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ABSTRACT

Supply Chain Network Design

Under Uncertain and Dynamic Demand. (December 2010)

Ayman Hassan Ragab, B.Sc., Alexandria University, Egypt;

M.Sc., Alexandria University, Egypt

Chair of Advisory Committee: Dr. Brett A. Peters

Supply chain network design (SCND) identifies the production and distribution

resources essential to maximizing a network’s profit. Once implemented, a SCND

impacts a network’s performance for the long-term. This dissertation extends the

SCND literature both in terms of model scope and solution approach.

The SCND problem can be more realistically modeled to improve design deci-

sions by including: the location, capacity, and technology attributes of a resource;

the effect of the economies of scale on the cost structure; multiple products and

multiple levels of supply chain hierarchy; stochastic, dynamic, and correlated de-

mand; and the gradually unfolding uncertainty. The resulting multistage stochastic

mixed-integer program (MSMIP) has no known general purpose solution method-

ology. Two decomposition approaches—end-of-horizon (EoH) decomposition and

nodal decomposition—are applied.

The developed EoH decomposition exploits the traditional treatment of the end-

of-horizon effect. It rests on independently optimizing the SCND of every node of the

last level of the scenario-tree. Imposing these optimal configurations before optimiz-

ing the design decisions of the remaining nodes produces a smaller and thus easier to

solve MSMIP. An optimal solution results when the discount rate is 0%. Otherwise,

this decomposition deduces a bound on the optimality-gap. This decomposition is
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neither SCND nor MSMIP specific; it pertains to any application sensitive to the

EoH-effect and to special cases of MSMIP. To demonstrate this versatility, addi-

tional computational experiments for a two-stage mixed-integer stochastic program

(SMIP) are included.

This dissertation also presents the first application of nodal decomposition in

both SCND and MSMIP. The developed column generation heuristic optimizes the

nodal sub-problems using an iterative procedure that provides a restricted mas-

ter problem’s columns. The heuristic’s computational efficiency rests on solving

the sub-problems independently and on its novel handling of the master problem.

Conceptually, it reformulates the master problem to avoid the duality-gap. Tech-

nologically, it provides the first application of Leontief substitution flow problems

in MSMIP and thereby shows that hypergraphs lend themselves to loosely coupled

MSMIPs. Computational results demonstrate superior performance of the heuristic

approach and also show how this heuristic still applies when the SCND problem is

modeled as a SMIP where the restricted master problem is a shortest-path problem.
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CHAPTER I

INTRODUCTION

With the cost of US business logistics hitting $1.3 trillion (9.4% of the GDP) in

2009 (Burnson, 2009), the efficiency of logistics networks remains a priority (Chopra

and Meindle, 2007). As a strategic decision, supply chain network design (SCND)

controls the long-term efficiency of logistics networks by setting the frame within

which decisions of the tactical and operational levels have to take place (Chopra and

Meindle, 2007). Tactical policies (such as inventory and transportation) and opera-

tional decisions (such as scheduling and routing) reduce logistics cost by optimizing

the utilization of existing resources (Shapiro, 2007). Identifying the right resources

to acquire is the goal of SCND (Shapiro, 2007) and the focus of this work.

1. Modeling the supply chain network design problem

A realistic SCND model would include, at minimum, the following factors:

• All the attributes (location, capacity, and technology) of a resource. Selecting

the number and location of facilities involves a trade off between economies

of scale in investment cost and the transportation cost among distant supply

chain network nodes. Setting the timing and size of the capacity needed to

equip spatial resources involves a trade off between the economies of scale in

capacity acquisition and the cost of holding excess capacity. Selecting the

types of technologies needed to fulfill the capacity plan involves a production

trade off between economies of scale provided by highly automated lines and

economies of scope provided by flexible manufacturing systems.

This dissertation follows the style of IIE Transactions.
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• The effect of the economies of scale on the cost structure. SCND involves

capital intensive facilities with long service lives (Owen and Daskin, 1998).

Including fixed-cost components in the cost function better approximates re-

source acquisition cost.

• Multiple products and multiple levels of supply chain hierarchy. Different prod-

uct families compete for the network’s finite resources. Any given product

might need to visit multiple types of manufacturing and distribution facilities.

These facilities are traditionally located in a multi-level hierarchy. The flow of

the different products from suppliers to customer zones links successive supply

chain hierarchical levels. Fig. 1 shows an example of a supply chain network.

