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ABSTRACT 

 

Production Data Integration into High Resolution Geologic Models with Trajectory-

based Methods and a Dual Scale Approach. (August 2009) 

Jong Uk Kim, B.S., Seoul National University, Korea;  

M.S., Seoul National University, Korea 

Chair of Advisory Committee: Dr. Akhil Datta-Gupta 

 

Inverse problems associated with reservoir characterization are typically under-

determined and often have difficulties associated with stability and convergence of the 

solution. A common approach to address this issue is through the introduction of prior 

constraints, regularization or reparameterization to reduce the number of estimated 

parameters.  

 We propose a dual scale approach to production data integration that relies on a 

combination of coarse-scale and fine-scale inversions while preserving the essential 

features of the geologic model. To begin with, we sequentially coarsen the fine-scale 

geological model by grouping layers in such a way that the heterogeneity measure of an 

appropriately defined ‘static’ property is minimized within the layers and maximized 

between the layers. Our coarsening algorithm results in a non-uniform coarsening of the 

geologic model with minimal loss of heterogeneity and the ‘optimal’ number of layers is 

determined based on a bias-variance trade-off criterion. The coarse-scale model is then 

updated using production data via a generalized travel time inversion. The coarse-scale 

inversion proceeds much faster compared to a direct fine-scale inversion because of the 

significantly reduced parameter space. Furthermore, the iterative minimization is much 

more effective because at the larger scales there are fewer local minima and those tend to 

be farther apart. At the end of the coarse-scale inversion, a fine-scale inversion may be 

carried out, if needed. This constitutes the outer iteration in the overall algorithm. The 

fine-scale inversion is carried out only if the data misfit is deemed to be unsatisfactory.  
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 We propose a fast and robust approach to calibrating geologic models by 

transient pressure data using a trajectory-based approach that based on a high frequency 

asymptotic expansion of the diffusivity equation. The trajectory or ray-based methods 

are routinely used in seismic tomography. In this work, we investigate seismic rays and 

compare them with streamlines. We then examine the applicability of streamline-based 

methods for transient pressure data inversion. Specifically, the high frequency 

asymptotic approach allows us to analytically compute the sensitivity of the pressure 

responses with respect to reservoir properties such as porosity and permeability. It 

facilitates a very efficient methodology for the integration of pressure data into geologic 

models.  

 



 v

DEDICATION 

 

To beloved Kong Ju, Heesoo, Jeesoo and their endless patience and love 



 vi

ACKNOWLEDGMENTS 

 

I feel extremely privileged to have had the opportunity to pursue a PhD at Texas A&M. I 

am deeply indebted to Dr. Akhil Datta-Gupta for his invaluable help during these great 

four years. I would like to thank Dr. John Lee, Dr. Christine Ehlig-Economides, and Dr. 

Yalchin Efendiev for considering being part of my advisory committee. 

I would like to thank Dr. William Milliken and Dr. Wen Chen at Chevron ETC 

for their encouragement and support during my summer internships at San Ramon. I 

acknowledge their helpful comments and suggestions in shaping career as well as 

research. 

I would like to acknowledge my friends, Professor Deepak Devegowda, Dr. 

Eduardo Jimenez, Dr. Ichiro Osako, Dr. Adedayo Oyerinde, Dr. Ahmed Al-Huthali for 

the endless and supportive deliberations. They are all mentors for my graduate study. 

Finally I would like to thank my friends: Han-young, Jichao, Alvaro, Eric, Jiang, 

Suksang, Song, Qing, Yip, Satyajit and all my fellow Aggies who made this doctorate an 

enjoyable journey. You are all in good shape. 

 

Thank you very much. 

 



 vii

TABLE OF CONTENTS 

    Page 

ABSTRACT…. .. ............................................................................................................iii 

DEDICATION..  ............................................................................................................... v 

ACKNOWLEDGMENTS............................................................................................... vi 

TABLE OF CONTENTS ...............................................................................................vii 

LIST OF FIGURES......................................................................................................... ix 

CHAPTER I INTRODUCTION AND SIGNIFICANCE .......................................... 1 

1.1. Introduction .................................................................................. 1 
1.2. Background .................................................................................. 2 
1.3. Objectives..................................................................................... 3 

1.3.1. ‘Optimal’ Coarsening of Geologic Models..................... 3 
1.3.2. Dual Scale Inversion ....................................................... 3 
1.3.3. Transient Pressure Data History Matching ..................... 4 

1.4. Software Implementation ............................................................. 4 
 
CHAPTER II  A DUAL SCALE APPROACH TO PRODUCTION DATA 

INTEGRATION INTO HIGH RESOLUTION GEOLOGIC 

MODELS .............................................................................................. 5 

2.1. Chapter Introduction .................................................................... 6 
2.2. Approach ...................................................................................... 9 
2.3. Dual Scale Inversion: Mathematical Formulation ..................... 11 

2.3.1. Optimal Coarsening of Geologic Models ..................... 12 
2.4. Dual Scale Inversion .................................................................. 17 
2.5. Applications ............................................................................... 20 

2.5.1. Synthetic Example ........................................................ 20 
2.5.2. Field Example ............................................................... 28 

2.6. Chapter Summary....................................................................... 35 
 
CHAPTER III  CALIBRATION OF HIGH-RESOLUTION RESERVOIR 

MODELS USING TRANSIENT PRESSURE DATA....................... 36 

3.1. Chapter Introduction .................................................................. 37 
3.2. Approach .................................................................................... 39 

3.2.1. Asymptotic Approach to Transient Pressure 
Responses...................................................................... 39 

3.2.2. Computation of Pressure Front Trajectory.................... 41 
3.2.3. Pressure Front Trajectory vs. Streamline Trajectory .... 46 



 viii

    Page 

3.2.4. Multiple Pressure Transient Tests................................. 51 
3.2.5. Sensitivity Coefficients and Geologic Model 

Calibration..................................................................... 55 
3.3. Applications ............................................................................... 57 

3.3.1. Synthetic Example ........................................................ 57 
3.3.2. Field Example ............................................................... 63 

3.4. Chapter Summary....................................................................... 71 
 

CHAPTER IV  CONCLUSIONS AND RECOMMENDATIONS.............................. 73 

4.1 Conclusions ................................................................................ 73 
4.2 Recommendations ...................................................................... 75 

 
NOMENCLATURE....................................................................................................... 76 

REFERENCES .............................................................................................................. 77 

APPENDIX A ... ............................................................................................................ 81 

APPENDIX B .... ......................................................................................................... 116 

APPENDIX C ..... ........................................................................................................ 120 

VITA .................. ......................................................................................................... 123 

 



 ix

LIST OF FIGURES 
 

                       Page 

 

Fig. 2.1 Flow chart of dual scale inversion.............................................................. 11 

Fig. 2.2 Variation of heterogeneity during coarsening and determination of 

‘optimal’ layer number............................................................................... 14 

Fig. 2.3 Reference geological model (a) permeability and (b) its water-cut 

history and mismatch ................................................................................. 21 

Fig. 2.4 (a) Initial permeability field and (b) its coarsened model (i-j plane) ......... 21 

Fig. 2.5 (a) Initial permeability field (b) its coarsened model (i-k plane) ............... 22 

Fig. 2.6 Convergence of water-cut misfit ................................................................ 24 

Fig. 2.7 Comparison of dual (coarse) scale inversion and direct coarse-scale 

inversion ..................................................................................................... 24 

Fig. 2.8 Water-cut history match result from dual scale approach.......................... 26 

Fig. 2.9 Water-cut history match result from direct fine-scale approach ................ 27 

Fig. 2.10 Deviation from initial simulation model (a) Dual scale result vs. 

initial model and (b) Direct fine-scale inversion vs. initial model............. 27 

Fig. 2.11 Initial permeability distribution for field example ..................................... 28 

Fig. 2.12 Determination of ‘optimal’ layer number based on local slowness vs. 

local velocity .............................................................................................. 29 

Fig. 2.13 Initial permeability field of Sand A (a) Layer 1 (b) Layer 16 and (c) 

Layer 27...................................................................................................... 30 

Fig. 2.14 Initial permeability field of Sand B (a) Layer 32 (b) Layer 40 and (c) 

Layer 49...................................................................................................... 31 

Fig. 2.15 Initial permeability field of Main Sand (a) Layer 53 and (b) Layer 72...... 31 

Fig. 2.16 (a) Calibrated permeability field and (b) water-cut history match 

result via dual scale inversion .................................................................... 32 

 



 x

                       Page 

 

Fig. 2.17 Updated permeability field (a) after dual-coarse-scale inversion and 

(b) after dual-fine-scale inversion .............................................................. 33 

Fig. 2.18 Permeability change made (a) during dual-coarse-scale inversion and 

(b) during dual-fine-scale inversion ........................................................... 33 

Fig. 2.19 Manual history matching (a) Initial model (b) Updated by manual 

history matching (c) Change made by manual history matching 

(Hohl et al., 2006) ...................................................................................... 34 

Fig. 3.1 Synthetic case (a) Permeability field (b) Time derivatives of well 

pressure of each monitoring well ............................................................... 44 

Fig. 3.2 Single test from producer P9...................................................................... 48 

Fig. 3.3 Streamline of synthetic case ....................................................................... 49 

Fig. 3.4 Pressure front arrival time. ......................................................................... 50 

Fig. 3.5 Multiple tests (P5 after P1)......................................................................... 52 

Fig. 3.6 Single tests from P5.................................................................................... 54 

Fig. 3.7 Reference geologic model and testing schedule......................................... 58 

Fig. 3.8 Reference model pressure response from monitoring well (I1) ................. 59 

Fig. 3.9 Initial model pressure response from monitoring well (I1)........................ 60 

Fig. 3.10 Time derivative of pressure response decomposed by separate well 

testing (Initial model) ................................................................................. 60 

Fig. 3.11 Updated permeability field and its pressure response ................................ 62 

Fig. 3.12 Overview of field example geologic model and well location................... 64 

Fig. 3.13 Observed well pressure .............................................................................. 65 

Fig. 3.14 Detailed observed well pressure (P2)......................................................... 66 

Fig. 3.15 Initial model response (P2) ........................................................................ 67 

Fig. 3.16 Permeability field of selected layers .......................................................... 69 

Fig. 3.17 Updated model response (P2) .................................................................... 70 

Fig. 3.18 Updated model overall response (P2) ........................................................ 71 



 1

CHAPTER I 

 

INTRODUCTION AND SIGNIFICANCE* 

 

 

1.1. Introduction 

 

Geologic model calibration has received a great deal of attention in the oil and gas 

industries because production forecasting is based on integrated geologic models and 

accurate forecast is critical for prudent business decisions. Geologic models now 

routinely consist of several hundred thousands to millions of grid cells to represent the 

geological characteristics derived from static data such as seismic and logging data. A 

challenging task is the calibration of these models to dynamic data such as pressure and 

production response. 

The integration of production data typically requires the solution of an inverse 

problem. It is well known that such inverse problems for subsurface flow are generally 

ill-posed and can result in non-unique and unstable solutions, often leading to a loss in 

geologic realism. A common approach to at least partially alleviate the problem is via 

incorporation of prior information or regularization such as ‘norm’ or ‘roughness’ 

constraints. However, there are additional outstanding challenges that have deterred the 

routine integration of production data into reservoir models using inverse modeling. First, 

the computational cost is still extremely high, in particular when the number of 

parameters is very large. Second, the relationship between the production response and 

reservoir properties such as permeability or porosity can be highly non-linear which 

often causes the solution to converge to a local minimum with an inadequate match to 

the data.  

Our approach to address the ill-posed nature of the inverse problem and the 

difficulties with the existence of local minima is through decomposing the inverse 
                                                 
This dissertation follows the style of SPE Journal. 
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problem by scale and also use of efficient trajectory-based methods. Synthetic and field 

examples will be used to validate our approach.  

 

1.2. Background 

 

Several multiscale approaches have been proposed in the literature for the integration of 

production data via inverse modeling. These methods, however, rest on a recursive 

refinement based on the production data. No consideration of the prior model or static 

information is taken into account during reparameterization. We propose an approach to 

history matching that relies on sequential coarsening rather than sequential refinement. 

We adopt the technique called ‘optimal coarsening’ to coarsen the fine-scale geologic 

model. This technique is designed to preserve the features of the geologic model to the 

maximum extent.  

Our scale-decomposition approach to inversion offers a number of advantages. 

First, computational efficiency is significantly enhanced compared to direct fine-scale 

inversion of production data because typical fine-scale models can consist of several 

hundred thousands to millions of parameters. Second, we can avoid over-

parameterization and the subjectivity arising from introduction of artificial regularization 

terms. Finally, the iterative minimization is much more effective because at larger scales 

there are fewer local minima and those tend to be farther apart. Thus, the solution is 

more likely to reach the global minimum or at least a local minimum that in the close 

vicinity of the global solution. The coarse-scale solution can then be recursively refined 

by using it as the initial solution for the fine-scale inversion. 

For the purpose of the geologic model calibration, pressure data provides several 

advantages. First, pressure transient tests are easier and less expensive to carry out in the 

field. Second, the pressure perturbations travel much faster compared to tracer or water 

front, resulting that pressure responses can be obtained early in the field life compared to 

other types of dynamic data. This makes interference tests much more appealing 

compared to tracer tests which may require months to see a field response. However, the 
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computation cost and localized nature of pressure sensitivities pose difficulties in history 

matching transient pressure data with a finite difference model. Also, pressure tests from 

multiple wells are difficult to analyze because of superposition of pressure responses. 

 

1.3. Objectives 

 

The main objective of this research is to develop a practical and efficient workflow to 

calibrate high-resolution geologic models using multi-phase production and pressure 

data. We propose two approaches to accomplish this objective. The first method 

involves a dual scale approach with an ‘optimal’ coarsening technique. The second 

method is aimed towards integrating transient pressure data into geologic models using 

efficient trajectory-based approach. 

 

1.3.1. ‘Optimal’ Coarsening of Geologic Models 

 

Our scale-decomposition approach requires a coarse-scale geologic model for inversion 

process. Because the inversion scheme rests on the coarse-scale grid system, it is 

important that the coarse-scale model preserves the dominant flow characteristics of the 

fine-scale geologic model. We adopt an ‘optimal’ coarsening algorithm proposed by 

King et al. and propose further improvements that better preserves the fine-scale 

permeability contrasts. The coarsening algorithm preserves the fine-scale heterogeneity 

to the maximal extent based on the static properties only such as permeabilities, 

porosities etc. and is independent of the flow boundary condition. It leads to a variable 

resolution of vertical layering and especially preserves the pay/non-pay juxtaposition 

 

1.3.2. Dual Scale Inversion 

 

History matching will be carried out primarily at the coarse-scale. Coarse-scale inversion 

is appropriate because of the resolution of production data. Typically, production 
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histories from well have low resolution of information. The coarse-scale geologic model, 

thus, is well-suited for production data integration. Inversion process at the coarse-scale 

also avoids artificial regularization or ‘smoothness’ constraints. Reduced number of 

model parameters in history matching process leads the faster convergence and less ill-

posed behavior. The inversion will be more robust because of reduced tendencies to 

converge to local minimum. 

 

1.3.3. Transient Pressure Data History Matching 

 

In this work, we propose an approach to integrating transient pressure data using a 

trajectory based approach that relies on a high frequency asymptotic solution of the 

diffusivity equation. Specifically, the trajectory-based method such as the high 

frequency asymptotic approach allows us to analytically compute the sensitivity of the 

pressure data with respect to reservoir properties such as porosity and permeability. We 

validate the approximation of the pressure front trajectory using streamline which is 

easily available after single flow simulation. This results in a very efficient approach to 

integration of pressure data into geologic models.  

 

1.4. Software Implementation 

 

We have incorporated the algorithms proposed here into a general purpose software 

called ‘DESTINY’. The software is very versatile because it works with commercial 

numerical reservoir simulators such as ECLIPSE and VIP. The field applications 

presented here have been carried out using DESTINY. A detailed manual of DESTINY 

is given in Appendix A. 
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CHAPTER II 

 

A DUAL SCALE APPROACH TO PRODUCTION DATA INTEGRATION INTO 

HIGH RESOLUTION GEOLOGIC MODELS* 

 

 

Inverse problems associated with reservoir characterization are typically under-

determined and often have difficulties associated with stability and convergence of the 

solution. A common approach to address this issue is through the introduction of prior 

norm constraints, smoothness regularization or reparameterization to reduce the number 

of estimated parameters.  

