated to be 6.2mW.  This overhead includes the 

realization of the scheduling state machine, test vector and response buffers, core state 

buffers to save the microprocessor state, and test controller mechanisms such as the 

SCAN test interface. 

6. Test Vector Memory Overhead 

  As stated in previous sections, more on-chip storage will be required to 

implement the distributed test vector storage scheme used with the proposed distributed 

COLT protocol when compared to centralized schemes. For most systems, n copies of 

the test vector set will need to be stored on-chip for a SoC of size n x n.  However, as on-

chip cache sizes increase exponentially as feature size shrinks, test vector storage will 

consume a relatively small percentage of on-chip memory.   

 For example, a 25-core SoC using the OpenRISC processor core would require 

approximately 770KB of test vector storage using distributed COLT. Due to these 

increased storage requirements, this research envisions that distributed COLT will be 

most applicable for safety-critical applications.  

I.  Conclusion  

 Concurrent online test of many-core SoC is only feasible if application intrusion 

is sufficiently reduced, allowing user applications to function correctly while detecting 

the formation of hard errors due to early-life failure and electronic wear-out quickly.  
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Previous research has shown that the most significant contributor to application intrusion 

is the delivery of test vectors to each core within the system.  In addition, this research 

has demonstrated that the greatest contributor to application intrusion of COLT is the 

delivery of test vectors, based on the testing of two processing cores and an on-chip 

router.  

 We propose the use of t-interleaving to optimally distribute test vectors across 

the SoC to minimize the impact of online testing on system functionality.  By 

minimizing and bounding the distances test vectors must travel across a chip, system 

designers can better estimate how testing will intrude into system applications.  

Additionally, test vector delivery latency and energy consumption is dramatically 

reduced, allowing for thorough online testing to be used in low-power and energy 

efficient systems. 
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CHAPTER V 

APPLICATION-AWARE ONLINE TESTING 

 

A.  Introduction  

 Many safety-critical systems, including avionics and automotive systems, are 

rapidly integrating more functionality into single devices. These devices can host 

applications of many levels of criticality, termed mixed-criticality systems, in order to 

reduce the space, weight and power (SWaP) costs of such systems. Within avionics, this 

trend is called Integrated Modular Avionics (IMA); a single IMA system can control 

every aspect of the aircraft and replaces many separate single-function systems [65].   

Within the next decade, these embedded systems will transition from multi-core 

systems-on-chip (SoC) to many-core SoC using a network-on-chip (NoC) for inter-core 

communication, replacing the typical on-chip bus used today [benini]. These many-core 

systems will contain dozens to hundreds of processing, memory and interface cores 

capable of running many applications simultaneously. 

 Beyond these functional changes, physical changes will accelerate over the next 

decade. As feature sizes shrink to 32nm and below, these systems become more 

susceptible to early life failure (ELF) and electronic wearout [1], [13]. To mitigate 

against this increasing vulnerability, these devices will require frequent, online testing to 

ensure sufficient reliability and availability [4], [5], [16]. 

 The design requirement for online testing is already entering today's safety-

critical embedded devices. For example, the Freescale MPC564xL platform allows for 
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online SCAN testing and diagnosis in the event that a system component experiences 

hard failure due to wearout in the field [66]. 

 Previous research has proposed Concurrent Online Testing (COLT), which 

allows for online tests and  user applications to run on the SoC concurrently [1], [4], [5], 

[16]. COLT satisfies the reliability requirements met by online testing while also 

providing a sufficient level of system availability. 

 A key design aspect for COLT is application interference—the costs associated 

with online testing that include additional energy consumption, increased NoC traffic 

load, and core under test (CUT) downtime. The work described in previous chapters has 

attempted to optimize these costs; however, little work has been done in measuring the 

effect of COLT on application execution times.   

 Measuring and bounding application execution times in safety-critical systems is 

extremely important. These systems typically have hard realtime requirements, and any 

application that misses its deadline could cause catastrophic failure. Therefore, the effect 

of COLT on application execution times must be well understood. 

