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ABSTRACT 

 

Advanced Dynamic Encryption – A Security Enhancement  

Protocol for IEEE 802.11 and Hybrid Wireless Network. (December 2010) 

Peter Huan Pe Yu, B.S., Tunghai University; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Udo W. Pooch 

 

Data integrity and privacy are the two most important security requirements in wireless 

communication. Most mechanisms rely on pre-share key data encryption to prevent 

unauthorized users from accessing confidential information. However, a fixed secret key 

is vulnerable to cracking by capturing sufficient packets or launching a dictionary attack.  

 

In this research, a dynamic re-keying encryption protocol was developed to enhance the 

security protection for IEEE 802.11 and hybrid wireless network. This protocol 

automatically updates the secret key during the end-to-end transmission between 

wireless devices to protect the network and the communication privacy. In addition, 

security analyses are given to verify the protection of this protocol. Experiment results 

also validate that the dynamic encryption approach can perform as efficiently as other 

security architectures while providing an additional layer of data protection. 
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CHAPTER I 

INTRODUCTION 

1.1. Introduction and Motivation 

 

Wireless network technology enables computing devices to communicate with each 

other without any physical medium (e.g. landlines and wired networking). Compared 

with wired networks, wireless communication provides better connectivity and mobility, 

which allows mobile devices to access other local area networks or the Internet anytime 

and anywhere with the aid of access points (AP). This new form of communication is 

becoming an increasingly popular replacement of traditional wired networking by both 

individuals and organizations around the world. 

 

Approximately 16 million wireless enabled devices are sold every year, including 

laptops, PDAs and cellular phones [1]. In addition, there are more than 20,000,000 [2] 

free and paid Wi-Fi hotspots all over the world to provide a wire-free communication 

environment, with a continuing increasing trend in the number of hotspots and wireless 

devices. 

 

 

 

____________ 

This dissertation follows the style of IEEE Transactions on Computers. 
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There are two basic types of wireless network structures: infrastructure based and ad-hoc 

based. In the infrastructure model, or so-called Base Station oriented (BS-oriented) 

wireless network, all mobile nodes communicate directly with a base station in single-

hop and require the assistance of this fixed infrastructure to forward packets to other 

mobile nodes to enable communication. On the other hand, the Mobile Ad-Hoc Network 

(MANET) utilizes mobile devices to form a provisional network as needed without 

relying on any fixed infrastructure or base station. The former is more reliable and has 

higher performance, with the drawback of lower mobility due to the fixed location; 

however, the ad-hoc network can cover a larger area and can communicate with each 

other in a manner of higher dynamic topology; the trade-off is the data rate. 

 

 

 

Fig. 1. Hybrid wireless network 
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The trend is to combine infrastructure and ad-hoc wireless networks to form a hybrid 

wireless network (HWN, as shown in Figure 1) that not only overcomes the limitations 

of both models but also improves network connectivity and extends wireless coverage to 

more mobile nodes with more network resources. The base station or Access Point in the 

hybrid wireless network environment usually has higher processing performance and a 

stronger wireless signal. Therefore, mobile nodes will first attempt to establish 

connection with them as higher priority for communication until detecting repeated 

connection failure due to slow response, frequent packet collision, or when a wireless 

signal is temporarily unavailable. Then, it automatically switches to the ad-hoc mode 

that builds routes and communicates with other mobile nodes directly, without the aid of 

any base station, reducing resource consumption and improving system throughput [3]. 

In addition, hybrid wireless networks can broaden the usage of the wireless network. As 

illustrated in Figure 1, multi-hop communication between mobile nodes and the base 

station can extend coverage of the wireless network and provide Internet connectivity to 

those in the dead zone, where they are unable to reach the wireless signal directly from 

the base station. 

 

The benefits of flexible routing, global connectivity and a highly adaptive capability 

make hybrid wireless networks suitable for a wide range of applications in both military 

and commercial environments, such as battlefields, disaster relief operations, mobile 

device/personal networking, mobile information sharing and vehicular networks [4] [5]. 

Several similar hybrid wireless concepts have been proposed and studied by other 
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researchers in [6] [7] [8] [9] and are expected to be adapted as one of the standards for 

next-generation wireless communication (with the goal of ubiquitous computing and 

global communication). 

 

However, the coexistence of infrastructure-based and ad-hoc networks in this new and 

highly dynamic hybrid wireless network model introduces a number of new security 

problems and makes maintaining communication privacy and data integrity much more 

challenging. First, unlike wired networks that at least have some degree of physical 

protection, wireless communication over radio waves lacks defined and restricted 

boundaries. Anyone can connect to the network as long as the transmitted signal strength 

is strong enough to cover the area [10]. Therefore, security attacks on data 

communication, such as passive eavesdropping, packet injection or even violations of 

confidentiality are widespread [11]. Also, because of the dynamic nature of the wireless 

networks, mobile nodes are frequently moved while connected or join/leave the network 

at any time. This means that wireless packets are frequently lost during transmission 

without detection by both sender and receiver. Thus, without proper security protection, 

an outsider could easily obtain and modify packets to launch session hijacking or replay 

attacks. Second, because the hybrid wireless network combines both BS-oriented and ad-

hoc networks, end-to-end communication between any two mobile nodes in such 

network may use one or both wireless models. Thus, existing common security protocols 

based on a centralized infrastructure or ad-hoc mode only (such as WEP, WPA/WPA2 

and DSDR [12] [13]) will not work. Their security structures were designed to cover and 



 5

protect only single wireless communication and will leave the whole hybrid wireless 

network extremely vulnerable to external unauthorized access. 

 

Third, in order to achieve higher throughput in this co-existing wireless network, the 

default routing protocol does not implement any security protection during node-to-node 

communication. In addition, the trust relationships between each mobile device are very 

low as a consequence of the frequently changing topology and membership. Because of 

this, many attacks can be launched against the routing protocol, giving hackers a major 

opportunity to insert themselves as one of the cooperative nodes in the network to access 

confidential information. Therefore, the security protection that ensures the integrity of 

the wireless communication should not only repel attacks from external elements, but 

also prevent attacks launched internally from any compromised wireless node.  

 

Most security mechanisms rely on data encryption - a message combined with a secret 

key to generate a cipher text that cannot be deciphered without the original key. This 

encryption mechanism can prevent unauthorized users from gaining access to the 

secured communication. However, a fixed secret key is vulnerable to cracking by 

capturing sufficient packets or launching a dictionary attack. Therefore, the most 

efficient way to protect the network from such attacks is to generate the secret key 

dynamically and replace it periodically [14] [15]. Furthermore, the protocol applied to 

the hybrid wireless network should be sufficiently flexible to adjust to different levels of 

security protection to fit the needs of applications in different environments and with 
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varied communication speeds. For example, mobile banking and E-commerce require 

longer encryption keys for stronger protection, while real-time driven applications such 

as disaster recovery, stream services like VOIP and online video need to preserve data 

privacy as well as performance to maintain the quality of services (QoS). The protocol 

also necessitates efficiency and scalability to handle a large-scale hybrid wireless 

network. This network could consist of hundreds or thousands of nodes that 

communicate with each other in different layers while simultaneously running several 

applications [16]. 

  

Many researchers have investigated the design of new secure communication protocols 

solely for base station orientations, such as Remote Authentication Dial-In User Services 

(RADIUS) [17], Robust Secure Network (RSN) [18] and Extensible Authentication 

Protocol (EAP) [19], or mobile ad-hoc networks only, such as Secure Efficient Ad-hoc 

Distance Vector (SEND) by Hu, Johnson, and Perrig [20], Dynamic Source Routing 

protocol (DSR) by Johnson et al. [12], and Secure Routing Protocol (SRP) proposed by 

Papadimitratos and Haas [21]. To the best of our knowledge, however, there is little in 

the literature on the very new challenge of security encryption protocols in hybrid 

wireless networks. Existing protocols and other traditional security approaches, such as 

authentication, digital certificates and public-key encryption algorithms, still play 

important roles in achieving data privacy, integrity, non-repudiation and availability of 

communication in wireless networks [16]. However, these mechanisms by themselves 

are not sufficient to fulfill the needs of the fast-growing wireless world, either in terms 
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of high computation or communication overhead or lack of ability to prevent internally 

launched attacks. Therefore, the need remains for a lightweight, flexible dynamic 

encryption protocol that provides reliable protection from various attacks against 

wireless communication, and more importantly, capable to fit the highly dynamic and 

complex environment of hybrid wireless networks. 

 

In this research, an efficient and security-enhancing i-key data encryption protocol for 

hybrid wireless networks is presented via dynamic re-keying during node-to-node 

communication. Unlike its counterparts, this secret i-key is generated based on the 

previous data as the seed and as next packet encryption before delivery. Therefore, only 

the original sender and authorized client are able to decrypt the message using the 

unique i-key in their possession. This ensures the communication privacy and data 

integrity. 

 

1.2. Main Contributions 

 

The main contributions can be classified into three categories: 

 

� The security design of IEEE 802.11 wireless communication protocols was 

analyzed at different levels with emphasis on the flaws and security issues in 

existing standard secure protocols. The ease with which one can break the 

security defense of those protocols and penetrate the corporate network is also 
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demonstrated. In addition, the attack patterns and each process step from the 

hacker’s point of view are researched and taken into account in the i-key 

design. This ensures that this i-key protocol is capable of defending the 

network and ensuring data integrity over the unsecure radio frequency medium. 

 

� A new dynamic i-key re-keying encryption/decryption protocol for wireless 

communication was developed. During the end-to-end and point-to-point 

transmission between wirelesses devices, the i-key protocol can automatically 

update the secret key according to the previously received data packet. It is 

then used as the next encryption seed before delivering the response packet, 

providing an ideal solution for secure protection. This protocol overcomes the 

drawback of the pre-share key (PSK) encryption system, ensures the privacy 

of communication and protects sensitive data from eavesdropping. With 

dynamic i-key encryption protocol, each mobile node can also verify the true 

identity of other nodes or access points to prevent sophisticated attacks like 

Rogue AP and Evil Twin. In addition, the i-key protocol is flexible for 

different levels of security protection with the ability to adjust the key size for 

data encryption. Thus, a system with existing security protection can still adopt 

this protocol against malicious attack and protect the valuable wireless 

network. 
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� A new experiment platform capable of simulating two stand-alone wireless 

networks, a base-oriented and mobile ad-hoc network (MANET), and the 

hybrid wireless network that combines them was build. System performance, 

packet delivery rate and network throughput of the i-key encryption protocol 

with other commonly adapted protocols, such as WEP, WPA and WPA2 were 

verified and compared. The experiment results are satisfactory and validate 

this protocol, the i-key dynamic re-keying mechanism, can perform as 

efficiently as other security architectures while providing an additional layer of 

data protection. 

 

1.3. Dissertation Organization 

 

This dissertation is organized as follows: The related work performed for both base-

oriented and mobile ad-hoc wireless networks are summarized in the next chapter. This 

includes secure protocols and encryption systems currently utilized by the IEEE 802.1x 

wireless communication standards.  

 

In Chapter III, the concept of a hybrid wireless network is introduced. Routing structure 

changes are demonstrated in order to successfully deliver wireless packets. Then a novel, 

efficient and security-enhancing dynamic i-key encryption protocol is proposed that can 

be applied to both stand-alone or hybrid wireless networks. The design, encryption and 

decryption procedures of the protocol are discussed in detail. In addition, some examples 
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using the KSA and PRGA algorithms are given to explain how this protocol generates a 

secure cipher stream.  

 

In Chapter IV the security protection of the i-key encryption protocol is addressed along 

with common attacks against wireless networks. Experiment results with other 

encryption protocols in different network environments and configurations are analyzed 

to illustrate the efficiency as well as protection ability of the i-key dynamic encryption 

protocol. Finally, in Chapter V, this dissertation is concluded by summarizing this work 

and listing important directions for future work. In additions, real-world wireless attacks 

and secret key cracking against the IEEE 802.11 standard protection protocols, are 

demonstrated in Appendix A. 
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CHAPTER II 

RELATED WORK - STATE OF THE ART 

2.1. Introduction 

 

In this chapter, the background information pertaining to the IEEE 802.11 wireless 

security encryption protocols is introduced. This covers the Wired Equivalency Privacy 

(WEP) protocol, Wi-Fi Protected Access (WPA), 802.11i (WPA2), Robust Security 

Network (RSN) and Temporal Key Integrity Protocol (TKIP). Also, other well-known 

security approaches and their structures and procedures for data protection are presented. 

An understanding of these related works are necessary in order to develop a better and 

stronger encryption protocol for wireless communication. 

