

IMPROVED ALGORITHMS FOR DISCOVERY OF TRANSCRIPTION FACTOR

BINDING SITES IN DNA SEQUENCES

A Dissertation

by

XIAOYAN ZHAO

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2010

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4314984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Improved Algorithms for Discovery of Transcription Factor Binding Sites in DNA

Sequences

Copyright 2010 Xiaoyan Zhao

IMPROVED ALGORITHMS FOR DISCOVERY OF TRANSCRIPTION FACTOR

BINDING SITES IN DNA SEQUENCES

A Dissertation

by

XIAOYAN ZHAO

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Sing-Hoi Sze

Committee Members, Jianer Chen

 Vivek Sarin

 Ruzong Fan

Head of Department, Valerie E. Taylor

December 2010

Major Subject: Computer Science

iii

ABSTRACT

Improved Algorithms for Discovery of Transcription Factor Binding Sites in DNA

Sequences. (December 2010)

Xiaoyan Zhao, B.S., Beijing Normal University

Chair of Advisory Committee: Dr. Sing-Hoi Sze

Understanding the mechanisms that regulate gene expression is a major challenge in

biology. One of the most important tasks in this challenge is to identify the transcription

factors binding sites (TFBS) in DNA sequences. The common representation of these

binding sites is called “motif” and the discovery of TFBS problem is also referred as

motif finding problem in computer science. Despite extensive efforts in the past decade,

none of the existing algorithms perform very well.

This dissertation focuses on this difficult problem and proposes three new methods

(MotifEnumerator, PosMotif, and Enrich) with excellent improvements. An improved

pattern-driven algorithm, MotifEnumerator, is first proposed to detect the optimal motif

with reduced time complexity compared to the traditional exact pattern-driven

approaches. This strategy is further extended to allow arbitrary don’t care positions

within a motif without much decrease in solvable values of motif length. The

performance of this algorithm is comparable to the best existing motif finding algorithms

on a large benchmark set of samples.

iv

Another algorithm with further post processing, PosMotif, is proposed to use a string

representation that allows arbitrary ignored positions within the non-conserved portion

of single motifs, and use Markov chains to model the background distributions of motifs

of certain length while skipping these positions within each Markov chain. Two post

processing steps considering redundancy information are applied in this algorithm.

PosMotif demonstrates an improved performance compared to the best five existing

motif finding algorithms on several large benchmark sets of samples.

The third method, Enrich, is proposed to improve the performance of general motif

finding algorithms by adding more sequences to the samples in the existing benchmark

datasets. Five famous motif finding algorithms have been chosen to run on the original

datasets and the enriched datasets, and the performance comparisons show a general

great improvement on the enriched datasets.

v

DEDICATION

To my parents, for all their sacrifices, and to my husband, Xiaohua, for all his support

vi

ACKNOWLEDGEMENTS

I would never have been able to finish this dissertation without the guidance from my

committee members, help from friends and support from my family.

I would like to thank my committee chair, Dr. Sing-Hoi Sze, for his tremendous

guidance, support and patience for my study and research. He has helped me to

overcome many difficulties to complete this dissertation. I am also grateful to all the

members of my committee, Dr. Jianer Chen, Dr. Vivek Sarin and Dr. Ruzong Fan, for

their encouragement during my down times and helpful inputs to my research.

I would like to thank my officemates, Yue Lu and Qingwu Yang, for valuable

discussions and inputs. I would also like to thank Songjian Lu, Fenghui Zhang, and

Jiahao Fan, for their encouragement and help when I needed it the most. Thanks also go

to all my friends and the department faculty and staff for making my time at Texas

A&M University a great experience.

Finally, I would like to thank my husband, my parents and parents-in-law for their

continuous support and encouragement throughout all these years. My gratitude also go

to my children, Leyou and Leyao, who have brought unparalleled and numerous joy to

me while I am working on this dissertation.

vii

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

DEDICATION... iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS... vii

LIST OF FIGURES ... ix

LIST OF TABLES... xi

CHAPTER

 I INTRODUCTION... 1

 A. Background Overview... 1

 1. Introduction ... 1

 2. Probabilistic Approaches .. 4

 3. Combinatorial Approaches ... 6

 4. Evaluation Criteria and Benchmark Datasets 8

B. Our Contribution .. 10

 II IMPROVED PATTERN-DRIVEN ALGORITHMS.......................... 12

 A. Introduction... 13

 B. Problem Formulation... 16

 C. Algorithm when Mismatches are Allowed 19

 D. Algorithm when Mismatches are Not Allowed 23

 E. Performance .. 25

 1. Yeast Test Samples ... 25

 2. Tompa Benchmark Test Samples...................................... 29

 F. Discussion ... 32

viii

CHAPTER Page

III ALGORITHMS BASED ON SKIPPING NONCONSERVED

POSITIONS IN BACKGROUND MARKOV CHAINS 35

 A. Introduction .. 36

 B. Problem Formulation... 38

 C. Algorithms .. 42

 1. Pre-processing ... 42

 2. Algorithm Based on Skipping Non-conserved Positions 44

 3. Post-processing .. 47

 D. Performance ... 50

 1. Experiment Setups and Evaluation Criteria 50

 2. Benchmark Datasets .. 54

 E. Discussion ... 68

IV ALGORITHM BASED ON ADDING MORE DNA UPSTREAM

 SEQUENCES FROM OTHER SIMILAR PROTEINS.................... 70

 A. Introduction... 70

 B. Methods .. 71

 1. Running BLAST ... 71

 2. Processing the Results from BLAST................................. 72

 3. Modifying the Datasets by Adding More Sequences......... 73

 C. Performance .. 74

 D. Discussion... 77

V CONCLUSION AND FUTURE WORK .. 78

REFERENCES .. 81

VITA... 90

ix

LIST OF FIGURES

FIGURE Page

 1.1 The graphic representation of an aligned set of 350 E. coli promoters..... 3

 1.2 Example of different motif representations of five given binding sites 4

2.1 Algorithm MotifEnumerator for finding the e-values of all candidate mo-

tifs s of length l when mismatches are allowed but don’t cares are not

allowed... 21

2.2 Algorithm MotifEnumerator for finding the e-values of all candidate mo-

tifs s of length l when both mismatches and don’t cares are not allowed 25

3.1 Example of representing four occurrences of the Gal4 binding sites in the

yeast sample yst02r from Tompa et al. (2005) by a motif with eight igno-

red positions (represented by -).. 39

 3.2 Illustration of a 2nd order Markov chain M for strings of length l with

5' =l positions that are not ignored, represented by 521 ''' sss L after re-

moving the ignored positions. ... 40

 3.3 Algorithm to preprocess the background samples 43

 3.4 Illustration of the search tree T constructed for the sequence aagggaacagtc

 that stores all motifs of length 9 while ignoring the 2nd, 3rd, 5th and 8th

 positions, including the motifs a--g-aa-a, a--g-ac-g, g--a-ca-t and g--a-ag

-c that appear from the left to the right in the sequence. 45

3.5 The main PosMotif Algorithm to compute e-values of each candidate

motif from the input samples .. 46

 3.6 Algorithm to post-process the prediction results by merging motifs of

same occurrences or strictly consecutive occurrences 48

 3.7 Algorithm to combine the redundant motifs from the results after the

initial post-processing step ... 49

3.8 Performance of PosMotif and other motif finding algorithms on samples

 of type real from Tompa et al. (2005) .. 56

x

FIGURE Page

3.9 Performance of PosMotif and other motif finding algorithms on

samples that contain at least three genes in the SCPD database

(Zhu and Zhang, 1999) ... 58

3.10 Performance of PosMotif and other motif finding algorithms on

Samples from the ABS database (Blanco et al., 2006).............................. 59

3.11 Performance of MotifEnumerator and other motif finding algorithms

on samples of type real from Tompa et al. (2005) 62

3.12 Performance of MotifEnumerator and other motif finding algorithms

on samples that contain at least three genes in the SCPD database

(Zhu and Zhang, 1999) .. 63

3.13 Performance of MotifEnumerator and other motif finding algorithms on

samples from the ABS database (Blanco et al., 2006) 65

 3.14 Conservation rate of known sites and top motifs from motif finding

algorithms on each set of samples... 67

4.1 Performance of motif finding algorithms on samples that contain at least

 three genes in the SCPD database (Zhu and Zhang, 1999) and on the en-

riched version of samples .. 76

xi

LIST OF TABLES

TABLE Page

 2.1 Performance of MotifEnumerator on 30 samples constructed from

co-expressed yeast gene clusters from Tavazoie et al. (1999).................. 28

2.2 Performance of MotifEnumerator on benchmark test samples from

Tompa et al. (2005) when arbitrary don’t care positions are allowed

but mismatches are not allowed.Tompa Benchmark................................ 31

 3.1 nCC values of motif finding algorithms on samples of type real from

Tompa et al. (2005) within each species, including fly, human, mouse

and yeast. on individual species ... 56

3.2 P-value from the Wilcoxon matched-pairs signed-ranks test of PosMotif

on samples that contain at least three genes in the SCPD database

 (Zhu and Zhang, 1999) .. 57

3.3 P-value from the Wilcoxon matched-pairs signed-ranks test of PosMotif

on samples from the ABS database (Blanco et al., 2006) 60

 3.4 P-value from the Wilcoxon matched-pairs signed-ranks test of

MotifEnumerator on samples that contain at least three genes in the

SCPD database (Zhu and Zhang, 1999) .. 64

 3.5 P-value from the Wilcoxon matched-pairs signed-ranks test of

MotifEnumerator on samples from the ABS database 66

1

CHAPTER I

INTRODUCTION

A. Background Overview

1. Introduction

In molecular biology, transcription is the synthesis of a single-stranded RNA molecule

using the DNA template (one strand of DNA is transcribed). The regulatory sequences

are stretches of DNA sequences which are binding sites for RNA polymerase and its

accessory molecules, and a wide variety of transcription factors. Together, the regulatory

sequences with their bound proteins act as molecular switches that determine the activity

state of the gene e.g., OFF or ON. These binding sites are located in the regulatory

region of the gene and a single transcription factor can be bound to different binding

sites that have different underlying DNA sequences. Motif is the common representation

of these binding sites. The discovery of motifs will allow the biologist to understand the

complex mechanism that regulates gene expression. However, it is very difficult due to

the characteristics of real input samples. These are:

1. The length of binding sites is unknown. It is usually 5-12, but can be up to 30.

2. The binding site sequence preference is not exact. There may be some mismatches.

3. The majority of motifs are unknown to us.

This dissertation follows the style of Journal of Computational Biology.

2

4. Samples with biased nucleotide composition.

5. Corrupted samples (not every sequence contains a motif).

6. Regulatory sites can lie on either DNA strand.

A DNA motif is generally defined as a recurring pattern within a sequence of

nucleotides. In real DNA sequence, it is usually a short segment that occurs frequently,

but is not required to be an exact copy for each occurrence. A Motif can be visually

represented by a motif logo (Figure 1.1), which is a summary of the possible nucleotide

strings that correspond to the same motif. The motif logo length equals the length of

those strings and, for each position, the logo represent the information content of that

position. The total height of a motif logo in a position is proportional to the information

content in that position, while the height of each letter is proportional to the frequency of

the letter in that position. The sum of the heights of all letters in a position equals to the

total height of the motif in that position.

The general motif finding problem can be defined as follows:

Input: A set of regulatory sequences that possibly bind to the same protein transcription

factor.

Aim: Use a computational algorithm to search for the common binding site pattern that

occurs frequently.

If an l -letter pattern appears exactly in every sequence, a simple enumeration of all

patterns of length l that appear in the sequences gives the solution. However, the real

3

problem is not that simple because patterns in DNA sequences may include mutations,

insertions or deletions of nucleotides. In fact, the motif finding problem has been proven

to be NP-hard.

Depending how the motif is modeled, most of the motif finding methods can be grouped

into two categories: probabilistic approach and combinatorial approach. In probabilistic

approaches, a motif is modeled to be a matrix that each column represents a probability

distribution for the four letters in that position; while in combinatorial approaches, a

Figure 1.1: The graphic representation of an aligned set of 350 E. coli promoters. A

logo displays the frequencies of bases at each position, as the relative heights of

letters, along with the degree of sequence conservation as the total height of a stack

of letters, measured in bits of information (T. D. Schneider and R. M. Stephens

1990).

4

motif is usually modeled to be a string of characters. These characters can be any letters

in DNA alphabet, or degenerate alphabet (Figure 1.2).

2. Probabilistic Approaches

One of the earliest implementation of probabilistic approaches was a greedy algorithm to

find the binding sites with the highest information content by Hertz et al. (1990). They

alignment position nucleotide

char 1 2 3 4 5

A 0.2 0 0 0.8 0

C 0 0.2 0 0 1

G 0 0 1 0 0

T 0.8 0.8 0 0.2 0

position weight

matrix (PWM)

T T G A C

T C G A C

T T G A C

A T G A C

T T G C C

consensus

string
TTGAC (on DNA alphabet)

WYGMC (including degenerate alphabet)

Figure 1.2: Example of different motif representations of five given binding sites.