We propose a dual scale approach to production data integration that relies on a 

combination of coarse-scale and fine-scale inversions while preserving the essential 

features of the geologic model. To begin with, we sequentially coarsen the fine-scale 

geological model by grouping layers in such a way that the heterogeneity measure of an 

appropriately defined ‘static’ property is minimized within the layers and maximized 

between the layers. Our coarsening algorithm results in a non-uniform coarsening of the 

geologic model with minimal loss of heterogeneity and the ‘optimal’ number of layers is 

determined based on a bias-variance trade-off criterion. The coarse-scale model is then 

updated using production data via a generalized travel time inversion. The coarse-scale 

inversion proceeds much faster compared to a direct fine-scale inversion because of the 

significantly reduced parameter space. Furthermore, the iterative minimization is much 

more effective because at the larger scales there are fewer local minima and those tend to 

be farther apart. At the end of the coarse-scale inversion, a fine-scale inversion may be 

                                                 
* Part of this chapter is reprinted with permission from “A Dual Scale Approach to 
Production Data Integration into High Resolution Geologic Models” by Kim, J.U. and 
Datta-Gupta, A., 2009. paper SPE 118950 presented at the 2009 SPE Reservoir 
Simulation Symposium, The Woodlands, TX, February 2 – 4. Copyright 2009 by the 
Society of Petroleum Engineers.  
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carried out, if needed. This constitutes the outer iteration in the overall algorithm. The 

fine-scale inversion is carried out only if the data misfit is deemed to be unsatisfactory.  

In this work, we demonstrate our approach using both synthetic and field 

examples. The field example involves waterflood history matching of a structurally 

complex and faulted offshore turbiditic oil reservoir. Permeability and fault 

transmissibilities are the main uncertainties. The geologic model consists of more than 

800,000 cells and 10 years of production data from 8 producing wells. Using our dual 

scale approach, we are able to obtain a satisfactory history match with a finite-difference 

model in less than a day in a PC. Compared to a manual history matching, the dual scale 

approach is shown to better preserve the geological features and the pay/non-pay 

juxtapositions in the original geologic model. 

 

2.1. Chapter Introduction 

 

Geologic models now routinely consist of several hundred thousands to millions to grid 

cells. Reconciling such high- resolution geological models derived from static data to the 

field production history is critical for reliable reservoir performance forecasting. Several 

methods have been proposed in the literature for this purpose. These include gradient-

based methods (Brun et al., 2004), stochastic approaches such as simulated annealing 

and genetic algorithms (Quenes et al., 1994) and more recently the Ensemble Kalman 

Filter (Devegowda et al., 2007). The integration of production data typically requires the 

solution of an inverse problem. It is well known that such inverse problems are typically 

ill-posed and can result in non-unique and unstable solutions. A common approach to at 

least partially alleviate the problem is through incorporation of prior information or 

regularization such as ‘norm’ or ‘roughness’ constraints. However, there are additional 

outstanding challenges that have deterred the routine integration of production data into 

reservoir models using inverse modeling. First, the computational cost is still extremely 

high, particularly when the number of parameters is very large. Second, the relationship 

between the production response and reservoir properties can be highly non-linear. This 
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often causes the solution to converge to a local minimum with an inadequate match to 

the data. Furthermore, the solution itself can be unstable, leading to a loss in geologic 

realism. 

One approach to address the ill-posed nature of the inverse problem and the 

difficulties with the existence of local minima is through decomposing the inverse 

problem by scale. The scale-decomposition approach to inversion offers a number of 

advantages. First, computational efficiency is significantly enhanced compared to direct 

fine-scale inversion of production data because typical fine-scale models can consist of 

several hundred thousand to millions of parameters. Second, we can avoid over-

parameterization and the subjectivity arising from introduction of artificial regularization 

terms as discussed before. Finally, the iterative minimization is much more effective 

because at larger scales there are fewer local minima and those tend to be farther apart. 

Thus, the solution is more likely to reach the global minimum or at least a local 

minimum that is in the close vicinity of the global solution. The coarse-scale solution 

can then be recursively refined by using it as the initial solution for the fine-scale. 

Yoon et al. (2001) proposed a multiscale history matching method that starts with 

the largest scale and successively progresses to smaller scale. This approach explicitly 

accounts for the resolution of the production data by refining the parameterization only 

up to a level sufficient to match the data. However, the refinement was carried out 

uniformly throughout the domain without consideration of the available data. The 

approach was subsequently modified by Grimstad et al. (2004) through introduction of 

an adaptive multiscale inversion whereby the parameterization is introduced via local 

refinement rather than global refinement. Furthermore, the new degrees of freedom are 

introduced only in places where it is warranted by the data. Both of these methods rely 

on recursive refinement based on the production data. No consideration of the prior 

model or static information is taken into account during reparameterization. As a result 

these methods pose challenges in preserving prior geologic information which is 

typically incorporated using post-processing of the solution to the inverse problem. 
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In this chapter, we propose an approach to history matching that relies on 

sequential coarsening rather than sequential refinement. Starting with the fine-scale 

geologic model, first an ‘optimal coarsening’ of the model is carried out. The coarsening 

is designed to preserve the features of the geologic model to the maximum possible 

extent. It follows the approach proposed by King et al. (2005) and combines cells in the 

fine-scale model in such a manner that the variation of a ‘properly defined’ 

heterogeneity measure is minimized within the coarsened cells and maximized between 

the coarsened cells. A well defined statistical measure is used to determine the optimal 

level of coarsening. The history matching and model updating is carried out primarily at 

the coarse-scale and the updates are then mapped onto the fine-scale. When production 

data misfit is sufficiently reduced, an outer iteration allows for direct updating of the 

fine-scale model to further improve convergence, if necessary. 

One important distinguishing feature of our approach is that the coarsening is 

primarily driven by the static model and thus, the method naturally preserves the 

important characteristics of the initial geologic model. Also, unlike the previous works, 

the coarsening is carried out in the vertical direction while taking into account property 

variations both in the areal and vertical directions. Our approach preserves all the 

advantages of the previously proposed multiscale methods in terms of computational 

efficiency, stability and convergence of the solution. In addition, because the 

parameterization is driven by the initial geologic model rather than production data, the 

approach naturally preserves geologic realism.  

In this chapter, we outline major procedures of this approach followed by 

mathematical formulation of the coarsening scheme used and coarse-scale inversion 

including coarse-scale sensitivity coefficients computations. We demonstrate the 

effectiveness of our approach using water flooding history matching of synthetic and 

field cases. 
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2.2. Approach 

 

Multiscale approaches are getting increasing attention both for the forward and inverse 

modeling applications of flow through porous media. For history matching applications, 

the previous works on multiscale methods (Yoon et al., 2001; Grimstad et al., 2004) 

mainly focused on dynamic parameterization of the permeability distribution based on 

the production data. More recently, Stenerud et al. (2008) presented an adaptive 

multiscale approach for history matching using streamline models. Their approach used 

a mixed multiscale finite element forward model to resolve the pressure and velocity 

variations and streamline-based sensitivities for inverse modeling. In our approach, we 

adopt many of the concepts from these previous works. However, the major difference is 

that our approach relies on a sequential coarsening of a fine-scale geologic model rather 

than a sequential refinement of a coarse-scale model. Thus, our approach is able to better 

preserve the geology embedded in the fine-scale model. The main steps of our approach 

are outlined below. 

 

• Optimal Coarsening of the Geologic Model. The fine-scale geologic model is 

sequentially coarsened until an ‘optimal’ level of coarsening is achieved. We follow 

the approach of King et al. (2005) to coarsen the geologic model by grouping layers 

in such a way that the heterogeneity measure of an appropriately defined ‘static’ 

property is minimized within the layers and maximized between the layers. 

However, our approach differs from that of King et al. (2005) in the choice of the 

static parameter as discussed later. The optimal number of layers is then selected 

based on an analysis resulting in the minimum loss of heterogeneity because of the 

coarsening.  

 

• Flow Simulation and Sensitivity Computations. We use a finite-difference or a 

streamline simulator for modeling multiphase flow in the reservoir. If a finite-

difference simulator is used, then the cell fluxes are used to trace the streamlines and 
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the time of flight (Datta-Gupta and King, 2007). The streamline trajectories and time 

of flight are then used to analytically compute the sensitivity of the production data 

with respect to permeabilities (Oyerinde et al., 2007). 

 

• Coarse-scale Inversion. History matching is carried out primarily at the coarse-

scale. This constitutes our inner iteration in the overall inversion scheme. The 

coarse-scale permeabilities are updated via inverse modeling which proceeds in two 

steps: (i) a generalized travel time inversion that matches the production response 

based on an optimal travel time shift (Cheng et al., 2005), followed by (ii) an 

amplitude matching that further refines the match (Vasco et al., 1999). The coarse-

scale inversion proceeds much faster compared to a direct fine-scale inversion 

because of the significantly reduced parameter space. Furthermore, the iterative 

minimization is much more effective because at the larger scales there are fewer 

local minima and those tend to be farther apart. (Bunks et al., 1995) The inversion is 

terminated when no further improvement in data misfit is observed. The permeability 

updates are then transferred to the fine-scale model. Because our ‘optimal’ 

coarsening method groups fine-scale cells with similar attributes, the coarse-scale 

updates are simply added back to the corresponding fine-scale cells. 

 

• Fine-scale Inversion. At the end of the coarse-scale inversion, a fine-scale inversion 

may be carried out, if needed. This constitutes the outer iteration in the overall 

algorithm. The fine-scale inversion is carried out only if the data misfit is deemed to 

be unsatisfactory.  

 

Fig. 2.1 shows overall workflow of the dual scale inversion. It is comprised of two major 

loops. The inner loop consists of a coarse-scale inversion and majority of the data misfit 

reduction is accomplished at this stage. The coarse-scale inversion can be carried out 

very efficiently because of the reduced parameterization. The optimal design of the 

coarse-scale preserves most of the initial heterogeneity and important geologic 
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continuity. Since the coarse-scale inversion has fewer tendencies to converge to a local 

minimum, it is more stable compared to the direct fine-scale inversion (Bunks et al., 

1995), and does not require artificial regularization such as smoothness constraints. After 

convergence of the coarse-scale inversion, the updates to the geologic model are 

transferred to the fine-scale model. The outer loop consists of a direct fine-scale 

inversion on the updated model. This is carried out only if the data misfit is 

unsatisfactory and typically converges vary rapidly. 
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Fig. 2.1 Flow chart of dual scale inversion 
 

 

2.3. Dual Scale Inversion: Mathematical Formulation 

 

In this section we discuss the mathematical details related to our proposed dual scale 

inversion. We first discuss the optimal coarsening of the geologic model after King et al. 

(2005). We also point out the differences between our approach and that of King et al. 

(2005). Next, we discuss the details of the coarse-scale inversion. These include the 

sensitivity computations and the parameter estimation methods. The parameter 

sensitivities are computed along streamlines which can be obtained either from a finite-
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difference or a streamline simulator. The parameter estimation is carried out using an 

iterative least squares method that is commonly used for large-scale geophysical inverse 

problems. (Paige and Saunders, 1982) 

 

2.3.1. Optimal Coarsening of Geologic Models 

 

Our approach relies on a sequential coarsening of the fine-scale geologic model as 

proposed by King et al. (2005). To start with, we determine which two adjacent layers in 

the geologic model may be merged. This is based on an analysis of the ‘total variation’ 

of a pre-defined static property denoted as p. King et al. (2005) chose the property, ‘local 

velocity’ given by φkfp '=  where φk  is the interstitial velocity and f´ is the Buckley-

Leverett speed. Instead of the ‘local velocity’, we have used the ‘local slowness’ which 

is simply the reciprocal of the local velocity as our static property that we want to 

preserve during the coarsening.  The justification for our choice will be given later.  

The ‘total variation’, as a measure of heterogeneity during coarsening, is 

decomposed into ‘within cell variation (W)’ and ‘between cell variation (B)’. At any 

stage of coarsening, the quantity W is given by (King et al., 2005) 

 

( )∑
=

−=
NZNYNX

kji

C
kjikjikji ppnW

,,

1,,

2
,,,,,,

      
(2.1) 

 

Eq. 2.1 is a summation over the entire reservoir model and quantifies the variation 

removed from the model after upgridding. The summation is weighted by ni,j,k, which is 

the bulk rock volume of the cell. This ensures that W does not change under numerical 

refinement of the grid. Also, pi,j,k refers to the defined static property at the fine-scale and 

pC
i,j,k is the transitional static property that is calculated after every merging of adjacent 

layers as follows 

 

∑∑ ⋅=
k

kji
k

kjikji
C

kji npnp ,,,,,,,,
      

 (2.2) 
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The quantity B, ‘the between cell variation’ quantifies the amount of heterogeneity 

preserved during upgridding. At any stage of coarsening it is given by 

 

( )∑
=

−=
NZNYNX

kji
ji

C
kjikji ppnB

,,

1,,

2
,,,,,

       
(2.3) 

 

where jip ,  is the column-based average of our static property given by the following 

 

∑∑
==

⋅=
NZ

k
kji

NZ

k
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1
,,

1
,,,,,

       
(2.4) 

 

The goal of our algorithm is to minimize the amount of variation removed from our 

model and maximize the variation preserved while honoring geological markers during 

upgridding. The total variation of the model which is preserved during upgridding is 

given by the sum of ‘within cell variation’ and ‘between cell variation’ as follows 

 

H = W + B          (2.5) 

 

Detailed explanation of the preservation of H is described in Appendix C. 
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Fig. 2.2 Variation of heterogeneity during coarsening and determination of ‘optimal’ layer number 
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Fig. 2.2a shows the typical trends of W and B as a function of number of layers. 

The optimal number of layers will be decided by minimizing W (that is minimizing the 

loss of heterogeneity) or alternately maximizing B (that is preserving the geologic 

heterogeneity to the maximum possible extent). In Fig. 2.2b the between cell variation 

(B) shows three distinct heterogeneity regimes: a sharp increase for small number of 

layers, a slow increase for large number of layers, and a moderate increase between two. 

Intuitively, the optimal number of layers should be in the intermediate regime. In fact, 

the optimal number of layers is given by the point of maximum curvature in Fig. 2.2b. 

One approach to finding the optimal point is by calculating the RMSE (root mean square 

error) for a series of regression lines as discussed by Ma (2008) and shown in Fig. 2.2c.  

Coarsening geologic models introduces smoothing which can cause biased 

estimation. This bias from the ‘optimal’ coarsening was examined by comparison with 

the fine-scale geologic model (King et al., 2005). This analysis shows that coarsened 

geologic model by this method is generally matched well with the fine-scale model 

although large bias might be introduced when model is coarsened extremely. King et al. 

validated also this method by comparing flow characteristics before and after coarsening 

with the inverse of the time of flight. These validations show that the effect of bias on 

the ‘optimal’ coarsening is minimal. 

The major steps of the coarsening approach are as follows: 

 

    Step 1: Calculate the values of the property pi,j,k at each grid cell 

    Step 2:  Group two adjacent layers sequentially and calculate the ‘between the cell 

variation (B)’ to quantify the amount of heterogeneity preserved after 

merging 

    Step 3:  Merge those two layers that maximizes B based on the calculations in 

step 2 

    Step 4:  Repeat steps 2 and 3 and continue merging layers until the model is 

reduced to a single layer 
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    Step 5:  Determine the optimal number of layers from the plot of ‘B’ vs. number 

of layers as shown in Fig. 2.2c. 

 

As mentioned before, the major difference between our approach and that of 

King et al. (2005) is the choice of ‘slowness’ instead of velocity for calculation of the 

heterogeneity measure. By preserving the ‘slowness’ distribution between the fine-scale 

and coarse-scale models, we are simply attempting to preserve the spatial variations of 

streamline time of flight which represents the water saturation front propagation. This 

becomes obvious if we recall the definition of the streamline time of flight (Datta-Gupta 

and King, 2007),  

 

( ) ( )∫=
ψ

ζψτ ds x ,        (2.6) 

 

where s(x) is the slowness given by  

 

( ) ( )
( )xu
xx φ

=s          (2.7) 

 

The water saturation velocity for a given saturation Sw along a streamline will be given 

by (Datta-Gupta and King, 2007), 

 

'f
dS
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t w

w

Sw

==
∂
∂τ

        (2.8) 

 

and the travel time of the saturation front will be, 
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Thus, the water saturation distribution depends on the composite static quantity 

)(xφ /(f´wk(x)) which is used as the coarsening parameter in our calculations. The 

Buckley-Leverett speed, f´, includes the facies and saturation dependent relative 

permeability terms. This coarsening parameter is simply the reciprocal of that used by 

King et al. (2005). In our experience our choice of the coarsening parameter leads to a 

more logical and conservative merging of layers. Similar observations have been 

reported by Hosseini et al. (2008). 