 Any COLT technique requires the delivery of test vectors from test sources to the 

CUT, and this delivery process manifests as increased NoC traffic.  We have measured 

the effect of increased NoC traffic due to COLT on application execution times from the 

MiBench embedded benchmark suite [67] using the experimental setup described in 

Section D. Automotive, telecommunication, networking and security applications were 

chosen to represent safety-critical applications.  Execution times of a variety of 
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benchmarks increased by an average of 17% while under interference, motivating the 

need to understand the effect of COLT on applications. 

 In this work, we propose and analyze application-aware online testing of many-

core SoC. By respecting the deadline requirements of safety-critical applications during 

COLT, we allow the system designer to make a tradeoff between test speed and 

execution time stability. 

 This work makes the following contributions: 

 To the best of our knowledge, this is the first analysis of the effect of online 

testing on application execution time, a primary aspect of application intrusion 

 Two methods for minimizing interference during online testing are proposed and 

analyzed: Test Vector Delivery Blocking and Test Vector Storage Redundancy 

 Overhead of proposed schemes determined by implementing distributed test 

controller 

 The remainder of Chapter V is organized as follows: Section B describes COLT 

and explains the need for distributed COLT solutions for many-core SoC. Section C 

introduces the proposed methods of minimizing application interference and the 

associated system architecture. Section D details the experimental platform, system 

assumptions and experiment set, and Section E presents the results of the evaluation in 

terms of testing and application performance and overhead. Concluding remarks are 

presented in Section F. 
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B.  Application-Aware Online Testing Architecture  

 In previously proposed method of distributed COLT, application interference 

through the NoC was not considered.  Following the distributed COLT protocol 

described in Chapter IV, a core under test would request test vectors from its 

neighboring tiles, and those neighboring tiles would respond immediately.  In a non-

critical environment, ignoring this interference may be acceptable.  However, if hard 

deadlines must be met to avoid catastrophic failure, then the distributed COLT protocol 

must consider the case where one or more neighboring tiles cannot respond with test 

vectors immediately. 

 In this work, we describe two complimentary methods of allowing safety-critical 

applications and online tests to run concurrently within a many-core SoC while 

minimizing interference.  These two methods are termed Test Vector Delivery Blocking 

and Test Vector Storage Redundancy and are described in the following subsections. 

1. Test Vector Delivery Blocking 

 Test Vector Delivery Blocking is the simple method of requiring any tile running 

a safety-critical application to complete its task before delivering test vectors to a core 

under test.  This differs from previously proposed COLT techniques that begin the 

delivery of test vectors immediately upon request. 

 In order to alert the test controller within the CNI that a safety-critical application 

is running, we propose adding a memory-addressable test configuration register to the 

CNI which provides software access.  When an application enters a safety-critical 
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section, a "safety-critical" flag within the configuration register is set to TRUE, denying 

any test request from neighboring tiles to be satisfied.  Once the safety-critical section of 

the application completes, the "safety-critical" flag is set to FALSE, and any pending test 

requests can then be fulfilled.   

 From the perspective of the core under test, test request messages are sent to its 

neighbors seeking test vectors, and the CUT begins to receive these test vectors from 

neighboring tiles that are not currently running safety-critical software.  If any of its 

neighbors are running safety-critical software, the CUT is blocked from receiving the 

complete test vector set and running a full test. 

TEST_VECTORS

TEST_VECTORS

TEST_VECTORS

DELIVERY_DONE

DELIVERY_DONE

TEST_REQ

TEST_VECTORS

TEST_REQ

CUTSource 1 Source 2

Safety-Critical Section

Fig. 28. Test Vector Delivery Blocking Protocol 
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 Fig. 28 illustrates a simple example of a CUT requiring test vectors from two 

neighbors where one neighbor is in a safety-critical section during a test request. 