The position weight matrix shows the frequency of each nucleotide char in that

position, the consensus string on DNA alphabet shows the most frequent nucleotide

char in that position and the consensus string including degenerate alphabet shows

the IUB code (degenerate base) in that position, for example, W represents A or T

appearing in the first position.

5

used this algorithm to identify a consensus motif that was present once in every

sequence and their latest implementation (Consensus) Hertz and Stormo (1999) provided

methods to estimate the statistical significance of a given information content score, and

tested their algorithm to identify binding sites for the Escherichia coli CRP protein.

A well-known technique expectation-maximization (EM) is usually used in probabilistic

motif finding algorithms. EM for motif finding was first introduced by Lawrence and

Reilly and was then extended by Bailey and Elkan (1995) to identify motifs in unaligned

biopolymer sequences in Multiple EM for Motif Elicitation algorithm (MEME). The

MEME method assumes little is known in advance about any motifs that may be present

in a set of biopolymer sequences, and it used real biopolymer subsequences as EM

algorithm starting point, which increases the probability of finding globally optimum

motifs. It also removed the constraint that exactly one occurrence of the shared motif in

each sequence and probabilistically removed shared motifs to avoid reporting redundant

motifs.

Another very popular statistical technique used in probabilistic motif finding is Gibbs

sampling. The original Gibbs sampler for motif finding was developed by Lawrence et al.

(1993) and it was only applied to protein sequences originally. It originally assumed that

at least one instance of motif existed in every sequence. Gibbs sampling is a special case

of a Markov Chain Monte Carlo method (MCMC) by sampling from unknown

distributions by using Markov Chains and their properties of convergence to a stationary

6

distribution. Gibbs sampling is really easy to implement and it runs very fast, in linear

time with the length of the sequences. It is more stable to initialization than EM methods,

but also more dependent on all sequences exhibiting the motif. AlignACE (Roth et al.

1998) and MotifSampler (Thijs et al. 2001) are very useful motif finding applications

built over Gibbs sampling. The original AlignACE used MAP (maximum a priori log-

likelihood) score to evaluate different motifs sampled, which measures the degree of

overrepresentation of a motif as compared to the expected random occurrence of that

motif in the sequence under consideration. This measurement of scorning motifs was

improved by Hughes et al. using group specificity, which avoids the main drawback of

MAP score that some ubiquitously occurring but un-relevant motifs are scored too

highly. MotifSampler incorporated a higher-order Markov-chain background model and

used the probability distribution to estimate the number of motif occurrences in the a

sequence. Other popular methods such as BioProspector Liu et al. and GibbsST Shida

also applied Gibbs Sampling strategy with different modifications.

3. Combinatorial Approaches

The motif finding problem in combinatorial approaches can be formulated as:

Given sequence },,,{ 21 k
xxxS L= and each sequence of length n

A motif is a consensus string of length l :
l

www L21

The aim is to find the optimal motif M, best matches for S, which minimizes the

following distances:

7

),(),(∑=
i ixMdSMd ,

where),(ixMd = minimal hamming distance between M and any occurrence in ix .

Based on the motif candidate search space, there are two groups in the category: pattern-

driven algorithms and sample-driven algorithms. Pattern-driven algorithms (Queen et al.

1982; Waterman et al. 1984; Staden 1989; Pesole et al. 1992; Wolfertstetter et al. 1996;

van Helden et al. 1998; Tompa 1999) usually use an exhaustive search over all possible

strings of length l and report the one that minimizes the distance. Sample-driven

algorithms ((Stormo and Hartzell 1989; Lawrence et al. 1993; Bailey and Elkan 1994;

Hughes et al. 2000; Workman and Stormo 2000; Thijs et al. 2001) consider the

candidate motifs appear in the sequences in S instead of enumerating every possible

string of length l . The sample-driven algorithms have the advantage to suitable statistical

models, but have the disadvantage that it is not possible to find the optimal motif unless

the motif is very short (Leung and Chin 2005).

A straightforward algorithm for the pattern-driven approach takes)4(lknO l time, thus

this strategy is feasible only for small l . By considering only candidate motifs that are at

most d substitutions away from a string appearing in the sample, an extended pattern-

driven approach has been proposed to reduce the number of candidate motifs (Waterman

et al. 1984; Galas et al. 1985). To further reduce the running time, another class of tree-

based pruning techniques have been proposed (Marsan and Sagot 2000; Pavesi et al.

2001; Eskin and Pevzner 2002), while many approaches make use of the given

8

maximum distance d to develop heuristics that guarantee a high probability of finding

the optimal motif (Buhler and Tompa 2002; Keich and Pevzner 2002; Price et al. 2003).

A common weakness of these approaches is that they either cannot guarantee that the

optimal motif is found or do not improve the worst case time complexity.

4. Evaluation Criteria and Benchmark Datasets

There are many motif finding algorithms developed based on varied and complex motif

models and most authors test their algorithm using different biological sequences and

synthetic data sets as well. Sinha and Tompa (2002) compared the performance of YMF

to the algorithms MEME and AlignACE and observed that different tools performed

better with different datasets. Tompa et al. (2005) assessed performance of thirteen motif

finding algorithms, which provide both the standard evaluation criteria and benchmark

datasets for assessing motif finding tools.

The evaluation criteria from Tompa et al. (2005) can be outlined as below.

In nucleotide level define the true positives (nTP), false positives (nFP), and others as

follows:

� nTP is the number of positions that are in both predicted and known sites,

� nFP is the number of positions that are in predicted sites but not in known sites,

� nFN is the number of positions that are in known sites but not in predicted sites, and

� nTN is the number of positions that are not in predicted nor known sites respectively.

9

From these statistics, we compute the sensitivity (nSn) and others as follows:

� Sensitivity:

)(nFNnTPnTPnSn +=

� Positive Predictive Value:

)(nFPnTPnTPnPPV +=

� Specificity:

)(nFPnTNnTNnSP +=

� Performance Coefficient:

)(nFNnFPnTPnTPnPC ++=

� Correlation Coefficient:

))()()((nFNnTNnFPnTPnFPnTNnFNnTP

nFPnFNnTNnTP
nCC

++++

⋅−⋅
=

A predicted site is defined to be overlapped with a known site if they overlap by at least

one fourth of the known site, and similarly the site level statistics can be defined as:

� sTP is the number of known sites that have overlap with a predicted site,

� sFP is the number of predicted sites that do not have overlap with known sites, and

� sFN the number of known sites that do not have overlap with predicted sites.

From these statistics, we compute the sensitivity)(sFNsTPsTPsSn += , the positive

predictive value)(sFPsTPsTPsPPV += , and the performance coefficient sPC =

sTP/(sTP + sFP + sFN).

10

B. Our Contribution

Despite of the noticeable improvement in motif finding accuracy, current available motif

finding methods are far from perfect, especially for higher organisms. In Chapter II –

Chapter IV, we propose three new motif finding methods, which improve motif finding

accuracy using three different approaches.

Since traditional motif finding formulations are NP-complete, a straightforward

algorithm for the pattern-driven approach requires)4(lknO l time, where k is the

number of sequences, n is the length of each sequence and l is the motif length, which

means this strategy is feasible only for small l . In Chapter II, we propose an improved

pattern-driven algorithm that guarantees that all statistically significant motifs are found

in)4(lkO l time. This algorithm saves a factor of n in time complexity over the original

pattern-driven approach. This is a significant improvement since n can be as large as

3000 and is at least 200 or 300 in many promoter finding applications. It can be adapted

to handle the case when a maximum distance d is given between a motif and its

occurrences. It also extends the power of the pattern-driven approach to find all

significant motifs of length around 12 or 13 (from the original limit of around 10), or

substantially to around 20 while retaining most of the original sensitivity by allowing

don’t care positions but disallowing mismatches.

11

We show the success of this approach by testing test our algorithm on a large set of yeast

samples constructed from co-expressed gene clusters from Tavazoie et al. (1999) and

comparing to the best existing motif finding algorithms on a large benchmark set of

samples from Tompa et al. (2005). The most advantage of this motif finding method is

that we can guarantee the optimal motif is found with reduced time complexity.

In Chapter III, an improved algorithm based on skipping non-conserved positions in

background Markov Chain is proposed. It is known in biology that there are often almost

invariant positions that are critical for the binding process, thus we focus initially on

positions that have fixed nucleotides to define core occurrences. While most approaches

do not specifically take advantage of these positions, our model tries to capture them

within positions that are not ignored. We compare the performance of our algorithm to

other motif finding algorithms on a few benchmark data sets, and show that significant

improvement in accuracy can be obtained. Furthermore, we applied Wilcoxon test to

show that we have statistical improvements over some of the other tools.

In Chapter IV, a new strategy, Enrich, is proposed to improve the performance of motif

finding algorithms. By modifying the existing benchmark datasets, we show that this

strategy is able to improve the performance of five existing motif finding algorithms.

The performance comparisons also indicate that this strategy would help to improve the

quality of existing benchmark datasets as well.

12

CHAPTER II

IMPROVED PATTERN-DRIVEN ALGORITHMS

In order to guarantee that the optimal motif is found, traditional pattern-driven

approaches perform an exhaustive search over all candidate motifs of length l . We

develop an improved pattern-driven algorithm that takes)4(lkO l time, where k is the

number of sequences in the sample and l is the motif length, which is independent of

the length of each sequence n for large enough l and saving a factor of n in time

complexity over the original pattern-driven approach. We further extend this strategy to

allow arbitrary don’t care positions within a motif without much decrease in solvable

values of l . Testing this algorithm on a large set of yeast samples constructed from co-

expressed gene clusters reveals that most biological motifs have many invariant or

almost invariant positions and these positions can be used to define the motif while

ignoring the other positions. This motivates the following two-stage strategy that extends

the solvable values of l substantially for the pattern-driven approach: first use an

)2(lknO l algorithm to exhaustively search over all candidate motifs allowing arbitrary

don’t care positions but disallowing mismatches, then refine these motifs by allowing a

limited amount of flexibility to model the almost invariant positions. We demonstrate

that this seemingly restrictive motif definition is sufficiently powerful by showing that

the performance of this algorithm is comparable to the best existing motif finding

algorithms on a large benchmark set of samples.

13

A software program implementing these approaches (MotifEnumerator) is available at

http://faculty.cs.tamu.edu/shsze/motifenumerator.

A. Introduction

There are roughly two types of general purpose motif finding algorithms. The first type

includes sample driven approaches which identify the locations of the motif occurrences

directly. The second type includes pattern-driven approaches which take advantage of

the assumption that a motif can be specified by a central pattern and use it to reduce the

search space. Although the sample-driven approach has more freedom to choose suitable

statistical models (Stormo and Hartzell 1989; Lawrence et al. 1993; Bailey and Elkan

1994; Hughes et al. 2000; Workman and Stormo 2000; Thijs et al. 2001), the search

space is usually so large that it is not possible to guarantee that the optimal motif is

found unless the motif is very short (Leung and Chin 2005). In contrast, by assuming

that a central string (in the DNA four-letter alphabet) can be used to describe the motif, it

is possible for a pattern-driven approach to perform an exhaustive search over all
l

4

candidate motifs for a moderately large motif length l and guarantee that the optimal

motif is found (Queen et al. 1982; Waterman et al. 1984; Staden 1989; Pesole et al. 1992;

Wolfertstetter et al. 1996; van Helden et al. 1998; Tompa 1999).

A straightforward algorithm for the pattern-driven approach takes)4(lknO l time, where

k is the number of sequences, n is the length of each sequence and l is the motif length,

14

thus this strategy is feasible only for small l . By considering only candidate motifs that

are at most d substitutions away from a string appearing in the sample, an extended

pattern-driven approach has been proposed to reduce the number of candidate motifs

from
l

4 to less than kn
d

l
d

4

 (Waterman et al. 1984; Galas et al. 1985), and the

reduction is significant when d is small relative to l . To further reduce the running

time, another class of tree-based pruning techniques have been proposed (Marsan and

Sagot 2000; Pavesi et al. 2001; Eskin and Pevzner 2002). Fraenkel et al. (1995)

proposed to combine short candidate patterns to form longer patterns, while many

approaches make use of the given maximum distance d to develop heuristics that

guarantee a high probability of finding the best motif (Buhler and Tompa 2002; Keich

and Pevzner 2002; Price et al. 2003).