 

2.2 Wired Equivalency Privacy Protocol (WEP) 

 

Wired Equivalent Privacy, or WEP, is an encryption protocol designed by the IEEE 

802.11 [22] and Home RF group [23] in an attempt to protect link-level data over radio 

signals to the security level closer to wired networks. WEP uses the RC4 algorithm for 

data encryption, which includes a Key Scheduling Algorithm (KSA) and a Pseudo 

Random Generation Algorithm (PRGA) [23] [24] [25]. 

 

The WEP key used to encrypt data sent over wireless networks consists of two parts: the 

Initialization Vector (IV) and user pre-shared secret key (PSK). The stream cipher, RC4 
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that is used in WEP, expands the IV (40 and 104 bits) and PSK into an arbitrary long 

"key stream" of pseudorandom bits, then XORs this with the plaintext to obtain the 

ciphertext. To decrypt the ciphertext, the receiver side takes the same steps in reverse 

order on the same key stream. In addition, a CRC-32 algorithm is applied to check for 

data integrity on each data packet.  

 

Many WEP vulnerabilities and security design issues have been discovered and reported 

by researchers since the IEEE released it as the standard encryption protocol for 802.11 

wireless network [26] [27] [28] [29]. Designed during a time period when strong 

cryptographic systems fell under strict export regulations all over the world, WEP secret 

keys originally limited to 40 bits, can now use 104 bit keys or larger. These relatively 

short keys can be cracked by a determined hacker in just a few hours.  

 

Further limitations to WEP effectiveness is that it is completely optional under the 

802.11 standard [30] [31] [32] [33]. Also, the WEP key is static and predefined between 

the access point and mobile user. The 24-bit IV is sent unencrypted through the air in the 

wireless packet header. Thus, the static WEP (predefined key) is not only difficult to 

manage, but the unencrypted IV tends to leak information about some bytes in the WEP 

key [10]. 

 

The secret key is breakable because of IV collisions where the same IV might repeat 

after time. First, an attacker can use sniffing software like LinkFerret [34] and Ethereal 
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[35] to capture wireless packets as they travel via radio communication. Once the 

attacker has captured sufficient IEEE802.11 wireless packets, the WEP secret key can be 

cracked by using cracking tools like Aircrack [36] and WEPCrack [37]. Please refer to 

Appendix A for more detail about WEP cracking approaches and software.   

 

2.3 Wi-Fi Protected Access (WPA) and 802.11i (WPA2) 

 

In order to fix the major loopholes of a wireless network with WEP, Wi-Fi Alliance [32] 

announced the Wi-Fi Protected Access (WPA) protocol that adopts the temporal key 

integrity protocol (TKIP). TKIP mixes the transient keys with the MAC address 

information to provide a stronger Hash algorithm in the form of MICHAEL [38] for data 

integrity. WPA also extends the two-level key hierarchy of WEP into a multiple-tier 

hierarchy structure (Figure 2) [39]. The master key remains at the top level and is 

referred to as the Pair-wise Master Key (PMK), followed by Pair-wise Transient Keys 

(PTK). The final level of the key hierarchy is the per-packet keys generated by feeding 

the PTK to a key-mixing algorithm. This multiple-tier key structure, compared with the 

WEP, protects the WPA by preventing exposure of the PMK in each transmitted packet 

by introducing the concept of PTK. In addition, it doubles the size of the IV from 24 bits 

to 48 bits and eliminates the rollover index counter to minimize the re-use of any IV key 

during the encryption process. TKIP used in WPA also provides a key management 

system through use of a server with the mechanisms to against the use of forgery keys 

and other attacks [39]. 
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WEP WPA

Master Key

Master Secret

PMK

(Pair-wise Master Key)

PTK

(Pair-wise Transient Keys)

System Encryption KeySystem Encryption Key

 

Fig. 2. Secret key hierarchy in IEEE 802.11 [39] 

 

WPA was designed to replace the WEP protocol used in Wi-Fi, without adding a 

hardware requirement, by using a subset of the IEEE 802.11i amendment. This 

amendment is the long-term solution designed by Task Group I (TGi) [18] for a secure 

wireless network or so-called WPA2. 802.11i, on the other hand, is based on the Robust 

Security Network (RSN) [18] mechanism to provide authentication support for both 

infrastructure and ad-hoc network. It also reduces the overhead of key derivation during 

the authentication exchange process. WPA2 adapts the Counter Mode with Cipher Block 

Chaining Message Authentication Code Protocol (CCMP) based on the Advanced 

Encryption Standard (AES) cipher to encrypt network traffic instead of using an RC4-
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like algorithm. However, due to the total encryption system changes, 802.11i is only 

backwards compatible with WPA but not with WEP [40] [41] [42]. Therefore, existing 

hardware, include both Access Point and mobile wireless adapter, need to be replaced in 

order to support the WAP2 protocol. 

 

From the system structure standpoint, WPA and WPA2 are more secure than the WEP 

due to the advanced key management and data encryption/decryption. However, the 

repeating use of a static master key still makes them vulnerable to the attacks described 

in Chapter IV and Appendix A.  

 

2.4 Robust Security Network and 802.1x Protocol 

 

Robust Security Network (RSN) [18] was specified by the IEEE 802.11i group to 

address and fix security issues with the infamous WEP encryption as well as with WEP 

based authentication. RSN introduces the concept and protects the networks by allowing 

only the creation of robust security network associations (RSNAs). RSNAs act as 

wireless connections that provide moderate to high levels of assurance against security 

attacks through the use of a variety of encryption/decryption methods. There are three 

main components in the RSN system: stations (STA), which refer to the wireless mobile 

devices such as PDAs, cell phones and laptops; Access Point (AP), the center of the 

wireless network that provides the connection and communication ability for STAs to 

access other local networks or the Internet; and the Authentication Server (AS), a new 
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component to the traditional WLAN that provides authentication services to STAs. In 

addition, IEEE802.lx port-based access control is used and extended in RSN with the 

addition of a RADIUS/DIAMETER [17] server for the client-server/server-server 

mutual authentication process. Details of the overall RSN infrastructure model are listed 

in Figure 3 below. 

 

STA AP SA

IEEE 802.1X Controlled Port Blocked

IEEE 802.11 Probe Request

IEEE 802.11 Probe Response

IEEE 802.11 Open System 

Authentication Request

IEEE 802.11 Open System 

Authentication Response

IEEE 802.11 Association Request

IEEE 802.11 Association Response

IEEE 802.1X Authentication

IEEE 802.1X Authentication Response

Handshaking

IEEE 802.1X Controlled Port Unblocked

IEEE 802.11 Communications

 

Fig. 3. Infrastructure model of RSN protocol [18] 

 

The new wireless protocol also includes enhancements to increase the data protection of 

existing hardware (pre-RSN) with firmware upgrades for the WPA [42]. The RSN 
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security has a lot more overhead during the initial handshaking, authentication and even 

the establishment of communication, which reduces the overall performance for both 

incoming and outgoing wireless traffic. 

 

2.5 Network Layer Approaches 

 

The Media Access Control (MAC) Layer [43] is one of two sub-layers of the Data Link 

Layer specified in the seven-layer OSI network model (Figure 4), which provides a 

variety of functions that support the operation of wireless networks. Within the MAC 

layer, in the port-based protocol, network ports are configured as the security checking 

points that block all traffic except the authentication handshaking and related control 

messages until the user’s identify is verified. This Port-based access can be implemented 

either in a hardware approach [44] [45], or in software design as is in the IEEE 802.1X 

standards community [46] [47]. Like the infrastructure model in RSN, 802.1X 

authentication information is first embedded in a wireless Ethernet frame and sent to a 

specific multicast Ethernet address in order to establish authentication. Once this process 

is completed successfully, a client-specific key is generated for future network access 

and the corresponding access point ports are opened and signaled to forward packets into 

the access network. The design of the port based 802.1X protocol is more secure than the 

TKIP in WPA, but is cumbersome to implement and deploy for regular end-users and 

small organizations because it requires several system settings and an additional server 
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(such as RADIUS [17]) for the purpose of centralized authentication, authorization and 

accounting (AAA) management for the IEEE 802.11/802.1X wireless network. 

 

 

Fig. 4. TCP/IP and OSI model layer [43] 

 

The CHOICE network architecture [48] proposed by Bahl et al. is another model of a 

network layer security protocol using a software approach. It is built on the Protocol of 

Authorization and Negotiation of Services, or PANS, which assist the wireless 

networking in authentication, authorizing access, enforcing policy, QoS and privacy 

connections for the mobile user and network operators. Beside the authentication process, 

the Authorizer in CHOICE also handles access key provisioning and renewal, while the 

Verifier processes the access verification of each individual packet. Unlike the 802.1X 

structure, which performs the access control at the base station (access point) side, 
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CHOICE approaches verification at the access router in the access subnet. Therefore, 

CHOICE requires less state maintenance in the access point and is more scalable [49]. 

 

2.6 Temporal Key Integrity Protocol (TKIP) 

 

TKIP is a security protocol designed as part of the draft standard from the IEEE 802.11i 

task group and Wi-Fi Alliance as a solution to immediately replace WEP without having 

to replace existing hardware. It utilizes the same RC4 stream cipher system used in WEP 

but with a larger 128-bit key for encryption and another 64-bit key for authentication to 

solve the well-known problems with WEP, including small initialization vectors (IV) 

and short encryption keys [50]. The 48-bit IV in TKIP is re-initialized when the 

Temporal Key (TK) is set and the vector sequencing mechanism ensures that any 

individual IV value is not reused and the network traffic is stopped when the IV reaches 

the maximum value – 2
48

 (2^48) packets, to prevent data and secret key decoding. 

 

In addition, TKIP uses a pre-packet key-mixing function that combines the secret root 

key with the IV value, client’s MAC address, and a packet’s sequence number before 

passing the result to the RC4 initialization to provide fresh encryption and an integrity 

key for each transmitted packet [50] [51]. This keying structure makes TKIP protected 

networks more resistant to cryptanalytic attacks by eliminating the repeating use of the 

same key for data encryption over easy-to-capture wireless communication. 

Furthermore, a 64-bit message integrity check algorithm named MICHEAL [38] is 
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implemented in the TKIP to fix the problem of modification attacks. Previously, an 

attacker could store the integrity check value (ICV), alter the encrypted packet, and then 

update the ICV without having to know the original secret key. Without the integrity 

check, both sender and receiver would simply accept the received packet as long as the 

ICV matches the data checksum. This ICV security breakdown with a cryptographically 

protected one-way hash in the payload prevents remote stations from detecting the 

modification and ensures packet-tampering immediately upon decryption [51]. 

 

2.7 Policy-Based Network Protocol 

 

A network security policy is a guideline or rule describing how a network, mobile node 

or server, is used to resolve security-related issues. The policy protocol is the application 

of these organizational policies in the context of networking using automated network 

operations, management, and control systems [52] [53]. Researchers have recently paid 

much attention to policy-based services, networks and security systems to support the 

highly dynamic wireless communication environment. However, these policy rules need 

to be updated periodically according to the network status, performance and security 

threats from the monitoring devices in order to protect the network from the threat of 

attacks and intrusions. 

 

“Security and Management Policy Specification” by Sloman and Lupu [54] provides a 

survey of both security management and policy-driven network management systems 
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with an introduction to the background on policy specification languages, such as IBM 

Trust Policy Language (TPL) and Policy Definition Language (PDL). It also illustrates 

in detail how the Ponder module works in the policy-based management and distributed 

system. Verma et al., in [55], presents a policy-based architecture for the control and 

management of content distribution networks, with a focus on Web content [53]. The 

proposed architecture extends the policy framework used for controlling network quality 

of service (QoS) and the security management paradigm in the administration of 

dynamic policies affecting content distribution networks. 

 

Project POSITIF (Policy-based Security Tools and Framework) was funded by the 

European Commission in 2004 with the goal of offering automatic tools to support 

security managers in protecting networked system and applications [56]. A multi-level 

policy language is used for both high-level controls and low-level functions and security 

capabilities [56]. By using open standard-based languages, interfaces and protocols, the 

POSITIF system is able to detect and mitigate existing attacks and vulnerabilities in both 

wired and wireless networks in an efficient and scalable manner. For the ongoing 

research, background and standards on policy-based management can be found in the 

Internet Engineering Task Force’s (IETF) Policy Framework and Resource Allocation 

Protocol Workgroup standards documents, in the European Policy-based Security Tools 

and Framework project [53], and in [56]. 
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In [52], Lapiotis et al. designed and implemented an experimental prototype of a 

wireless IEEE 802.11 monitoring and policy controller architecture (Wireless Domain 

Policy Manager) and distributed monitoring agents (Local Monitors). The central policy 

engine validates policies and a computer’s configuration settings to ensure consistency 

for global and local policies. Compared with other existing end-to-end policy-based 

security management approaches in [57] [58] [59], the proposed protocol focused more 

on the domain-specified and hybrid wireline wireless policy domains [52]. In addition, 

the prototype system also automates the process of wireless network management by 

constantly analyzing the monitored network status and encompassing local autonomy to 

evaluate and enforce domain-specific policies through all the network.  