• Stochastic, dynamic, and correlated demand. Demand is the main source of

uncertainty in supply chains (Davis, 1993; Mo and Harrison, 2005). Demand

uncertainty arises from volatile demand or inaccurate forecasts (Davis, 1993).

Usually, this demand is correlated among different locations and various time

periods (Tsiakis et al., 2001; Snyder, 2006). Recently, fluctuating demand has

Custom ers
Production &  
DistributionSuppliers

Given: suppliers capacity 
and location

Uncertain: dem and

Given: location

Given: cost structure

Decision Variables: location, 
technology, and capacity

Fig. 1.: Supply chain network design problem.
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been more pronounced due to the shrinking product life-cycle (Chopra and

Meindle, 2007). Periodic redesign of a supply chain network maintains its effi-

ciency in face of dynamic demand patterns (Chandra and Gragis, 2007). Fig.

2 depicts a scenario representing one possible future. Each arrow represents

the reconfiguration actions that result in an evolving SCND.

• Mimicking the natural unfolding order of events. Fig. 3 shows the unfolding of

uncertainty over time and the decision process that ensues. At each point in

time, design decisions occur while future events remain uncertain. Once an un-

certain event unfolds, the design can be tweaked using the information gained

by the now realized event. Forfeiting the benefit of using unfolding informa-

tion to improve design decisions detracts from their quality (Bienstock and

Shapiro, 1988), especially as the planning horizon grows and as the variability

of uncertain parameters increases (Huang and Ahmed, 2009).

Current SCND models do not integrate all these factors in a single model

(Melo et al., 2009). Developing and solving such an integrated model is the fo-

cus of this work.

t = T

t = 2

t = 1

t = 0

Fig. 2.: Effect of dynamic market condition on SCND problem.
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t = 0 t = 1 t = T

t = 2

?

?

?

?

?

Fig. 3.: Effect of dynamic and stochastic market condition on SCND problem.

2. Solving the supply chain network design problem

Integrating all these factors in one model results in a multistage stochastic mixed-

integer program (MSMIP), which has no known general purpose solution method-

ology (Ahmed and Sahinidis, 2003). This dissertation applies two decomposition

approaches to attack this problem: end-of-horizon decomposition and nodal decom-

position.

2.1. End-of-horizon decomposition

The developed end-of-horizon (EoH) decomposition exploits the end-of-horizon effect

to produce a smaller-sized MSMIP. This resulting MSMIP is still NP-hard but its

smaller size renders it easier to solve. The EoH decomposition rests on independently

optimizing the SCND of every node of the last level of the scenario-tree. These

nodal subproblems are NP-hard, but tackling them independently makes them easier

to solve. Subsequently, the configurations prescribed by the optimal solutions of
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these nodal subproblems are imposed before optimizing the design decisions of the

remaining nodes of the scenario-tree. The last level of the scenario-tree includes a

large portion of the scenario-tree’s nodes. By imposing given configurations to these

nodes, this decomposition results in a smaller problem with a significantly smaller

global feasible search space.

Optimizing the resulting smaller-sized model produces a SCND identical to

that prescribed by a global optimal solution when the discount rate is 0%. When

the discount rate is greater than 0%, a bound on the gap between the value of the

globally optimal solution and that resulting from the EoH decomposition is deduced.

The computational results of Chapter V indicate a 91% reduction in solution time

and a 6% bound on the optimality-gap is typically less than 4%.

The EoH decomposition is not SCND specific; it applies to any (two-stage or

multistage) stochastic program sensitive to the end-of-horizon effect. Its result-

ing smaller-sized problem can be further decomposed using any of the traditional

stochastic programming decompositions (scenario, component, or nodal decompo-

sitions). To solve the developed SCND MSMIP, this dissertation applies nodal

decomposition on this resulting problem.

2.2. Nodal decomposition

A scenario-tree formulation is used for SCND to allow nodal decomposition. Nodal

decomposition has two advantages:

1. It provides smaller subproblems than those currently achieved by the com-

monly used scenario decomposition (Schultz et al., 2003). SCND subproblems

are still NP-hard, but the smaller size allows them to be solved more efficiently.

2. It provides a conveniently structured master problem that is amenable to refor-
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mulation into a Leontief substitution flow problem (LSFP). This LSFP has the

integrality property and thereby it voids the need for MIP solution techniques

(Jeroslow et al., 1992).

Together, smaller subproblems and an integral master problem have the potential

to radically cut the computational effort, which allows solving models for larger,

realistic problem sizes.