2. Test Vector Storage Redundancy 

 Test Vector Storage Redundancy is the method of using erasure codes to 

eliminate the requirement that a core under test must access all of its neighbors' test 

vectors to construct a complete test vector set.  An erasure code is an error-correcting 

code of length n, created from a k-length message (where n > k) such that the original 

message can be constructed from a subset of the n parts. The simplest example of an 

erasure code is the parity code of length k+1, where a k-length message is appended with 

an additional term—the sum of the terms of the original message. If any one term of the 

k+1 code is missing, the original message can be recovered. 

 This coding technique can be used for the distributed storage of test vectors 

across a SoC.  Instead of directly dividing the complete test vector set into k segments 

and distributing it as proposed in Chapter IV, the test vector segments can be encoded 

into an erasure code of length n, and these n segments are distributed.   

 The cost of using storage redundancy include increased storage requirements 

equal to the code rate selected and the decoding circuitry required to transform the 

encoded test vectors into their original form.  In the case of parity codes, this circuitry is 

extremely small and simple, and it can be considered negligible. 
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Fig. 29. Example of Test Vector Storage Redundancy 

 Fig. 29 illustrates an example where one neighbor, S3, is running safety-critical 

software; however, the CUT can access its three other neighbors and can construct a 

complete test vector set without delay.  This is possible because the test vector set is 

originally divided into four segments, and a fifth, redundant segment is created through 

parity generation to form an erasure code.  These five segments are stored within each 

SoC tile through 3-interleaving, as done in the example shown in Fig. 18. Through the 

generation of a parity code, the full test vector set can be constructed from any four of 

the five segments. 

 Test Vector Storage Redundancy provides flexibility and fault-tolerance to 

distributed COLT.  A CUT may lose one of its test vector sources, either temporarily or 

permanently, and still retain the capability to access its complete test vector set. 
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3. Using These Methods in Combination 

 Depending on application-specific requirements, either of these methods can be 

used in isolation, or both can be used in combination.  A system that has very strict 

storage overhead requirements is better suited to using Test Vector Delivery Blocking 

only. Whereas, a system that has very strict online test deadlines but can tolerate some 

level of application interference will prefer to use Test Vector Storage Redundancy. 

 Strictly using storage redundancy, application interference still may occur.  

Consider the situation where storage redundancy can tolerate one neighbor running 

safety-critical code during a test request. However, in a particular instance, more than 

one neighbor of a CUT is running safety-critical software.  In this situation, all but one 

of the tiles running safety-critical software must begin sending test vectors to the CUT 

immediately. This can be considered a "best effort" approach to avoiding interference. 

 If Test Vector Delivery Blocking and Test Vector Storage Redundancy are used 

in combination, the situation above can be avoided if necessary.  Storage redundancy 

allows a CUT to test itself using only a subset of its neighbors, and even if that subset is 

not available, delivery blocking can be enabled.  Using these methods in combination 

can provide a good compromise between testing performance and application 

performance, and we evaluate each of these possibilities in Section D. 
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C.  Experimental Setup  

1. System Architecture 

 To measure the performance of the proposed COLT methods, we simulate a 100-

core NoC-based SoC using the NoCBench on-chip network and system simulator [34].  

NoCBench is a SystemC cycle-accurate simulator which models processor and memory 

IP cores, on-chip routers, CNI, and network links for any network topology to form a 

complete system. Table 6 describes the baseline simulation configuration and parameters 

used during our experiments. 