 

2.8 Wireless Intrusion Detection System 

 

Intrusion detection systems (IDSs) are protocols or devices that monitor and ensure the 

security of the network from intruders and help to mitigate risks from various attacks. In 

a traditional wired network, all incoming and outgoing traffic in the local area network is 

through a single gateway or firewall. This environment easily allows the network 

administrator to deploy IDS into a centralized location to examine all bypass packets and 

detect any possible intrusion activities. However, many security threats are unique to 

wireless networking due to its special characteristics, such as the use of an open, 

uncontrolled transmission medium that anyone can effortlessly capture or even inject 
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malicious packets, which makes the design of wireless intrusion detection systems 

(WIDS) more difficult.  

 

AirDefense [60] by Motorola utilizes both hardware and software to provide protection 

against wireless threats, policy compliance monitoring and location tracking for IEEE 

802.11 (a/b/g) network. With the help of sensors deployed over the wireless network, 

AirDefense detects intruders and attacks and also can diagnose potential vulnerabilities 

such as the misconfiguration of servers or access points in the monitored environment 

[61]. A similar system is AirMagnet [62] by Fluke Networks that runs on portable 

devices like laptops, PDAs and smart phones with a Cisco wireless card and application 

software for mobile auditing, intrusion detection and troubleshooting. Furthermore, this 

system is able to detect unauthorized APs, clients, or attacks (e.g., flood DoS attacks) 

and notify the network administrator or security officer for further action [61]. 

 

Zhang et al. proposed a distributed wireless intrusion detection and response system 

architecture [63] based on the needs of the mobile computing environment. Their system 

relies on anomaly detection models constructed using information available from the 

MANET routing protocols for intrusion detection, the decision-tree classifier RIPPER 

[64] and Support Vector Machine classifier SVM-Light [65] to compute classifiers as 

anomaly detectors. The strength of this architecture is its modular design (Figure 5) and 

ability for each mobile node in the ad-hoc network to detect signs of intrusion locally 

and independently [66]. Misuse detection systems such as IDIOT [67] by Kumar and 
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Spafford and STAT [68] by Ilgun et al. are based on pattern comparisons of the 

signature from well-known attacks and intrusions. The advantage of pattern-based 

detection is that it can accurately and efficiently detect instances of known attacks in its 

database; however, it lacks the ability to detect innovative or new forms of attacks [63]. 

 

 

Fig. 5. A conceptual model for IDS agent [63] 

 

Similar to the previous work, Tanachaiwiwat and Chen introduced a network security 

model for dynamic intrusion detection and response (IDR) with the automated responses 

system in [69]. Their model provided a mathematical approach to quantify intrusion 

detection efficiency, risk and cost. They also developed four different dynamic intrusion 

response strategies, based on IDS efficiency, alarm frequency and total response cost. 

Using the same approach as [69] with different types of attacks in wireless networks, 
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Schmoyer et al. introduced a case study in dynamically defending against the man-in-

the-middle attack [66]. Their approach also includes the concepts of local detection 

efficiency and efficiency improvement gained through cooperative detection. 

 

2.9 Password (key) – based Protocol 

 

Public-key cryptography offers a robust solution to many of the existing security 

problems in telecommunication systems. The traditional way to classify encryption 

mechanisms is based on key characteristics of being symmetric (e.g., DES, AES and 

twofish) or asymmetric (public, RSA), with both being a static state.  

 

In the symmetric-based system, or so-called shared-key or private-key system, both the 

encryption and decryption use a trivially related, often identical, secret key. The key is 

the shared secret between two or more parties that can be used to create a private 

communication channel for information exchange. In addition, symmetric-key 

algorithms can be divided into the two main categories of block cipher and stream cipher. 

In the block cipher system, a fixed length of bits of plaintext (a block) is encrypted into a 

block of ciphertext data of the same length, so that the block is the basic operational unit 

and all block ciphers have a natural block size – the number of bits they encrypt in a 

single operation. Taking a different approach, a stream cipher typically operates on small 

units of plaintext, usually bits or bytes. Also, the transformation of those small plaintext 

units will vary, depending on the encryption process. 
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The asymmetric-based encryption system usually uses a different key for encryption and 

decryption. Take public key cryptography as example, the asymmetric key algorithm is 

used to create a mathematically related key pair - encryption and decryption key. The 

former one is used by the other parties to send encrypted information, known as the 

“public key”. While the later one is typically kept secret, known as the “private key”, for 

the use of decode received message. However, excessive computational demands (such 

as memory size, processor speed or power consumption) and algorithm overheads have 

limited the use of public key cryptography, particularly on wireless communication 

systems [70] [71]. The implementation of public-key based cryptography systems at the 

server level or regular terminal/desktop computer’s main platforms rarely creates 

problems, due to the availability of powerful processors and extensive memory space. 

However, in restricted hardware environments with limited memory size and finite 

power resources (such as found with handheld devices, smartcards and cellular phones) 

researchers and developers face more challenges. In addition, the integration of public-

key cryptographic techniques is often delayed or completely ruled out due to the 

difficulty of obtaining efficient and reliable solutions for wireless communication [70] 

[72]. 

 

In [70], the authors proposed a new approach that follows the known stream key 

generation mechanism [73]. This approach adds another dimension via the involvement 

of the time in the key generation, i.e., dynamic keys or one per data record. Their system 

adopted the symmetric key-based algorithm but in a dynamic streaming environment. A 
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static key is initialized and generated first, then stored at a location where it will be used 

later for packet encryption. Another dynamic key is initialized by a central authority 

(e.g., CA, AP or AS), which symmetrically sends it subsequently to the communicating 

parties. This integrated system allows SUP (terminal, supplicant), APs (Access Points) 

and ASs (Authentication Servers) to be tied together with a continuously connecting 

secure channel to provide a fast means of mutual authentication and eliminates the 

overhead for key exchanging. 

 

Secure Remote Password (SPR) [74] is one of the most widely used password-based 

authentication and key-exchange protocols based on an AKE algorithm [75] [76]. It was 

originally designed for use on the Java applet and Java-based server at Stanford 

University, but then was easily adapted as an identity verifying protocol for network 

applications over untrustworthy environments such as FTP, Telnet, and Email (POP, 

IMAP). It can securely authenticate a user without the risk of dictionary or brute force 

attacks faced by other password-based authentication protocols. SRP protocol uses a 

Diffie-Hellman-like key exchange algorithm [74] [77] to create a large-bit key shared 

between two parties and then uses a hash function to verify the identity of each 

participant, along with their password, in each session. 
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2.10. Authentication-based Protocol 

 

In order to ensure the identity of nodes and the veracity of the content of mutual 

communication, an authentication process is widely used in all kind of communication. 

In [78], Bharghavan proposed a security scheme that authenticates both communicating 

parties in a wireless channel. The scheme also provides a shared secret key that allows 

the two sides to communicate securely and free from the threat of a replay attack or 

wireless intrusion.  

 

The secure authentication and data protection scheme described in [78] is being 

implemented as part of the single-channel LCMACA wireless media access protocol [78] 

[79] at the University of California, Berkeley. It has also confirmed the correctness of 

the protocol by using the Burrows-Adadi-Needham Logic of Authentication [80]. 

 

In enterprise-level security, 802.1X and RADIUS [17] are deployed in conjunction with 

a secure protocol such as the Protected Extensible Authentication Protocol (PEAP) [81] 

that encapsulates the Extensible Authentication Protocol (EAP) [19] within an encrypted 

and authenticated Transport Layer Security (TLS) tunnel [43] to provide per-user 

authentication and key management. Targeting small groups and consumer-level 

security, the authors in [10] found that tinyPEAP software [82], avoided complicated 

settings and additional hardware costs. The tinyPEAP system utilizes a small self-

contained authenticator like RADIUS [17] and PEAPIMS-CHAP [83] with the uses of 
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self-signed certificates instead of relying on a key distributing server. Therefore, 

tinyPEAP can be embeded into the wireless access point with a reliable security 

protection and ease of use, deployment and management [84] [85]. 

 

2.11 Routing Protocols in MANET 

 

Many different routing protocols [12] [86] [87] [88] [89] [90] [91] have been developed 

for the MANETs. There are two main types, classified by routing structure:  

 

� Proactive Routing: These are also called table-driven routing protocols. They 

find routes between all source-to-destination pairs in the network and keep 

maintaining the latest route information by sending periodic route update 

messages even if there is no change in the topology. Also, because of the 

frequent update attributes, the routing overhead is high and the reaction and 

restricting are usually slow. Protocols based on this algorithm structure include: 

o Destination Sequenced Distance Vector (DSDV) [92] 

o Wireless Routing Protocol (WRP) [93] 

o Cluster Switch Gateway Routing (CSGR) [94] 

o Optimized Link State Routing (OLSR) [90] 

o Hierarchical State Routing protocol (HSR) [91]  
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� Reactive Routing: Unlike the proactive routing, protocols of reactive routing do 

not maintain the routing information all the time; instead, routes are discovered 

and only built when required by the source node. Although the latency time in 

route finding is higher in this category, the overall routing performance is 

generally better and more efficient. Example of reactive protocols are: 

o Ad hoc On-demand Distance Vector (AODV) [89] 

o Dynamic Source Routing (DSR) [12] 

o Temporally Ordered Routing Algorithm (TORA) [95] 

o Signal Stability Routing (SSR) [96] 

 

Please also refer to Chapter III Section 3.3 for additional proactive and reactive routing 

information and related work.  

 

2.12 Secure Routing in MANET 

 

Hu et al. developed a secure routing protocol called Ariadne (Alliance of Remote 

Instructional Authoring and Distributed Networks for Europe) [86], which relies on 

Dynamic Source Routing protocol (DSR) [12] [13] and symmetric cryptography 

architecture for end-to-end authentication.  

 

Based on DSDV (Destination-Sequenced Distance Vector Routing) [92], Hu and Perrig 

have proposed the proactive routing protocol SEAD (Secure Efficient Ad-hoc Distance 
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vector) [20], which runs under a trusted ad hoc network environment and can be used 

against multiple uncoordinated attacks that create incorrect routing states in the mobile 

nodes. Furthermore, in order to lower the node’s CPU processing time and achieve better 

performance, SEAD uses one-way public-key signed hash functions instead of 

asymmetric cryptography. 

 

On the other hand, the Secure Routing Protocol (SEROP) [97] is a hybrid encryption 

system based on both asymmetric and symmetric key algorithm. The asymmetric key 

algorithm is used to establish secure routing between mobile nodes. While the symmetric 

key algorithm is utilized to provide confidentiality for wireless data transmission. In 

addition, SEROP implemented the Diffie-Hellman key exchange system to generate the 

shared secret key between sender and receiver [97]. However, compared with other 

symmetric based secure protocols, the overhead of SEROP is generally higher due to the 

use of an asymmetric key structure. This is the tread-off between performance and 

security when using dual key encryption algorithms. 

 

Authenticated Routing for Ad hoc Network (ARAN) by Sanzgiri et al. [98] detects and 

protects the ad hoc network against malicious actions with help from its parties’ or 

peers’ nodes by using pre-determined public key cryptography certificates. Compared 

with SEND [20], ARAN requires a higher computational cost in each node to retain the 

hop-by-hop authentication.  
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Protocol CORE [99], proposed by Michiardi and Molva as a monitor system to watch 

and isolate selfish nodes based on a collaborative monitor technique. CORE also can be 

integrated with any network function such as packet forwarding, route discovery and 

location management due to its generic mechanism and structure. 

 

With a focus on key management services, Zhou and Haas proposed the use of threshold 

cryptography [16] to distribute trust among a set of servers that keep the network 

running even if there are a small amount of failed routes or compromised nodes. This 

cryptography employs share refreshing to achieve proactive security and enable changes 

in the network in a scalable way [16].  

 

Marti et al. [100] introduced Watchdog and Pathrater, two extensions to the DSR [12] 

[13] routing protocol, that improve the throughput in the MANET network by first 

verifying the packet forwarding process in a mobile node with Watchdog. Then, if the 

next node fails to do so, the Pathrater records this information and chooses another 

routing path that is more likely to complete the delivery. Simulation results show the 

combination of these two techniques increase throughput by 17% in the presence of up 

to 40% misbehaving nodes during moderate mobility. In extreme mobility conditions, 

their proposed protocol can increase the network throughput by 27%, while increasing 

the percentage of overhead transmission from 12% to 24% [100]. 
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Using a different approach, the SRP (Secure Routing Protocol) [21] assures correct 

connectivity information as well as route discovery by rejecting fabricated, compromised 

or replayed route replies. SRP assumes a security association between the pair of end-

points only, without the need for intermediate nodes to cryptographically validate 

control traffic [21] [98].  