 

2.4. Dual Scale Inversion 
 
The production data integration is carried out in two stages: a coarse-scale inversion 

followed by a fine-scale inversion, if necessary. An integral part of the production data 

integration is the computation of sensitivity coefficients. The sensitivities relate the 

changes in the production response because of small perturbations in reservoir properties. 

These sensitivities are computed efficiently using streamlines. For our applications, we 

have used a commercial finite-difference simulator as our forward model. The 

streamlines and the time of flight are generated from the fluxes derived from the finite-

difference simulator at each time step. Again, streamline and time of flight calculations 

involve analytic integration of the cell-fluxes and adds very little computational 

overhead (Jimenez et al., 2007). Detailed explanation regarding the streamline tracing is 

covered in Appendix A. 

In the dual scale approach, we generally perform the forward simulation at the 

fine grid model and carry out the inverse modeling at both coarse and fine-scale. This 

considerably simplifies the workflow and allows us to preserve the well completions and 

perforations of the fine-scale model. However, further savings in computation time can 



 18

be achieved by performing the forward simulation of the coarse-scale inversion at the 

coarsened grid whenever possible. This is elaborated more in the application section. 

The streamline-based parameter sensitivities are computed along with the 

forward simulation and involve one-dimensional integrals along streamline trajectories. 

The details of the streamline-based sensitivity computations can be found elsewhere 

(Vasco et al., 1999; Cheng et al., 2005). These sensitivity calculations have been 

extended to include gravity, changing field conditions and also three-phase flow (He et 

al., 2002; Oyerinde et al., 2007). 

For coarse-scale inversion, we need to relate the fine grid sensitivities to the 

coarse-scale parameterization. It is important to point out that the coarsening algorithm 

will generally result in non-uniform coarsening of the fine-scale model. The sensitivity 

computations need to be able to address such non-uniform coarsening.  

Let SiJ denote the sensitivity coefficient that relates the change in the i-th 

production data because of a small perturbation in the J-th coarse-scale model parameter 

denoted by δmJ. Now the change in the i-th production response at the coarse-scale can 

be expressed as,  

 

∑
=

=
N

J
JiJi mSd

1
δδ         (2.10) 

 

where N is the number of coarse-scale cells. Suppose n(J) is the number of fine-scale 

cells embedded in the J-th coarse-scale cell.  Now the quantity SiJ δmJ in Eq. 2.10 can be 

expressed in terms of fine-scale sensitivities Sij as follows: 

 
( )

∑
=

=
Jn

j
jijJiJ mSmS

1
δδ ,        (2.11) 

 

where δmj is the change in the model parameter of  the j-th fine-scale grid. We assume 

that the same changes apply to the coarse-scale cell and the embedded fine-scale cells, 

that is, δmj = δmJ. This assumption is reasonable considering that the coarsening 
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algorithm is designed to minimize the variation in properties within the coarse-scale 

cells. From Eq. 2.11, we can now express the coarse-scale sensitivities in terms of the 

fine-scale sensitivities as follows: 

 
( )

∑
=

=
Jn

j
ijiJ SS

1
          (2.12) 

 

Thus, the coarse-scale sensitivities are computed by simply integrating the fine-scale 

sensitivities embedded within each coarse-scale cell. Recall that the fine-scale 

sensitivities are already available from the forward simulation. 

After sensitivity calculations, production data integration is carried out using an 

iterative minimization. We typically minimize a penalized objective function as follows, 

 

mmSd δβδδ +−         (2.13) 

 

δd is the vector of data misfit, S represents the parameter sensitivity matrix and δm is the 

vector of model parameter change. Note that the sizes of S and δm are different for the 

coarse-scale and the fine-scale inversion. In particular, the coarse-scale inversion will 

have much fewer parameters and can be carried out very efficiently compared to the 

fine-scale inversion. Because majority of the reduction in data misfit occurs at the 

coarse-scale, this leads to a substantial savings in computation time. After the coarse-

scale inversion converges, we carry out the fine-scale inversion if the matches to the 

production data are not satisfactory. Typically, few iterations (<5) are needed at the fine-

scale as we are already in the vicinity of the solution. 

The minimization of Eq. 2.13 leads to an iterative least-squares solution (Paige 

and Saunders, 1982) to the augmented linear system given by 
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where β is the weight determining the relative strengths of the production data and the 

prior model. It is to be noted that Eq. 2.13 does not contain any additional smoothness 

constraints unlike previous streamline-based history matching techniques. The reason 

the smoothness constraint is not included is that model parameters are smoothed 

implicitly during the coarsening of the fine-scale geologic model and with a significantly 

reduced parameter space, no additional regularization is necessary.  
 

2.5. Applications 
 

In this section, we discuss application of the dual scale approach to synthetic and field 

examples. The synthetic example is used to illustrate the detailed steps in our approach, 

its convergence characteristics with respect to direct fine-scale inversion and also some 

of its advantages. We then demonstrate the applicability of our approach to high 

resolution and geologically complex field cases using an example from offshore South 

America. 

 

2.5.1. Synthetic Example 

 

Our synthetic model is a 3D 9-spot case and involves matching of water-cut history at 

the producing wells. The geologic model consists of 21x21x10 grids and has a water 

injection well in the center and 8 producers in the perimeter of the model. Our reference 

permeability field and the observed water-cut data generated using this reference 

permeability are shown in Figs. 2.3a and 2.3b.  

Our inversion starts with an initial geologic model which is typically the static 

model constructed using well and seismic data. The initial model for the synthetic 

example is shown in Fig. 2.4a. We have deliberately designed it to be quite distinct from 

the reference model to test the effectiveness of the dual scale inversion. The initial model 

has geological characteristic such as conspicuous directional heterogeneity that is 

different from reference model. This is also reflected in the water-cut mismatch with 

respect to the reference model, particularly for wells 3, 5, 6 and 7 (Fig. 2.3b) 
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Fig. 2.3 Reference geological model (a) permeability and (b) its water-cut history and mismatch 
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Fig. 2.4 (a) Initial permeability field and (b) its coarsened model (i-j plane) 
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The first step in our approach is the ‘optimal coarsening’ of the geologic model. 

Using the method described earlier, the initial model is coarsened from 10 layers to 5 

layers. Because of the coarsening, the initial number of grid cells 4,410 is reduced to 

2,210, almost a two-fold reduction. Fig. 2.4a shows permeabilities for 5 layers from the 

initial fine-scale model. Fig. 2.4b shows the coarsened permeability field that is used for 

history matching. Just from visual observations, it is hard to discern any loss of 

heterogeneity because of coarsening. This is a critical feature of the ‘optimal’ coarsening 

algorithm that allows us to perform the history matching at the coarse-scale while 

preserving the major features of the fine-scale model. The subtle differences between the 

fine-scale and the coarse-scale models can be seen in their cross-sections (Fig. 2.5). 

 

 

 
Fig. 2.5 (a) Initial permeability field (b) its coarsened model (i-k plane) 

 

 

After coarsening we perform a coarse-scale history matching of the production 

data. This corresponds to the inner iteration in Fig. 2.1. The convergence behavior of the 

coarse-scale inversion is shown in Fig. 2.6 in terms of the RMS of the water-cut misfit. 

As can be seen, the coarse-scale inversion converges rapidly and majority of the misfit 

reduction for the production data occurs at this stage. In other words, about 80% of the 

initial water-cut data misfit is reduced after 9 iterations in the coarse-scale inversion 
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while same amount of data misfit is reduced after 20 iterations in the direct fine-scale 

inversion. In this specific case, the coarse-scale approach is more than twice faster than 

the direct fine-scale inversion. The fast and smooth convergence behavior also 

underscores the fact that the misfit surface is generally better behaved at the coarse-scale 

with fewer local minima. 

At the end of the coarse-scale inversion, the updated model properties from the 

coarse-scale are mapped onto the initial fine-scale geologic model. The updates from the 

coarse-scale inversion are simply added to the corresponding fine-scale cells embedded 

in each coarse-scale cell. Recall the ‘optimal’ coarsening was designed to merge fine-

scale cells with ‘similar’ properties. Thus, when the updates from the coarse-scale 

inversion are added to the initial fine-scale geologic model, we expect that the matches 

to the production data will be preserved. This is typically the case for most of our 

examples. If the production data misfit deteriorates, we carry out a fine-scale inversion 

which is the outer iteration in Fig. 2.1. 

From Fig. 2.6, we can see that the fine-scale inversion provides very little 

improvement to the data misfit. It is also computationally expensive because of the large 

number of parameters. It is obvious that the coarse-scale parameterization is more 

effective during the inversion and majority of the history matching can be accomplished 

at this stage. For comparison purposes, we have also shown the convergence behavior of 

a direct fine-scale inversion without any coarsening step. Not only the fine-scale 

inversion is computationally expensive, it also converges much slower. This clearly 

demonstrates the advantage of the dual scale approach. 
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Fig. 2.6 Convergence of water-cut misfit 
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Fig. 2.7 Comparison of dual (coarse) scale inversion and direct coarse-scale inversion 
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As mentioned before, in our current implementation of the dual scale approach, 

while carrying out the coarse-scale inversion we perform the flow simulation and 

sensitivity computations at the fine-scale grid with coarsened model properties. Only the 

inversion is carried on the coarsened grid. Thus, majority of the computational savings is 

gained at the inversion stage in terms of fewer parameters and faster convergence. 

Although this simplifies the workflow and allows us to preserve the well completions 

and perforations of the fine-scale model, we can gain further computational efficiency by 

carrying out the forward simulation at the coarse-scale during the coarse-scale inversion. 

We can easily illustrate this for the synthetic example as the wells are perforated at all 

layers in the fine-scale model and thus, the well completions will not be affected by the 

coarsening. Fig. 2.7 compares the convergence behavior for the coarse-scale inversion 

where the flow simulations are also carried out at the coarsened grid leading to 

significant time savings. As expected, the convergence behavior is not altered. However, 

we just emphasize that for practical field applications with partial perforations, 

recompletions and other changing field conditions, it is often difficult to maintain 

consistency between the coarse-scale and fine-scale simulation. 

The history matching results and the updated permeability field from the dual 

scale approach are summarized in Fig. 2.8. For comparison purposes, the same results 

are also shown for a direct fine-scale inversion in Fig. 2.9. Both the methods are able to 

obtain a satisfactory match to the water-cut history. However, there are major 

differences in the updated permeability field derived from these two approaches. The 

updated model from the dual scale approach is able to retain features in initial 

permeability field much better compared to the direct fine-scale approach. This becomes 

clear in Fig. 2.10 which shows the deviations from the initial model for both the 

approaches. The reason we are able to preserve geological characteristic is, again, 

because of the ‘optimal’ coarsening algorithm and the better convergence behavior of 

the coarse-scale inversion. It is well-recognized that preserving geologic realism during 

history matching is critical for improved performance forecasting and the dual scale 

approach appears to be able to accomplish that effectively. 
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(a) Calibrated permeability field        (b) Water-cut performance 
 

Fig. 2.8 Water-cut history match result from dual scale approach 
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(a) Calibrated permeability field        (b) Water-cut performance 
 

Fig. 2.9 Water-cut history match result from direct fine-scale approach 
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Fig. 2.10 Deviation from initial simulation model (a) Dual scale result vs. initial model and (b) Direct 
fine-scale inversion vs. initial model 
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2.5.2. Field Example 
 

In this section we discuss the application of the dual scale history matching approach to 

a structurally complex offshore turbiditic reservoir. The field under consideration here is 

located offshore South America in water depths of 400 to 800 m. It consists of three 

partially connected Eocene deep-marine reservoirs (organized in sheet and channel 

sands) at a depth of approximately 3,000 m (Fig. 2.11). The sands are divided into 3 

distinctive regions, Sand A, Sand B and the Main Sand, all with a kv/kh ratio of 0.01. The 

field was initially produced under primary depletion with 2 producers using well 

productivity and water-cut as the tools for monitoring. Subsequently, the field was 

converted to a waterflood after 3 years of field workovers adding 6 producers and 4 

injectors. The field has a total 8 producer and 4 injector wells for use in history matching 

and forecasting in our simulation. The reservoir model was developed an 81 layer 

structurally complex and faulted turbiditic oil reservoir with excellent quality sands with 

high permeability, excellent porosity and distinctive transitions between low and high 

quality sands. Several normal faults span the field, and fault transmissibilities and 

permeability are the main uncertainties (Hohl et al. 2006). 

 

 

 
 

Fig. 2.11 Initial permeability distribution for field example 
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Fig. 2.12 Determination of ‘optimal’ layer number based on local slowness vs. local velocity 
 

 

We apply the dual scale approach to this field case to update the permeability 

distribution in the initial geologic model using the water-cut history. The highly detailed 

initial geologic model consisted of more than 850,000 grid cells (about 200,000 of active 

cells). The first step in our approach is to coarsen the detailed geologic model using the 

‘optimal’ coarsening approach. Fig. 2.12 shows the behavior of ‘between cell variation’ 

(B in Eq. 2.3) during sequential coarsening of the fine-scale model. The results compare 

the behavior when we use ‘velocity’ vs. ‘slowness’ as the heterogeneity parameter. 

Clearly, the use of ‘slowness’ results in a more conservative grouping of layers with 35 

layers as the ‘optimal’ as opposed to 25 layers when ‘velocity’ is used as the 

heterogeneity parameter. Our results appear to be consistent with the findings of Talbert 

et al. (2008) which suggest that the King et al. (2005) ‘optimal coarsening’ may lead to 

too much coarsening and the loss of initial geologic feature such as distinctive sands and 

barrier. 

Figs. 2.13 through 2.15 compare the initial geologic model with the ‘optimally’ 

coarsened model. After coarsening, the number of grid cells is reduced from 850,000 to 
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370,000. In Fig. 2.13 we can see that the fine-scale model for Sand A has no distinctive 

channels and the coarsened model is able to preserve the low and high permeability 

regions. Sand B in Fig. 2.14 shows a little smearing of the high permeability channels 

after coarsening. However, the general shape and distribution of the channels are still 

quite apparent. Fig. 2.15 shows selected layers from the Main Sand. It contains 

numerous channels and our coarsening algorithm results in very few merging of layers in 

the Main Sand. The algorithm leaves the Main Sand almost intact as can be seen in Fig. 

2.15. 

 

 

 
 (a)   (b)    (c) 

 
 

Fig. 2.13 Initial permeability field of Sand A (a) Layer 1 (b) Layer 16 and (c) Layer 27 
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     (a)    (b)             (c) 

 
Fig. 2.14 Initial permeability field of Sand B (a) Layer 32 (b) Layer 40 and (c) Layer 49 

 

 

 
Fig. 2.15 Initial permeability field of Main Sand (a) Layer 53 and (b) Layer 72 
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Fig. 2.16 (a) Calibrated permeability field and (b) water-cut history match result via dual scale 
inversion 



 33

 
 (a)         (b) 

 
Fig. 2.17 Updated permeability field (a) after dual-coarse-scale inversion and (b) after dual-fine-

scale inversion 
 

 
 

 
 (a)         (b) 

 
Fig. 2.18 Permeability change made (a) during dual-coarse-scale inversion and (b) during dual-fine-

scale inversion 
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 (a)    (b)          (c) 

 
Fig. 2.19 Manual history matching (a) Initial model (b) Updated by manual history matching (c) 

Change made by manual history matching (Hohl et al., 2006) 
 

 

The same procedure of dual scale inversion as in the synthetic example is 

followed. Coarse-scale inversion was carried out with coarsened model and the 

permeability updates are added to the initial fine-scale model. Finally, the fine-scale 

inversion is carried out. The matches to the water-cut responses are shown in Fig. 2.16. 