A common weakness of these approaches is that they either do not improve the worst

case time complexity of the straightforward algorithm or they cannot guarantee that the

optimal motif is found. We have developed an improved pattern-driven algorithm that

guarantees that all statistically significant motifs are found in)4(lkO l time. This

algorithm is similar to the original pattern driven algorithm in exploring all
l

4 candidate

motifs of length l , but with the important difference that its time complexity is

independent of the length of each sequence n (for large enough l), thus saving a factor

of n in time complexity over the original pattern-driven approach. This is a significant

improvement since n can be as large as 2000 and is at least 200 or 300 in many

15

promoter finding applications. The proposed algorithm extends the power of the pattern-

driven approach to find all significant motifs of length around 12 or 13 (from the original

limit of around 10). It can also be adapted to handle the case when a maximum distance

d is given between a motif and its occurrences.

We further extend this strategy to allow arbitrary don’t care positions within a motif

without much decrease in solvable values of l . This is in contrast with many previous

approaches that place various constraints on the don’t care positions: Rigoutsos and

Floratos (1998) imposed a constraint on the density of don’t care positions and

developed an algorithm to identify protein motifs, while Apostolico and Parida (2004)

imposed maximality and irredundancy constraints on motifs and gave an algorithm to

solve the problem in cubic time when mismatches are not allowed. Although these

algorithms can find very long motifs, a common weakness is that a large number of

statistically significant motifs may be missed due to the constraints. Apart from these

algorithms, many other approaches identify sets of composite motifs that are separated

by a variable number of don’t care positions, but do not allow don’t care positions within

each individual motif (Marsan and Sagot 2000; van Helden et al. 2000; GuhaThakurta

and Stormo 2001; Liu et al. 2001; Eskin and Pevzner 2002).

We allow arbitrary don’t care positions within a motif and test our algorithm on a large

set of yeast samples constructed from co-expressed gene clusters from Tavazoie et al.

(1999). From the results, we observe that most biological motifs have many invariant or

16

almost invariant positions and these positions can be used to define the motif while

ignoring the other positions. This motivates the following two-stage strategy: first use an

lknl2 algorithm to exhaustively search over all candidate motifs allowing don’t care

positions but disallowing mismatches, then refine these motifs by allowing a limited

amount of flexibility to model the almost invariant positions. With the much smaller

exponential factor in the time complexity, this algorithm extends the solvable values of

l substantially to around 20 while retaining most of the original sensitivity. We

demonstrate that this seemingly restrictive motif definition is sufficiently powerful by

showing that the performance of this algorithm is comparable to the best existing motif

finding algorithms on a large benchmark set of samples from Tompa et al. (2005).

B. Problem Formulation

Our formulation makes a few simplifying assumptions: the central string is in the DNA

four-letter alphabet and mutations occur at random positions within a motif. There are

other approaches that do not have these restrictions, including those that use more

general alphabets or profiles to represent a central pattern (Sinha and Tompa 2000; Price

et al. 2003; Eskin 2004; Kel et al. 2004; Leung and Chin 2005) and those that take into

account correlated positions within a motif (Barash et al. 2003; Zhou and Liu 2004).

We first give a formulation that allows mismatches but does not allow don’t cares. Let

{ }S s s s
k

= 1 2, , ..., be a sample of k sequences each of length n and let l be the

17

length of a motif s . We put A and T together in a group and G and C together in another

group. Let a be the number of A or T in s (thus l a− is the number of G or C in s). Let

p1 be the probability of finding an A in the sample (which is the same as the probability

of finding a T), and let p2 be the probability of finding a C in the sample (which is the

same as the probability of finding a G). The probability of s occurring with up to d

substitutions at a given position of a random sequence is given by

where j counts the number of substitutions within A or T positions while i counts the

total number of substitutions. To compute the p-value for s , denote the distance between

s and sequence si by { }d s s d s s s si i(,) min (, ') ' ,= ∈ where s' is a string of length l

appearing in s
i
 and d x y(,) is the distance (number of substitutions) between two

strings x and y of length l . Fix a maximum distance d and let k ' be the number of

sequences s
i
 with d s s di(,) .≤ The p-value of s with respect to d is given by

which is an estimate of the probability of s occurring at least once with up to d

substitutions in at least k ' sequences when complex correlations between overlapping

patterns are ignored. Note that, for simplicity, this equation only takes into account at

most one motif occurrence in each sequence. We then estimate the e-value of s with

respect to d by

18

This equation ignores differences in the nucleotide composition of motifs which may not

have comparable values of a , d and k ' (but still takes into account the background

nucleotide distribution) and assumes that p l a d k(, , , ') is the probability one wishes to

attain for all motifs of length l . The above equations are generalizations of the equations

in Buhler and Tompa (2002) to allow for biased background distribution and some of the

sequences not having a motif occurrence. We define the e-value of s to be the minimum

e-value over all d . The goal of the motif finding problem is to find all motifs s with e-

value below a cutoff, and the occurrences of s are defined by finding the value of d

that minimizes the e-value of s and recovering all occurrences in the sample that are

within distance d of s (there can be more than one occurrence in some sequences). In

difference from many other approaches that assume that d is given in advance (Marsan

and Sagot 2000; Pevzner and Sze 2000; Pavesi et al. 2001; Buhler and Tompa 2002;

Eskin and Pevzner 2002; Keich and Pevzner 2002; Price et al. 2003), our formulation

does not assume that a fixed d is given and will automatically find the best value of d

for each motif s independently.

To allow for don’t care positions within a motif s , let l be the length of s and l ' be the

number of positions within s that contain a nucleotide character (i.e., there are l l− '

don’t care positions). A string s' of length l that appears in the sample is defined to be

an occurrence of s if the total number of substitutions within these l ' positions is at

19

most d while ignoring the other l l− ' don’t care positions. To estimate the statistical

significance of a motif s , the p-value of s with respect to d is given by

where p l a d(' , ,) is the same as before with l ' substituting l . Since there is no need to

allow don’t cares at the two ends of s , the e-value of s with respect to d is given by

To allow don’t cares while not allowing mismatches, simply set d = 0 in the above

equations. Note that the notion of don’t cares we use here is very different from the one

in Buhler and Tompa (2002) since they used don’t care positions to randomize their

search procedure rather than defining motifs.

C. Algorithm when Mismatches are Allowed

We first develop an improved pattern-driven algorithm that allows mismatches but does

not allow don’t cares. The original pattern-driven approach considers each candidate

motif in turn and looks for its occurrences by comparing it to every string of length l in

the sample. To avoid these extensive comparisons, we encode each nucleotide by two

bits and create an array D of size 4
l
 and a queue Q of size 4

l
. Our algorithm consists of

two stages: the first stage computes all d s si(,) between each candidate motif s and

20

each sequence si (to be stored in D and reused for each i). We accumulate this

information in another 4
l

l× array N which stores for each candidate motif s , the

number of times that d s s di(,) = for each d . The second stage computes the e-value of

each candidate motif s from N. The first stage iterates over each sequence si and starts

by initializing all values in D to l (Figure 2.1). For each string s appearing in si , set D(s)

to 0 and insert s into Q. Repeat the following procedure that employs a depth-first

search strategy: remove the first element s from Q and generate all neighbors s' of s

that are one substitution away from s . For each s' , if D s D s(') ()> +1 , update D s(') to

D s() + 1 and add s' to Q (Figure 2.1). It is easy to see that when Q becomes empty, we

have D s d s si() (,)= for all s . It is easy to see that it takes (1+− ln) time to find all

substrings in si and takes at most (ll 34 ⋅) to process all possible elements from Q, as

each s appears at most once in Q and there are l3 strings that are one substitution away

from s . Thus the total time to process each sequence si is)4()341(lOlln ll
=⋅++− ,

assuming that n
l

< 4 . As the processing of each sequence si is completed, the values in

D(s) are transferred to N. The second stage uses the values in N to compute the e-value

of each candidate motif s (Figure 2.1). Since the binomial coefficients and the

probability values can be preprocessed and stored in such a way that each e-value

e l a d k(, , , ') can be obtained in constant time and the preprocessing time is negligible

(polynomial in n and l), the entire procedure takes O lkl()4 time and O ll()4 space

when l is large enough. Note that the assumption n
l

< 4 is easily satisfied: with n as

large as 2000, only l > 5 is needed.

21

When implemented carefully, it is possible to store all the arrays in 4G memory when l

is 12 or 13 (which works on 32-bit systems). To further save memory, observe that since

the values of D(s) in Q are increasing, we can eliminate Q and replace it by a loop that

generates neighbors s' only for those s with D s j() = −1 in iteration j . This strategy

does not change the time complexity since neighbors are generated for at most 4
l
strings

over l iterations. Also, our approach can scan through all candidate motifs of length at

most l with not much increase in running time (at most 4/3 times longer) when

compared to checking only one l . In difference from many other approaches, there is no

implicit restriction on the minimum number of motif occurrences or on the maximum

Figure 2.1: Algorithm MotifEnumerator for finding the e-values of all candidate motifs s

of length l when mismatches are allowed but don’t cares are not allowed.

22

distance d between a motif and its occurrences. The algorithm explores all the

possibilities to guarantee that the motif with the best e-value is found. When d is given,

the above procedure can be used to implement the extended pattern-driven approach by

stopping the first stage when the first element s in Q has D s d() = for each sequence s
i
,

resulting in a saving of a factor of n over the straightforward approach. Note that our

neighbor generation process is similar to the one in Blanchette et al. (2002) except that

their computation is based on a phylogenetic tree. Our procedure also has some

similarity to the one in Price et al. (2003) except that our approach is exact and their

approach is a heuristic.

We extend our algorithm to allow arbitrary don’t care positions within a motif s . Since

there is no need to allow don’t cares at the two ends of s , a straightforward algorithm to

enumerate all possible s of length l uses an array D of size 4 5
2 2l−

 to represent each s .

For each sequence si , consider each string s' that appears in si and set D s() = 0 for

each of the 2
2l−
 possible strings s that can be generated from s' while allowing don’t

care positions. Then proceed in the same way as before while ignoring don’t care

positions during the neighbor generation process, resulting in an algorithm that takes

O lkl()5 time and O ll()5 space. Alternatively, the following algorithm only needs

O ll()4 space while having the same time complexity: for each value of s' and each way

of choosing l ' positions from l positions (while always choosing the two end positions),

treat each string of length l with l ' chosen positions as a string containing only the l '

chosen positions and apply the original procedure on strings of length l ' . Its time

23

complexity can be estimated more precisely as O
l

l
l k

l

l

l

(
'

').
'

'

−

−

=∑
2

2
4

1
 When l is small

(e.g., l ≤ 12), the running time to consider motifs of length at most l with don’t cares

is similar to the original algorithm that considers motifs of length at most l +1 without

don’t cares, thus the modified strategy does not have a large effect on solvable values of

l (l ≤ 11 or 12 are solvable in reasonable time).

D. Algorithm when Mismatches are Not Allowed

We first give an algorithm that takes O lkn() time and space when both mismatches and

don’t cares are not allowed. Under these assumptions, each string s of length l that

appears in the sample represents a candidate motif. We store these strings in a tree T of

height l so that each s is represented by a path of length l from the root. Each internal

node t of T can have at most four children t c. , one for each character c of the DNA

alphabet, with the path from the root to t representing a prefix of one or more motifs;

while each leaf node t of T represents a unique motif s , with t k. ' denoting the number

of sequences that s occurs in (only at most one occurrence is counted in each sequence)

and t i. denoting the sequence number of the previous occurrence of s during the tree

construction (Figure 2.2). To allow for arbitrary don’t care positions, for each value of l '

and each way of choosing l ' positions from l positions (while always choosing the end

positions), treat each string of length l with l ' chosen positions as a string containing

only the l ' chosen positions and build a tree T of height l ' .

24

The entire procedure takes O lknl()2 time and O lkn() space, thus by disallowing

mismatches, we extend the solvable values of l to around 20 (from around 12 when

mismatches are allowed). Also, our approach can scan through all candidate motifs of

length at most l with not much increase in running time (at most twice longer) when

compared to checking only one l . Although the above procedure can be quite successful

in identifying core motif occurrences, the requirement that each occurrence must be

exactly the same except for the don’t care positions is very strict, thus it is likely that

some motif variants are missed. We use the following strategy to allow for a limited

number of mismatches while avoiding the introduction of many false positives: let s be

a motif of length l with m occurrences o om1,..., each of length l (there can be more

than one occurrence in some sequences). We construct a refined motif s' as follows: for

each position j , if there exists a nucleotide character c such that its total frequency at

the jth position within the m occurrences is more than m / 2 , set the jth character of s'

to c , otherwise set it to a don’t care character (note that c is uniquely defined if it

exists). Let d d s o i m
i

' max{ (' ,) },= ≤ ≤1 where the don’t care positions in s' are ignored

to c , otherwise set it to a don’t care character (note that c is uniquely defined if it

exists). Let d d s o i m
i

' max{ (' ,) },= ≤ ≤1 where the don’t care positions in s' are ignored

when computing distances. We define the occurrences of s' to be all strings of length l

that appear in the sample and are within distance d ' of s' . Note that this new set of

occurrences of s' must include the original occurrences of s .