 

SCAN [101] by Yang et al. is a network-layer security protocol that protects the control-

plane-like ad-hoc routing and the packet forwarding in the date-plane. However, it does 

not apply any cryptographic primitives on the routing messages. Instead, it relies on 

collaborative localized voting to convict misbehaved nodes and asymmetric 

cryptography to protect the token of normal nodes [102]. The experiment results also 

show that even if 30% of the nodes are malicious and the maximum mobility speed is 

20m/s, SCAN algorithm can detect nearly 92% and increase the throughput by more 

than 150% [101]. However, according to their research, one drawback of SCAN is that 

the legitimate nodes also have a small chance, around 5% ~ 10%, of being incorrectly 

accused and affect the overall network performance. 
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CHAPTER III 

HYBRID WIRELESS NETWORK AND I-KEY DYNAMIC ENCRYPTION 

PROTOCOL ARCHITECTURE 

3.1 Introduction 

 

In this chapter, the trend of forming a new hybrid wireless network model that combines 

both traditional base-oriented and mobile ad-hoc wireless networks is first addressed. 

Also, how routing strategies change due to the complexity nature of this hybrid wireless 

environment are analyzed and illustrated. Then, the dynamic i-key protocol with detailed 

procedures is presented to explain how encryption and decryption work with the 

dynamic re-keying structure. An example is used to demonstrate the KSA and PRGA 

algorithms in this protocol as the key component to generate the secure stream cipher. 

 

3.2 Hybrid Wireless Network Overview 

 

Wireless networks are becoming increasingly popular with both individuals and 

organizations due to their flexibility, mobility and low cost. Most are single-hop 

infrastructure networks (e.g., Wireless Local Area Networks, or WLANs) that mobile 

nodes must access directly from the base station (BS) or access point (AP) within the 

coverage area to get connected and access the Internet. Because the signal range of each 

wireless base station is limited, several BS are required to deploy before serving a large 

area that cover all of the mobile devices. However, without proper channel setting, 
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interference of radio frequency will disrupt the wireless communication, with the worst 

case being permanent blocks of service for connection.  

 

On the other hand, wireless ad-hoc networks allow mobile nodes to communicate with 

each other without the aid of any fixed infrastructure. Each node acts as host and also as 

router that forwards packets to the next node to keep the network connected. Because of 

its dynamic nature and reconfiguration ability, mobile wireless ad-hoc networks are ideal 

in situations where the fixed base station is not available or too vulnerable, such as on 

the battlefield or in disaster recovery or personal electronic device networking. However, 

the main drawback of the ad-hoc network is its limitation in providing global 

connectivity. Mobile nodes need to locate the gateway, if one exists, before they can 

access other networks or resources from the Internet. 

 

 

Fig. 6. Single hop base-oriented and mobile ah-hoc wireless model 
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Recently, researchers have proposed ideas to combine these two types of wireless 

networks to form a new hybrid wireless network (HWN, Figure 6) [103] [104] [105] that 

overcomes individual limitations and offers greater flexibility, expanded coverage and 

better networking performance. This new wireless hybrid network preserves the benefit 

of conventional infrastructure-based networks where a fixed base station can continue 

providing a reliable wireless connection with a higher data transfer rate. It also achieves 

ubiquitous on-line capability by extending the services with help from the ad-hoc 

networks. 

 

3.3 Routing in Hybrid Wireless Networks 

 

In computer networking, each fixed station or mobile node relies on packet routing to 

locate the destination and to exchange information with each other. Because the 

transmission medium is very different in wireless networking, maintaining efficient and 

reliable routing through wireless radio is very complicated. However, as Figures 7 and 8 

illustrate below, routing strategies are becoming more complex when comparing this 

hybrid network with each individual model. The complexity is the results of four 

different possibilities rather than just two simple routing schemes: BS-oriented only, ad-

hoc only, BS-oriented to ad-hoc and ad-hoc to BS-oriented. 
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Fig. 7. Routing in BS-oriented and mobile ad-hoc wireless network 

 

In this wireless hybrid network, each gateway node has two wireless network interfaces 

capable of simultaneously communicating in two different directions or channels. Also, 

each mobile node obtains its own IP address and other addresses of key servers (e.g., 

Domain Name Service – DNS and Gateway) by DHCP either directly from the access 

point or through a mobile getaway node. For more details about dynamic IP address 

assignment in a mobile ad-hoc network (a topic beyond the scope of this dissertation),  

please refer to [106] [107] [108]. 
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Fig. 8. Routing in hybrid wireless network 

 

Of these four routing schemes, BS-oriented only is the simplest and most straightforward. 

All mobile nodes communicate with the base station directly in a single-hop (TTL=1), 

and when the communication is between two mobile nodes, the base station will forward 

the packet received from the source mobile node (SMN) to the destination mobile node 

(DMN) or vice versa. In the hybrid wireless network model, when the wireless packets 

are not able to reach the destination in one-hop, or the destination address is not within 

the coverage area from this base station, the gateway node that received the packets will 

forward them to the next base station or route them to the connected ad-hoc network for 

delivery. 

 

In an ad-hoc wireless network, or so-called Mobile Ad Hoc Network (MANET), routing 

strategies can be classified as either proactive or on-demand (reactive). With proactive 
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protocols, such as DSDV (Destination-Sequenced Distance Vector Routing) [92] and 

OLSR (Optimized Link State Routing Protocol) [90] [109], the packets route 

information that is periodically exchanged among hosts, allowing each node to build a 

global routing table without considering the usage of routing information. In the on-

demand approach, such as ad hoc network on-demand distance vector (AODV) [89] and 

dynamic source routing (DSR) [12], the nodes build and maintain routes as needed and 

only toward the nodes involved in the routing, instead of calculating routes in the 

background.  
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Fig. 9. AODV routing protocol with RREQ and RREP control message [88][89] 

 

AODV [89] was adapted as the routing protocol in this wireless hybrid model for ad-hoc 

networking because of its high performance and low overhead, which are very important 

when considering that bandwidth is very limited in wireless communication. In AODV, 

as shown in Figure 9, the source node first broadcasts a route request (RREQ) message 

to all adjacent nodes and waits for the corresponding route reply (RREP) message from 



 40

the destination node to establish routing information. This request and reply query cycle 

will continue as long as this particular path is not listed in the routing table. Once routes 

have been built from source to destination, they will continue to be maintained as long as 

they are needed by the source node. All wireless packets between these two parties will 

follow the pre-build routing information and will be forwarded node by node until they 

reach the final destination. When the communication ends, the links will time out and 

eventually be removed from the table to release space for other routing paths. 

 

When the routing involves the hybrid wireless network that needs to deliver packets 

while sending from BS-oriented to ad-hoc (Figure 8), the gateway node that is connected 

to both sides will re-route those packets received from the base station to the ad-hoc 

network and then follow the routing information built by the RREQ and RREP route 

discovered in AODV [89]. Also, when packets respond back from the ad-hoc network to 

the original source node connected to the base station, the gateway node will process the 

delivery procedure in reverse, i.e. route them in the BS-oriented manner and have the 

base station forward those response packets to the original source client. In the event that 

multiple BS-oriented and ad-hoc networks are connected, the same routing principle 

remains, but instead of using a one-time convert, multiple gateway nodes with several 

converts in routing are involved to deliver packets to the correct location. 
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3.4. i-key Dynamic Encryption Protocol 

 

The i-key protocol is extended and enhanced from our initial research in traditional 

single wireless networks for adaptation to this unique HWN model [15] [110]. This i-key 

protocol is primarily based on a dynamic re-keying mechanism that ensures the privacy 

of communication and prevents unauthorized users from accessing protected data over 

wireless communication. The key management and cipher stream system in i-key 

architecture is similar to Temporal Key Integrity Protocol (TKIP) used in WPA/WPA2 

and RC4 used in Wired Equivalent Privacy (WEP) [22] [23]. Each encryption key 

contains a pre-shared key (PSK) and a randomly selected key value from the 

Initialization Vector (IV) pool for message decoding. In addition to these two keys, an 

extra dynamic secret i-key is applied to the cipher stream that is used to encrypt every 

data packet before transmission. Fig. 10 illustrates the key stream that is combined with 

these three different keys and the block diagram of i-key encryption and decryption 

algorithm. The dynamic i-key is generated according to the previous data packet and 

therefore only the sender and authorized recipient are able to decrypt the cipher text, 

which becomes the new seed of the i-key used in the next data encryption. 
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Fig. 10. Block diagram of i-key secure protocol 

 

Once routing information and initial handshaking are established for communication 

between the source mobile node (SMN) and destination mobile node (DMN), the 

dynamic i-key encryption protocol for the hybrid wireless network will execute, as seen 

in Figure 11. 

 

� Step 1: First, the source node S checks the destination node D on its routing 

information to determine whether communication should be established through the 

base station (access point) directly, through other ad-hoc nodes or a hybrid route 

that combines both. Then, source node S generates the secret i-key, which is based 

on the data as the seed contained on the first packet α, and keeps this particular 

secret key to decrypt the next encrypted packet from destination node D. A 

combination of pre-shared secret key PSK and one unique IV value is applied for 

the stream cipher to encrypt the plaintext before routing to either the base station or 

an adjacent mobile ad hoc node to relay to the destination node D. Of all the 
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communication between source node and destination node, this is the first and only 

packet that does not use the dynamic i-key for data encryption; however, the 

security protection remains strong since it requires at least two packets with the 

identical IV value to break the pre-shard key.  

 

Gateway Node/Access Point

Authentication and initial key exchange

Authentication and initial key exchange

IV Data α ICV

Source Mobile Node Destination Mobile Node

αGenerate i-key

i-key i-key

PSK + IV

PSK + IV

αObtain i-key

PSK+IV

βGenerate i-key

Encryption with i-key α

Data α

IV Data β ICV
PSK + IV

i-key α

PSK + IV
i-key α

Obtain i-key

Generate i-key

Encryption with i-key

PSK+IV+i-key α

β

γ

β

Generate i-key

Encryption with i-key

θ

γ

Data β

i-key β PSK + IV

IV Data γ ICV

i-key β PSK + IV

IV Data θ ICV

i-key γ PSK + IV

i-key γ PSK + IV

γObtain i-key

PSK+IV+i-key β

Data γ

θObtain i-key

PSK+IV+i-key γ

µGenerate i-key

Encryption with i-key θ

Data θ

IV Data µ ICV
PSK + IV i-key θ

PSK + IV i-key θ

Obtain i-key

PSK+IV+i-key θ

µ

Data µ

 

Fig. 11. Dynamic i-key encryption and decryption protocol procedures 
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Each value in the IV pool is generated randomly and uniquely to strengthen the 

encryption cipher stream and prevent people from cracking it even if they are able 

to capture those wireless packets. 

 

• Step 2: The destination node D obtains the data packet α as well as the i-key α after 

running a decryption for this encrypted packet. It will then apply this dynamic i-key 

α to the next data packet’s cipher stream to enhance security (because the source 

node S is the only one that has the same unique secret i-key α in this wireless 

hybrid network). Before sending the response/reply packet β back to the source 

node by the same routing strategy, the destination node D will also generate the 

next i-key β based on data in the packet in order to decode the next arrival. From 

this point forward, every data packet and communication from one side to another 

is secured by a dynamic stream cipher that has triple layers of protection: one pre-

shared secret key psk, one unique IV and one dynamic i-key possessed only by the 

original source and destination node.  

 

• Step 3: The source node S will use the i-key α, generated in Step 1, which it alone 

knows, to break the cipher text along with the pre-shared secret key psk and IV to 

acquire the data β in the packet that it receives from destination node D. The 

encryption procedure with i-key in Step 2 will repeat again for the next data packet 

before node S sends it to the destination node D to enhance the security and 

maintain the data integrity from malicious modification.  
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• Step 4: In cases when node S has more than one data packet to send before it gets a 

response, the destination node D will apply the corresponding i-key to decode the 

ciphertext in accordance with the order of the arrival packets. The system also 

updates i-key based on the sequence number in each packet’s header to ascertain 

that the decrypted cipher stream matches the arrival packet and thus passes the 

integrity checksum in the payload after decryption.  

 

These i-key dynamic encryption/decryption procedures will continue running and will be 

applied to every packet that is transmitted in the hybrid wireless network to ensure the 

integrity and confidentiality of communication. When any wireless packet fails to be 

delivered to the destination or is lost during ad-hoc routing (which is common in both 

IEEE 802.1x based-oriented or an ad hoc network wireless network), an ACK-failed 

(timeout) or AODV routing error RRER message [89] will be triggered and both sides 

will be alerted to restore the last successfully received data packet and then re-

synchronize the dynamic i-key and start the communication over again from Step 2 for 

the next packet transmission.  