The overall water-cut history matching is improved. Fig. 2.17 compares the permeability 

field after the coarse-scale and fine-scale inversion for 3 selected layers. The 

corresponding changes to the model are shown in Fig. 2.18. Again, as expected, majority 

of the changes occur during the coarse-scale history matching. Finally, in Fig. 2.19 we 

show the permeability changes resulting from a manual history matching presented in 

Hohl et al. (2006). On comparing Fig. 2.19 with Figs. 2.17 and 2.18, the dual scale 

approach is able to preserve the pay and non-pay juxtaposition in the original geologic 
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model because the changes are mostly aligned along the channels. This is not the case 

for the manual history matching. Each of dual scale iteration took less than an hour in 

PC (Intel Core2 6600 @2.4/2.39GHz). 

 

2.6. Chapter Summary 

 
1. A dual scale approach to history matching high resolution geologic models is 

proposed. In this approach the majority of the history matching is performed on 

an ‘optimally’ coarsened model with further refinement, if needed, via a fine-

scale inversion. 

2. The ‘optimal’ coarsening using ‘slowness’ instead of ‘velocity’ is shown to result 

in a more conservative coarsening compared to previous works and is able to 

better preserve the features of the initial geologic model. 

3. The coarse-scale history matching is computationally efficient because of the 

significantly reduced number of unknowns during inversion. Furthermore, the 

scale-decomposition of the inverse problem reduces the ill-posedness and makes 

the inversion more stable without the need for artificial regularization. At the 

coarse-scale the inversion encounters fewer local minima and thus converges 

faster. 

4. We have demonstrated the power and applicability of the dual scale approach 

using both synthetic and field examples. The field application in a structurally 

complex turbiditic reservoir shows the ability of the dual scale inversion to 

preserve important geologic features during history matching. 
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CHAPTER III 

 

CALIBRATION OF HIGH-RESOLUTION RESERVOIR MODELS USING 

TRANSIENT PRESSURE DATA  

 

 

Integrating dynamic data into high resolution reservoir models is a crucial aspect of any 

optimal reservoir development and management strategy. In this regard, pressure data 

provides several advantages. First, pressure transient tests are easier and less expensive 

to carry out in the field. Second, pressure responses can be obtained early in the field life 

compared to water-cut or tracer data. Finally, the pressure perturbations travel much 

faster compared to tracer or water front, resulting in quicker response in the field. This 

makes interference tests much more appealing compared to tracer tests which may 

require months to see a field response. However, the computation cost and localized 

nature of pressure sensitivities pose difficulties in history matching transient pressure 

data with a finite difference model. Also, pressure tests from multiple wells are difficult 

to analyze because of superposition of pressure responses. 

We propose a fast and robust approach to integrating transient pressure data 

using a trajectory-based approach that relies on a high frequency asymptotic solution of 

the diffusivity equation. The trajectory or ray-based methods are routinely used in 

seismic tomography. In this chapter, we make a detailed comparison of streamlines and 

seismic rays and examine the applicability of streamline-based methods for transient 

pressure data inversion. Specifically, the high frequency asymptotic approach allows us 

to analytically compute the sensitivity of the pressure data with respect to reservoir 

properties such as porosity and permeability. This results in a very efficient approach for 

the integration of pressure data into geologic models.  

We apply our proposed method to transient pressure data from both single well 

test and multi-well interference tests. Our results demonstrate the advantage of 

performing interference tests compared to performing tracer tests in terms of identifying 
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heterogeneities early in the field life. Finally, we apply this approach to data from a 

multiwell interference test in a Middle Eastern reservoir. Specifically, the pressure data 

obtained from permanent downhole gauges (PDG) in multiple wells are utilized to 

determine communications in the reservoir and to derive quantitative information about 

the permeability distribution in the reservoir for potential aid in the design and 

optimization of a miscible gas flood. 

 

3.1. Chapter Introduction 

 

Calibration of high-resolution reservoir models using dynamic field response such as 

transient pressure or tracer data typically requires the solution of an inverse problem. 

Such inverse modeling entails forward flow simulation of large three-dimensional 

models, either to compute the sensitivity of model parameters for a linearized inversion 

problem (Tarantola, 2005; Oliver et al., 2008) or to apply stochastic approaches such as 

genetic algorithms and the Ensemble Kalman Filter (Quenes et al., 1994; Devegowda et 

al., 2007). Gradient-based inverse methods require the computation of sensitivity 

coefficients which quantify the change in production response because of small 

perturbations in the reservoir parameters. These sensitivities constitute an essential and 

often time-consuming part of the inverse modeling. Trajectory-based methods, such as 

streamline simulation, have shown significant potential in this regard (Vasco and Datta-

Gupta, 1999; Cheng et al., 2005; Oyerinde et al., 2007). With the trajectory methods, the 

sensitivities of the production response with respect to reservoir parameters can be 

computed analytically using a single flow simulation (Datta-Gupta and King, 2007).  

Pressure data provides several advantages to facilitate high-resolution reservoir 

characterization. Pressure transient tests are easier to carry out and can be performed in a 

shorter time compared to performing tracer tests. Pressure responses are directly related 

to the permeability and porosity field and can be obtained much quicker than other 

production history such as water-cut data and tracer responses. The localized nature of 

pressure sensitivities, however, introduces some difficulties in the inversion approach. 
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That is, pressure responses are much more sensitive to model parameters near the wells 

than model parameters away from the wells (Vasco et al., 2000). Pressure tests from 

multiple wells can be more difficult to analyze because of the superposition of pressure 

responses.  

Asymptotic ray theory has been widely applied to both electromagnetic (Kline 

and Kay, 1965; Luneburg, 1966) and seismic wave front propagation (Cerveny et al., 

1978). In fact, the approach has proved very appealing in the examination of front 

propagation in general (Sethian, 1996). Asymptotic methods have also been applied to 

represent the solution for flow and transport, relating the orders of the expansion to 

attributes such as breakthrough or front arrival time (Vasco and Datta-Gupta, 1999; 

Vasco et al., 2000). The asymptotic approach has several advantageous features 

especially with regard to the inverse modeling. The asymptotic solutions are defined 

along the trajectories which are ray paths of the wave equation (Vasco and Finsterle, 

2004). The 1-D nature of the solution along these trajectories scales favorably with 

model size. Thus, the technique is particularly well-suited for high-resolution simulation 

models. Also, a trajectory-based inversion algorithm offers significant advantages over 

traditional gradient-based methods because the parameter sensitivities are easily 

computed after a single flow simulation. In traditional gradient-based inverse methods, 

the sensitivity computations can be very time consuming, requiring multiple flow 

simulations or adjoint solutions. 

In this chapter, we present a trajectory-based inversion approach for pressure 

transient tests and examine its basic mathematical formulation using high frequency 

asymptotic expansion. We then show that under several practical situations, the 

trajectories for transient pressure solutions can be approximated by the streamlines 

generated using the underlying velocity field. We validate our approach first with a two 

dimensional synthetic case and then, with a three dimensional field example. In the field 

example, permanent downhole gauges (PDG) with surface read-out are applied to obtain 

the downhole pressure data. Pressure transient data and pressure monitoring data during 
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the testing of other wells are available for pressure history matching from the PDG. We 

perform history matching of pressure peak arrival times to update the geologic model. 

 

3.2. Approach 

 

In this section we first discuss the asymptotic solution for the transient flow followed by 

the methodology for computing the trajectory for the propagation of the pressure wave 

front.  

 

3.2.1. Asymptotic Approach to Transient Pressure Responses  

 

Asymptotic approaches to inversion have been applied in several other disciplines such 

as medical, optical and geophysical imaging (Gordon and Herman, 1974; Iyer and 

Hirahara, 1993; Arridge, 1999). It provides the mathematical foundations with which we 

can relate the streamlines and ray methods from geophysics (Vasco and Finsterle, 2004; 

Datta-Gupta and King, 2007). It has also been applied to tracer tests, transient pressure 

inversion and two-phase flow data (Vasco and Datta-Gupta, 1999; Vasco et al., 2000; 

Vasco and Datta-Gupta, 2001). Here, we revisit the asymptotic approach to analyze the 

transient pressure data from well tests. 

The transient pressure response from a heterogeneous permeable medium can be 

described by the diffusivity equation, 
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Using Fourier transform of Eq. 3.1, we obtain the following equation in the frequency 

domain. 
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The goal of the asymptotic approach is to find a solution of the diffusive pressure 

equation that mimics the one found in wave propagation. The asymptotic solution for a 

transient pressure response assumes the following form (Fatemi et al., 1995; Vasco et al., 

2000; Datta-Gupta et al., 2001) 
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Eq. 3.3 is the summation of an infinite number of terms with coefficients An(x). We 

generally consider only the first few terms which correspond to high frequency (large ω) 

in the series and these high frequency terms describe the physical propagation of a 

‘pressure front’ (Vasco et al., 2000; Datta-Gupta et al., 2001). If we only consider the 

first term in Eq. 3.3, then 

 

( ) ( ) ( )xx x
0,~ AeP i τωω −−=         (3.4) 

 

After inserting Eq. 3.4 into Eq. 3.2 and collecting terms with the highest order of ωi− , 

that is, ( )2ωi− , we obtain the equation for the front propagation in an isotropic 

permeable media,  
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where α(x) is the diffusivity given by 
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Eq. 3.5 is actually a form of the eikonal equation which explains a variety of propagation 

behaviors (Kline and Kay, 1965; Kravtsov and Orlov, 1990). It is interesting and 

important to note that Eq. 3.5 has a form similar to that of the streamline time of flight 

equation which describes the propagation of a neutral tracer (Datta-Gupta and King, 

2007).  

 

( ) 1ˆ =∇⋅ xτv          (3.7) 

 

where τ̂ (x) is the streamline time of flight and v is the interstitial velocity of a neutral 

tracer. By analogy with the time of flight formulation, we can see that the pressure wave 

fronts travel with a velocity given by (α(x))1/2. In fact, we can define a diffusive time of 

flight for the propagation of a pressure front as follows (Kulkarni et al., 2000; Datta-

Gupta et al., 2001), 

 

( )
( )∫=

ψ α
ζτ
x

x d ,         (3.8) 

 

However, the diffusive time of flight is defined along the trajectories of a ‘pressure wave 

front’ ψ, which are given by the ray paths of the wave equation. These trajectories are 

not necessarily the streamlines (Vasco and Finsterle, 2004). We will discuss this issue in 

detail later and exploit the analogy between streamlines and pressure trajectories for 

interpretation of the field pressure response. Also, note that the unit of diffusive time of 

flight in Eq. 3.8 is the square root of time which is consistent with the scaling behavior 

of diffusive flow. 

 

3.2.2. Computation of Pressure Front Trajectory 

 

In this section we first describe the computation of trajectories for asymptotic solution of 

the transient pressure equation. We also relate the diffusive time of flight to the actual 
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arrival time of the pressure wave front at the wells. The physical relationship between 

the diffusive time of flight and the propagation of the pressure wave front can be 

obtained by examining the time domain solution to the zeroth order asymptotic 

expansion in Eq. 3.4. The solution is given by the inverse Fourier transform, 
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The above equation actually corresponds to the pressure response for an impulse (Dirac 

delta function) source or sink in the flow domain. This pressure response will be 

maximized at a fixed position x, when the following time derivative vanishes 
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Eq. 3.10, after solving for the time t, provides us with a relationship between the 

physical time when the pressure response (drawdown or build up) reaches a maximum at 

the position x and the diffusive time of flight. 
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2
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xx τ
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Thus, the arrival of the pressure wave front at a location can be interpreted as the time 

when the pressure reaches a maximum or minimum for a perturbation introduced by an 

impulse source or sink. We call this ‘the peak arrival time’. In practical field applications, 

however, we do not have an impulse source or sink. Instead, we have a step change in 

rate (shut-in or start-up) which can be approximated by a ‘Heaviside’ function. Noting 

the fact that the impulse or the Dirac delta function is the derivative of the Heaviside 
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function, for practical applications we will compute the peak time corresponding to the 

derivative of the pressure data rather than the pressure data itself (Kulkarni et al., 2001). 

Fig. 3.1 illustrates the computation of peak arrival time or ‘the pressure wave 

front’ arrival time. Fig. 3.1a shows the permeability field for the example case. This 

example case is a two dimensional example with nine wells. The producer at the center 

of the model is active. The eight wells at the perimeter of the model are not producing 

but are used for monitoring the pressure responses. We performed a flow simulation and 

obtained the time derivatives of pressure at each observation well location. Next, we 

determined the peak arrival time of the pressure front from the time corresponding to the 

maximum of the time derivative of the pressure responses. Fig. 3.1b is the time 

derivative of the pressure response at each monitoring well. Thus, the peak arrival time 

at each monitoring well location can be obtained as shown, for example producer ‘P1’ 

has 24,839 seconds (about 7 hours). Note that we take the absolute value of the time 

derivative of pressure for these calculations. In the same manner, peak arrival time at 

any spatial location in the flow domain can be computed from flow simulation. During 

flow simulation, we keep track of the pressure response at each cell of the model at each 

time step. The peak arrival time at any location is then computed corresponding to the 

time when the pressure derivative reaches a maximum. Fig. 3.2a is the contour of the 

peak arrival time, tmax of the pressure front as given by Eq. 3.11. The diffusive time of 

flight, τ(x) which is the primary information required for computation of the pressure 

front trajectories can now be calculated from Eq. 3.11. The pressure trajectories are now 

defined by integration along the direction of ∇τ(x) as given in Eq. 3.8. We perform the 

trajectory calculations using the following steps. 
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Fig. 3.1 Synthetic case (a) Permeability field (b) Time derivatives of well pressure of each 

monitoring well 
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• Flow Simulation. Given a geological model and well configuration, we first 

perform a flow simulation. The simulation results give us pressure response with 

time at each grid block in the flow domain. This information is saved for 

subsequent calculations. 

 

• Peak Arrival Time Computation. As discussed in Eqs. 3.9 through 3.11, the 

pressure front arrival time can be calculated from the maximum of the time 

derivative of the pressure response at each grid block location. First, we scan the 

pressure history at each grid block and then compute its time derivatives. The 

time when the derivative reaches a maximum or minimum indicates the pressure 

front arrival time, tmax. The diffusive time of flight τ(x) is now easily obtained 

from Eq. 3.11. 

 

• Tracing the Trajectory Based on the Gradient of the Diffusive Time of 

flight. We calculate the numerical gradients of diffusive time of flight for each 

grid block location. Pressure front trajectories are simply curves along these 

gradients of the diffusive time of flight. For trajectory calculations we make use 

of the Heun’s method (Kreyszig, 1993) which is explained below. 

 

From Eq. 3.8, the pressure front trajectories are defined along ψ(ζ). The 

trajectory ψ is computed by integrating the differential equation (Vasco and Finsterle, 

2004),  

 

( )xτ
ζ
ψ

∇=
d
d           (3.12) 

 

where the term ζ indicates the distance along the trajectory ψ. The gradient of diffusive 

time of flight, ∇τ can be obtained from numerical simulation results as shown in Fig. 

3.2a. The Heun’s method, also known as the second-order Runge-Kutta method, is 
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applied to determine the trajectories. These results are more accurate than those of the 

Euler-Cauchy method (Kreyszig, 1993) in that we compute first an auxiliary value to 

improve the solution of the differential equation. In other words, we first estimate the 

gradient in each step using the current location to obtain the (i+1)-th step point 

(predictor step), 
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1          (3.13) 

 

Next, the (i+1)-th step point is further refined using the gradient at ψ*
i+1 (corrector step) 

 

( ) ( )( )*
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Detailed explanation and procedure is described in Appendix B. 

For our example case, Fig. 3.2a shows the peak arrival time at each location. The 

diffusive time of flight at each location is then calculated from Eq. 3.11. The output of 

the trajectory computation based on the numerical gradient of the diffusive time of flight 

is shown in Fig. 3.2b. These are the trajectories along which the asymptotic solution for 

the transient pressure equation is defined. One of our goals in this chapter is to examine 

whether it is possible to approximate these pressure trajectories using the streamlines 

which are much easier to compute. We address this issue in the next section. 

 

3.2.3. Pressure Front Trajectory vs. Streamline Trajectory 

 

We now compare the pressure front trajectory with the streamlines. Note that the 

diffusive time of flight and pressure front trajectories are invariant with time for a given 

geological model and boundary conditions while streamlines will depend on the 

instantaneous pressure at each location and are a function of time. However, after the 

very early times, the streamline profile becomes stable rather quickly. Fig. 3.3 shows the 
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streamlines corresponding to the pressure trajectories in Fig. 3.2b after this stabilization. 