A SCND subproblem resulting from nodal decomposition is a two-stage stochas-

tic mixed-integer program (SMIP) for which a multitude of efficient algorithms exist

to solve small sized problems. A subproblem seeks the best SCND for a single period

of the planning horizon. Design decisions (location, capacity, and technology) must

be made before the realization of uncertain demand. Whereas tactical decisions

(production, distribution, and subcontracting) react to the unfolding demand.

The master problem resulting from nodal decomposition is a large scale MIP. It

tracks the evolution of the network’s configuration throughout the planning horizon

under all possible demand scenarios and thereby accounts for network reconfigura-

tion costs. The integrality property results from reformulating the master problem

as a LSFP. This property serves to prove that a column generation procedure based

on the reformulated master problem features a zero duality-gap.

The LSFP reformulation is achieved by graphically representing the master

problem as a hypergraph consisting of vertices and hyperarcs. A vertex represents

a possible solution of a SCND subproblem. A hyperarc is a special arc that can

join more than two vertices. It represents the necessary reconfiguration actions to

transition from a network’s configuration at a given time period to a number of

potential configurations at the following time period, one configuration per possible

realization of uncertain demand. Hypergraphs lend themselves to polynomial-time
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solution algorithms.

The proposed SCND heuristic is a column generation type-I procedure (Wilhelm,

2001) that consists of two major steps. First, each nodal subproblem generates a

set of nodal solutions. These provide columns to a Leontief substitution flow master

problem. Second, this restricted master problem constructs the best possible global

feasible solution out of the thus far generated columns. This same heuristic still

applies if the SCND problem is modeled as an SMIP (which forfeits the benefits of

using gradually unfolding information to improve design decisions.) In this case, the

restricted master problem is a shortest path problem.

The noteworthy success of column generation type-I procedures in tackling NP-

hard problems (Wilhelm, 2001) motivated this approach. The computational results

of Chapter VI indicate a 88% reduction in solution time and a 13% bound on the

optimality-gap when the SCND problem is modeled as an SMIP. When the SCND

is modeled as an MSMIP, results of the computational experiments of Chapter VII

indicate a 98% reduction in solution time and a 6% bound on the optimality-gap.

3. Conclusion

Not only will this research provide a practical and realistic methodology to model

and solve SCND problems, but will also provide the first application of nodal decom-

position and LSFP in MSMIP. This research also provides a faster solution approach

for SCND problems modeled as a two-stage stochastic program (which forfeits the

benefits of using gradually unfolding information to improve design decisions.) Fur-

thermore, this research capitalizes on the potential to extend this methodology be-

yond SCND problems by demonstrating that their underlying properties can be

induced in other MSMIP applications.
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This dissertation is organized as follows. Chapter II reviews relevant SCND lit-

erature. Chapter III discusses the research objectives, originality, and plan. Chapter

IV models the SCND problem using a scenario-tree formulation. Chapter V devel-

ops the EoH decomposition, deduces a bound on the gap between the global optimal

solution and the EoH solution, and uses computational experiments to assess the

potential gain in computational efficiency and loss in solution value. Chapter VI

exploits the special case of two-stage stochastic program formulation developed in

Chapter IV with nodal decomposition, reformulates the resulting master problem as

a shortest-path problem, and proposes a practical heuristic to design supply chains.

Chapter VII extends this heuristic to tackle the multistage stochastic program de-

veloped in Chapter IV. This extension involves reformulating the master prob-

lem resulting from nodal decomposition as a shortest-hyperpath problem. Chapter

VIII outlines a methodology to extend the application of the developed heuristic to

problems beyond SCND. Finally, Chapter IX summarizes this research and lists its

contributions.
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CHAPTER II

REVIEW OF RELEVANT LITERATURE

The literature is rich with supply chain network design (SCND) models; albeit, the

scope of this review is limited to stochastic models that include both the effect

of economies of scale on the cost structure and the ability to correlate dynamic

demand between different locations and various time periods. For reviews covering

the breadth of the SCND literature, see Schmidt and Wilhelm (2000), Min and

Zhou (2002), Chopra (2003), Mo and Harrison (2005), Snyder and Daskin (2007),

Chandra and Gragis (2007), Goetschalckx and Fleischmann (2008), Melo et al.

(2009), Peidro et al. (2009), Farahani et al. (2010), and Klibi et al. (2010).

This chapter has two primary goals: to identify gaps in the stochastic modeling

of SCND problems and to show that nodal decomposition has not been implemented

in solving multistage stochastic mixed-integer programs (MSMIPs).