2. Test and Application Parameters 

 The test vector sets used in all experiments are 256KB in size; therefore, 4096 

packets of information are transmitted from test source to test sink during each COLT 

instance. To simulate safety-critical software, we have constructed a schedule of 10 task 

frames, where each frame has a duration of 200µs, and we vary the proportion of frames 

that are safety-critical within a schedule. Typical values are used for NoC parameters, 

and a 100 core SoC is simulated to understand the behavior of COLT in a many core 

SoC. These NoC and system parameters are described in Table 6. 
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Table 6. Application-Aware COLT Simulation Parameters 

SoC Topology 100 cores with 2D-torus 

Test Vector Set Size 256KB, 5 segments 

Network Configuration 64-bit flits, 8 flits per packet, 8 VCs per link, 8 flit buffer 

depth, 1 GHz, wormhole routing 

Processor Core SPARC-V8, 32KB L1 I/C Caches 

  

D.  Experimental Results  

 To evaluate the COLT methods proposed in this work, we focus on measuring 

the duration of application interference of COLT under varying levels of application 

criticality.  Each of the two methods proposed—Test Vector Delivery Blocking and Test 

Vector Storage Redundancy—are evaluated in isolation and in combination.  Overheads 

of these methods, in terms of test vector storage requirements and test controller area and 

power consumption, are also evaluated against previously proposed COLT techniques. 

1. Application Interference of COLT 

 As described in Section I, it is important to note the effect of application 

execution time due to COLT. By running actual benchmarks with COLT from the 

embedded MiBench suite [67] representing automotive, telecommunications, networking 

and security applications, we are able to observe the effect of COLT on execution times. 

As shown in Fig. 30, we have observed an average increase of 17% in execution times 

during COLT interference. An exception to this is the automotive application bitcount, 
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which experienced only a 6% increase in execution time. This is due to bitcount's 

instruction composition, which includes very little memory transactions and is therefore 

fairly immune to NoC traffic interference [67].  

 

Fig. 30. Effect of NoC Traffic on Execution Time 

 In general, a common increase in execution time is observed across each of these 

benchmarks when COLT runs concurrently with applications. This increase in execution 

time could have profound effects for a safety-critical system which relies on hard 

deadlines to avoid catastrophic failure. 

2. Test Vector Delivery Blocking 

 Fig. 31 illustrates test delivery time for Standard COLT and Test Vector Delivery 

Blocking COLT over varying levels of software criticality.  Additionally, the amount of 

time that Standard COLT interferes with safety-critical software is overlaid with the 
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delivery time data.  As expected, Standard COLT shows no change in test delivery time; 

however, the amount of interference increases with the amount of safety-critical 

software running on the SoC.  If test vector delivery is blocked during safety-critical 

sections of software, an increase in test delivery time is observed; however, there is no 

interference between COLT and safety-critical software. 

Fig. 31. Comparison of Standard COLT and Test Vector Delivery Blocking 

 As seen in Fig. 31, test vector delivery time increases from approximately 24µs 

to 34.1µs,  an increase of 42%, as the SoC's proportion of safety-critical software 

increases from 0% to 90%.  When the proportion of safety-critical software is 40%, the 

increase in test delivery time is 26%.   
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3. Test Vector Storage Redundancy 

 By using redundancy in test vector storage and delivery, the CUT only requires a 

subset of its neighbors to access the complete test vector set.  In these experiments, the 

test vector set was divided into 4 segments, and one parity segment was generated as 

described in the example in Section B.  This redundancy introduces a 20% overhead in 

test vector storage. 

 As Fig. 32 shows, using storage redundancy with COLT allows for a significant 

reduction in application interference under a variety of safety-critical loads.  The greatest 

reduction in interference occurs between safety-critical section proportions of 10% and 

70%; the average reduction of interference in these systems is 47%.  Once the proportion 

of safety-critical software exceeds 70%, the benefits of storage redundancy are reduced 

due to the fact that most cores of the SoC are executing safety-critical software most of 

the time—interference is largely unavoidable. 
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Fig. 32. Interference Reduction of Storage Redundancy 

 Apart from application interference, it is also important to observe the effect of 

using storage redundancy with COLT on test vector delivery times.  As Fig. 33 shows, 

test vector delivery times decrease as the proportion of safety-critical software increases.  