Note that the general characteristics of both the pressure front trajectories and the 

streamlines are quite similar.  

Fig. 3.4 shows the pressure wave front locations at various times for the synthetic 

example case. The left panel shows the ‘true’ pressure front locations rigorously 

computed based on the peak arrival time as discussed above. The right panel shows the 

approximate pressure front locations based on the integration of the diffusive time of 

flight equation (Eq. 3.8) along the streamline trajectories. Although the front locations 

are different in detail characters, especially later time, the general shapes are quite 

similar. Previous investigations by Kulkarni et al. (2001) using an analytical solution of 

drainage area during single well tests arrived at similar conclusions. These results 

indicate that the streamlines can be reasonable approximations for the pressure front 

trajectories at least for the purpose of production history matching with which we intend 

to calibrate large scale geologic features. This is the main feature that we will exploit for 

the efficient interpretation of the pressure interference test data as discussed in the next 

section. 
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Fig. 3.2 Single test from producer P9 

(a) Peak arrival time of the pressure front (b) The pressure front trajectory from the gradient of 
diffusive time of flight 
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Fig. 3.3 Streamline of synthetic case 
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Fig. 3.4 Pressure front arrival time. 

(a) Computed from pressure response from finite difference simulation  
(b) Computed from diffusive time of flight along streamline 
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3.2.4. Multiple Pressure Transient Tests 

 

So far, we have discussed the diffusive time of flight and trajectory computations for a 

single active well. We now examine the situation when multiple wells are tested in a 

sequence. This is often the case in field applications as we will see later for the field 

example. The main purpose of this section is to investigate the difference between the 

diffusive time of flight and pressure trajectories from a single well test and those from 

multiple well tests. Specifically, we examine the possibility of replacing the pressure 

trajectory calculations from multiple tests with those from a sequence of single tests and 

their correspondence to streamlines. 

For illustration purposes, we use the same well configuration as the single well 

test discussed before. The main difference is the testing schedule. To begin with, the 

producer ‘P1’ in Fig. 3.1a is produced for one day at a constant rate and then shut-in. 

This is followed by a build-up of one day when all the wells are shut-in. Next, the 

producer ‘P5’ is produced for one day. Fig. 3.5a shows the time derivatives of pressure 

during the test at the observation wells. Figs. 3.5b and 3.5c show the pressure wave front 

based on the peak arrival time and the corresponding pressure trajectories for well ‘P5’. 

It is important to distinguish the response from the well ‘P1’ and ‘P5’ while calculating 

the peak arrival time. For example, in this case, the well ‘P5’ pressure front arrival time 

shown in Fig. 3.5b will correspond to the second peak in the time derivative of the 

pressure history at each grid cell. In a manner similar to the single active well case, we 

calculate the trajectory of the pressure front based on the numerical gradient of the 

diffusive time of flight. This result is shown in Fig. 3.5c. Thus, for multiple tests we 

expect to have multiple peaks in the pressure derivative response corresponding to each 

testing well. The trajectories related to testing at well ‘P1’ are shown in Fig. 3.5d. 

Although for this example case, the peaks were easily identifiable, it may not be the case 

in general. Hence, we examine the possibility of computing the pressure front and 

trajectories for multiple tests using sequence of single tests. 



 52

 

-0.002

0

0.002

0.004

0.006

0.008

0 50000 100000 150000 200000 250000 300000

time (sec)

dp
/d

t

P2
P3
P4
P6
P7
P8
P9

 
(a) Time derivatives of well pressure 

 

 

 

 
(b) Peak arrival time of the pressure front 

 
Fig. 3.5 Multiple tests (P5 after P1) 
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(c) Pressure front trajectory from the gradient of diffusive time of flight (P5) 
 

 

 
 

(d) Pressure front trajectory from the gradient of diffusive time of flight (P1) 
 

 
Fig. 3.5 Continued 
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(a) Peak arrival time of the pressure front 

 

 

 
 

(b) Pressure front trajectory from the gradient of diffusive time of flight 
 

Fig. 3.6 Single tests from P5 
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For comparison purposes, we perform a single test from producer ‘P5’ without 

prior testing at producer ‘P1’ and compute the peak arrival time and the pressure front 

trajectories. The results are shown in Fig. 3.6a and 3.6b. Note that the contours of peak 

arrival time in Fig. 3.6a are nearly identical to those in Fig. 3.5b. This is because the 

peak arrival time or the diffusive time of flight is primarily a function of the reservoir 

properties, the geometry of the flow model and the boundary conditions. Thus, the fact 

that well ‘P1’ was produced before well ‘P5’ has minimal impact in the diffusive time of 

flight calculations as seen here. Fig. 3.6b shows the pressure trajectories for this case. On 

comparison with Fig. 3.5c, again we can see that the trajectories are almost identical. As 

before, in our applications we will approximate these trajectories using streamlines after 

stabilization of the pressure distribution. 

 

3.2.5. Sensitivity Coefficients and Geologic Model Calibration 

 

Simulation model calibration with pressure data typically requires the solution of an 

inverse problem. The mathematical formulation for such inverse models has been 

discussed in previous literature (Tarantola, 2005; Oliver et al., 2008). In our application, 

we minimize a penalized objective function as follows, 

 

mLmmSd δβδβδδ 21 ++−        (3.15) 

 

where δd is the vector of the data misfit, that is, the difference between the observed and 

calculated pressure response, and S represents the parameter sensitivity matrix whose 

elements consist of the sensitivities which are partial derivative of the pressure response 

with respect to reservoir parameters. Also, δm is the vector of model parameter change 

and L is a second spatial difference operator. The first term quantifies the misfit between 

the observed and calculated pressure response. The second term ensures that the 

calibrated geologic model is not significantly different from the initial model which 

contains static data such as geologic input, petrophysical data and seismic information. 
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This is intended to preserve the geologic realism during history matching. Finally, the 

third term allows the smooth and large scale change of model parameters since pressure 

history data has low resolution information.  

In general, one of the most time consuming aspects of the inverse modeling is 

construction of the sensitivity matrix, S. That is, we need to quantify the relationship 

between the changes or perturbations in model parameters and corresponding variations 

in the predicted responses. From Eqs. 3.6 and 3.8, the sensitivity coefficient of diffusive 

time of flight can be obtained analytically as follows. 
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Note that the sensitivities are defined along the pressure trajectories and are available 

after a single flow simulation. As discussed before, in our applications, the pressure front 

trajectories are approximated by streamlines which are easily calculated. 

After sensitivity calculations, pressure data integration is carried out using an 

iterative minimization technique. The minimization of Eq. 3.15 leads to an iterative 

least-squares solution (Paige and Saunders, 1982) of the augmented linear system given 

by 
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where the terms β1 and β2 are the weights determining the relative strengths between the 

pressure data, the prior model and the smoothness penalty term.  
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3.3. Applications 

 

In this section, we discuss application of the pressure transient data integration approach 

to synthetic and field examples. The synthetic example is used to illustrate the detailed 

procedure in our approach. It is followed by a demonstration of the applicability of our 

approach to a high resolution and geologically complex field case using an example 

from the Middle East. 

 

3.3.1. Synthetic Example 

 

Our synthetic model is a two dimensional example and the well configuration is a nine-

spot pattern as shown in Fig. 3.7a. The geologic model is a 2-D model with the 

dimensions of 21x21x1. Multiple sequential interference testing was performed at eight 

wells from well ‘P1’ to well ‘P8’ in the perimeter of the model. The well pressure at well 

‘I1’ has been monitored during the sequential multiple testing. Fig. 3.7a shows the 

reference permeability field and the location of the nine wells. The sequential well 

testing schedule is shown in Fig. 3.7b. We assume that only the pressure in well ‘I1’ is 

available for this example. Figs. 3.8a and 3.8b show observed pressure history from the 

reference model and its time derivative. As shown in Fig. 3.8b, the time derivative of 

pressure has eight peak arrival times of pressure corresponding to the testing of each 

well. The peak arrival times of pressure are treated as observed data for history matching 

and are used for the inversion process. The initial geologic model for this synthetic 

example is a homogeneous model and has a permeability of 500 md. Figs. 3.9a and 3.9b 

show the well pressure of well ‘I1’ and its time derivative. There are clear discrepancies 

(Fig. 3.9a) between the history and calculated response for the peak arrival times of 

pressure (Fig. 3.9b). 
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(a) Permeability field 

 

 

TESTING SCHEDULE

0

200

400

600

800

1000

1200

0 4 8 12 16

TIME (DAYS)

TE
ST

IN
G

 R
A

TE
 (S

TB
/D

A
Y P1

P2
P3
P4
P5
P6
P7
P8

 
(b) Testing schedule 

 
Fig. 3.7 Reference geologic model and testing schedule 
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(a) Well pressure   (b) Time derivative of well pressure 

 

Fig. 3.8 Reference model pressure response from monitoring well (I1) 
 

 

The history matching approach starts with the decomposition of multiple well 

tests into single tests. In other words, we deal with eight separate single well tests instead 

of multiple well tests in the same flow simulation. This decomposition of the pressure 

responses provides several advantages. First, it is convenient to investigate each pressure 

response without any interference from the other well tests because it is difficult to 

detect and distinguish peak arrival time of each test when multiple test responses are 

observed from a single flow simulation. The other advantage is that we can approximate 

the trajectory of the pressure front with streamlines in the case of single well testing only 

as discussed in previous sections. Figs. 3.10a through 3.10h show the time derivatives of 

pressure for the decomposed single well tests. Differences in the peak arrival time of 

each decomposed tests and the reference peak arrival times are data misfits for the 

inversion as described in Eq. 3.15. 
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       (a) Well pressure          (b) Time derivative of well pressure 

 

Fig. 3.9 Initial model pressure response from monitoring well (I1) 
 

 

In order to obtain sensitivity coefficients of the local parameters such as 

permeability, the computation of the pressure front trajectory is essential. Because 

multiple test responses are decomposed into separate single tests, we approximate the 

pressure front trajectory with streamlines which can be easily calculated with little 

computational expense after the finite difference simulation. Thus, sensitivity 

coefficients are computed from Eq. 3.16 with streamlines at the last time step to make 

sure that the streamline profile is stabilized (Kulkani et al., 2001). 
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Fig. 3.10 Time derivative of pressure response decomposed by separate well testing (Initial model) 
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(c)      (d) 
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Fig. 3.10 Continued 

 

 

The calibrated permeability field is able to capture large scale characteristics of 

the reference model as shown in Fig. 3.11a. Monitoring well pressure and its time 

derivative is shown in Figs. 3.11b and 3.11c. Basically, our history matching approach is 
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carried out using the time derivative of the monitoring well pressure. In other words, 

inversion scheme works to align the peak arrival time of the monitoring pressure rather 

than matching directly monitoring pressure itself in Fig. 3.11b. Matching the peak arrival 

time of pressure (Fig. 3.11c), however, results in a considerable improvement of well 

monitoring pressure. 
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(b) Well pressure 

 

Fig. 3.11 Updated permeability field and its pressure response 
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(c) Time derivative of well pressure 

 

Fig. 3.11 Continued 
 

 

3.3.2. Field Example 

 

In this section, the application of this technique to field measured pressure transient data 

is described. The data comes from a multiwell interference test performed in a field in 

the Middle East. Pressure data from permanent downhole gauges (PDG) in multiple 

wells are utilized to determine the communication between wells in the reservoir and to 

derive quantitative information about the permeability distribution to potentially 

optimize the design of a miscible gas flood.  
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Fig. 3.12 Overview of field example geologic model and well location 
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A map of the geologic model permeability field and well locations are shown in 

Fig. 3.12. The geologic model consists of about 170,000 grid blocks and has 26 layers. 

This example has four producing wells and each well has undergone transient pressure 

testing as shown in Fig. 3.13. Pressure data is monitored from PDG during multiwell 

testing. Note that interference pressure data was monitored continuously only for well 

‘P2’ (Fig. 3.13b) and this is the data that will be used for geologic model calibration.  

 

 

 
Fig. 3.13 Observed well pressure 

0 10 20 30 40 50 60 70 80 90 100 110
4000

6000

8000

10000

TIME(DAY)

W
B

H
P

 (p
si

)

P1

0 10 20 30 40 50 60 70 80 90 100 110
4000

6000

8000

10000

TIME(DAY)

W
B

H
P

 (p
si

)

P2

0 10 20 30 40 50 60 70 80 90 100 110
4000

6000

8000

10000

TIME(DAY)

W
B

H
P

 (p
si

)

P3

0 10 20 30 40 50 60 70 80 90 100 110
4000

6000

8000

10000

TIME(DAY)

W
B

H
P

 (p
si

)

P4

(a) 

(b) 

(c) 

(d) 



 66

 
 
 

 
(a) Well pressure (P2) 

 
 
 

 
 (b) Time derivative of well pressure (P2) 

 
Fig. 3.14 Detailed observed well pressure (P2) 
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(a) Well pressure (P2) 
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     (b) Time derivative of well pressure (P2) 

 

Fig. 3.15 Initial model response (P2) 
 

 

Fig. 3.14a shows the detailed pressure response from well ‘P2’ and Fig. 3.14b 

shows the time derivative of the well pressure response. From the pressure derivative 

plot, we could not detect the arrival time corresponding to the test in well ‘P3’ which is 

the farthest well from the observation well (Fig. 3.12). Arrival times of pressure 
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corresponding to the testing of well ‘P1’ and two of testing well ‘P4’ can be detected in 

the pressure derivative as shown in Fig. 3.14b. Of these three times, the first arrival time 

corresponds to well ‘P1’ testing and the second and third arrival time corresponds to 

testing of well ‘P4’. None of these arrivals can be attributed to well ‘P3’ because of the 

very large time lag (over 40 days) from the testing. 

Figs. 3.15a and 3.15b show the pressure response and its time derivative for well 

‘P2’ using the initial permeability field as shown in Fig. 3.12. The simulated and 

observed histories show significant differences in both monitoring well pressure and its 

time derivative. We follow the same procedures as in the synthetic example. For our 

applications, the multiple-testing schedule is decomposed into three of separate single 

testing events; in other words, the first test is performed in well ‘P1’ and the second and 

third tests are conducted in well ‘P4’. Then, differences in the diffusive time of flight 

between the observed and the predicted response and sensitivity coefficients of each well 

testing data are computed as discussed before. 

The initial permeability, the updated permeability field via inversion and the 

permeability difference obtained after history matching are shown as maps in Fig. 3.16. 

As expected, the permeability changes are located in between interference test wells. 

Pressure responses and their time derivatives are shown in Figs. 3.17a and 3.17b. The 

well pressure responses from the observed history and those from calculated results 

show a good match (Fig. 3.17a). Also, the pressure front arrival time of observed history 

and simulated result are aligned (Fig. 3.17b) after inversion. It is worth pointing out that 

even though the history matching process has been conducted in only part of the 

simulation time because of the availability of the observed peak arrival time of pressure 

(70 ~ 110 days), the pressure history match for the entire simulation, especially at the 

early times shows significant improvement as shown in Fig. 3.18. 
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          (a) Initial model           (b) Updated model       (c) Difference between (a) and (b) 

 

Fig. 3.16 Permeability field of selected layers 
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(a) Well pressure (P2) 
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(b) Time derivative of well pressure (P2) 

 

Fig. 3.17 Updated model response (P2)   
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Fig. 3.18 Updated model overall response (P2) 

 

 

3.4. Chapter Summary 

 

1. We have presented the application of an approach for calibration of geologic 

models using transient well pressure behavior via high frequency asymptotic 

solution of the transient pressure equation and an arrival time inversion of the 

pressure wave front. The approach is computationally efficient because the 

arrival time sensitivities can be computed analytically using a single flow 

simulation. 

2. The asymptotic solution of the transient pressure equation is defined along 

trajectories which are ray paths of the wave equation. We have made a 

comparison of the pressure trajectories and streamlines and showed that for 

practical applications, these trajectories can be approximated by streamlines after 

stabilization of the pressure field. This is important because streamlines can be 

computed much more efficiently compared to pressure trajectories. The 

sensitivities are then approximated as 1-D integral along streamlines. 
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3. We have showed that for model calibration purposes, a sequence of multiwell 

pressure interference tests can be decomposed a series of individual tests with 

single active well. This significantly facilitates the trajectory computations and 

the identification of the pressure wave front arrival times.  