1. Stochastic SCND models and solution approaches

Propelled by advances in computational technology, recent SCND models moved

closer than ever towards realism. Nonetheless, room for improvement continues to

exist. Table I shows that current stochastic SCND models incorporate either the in-

tegrated nature of location, capacity, and technology decisions or exploit the benefit

of using unfolding demand over time in making these decisions—none incorporate

both features. The following sections explore this gap in current SCND research.

1.1. Integrating location, capacity, and technology decisions

SCND has been segregated into several well-established research areas, which include

location analysis, capacity planning, and technology selection (Verter and Dincer,
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1992; Paquet et al., 2004; Martel, 2005). Verter and Dincer (1992) and Verter (2002)

show that these decisions are interdependent and conclude that it is vital to integrate

them in a single modeling framework.

Most current stochastic SCND models do not incorporate location, capac-

ity, and technology in a single modeling framework. For example, Tsiakis et al.

(2001), Silva and Wood (2006), and Schütz et al. (2008) concentrate on facility lo-

cation. Huang and Ahmed (2009) focus on capacity expansion. Eppen et al. (1989),

Gupta et al. (1992), Ahmed and Sahinidis (2003), and Ahmed et al. (2003) integrate

capacity planning and technology selection decisions.

To what I found in the literature, the only model that integrates location, ca-

pacity, and technology decisions was developed by Lucas et al. (1996) and later

adopted by MirHassani et al. (2000), Lucas et al. (2001), and Mitra et al. (2006).

This two-stage stochastic mixed-integer program (SMIP) models a network consist-

ing of plants, distribution centers, and customer zones. The first stage includes all

design decisions (namely opening and closing sites, setting capacity levels, and se-

lecting technology types) for all periods of the planning horizon. The second stage

decides production and transportation amounts for the entire planning horizon.

Some stochastic, yet static, models, such as Santoso et al. (2005), integrate

Table I. Amount of SCND literature classified by integration level of design decisions

(location, capacity, and technology) and uncertainty modeling approach
Integration level Model Type
of design decisions Deterministic SMIP MSMIP

Single design decision
Abundant Moderate Little
cf. Van Roy and Er-
lenkotter (1982)

cf. Tsiakis et al.
(2001)

cf. Huang and
Ahmed (2009)

Integrating 2 decisions
Abundant Moderate Little
cf. Melo et al. (2005) cf. Eppen et al. (1989) cf. Ahmed and

Sahinidis (2003)

Integrating 3 decisions
Moderate Little None
cf. Wilhelm et al. (2005) cf. Lucas et al. (2001)

Little: 1 to 5 publications; Moderate: 6 to 15 publications; Abundant: more than 15 publications.
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location, capacity, and technology. Nonetheless, static models inherently preclude

capacity expansion and reduction, resource replacement, and resource relocation.

1.2. Reacting to unfolding uncertainty

Stochastic SCND models fall in two groups regarding their ability to react to unfold-

ing uncertainty. The first use two-stage stochastic programs (SMIP), and thereby

their design decisions do not interact with unfolding uncertainty. This group in-

cludes the overwhelming majority of stochastic SCND models; see for example:

Eppen et al. (1989), Louveaux and Peeters (1992), Liu and Sahinidis (1996), Lu-

cas et al. (1996; 2001), MirHassani et al. (2000), Tsiakis et al. (2001), Silva and

Wood (2006), Mitra et al. (2006), and Schütz et al. (2008).

The second group consists of the models of Ahmed and Sahinidis (2003) and

Ahmed et al. (2003), which study capacity expansion under demand uncertainty

with fixed-charge expansion cost. Both models adopt MSMIP and thereby include a

sequence of capacity expansion (design) decisions that interacts with a sequence of

realizations of the uncertain demand.

As the number of stages grows and as the variability of uncertain parameters

increases, the quality of a MSMIP solution increases when compared with a SMIP

solution (Huang and Ahmed, 2009). Unfortunately, the accuracy comes at a heavy

computational price (Ahmed and Garcia, 2004; Sen, 2005).

1.3. Gap in stochastic SCND models

While the models of Lucas et al. (1996; 2001), MirHassani et al. (2000), and

Mitra et al. (2006) integrate location, capacity, and technology decisions, these de-

cisions do not benefit from the information gained gradually by the realization of

uncertain events. In contrast, the design decisions in Ahmed and Sahinidis (2003)
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and Ahmed et al. (2003) interact with uncertainty but do not capture the interac-

tions among the location, capacity, and technology of a resource.