 

Furthermore, before confidential data such as medical records or personal financial 

information are shared through a wireless network to other mobile devices, the source 

node can verify the authenticity of the base station or destination node by requesting a 

response to decrypt a challenge message that the source node encrypted with the latest i-

key. This sharing continues only when the other side passes the identity challenge; 
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otherwise, the source node will mark the base station or destination as invalid node and 

reject any further conversations to avoid data leaks or session hijacking. This verify-

challenge mechanism in the i-key protocol can effectively detect any potential intruders 

and secure the wireless network by blocking both in-coming and out-going 

communication, preventing additional attacks. 

 

In addition, this encryption protocol is highly flexible. The dynamic secret i-key is 

regenerated every time for each individual data packet; therefore, the secret key-size can 

also adjust dynamically to fit different needs in different applications. For example, an 

on-line streaming system can temporarily increase the key size during the user identity 

authentication check to strengthen the complexity of ciphertext from eavesdropping by 

attackers and then lower the encryption/decryption overhead by reducing the i-key size 

to improve the quality of services (QoS) of real-time live streaming while remaining 

under solid data protection. Thus, systems with existing security protection, such as 

SEND and SPR [20] [21] can still adopt this i-key encryption system to enhance data 

privacy and prevent malicious attacks. 

 

3.5. Encryption Algorithm 

 

The principle of this i-key dynamic encryption algorithm is similar to the RC4 (Rivest 

Cipher 4, also know as ARC4 or ARCFOUR) [111], that is used in WEP and TKIP 

protocol in IEEE 802.11 wireless networks. Also, this protocol utilizes the stream cipher 
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as the security system model due to its efficiency, reliability and simplicity. Stream 

cipher takes in one byte to form a stream every time and produces a corresponding but 

different byte as the output stream, as shown in Figure 12.  

 

 

Fig. 12. Dynamic i-key encryption stream cipher 

 

Then, this stream cipher combines with the data before transmission over the wireless 

network by using an exclusive OR (XOR - ⊕) operation. It combines two bytes, one 

from the cipher and one from the data, and generates a single byte output result as 0 

when the values of them are equal, otherwise the result is 1. An example of this 

exclusive OR operation is shown in Figure 13. In general, the strength of an encryption 

algorithm is primarily measured by how hard it is to break the ciphertext [50]. Certainly 

there are stronger encryption procedures than this RC4-like algorithm applied in the i-

key architecture. However, this simple XOR encryption method is considered very 

strong among all of the data encryption people use today for both wired and wireless 

communication [50].  
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Fig. 13. Exclusive OR operation example 

 

One of the most important attributes of XOR operation is that if you apply the same 

value again to the first output result, the original value before the XOR operation is 

returned: 

10110010 ⊕ 11011001 = 01101011 

01101011 ⊕ 11011001 = 10110010 

 

This characteristic can be rewritten as: 

 

if A ⊕ B = C, then C ⊕ B = A 

 

This is also how the decryption procedure works in the dynamic i-key system: 

 

Encryption: plaintext ⊕ stream cipher = ciphertext 

Decryption: ciphertext ⊕stream cipher = plaintext 
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Compared with other encryption systems, such as AES and RSA, XOR operation is 

relatively resource friendly and lightweight, ideally suited for mobile and hand-held 

computing devices. The only remaining challenge is how to generate a strong cipher 

stream that ensures the quality of encryption to avoid key breaking and that protects data 

integrity over wireless radio communication. Encryption algorithms used in this i-key 

protocol consist of a Key Scheduling Algorithm (KSA) that establishes an initial 

permutation S-box of {0,1,2,.......,N-1} of the numbers 0 to 255 from a random key array 

with the typical size of 40 to 256 bits and a Pseudo-Random Generation Algorithm 

(PRGA) that utilizes this output permutation S-box to generate the pseudo-random 

output sequence. The pseudocode for these two algorithms is shown in Figure 14.  

 

Fig. 14. Pseudocode of KSA and PRGA algorithm 
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The KSA algorithm consists of two N loops of round operations that initialized the 

permutation array with a sequential number starting with 0 in the first loop and then 

rearranging the order by swapping each individual value with another byte in the same 

array with the following computational formula: 

 

J(x) = (the value the particular index byte of S-box + the value of the same 

particular index byte of K-box) with any overflow ignored 

 

The value of J is used as an index, as well as the values at that location, and are swapped 

with the target value in that location in S-Box. Sn is denoted as the result of the 

first“n”iterations from the loop of scrambling that represents the process have 

swapped each of S[0]...S[n-1], with a corresponding value of S[j]. This process will start 

from the beginning of the initial S-box and is continuously repeated until it finishes 

swapping until the end of the array and produces the final version of S, S256 in the i-key 

system as the output permutation S-box.  

 

Once the S-box, the so-called state array, is initialized, it will be used as input in the next 

phase of the i-key encryption algorithm, called the PRGA. This involves more 

calculation and swapping to generate the final key stream. A Pseudo-Random Number 

Generator (PRNG) is an algorithm used to generate a random sequence of numbers, the 

elements of which are approximately independent of each other. The PRGA in the i-key 

protocol is responsible for creating the cipher stream used to encrypt the plaintext based 
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on the S-box value, which is the output from the KSA in the previous step. It first 

initializes two indices, i and j to 0, and then loops over five operations that increase the 

value of i in each loop as the counter, increasing j pseudo-randomly by adding one value 

S[i] to it, then swapping the two values of the S-box pointed to by the value of i and j, 

and outputs the values of the S-box that is pointed to by S[i]+S[j]. Note that every block 

of S-box/State array is swapped at least once, possibly within itself, within each 

completed iteration loop, and hence the permutation S-box/State array evolves fairly 

rapidly during the generation output loop phase [24].  

 

The strength of a cryptographic system primarily depends on two components: the 

algorithm and the encryption key. Since a system is only as strong as its weakest link, 

both components need to be strong enough to protect the unsecure wireless 

communication [39] [50]. In this i-key encryption protocol, first of all, the dynamic re-

keying algorithm enormously enhances the level of protection by adding the extra secret 

i-key to the K-box. This increases not only the complexity of the secret key array but 

also effectively prevents key deciphering and dictionary attacks. Second, it improves the 

level of data protection by creating a better initialized S-box/State array during the KSA 

algorithm when swapping the blocks based on the j index that are mixed with the value 

of additional secret i-key. Finally, it helps generate a better and more complex 

pseudorandom number stream in the PRGA algorithm phase that is used to encrypt the 

data packet sent via the wireless network. Therefore, the dynamic i-key encryption 

protocol strengthens the cryptographic system in both ways and provides an additional 
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layer of protection for both individual stand-alone wireless models as well as for novel 

hybrid wireless networks. 

 

3.6. An Example of i-key Encryption and Decryption  

 

In order to illustrate how the dynamic i-key encryption protocol works in generating the 

S-box array in the KSA algorithm and the stream cipher in the PRGA algorithm, an 

example of both the encryption and decryption procedures of the i-key protocol is shown. 

The plaintext that is to be encrypted with the i-key protocol is “TAMU,” with the secret 

key “7514” that is composed of IV (7), PSK (5) and i-key (14).  

 

The initial value and variables are as follow: 

i = 0, j = 0, secret key (IV + PSK + i-key) = 7514, length = 4, index = 4 

 

First loop in the KSA algorithm: 

i = 0, j = 0 

S-box/State array: S[0]=0  S[1]=1  S[2]=2  S[3]=3 

K-box/password: K[0]=7  K[1]=5  K[2]=1  K[3]=4 

j=(0+S[0]+K[0]) mod 4 = (0 + 0 + 7) mod 4 = 7 mod 4 = 3 

Swap(S[0], S[3]) =Swap(0,3) 

S-box/State array: S[0]=3  S[1]=1  S[2]=2  S[3]=0 

Once the S-box 
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Second loop in the KSA algorithm: 

i = 1, j = 3 

S-box/State array: S[0]=3  S[1]=1  S[2]=2  S[3]=0 

K-box/password: K[0]=7  K[1]=5  K[2]=1  K[3]=4 

j=(3+S[1]+K[1]) mod 4 = (3 + 1 + 5) mod 4 = 9 mod 4 = 1 

Swap(S[1], S[1]) =Swap(1,1) 

S-box/State array: S[0]=3  S[1]=1  S[2]=2  S[3]=0 

 

Third loop in the KSA algorithm: 

i = 2, j = 1 

S-box/State array: S[0]=3  S[1]=1  S[2]=2  S[3]=0 

K-box/password: K[0]=7  K[1]=5  K[2]=1  K[3]=4 

j=(1+S[2]+K[2]) mod 4 = (1 + 2 + 1) mod 4 = 4 mod 4 = 0 

Swap(S[2], S[0]) =Swap(2,3) 

S-box/State array: S[0]=2  S[1]=1  S[2]=3  S[3]=0 

 

Final loop in the KSA algorithm: 

i = 3, j = 0 

S-box/State array: S[0]=2  S[1]=1  S[2]=3  S[3]=0 

K-box/password: K[0]=7  K[1]=5  K[2]=1  K[3]=4 

j=(0+S[3]+K[3]) mod 4 = (0 + 0 + 4) mod 4 = 4 mod 4 = 0 

Swap(S[3], S[0]) =Swap(0,2) 
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S-box/State array: S[0]=0  S[1]=1  S[2]=3  S[3]=2 

 

At this point, the S-box/State array has been initialized and enters the pseudo-random 

generation phase in the PRGA algorithm as follows: 

 

First loop in the PRGA algorithm: 

S-box/State array: S[0]=0  S[1]=1  S[2]=3  S[3]=2 

i = ( 0 + 1 ) mod 4 = 1 mod 4 = 1 

j = ( 0 + S[1] ) mod 4 = ( 0 + 1) mod 4 = 1 mod 4 = 1 

Swap(S[1], S[1]) =Swap(1,1) 

S-box/State array: S[0]=0  S[1]=1  S[2]=3  S[3]=2 

r = k = ( S[1] + S[1] ) mod 4 = ( 1 + 1 ) mod 4 = 2 mod 4 = 2 

r1 = 00000010 

 

Second loop in the PRGA algorithm: 

S-box/State array: S[0]=0  S[1]=1  S[2]=3  S[3]=2 

i = ( 1 + 1 ) mod 4 = 2 mod 4 = 2 

j =( 1 + S[2] ) mod 4 = ( 1 + 3 ) mod 4 = 4 mod 4 = 0 

Swap(S[2], S[0]) =Swap(3,0) 

S-box/State array: S[0]=3  S[1]=1  S[2]=0  S[3]=2 

r = k = ( S[2] + S[0] ) mod 4 = ( 3 + 0 ) mod 4 = 3 mod 4 = 3 

r2 = 00000011 
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Third loop in the PRGA algorithm: 

S-box/State array: S[0]=3  S[1]=1  S[2]=0  S[3]=2 

i = ( 2 + 1 ) mod 4 = 3 mod 4 = 3 

j =( 0 + S[3] ) mod 4 = ( 0 + 2 ) mod 4 = 2 mod 4 = 2 

Swap(S[3], S[2]) =Swap(2,0) 

S-box/State array: S[0]=3  S[1]=1  S[2]=2  S[3]=0 

r = k = (S[3] + S[2] ) mod 4 = ( 2 + 0 ) mod 4 = 2 mod 4 = 2 

r3 = 00000010 

 

Final loop in the PRGA algorithm: 

S-box/State array: S[0]=3  S[1]=1  S[2]=2  S[3]=0 

i = ( 3 + 1 ) mod 4 = 4 mod 4 = 0 

j =( 2 + S[0] ) mod 4 = ( 2 + 3 ) mod 4 = 5 mod 4 = 1 

Swap(S[0], S[1]) =Swap(3,1) 

S-box/State array: S[0]=1  S[1]=3  S[2]=2  S[3]=0 

r = k = ( S[0] + S[1] ) mod 4 = ( 3 + 1 ) mod 4 = 4 mod 4 = 0 

r4 = 00000000 

 

After the final loop in the PRGA, the output stream cipher value r1-r4 are obtained and 

that must be XORed with the ASCII value (Table 1) of the original plaintext to produce 

the i-key encrypted ciphertext for transmission over the wireless network: 
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T  XOR  R1 = 01010100 XOR 00000010 = 01010110 = V 

A  XOR  R2 = 01000001 XOR 00000011 = 01000010 = B 

M  XOR  R3 = 01001101 XOR 00000010 = 01001111 = O 

U  XOR  R4 = 01010101 XOR 00000000 = 01010101 = U 

 

When the authorized client receives this ciphertext from the source node, it simply 

generates an identical stream cipher with the IV, pre-share key PSK and the secret i-key 

known only to the sender and receiver, and then XORs it with the ciphertext to decrypt 

and reveal the original plaintext. 