4. We have demonstrated the power and applicability of the model calibration 

approach using both synthetic and field examples. The field application with 

monitoring pressure data from permanent downhole gauges (PDG) shows the 

ability of the algorithm to analyze complex field tests and the role of interference 

tests in updating geologic models. Because pressure interference response is 

likely to be much faster compared to tracer tests, it is a very valuable tool for 

geologic model updating, particularly early in the field life. 
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CHAPTER IV 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

In this work, we have investigated approaches to the dynamic data integration. It mainly 

consists of two parts; dual scale inversion approach and transient pressure data history 

matching. In chapter 2, we built the overall work flow of the dual scale inversion 

technique with ‘optimal’ coarsening algorithm and validated it with synthetic and field 

examples. Since less number of model parameters is involved in the coarse-scale 

inversion process, local minima and ill-posedness issues problem can be resolved easier 

than the direct fine-scale approach. As a result, the objective function of inversion 

problem will reduce quickly.  

In chapter 3, we examined the behavior of transient pressure data with an 

asymptotic approach to the diffusivity formulation. We, then, investigated the 

methodology for computation of the pressure front trajectory and suggested the 

decomposition of multiple-testing condition to separate single testing condition for 

model calibration purpose. Finally, we demonstrated the transient pressure history 

matching examples in the synthetic and field cases.  

Streamline can be calculated easily with a rigorous streamline tracing algorithm 

(DESTINY) developed by Texas A&M University even in case that the geometry of 

geologic model is complex, in other words, corner point geometry system, and has non-

neighbor connection to represent faulted system. Detailed description of DESTINY will 

be covered in Appendix A. On balance, availability of streamline makes the trajectory-

based history matching technique more appealing.  

 

4.1 Conclusions 

 

Several specific conclusions can be made from this work: 
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1. A dual scale approach to history matching high resolution geologic models is 

proposed. In this approach the majority of the history matching is performed on an 

‘optimally’ coarsened model with further refinement, if needed, via a fine-scale 

inversion. 

2. The ‘optimal’ coarsening using ‘slowness’ instead of ‘velocity’ is shown to result in 

a more conservative coarsening compared to previous works using ‘velocity’ and is 

able to honor the features of the initial geologic model. 

3. The coarse-scale history matching is computationally efficient because of the 

significantly reduced number of unknowns during inversion. Furthermore, the scale-

decomposition of the inverse problem reduces the ill-posedness and makes the 

inversion more stable without the need for artificial regularization. At the coarse-

scale the inversion encounters fewer local minima and thus it converges faster. 

4. We have demonstrated the power and applicability of the dual scale approach using 

both synthetic and field examples. The synthetic example shows the detailed 

procedures and benefit of this approach. The field application in a structurally 

complex turbiditic reservoir shows the ability of the dual scale inversion to preserve 

important geologic features during history matching. 

5. We have presented the application of an approach for calibration of geologic models 

using transient well pressure behavior via high frequency asymptotic solution of the 

transient pressure equation and an arrival time inversion of the pressure wave front. 

The approach is computationally efficient because the arrival time sensitivities can 

be computed analytically using a single flow simulation. 

6. The asymptotic solution of the transient pressure equation is defined along 

trajectories which are ray paths of the wave equation. We have made a comparison 

of the pressure trajectories and streamlines and showed that for practical 

applications, these trajectories can be approximated by streamlines after stabilization 

of the pressure field. This is important because streamlines can be computed much 

more efficiently compared to pressure trajectories. The sensitivities are then 

approximated as 1-D integral along streamlines. 
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7. We have showed that for model calibration purposes, a sequence of multiwell 

pressure interference tests can be decomposed a series of individual tests with single 

active well. This significantly facilitates the trajectory computations and the 

identification of the pressure wave front arrival times.  

8. We have demonstrated the power and applicability of the model calibration approach 

using both synthetic and field examples. The field application with monitoring 

pressure data from permanent downhole gauges (PDG) shows the ability of the 

algorithm to analyze complex field tests and the role of interference tests in updating 

geologic models. Because pressure interference response is likely to be much faster 

compared to tracer tests, it is a very valuable tool for geologic model updating, 

particularly early in the field life. 

 

4.2 Recommendations 

 

In this work, we described the dual scale inversion approach to well production history 

matching. The coarse-scale inversion process showed the power and applicability in 

inversion process. Since the coarsening algorithm coarsens geologic model based on the 

given static geologic model only, the coarse-scale inversion scheme can be applied to 

other type of reservoir calibration approaches such as the Ensemble Kalman Filter and 

Markov Chain Monte Carlo simulation. With the coarse-scale approach, given geologic 

feature, which has significant information from other type of data such as geologic input, 

petrophysical data and seismic information, can be honored implicitly. In addition, 

coarse-scale is suit for production data integration because dynamic data from geologic 

model has low resolution. 
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NOMENCLATURE 
 

 B = between cell variation 

 di = data misfit for i-th dynamic data, i.e. well index  

 f´ = Buckley-Leverett frontal speed 

 H = total heterogeneity 

 mj = model parameter, i.e. permeability, for j-th cell in fine-scale system 

 mJ  = model parameter, i.e. permeability, for J-th cell in coarse-scale system 

 ni,j,k  = weight, bulk volume of cell i, j, k 

NX, NY, NZ = dimension of flow simulation model 

 pi,j,k = upscaling parameter, local slowness, for cell i, j, k 

 pC
i,j,k = upscaled average of pi,j,k 

 jip ,  = column average of pi,j,k 

 s = slowness 

 Sij = sensitivity coefficient regarding i-th dynamic data and j-th cell in fine-scale 

system 

 SiJ = sensitivity coefficient regarding i-th dynamic data and J-th cell in coarse-

scale system 

 W = within cell variation 

 τ = diffusive time of flight 

 τ̂  = neutral tracer time of flight 

 v = interstitial velocity 

 ζ = distance along trajectory 

 ψ = trajectory 

 tmax = peak arrival time of pressure 

 α = diffusivity coefficient 
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APPENDIX A 

 

RIGOROUS STREAMLINE TRACING AND ASSISTED PRODUCTION 

HISTORY MATCHING ALGORITHM (DESTINY) 

 

 

Robust streamline tracing and assisted production history matching algorithm 

(DESTINY) has been developed. In this appendix, we will investigate the overview, 

objectives and key new features of DESTINY. They are, then, followed by procedure of 

installation, how to set the interface file and finally example of streamline tracing and 

generalized travel time (GTT) inversion.  

 

A.1. Overview of DESTINY 

 

The key component of the dual scale inversion technique and the transient pressure 

history matching which are covered in chapter 2 and 3 is the computation of streamline 

trajectory and the time of flight. DESTINY is designed to compute the streamline 

trajectory and the time of flight from finite difference simulator. Fig. A.1 shows the 

overall work flow of streamline tracing and production history matching. Note that the 

description in this appendix is based on only ECLIPSE100 developed by Schlumberger 

for the simplicity of documentation although DESTINY has been interfaced to several 

commercial and in-house simulators such as VIP, E300 (black oil mode), MORES etc. 

 

A.1.1. Objectives 

 

The streamline provides several benefits in reservoir engineering section. First, it is a 

useful tool to check reservoir management. It can visualize the connectivity and the 

communication among wells or between well and aquifer. Second, sensitivity coefficient 

of local parameter can be computed easily from the streamline trajectory and the time of 
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flight. This point is quite obvious when it is compared with other inversion techniques, 

for instance, perturbation or adjoint state method (Cheng et al., 2008). Finally, it can be 

incorporated in stochastic history matching approach such as the covariance localization 

in the Ensemble Kalman Filter approach (Devegowda et al., 2007) or 2-stage Markov 

Chain Monte Carlo (MCMC) technique (Ma, 2008). 

 The main objectives of DESTINY are to trace streamline even in complex corner 

point and faulted (non-neighbor connection) geometry as well as the sensitivity 

coefficient computation of generalized travel time inversion (He et al., 2002; Cheng et 

al., 2005; Oyerinde et al., 2007).  
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Run Forward Simulation (ECLIPSE)

Scan Simulation Result (SUMMARY)
(Define All Wells)

Convergence
Check? Stop

YES

NO
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Scan Recurrent (RESTART)
(Flux, Well Type/Status, Completion, NNC Flux)

Streamline Tracing

Sensitivity Computation (Binary files)
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Forward Simulation
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Fig. A.1 Overall of flow chart of DESTINY 
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A.1.2. Key New Features 

 

The previous version (Jimenez et al., 2007) was designed to obtain input information 

from files made by user. User needed to prepare the geometry data, the schedule data for 

completion and observed history data. Commercial simulator such as ECLIPSE, 

however, has much of flexibility to describe the flow simulation model. It requires huge 

amount of coding to catch up with all of flexibility. Instead of scanning input 

information made by user, DESTINY scans necessary data to trace streamline from 

output files from simulator. It enables user to utilize full of flexibility for description of 

flow simulation model and also helps robust streamline tracing because the format of 

simulation output files is always fixed.  

 

A.1.2.1. Geometry Data Input 

 

For the purpose of tracing streamline, we need two of necessary information; one is 

geometry data and the other is flux or velocity data. After flow simulation, simulator 

generates the grid file (*.GRID) with general corner point geometry system. DESTINY 

scans the grid file to extract geometry information automatically. 

 

A.1.2.2. Schedule Data Input 

 

Schedule data includes two of important information in view of streamline tracing. One 

is the completion data and the other is observed history for history matching application. 

The completion data is a kind of dynamic information, in other words, it can change 

during full simulation time because of infill drilling, re-completion and switching from 

producer to injector etc. The restart files of simulator (*.X0001, *.X0001 etc.) contain the 

completion information. They also include well type and well status (OPEN/SHUT). 

DESTINY scans these data and decides starting and ending location of streamlines. 
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A.1.2.3. Well Performance Data 

 

In order to integrate production data to flow simulation model via history matching, we 

need to compute the difference of observed history and simulated result. These 

information is available in the summary files (*.S0001, *.S0002 etc). When we describe 

the field history in flow simulation model, the keyword of WCONHIST will be used 

typically. In this case, DESTINY can scan observed history from the summary files. 

Then, it calculates the discrepancy of the observed history and simulated result. 

 

A.1.2.4. Robust Streamline Tracing under Non-Neighbor Connection  

 

There was a technical issue of tracing streamline in faulted geometry, what is called, 

non-neighbor connection (NNC). By design, ECLIPSE does not report the natural 

indexing NNC. The meaning of the natural indexing NNC is that two grid blocks with 

consecutive indexes are adjacent to each other but they are in NNC. To trace streamlines 

in faulted geometry, all of NNC information including natural indexing NNC and NNC 

flux are required. The natural indexing NNC is detected and recognized from geometry 

data, specifically, from the discrepancy of z-coordinate value of each grid.  

 

A.1.2.5. Object-Oriented Programming 

 

For the management and the future development of DESTINY, it has been re-organized 

to be more object-oriented. With this feature, we can add the new functionality or 

interface to other type of finite simulator easily. It helps also clear the memory leakage 

problem which will be discussed next section. 
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A.1.2.6. Memory Leakage Issue 

 

Though it is quite related to programming not to reservoir engineering, when the huge 

field case is applied, it needs to be considered. Now DESTINY is improved in this 

regard by object-orientation modulation and by using built-in standard library in C++ 

complier. 

 

A.1.3. Important Items Regarding Setting up ECLIPSE Deck for DESTINY 

 

Several items which user needs to keep in mind will be listed up first. Details of setting 

up DESTINY will be discussed later. 

 

A.1.3.1. Specification of Summary Files 

 

Typically, commercial or in-house simulator has the option for specifying the summer 

information. The summary data consist of well performance such as the total production 

amount, production rate of each phase and fractional flow etc. In ECLIPSE case, user 

can specify the output data in SUMMARY section in the input deck. Since DESTINY 

extracts the list of all well name from the summary specification file, *.SMSPEC, user 

needs to specify more than one output at least. For instance, user has to specify in the 

input deck as following 
 

SUMMARY 

WWCT / 

WWCTH / 

 

 If the history matching module (i.e. GTT inversion) is applied as described later, 

it is highly recommended to use WCONHIST instead of WCONPROD in the 

SCHEDULE section. Then, DESTINY will extract the observed well production history 
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from SUMMARY file automatically. In this specific case, user is advised to include 

WWCTH also in SUMMARY specification as shown the example above. 

 

 

A.1.3.2. Setting up the Reporting SUMMARY/RESTART Output Files 

 

Since tracing streamline relies fully on the output of the external finite difference 

simulator, user needs to set the option of reporting output in the input deck correctly. At 

the current version, DESTINY expects the output files such as *.S0001, *.X0002, in the 

binary format at each simulation time step and these files should be separate not unified 

(i.e. *.UNSMRY, *.UNRST). Here are the key specifications of the output files from 

simulator. 

 

• Binary Format Not Ascii Format 

• Separates File Not Unified File 

• Report at Each Simulation Time Step  

 

Destiny reads the restart files to allocate the fluxes needed to trace the 

streamlines. User can specify these conditions with the following setting. 
 

RPTSOL 

RESTART=2 / 

 

RPTRST 

'BASIC=3' FREQ=1 FLOWS PRESSURE ALLPROPS / 

 

'BASIC=3': restart files are created every nth report time with frequency 

"FREQ=n" 

FREQ=1 

FLOWS: Output of inter-block flows 
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PRESSURE: Output of grid block pressures 

ALLPROPS: output includes fluid densities, viscosities, formation volume factors, 

and phase relative permeabilities 

 

A.1.3.3. What User Needs to Avoid in ECLIPSE 

 

Since commercial simulator has tremendous flexibility to describe all kinds of field 

situations, several options in ECLIPSE are not acceptable and causes failure in tracing 

streamlines. Those are listed up below 

 

• Local Grid Refinement 

• Well Located in Non-Neighbor Connection  

 

Unfortunately, the current version of DESTINY is not able to handle those condition, so 

user needs to make sure to avoid them. 

 

A.2. Compilation and Running of DESTINY 

 

A.2.1. Creating a DESTINY Workspace 

 

The DESTINY distribution consists of a C++ source code (*.h and *.cpp files) and two 

synthetic decks to run the application using ECLIPSE as forward simulator. After 

unzipping the distribution a folder called ..DESTINY/ should be available. There will be 

two sub-folders ..DESTINY\APPLICATIONS and ..DESTINY\DESTINYS, which contains 

the input decks and source code to run the application. The compiler used for DESTINY 

development is Microsoft Visual Studio 2005 in WINDOWS system. However, different 

compiler and operating system such as g++ in LINUX system was tested successfully 

with minor changes. The default environment of compiler and system is Microsoft 

Visual Studio 2005 in WINDOWS 
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The first step is to create a workspace under your C++ compiler. Go to 

File→New→Project provide DESTINYM as project name and select the parameters as 

shown in the following screen, 

 

 

Fig. A.2 New Project on Visual Studio 

 

After pressing OK the Win32 Application Wizard panel will appear, click on Application 

Settings and select the settings as shown in the following screen, 

 

 
Fig. A.3 Application Settings Visual Studio 
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After pressing Finish you should have an empty workspace that should look like, 

 

 
Fig. A.4 Empty Workspace in Visual Studio 

 

Go to Project→Add existing Items and from ..DESTINY\DESTINYS add all 

source files. From the Solution Explorer double click the file DESTINY3.cpp; this is the 

main program file where all input objects/data are loaded to DESTINY. You are now in 

position to build the entire DESTINY workspace; go to Build→Build DESTINYW and 

the compiler will generate the executable and all *.obj files. 

 

A.2.2. Running DESTINY 

 

There are several ways to run DESTINY; the simplest one is just copying the 

executable ../DESTINY/DESTINYW/DEBUG/DESTINYW.exe to the folder where the 

DESTINY input deck lives. However, sometimes it will be required to run the application 

from the compiler or the command line in order to check the performance of the tracing 
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and inversion. This could the case if an error on the input is detected, or an unexpected 

tracing/inversion error occurs. 