Current literature lacks a model that extends Lucas et al. (1996; 2001), MirHas-

sani et al. (2000), and Mitra et al. (2006) with the ability to respond to unfolding

uncertainty; or, equivalently, a model that extends those of Ahmed and Sahinidis

(2003) and Ahmed et al. (2003) with integrated location, capacity, and technology

decisions.

In essence, this gap in SCND models results from the lack of suitable solution

techniques; current SCND models "seem to be guided by the availability of solution

methods" (Melo et al., 2009). Consequently, improving solution techniques advances

SCND research.

1.4. Solution approaches of MSMIP in the context of SCND

The literature lacks a suitable approach to solve SCND problems modeled as MSMIPs.

To date, no practical general purpose solution algorithm exists for MSMIP (Schultz,

2009; Huang and Ahmed, 2009; Sen, 2005; Ahmed et al., 2003). Regardless, notable

attempts continue to emerge.

In theory, the pioneering Lagrangian algorithm of Carøe and Schultz (1999)

applies to MSMIP. However, the authors acknowledge that “some work still remains

to be done since problem sizes increase dramatically” for multistage problems (Carøe

and Schultz, 1999). Consequently, this algorithm application to MSMIPs remains

elusive (Ahmed et al., 2003).

The innovative branch-and-fix coordination (BFC) algorithm (Alonso-Ayuso et al.,

2003) only suits models with all binary variables. When a model includes continuous

variables, this algorithm becomes problematic (Schultz et al., 2003).

Recently, Escudero et al. (2009) extends the BFC of Alonso-Ayuso et al. (2003)
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to include continuous variables. This results in an exact approach for solving

MSMIPs with complete recourse. However, Escudero (2009) acknowledges that this

method is not suitable for realistic problem sizes due to the ensuing massive-sized

BFC tree.

Escudero (2009) presents a heuristic framework aimed at solving realistically-

sized problems. This heuristic rests on relaxing the integrality and non-anticipativity

constraints of an MSMIP resulting in independent linear programs, each represent-

ing one scenario. Gradually fixing the variables of these linear programs to suitable

values recovers the integrality and non-anticipativity properties. To date, no com-

putational results are available for this heuristic as its implementation remains in

progress (Escudero, 2009). In short, "challenging implementation issues remain"

(Schultz, 2009) for this theoretical framework.

Several heuristics have been specifically tailored to solve subsets of the SCND

problem. Generalizing these heuristics to tackle an integrated SCND remains elusive.

Extending the SMIP heuristics of MirHassani et al. (2000), Lucas et al. (2001),

and Mitra et al. (2006) to MSMIP is possible but not promising. They rest on

selecting the best among a set of heuristically generated configurations. These

configurations result from a wait and see approach, which analyzes each scenario

independently.

The three-stage heuristic of MirHassani et al. (2000) relies on detecting com-

monalities among promising solutions. The first step finds an optimal SCND for

each individual scenario. The second step narrows down these configurations to

those that perform reasonably well under all scenarios. The last step synthesizes one

solution by detecting patterns in these configurations. The computational results of

Mitra et al. (2006) show that a solution that performs well on a subset of scenarios

needs not perform well on the entire set. This suggests that the first step might not
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be always able to choose globally promising configurations.

Lucas et al. (2001) and Mitra et al. (2006) approximate the solution space of

the original problem with a set of heuristically generated configurations. Gener-

ating candidate configurations rests on a wait and see analysis coupled with the

Lagrangian relaxation of capacity constraints. The complete-recourse structure of

this model allows extending the configuration prescribed by each iteration of the

relaxed problem into a feasible solution (with respect to the SMIP). The final step

evaluates these configurations and selects the best among them. The computational

results show that the first step is computationally efficient while the last step is

exceptionally demanding. In MSMIP, the increased number of binary variables, and

hence possible configurations, can render this last step computationally prohibitive.

Extending the application-dependent, MSMIP algorithms of Ahmed and Sahini-

dis (2003) and Ahmed et al. (2003) to SCND problems is problematic. The round-

ing heuristic of Ahmed and Sahinidis (2003) requires nondecreasing demand over

time (which precludes capacity reduction). The Branch-and-Bound algorithm of

Ahmed et al. (2003) relies on the model’s tight lower bound. This bound results

from the tight linear relaxation achieved by reformulating capacity expansion as a

lot sizing problem (which precludes resource replacement). In this clever reformula-

tion, capacity expansion sizes are cast as linear batch sizes (which precludes discrete

expansion sizes), and capacity investment cost is cast as the batch setup cost (which

precludes fixed and variable operating costs).