On average, the test delivery time is increased by 15%. This may seem counter-intuitive; 

however, an explanation is found when looking at the nature of storing and delivering 

redundant test vectors. 
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Fig. 33. Delivery Times of Standard COLT and Storage Redundancy COLT 

 When the proportion of safety-critical software is low (30% or less), a significant 

portion of the test vector traffic is redundant information—the parity segment as 

described in Section B.  This redundancy increases the effective test vector delivery time 

of COLT. This redundant traffic may be used to verify the correctness of the test vector 

traffic in the event of transmission or storage errors, but that benefit is outside the scope 

of this dissertation. 

4. Combination of Blocking and Redundancy 

 As described in Section B, both proposed schemes can be implemented together 

to allow both blocking and redundancy during COLT.  In isolation, we have observed 

that blocking removes interference but has increasing test delivery times as the amount 

of safety-critical software increases.  Alternately, storage redundancy has a decrease in 
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test delivery time as the amount of safety-critical software increases, and it also provides 

a reduced level of interference when compared to Standard COLT. 

Fig. 34. Test Delivery Times of All COLT Schemes 

 Fig. 34 compares the test delivery times of all schemes: Standard COLT, Test 

Vector Delivery Blocking, Test Vector Storage Redundancy, and the combination of the 

two.  We observe that the test vector delivery times of the combination (Block+Red 

COLT) remains relatively stable under all safety-critical proportions.  

 The combination suffers from the relatively high delivery times of the storage 

redundancy scheme during low amounts of safety-critical software.  However, when the 

proportion of safety-critical sections exceeds 50%, the combination outperforms Test 
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Vector Delivery Blocking in isolation. It is important to note that the combination 

eliminates all application interference, just as blocking in isolation does. 

5. Test Controller Overhead 

 To determine the area and power costs of adding the Test Vector Delivery 

Blocking and Test Vector Storage Redundancy schemes to the distributed COLT-based 

Test Controller (TC) in each CNI of the system, an HDL model of the TC was 

developed. This model was functionally verified using Verilog testbenches.  

 The HDL model was synthesized using Synopsys Design Compiler [43] and 

Oklahoma State University’s 45nm FreePDK library [68]. The gate count of the TC was 

estimated to be 6.1K, while power consumption was estimated to be 6.52mW.  This 

represents an approximately 5% increase in area and power costs over the standard 

distributed COLT-based TC proposed in Chapter IV.  

E.  Conclusion  

 We present and analyze two methods for mitigating application interference 

during COLT.  Test Vector Delivery Blocking allows certain test sources to withhold 

test vectors when they are running safety-critical software.  Test Vector Storage 

Redundancy uses erasure coding to provide a CUT with access to the complete test 

vector set with only a subset of its neighbors.  

 Based on our observations, the strengths and weaknesses of these approaches 

have been found.  Test Vector Delivery Blocking appears to be the method of choice 

when the amount of safety-critical software running on the SoC is low.  If there is a large 
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proportion of safety-critical software running on the SoC, then Test Vector Storage 

Redundancy or a combination of both schemes are the most appropriate choice. 
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CHAPTER VI 

CONCLUSIONS 

 

 This dissertation presents a variety of techniques which assist COLT in becoming 

a more effective and feasible solution to achieve reliability and availability in safety-

critical SoC. This research has focused on shortening the time between failures and test 

initiation, and it has also focused on optimizing the storage/performance tradeoff of 

delivering tests in many core SoC. 

 An on-demand testing mechanism, the ATTU, has been proposed and analyzed, 

and it is shown that this mechanism is effective and relatively inexpensive. Experiments 

show that the ATTU can detect approximately 80% of errors originating in processing 

cores that eventually manifest as NoC traffic anomalies. Based on system needs, a 

system designer can vary the amount of memory used to monitor and record the history 

of NoC traffic, allowing for course or fine-grain anomalous patterns. Additionally, the 

ATTU can be configured to trigger tests based on the number of anomalies detected. 