By default DESTINY reports results on execution sequences after each major 

operation is done. The user will always get comments whether the operations are 

successful or unsuccessful. These comments are vital to solve any execution error and 

the user should always have them available. If the user is running DESTINY for the first 

time and he/she is not familiar with C++ compilers, it is recommended to follow the 

guidelines under command line execution. C++ users could report the specific functions, 

classes, stack status or any reporting features available while debugging. 

 

A.2.2.1. Running from the Command Line.  

 

This is a very helpful and easy way of running DESTINY; in this running mode a log 

file will be created to track the application execution sequence. Open a command prompt 

window and go the folder where the DESTINY input deck lives. Make sure you have the 

executable under the same folder and on the command line write DESTINYW.exe -> 

DESTINY.LOG (as shown on the snapshot). This system call will create a file with the 

entire DESTINY command line output. 

 

 
Fig. A.5 Running DESTINY on command line 
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A.2.2.2. Running from compiler.  

 

The first thing to do is ensuring that your compiler working directory is set to the same 

folder where the DESTINY input deck lives. Go to Project→DESTINYW Properties and 

under the Debugging panel choose the proper working directory (as shown in the 

following snapshot) 

 

 
Fig. A.6 Running DESTINY from the Debug Mode Visual Studio 

 

You can now go to Debug→Start and use the compiler to track the details of DESTINY 

execution. 

 

A.3. DESTINY Input Deck 

 

Basically, any DESTINY input deck requires the following information: 

 

• Grid Properties 

• Simulator Settings 

• Tracing and Inversion Settings 
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The previous information must be defined in a single file called DESTINY.DIP. 

All input is handled via keywords that will call specific DESTINY scanning functions. 

These readers will open the simulator input deck files and will scan and feed DESTINY 

objects with all required information. When providing filenames and directory paths, 

avoid using special characters (i.e., ! @ # $ % ^ .); this will create reading errors while 

opening files. The details and a brief description of all these keyword will be presented 

next. 

 

A.3.1. DIP_DATA_FILE 

File with general model information 

 

ALL Users: This keyword defines the file holding the main ECLIPSE input deck. This 

file will be used to make the system call to run ECLIPSE in batch mode and should have 

the full ECLIPSE input data structure. DESTINY will look inside this file to read 

saturation and fluid functions. It will also extract the regions used to associate each PVT 

and Saturation table for each cell. The following is a list of recognized keywords, 

 

Saturation functions:  SGFN, SGOF, SOF2, SOF3, SWFN and SWOF 

PVT functions:  PVCDO, PVCO, PVDG, PVDO, PVTO and PVTW 

 

C++ users: All these properties will be stored under the CDIPRockFluid and 

CDIPReservoir class. These properties are required to define mobility and several 

displacement properties required for tracing and inversion procedures. 

 

Example: DIP_DATA_FILE 

C:\DESTINY\APPLICATIONS\ECLIPSE\ECLIPSE.DATA 
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A.3.2. DIP_PROP_FILE #INT  

Files with reservoir grid properties 

 

All Users: This keyword defines the files that hold the reservoir grid properties. The 

keyword is followed by an integer (#INT) on the same line. This integer defines the 

number of subsequent property files names to be stored. For each property file there 

must be a preceding line defining the selected simulator property convention 

(SCALAR_ECLIPSE_TYPE). These file names will be used to overwrite the updated grid 

properties during inversion process. DESTINY will scan the grid property from *.INIT 

file not from these files directly. The only required properties under this record are 

porosity and permeability. Porosity will be used in time of flight calculations and 

permeability on the inversion updates. 

 

C++ users: All defined static properties will be stored under the m_vStatic member of 

the CDIPGridCPG class. Any grid associated property can be defined with these set of 

keywords and used in any part of the code. 

 

Example: DIP_PROP_FILES 2 

SCALAR_ECLIPSE_TYPE 

C:\DESTINY\APPLICATIONS\ECLIPSE\PERMX.GRDECL 

SCALAR_ECLIPSE_TYPE 

C:\DESTINY\APPLICATIONS\ECLIPSE\PORO.GRDECL 
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A.3.3. General DESTINY Settings 

 

A.3.3.1. DIP_STREAMLINE_NUM  

Number of Streamlines and output 

 

All Users: The keyword is followed by a line with two records. The records are defined 

as follows, 

1st INTEGER  Number of Streamlines to be used 

2nd BOOLEAN Defines if output files with streamlines is desired. The 

default streamline output in DESTINY satisfies binary 

FLOVIZ/PETREL formats 

 

Example: DIP_STREAMLINE_NUM 

   500      TRUE 

 

A.3.3.2. DIP_FORWARD_SIMULATOR  

Defines simulator to be used 

 

All Users: The keyword is followed by a line with three records. The records are defined 

as follows, 

1st STRING Defines which simulator is to be used for tracing and 

inversion. DESTINY is interfaced to work with 

ECLIPSE/VIP/FRONTSIM (Use simulator name to select 

the proper system calls) 

2nd BOOLEAN Defines if utility/debug files are required (TRUE:: 

REMOVE  ||  FALSE::KEEP). It is recommended to leave 

this record as FALSE 

3rd STRING Defines which format is used for Summary / Restart files 

from simulator (BINARY / ASCII). Default is BINARY. 
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Example: DIP_FORWARD_SIMULATOR 

ECLIPSE     FALSE     BINARY 

 

A.3.3.3. DIP_TRACING_SETTING 

Defines setting for tracing 

 

All Users: The keyword is followed by a line with nine records. The records are defined 

as follows, 

1st STRING Phases involved in forward model. This will set DESTINY 

readers to scan phase fluxes as reported by the selected 

simulator. Use mnemonics OIL, WAT and GAS in any 

order followed by PHASE 

2nd STRING Phases involved in tracing. This will set DESTINY to 

perform tracing based on single/multi phases. Use 

mnemonics OIL, WAT and GAS in any order followed by 

PROD if streamlines are starting from producers only. Use 

mnemonics OIL, WAT and GAS in any order followed by 

SINK if streamlines are starting from any cell. 

3rd STRING Defines if we want to RUN the forward simulator or not. If 

STOP is selected there must be an available set of restart 

files following ECLIPSE formatting. 

4th STRING Defines if tracing is to be done at (ALL) schedule dates or 

at a (SINGLE) date. 

5th FLOAT If SINGLE date tracing is selected in 4th argument, this 

record sets the schedule date in which tracing is to be done. 

6th STRING Sets a flag to request (ASCII/BINARY) output from 

streamlines. No action will be taken when BINARY is 

selected. 
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7th STRING Defines if the number of streamlines per completion is 

defined based on flux (STCFLUX) or should be uniformly 

(STCUNI) distributed. Default is defined based on fluxes, 

even if the keyword is not included in DIP file. 

8 th STRING Defines the type tracing to tackle faults and NNC 

connections. The default in DESTINY for inversion 

purposes is POLLOCK's construction (POLLOCK/ 

MODPOLLOCK/LBLJIMENEZ) 

9 th STRING Defines the type discretization for tracing. The default in 

DESTINY is HORIZONTAL. (HORIZONTAL/ 

VERTICAL/ SQUARE)  

10 th BOOLEAN Defines if inversion process is applied (TRUE: TRACING 

ONLY || FALSE: INVERSION APPLIED). It is recom-

mended to leave this record as FALSE 

 

By default DESTINY considers the total velocity to start tracing streamlines 

from producers until any source is reached. It is also possible to generate single-phase 

based streamlines which can either start from the producers or from any cell with a phase 

fractional flow greater than zero (SINK suffix in 2nd keyword). If the SINK option is 

selected an additional set of output files will be generated containing such streamlines. 

However, history matching module, i.e. GTT, is not available with sink tracing. 

By setting the 3rd keyword to STOP, DESTINY will not make the system call to 

run the simulator. This running option is quite handy after running a forward model and 

generating single/multi phase streamlines is desired. 

 

Example 1: Two phase model with total flux tracing done from producers, 

simulator is run and ascii files are generated. The output 

streamlines will be based in the total flux field 

DIP_TRACING_SETTING 
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OILWATPHASE    OILWATPROD    RUN   ALL    0    ASCII    STCFLUX    

POLLACK    HORIZONTAL    TRUE 

 

Example 2: Three phase model with water tracing done only from producers, 

simulator is not run. The output streamlines will be based only on 

water at producers 

DIP_TRACING_SETTING 

OILGASWATPHASE     WATPROD      STOP     ALL     0    BINARY    

STCFLUX  LBLJIMENEZ    SQUARE    TRUE 

 

Example 2: Three phase model with water tracing done from producers and 

cells with fractional flow greater than zero. The output will be in 

two files, one containing the streamlines only from the producer; 

the other file will have the streamlines starting from any cell 

DIP_TRACING_SETTING 

OILWATGASPHASE     WATSINK      STOP     ALL     0    BINARY    

STCUNI   POLLACK    HORIZONTAL    TRUE 

 

A.3.3.4. DIP_SENS_TUNING 

Defines setting for sensitivity tuning 

 

All Users: The keyword is followed by four lines with three records on each line. The 

records are defined as follows, 

1st STRING When set to TRUE sensitivity normalization for 

equalization of the sensitivities is applied. The normali-

zation facilitates the inversion algorithm based on data 

misfit. 

2th STRING When set to PERCCUTOFF, a percentile based cutoff will 

be applied to WWCT sensitivities on a well-basis. It is used 
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to reduce unusual high and low sensitivity values. Default 

record is NONE 

3th FLOAT Defines the lower percentile for the WWCT sensitivity 

cut-off. 

4th FLOAT Defines the upper percentile for the WWCT sensitivity 

cut-off. 

5th STRING When set to TOFCUTOFF, a time of flight based cutoff 

will be applied to WWCT sensitivities on a well-basis. 

Used to eliminate the sensitivities in stagnation region 

which may cause distort inversion performance. Default 

record is NONE 

6th FLOAT Defines the threshold of the time of flight for the WWCT 

sensitivity cut-off. 

 

Example: DIP_SENS_TUNING 

SENSNORM   PERCCUTOFF   0.05   0.95   TOFCUTOFF   2000 

 

A.3.3.5. DIP_DATA_MISFIT  

Defines misfit tolerance to stop inversion 

 

All Users: The keyword is followed by a line with two records. The records are defined 

as follows, 

1st FLOAT Overall travel time misfit defined along all wells 

2nd FLOAT Overall amplitude misfit defined along all wells 

 

These values will be used to stop the inversion whenever the specified tolerance is 

satisfied.  

 

Example: DIP_DATA_MISFIT 
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-- TIMETOL    WWCTTOL 

       10.0             0.5 

 

A.3.3.6. DIP_INV_TUNNING  

Defines tuning parameters for running LSQR minimization 

 

All Users: The keyword is followed by a line with four records. The records are defined 

as follows, 

1st FLOAT Number of LSQR iterations 

2nd FLOAT Decrease factor to be applied over the norm and smoothing 

constraints through iterations. 

3rd FLOAT Maximum weight given to permeability changes at each 

iteration. 

4th FLOAT Minimum weight given to permeability changes at each 

iteration. 

 

Example: DIP_INV_TUNNING  

30.0 1.0 1.0 1.0  

 

A.3.3.7. DIP_INV_CONSTRAINTS 

Defines norm and smoothing constraints to minimize objective function 

 

All Users: The keyword is followed by three lines with three records on each line. The 

records are defined as follows, 

1st FLOAT FLOAT FLOAT Norm constraint  

2nd FLOAT FLOAT FLOAT Horizontal smoothing constraint 

3rd FLOAT FLOAT FLOAT  Vertical smoothing constraint 
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The inversion constraints on this version of DESTINY are only meant to update 

permeability. Only the first values on each line will be considered during the 

minimization of the objective function. The other values are reserved for further 

development when integrating additional reservoir parameters. 

 

Example: DIP_INV_CONSTRAINTS 

-- DAMPING1  DAMPING2  DAMPING3 

     1.0       0.0       0.0 

-- HSMOOTH1  HSMOOTH2  HSMOOTH3 

     0.8       0.0       0.0 

-- VSMOOTH1  VSMOOTH2  VSMOOTH3 

     0.0       0.0       0.0  

 

A.3.3.8. DIP_INV_INTEGRATION #INT 

Defines type of production data integration 

 

All Users: The keyword is followed by an integer (#INT). This integer defines the 

number of subsequent lines to be scanned. The records are defined as follows, 

1st STRING String to integrate production water-cut (WWCT) 

 

This version of DESTINY is enabled to integrate production water-cut. The gas oil ratio 

integration is under current development. The new development will be able to perform 

either single or joint production integration. 

 

Example: DIP_INV_INTEGRATION 1 

WWCT  

 

A.3.3.9. DIP_INV_SETTING 

Defines setting for inversion 
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All Users: The keyword is followed by a line with ten records. The records are defined 

as follows, 

1st INTEGER Number of single travel time iterations. Whenever this 

number is greater than zero the 4rd record must be set to 

TRUE 

2nd INTEGER Number of generalized travel time iterations. By default 

single travel time iterations will be run first. 

3rd INTEGER Number of amplitude history match iterations.  

4th BOOLEAN Boolean to enable single travel time sensitivity 

calculations. Must be set to TRUE whenever 1st record is 

greater than zero. 

5th FLOAT This is the WWCT value selected for single travel time 

misfit evaluation. At every producing well, whenever the 

WWCT reaches this value both simulated and observed 

times will be extracted and used for misfit and sensitivity 

calculations. 

6th BOOLEAN This Boolean sets a flag for printing ASCII files with 

every cell streamline-based sensitivity. 

7th BOOLEAN Reserved keyword always set this record to TRUE. 

8th STRING PERM_RANGE enables user to set permeability range 

during history match. By default, initial permeability field 

range is used. (NONE) 

9th FLOAT Minimum permeability during history match. 

10th FLOAT Maximum permeability during history match. 

 

By setting the 1st , 2nd  and 3rd records to zero DESTINY will run under tracing 

mode only. The production sensitivities and misfit at the wells could be generated and 

reported to ASCII files. This running mode could be easily interfaced to any other 
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streamline-based history matched workflow (i.e., assisted history match, Ensemble 

Kalman Filtering, etc.). If the inversion module is applied, in other words, setting the 1st , 

2nd  and 3rd records to non-zero at least one of them, 10th item in DIP_TRACING_ 

SETTING should be FALSE. 

 

Example 1: Only tracing will be performed, by default GTT sensitivities will 

be calculated and printed out 

DIP_INV_SETTINGS 

     0     0     0     FALSE     0.2     TRUE     TRUE     NONE     0.001     

80000 

Example 1: GTT history matching will be performed by 9 iterations 

sensitivities will be calculated and printed out 

 

DIP_INV_SETTINGS 

     0     9     0     FALSE     0.2     TRUE     TRUE     NONE     0.001     

80000 

 

A.3.3.10. DIP_INV_UPSCALE_SETTING 

Defines setting for inversion 

 

All Users: The keyword is followed by a line with ten records. The records are defined 

as follows, 

1st BOOLEAN Flag for Dual scale inversion option (TRUE / FALSE). If 

FALSE is used, following records will be ignored. 

2nd STRING PERCCUTOFFUPSCALE enables user to set percentile 

cutoff of coarse-scale sensitivity. Default is NONE. 

3th FLOAT Defines the lower percentile for the WWCT coarse- scale 

sensitivity cut-off. 
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4th FLOAT Defines the upper percentile for the WWCT coarse- scale 

sensitivity cut-off. 

 

Example: DIP_INV_UPSCALE_SETTINGS 

    TRUE     PERCCUTOFFUPSCALE     0.1     0.9  

 

A.4. DESTINY Output 

 

DESTINY provides a lot of output which is very useful to monitor the performance of 

both tracing and inversion. The streamline output is compatible with a wide range of 

commercial visualization packages. DESTINY generates streamline files which can be 

loaded to FLOVIZ, PETREL, TECPLOT. The modularity and structure of the code 

would allow a fairly simple implementation satisfying any required specifications in 

both ASCII and binary format.  

The inversion output offers enough information to know the status of the history 

matching performance at any iteration. DESTINY has implemented functions to monitor 

the permeability changes during the inversions iterations. Descriptive statistics can be 

generated to monitor the moment’s behavior on field-wide or on a facie-based basis if 

available. 