Based on the same principles, Huang and Ahmed (2009) tried a different tack.

Their approach cannot be extended to SCND problems for the same reasons.



15

2. Decomposition schemes for multistage stochastic programs

Among the three decomposition schemes that have been proposed for MSMIP (see

Römisch and Schultz (2001) for a review of MSMIP decomposition schemes), all

current SCND models that I am aware of use scenario decomposition. Little incen-

tive exists to adopt component decomposition in SCND models. This decomposition

is beneficial only when the decision space dominates the component coupling con-

straints (Römisch and Schultz, 2001). In SCND problems, the decision space is

typically dominated by constraints expressing logistical details (such as those en-

forcing the conservation of material flow and capacity limits).

Römisch and Schultz (2001) observe that nodal decomposition has never been

used in MSMIP. Consistent with their observation, I am unaware of any SCND

model that adopts this decomposition. The perceived weakness of nodal decom-

position stems from its large duality-gap compared to that of scenario decompo-

sition (Dentcheva and Römisch, 2004). In SCND problems, where the subprob-

lems are NP-hard, closing a large duality-gap can be computationally prohibitive

(Wilhelm, 2001).

3. Conclusion

This chapter highlights the need for the following research advances:

1. A SCND MSMIP that integrates location, capacity, and technology decisions

2. An algorithm capable of solving such a model

It also identifies nodal decomposition as an unexplored technique for MSMIP.

This research aims to fill this need with the model and solution algorithm

proposed in Chapter III and developed in Chapter IV and Chapter V.
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CHAPTER III

RESEARCH QUESTION

This research expands the ongoing research in supply chain network design (SCND)

with a model that has more fidelity to the actual problem than current models

and to develop a practical solution methodology for this model. The objectives,

originality, and plan of this research are summarized in the following sections.

1. Research objectives

This research has three main objectives:

1. Formulate the SCND problem as a multistage stochastic mixed-integer pro-

gram (MSMIP) with a structure that can be exploited for solution effectiveness

while still capturing the essential trade offs encountered in SCND.

2. Develop a practical solution methodology for this model.

3. Characterize other applications beyond SCND that have the potential to bene-

fit from the developed solution methodology, and establish guidelines to formu-

late these applications as MSMIPs with structures amenable to this method-

ology.

2. Research originality

This research is unique in many ways. Unlike current models, my model includes all

of the following characteristics:

• Integrate the location, capacity, and technology attributes of a resource.

• Capture the effect of the economies of scale on the cost structure.
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• Allow for multiple products and multiple levels of supply chain hierarchy.

• Model the stochastic and dynamic natures of demand.

• Mimic the natural unfolding of events.

The mathematical formulation of this model is unique. It differs from those of

Lucas et al. (1996), MirHassani et al. (2000), Lucas et al. (2001), and Mitra et al.

(2006) in how resources are modeled. In my model, a set of resources that perform

a specific function are modeled as a single unit. This provides the formulation with

the following advantages:

1. Inclusion of miscellaneous costs associated with retooling a site (such as those

related to layout, lighting, and wiring modifications) and savings instigated by

the effect of economies of scale in capacity procurement.

2. A mathematical structure amenable to exploitation for solution efficiency.

My representation of resources relates mostly to that of Eppen et al. (1989). How-

ever, my model provides more details in SCND representation and less focus on the

financial concerns associated with capacity expansion.

The decomposition of this model is unique. This research presents the first

application of nodal decomposition in both SCND and MSMIP.

The proposed solution approach is novel. Conceptually, it reformulates the

master problem to avoid the duality-gap, which is a departure from the stochas-

tic programming tradition of efficiently closing the duality-gap. Technologically,

it develops the first application of Leontief substitution flow problems (LSFPs) in

MSMIP.

Like Lucas et al. (2001) and Mitra et al. (2006), my solution approach exploits

the successive solutions generated by an iterative procedure to construct feasible



18

configurations (which serve as columns in the master problem). In contrast to their

Lagrangian-based algorithm, my approach adopts the L-shaped method (Van Slyke

and Wets, 1969). Unlike Lucas et al. (2001) and Mitra et al. (2006), my master

problem is computationally efficient. This results from two ideas:

1. Applying an end-of-horizon decomposition that significantly reduces the size

of the master problem. This decomposition optimizes subsets of the master

problem and then inserts these optimal solutions as parameters into the master

problem.