 

V  XOR  R1 = 01010110 XOR 00000010 = 01010100 = T 

B  XOR  R2 = 01000010 XOR 00000011 = 010000001 = A 

O  XOR  R3 = 01001111 XOR 00000010 = 01001101 = M 

U  XOR  R4 = 01010101 XOR 00000000 = 01010101 = U 

 

Again, in this example, the value of the secret i-key is updated and replaced by the 

decimal value of the first letter in the received data packet in the ASCII character set as 

shown in Table 1, which is 84 (letter “T”). This new i-key will be used along with 

another randomly selected IV value and PSK for next round of encryption that follows 

the procedure listed earlier in this chapter. (Section 3.5) 
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Table 1. ASCII Characters Code and Value for 0-9, A-Z and a-z 

Binary OCT DEC HEX Value Binary OCT DEC HEX Value 

011 0000 060 48 30 0 101 0110 126 86 56 V 

011 0001 061 49 31 1 101 0111 127 87 57 W 

011 0010 062 50 32 2 101 1000 130 88 58 X 

011 0011 063 51 33 3 101 1001 131 89 59 Y 

011 0100 064 52 34 4 101 1010 132 90 5A Z 

011 0101 065 53 35 5 110 0001 141 97 61 a 

011 0110 066 54 36 6 110 0010 142 98 62 b 

011 0111 067 55 37 7 110 0011 143 99 63 c 

011 1000 070 56 38 8 110 0100 144 100 64 d 

011 1001 071 57 39 9 110 0101 145 101 65 e 

100 0001 101 65 41 A 110 0110 146 102 66 f 

100 0010 102 66 42 B 110 0111 147 103 67 g 

100 0011 103 67 43 C 110 1000 150 104 68 h 

100 0100 104 68 44 D 110 1001 151 105 69 i 

100 0101 105 69 45 E 110 1010 152 106 6A j 

100 0110 106 70 46 F 110 1011 153 107 6B k 

100 0111 107 71 47 G 110 1100 154 108 6C l 

100 1000 110 72 48 H 110 1101 155 109 6D m 

100 1001 111 73 49 I 110 1110 156 110 6E n 

100 1010 112 74 4A J 110 1111 157 111 6F o 

100 1011 113 75 4B K 111 0000 160 112 70 p 

100 1100 114 76 4C L 111 0001 161 113 71 q 

100 1101 115 77 4D M 111 0010 162 114 72 r 

100 1110 116 78 4E N 111 0011 163 115 73 s 

100 1111 117 79 4F O 111 0100 164 116 74 t 

101 0000 120 80 50 P 111 0101 165 117 75 u 

101 0001 121 81 51 Q 111 0110 166 118 76 v 

101 0010 122 82 52 R 111 0111 167 119 77 w 
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Table 1. Continued 

Binary OCT DEC HEX Value Binary OCT DEC HEX Value 

101 0011 123 83 53 S 111 1000 170 120 78 x 

101 0100 124 84 54 T 111 1001 171 121 79 y 

101 0101 125 85 55 U 111 1010 172 122 7A z 
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CHAPTER IV 

SECURITY ANALYSIS AND EXPERIMENT RESULTS 

4.1 Introduction 

 

The initial design of the wireless routing protocol has mainly focused on the 

effectiveness of packet forwarding and delivery to the target node, and not on security. 

This is because of the nature of frequent changes in both topology and membership in 

wireless networks. Consequently, a number of attacks that take advantage of this 

weakness have been developed for use against data integrity or routing protocol in 

wireless communication.  

 

Transmitted data packets may be exposed to unauthorized access at any time and 

anywhere due to the nature of radio broadcasting. Therefore, it is essential to apply 

security protection that prevents the reading or modification of confidential data by 

anyone who can receive the wireless signal. Using the secret key for data encryption is 

currently considered the most common way to protect data privacy in all kinds of 

computer communication. One of the static key or pre-shared key (psk) encryption’s 

biggest vulnerabilities is that an attacker can obtain the original secret key by monitoring 

the packet transmission or conducting a massive dictionary attack between any two 

nodes in the network. Theoretically, a 64-bit secret key is decipherable with 

approximately 1 to 2 million data packets (2 to 4 million for 128-bit secret keys). 

Attackers can collect enough data packets in a matter of mere hours in an average busy 
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network environment (around 160~300 packets/minute) to break the pre-shared secret 

key [10]. 

 

In addition, mobile nodes are often deployed in a wide area with very limited or no 

physical protection, rendering them very vulnerable to capture or hijacking. Once a 

single node has been compromised and the secret key revealed, an attacker can launch 

far more damaging attacks from inside the network without being detected. Hence, the 

encryption protocol that applies to the hybrid network should not only prevent the 

encryption key from been revealed, but also be flexible enough to be adopted as a 

security enhancement by other existing routing protocols in such highly dynamic 

network environment. 

 

The developed protocol, with the advanced dynamic i-key encryption mechanism, 

ensures privacy of communication and protects sensitive data from eavesdropping by 

dynamically changing the secret i-key. This system allows only the original sender and 

authorized receiver to decode the encrypted data packet. Therefore, the dynamic i-key 

protocol overcomes the weakness of pre-shared key encryption and protects the wireless 

network against other attacks. 
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4.2 Security Analysis 

 

WarDriving 

 

WarDriving is the act of scanning and searching for wireless network signals using a 

moving vehicle that utilizes devices equipped with a wireless interface, such as PDAs or 

portable computers. Scanning software like NetStumbler [112] and Airmon-ng [113] can 

report detailed information, including Service Set Identifier (SSID), MAC address, 

communication channel, signal strength and most importantly, the encryption protocol 

applied for each access point and wireless node. It can also record the location by 

connecting to a GPS (Global Position System) receiver. Figure 15 shows an example of 

wardriving AP scan by NetStumbler attached via a GPS device to record the detail 

location of each AP [112] [114]. 
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Fig. 15. Wardriving with NetStumbler software [112] [114] 

 

In addition, there are several online web sites and databases such as WiGLE/JiGLE 

[115], StumbVerter [116] and Google Hotspot Maps [117], where people around the 

world can report their discovery of the access point’s information. In March 2010, 

WiGLE/JiGLE alone recorded 19,870,563 pieces of access point information from 

1,081,622,440 unique observations, which cover most of the major cities on five 

continents. Therefore, other people who do not have the proper equipment for doing 

wardriving can simply locate any near by access point by searching these sites. As an 

example, take the city of College Station, where Texas A&M University is located. 

More than six thousand access points have been detected and reported to the JiGLE 

database. Figure 16 below demonstrates the distribution in a Google map. 
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Fig. 16. The distribution of wireless access points in city of College Station, Texas [115] 

 

Those scanning tools, access point information sources and online databases are 

convenient for wireless network studies and research. They, however, also provide an 

advantage by letting hackers pick the most vulnerable entry point from an existing 

wireless network and expected to spend less time and effort to compromise the target 

node and its local area network. That is also why running a wardriving scan is usually 

the hackers’ first step before they start any other kind of wireless attack. 

 

A dynamic i-key encryption protocol can recognize and prohibit wardriving attacks by 

adding wireless packet pattern analysis to both access point and mobile node. Take 

NetStumbler [112] for example; this unique pattern can be found in its 802.11 probe 
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request frames [118]. First, LLC encapsulated frames generated by NetStumbler contain 

the valise 0x00601d for organizationally unique identifier (OID) and protocol identified 

(PID) of 0x0001. Second, the payload data size is usually 58 bytes with the attached 

hidden string “Flurble gronk bloopit, bnip Furndletrune!” for version 3.2.0, “All your 

802.11b are belong to us” for version 3.2.3 and “ intentionally left blank 1” for version 

3.3.0. In [118], authors also illustrate the pseudocode for the above pattern detection in a 

traditional wireless network and we extended this for a dynamic i-key protocol used in a 

hybrid wireless network (Figure 17). Once this system detects the presence of 

wardriving activities, it generates several false probe requests to prevent any further 

attacks by misleading attackers with fake MAC address, SSID, channel and encryption 

protocol. Similar detecting signature parameters and policies shown in Figure. 18 can 

also add to the intrusion detecting system (IDS) to prevent additional attacks. 

 

 

Fig. 17. NetStumbler detecting pseudocode 
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Fig. 18. NetStumbler signature parameters for CISCO IDS [118] 

 

 Man-in-the-Middle (MITM) 

  

In a Man-in-the-Middle (MITM) attack [119], the hacker places himself in the mid-point 

of the information flow between sender and recipient (Figure 19). This allows him to 

access all of the communication between two nodes. If there is no proper security 

protection and data encryption protocol applied to the wireless network, the attacker can 

effortlessly read the data, inject malicious packets, modify the information integrity or 

even block the communication from one side to another. In addition, a man-in-the-

middle attack is hard to detect and prevent in a wireless network environment since 

everyone can easily capture the wireless packets transmitted from any mobile device to 

another or from the base stations.  
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Fig. 19. Wireless man-in-the-middle attack example [119] 

 

There are many different ways to interrupt the communication and allow hackers to 

insert themselves in the middle of the information flow by taking advantage of the 

protocol’s weak security design, for example, by using Address Resolution Protocol 

(ARP) spoofing [119] [120], Domain Name Server (DNS) spoofing [121] [122] or via 

Border Gateway Protocol (BGP) [123]. Once hackers are able to access the 

communication channel, the next step is to capture the current session, break the secret 

key, decrypt the message and then modify the content and send it back. First, the 

attacker needs to determine the secret key before he can successfully alter any data 

packets and launch an attack on both sender and recipient.  

 

Due to the nature of this dynamic re-keying protocol, every single packet is secured by a 

unique cipher stream composed of one hidden pre-shared secret key (psk), one unique 
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IV value and one dynamic i-key, which together provide three strong layers of secure 

enhancement protection for hybrid wireless networks. Plaintext messages can only be 

decoded by authorized recipients and senders who have the legal and updated i-key. 

Therefore, a real-time man-in-the-middle attack would not succeed against this protocol. 

 

Rogue AP and Evil Twin  

 

A rogue access point is a wireless base station installed on an existing network either 

without authentication from the system administrator or that is misconfigured and 

violates network security policies. Once established, a rogue access point allows anyone 

equipped with Wi-Fi to connect to the network. This then leaves a wide open door and 

great opportunities for snoopers to capture secret information or hackers to penetrate into 

the corporate network without detection by the system firewall. 

 

Some corporations use only wired networks to prevent such security threats from 

wireless communication. However, employees seeking to enhance their productivity and 

mobility will sometimes install an access point to the existing wired network without 

knowing the security risk. Moreover, according to survey reports [1], more than 69% of 

access points still use and broadcast default SSID, probably with the factory password 

still present. Those default settings can easily allow anyone to login as an administrator, 

to change system settings, or disable the security protection. 
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On the other hand, an evil twin attack is one in which hackers place an access point near 

the target with identical settings, such as SSID, MAC address and communication 

protocol from the legitimate access point that original provides the wireless services. 

Next, in order to force the target node to switch the connection to this evil twin access 

point, attackers usually utilize flood attacks (for example, a beacon flood or 

deauthentication flood; see examples in Appendix A), to block the connection from the 

target node to the legitimate access point. Then, when later on, the node is trying to re-

establish the connection link, it will automatically and unknowingly connect to the evil 

twin access point since every setting is exactly the same and matches the computer’s 

wireless connection profile.  

 

Compared with other wireless attacks, both the rogue access point and evil twin attacks 

are easy to perform, simply because running a wireless scan, such as wardriving, can 

give hackers enough information to clone the setting for such attacks. In addition, 

without the scanning tool and the network administration knowledge, it is very difficult 

for regular wireless users to locate and detect those rogue access points. Without 

providing adequate monitoring of wireless networks, most organizations simply do not 

know they have this vulnerability, unless the attack has a severe impact on the 

organization itself, by which time it is usually too late [124]. However, under the 

protection of the i-key encryption protocol, when new wireless nodes or access points 

fail to pass the authentication or the secret key does not match the existing network, all 

mobile nodes and base stations will isolate it by removing it from routing table and no 
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longer forwarding any packets for it. The communication resumes only when it re-gains 

the legal key and passes the check. In addition, each mobile node has the ability to verify 

its connected access point or adjacent nodes at any time by sending a challenge 

ciphertext that can only be decrypted by the secret dynamic i-key owned by two 

legitimate sides. Therefore, any node that fails to pass the challenge will be marked as 

illegal, removed from the routing path list, with both its incoming and outgoing 

connections blocked. Finally, the node is reported as a potential intruder to prohibit any 

potential rogue AP or evil twin attack in the hybrid wireless network. 

 

Blackhole Attacks  

 

Blackhole attacks [125] [126] [127] are similar to denial of services (DoS) attacks in 

traditional networks in that a compromised node in MANET participates in a routing 

protocol and attracts all packets by claiming to have a valid route to all destination 

nodes, but then drops all received data packets without forwarding them (Figure 20). 