25

E. Performance

1. Yeast Test Samples

To show that our model is reasonable and the e-values are comparable over different

motif lengths, we first test our algorithm MotifEnumerator on artificial samples with 20

sequences each of length 600 containing an (l, d)-motif (Pevzner and Sze 2000), which

is a motif of length l with d substitutions between the motif and its occurrences. In

each case, we check all candidate motifs of length at most 12 with no implicit

assumption on the minimum number of motif occurrences in very difficult (8, 2)-, (10,

2)- and (12, 3)-motifs. In each case, the motif found was always of the correct length and

Figure 2.2: Algorithm MotifEnumerator for finding the e-values of all candidate

motifs s of length l when both mismatches and don’t cares are not allowed.

26

the correct motif always had the best e-value. To ensure that MotifEnumerator can

identify biological motifs, we test it on a large set of yeast samples constructed from co-

expressed gene clusters from Tavazoie et al. (1999) and compare our results with those

in Tavazoie et al. (1999) and Hughes et al. (2000). To allow for samples having

sequences of similar but unequal lengths, we use the average sequence length to

approximate n . To allow for motifs to appear in the reverse complementary direction,

we assume that each sequence s
i
 is twice as long including both the forward and the

reverse complementary sequences and replace the term n l− +1 by 2 1()n l− + in the p-

value formulas. We further preprocess each input sample by removing low complexity

repeats using very simple rules. To find a set M of suboptimal motifs that are sufficiently

different from each other, we first discard all motifs with e-value above a cutoff. With M

initially empty, consider each remaining motif s in increasing order of e-value and

repeat the following: add s to M if there are no overlaps between its occurrences and

any motif occurrences already in M.

This procedure finds a set of suboptimal motifs in one single run and it takes negligible

time when compared to the previous stage since not many candidate motifs remain after

the e-value cutoff is applied. For each cluster in Tavazoie et al. (1999), we extract

upstream sequences of length 600 resulting in a total of 30 samples, each having from 50

to 200 sequences with a nucleotide bias of around 60% A or T and 40% G or C. We run

our algorithm MotifEnumerator over all motif lengths l ≤ 12 and allow motifs to appear

in the reverse complementary direction. The running time ranges from hours for the

27

smaller samples to days for the larger samples. Table 2.1(a) shows all strong motifs

found, while Table 2.1(b) shows a small subset of weaker motifs that are known

biological motifs. Our algorithm found almost all the motifs in Tavazoie et al. (1999)

and was able to identify an extra Rpn4 motif that is absent in their paper (although its e-

value is not very low, it appears in more than 20 sequences). This motif was identified in

Hughes et al. (2000) when a different strategy of grouping genes by common names was

used to construct samples. Some of the motifs were found in a different cluster from the

one specified in Tavazoie et al. (1999), including M14a (found in cluster 2) and M4

(found in cluster 16). Although they did not find any motifs in cluster 16, we found

variants of M3a/M4 and M3b in cluster 16. Two motifs listed in their paper were

missing from our results, including M14b and STRE that have repeating letters and were

probably eliminated during the removal of low complexity repeats.

One important observation from Table 2.1 is that for almost all the motifs found, the

maximum distance d that minimizes the e-value was 0. The only strong motif found in

Table 2.1(a) with d = 1was Rap1, but another variant of it was also found with d = 0 .

Two motifs M1a and Rpn4 were found in Table 2.1(b) with d = 1 , but they are very

weak and may not be distinguishable from noise. This suggests that the most biological

motifs can be represented accurately by invariant or almost invariant positions within the

motif, which motivates an alternative formulation that disallows mismatches when

arbitrary don’t cares are allowed. With this restriction, the problem becomes easier to

solve and longer motifs can be considered. To improve the sensitivity in finding

28

plausible motif occurrences, a limited number of mismatches can be allowed by adding a

post-processing step to refine the initial motifs.

Table 2.1: Performance of MotifEnumerator on 30 samples constructed from co-

expressed yeast gene clusters from Tavazoie et al. (1999). (a) All strong motifs

found by MotifEnumerator on 30 samples constructed from co-expressed yeast gene

clusters from Tavazoie et al. (1999). These motifs appear in at least 10 sequences

with e-value below 10−5, where cl# denotes the cluster number, d denotes the

maximum distance (between a motif and its occurrences) that minimizes the e-value,

and don’t care positions are denoted by ‘-’. All these motifs correspond to known

biological motifs, as shown in notes. (b) A small subset of weaker motifs that are

known biologically. Some of these motifs have higher e-values than over 10 other

non-overlapping candidate motifs within the same run (these suboptimal motifs do

not overlap with each other). M3a/M4 and Cbf1p appear in less than 10 sequences.

29

2. Tompa Benchmark Test Samples

We test the no-mismatch version of MotifEnumerator on a large benchmark set of

samples from Tompa et al. (2005), each having up to 35 sequences with sequence

lengths ranging from 500 to 3000. Since many biological motifs in the test set contain

moderately repeating patterns, we use a less extensive procedure than before to remove

low complexity repeats that include single-nucleotide repeats of length at least six, two-

nucleotide repeats with at least four repeating units, and three-nucleotide repeats with at

least three repeating units, with no mismatches allowed within the repeats. We run

MotifEnumerator over all motif lengths l ≤ 20 and look for motifs only on the forward

strand. In each case, the refined occurrences of the top motif with e-value below 1.0 are

used for evaluation (it is possible that no motif is found). The running time ranges from

hours for the smaller samples to days for the larger samples. Table 2.2 shows the

performance of MotifEnumerator on both the mixed set of samples that was assessed in

Tompa et al. (2005) and on the original three sets of samples of type real, generic and

markov from which the mixed set is derived but were not assessed in Tompa et al.

(2005).

On the mixed set, the overall performance of MotifEnumerator (with nCC=0.067) was

roughly comparable to algorithms assessed in Tompa et al. (2005) that had overall

performance ranging from above average to near-best, including AlignACE (Hughes et

al. 2000) with nCC=0.068, MotifSampler (Thijs et al. 2001) with nCC=0.068, MEME

30

(Bailey and Elkan 1994) with nCC=0.073, Oligo/Dyad (van Helden et al. 1998; van

Helden et al. 2000) with nCC=0.071, and ANN-Spec (Workman and Stormo 2000) with

nCC=0.074. Only two algorithms definitely performed much better, including YMF

(Sinha and Tompa 2000) with nCC=0.084 and Weeder (Pavesi et al. 2001) with

nCC=0.156. Within the mixed set, MotifEnumerator followed a similar trend as most

other algorithms, with better performance on samples of type generic and markov and

worse performance on samples of type real.

In particular, on samples of type real, MotifSampler (Thijs et al. 2001) with nCC=0.076

and Weeder (Pavesi et al. 2001) with nCC=0.077 performed best among all the assessed

algorithms, while YMF (Sinha and Tompa 2000) with nCC=0.013 performed much

worse than MotifEnumerator with nCC=0.046. Overall, Weeder (Pavesi et al. 2001) had

the best performance that was much higher than all the other assessed algorithms. When

the samples were categorized by the organism from which the upstream sequences are

obtained, MotifEnumerator also followed a similar trend as most other algorithms, with

the best performance on yeast samples, medium performance on human and mouse

samples and worst performance on fly samples.

31

Table 2.2: Performance of MotifEnumerator on benchmark test samples from

Tompa et al. (2005) when arbitrary don’t care positions are allowed but mismatches

are not allowed. Each entry represents the nucleotide-level correlation coefficient

(nCC) computed by comparing the refined occurrences of the top motif returned

from MotifEnumerator (if one exists) to the known annotation in each sample and

treating a subset of samples as if it was a single large sample. Each row represents a

set of 56 samples (except for the set of type real, which contains 52 samples). Each

set of type real, generic or markov contains motifs corresponding to one

transcription factor with a particular type of background sequences. Tompa et al.

(2005) did not perform assessments directly on these sets, but constructed another

set of type mixed with 56 samples by picking one background type for each

transcription factor (out of a total of two or three possibilities) so that samples within

this set may have different background types. Assessments were performed only on

this mixed set in Tompa et al. (2005), which corresponds to the row and the column

labeled mixed, while ignoring the other 108 samples from the original sets. Each set

is further subdivided into four subsets according to the organism from which the

upstream sequences are obtained (except for the mixed subset, which contains

samples of a particular type within the entire mixed set).

32

We also analyze the performance of MotifEnumerator on the original three sets of

samples of type real, generic and markov from which the mixed set is derived. Each of

these original sets contains about the same number of samples as the entire mixed set

(Table 2.2). The most noticeable advantage of MotifEnumerator is that similar overall

performance was obtained across all these original sets with distinct background types

and thus MotifEnumerator does not seem to be affected much by differences in the

background sequences. Also, there was a significant increase in the performance of

MotifEnumerator on the fly samples within the real set, which is mainly due to a strong

result on the dm01r sample (this sample was not assessed in Tompa et al. (2005)).

Interestingly, Tompa et al. (2005) also reported that MotifSampler (Thijs et al. 2001) had

similar performance over different background types within the mixed set and

SeSiMCMC (Favorov et al. 2005) had strong performance on the fly samples within the

mixed set (although SeSiMCMC (Favorov et al. 2005) had weak overall performance).

F. Discussion

Since allowing mismatches may still provide better sensitivity in some cases, both

variants of MotifEnumerator are useful in different situations. The main advantage of

allowing mismatches is that a one-step process can be used to guarantee that the optimal

motif is found while automatically allowing appropriate variations if the resulting

statistical evaluation is favorable. The time complexity of our algorithm contains an

exponential factor and is independent of the length of each sequence n for large enough

33

l . Thus it is useful in most situations when the goal is to identify the conserved core

region of a promoter.

When mismatches are not allowed, the search space is much smaller and it becomes

possible to develop an algorithm with a much smaller exponential factor in the time

complexity that only needs polynomial space instead of exponential space, thus allowing

longer motifs to be considered while still guaranteeing that the optimal motif pattern is

found. Although the tests above show that the algorithm is not very fast when l is

around 20, it is extremely fast when l is small. For example, it takes seconds to run the

algorithm for the smaller samples in Tompa et al. (2005) and minutes to hours for the

larger samples over 10≤l or 12. To avoid missing important motif occurrences, an

additional step has been introduced to find plausible motif occurrences while allowing

limited mismatches. Although we have used a strict definition in this step to avoid

introducing many false positives, it is also possible to use less strict definitions to allow

more occurrences to be identified. In spite of the seemingly restrictive motif definition in

disallowing mismatches initially, our algorithm does not seem to lose much sensitivity

when compared to most other algorithms assessed in Tompa et al. (2005) that use more

general motif models. Only Weeder (Pavesi et al. 2001) consistently performed much

better than MotifEnumerator in almost all situations.

To further improve the algorithms, it may be desirable to allow a small amount of

overlaps among suboptimal motif occurrences to avoid missing motifs. It is also

34

important to develop more accurate statistical formulas for samples that do not have

sequences of similar lengths and for motifs with more than one occurrence per sequence.

This has to be done very carefully since assigning scores that correspond to many

occurrences on a sequence may not necessarily lead to an increase in sensitivity due to

the larger flexibility that allows many other candidate motifs to have better scores. To

further improve performance, it may be desirable to incorporate genome-specific

information by using the overall genome nucleotide distribution, probably only in the

non-coding regions, to serve as the background distribution. In many situations, there

may be a need to find motifs that are significant in one sample but not in the other. This

can be addressed by extracting motifs in one sample that have a good likelihood ratio

with respect to another negative sample.

35

CHAPTER III

ALGORITHMS BASED ON SKIPPING NONCONSERVED POSITIONS IN

BACKGROUND MARKOV CHAINS

One strategy to identify transcription factor binding sites is through motif finding in

upstream DNA sequences of potentially co-regulated genes. Despite extensive efforts,

none of the existing algorithms perform very well. We consider a string representation

that allows arbitrary ignored positions within the non-conserved portion of single motifs,

and use)2(lO Markov chains to model the background distributions of motifs of length

l while skipping these positions within each Markov chain. By focusing initially on

positions that have fixed nucleotides to define core occurrences, we develop an

algorithm that is efficient enough to identify motifs of moderate lengths. We compare

the performance of our algorithm to other motif finding algorithms on a few benchmark

data sets, and show that significant improvement in accuracy can be obtained when the

sites are sufficiently conserved within a given sample, while comparable performance is

obtained when the site conservation rate is low.

A software program implementing this method (PosMotif) is available at

http://faculty.cse.tamu.edu/shsze/posmotif.