2. Using the generated columns to populate a Leontief substitution flow master

problem (or a shortest path problem in the case of SMIP), which exhibits the

integrality property. This property renders the master problem easy to solve.

3. Approach

The major steps of this dissertation are as follows:

1. Formulate the SCND problem as a MSMIP with a structure amenable to

solution effectiveness while still capturing the essential trade-offs of SCND.

2. Derive the SMIP formulation of the SCND problem as a special case of the

MSMIP formulation.

3. Apply nodal decomposition on both the SMIP and MSMIP to decompose each

of them into a conveniently structured master problem and (relatively) small-

sized nodal subproblems.

4. Develop end-of-horizon decomposition and apply it to reduce the sizes of these

master problems (without altering their structures.)



19

5. As a stepping stone towards a solution approach for the MSMIP formulation,

develop a practical solution approach for the SMIP formulation. This results

from following these steps: first, exploit the structure of the reduced master

problem with a shortest path reformulation, which provides the integrality

property; second, use the L-shaped method to optimize the subproblems and

thereby provide columns for the reformulated master problem; fourth, develop

a heuristic inspired from column generation type I approach; and finally, con-

duct computational experiences to evaluate the effectiveness of this heuristic

procedure.

6. Adapt the developed solution procedure to suit the MSMIP formulation. This

results from following the same steps except for replacing the shortest path

reformulation by a LSFP reformulation, which also provides the integrality

property. Afterwards, tailor existing LSFP’s polynomial-time algorithms to

suit the special structure of the reformulated master problem. Finally, con-

duct computational experiences to evaluate the effectiveness of this heuristic

procedure.

7. Identify the characteristics that render MSMIPs amenable to nodal decompo-

sition and LSFP reformulation, and characterize other applications likely to

benefit from the developed methodology.
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CHAPTER IV

SUPPLY CHAIN NETWORK DESIGN MODEL

This chapter models the supply chain network design (SCND) problem with a multi-

stage stochastic mixed-integer program (MSMIP). This model aims to plan resource

acquisition by picking those resources with location, capacity, and technology that

best complement the existing supply chain network structure. The model does so

by implicitly exploring the common features of the different forecasted demand sce-

narios to develop a design that works reasonably well under various scenarios or a

design prone to tweaking at a future point in time where the future may be clearer.

This chapter is organized as follows. First, the SCND problem and major

modeling assumptions are stated. Second, the general structure of the model is

outlined. Third, the decision variables are described. Fourth, the constraints and

objective function are developed. Fifth, a compact representation of the model is

presented. Finally, how to reduce this formulation to model special cases of the

SCND problem is illustrated.

1. Model’s foundation and general structure

The developed model adopts a scenario-tree formulation (Römisch and Schultz,

2001) for the SCND problem. The following sections discuss the characteristics

of the SCND problem, explain how the supply chain network and scenario-tree are

expressed in the model, and present an overview of the model’s general structure.

1.1. Supply chain network design problem

The SCND problem aims to determine the number, location, capacity, and technol-

ogy of the supply chain’s facilities that minimize the expected long run cost of the



21

network. The supply chain under consideration has the following characteristics:

• A single entity owns and controls all manufacturing and distribution resources.

• Design decisions adapt a known initial structure of the supply chain network

(which could be null) to achieve better long run efficiency.

• The length of the planning horizon is predetermined, and, at the beginning of

each of its periods, the design of the supply chain network can be adjusted.

Both the length of the horizon and the duration of each period are application-

dependent. Typically the planning horizon ranges between five to ten years,

and the duration of each period ranges between one to three years.

• The candidate supply chain partners (i.e., suppliers and target customer seg-

ments) are predefined, and their locations are known. The suppliers’ capacity

and customers’ demand forecasts are provided. These forecasts define a proba-

bility density function of possible scenarios. Every scenario defines the location

and amount of demand for each product family throughout the planning hori-

zon.

• Products are shipped from the suppliers to a series of manufacturing and dis-

tribution facilities, then to the customers. Each shipping channel and product

family combination is associated with a per unit shipping cost.

• Manufacturing and distribution facilities are located in a multi-level hierarchy.

Any given product might need to visit multiple facilities if the operations it

needs are fragmented into different facilities.

• The sets of promising locations, technologies, and capacities are provided.
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• A change of network configuration (by establishing a new facility, closing an

existing one, or retooling an existing facility with different resources) is asso-

ciated with a one-time fixed cost. This cost depends on the nature and timing

of the event and on the location, technology, and capacity of that facility.