 COLT depends on stored tests to achieve a sufficiently high level of coverage; 

however, there has been no serious analysis of how the delivery and storage of these 

tests scales with the number of cores per SoC. There has also been no effort in 

identifying techniques that can scale the storage and delivery costs of tests as SoC enter 

the many core era. This research has applied a coding theory technique to distributed the 

storage of test vectors across the SoC, allowing for COLT to become scalable with many 

core SoC. By distributed the test vectors in this manner, any core within the SoC can 



 

 

104 

access the complete test vector set within a bounded distance. A DTVS test protocol is 

proposed and analyzed, and the hardware overhead associated with this protocol is 

determined. To evaluate the proposed test storage scheme, real IP cores are used in the 

generation, storage and application of test vectors. Through experiments, it has been 

shown that test delivery latency can be reduced by up to 90% for many core SoC, and 

the reduction in test latency improves as the number of cores per SoC grows. 

Additionally, a core test scheduling based on code division has been analyzed, and 

experiments show that test delivery latency can be reduced by 50% over other schedules 

possibly employed by DTVS. 

 To date, there has been no analysis on the effect of COLT on the execution times 

of applications. Through the use of a system simulator employing a NoC as the 

communication infrastructure, this is the first work to measure the effect of COLT on 

NoC traffic and the effect of this increased traffic on software execution times. 

Experiments show that application execution time can increase by 17% on average 

across a set of benchmarks while COLT is in operation. This increase in execution time 

has the potential to create serious consequences for safety-critical systems that depend 

on hard deadlines being met. Based on these findings, an application-aware COLT 

protocol is proposed and analyzed. Two methods of modifying COLT are proposed: test 

vector delivery blocking and test vector storage redundancy. These methods can either 

be used in isolation or in combination. Experiments show that application interference 

can be eliminated completely, or it can be reduced significantly based on the needs of 

the system designer. The increase in test delivery time by avoiding application 
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interference can increase beyond 40%; however, this is an acceptable tradeoff if 

application interference cannot be tolerated. 

A.  Future Work 

 There are several additional avenues for improvement of COLT that follow from 

the work described in this dissertation. To date, there has been no research effort in 

analyzing the security aspects of COLT. It is important to understand the vulnerabilities 

introduced by COLT, and adoption of COLT will depend on the ability of system 

designers to ensure that malicious attacks to the COLT mechanisms do not jeopardize 

the system. 

 As electronic wearout becomes a greater concern for safety-critical SoC, 

designing tests to be applied by COLT specifically for wearout will become a necessity. 

Currently, tests are generated based on fault models which capture the behavior of 

wearout failure but do not capture the emergence of those failures. As a specific 

example, the small-scale delay fault is a good candidate fault model for detecting 

electronic wearout. However, the delay fault model assumes that these faults can 

manifest anywhere within the system with equal probability—an assumption that is not 

accurate for electronic wearout. Wearout is more likely to occur in highly active, hot 

areas of the chip, and tests can be generated to specifically target these regions. 

Another major area of future work includes a full-scale test of COLT within a 

real safety-critical SoC. The work described in this dissertation has measured the 

performance of COLT using only a few real IP cores as an experimental basis; however, 

real safety-critical SoC will contain many different IP cores. This increased system 
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complexity should reveal new challenges in applying COLT in safety-critical SoC and 

drive new areas of research. 

A rarely discussed but extremely important consideration of COLT is the effect 

of testing on a core’s temperature profile. It is well understood that testing leads to 

increased core temperatures due to increased switching activity, and this elevated 

temperature may remain for dozens of milliseconds after testing completes due to the 

relatively high thermal time constant of electronic devices. This ―afterglow‖ of core 

temperature can have adverse performance effects for applications running immediately 

after COLT. To this point, all COLT research assumes that applications may begin 

running on a tested core immediately after COLT has been completed. Studying this 

thermal effect and creating techniques to mitigate this limitation will be extremely 

important to advancing the feasibility of COLT in future devices. 
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