36

A. Introduction

One important application of motif finding is the identification of transcription factor

binding sites from upstream DNA sequences of potentially co-regulated genes, in which

the most popular approaches either represent a motif by a positional weight matrix and

use statistical optimization techniques to identify the most overrepresented patterns

(Stormo and Hartzell, 1989; Lawrence et al.,1993; Bailey and Elkan, 1994; Thijs et al.,

2001), or represent a motif by a string and use combinatorial techniques to identify

frequent patterns (Queen et al., 1982; Waterman et al., 1984).

In addition to using information from the given upstream sequences, recent approaches

utilize additional information, including the use of evolutionary relationships between

orthologous upstream sequences through the phylogenetic footprinting technique

(Blanchette et al.., 2002), the inclusion of negative samples to define discriminative

motifs (Sinha, 2003), and the use of binding energy models and structural knowledge

(Kaplan et al., 2005; Leung et al., 2005). To investigate the relationships between motifs,

the single motif finding problem has also been generalized to the identification of

composite motifs and cis-regulatory modules (Marsan and Sagot, 2000; van Helden et al.,

2000; GuhaThakurta and Stormo, 2001; Liu et al., 2001; Eskin and Pevzner, 2002).

While most approaches that use the string representation either allow mismatches

(Pevzner and Sze, 2000; Pavesi et al., 2001; Buhler and Tompa, 2002) or use degenerate

37

letters (Sinha and Tompa, 2002; Peng et al., 2006), other approaches also allow positions

within a motif to be ignored, either by allowing spacers between motif segments (Sinha

and Tompa, 2002) or by imposing density constraints to restrict the number of ignored

positions (Wijaya et al., 2007). To improve motif finding accuracy, recent approaches

incorporate nucleotide dependencies within motifs (Barash et al., 2003; Zhou and Liu,

2004; Chin and Leung, 2008).

We consider a string representation that allows arbitrary ignored positions within the

nonconserved portion of single motifs of length l . For each combination of ignored

positions, we use aMarkov chain to model the background distribution while skipping

these positions, resulting in a total of)2(lO Markov chains that can model long range

nucleotide dependencies. This approach is more general than using a single positional

weight matrix or using a single string to model a motif.

To obtain an algorithm that is efficient enough to identify motifs of moderate lengths, we

focus initially on positions that have fixed nucleotides to define core occurrences. This is

based on the biological motivation that there are often almost invariant positions that are

critical for the binding process. While most approaches do not specifically take

advantage of these positions, our model tries to capture them within positions that are

not ignored.

38

We compare the performance of our algorithm to other motif finding algorithms on a

few benchmark data sets, and show that significant improvement in accuracy can be

obtained even without extensive post processing when the sites are sufficiently

conserved within a given sample, while comparable performance is obtained when the

site conservation rate is low. We also perform additional post processing to improve the

modeling of motifs.

B. Problem Formulation

We represent a motif of length l by a string lsssS L21= in the alphabet {a,c,g,t,–},

where – represents an ignored position, with −≠1s and −≠ls . For a given sample S of

sequences in the alphabet {a,c,g,t}, define the occurrences of s to be all strings of length

l in S that match s in all positions, where – matches any letter in {a,c,g,t}. Thus each

ignored position represents a potentially non-conserved position that is ignored in the

motif modeling (see Figure 3.1 for an example motif that is represented by the string s =

cgg----ct-t-g--cg).

For a particular combination of ignored positions within a string of length l out of

)2(lO possibilities, we construct an m th order Markov chain M by skipping these

positions. For each string s of length l , let
'21'21 ''''

liiil sssssss LL == be the string of

length 'l obtained from s by removing the ignored positions. Define the set of states of

M as

39

}}},,,{,11|)({ ''

1

'

1

' m

mjjj tgcawmljwsss ∈+−≤≤=−++ L

and create a transition from the state)'''(2111 mmjjj wwwsss LL =−++ to the state

)'''(13221 ++++ = mmjjj wwwsss LL .

We can visualize M as a leveled structure in which each row represents all states with

the same w and the j th column represents the j th level that contains all states with the

same j (see Figure 3.2). For a given background sample BS of sequences in the alphabet

{a,c,g,t} and the association 1211 ''' +++ = mmjjj wwwsss LL , we estimate the transition

probabilities by

∑
∈

−+++++

++

+++

=

t}g,c,{a,x

iii

iiii'

1

'

1

'''

2

'

1
 BSinx sss of soccurrence ofnumber

 BSin ssss of soccurrence ofnumber
)|(

1-mj1jj

mj1-mj1jj

L

L

LL mjjjmjjj ssssssP

where
11 −++ mjjj iii sss L is a substring of the original string s that includes the ignored

Figure 3.1: Example of representing four occurrences of the Gal4 binding site in the

yeast sample yst02r from Tompa et al. (2005) by a motif with eight ignored

positions (represented by -). The known consensus of the Gal4 binding site is

cggnnnnnnnnnnnccg (Sinha and Tompa 2002).

40

positions. Note that when ignored positions are not allowed, this Markov background

model is similar to the one used by other motif finding algorithms (Bailey and Elkan,

1994; Pavesi et al.., 2001; Thijs et al., 2001; Sinha and Tompa, 2002).

Figure 3.2: Illustration of a 2nd order Markov chain M for strings of length l with

5' =l positions that are not ignored, represented by 521 ''' sss L after removing the

ignored positions. The states of M are of the form (wss jj =+1''), with the jth row

representing the jth level that contains all states with the same j and each column

representing all states with the same w. Each column is labeled by a particular

combination of values of js' and 1' +js as
1+jj ii ss L , with potentially different number of

ignored positions between them in the original string
l

ssss L21= for different j.

41

Let S be a sample of k sequences each of length n that represent upstream DNA

sequences of potentially co-regulated genes. By ignoring correlations between

overlapping occurrences, we estimate the probability of s occurring at a given position of

S by

and
mm iiii ssss 11111 −+ L is a substring of s that includes the ignored positions. The

probability of s occurring at least 'n times in a sequence is estimated by

Let 'k be the number of sequences that s occurs at least 'n times. We estimate the P-

value of s by the probability of s occurring at least 'n times in at least 'k sequences as

Since positions at the two ends of s are never ignored, we estimate the E-value of s by

By assuming that)',',(knsP is the probability to be attained for all motifs of length l

that have 'l positions that are not ignored, this equation allows direct comparison of

motifs. To allow for samples having sequences of similar but different lengths, we use

the average sequence length to approximate n . The goal is to identify all motifs s with

42

E-value below a cutoff over all combinations of ignored positions and different

parameters l and 'n .

C. Algorithms

1. Pre-processing

Given a sample BS containing background sequences, we first perform preprocessing so

that the transition probabilities can be efficiently computed. Given string length l and

Markov order m , we compute and store the number of occurrences of all strings of

length p from 1 to l in BS with 1+m positions that are not ignored, by considering

each combination of 1−− mp ignored positions among p positions and scanning over

all strings s of length p that appear in BS. We remove the ignored positions from s to

obtain a string 's of length 1+m , and update the number of occurrences of 's that

represents the number of occurrences of the corresponding string of length p before

removing the ignored positions (Figure 3.3).

Given a sample S, by ignoring small differences in occurrences around sequence starts

and ends, the initial portion of the probability)(sP of a string
l

ssss L21= of length l

occurring at a given position of S can be estimated by using the approximation

43

where
'21'21 ''''

liiil sssssss LL == is the string of length 'l obtained from s by removing

the ignored positions. This simplifies the procedure since there is no need to compute

)'''(21 m
sssP L while)'''(121 +m

sssP L and)'''|'''(1121 −+++++ mjjjmjjj ssssssP LL

for each j can be computed from the number of occurrences of the stored strings.

Figure 3.3: Algorithm to preprocess the background samples.

44

The procedure takes

+
+ ∑ =

l

p

m

m

p
BSlO

1 1
|)|4(time and

+
∑ =

l

p

m

m

p
O

1 1
4

space. Although the size of the background sample |BS| is large, it is practical since the

Markov order m is small. Note that the memory requirement is lower than the case

)2(lO when the Markov chains are constructed explicitly, and the number of

occurrences computed can be reused when considering strings of length larger than l .

2. Algorithm Based on Skipping Non-conserved Positions

Given a sample S and string length l , we consider each combination of ignored

positions among l positions, and enumerate all motifs with these ignored positions by

scanning over all strings s of length l that appear in S and removing the ignored

positions from s to obtain s′. We insert s′ into a search tree T, in which each motif is

represented by a path from the root to a leaf, each internal node has at most four children

that correspond to each letter in {a,c,g,t}, and each leaf represents a motif that may have

multiple occurrences(see Figure 3.4).

To avoid repetitive motifs that have excessive number of overlapping occurrences, given

a motif s and a parameter 'n that specifies the number of occurrences that are counted

for each sequence, we let 'k be the number of sequences that have at least 'n non-

overlapping occurrences of s. Within each leaf of T, we compute 'k during the tree

construction by remembering the number of non-overlapping occurrences found so far in

45

a sequence and the location of the last occurrence. Although more accurate formulas for

computing P-values are available for this non-overlapping model (Leung et al.,2005),

they have high time complexity and we use our original overlapping approximation to

compute P-values and E-values within each leaf of T.

Figure 3.4: Illustration of the search tree T constructed for the sequence

aagggaacagtc that stores all motifs of length 9 while ignoring the 2nd, 3rd, 5th

and 8th positions, including the motifs a--g-aa-a, a--g-ac-g, g--a-ca-t and g--a-ag-

c that appear from the left to the right in the sequence. Each motif is represented

by a path from the root to a leaf while skipping these positions. Each

horizontally marked level has a corresponding level in Figure 3.2.

46

For each combination of ignored positions out of)2(lO possibilities, it takes |)|(SlO

time and space to construct the search tree T, where |S| is the sample size (Figure 3.5).

For each of the |)(| SO leaves that corresponds to one motif s, each of the)(lO terms in

the P-value formula for)(sP can be obtained in constant time from the preprocessing

results. By computing the binomial coefficients and each term within the summation of

the two P-value formulas recursively and obtaining the powers 1))(1(+−
−

lnsP and

Figure 3.5: The main PosMotif Algorithm to compute e-values of each candidate

motif from the input samples.

47

knsP))',(1(− by a recursive halving approach, the P-values and the E-values of s can

be computed in |)|log'(SknlO +++ time. Thus the overall time complexity of the

entire algorithm is |))|log'(||2(SknlSO l
+++ , which is practical for l up to 18 or 20

and moderate sample size |S| (Figure 3.5).

3. Post-processing

We consider all motifs of different lengths up to a maximum l from the main algorithm

with E-value below a cutoff, and perform initial post-processing (Figure 3.6) by merging

pairs of motifs with a shift of at most one starting position. While there exist two motifs

with the same number of occurrences in each sequence and the starting position of each

occurrence of one motif is one position before the starting position of each occurrence of

the other motif, we merge the two motifs into one motif and set its E-value to the lower

E-value among them. While there exist two motifs with the same number of occurrences

and the same set of starting positions in each sequence, we remove the motif with the

higher E-value. Note that the motifs that are merged do not need to have the same or

similar lengths, and the motifs after merging may have length larger than l .

To perform this step efficiently, we sort the motifs by the locations of their occurrences

and investigate those that are close in locations. At the end, we sort the motifs in

increasing order of the E-value and report them. Since not many motifs have low E-

values, the running time is small when compared to the main algorithm. Note that this

48

strategy is different from the one in Apostolico and Parida (2004) since we do not

remove non-maximal motifs and do not impose density constraints.

Since previous approaches show that additional post-processing such as using motif

redundancy (Pavesi et al., 2001; Wijaya et al., 2007) can lead to improved accuracy, we

follow Peng et al. (2006) and use a hybrid ranking strategy to perform further post

processing (Figure 3.7). For each motif s from among the top r motifs after the initial

post processing step, we compute the number of neighboring motifs s′ of s with the

Figure 3.6: Algorithm to post-process the prediction results by merging motifs of

same occurrences or strictly consecutive occurrences.

49

cost of alignment between s and s′ below a cutoff, and add the occurrences of s′to s,

with overlapping occurrences combined into one site. Note that these added occurrences

are possibly of different lengths, resulting in a general motif model, and this step helps to

remove our initial restriction that nucleotides must be fixed in positions that are not

ignored.

Figure 3.7: Algorithm to combine the redundant motifs from the results after the

initial post-processing step.

50

We compute two different ranks for each motif s, including rank1(s), which is the rank

of s (between 1 and r) when the motifs are sorted in decreasing order of the number of

neighboring motifs, and rank2(s), which is the rank of s (between 1 and r) when the

motifs are sorted in increasing order of the E-value, and sort the motifs in increasing

order of the hybrid rank rank(s) =rank1(s) + rank2(s). To avoid the situation in which all

top motifs are very similar, for each motif s, we remove all motifs 's with worse rank

when the percentage of neighbors shared by s and 's with respect to s is above a cutoff.