This attack will not merely prolong the routing delay, but in the worst case scenario, it 

can disrupt the entire network connection. 

 



 70

 

Fig. 20. Black hole attack in MANET [125] 

 

This attack is easily launched against reactive protocols in a Mobile Ad-Hoc Network 

such as Dynamic Source Routing (DSR) [12], Temporally Ordered Routing Algorithm 

(TORA) [95] [128] and Ad Hoc On-Demand Distance Vector (AODV) [89], which 

assume that all nodes in a given ad hoc network are trustworthy and that the data packet 

will forward to the node that first replies to the route reply message (RRM) routing path 

discovery. To set in motion a blackhole attack, the attacker needs to break not only the 

pre-shared key (psk) but also the dynamic re-keying secret i-key. The attacker needs the 

added advantage of a dynamic re-keying mechanism that provides three different layers 

of data encryption and unique cipher streams to secure both the data and each mobile 

host’s secret key for every transmitted packet over the hybrid wireless network. The i-

key encryption protocol can easily prevent this form of attack in its very early stages by 

stopping the node from being compromised and controlled by the attacker. 

 



 71

Wormhole Attacks  

 

In wormhole attacks (Figure. 21), an adversary establishes a wormhole link by using 

either in-band (existing wireless channels) or out-of-band (other high-speed channels or 

transmission resources) communication. This direct link can be set up with a traditional 

wire, long-range wireless transmission or an optical link. Once this wormhole link is 

built up, the attacker can receive wireless packets on one end in the network, known as 

the original point, and then reply in a timely fashion from another location, as the 

destination point.  

 

Using this method, an attacker could relay an authentication exchange to gain 

unauthorized access without compromising any node or having any knowledge of the 

routing protocol in use [127] [129]. Because when a wormhole attack is launched 

internally against the mobile ad hoc network, default routing protocols and traditional 

security protections are unable to effectively detect or prevent this unique attack pattern.  
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Fig. 21. Wireless wormhole attack [127] [129] 

 

Under the protection of the i-key encryption protocol, only the original sender and 

authorized receiver are able to decrypt the cipher text, by using the unique secret key in 

their possession, ensuring continued confidentiality and integrity for the data 

communication, as well as the authentication information between source and 

destination node. Therefore, even if wormhole attacks are launched inside the hybrid 

wireless network, the cryptographic key that is used for both encryption and decryption 

during each node-to-node communication still remains secret and the authentication 

information is still valid only to the original node. 
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Session Hijacking  

 

In session hijacking, attackers take an authorized and authenticated session away from 

its owner and use it to establish a valid connection with the peer node, then snoop or 

modify the secret data (Figure 22). To successfully execute session hijacking, the 

attacker must accomplish two tasks: He first needs to stop the target node from 

continuing the session and then must disguise himself as one of the legal client nodes 

[130].  

 

 

Fig. 22. Session hijacking attack example in IEEE 802.11 wireless network [130] 
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The attacker can take the advantage of using Denial of Services (DoS) or a flood attack 

to achieve his first task for the session hijacking to temporarily interrupt the target’s 

session connection. Thus, in order to masquerade himself as the target, he also needs to 

obtain the original secret key to maintain communication with the peer node. However, 

because the i-key is dynamically rekeyed for every packet, the secure key stream remains 

secret even if the session connection is interrupted. In the i-key protocol design, 

described in the previous chapter (Chapter III Section C), when communication is 

stopped or interrupted, the two parties will be notified by an IEEE 802.11 ACK-failed 

(timeout) or AODV routing error RRER message to restore the last successfully received 

data packet and the secret i-key. Therefore the security protection remains even when 

consistency session connections are lost. 

 

 Key Decoding and Dictionary Attacks  

 

Any encryption system using only static pre-shared key (psk) or lacking well-defined re-

keying mechanisms are vulnerable to key decoding through the capturing of sufficient 

packets. This is also true when user choose passwords for authentication or encryption 

system from a small domain and end up with a weak password. Those weak security 

systems and passwords enable adversaries to launch dictionary attacks that attempt to 

login into accounts by trying all possible password combinations. Once the correct 

password is discovered, attackers can crack the ciphertext easily and even carry out other 
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attacks effortlessly [131]. Figure 23 illustrates how to carry out this kind of attack by 

using Aircrack-ng. For more details, please refer to Appendix A. 

 

 

Fig. 23. Key cracking by Aircrack-ng 

 

Dynamic re-keying in the manner used in the specified protocol is advantageous because 

not only is every stream cipher unique for each packet, but also the i-key system 

provides the hybrid wireless network with an innovative and security enhancement 

protocol of up to 18,432 bits, the maximum for the data packet size in IEEE 802.1x 

wireless communication [132], in key size. Therefore, attackers are unlikely to take the 

time required to capture sufficient packets before they can start to break them or launch 

dictionary attacks. Because the longer they stay, the more likely they will be detected by 

a monitor system or firewall. 
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Replay Attacks  

 

Unlike the wormhole attack and MITM, a replay attack does not occur in real time. 

Instead, the attacker must capture the session token or authentication from either the 

current or previous session and then replay it later to synthesize the authentication. 

Without a proper session security mechanism, the attacker may easily reestablish the 

authentication and pretend to be a valid client to access any protected data in the 

network.  

 

 

Fig. 24. WPA authentication detected by airodump-ng 

 

Wireless packet sniffer tools like airodump-ng allow attackers to monitor and track all 

wireless communication traffic, including authentication information, between any 

server and its clients. Once this mutual handshake is detected, as shown in Figure 24, 
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attackers can start to break the session token or pre-shared secret key by using key 

cracking tools and then using airreply-ng to send de-authentication, as shown in Figure 

25, to the target node. This forces it to terminate the current session, after which the 

hacker masquerades as an authorized client to launch the attack. 

 

 

Fig. 25. De-authentication broadcast 

 

Traditional security protocols in wire networks utilize time stamps or a packet’s 

sequence number to verify each incoming packet and its window size in TCP segment to 

prevent reply attacks. However, the physical protection in a wireless communication 

medium is very limited. Attackers can easily capture or even modify those wireless 

packets to conduct replay attacks. Thus, the encryption protocol needs to have the ability 

to forbid any kind of modification by attackers and assure data integrity through wireless 

communication.  
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In this protocol design, the integrity checksum contained in the packet is based on the 

current encryption key. The secret i-key is dynamically generated in every session to 

ensure the use of a fresh key stream for each packet’s encryption before being 

dispatched in the hybrid wireless network environment. Therefore, the replay packets 

used later will not be consistent with the latest key array and will be denied by the 

receiver since the checksum is mismatched. Again, only the original sender and 

authorized receiver are able to decrypt the cipher message using the unique secret key 

that they alone possess and pass the integrity check. A reply attack is not possible 

without knowledge of the secret key in this i-key secure protocol. 

 

4.3. Experiment Results and Analysis 

 

 Experiment Environment 

 

A series of experiments were carried out via computer simulation to validate and 

compare the performance of this developed protocol with other common security 

systems in IEEE 802.1x wireless communication. The core of simulation platform is 

written in Java (J2EE 5) with the java.net, java.io and JNS (Java Network Simulation) 

package. The kernel of the test bed is based on Fig. 11 for the i-key dynamic encryption 

protocol with the rewrite extension from CMU Monarch [133] to support the dynamic 

re-keying architecture model for AODV routing in both Mobile Ad-hoc and hybrid 

wireless network.  
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In these experiments, both 25 and 50 mobile nodes with 2 access points randomly 

located over an area of 600m x 600m and 1100m x 1100m were simulated with different 

settings of the size of the secret i-key that correspond to other security protocols. Each 

simulation ran for 200 simulated seconds with a radio transmission range set to 250 

meters. Nodes covered by this range can receive the wireless signal and establish 

communication directly either to the access point or nodes within its ad-hoc range, while 

others rely on packets relayed by adjacent mobile nodes to deliver the message to the 

destination node. The physical and MAC layer setting follows the standard of IEEE 

802.11 protocol with the data rate set from 1 to 20 Mb/s.  

 

Protocol Throughput 

 

In this experiment set, two mobile nodes were randomly selected in the deployed area 

and measured the average of total complete time for four different sizes of data 

transferred between them. This protocol throughput test allowed us to compare the 

performance of i-key with WEP, WPA and WPA2 system, which are the most popular 

and adopted security protocols in wireless networking today [1].  
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(b) 50 mobiles nodes over 1100m x 1100m area 

Fig. 26. Average total data transfer time for i-key encryption protocol 

 

As seen in Figure 26, there is almost no difference (less than 2.2%) between each 

encryption approach in the lower transfer data size (24 and 48 MBs) and only a very 

small gap (around 7.7%) from the quickest WEP protocol with 64 bits to the slowest 
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dynamic i-key 128 bits security system while transferred over 96 MBs of data. However, 

regarding data security, i-key encryption protocol strengthened the cipher by doubling 

the secret key size to provide a higher level of protection. It also dynamically re-keying 

the cipher key during the end-to-end communication to defend the network from 

unwanted intrusion and guarantee the privacy of wireless data exchange. 

 

 

Protocol End-to-End Delay 

 

Figure 27 shows the average end-to-end delay of secure encryption protocols (WEP, 

WPA, WPA2 and i-key) and AODV alone without any security protection implemented. 

The interval is measured between the packet sent from the source node and received by 

the destination node, which included processing time for generating the secret key or key 

pair that forms the secure stream cipher, as well as data encryption and decryption 

operation. As Figure 27 illustrates, the average delay time increased, along with the 

simulation territory changes. This is because the number of nodes that are between the 

routing paths must increase to deliver the packet when mobile hosts are distributed 

across a large environment. In addition to the enlargement of deployment size, the 

hybrid wireless networks model is more complicated vis-à-vis the routing discovery and 

gateway locating than a single-model based wireless network, thus increasing the overall 

end-to-end delay.  
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(a) 50 mobiles nodes over 1100m x 1100m area 

Fig. 27. Average end-to-end delay for AODV and i-key protocol 
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Still, one of the important advantages of the i-key dynamic secure protocol is that only 

the source and destination node are required for participation with the 

encryption/decryption algorithm. This mechanism makes the difference of end-to-end 

delay between the i-key and others negligible. This result also indicates that the i-key 

security mechanism has low computational overhead and power consumption during 

both data encryption and decryption procedure. 

 

Protocol Delivery Rate 

 

The simulation results for protocol average delivery rate are shown in Figure 28. The 

percentage of successfully delivered packets is measured from the source to the 

destination node in five different data rate setting: 2, 4, 6, 8 and 10 Mb/s. As expected, 

delivery rates dropped as the result of a greater number of lost packets and collisions in 

the wireless environment caused by the increased number of mobile nodes and data 

transfer speed. The nature of radio communication makes packet loss and collisions 

during transmission unavoidable. When this happens to the i-key dynamic encryption 

protocol, it only needs to retrieve the secret key from the most recently received data 

packet and then re-synchronize with both sides to continue the conversation. 

Consequently, the cost of time and overhead for packet loss and collision in the i-key 

protocol is quite low (53ms~86ms). This also is why the differences in delivery rate 

between i-key and other secure protocols are minimal. 
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Fig. 28. Average packets delivery date for AODV and i-key protocol 
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Both the complexity of the encryption system and the size of the ad hoc network have a 

negative effect on performance. Obviously, AODV alone had the best delivery rate of all 

of the simulations, a result of the trade-off between security and performance. However, 

the relatively small gap between them also underscores that this i-key protocol can 

perform as efficiently as a nonsecurity protection such as an AODV routing protocol 

while maintaining data privacy and information integrity. 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

 

The main objective of this research was to develop a dynamic re-keying data encryption 

and decryption protocol to ensure the privacy of communication and information 

integrity in wireless networking. In this chapter, conclusions from this research are 

drawn, contributions to the field are recapped and suggested directions for future work 

are given. 

 

5.1. Conclusion 

 

A hybrid wireless network that combines traditional base-oriented and mobile ad-hoc 

networks overcomes the limitations of both wireless models, improves network 

connectivity and extends the service coverage. However, maintaining security in the new 

hybrid wireless network is full of challenges due to the complexity of data routing and 

the nature of the wireless transmission medium. 

 

Data integrity and privacy are the two most important security requirements in wireless 

communication today. Most mechanisms rely on pre-share key (psk) data encryption to 

prevent unauthorized users from accessing confidential information. In this research, a 

novel, efficient and lightweight encryption protocol was developed that fulfills the need 

for security protection in hybrid wireless networks. This protocol ensures the privacy of 
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communication from node to node and prohibits the modification of sensitive data by 

dynamically changing the secret key for data encryption during packet transmission. 

Under the protection of this protocol, only the original sender and authorized recipient 

are able to decode the cipher text using the secret key that is in their possession only. 