 

A.4.1. Streamline Output 

 

A brief summary of the streamline tracing output is presented next. For more details 

refer to the tracing tutorial (Section 5) 

 

• SLNXXX Files: When the binary output is selected, DESTINY will generate 

*.sln files for every simulation time step. ECLIPSE users can use the restart files 

and the *.sln files to load the entire simulation workspace to FLOVIZ or PETREL.  
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• TECPLOT Files: These files are available when the ASCII option is selected 

under DIP_TRACING_SETTING. A whole new group of output files will have 

the suffix _TECPLOT added. The ASCII file will follow the TECPLOT polyline 

free-format with an associated property. The defaulted property is the time of 

flight from the producers. However, the writing functions can be easily modified 

to print out any trajectory based property. 

 

• DYNAMIC GRAPHICS Files: These files are available when the ASCII option 

is selected under DIP_TRACING_SETTING. A whole new group of output files 

will have the suffix _COVIZ added. The ASCII file will follow the DYNAMIC 

GRAPHICS free-format structure. Similar to TECPLOT, the writing functions 

can be easily modified to print out any trajectory based property. 

 

A.4.2. Inversion Output 

 

• Updated permeability files: When loading the initial simulation deck, DESTINY 

will store the permeability file defined under DIP_PROP_FILE. After running 

the first inversion iteration this file will be modified and by the end of each 

iteration, the updated permeability will be written out (the file will have a suffix 

with the iteration number in which the permeability was updated). 

 

• resinv.obj: This file has the objective function behavior through all iterations. It 

has two columns representing the travel time and amplitude misfit defined at all 

producing wells included in the data integration 

 

• resInv.wwctX: It contains the simulated and observed production water-cut for 

all wells included in the project. At the header of each well the travel time misfit 

will be written out. This file is generated at the end of each iteration. 
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• dynamic.bin: Binary file containing the production sensitivities. This file is used 

by LSQR to perform the objective function minimization. 

 

• dynamic.ascii: ASCII file containing the production sensitivities. This file is 

provided for history matching applications where streamline-based sensitivities 

are used as complementary information. 

 

A.5. Streamline Tracing Examples 

 
In this section a 5-spot synthetic (Fig. A.7) model will be used to illustrate how 

DESTINY generates streamlines using ECLIPSE. We will show how to generate 

streamlines based on the total velocity and also based on single phase fluxes. 

Visualization output using FLOVIZ/PETREL/TECPLOT will be presented for all cases. 

 

 
Fig. A.7 Five spot synthetic example 

 

After receiving your DESTINY distribution, the input deck for this example is 

under ..\DESTINY\APPLICATIONS\ECL\INPUT. The input files consist of the following 

files: 
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ECLIPSE.DATA 

ECLSCHEDULE.DATA 

DESTINY.DIP 

ECLIPSEGRID.GRDECL 

PERMX.GRDECL 

PORO.GRDECL 

 

Copy all these files under ..\DESTINY\APPLICATIONS\ECL_SYN. This will be 

your working space if you are running the application from the compiler. For this 

particular example we will use the executable generated under the ../DESTINYW/Debug/ 

(make sure you copy the executable to the working directory). 

 

A.5.1. Total Flux Tracing (FLOVIZ Binary Files) 

 

We will start by running the tracing using the total velocity field. The setting under 

DIP_TRACING_SETTING and DIP_INV_SETTINGS inside the DESTINY.DIP file must 

be as follows. Since we are only doing tracing the inversion setting parameters can be 

defaulted to what appears on the file 

 

DIP_TRACING_SETTING 

OILWATPHASE     OILWATPROD      RUN     ALL     0    BINARY    STCFLUX    

POLLOCK   HORIZONTAL   TRUE 

 

DIP_INV_SETTINGS 

0       0       0      FALSE          0.2          FALSE               TRUE                NONE          

0.1           80000    

 

After running the executable, you should see the command prompt window with 

the execution comments. ECLIPSE will run first and then the streamlines will be 
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generated. At the end of the execution *sln files will be available and you should be able 

to visualize streamlines. (Fig. A.8) shows the streamlines and oil saturation using 

FLOVIZ at all schedule dates. 

 

    

    
Fig. A.8 Streamline Trajectory (Color represents water saturation) 

 

A.5.2. Total Flux Tracing (ASCII Files) 

 

Ascii files can be obtained to visualize in TECPLOT or DYNAMIC GRAPHICS by 

changing the DIP_TRACING_SETTING. Note that there is no need to run the simulator 

again since the flux files are already available. Change the tracing setting inside 

DESTINY. DIP to 

 

DIP_TRACING_SETTING 

OILWATPHASE     OILWATPROD      STOP     ALL     0    ASCII    STCFLUX    

POLLOCK   HORIZONTAL   TRUE 
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Fig. A.9 Time of flight from the producers 

 

 

After running the executable again, a new group of files with the suffix 

_TECPLOT and _COVIZ will be available. (Fig. A.9) shows the streamlines and time of 

flight from producers using TECPLOT at the first schedule date 

 

A.5.3. Water Phase Tracing (FLOVIZ binary files) 

 

Let’s generate streamlines based only on the water velocity. Let’s first generate 

streamlines starting from the producer only. Again, there is no need to run the simulator 

since the restart files are available, change the tracing setting as follows 

 

DIP_TRACING_SETTING 

OILWATPHASE     WATPROD      STOP     ALL     0    BINARY    STCFLUX    

POLLOCK   HORIZONTAL   TRUE 

 

 

Run the executable again and load the streamlines to FLOVIZ. (Fig. A.10) shows 

the water streamlines starting only form the producers. This set of streamlines is only for 
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visualization purposes. Note that the water front is not fully defined with these 

streamlines; however, the snapshots show how the water is breaking through in the 

producers. 

 

 
Fig. A.10 Water Phase Streamlines (Color represents water saturation) 

 

The second phase-tracing alternative is considering all cells as potential sinks. In 

this example all cells with a water fractional flow greater than zero will be used as 

starting points for tracing. In big models, considering all cells will lead to huge files 

depending on the size of the grid. These starting points can be modified only inside the 

code; C++ users can go to CDIPStreamCalc::streamLineTraceSinkCenter and modify 

the fractional flow condition to define a cell as a starting point.  

Continuining with the example, change the tracing setting as follows 

 

DIP_TRACING_SETTING 

OILWATPHASE     WATSINK      STOP     ALL     0    BINARY    STCFLUX    

POLLOCK   HORIZONTAL   TRUE 
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This will enable the tracing stating from the cell centers and will create an additional set 

of *.sln files with the suffix SINK. After loading the streamlines to FLOVIZ they should 

look like (Fig. A.11), 

 

 
Fig. A.11 Water streamlines traveled from the middle of the cells (Color represent time of flight 

from Injector) 

 

A.6. Inversion Example 

 

In this section we will use the 5-spot synthetic model used on the tracing section to 

illustrate how DESTINY integrates production water-cut using ECLIPSE. 

The input deck for this example is the same as for the tracing example. Clean 

your working folder ..\DESTINY\APPLICATIONS\ECL_SYN and copy the input files 

again. Inside DESTINY.DIP set the following settings, 

 

DIP_TRACING_SETTING 

OILWATPHASE     OILWATPROD      RUN     ALL     0    BINARY    STCFLUX    

POLLOCK   HORIZONTAL   FALSE 
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DIP_INV_SETTINGS 

     0       9       0       FALSE          0.2          TRUE        TRUE     NONE     0.001     

80000 

 

It is important to set the tracing to the default option considering total flux and 

streamlines starting from producers. For this example nine GTT iterations will be 

executed. Note that ASCII output is requested for the well sensitivities. 

After running ECLIPSE the file resinv.obj shows the initial prior model misfit. 

The travel time misfit is 538 days and the amplitude misfit is 22.248. The model was 

initialized enumerating pressure and water saturation to constant values. All producers 

were constrained by liquid rate (600 STB/D) and the injector by water rate (2400 

STB/D).The details of the forward run can be found in ..\APPLICATIONS\ECL_SYN 

The file resInv.wwct0 shows the initial production water-cut performance in all 

wells; this is shown in Fig A.12. The prior model is not able to fully represent the 

observed water breakthrough. The production data integration will be accomplished after 

decomposing the underlying fluid flow domain and define streamline-based sensitivities. 

Fig A.13 shows the streamline-derived sensitivity of each well at the first 

iteration. The color code represents the sensitivity magnitude for each cell. The red color 

represents high sensitivity values and the blue represents small values. Please note that 

these particular plots come from ASCII files named after each producer well name.  

After calculating the sensitivities the algorithm will perform an LSQR 

optimization and will update the permeability field. The main LSQR output is a 

deviation array that must be added to the current permeability model. The deviation is 

under the file resinv.deviation 
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Fig. A.12 Initial well water-cut match for heterogeneous five spot example 

 

 

PRODUCER 1 PRODUCER 2 PRODUCER 3 PRODUCER 4  
Fig. A.13 Producer sensitivities for heterogeneous five spot example, 1st iteration 

 

As soon as the permeability is updated, a new system call to ECLIPSE will be 

done and the new restart files will be used for both tracing and check for misfit 

convergence. Fig. A.15 shows how the permeability is changing through all iterations. 

After each iteration is finished a set of permeability files will be generated 

(PERMX.GRDECL1, PERMX.GRDECL2, etc) as shown Fig. A.14. 
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INITIAL ITERATION 1 ITERATION 2 ITERATION 3 ITERATION 4

ITERATION 5 ITERATION 6 ITERATION 7 ITERATION 8 ITERATION 9

INITIAL ITERATION 1 ITERATION 2 ITERATION 3 ITERATION 4

ITERATION 5 ITERATION 6 ITERATION 7 ITERATION 8 ITERATION 9  
Fig. A.14 Permeability field through iterations for heterogeneous five spot example 

 

 

 
Fig.A.15 Model changes after nine iterations 
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Fig. A.15 shows the difference between the final and initial permeability. This 

picture is an excellent diagnostic indicator when addressing the presence or absence of 

barriers, fractures or even faults. 

An important validation step for the new permeability is checking the moment’s 

behavior. Fig. A.16 shows the histogram for the permeability before and after the 

inversion. Clearly we can see that we’re preserving the first and second moments of the 

prior permeability. This is a crucial indicator towards reconciling water-cut and the 

geologic model. 
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Fig. A.16 Histogram comparison between final and initial permeability for heterogeneous five spot 

example. 

 

 

Fig. A.17 shows the water-cut match in all wells before and after the inversion. 

The initial water-cut is under the file resInv.wwct0 and the history matched is under 

resInv.wwct9. The travel time misfit was reduced from 538 days to 98 (that is an order of 

magnitude) and the amplitude misfit was reduced from 22.25 to 4.94 (more than an order 

of magnitude). 
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Fig. A.17 Water-cut history match before and after inversion for heterogeneous five spot example. 

 

Both travel time and water-cut misfit are presented in Fig. A.18. The objective 

function behavior is reported in file resinv.obj. 
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Fig. A.18 Objective function behavior for heterogeneous five spot example 
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APPENDIX B 

 

COMPUTATION OF TRAJECTORY FROM NUMERICAL GRADIENTS 

(HEUN’S METHOD) 

 

 

In chapter 3, the computation of the pressure front trajectory is critical because the 

asymptotic solution in Eq. 3.3 to the diffusivity equation is defined along the trajectory. 

In this appendix, we revisit Heun’s method (Kreyszig, 1993) and demonstrate the 

procedure of calculation the trajectory.  

 

Heun’s Method. First-order initial value problem such as Eq. 3.12 consists of a 

differential equation and a condition the solution must satisfy. For simple demonstration, 

let  

 

( ) ( ) 00,,' yxyyxfy ==        (B.1) 

 

assuming f to be such that the problem has a unique solution on some interval containing 

x0. Because we have the diffusive time of flight from numerical simulation result, we 

shall discuss ‘step-by-step methods’, that is, we start from the given y0 = y(x0) and 

proceed stepwise. 

 

⋅⋅⋅+=+=+= ,3,2, 030201 hxxhxxhxx     (B.2) 

 

where the step size h is a fix value. The computation in each step is done by the same 

formula. Such formulas are suggested by the Taylor series 

 

( ) ( ) ( ) ( ) ⋅⋅⋅+++=+ xyhxhyxyhxy ''
2

'
2

     (B.3) 
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Now for a small value of h, the higher powers h2, h3,⋅⋅⋅ are very small. This suggests the 

crude approximation 

 

( ) ( ) ( ) ( ) ( )yxhfxyxhyxyhxy ,' +=+≈+      (B.4) 

 

and we conclude the following approximation in general. 

 

( )nnnn yxhfyy ,1 +=+         (B.5) 

 

This is called the Euler-Cauchy method.  

 By taking more terms in Eq. B.3 into account we obtain numerical methods of 

higher order and precision. But there is a practical problem. If we substitute 

( )( )xyxfy ,'=  into Eq. B.3, we have 

 

( ) ( ) ⋅⋅⋅++++=+ ''
6

'
2

32

fhfhhfxyhxy      (B.6) 

 

Instead of computing cumbersome ''f , '''f , we replace it by computing f for one or 

several suitably chosen auxiliary values of (x,y). One of these method is the so-called 

‘Heun’s method’ or ‘improved Euler-Cauchy method’. In each step, we compute the 

auxiliary value first 

 

( )nnnn yxhfyy ,*
1 +=+         (B.7) 

 

and then the next value is 

 

( ) ( )[ ]*
11,,

2 ++++= nnnnnn yxfyxfhyy       (B.8) 
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In fact, we may say that in the interval from nx  to 2hxn +  we approximate the solution 

y by the straight line with slope ( )nn yxf , , and then we continue along the straight line 

with slope ( )*
11, ++ nn yxf  until x reaches xn+1. The Heun’s method is a predictor-corrector 

method because in each step we first predict a value by Eq. B.7 and then correct it by Eq. 

B.8.  

 

Pressure Front Trajectory Tracing Procedure. In the section 3.2.2, we adopt the 

Heun's method to compute the trajectory, ψ, which is the solution to the following 

differential equation (Vasco and Finsterle, 2004),  

 

( )xτ
ζ
ψ

∇=
d
d           (B.9) 

 

where the term ζ indicates the distance along the trajectory ψ. The gradient of diffusive 

time of flight, ∇τ can be obtained from numerical simulation.  

 As mentioned before, this type of numerical calculation requires the predefined 

step size or ‘marching length’ in this problem. We use ∆ζ as marching length. Supposing 

2-dimensional domain, we calculate the auxiliary point from ( )ii yx ,  with ∆ζ 
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where ix , iy  are x and y coordinates of iψ  respectively and *
1+ix , *

1+iy  are x and y 

coordinates of the auxiliary point, *
1+iψ . Also x∇ , y∇  denote the x-direction an y-
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direction gradients. Finally, the (i+1)-th step point is further refined using the gradient at 

ψ*
i+1 (corrector step) 
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APPENDIX C 

 

VERIFICATION OF THE PRESERVATION OF THE TOTAL 

HETEROGENEITY 

 

 

In chapter 2, we discussed an ‘optimal’ coarsening algorithm for the coarse-scale 

inversion. One of the characteristics of this method is preservation of the total 

heterogeneity. This is expressed in Eq. 2.5. The derivation presented here follows that of 

King et al. (2005) 

 Consider two vertically adjacent coarsened grids, a and b, at any intermediate 

coarsening step. PC, the property of the next step coarsened grid is given by  
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where, na, nb and C
aP , C

bP  are the weights and the properties of a and b (Fig. C.1).  
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Fig. C.1 Diagram for decrease of B during coarsening 
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In order to verify the preservation of the total heterogeneity, we will calculate the 

difference (decrease) of B in Eq. 2.3, δB. 
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where, P  is the average property of each column.  
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Fig. C.2 Diagram for increase of W during coarsening 

 

Now, we will calculate W in Eq. 2.1 of coarsened grid with a and b. (Fig. C.2) 
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In this manipulation, ∑
M

k
represent the summation of the fine grids properties within the 

intermediate coarse grid a and, similarly, ∑
N

k

, ∑
+NM

k

represent the summation of the fine 

grids properties within the intermediate coarse grid b and the coarsened grid with a and b 

respectively. Then, δW is given by  
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Thus, at any stage of sequential coarsening, the increase of W is always same as the 

decrease of B resulting from the coarsening. Before starting ‘optimal’ coarsening, B of 

the initial fine-scale geologic model is the same as the total variation, H. Thus, the total 

variation is preserved during sequential coarsening. 
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