D. Performance

1. Experiment Setups and Evaluation Criteria

For our algorithm, we consider two variants, including PosMotif1, which combines

algorithm PosMotif with algorithm PostProcess that performs initial post processing, and

PosMotif2, which combines algorithm PosMotif with algorithms PostProcess and

PostProcess2 that perform both initial and further post processing. We compare our

performance to YMF (Sinha and Tompa, 2002), which uses a statistical approach that

performs very well on samples of type mixed from Tompa et al. (2005), to MEME

(Bailey and Elkan, 1994), which is one of the most popular motif finding algorithms that

use the expectation maximization strategy, to MotifSampler (Thijs et al., 2001), which

uses a Gibbs sampling strategy that performs very well on samples of type real from

51

Tompa et al. (2005), and to Weeder (Pavesi et al., 2001), which uses a combinatorial

approach that has the best accuracy as assessed by Tompa et al. (2005).

For each algorithm, we use the default parameters as much as possible. We follow Sinha

and Tompa (2002) and run YMF over motif lengths from 6 to 10, allowing for at most

two degenerate symbols and at most 11 spacers for motifs of length 6 and no spacers for

motifs of length larger than 6, while using a 3rd order Markov background constructed

from upstream sequences of entire species. We further use FindExplanator from YMF to

extract independent motifs for each length, and sort these motifs of different lengths by

z-score while extracting occurrences on both strands.

We run MEME with the anr option, with motif lengths of up to 20 while considering

only the forward strand and using a 5th order Markov background constructed from

upstream sequences of entire species.

We run MotifSampler 20 times for each motif length 6, 8, 10 and 12 while considering

only the forward strand and using a 3rd order Markov background constructed from

upstream sequences of entire species.

We run Weeder with the large mode over motif lengths 6, 8, 10 and 12 while allowing

sites to be on both strands and using appropriate frequency tables of the given species.

52

We run PosMotif1 and PosMotif2 using background Markov chains of order 2=m

constructed from upstream sequences of entire species while considering only the

forward strand. Since it is not necessarily more sensitive to count arbitrary number of

motif occurrences in a sequence during the computation of P-values, we use a parameter

'N to control the maximum number of motif occurrences that are counted for each

sequence. We count at most one non-overlapping occurrence per sequence unless the

number of sequences k is very small: 4' =N for 1=k , 2' =N for 2=k or 3, and

1' =N for 4≥k k . For each sample S, we iteratively consider each possible 'n from 1 to

'N , which put emphasis on occurrences in different sequences. We restrict the motif

length l to at most 18 before post processing and collect all motifs with E-value below

l for post processing. The above parameters are determined by testing a few

combinations and choosing one that gives satisfactory performance on samples of type

real from Tompa et al. (2005). For each motif s, we define the occurrences of s to be all

strings in S that match s, which is independent of 'n .

In the second post processing step, we start with top 100=r motifs from the first post

processing step. We follow Peng et al. (2006) to define the alignment cost and

neighboring motifs as follows: 1 for a mismatch of two letters in {a,c,g,t}, 0.7 for an

indel of a letter in {a,c,g,t}, 0.5 for matching – with a letter in {a,c,g,t}, and no cost for

other combinations. We allow gaps to appear only at the beginning or the end of an

alignment. We consider two motifs to be neighbors only when their difference in length

is at most 0.2 times their maximum length, and define the cutoff for alignment cost to be

53

0.2 times their maximum length. We further define the cutoff for removal of worse

ranked motifs to be 50% of shared neighbors. Note that motifs may become longer after

initial post processing in PosMotif1 and can contain variable length occurrences after

further post processing in PosMotif2.

When constructing background Markov chains, we use background upstream sequences

of the same length as the sequence length in a given sample. When processing samples

that contain sequences from multiple species, background frequencies are added across

multiple species for Weeder, while background upstream sequences are collected

together across multiple species before constructing the background Markov chain for

the other algorithms.

For each prediction on a given sample, we compute the nucleotide level statistics nTP,

nFP, nFN and nTN, which are the number of positions that are in both predicted and

known sites, the number of positions that are in predicted sites but not in known sites,

the number of positions that are in known sites but not in predicted sites, and the number

of positions that are not in predicted nor known sites respectively. From these statistics,

we compute the sensitivity nSn, the positive predictive value nPPV, the specificity nSp,

the performance coefficient nPC, and the correlation coefficient nCC (see the detailed

definition in Chapter I).

54

By following Tompa et al. (2005) to define an overlap between a predicted site and a

known site if they overlap by at least one-fourth of the known site, we also compute the

site level statistics sTP, sFP and sFN, which are the number of known sites that have

overlap with a predicted site, the number of predicted sites that do not have overlap with

known sites, and the number of known sites that do not have overlap with predicted sites

respectively. From these statistics, we compute the sensitivity sSn, the positive

predictive value sPPV, and the performance coefficient sPC (see the detailed definition

in Chapter I).

We use the top motif from each algorithm for performance evaluation. To evaluate the

accuracy of each algorithm on a set of samples, we treat it as if it was a single large

sample (Tompa et al., 2005). To further evaluate whether our algorithm leads to

significant improvements, we use the Wilcoxon matched-pairs signed-ranks test

(Wilcoxon, 1947) over a set of samples with 05.0=P as significance cutoff, in which

values of nPC, nCC and sPC on each sample within the set are paired from two

algorithms.

2. Benchmark Datasets

We test each algorithm on three sets of biological samples, including samples of type

real from Tompa et al. (2005), in which each sample contains motifs that correspond to

one transcription factor in the TRANSFAC database (Wingender et al., 1996), samples

55

from the SCPD database (Zhu and Zhang, 1999), which is a promoter database that

contains yeast regulons, and samples from the ABS database (Blanco et al., 2006), in

which each sample contains experimentally validated binding sites that have been

manually curated from at least two orthologous vertebrate promoters.

Figure 3.8 shows performance comparisons of the algorithms on samples of type real

from Tompa et al. (2005), in which there are a total of 52 samples from four species,

including fly, human, mouse and yeast, with each sample containing up to 35 upstream

sequences from one species and sequence lengths ranging from 500 to 3000. Note that

these samples contain real upstream sequences, which are different from the samples of

type mixed used in Tompa et al. (2005). When all samples from different species are

considered together, the P-values from the Wilcoxon test show that there are no

significant performance differences between PosMotif and the other algorithms. When

the samples from each species are considered separately, Table 3.1 shows that there are

considerable accuracy fluctuations. This is especially true for fly, which contains only

six samples. All the algorithms have high accuracy on yeast, with PosMotif generally

performing better on yeast. The Wilcoxon test is not performed within each species since

the number of samples is small.

56

Table 3.1: nCC values of motif finding algorithms on samples of type real from

Tompa et al. (2005) within each species, including fly, human, mouse and yeast. In

each case, the highest value is in bold.

Figure 3.8: Performance of PosMotif and other motif finding algorithms on

samples of type real from Tompa et al. (2005). For each algorithm, bars denote

nSn, nPPV, sSn and sPPV from left to right, lines marked by crosses denote nPC,

lines marked by diamonds denote nCC, and lines marked by triangles denote sPC,

obtained by treating a set of samples as if it was a single large sample.

57

Figure 3.9 shows performance comparisons of the algorithms on samples that contain at

least three genes in the SCPD database (Zhu and Zhang, 1999), in which there are a total

of 35 samples, with each sample containing up to 25 upstream sequences in yeast and

each sequence of length 1000. The P-values from the Wilcoxon test show that PosMotif

performs better than the other algorithms in most cases (except for YMF when the

performance differences are insignificant), with PosMotif2 generally performing better

than PosMotif1 (Table 3.2).

Table 3.2: P-value from the Wilcoxon matched-pairs signed-ranks test of

PosMotif on samples that contain at least three genes in the SCPD database (Zhu

and Zhang, 1999). Each algorithm on the left is compared against each algorithm

on the top, with — indicating insignificant differences.

58

Figure 3.10 shows performance comparisons of the algorithms on samples from the ABS

database (Blanco et al., 2006), in which there are a total of 68 samples, with each sample

containing up to 95 upstream sequences in multiple species from among human, mouse,

rat and chicken, and each sequence of length 500. The P-values from the Wilcoxon test

show that PosMotif performs significantly better than YMF in all cases, and it performs

Figure 3.9: Performance of PosMotif and other motif finding algorithms on

samples that contain at least three genes in the SCPD database (Zhu and Zhang,

1999). The notations are the same as in Figure 3.8.

59

significantly better than the other algorithms in most cases, with no significant

performance differences between PosMotif2 and PosMotif1 (Table 3.3).

Figure 3.10: Performance of PosMotif and other motif finding algorithms on

samples from the ABS database (Blanco et al., 2006). The notations are the same

as in Figure 3.8.

60

The above results show that PosMotif1 has high accuracy even before extensive post

processing is performed when positions that are not ignored still contain fixed

nucleotides. The second post processing step in PosMotif2 is useful, but does not always

lead to significantly better accuracy. In general, the nucleotide level statistics nPC and

nCC correlate well with each other, the site level statistics sSn and sPPV correlate well

with the nucleotide level statistics nSn and nPPV respectively, and the site level statistic

sPC correlates well with both the nucleotide level statistics nPC and nCC. To obtain

good performance, appropriate tradeoffs have to be maintained between optimizing nSn

and nPPV (or between sSn and sPPV), in which the former aims to reduce false

negatives while the latter aims to reduce false positives.

Table 3.3: P-value from the Wilcoxon matched-pairs signed-ranks test of

PosMotif on samples from the ABS database (Blanco et al., 2006). The notations

are the same as in Table 3.2.

61

To investigate the effectiveness of the post processing, we also tested the post processing

steps on our previous motif-finding algorithm MotifEnumerator (Sze. S. and Zhao. X.

2006). Similarly to PosMotif, we consider two variants, including MotifEnumerator1,

which combines algorithm MotifEnumerator with algorithm PostProcess that performs

initial post processing, and MotifEnumerator2, which combines algorithm

MotifEnumerator with algorithms PostProcess and PostProcess2 that perform both initial

and further post processing.

We compare the performance of Motifenumerator to MEME (Bailey and Elkan, 1994),

to Weeder (Pavesi et al.., 2001), and to AlignAce (Hughes et al., 1998). For each

algorithm, we use the default parameters as much as possible. We run MEME with the

anr option, with motif lengths of up to 20 on the default forward strand, and using a 5th

order Markov background constructed from upstream sequences of entire species. We

run Weeder with the large mode over motif lengths 6, 8, 10 and 12 on the default

forward strand and using appropriate frequency tables of the given species.We run

AlignAce with the minimum motif length as 6 and all other parameters as default.

In addition, we applied the dust routine on each benchmark datasets to further improve

the performance.

Figure 3.11 shows performance comparisons of the algorithms on samples of type real

from Tompa et al. (2005). When all samples from different species are considered

62

together, the P-values from the Wilcoxon test show that there are no significant

performance differences between MotifEnumerator and the other algorithms except that

both invariants of MotifEnumerator are significantly better than AlignAce on nCC

values. The Wilcoxon test is not performed within each species since the number of

samples is small.

Figure 3.12 shows performance comparisons of the algorithms on samples that contain at

least three genes in the SCPD database (Zhu and Zhang, 1999). The P-values from the

0

0.1

0.2

0.3

MEME AlignAce Weeder MotifEnumerator1 MotifEnumerator2

nSn nPPV sSn sPPV nPC nCC sPC

Figure 3.11: Performance of MotifEnumerator and other motif finding algorithms on

samples of type real from Tompa et al. (2005). For each algorithm, bars denote nSn,

nPPV, sSn and sPPV from left to right, lines marked by crosses denote nPC, lines

marked by diamonds denote nCC, and lines marked by triangles denote sPC, obtained

by treating a set of samples as if it was a single large sample.

63

Wilcoxon test show that MotifEnumerator performs better than the other algorithms in

most cases, with MotifEnumerator2 generally performing better than MotifEnumerator1

(Table 3.4).

0

0.1

0.2

0.3

0.4

0.5

0.6

MEME AlignAce Weeder MotifEnumerator1 MotifEnumerator2

nSn nPPV sSn sPPV nPC nCC sPC

Figure 3.12: Performance of MotifEnumerator and other motif finding algorithms on

samples that contain at least three genes in the SCPD database (Zhu and Zhang, 1999).

The notations are the same as in Figure 3.8.

64

Figure 3.13 shows performance comparisons of the algorithms on samples from the ABS

database (Blanco et al., 2006). The P-values from the Wilcoxon test show that

MotifEnumerator performs significantly better than the other algorithms in most cases,

with MotifEnumerator2 generally performing better than MotifEnumerator1 (Table 3.5).