Therefore, the weakness of pre-shared key encryption is overcome and other wireless 

attacks are prevented.  

 

Experiment results with different network configurations and key sizes have been 

simulated. They indicate that the i-key protocol design is efficient, with low 

commutation overhead, while providing additional layer of data protection compared 

with other common security protocols in IEEE 802.11 wireless network. Furthermore, 

this dynamic encryption and decryption architecture is flexible, other secure systems can 

also adopt it as a secondary security enhancement. Because the adjustable key size meets 

the needs of different applications, the i-key protocol can maintain a high level of 

security without compromising system performance. 

 

5.2. Contributions 

 

To recap the contributions of this research:  

 

� The security design of IEEE 802.11 wireless communication protocols was 

studied in many different levels and the flaws and security issues in the 
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existing standard secure protocols that people rely on every day were 

identified. In addition, the various wireless attacks were analyzed in detail and 

the ease with which hackers can break the security defenses and penetrate a 

corporate network without been detected by the firewall or monitoring system 

is also described. The attack patterns and each process step from the hacker’s 

point of view were researched and took them into account in the i-key design. 

Therefore, this system can ensures the capability of defending the network and 

maintaining data integrity even when under attack.  

 

� A new dynamic i-key re-keying encryption/decryption protocol for wireless 

communication was developed. During the end-to-end and point-to-point 

transmission between wirelesses devices, the i-key protocol can automatically 

update the secret key according to the previously received data packet. It is 

then used as the next encryption seed before delivering the response packet, 

providing an ideal solution for secure protection. This protocol overcomes the 

drawback of the pre-share key (PSK) encryption system, ensures the privacy 

of communication and protects sensitive data from eavesdropping. With 

dynamic i-key encryption protocol, each mobile node can also verify the true 

identity of other nodes or access points to prevent sophisticated attacks like 

Rogue AP and Evil Twin. In addition, the i-key protocol is flexible for 

different levels of security protection with the ability to adjust the key size for 

data encryption. Thus, a system with existing security protection can still adopt 
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this protocol against malicious attack and protect the valuable wireless 

network. 

 

� A new experiment platform capable of simulating two stand-alone wireless 

networks, a base-oriented and mobile ad-hoc network (MANET), and the 

hybrid wireless network that combines them was build. System performance, 

packet delivery rate and network throughput of the i-key encryption protocol 

with other commonly adapted protocols, such as WEP, WPA and WPA2 were 

verified and compared. The experiment results are satisfactory and validate 

this protocol, the i-key dynamic re-keying mechanism, can perform as 

efficiently as other security architectures while providing an additional layer of 

data protection. 

 

5.3. Future Work 

 

The secure protocol was primarily concerned with the design to protect the wireless 

network against attacks and prevent access to confidential data by unauthorized 

personnel. This secure dynamic protocol would deliver a security enhancement to 

wireless communication, however, an additional intrusion detection and locating system 

could provide another layer of defense. This integration can effectively pinpoint the 

location of an attacker and provide more accurate discovery of attacks. It also helps the 

wireless secure system react correctly and instantly with the aid of knowing the physical 
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location. Therefore, the integration of this work with a intrusion detection and locating 

system is recommended for future research. Also, the impact of using different 

encryption and decryption algorithms for dynamic re-keying is worthy of future 

investigation. 

 

The recommendations for future work also include the implementation of advanced 

dynamic secure protection for large-scale wireless communication, such as IEEE 802.16 

WiMAX network and the 4G (4
th

 generation) of the cellular wireless network. In 

addition, the evaluation of its performance in both lab software simulations and real-

world experiments is recommended. 
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APPENDIX A 

IEEE 802.11 WIRELESS SECRET KEY BREAKING AND DICTIONARY ATTACK 

 

1. Introduction and Experiment Configuration 

 

The detailed steps and procedures for wireless secret key breaking and dictionary attacks 

summarized in Chapter IV are described in this appendix. The fact that simply 

increasing the pre-shared secret key size is an insufficient defense against key decoding 

software for the IEEE 802.11 wireless network is also illustrated here. 

 

 

Fig. A-1. Wireless environment setting 

 

Figure A-1 shows the wireless environment setting for our experiment. There are two 

access points that serve as the Internet gateway for four different mobile devices in two 

different wireless local area networks. A Lenovo T61 laptop is set up with a Linux-based 
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penetration testing operation system, backtrack4
1
. Backtrack4 acts as the eavesdropper 

and attacker. Aircrack-ng is mainly used as breaking and attacking software in this 

experiment with Airsnort and Kismet as the packet sniffer and analysis tool. The detail 

hardware configuration for Lenovo T61 is listed in Table A-1. 

 

Table A-1. Lenovo T61 Hardware Configurations 

Model Lenovo T61 

Processor Intel T7500 

Clock Speed 2.2 GHz 

Chipset Architecture Intel PM965 Express 

Memory 2.0 GB/667 MHz 

Network NIC Intel 82566/4965AG 

 

 

2. WEP Key Cracking 

 

In order to capture the wireless packets for secret key deciphering in backtrack4, the 

wireless card needs to be switched from the default communication mode to monitor 

mode by the following command:  

 

airmong-ng start wlan0 6 

 

                                                
1 Operating system information and documentation are available online at http://www.backtrack-linux.org/ 



 105

where wlan0 is the wireless device name (which varies by operating system and setting) 

and the number 6 is the broadcast channel of the target access point or mobile device. 

The channel number is optional here for monitor mode, but specifying this number in the 

command can increase the accuracy of capturing packets. However, not all wireless 

adapters or default manufacturer-installed drivers include either built-in or external 

(USB/PCMCIA) support for airmong-ng. For a detailed compatibility list of supported 

wireless chipsets and drivers, please visit aircrake’s official website
2
.  

 

Once the monitor mode was set, the system is ready to capture all nearby wireless 

communication and stored them for analysis by running: 

 

airodump-ng –w wep_attack –channel 6 wlan0 

 

wep_attack parameter is the file name where airodump will store all captured packet 

information. A similar screen window like Figure A-2 should display on the desktop, 

showing the capture information and status of all access points or mobile nodes within 

the receive range of your wireless device. 

 

                                                
2 URL - http://www.aircrack-ng.org/doku.php?id=compatibility_drivers 



 106

 

Fig. A-2. Wireless packets captured in airodump-ng 

 

In order to decipher the WEP key, at least two wireless packets using the same 

initialization vector (IV) value for encryption are needed to decode the steam cipher and 

reveal the pre-shared secret key.  

 

Once the wireless packets were captured, the deciphering procedure could be started by 

executing the following command: 

 

aircrack-ng –x  -f 2 wep_attack-01.cap 

 

-f parameter is the fudge factor for the bruteforce attack and –x parameter is used to 

disable the two last keybytes attack and speed up the key deciphering. The aircrack-ng 
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will first try when it has captured first 5000 IVs and then continue with more IV values 

if needed. Once the key is found by Aircrack-ng, as Figure A-3 illustrates, it will display 

the secret key value as well as the total cracking time, tested keys and IVs.  

 

 

Fig. A-3. Secret key found by Aircrack-ng 

 

Theoretically, the system needs to monitor and capture approximately one to two hours 

of wireless traffic, around 250~280 packets/minute, in order to collect enough packets 

for a 64-bit WEP key deciphering. But using the new FMS
3
 (Fluhrer, Mantin and Shamir) 

and improved KoreK attack used in Airarack-ng, in our experiments, the average key 

cracking time for WEP 64 bits is approximately 5 minutes and 14 minutes for a 128-bit 

secret key. Table A-2 shows the details of deciphering information for different access 

point and secret key size. 

 

                                                
3 S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the Key Scheduling Algorithm of RC4,” Selected 

Areas in Cryptography, 2001, page 1-24 
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The first time researchers pointed out the design flaw of WEP due to the relatively small 

IV value, some suggested that increasing the key size could solve the problem and 

extend the secure protection. However, as evident in these experiments, doubling the key 

size from 64 to 128 bits does not effectively prevent key deciphering. In nearly 20 

minutes, a proper environment can be setup to capture the wireless packets and decode 

the pre-share secret key (psk) between the access point and mobile node. In addition, 

once the secret key is revealed, anyone could pretend to be a legitimate client and 

penetrate the wireless protection to launch any of the attacks listed in Chapter IV 

(Section 4.2). 

 

Table A-2. WEP Breaking Time for 64 and 128 bits key 

WEP secret key value 
Encryption 

key size 

Number of IV 

values captured 

Total breaking 

time (min:sec) 

10:10:10:10:10 64 bits 15013 02:43 

44:33:55:88:66 64 bits 30043 04:52 

D2:9A:FC:A5:19 64 bits 40542 05:34 

93:DC:5E:39:9A 64 bits 30024 05:22 

12:34:56:78:90 64 bits 20038 03:45 

EA:08:CC:DD:0A:44:DB

:95:57:B2:33:15:70 
128 bits 255424 15:28 

72:6D:A1:16:81:95:31:C4

:8E:D8:10:28:D2 
128 bits 200746 13:03 

12:34:56:78:90:12:34:56:

78:90:12:34:56 
128 bits 154784 12:23 

52:D6:BE:17:E1:FF:57:5

9:8F:78:07:70:09 
128 bits 200821 14:48 

AA:AA:AA:BB:BB:BB:

CC:CC:CC:DD:DD:DD:

EE 

128 bits 152204 12:42 
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3. WPA/WPA2 Key Breaking 

 

The initial setting for WPA and WPA2 key deciphering is similar to WEP, which 

includes switching the wireless adapter to monitor mode and using airodump-ng to sniff 

and capture the wireless packets. Figure A-4 shows the console screen of initial packets 

captured with all mobile nodes and access points within the wireless receive range. 

 

 

Fig. A-4. WPA/WPA2 wireless packets capture in airodump-ng 

 

In order to obtain the authentication handshake information in WAP and WPA2 to 

expedite the key cracking procedures, deauthentication attack, the so-called DeAuth 

attack, is utilized to force the client to re-initialize authentication with access point. In 
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this example, the mobile node of ESSID - “08FX08012263” with the MAC address 

“00:18:3A:B9:49:3A” is selected as the decoding target node. 

 

To carry out the DeAuth attack on the target node, the following airplay-ng commend is 

used (as shown with the results in Figure A-5) : 

 

aireplay-ng -0 10 –a 00:18:3A:B9:49:3A mon0 

 

The first -0 parameter enabled the DeAuth attack and was followed by a number that 

indicated the total transmit time of this attack. The target MAC address is specified to 

precisely deliver the deauthentication information. The mon0 here is the wireless adapter 

interface ID in this experiment backtrack4 system. 

 

 

Fig. A-5. DeAuth attack launch by airplay-ng for WPA/WPA2 
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Sometimes, repetition of this DeAuth attack periodicity is necessary to de-authenticate 

the mobile node from the wireless access point. Once successfully launched, this attack 

and the target node is forced to re-initialize the authentication, airodump-ng is capable of 

capturing the established handshake information as displayed in Figure A-6.  

 

 

Fig. A-6. WPA handshake detected by airplay-ng 

  

After capturing the authentication packet information, the system could start to decode 

the secret key with a dictionary attack as described in Chapter IV, by using the following 

command: 

 

aircrack-ng –w darkc0de.lst wpa_attack-01.cap 
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In this experiment, built-in dictionary from backtrack4 is used for key cracking. Other 

extended dictionary lists can be found and downloaded from the Internet for advanced 

attacks. In addition to the dictionary method, aircrack-ng also supports the aircrack-ptw 

mode, in the latest released version (1.0 r1645). This version (1.0 r1645) relies on an 

ARP re-injection (ARP request and ARP response) attack to obtain the encryption 

information for key cracking. Like the WEP, once the aircrack-ng found the original pre-

share secret key, it displayed the information on the screen as shown, in Figure A-7. 

 

 

Fig. A-7. WPA/WPA2 secret key found by Aircrack-ng 

 

In this example, the average breaking speed was nearly 1088.13 keys/second (670224 

keys in 617 seconds), which means the system attempted to break 1088 combinations of 

secret keys per second toward the WPA/WPA2 secret key. The attack speed depends 
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primarily on the hardware system architecture, but in our experiment setting, the 

attacking laptop is more than three years old and considered as low-end hardware 

equipment. An attacker can easily find and use more sophisticated and newer equipment 

to dramatically shorten the breaking time to avoid detection by the wireless services or 

monitor system. However, our cracking speed with 1088.13 keys/second is already fast 

enough for most of the encryption used.  

 

As shown, launching a key cracking or dictionary attack does require some background 

knowledge for wireless networking and cryptography, and not everyone is capable of 

successfully doing that. But with the right tools, such as backtrack4 and aircrack-ng, and 

the vast information available on the Internet, sophisticated wireless attacks are 

becoming increasingly easier. This presents another challenge for wireless 

communication and secure protocol architecture. 
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