Table 3.4: P-value from the Wilcoxon matched-pairs signed-ranks test of

MotifEnumerator on samples that contain at least three genes in the SCPD

database (Zhu and Zhang, 1999). Each algorithm on the left is compared against

each algorithm on the top, with — indicating insignificant differences.

P-value MEME AlignAce Weeder MotifEnumerator1

nPC — — —

nCC — — —

MotifEnumerator1

 sPC — — —

nPC — — 0.05 0.0007

nCC 0.04 — 0.02 0.001

MotifEnumerator2

 sPC — — 0.03 0.04

65

The above results on MotifEnumerator showed that the post processing algorithms are

effective most of the time and greatly improved the performance of old

MotifEnumerator algorithm.

0

0.1

0.2

0.3

0.4

0.5

MEME AlignAce Weeder MotifEnumerator1 MotifEnumerator2

nSn nPPV sSn sPPV nPC nCC sPC

Figure 3.13: Performance of MotifEnumerator and other motif finding algorithms on

samples from the ABS database (Blanco et al., 2006). The notations are the same as in

Figure 3.8.

66

To further investigate the relationship between motif conservation and algorithm

performance, we combine overlapping occurrences of each motif into one site and align

these occurrences by using ClustalW (Thompson et al., 1994) with default parameters.

We remove columns in the alignment in which less than 50% of the characters are gap

characters and compute the consensus nucleotide in each remaining column while

ignoring gap characters. Over a given set of samples, we define the motif conservation

rate to be total number of nucleotides that are the same as the consensus nucleotide

within a column divided by the total number of nucleotides in all the columns. Note that

this procedure ignores the possibility that a motif can contain sites on both strands, but it

should give a good approximation. Although some number of gap characters can appear

in an alignment, they are rare and the above score reflects the conservation of core

regions in a motif.

Table 3.5: P-value from the Wilcoxon matched-pairs signed-ranks test of

MotifEnumerator on samples from the ABS database (Blanco et al., 2006). The

notations are the same as in Table 3.2.

P-value MEME AlignAce Weeder MotifEnumerator1

nPC — 0.006 —

nCC — 0.006 —

MotifEnumerator1

 sPC — 0.02 —

nPC — 0.01 0.06 0.0003

nCC 0.03 6e-5 0.01 0.0006

MotifEnumerator2

 sPC — 0.003 0.008 0.01

67

Figure 3.14 shows that although the known sites generally have low conservation rates,

each algorithm has its own focus on finding motifs within a narrow range of

conservation rates due to the specific motif model being used and the parameter settings.

Among the three data sets, the high site conservation rate on the samples from the SCPD

and ABS databases makes it easier for PosMotif to improve motif finding accuracy.

Within the samples of type real from Tompa et al. (2005), the site conservation rate of

the yeast samples is higher than that of the other species, which explains the better

Figure 3.14: Conservation rate of known sites and top motifs from motif finding

algorithms on each set of samples.

68

performance of PosMotif on the yeast samples. Since our model focuses initially on

identifying invariant core positions, it is most successful in identifying sites that have a

high enough conservation rate within a sample, in which case the invariant positions are

more prevalent and are better captured by our model. This is especially true on the

samples from the SCPD and ABS databases, in which the site conservation rate is much

more prevalent and are better captured by our model. This is especially true on the

samples from the SCPD and ABS databases, in which the site conservation rate is much

higher than that on the samples of type real from Tompa et al. (2005). Note that these

performance differences are mostly due to the differences in the site conservation rate

and are not species-specific.

E. Discussion

We have shown that by skipping non-conserved positions, many background Markov

chains can be used simultaneously to better model long range nucleotide dependencies

within motifs. Our initial focus on positions that have fixed nucleotides allows the

development of an efficient algorithm that can find long motifs in moderately sized

samples, due to a small base of two in the exponential part of the time complexity. The

later post processing step gives rise to a general motif model in which each motif can

contain variable length occurrences.

69

It takes minutes to hours to find motifs of length up to 18 or 20 for the smaller samples

to one or two days for the larger samples. When the maximum motif length is lowered to

smaller values such as 12, the algorithm becomes very fast and takes only seconds for

many samples. Since the running time approximately doubles when l is increased by 1,

it takes about twice as long to obtain all motifs of length at most l when compared to

obtaining motifs for only one l .

To further improve accuracy, it is possible to develop more accurate formulas that have

low time complexity for computing P-values and E-values, or consider more detailed

models initially by allowing mismatches or degenerate letters within motifs. Another

strategy is to use phylogenetic information on samples that contain sequences from

multiple species.

70

CHAPTER IV

ALGORITHM BASED ON ADDING MORE DNA UPSTREAM

 SEQUENCES FROM OTHER SIMILAR PROTEINS

We proposed a new strategy to improve the performance of identifying the transcription

factor binding sites in DNA sequences via similar genes. The idea is to add more

upstream sequences to the input sample from the genes that are sufficiently similar to the

input genes. We have tried this strategy in one large benchmark datasets and tested on

five famous motif-finding tools. The results showed great improvements for each tool on

the enriched benchmark datasets compared to the original benchmark datasets.

A. Introduction

Most existing motif-finding algorithms are tested on datasets that contain upstream

sequences from several co-regulated genes, as co-regulated genes are known to share

similar regulatory mechanism and their promoter region might contain common binding

sites for transcription factors. However, as there are still lots of genes are unknown to be

co-regulated or not, the collection of currently known co-regulated genes is just a subset

of the whole co-regulated genes set. Sometimes this collection did not contain enough

information to detect the real motif pattern. Therefore, most of the existing motif-finding

tools perform much better in yeast and other lower organisms than in higher organisms,

because through knowledge can be obtained on the lower organisms. Based on this

71

observation, we are trying to enrich the existing datasets by adding more information

from other sufficiently similar genes, so that the real motif pattern can stand out. We

can make a hypothesis that similar genes, even currently we don’t know if they are co-

regulated, may have similar patterns/features in their upstream sequences. So to avoid

the limitations of the current available experiment data about the co-regulated genes, we

proposed to add more upstream sequences from sufficiently similar genes.

B. Methods

1. Running BLAST

To find sufficiently similar genes, we can use BLAST to search on the sequences. If the

given sample contains the corresponding gene information, we could obtain the

corresponding upstream sequences from similar genes using the input gene information

as the query (TBLASTN); otherwise we need two steps. The first step is trying to find

the corresponding gene information by using the upstream sequences from the input

sample as the query(BLASTN). It is possible that nothing may be found, and in this case

we won’t process any further to the current input sequences. If we can identify the gene

information from the first step, then we can then use TBLASTN to search for similar

genes. For each running of BLAST, we need to save the results for further processing as

we only want to keep the ones that are interested to us.

72

2. Processing the Results from BLAST

The processing for the results from BLASTN is straight-forward, since we only need to

find the exact match against the input upstream sequence, or return nothing if there is no

such match. We define the exact match as follows:

i) the identity rate = 100 %

ii) the positive rate = 100%

iii) the aligned length=100% of input length

After we find the exact match, we then go to the corresponding gene bank file and

extract the corresponding cds information, which will be inputs to the TBLASTN

program.

The processing for the results from TBLASTN is similar to BLATN, except that we

need to find suitable hits in this case. Obviously we don’t want the exact match or the

very similar matches, as they may come from the same gene and can not provide

additional information to help identify the binding sites in the upstream sequences. On

the other hand, we don’t want the genes that are too different either, as they may have

absolutely very different features, which can introduce noise for us to identify the

binding sites. What we want is those genes that they are sufficiently similar so as to

contain some common features as represented by their upstream sequences.

73

The criteria we find most suitable for processing TBLASTN results is as follows:

i) 50% <= the identity rate <= 80%

ii) 50% <= the positive rate <= 80%

Since gene bank files will be needed to process the results from BLAST running, and the

gene banks files are usually too much. We provide two options of processing the results.

If you already have a database containing the gene bank files you will be interested, you

can run the processing algorithm locally and search gene bank files in the database you

specified. If you don’t have such a database or you don’t know if your database is large

enough to contain all the possible gene bank files, you can run the processing algorithm

with an option to download the gene bank files from online NCBI GenBank to your local

machine. The second option would first search for gene bank files in your local

directory and then search in online NCBI genebank if it is not found locally.

A mini database containing all geneBank files for the testing data sets we used are

available for downloading, as well as the scripts to run BLAST and to process BLAST

results.

3. Modifying the Datasets by Adding More Sequences

After we processed the results from TBLASTN, for each input upstream sequence, there

might be multiple candidate upstream sequences from similar genes. Especially these

74

candidate upstream sequences for the upstream sequences from the same data sets may

contain duplicates with each other. To avoid this, we used the cd-hit to remove the

duplicates or highly similar upstream sequences, in the preference that the original

upstream sequences will be kept. After this, we add the selected candidate upstream

sequences to the end of the dataset.

C. Performance

We have picked five most popular motif finding tools to run on both the original datasets

and the modified datasets with added sequences. We picked MEME (Bailey and Elkan,

1994), which is one of the most popular motif finding algorithms that use the expectation

maximization strategy, Weeder (Pavesi et al., 2001), which uses a combinatorial

approach that has the best accuracy as assessed by Tompa et al. (2005), MotifSampler

(Thijs et al., 2001), which uses a Gibbs sampling strategy that performs very well on

samples of type real from Tompa et al. (2005), YMF (Sinha and Tompa, 2002), which

uses a statistical approach that performs very well on samples of type mixed from

Tompa et al. (2005), and AlignAce (Hughes et al., 1998), which is a famous tool using a

Gibbs sampling algorithm with the weight matrix motif model.

For each of these tools, we use the default parameters as much as possible and use the

same parameters for running on both the enriched datasets and the original datasets.

75

We run MEME with the anr option, with motif lengths of up to 20 on the default

forward strand, and using a 5th order Markov background constructed from upstream

sequences of entire species.

We run Weeder with the large mode over motif lengths 6, 8, 10 and 12 on the default

forward strand and using appropriate frequency tables of the given species.

We run MotifSampler 20 times for each motif length 6, 8, 10 and 12 on the default

forward strand and using a 3rd order Markov background constructed from upstream

sequences of entire species.

We run YMF over motif lengths from 6 to 10, allowing for at most two degenerate

symbols and at most 11 spacers for motifs of length 6 and no spacers for motifs of length

larger than 6, while using a 3rd order Markov background constructed from upstream

sequences of entire species.

We run AlignAce with the minimum motif length as 6 and all other parameters as

default.

76

Figure 4.1 shows performance comparisons of the algorithms that contain at least three

genes in the SCPD database (Zhu and Zhang, 1999) and on the enriched version samples

of samples. There are total 35 samples in this SCPD benchmark datasets, with each

sample contains up to 25 upstream sequences in yeast and each of length 1000. The nPC,

nCC and sPC values from the comparisons show that all these five algorithms have

performance improvements on the enriched samples, with YMF, MEME and

0

0.05

0.1

0.15

0.2

0.25

YMF MEME AlignAce MotifSampler Weeder

nPC_original nPC_improved nCC_original

nCC_improved sPC_original sPC_improved

Figure 4.1: Performance of motif finding algorithms on samples that contain at least

three genes in the SCPD database (Zhu and Zhang, 1999) and on the enriched

version of samples. For each algorithm, bars denote nPC_original, nCC_original,

and sPC_original are the performance on the original samples, while bars denote

nPC_improved, nCC_improved, and sPC are the performance on the enriched

version of the original samples.

77

MotifSampler show great improvements on all three values, AlignAce and Weeder show

good improvement on the sPC values and small improvements on the nPC and nCC

values.

D. Discussion

We have shown that by adding suitable upstream sequences into the original given

sample, the performance of motif finding algorithms can be greatly improved. Our focus

is to demonstrate that this idea is useful to improve the performance of most motif

finding algorithms and provide helpful guide to the future benchmark datasets creation.

One possible future task is to run on some other existing difficult benchmark datasets,

such as Tompa Benchmark and try to see the how the improvements can be. This will

also give us hints how to evaluate different benchmark datasets, as if the performance on

one benchmark datasets can be improved a lot by adding more relative sequences, this

benchmark datasets may need improvements as well.

Another possible future task is try to analyze the helpful sequences been added to the

original samples and find out the underlying possible causes. The sequences might come

from different genes or species. This analysis would help us to better understand the

transcription mechanism.

78

CHAPTER V

CONCLUSION AND FUTURE WORK

In this dissertation, we have developed three different methods to improve the

performance of the motif finding problem.

In Chapter II, we have proposed an improved pattern-driven algorithm,

MotifEnumerator, which has a reduced the time complexity from)4(lknO l to)4(lkO l

over the traditional exact pattern-driven approaches, where k is the number of

sequences, n is the length of each sequence and l is the motif length. It saves a factor

of n in time complexity when l is large enough. This is a significant improvement since

n can be as large as 3000. It also extends the power of the pattern-driven approach to

find all significant motifs of length around 12 or 13 (from the original limit of around

10), or substantially to around 20 while retaining most of the original sensitivity by

allowing don’t care positions but disallowing mismatches. The accuracy performance of

this algorithm is comparable to the best existing motif finding algorithms on a large

benchmark set of samples. To further improve MotifEnumerator, it may be desirable to

allow a small amount of overlaps among suboptimal motif occurrences to avoid missing

motifs. It is also useful if more accurate statistical formulas can be obtained so as to

improve the accuracy of the motif scores.

79

In Chapter III, we have demonstrated another new algorithm with post processing,

PosMotif, which uses a motif representation that allows arbitrary ignored positions

within the non-conserved portion of single motifs, and uses Markov chains to model the

background distributions of motifs of certain length while skipping these positions

within each Markov chain. We have applied two post processing steps considering

redundancy information in this algorithm and tested it on three large benchmark sets of

samples. The performance comparisons with other five existing motif finding algorithms

show significant improvement in motif prediction accuracy and the Wilconxon test show

statistical improvements over the other tools. To further improve accuracy, it is possible

to consider more detailed models initially by allowing mismatches or degenerate letters

within motifs, or to use phylogenetic information on samples that contain sequences

from multiple species.

In Chapter IV, we have illustrated a new method, Enrich, to improve the performance of

motif finding algorithms by adding relative sequences to the input samples. By

modifying the existing benchmark datasets, we show that this strategy is able to improve

the performance of existing motif finding algorithms. The performance comparisons also

indicate that this strategy would help to improve the quality of existing benchmark

datasets as well. To further demonstrate this strategy, it may be useful to test on more

motif finding algorithms and more benchmark datasets.

80

Some other possible future work might try to combine the last two methods we proposed

to further improve the performance of motif finding algorithms. For example, we can use

both post processing method and sample enriching strategy for any motif finding

algorithm. It is also desired to formally evaluate the existing motif finding benchmark

data sets and guide the direction of the future benchmark datasets creation.

81

REFERENCES

Apostolico, A., Parida, L. 2004. Incremental paradigms of motif discovery. J. Comp.

Biol. 11, 15–25

Bailey, T.L., Elkan, C.P. 1994. Fitting a mixture model by expectation maximization to

discover motifs in biopolymers. Proc. 2nd Int. Conf. Intelligent Systems Mol. Biol. 28–

36

Barash, Y., Elidan, G. Friedman, N., Kaplan, T. 2003. Modeling dependencies in

protein-DNA binding sites. Proc. 7th Ann. Int. Conf. Res. Comp. Mol. Biol. 28–37

Blanchette, M., Schwikowski, B., Tompa, M. 2002. Algorithms for phylogenetic

footprinting. J. Comp. Biol. 9, 211–223

Blanco, E., Farr´e, D., Alb`a,M.M.,Messeguer,X. and Guig´o, R. 2006. ABS: a database

of Annotated regulatory Binding Sites from orthologous promoters. Nucleic Acids Res.

34, D63–67.

Buhler, J., Tompa, M. 2002. Finding motifs using random projections. J. Comp. Biol. 9,

225–242

82

Chin, F. and Leung, H.C.M. 2008. DNA motif representation with nucleotide

dependency. IEEE/ACM Trans. Comput. Biol. Bioinformatics 5, 110–119.

Crooks GE, Hon G, Chandonia JM, Brenner SE 2004. WebLogo: A sequence logo

generator, Genome Research 14, 1188-1190

Eskin, E. 2004. From profiles to patterns and back again: a branch and bound algorithm

for finding near optimal motif profiles. Proc. 8th Ann. Int. Conf. Res. Comp. Mol. Biol.

115–124

Eskin, E., Pevzner, P.A. 2002. Finding composite regulatory patterns in DNA sequences.

Bioinformatics 18, S354–363

Favorov, A.V., Gelfand, M.S., Gerasimova, A.V., Ravcheev, D.A., Mironov, A.A.,

Makeev, V.J. 2005. A Gibbs sampler for identification of symmetrically structured,

spaced DNA motifs with improved estimation of the signal length. Bioinformatics 21,

2240–2245

Fraenkel, Y.M., Mandel, Y., Friedberg, D., Margalit, H. 1995. Identification of common

motifs in unaligned DNA sequences: application to Escherichia coli Lrp regulon.Comp.

Appl. Biosci. 11, 379–387

83

Galas, D.J., Eggert, M., Waterman, M.S. 1985. Rigorous pattern-recognition methods for

DNA sequences. Analysis of promoter sequences from Escherichia coli. J. Mol. Biol.

186, 117–128

GuhaThakurta, D., Stormo, G.D. 2001. Identifying target sites for cooperatively binding

factors. Bioinformatics 17, 608–621

Hertz GZ, Hartzell GW, Stormo GD 1990. Identification of consensus patterns in

unaligned DNA sequences known to be functionally related. Comput Appl Biosci. 6, 81-

92.

Hertz GZ, Stormo GD 1999. Identifying DNA and protein patterns with statistically

significant alignments of multiple sequences. Bioinformatics 15, 563-577.

Hughes, J.D., Estep, P.W., Tavazoie, S., Church, G.M. 2000. Computational

identification of cis-regulatory elements associated with groups of functionally related

genes in Saccharomyces cerevisiae. J. Mol. Biol. 296, 1205–1214

Kaplan, T., Friedman, N. and Margalit, H. 2005. Ab initio prediction of transcription

factor binding sites using structural knowledge. PLoS Comput. Biol. 1, E1.

84

Keich, U., Pevzner, P.A. 2002. Finding motifs in the twilight zone. Bioinformatics 18,

1374–1381

Kel, A., Tikunov, Y., Voss, N., Wingender, E. 2004. Recognition of multiple patterns in

unaligned sets of sequences: comparison of kernel clustering method with other methods.

Bioinformatics 20, 1512–1516

Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F., Wootton, J.C.

1993. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple

alignment. Science 262, 208–214

Leung, H.C., Chin, F.Y. 2005.Finding exact optimal motifs in matrix representation by

partitioning. Bioinformatics 21, SII86–92

Liu, X., Brutlag, D.L., Liu, J.S. 2001. BioProspector: discovering conserved DNA

motifs in upstream regulatory regions of co-expressed genes. Pac. Sym. Biocomp. 127–

138

Marsan, L., Sagot, M.-F. 2000. Algorithms for extracting structured motifs using a suffix

tree with an application to promoter and regulatory site consensus identification. J.

Comp. Biol. 7, 345–362

85

Modan, K. D., Ho-Kwok D. 2007. A survey of DNA motif finding algorithms, BMC

Bioinformatics 8, S21

Pavesi, G., Mauri, G., Pesole, G. 2001: An algorithm for finding signals of unknown

length in DNA sequences. Bioinformatics 17, S207–214

Peng, C.-H., Hsu, J.-T., Chung, Y.-S., Lin, Y.-J., Chow, W.-Y., Hsu, D.F. and Tang, C.Y.

2006. Identification of degenerate motifs using position restricted selection and hybrid

ranking combination. Nucleic Acids Res. 34, 6379–6391.

Pesole, G., Prunella, N., Liuni, S., Attimonelli, M., Saccone, C. 1992. WORDUP: an

efficient algorithm for discovering statistically significant patterns in DNA sequences.

Nucleic Acids Res. 20, 2871–2875

Pevzner, P.A., Sze, S.-H. 2000. Combinatorial approaches to finding subtle signals in

DNA sequences. Proc. 8th Int. Conf. Intelligent Systems Mol. Biol. 269–278

Price, A., Ramabhadran, S., Pevzner, P.A. 2003. Finding subtle motifs by branching

from sample strings. Bioinformatics 19, SII149–155

86

Queen, C.,Wegman, M.N., Korn, L.J. 1982. Improvements to a program for DNA

analysis: a procedure to find homologies among many sequences. Nucleic Acids Res. 10,

449–456

Rigoutsos, I., Floratos, A. 1998. Combinatorial pattern discovery in biological sequences:

the TEIRESIAS algorithm. Bioinformatics 14, 55–67

Roth, F.R., Hughes, J. D., Estep, P. E., and Church G.M. 1998. Finding DNA regulatory

motifs within unaligned non-Coding sequences clustered by whole-genome mRNA

quantitation, Nature Biotechnol. 16, 939-945

Schneider TD, Stephens RM 1990. Sequence Logos: A new way to display consensus

sequences. Nucleic Acids Res. 18, 6097-6100

Sinha, S. 2003. Discriminative motifs. J. Comput. Biol. 10, 599–615.

Sinha, S., Tompa, M. 2000. A statistical method for finding transcription factor binding

sites. Proc. 8th Int. Conf. Intelligent Systems Mol. Biol. 344–354

Sinha, S. and Tompa, M. 2002. Discovery of novel transcription factor binding sites by

statistical overrepresentation. Nucleic Acids Res. 30, 5549–5560.

87

Staden, R. 1989. Methods for discovering novel motifs in nucleic acid sequences. Comp.

Appl. Biosci. 5, 293–298

Stormo, G.D., Hartzell, G.W. 1989. Identifying protein-binding sites from unaligned

DNA fragments. Proc. Natl. Acad. Sci. USA 86, 1183–1187

Sze S.-H. and Zhao X. 2005. Improved pattern-driven algorithms for motif finding in

DNA sequences. Proceedings of the 2005 Joint RECOMB Satellite Workshops on

Systems Biology and Regulatory Genomics. 198-211.

Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M. 1999. Systematic

determination of genetic network architecture. Nature Genet. 22, 281–285

Thijs, G., Lescot, M., Marchal, K., Rombauts, S., De Moor, B., Rouz´e, P., Moreau, Y.

2001. A higher-order background model improves the detection of promoter regulatory

elements by Gibbs sampling. Bioinformatics 17, 1113–1122

Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence weighting,

position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–

4680.

88

Tompa, M. 1999. An exact method for finding short motifs in sequences, with

application to the ribosome binding site problem. Proc. 7th Int. Conf. Intelligent Systems

Mol. Biol. 262–271

Tompa, M., Li, N., Bailey, T.L., Church, G.M., De Moor, B., Eskin, E., Favorov, A.V.,

Frith, M.C., Fu, Y., Kent, W.J., Makeev, V.J., Mironov, A.A., Noble, W.S., Pavesi, G.,

Pesole, G., R´egnier, M., Simonis, N., Sinha, S., Thijs, G., van Helden, J.,

Vandenbogaert, M., Weng, Z., Workman, C., Ye, C., Zhu, Z. 2005. Assessing

computational tools for the discovery of transcription factor binding sites. Nature

Biotech. 23, 137–144

Van Helden, J., Andr´e, B., Collado-Vides, J. 1998. Extracting regulatory sites from the

upstream region of yeast genes by computational analysis of oligonucleotide frequencies.

J. Mol. Biol. 281, 827–842

Van Helden, J., Rios, A.F., Collado-Vides, J. 2000. Discovering regulatory elements in

noncoding sequences by analysis of spaced dyads. Nucleic Acids Res. 28, 1808–1818

Waterman, M.S., Arratia, R., Galas, D.J. 1984. Pattern recognition in several sequences:

consensus and alignment. Bull. Math. Biol. 46, 515–527

89

Wijaya, E., Rajaraman, K., Yiu, S.-M. and Sung, W.-K. 2007. Detection of generic

spaced motifs using submotif pattern mining. Bioinformatics 23, 1476–1485.

Wilcoxon, F. 1947. Probability tables for individual comparisons by ranking methods.

Biometrics 3, 119–122.

Wingender, E., Dietze, P., Karas, H. and Kn¨uppel, R. 1996. TRANSFAC: a database on

transcription factors and their DNA binding sites. Nucleic Acids Res. 24, 238–241.

Wolfertstetter, F., Frech, K., Herrmann, G., Werner, T. 1996. Identification of functional

elements in unaligned nucleic acid sequences by a novel tuple search algorithm. Comp.

Appl. Biosci. 12, 71–80

Workman, C.T., Stormo, G.D. 2000. ANN-Spec: a method for discovering transcription

factor binding sites with improved specificity. Pac. Sym. Biocomp. 467–478

Zhou, Q., Liu, J.S. 2004. Modeling within-motif dependence for transcription factor

binding site predictions. Bioinformatics 20, 909–916

Zhu, J. and Zhang,M.Q. 1999. SCPD: a promoter database of the yeast Saccharomyces

cerevisiae. Bioinformatics 15, 607–611.

90

VITA

Name: Xiaoyan Zhao

Address: Department of Computer Science & Engineering

Texas A&M University

2128 TAMU

College Station, TX 77843

Email Address: realxfan@gmail.com

Education: B.S., Computer Science, Beijing Normal University, 2002

Ph.D., Computer Science, Texas A&M University, 2010