• An open facility is associated with a recurrent fixed cost that is time, location,

capacity, and technology dependent. Moreover, processing a product involves

a per unit cost that is time, location, capacity and technology dependent.

• Fulfilling customers’ demand of each product family generates a per unit rev-

enue that is time and market dependent.

• No inventory is held from one time period to the next; i.e., customer demand

at a given period must be satisfied by products processed during that same

period.

These characteristics have the following implications:

• The problem is a hierarchical, multi-commodity, dynamic, and stochastic sup-

ply chain network design.

• The hierarchical and multi-commodity aspects of the problem are intertwined.

The different product families compete for the finite capacity installed in the

different hierarchical levels. Thus, the flow of the different product families

links successive levels. This linkage becomes especially strong as the number

of product families grows. Likewise, the finite capacity of individual resources

links the flow of the different product families. This linkage becomes espe-

cially strong as the number of hierarchical levels (and thereafter the number

of candidate resources) grows.
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• The dynamic and stochastic aspects of the problem are intertwined. At each

time period, several scenarios exist. To adequately describe a point in the fu-

ture, one needs to specify both its corresponding time period and its associated

anticipated sequence of uncertain demand outcomes.

• Periodically tweaking a SCND links successive time periods since each time

period inherits the SCND of its predecessor. Absent this consideration, each

time period can be dealt with in isolation of all other periods.

1.2. Modeling the supply chain network

The ownership of and control over a supply chain network is divided among three

contributors collaborating to fulfill customers’ demand: preselected supplier zones

(s ∈ S) that provide the inputs; predefined customer zones (k ∈ K) that consume

the outputs; and plants and distribution centers that process the inputs received

from the suppliers into the outputs provided to the customer zones.

Both plants and distribution centers are modeled the same way: material ar-

rives, value is added, and product exits. As such, they will be collectively referred to

as facilities. A facility has three attributes: location, technology, and capacity level.

A facility’s location is selected from a predefined set of candidate sites (j ∈ J ).

The set of candidate sites for plants (j ∈ Jr) and that for distribution centers

(j ∈ Jw) can intersect. This allows for co-locating a plant and a distribution center.

Each open facility is fitted with exactly one technology. In this context, a

technology (q ∈ Qj) is a group of resources that enables a facility to perform its

particular function. Examples for technologies include assembly lines, packaging

lines, storage/retrieval systems, etc. A specific technology can process, at different

rates, a subset of the product families.
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Each technology comes in discrete capacity levels (` ∈ Lq). That is, this model

does not explicitly mix-and-match equipment to achieve suitable capacity; it rather

picks one whole package among available capacity options. This representation

allows incorporating the effect of economies of scale on resource acquisition cost and

accounting for miscellaneous costs associated with retrofitting sites (such as those

related to layout, lighting, and wiring modifications).

The existing supply chain network structure serves as the initial configuration

(which can be null). Adapting this configuration to an evolving business environ-

ment is the focus of this model. This entails opening new facilities, retooling existing

facilities, adjusting the capacities of installed technologies, and closing existing fa-

cilities. Opening a new facility involves selecting its location and fitting it with a

technology at some suitable capacity level. Retooling an existing facility involves

replacing its technology. Capacity upgrade and downgrade of a given technology

result from acquiring and shedding units of the same technology group. Closing a

facility involves removing the technology within.

1.3. Modeling the planning horizon

The planning horizon is approximated by a finite set of discrete periods T =

{0, 1, · · · , T}. These periods can be of equal or different length. t = 0 indicates

the initial configuration of the supply chain network (which could be null).

The end of the planning horizon warrants special treatment to circumvent the

end-of-horizon effect. The end-of-horizon effect refers to a model’s bias against ac-

quiring new resources as the remaining portion of the planning horizon becomes in-

sufficient to recoup investment expenditures. Chapter V addresses this phenomenon.
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1.4. Modeling the scenario-tree

This model approximates customer demand by scenarios. A scenario is the “joint

realization of uncertain parameters over all time periods” (Ahmed and Sahinidis,

2003). Scenarios are defined on a finite probability space (Ω,Ξ, φ), where Ω is

a finite sample space, Ξ is a power set on Ω, and φ is a probability measure.

ω = {ω1, . . . , ωT} is a multi-dimensional sample point of Ω. The probability that

a scenario ω will realize, φ({ω}), is provided for all forecasted scenarios ω ∈ Ω.

Scenario generation is an active research field by itself. For example, Dupačová et al.

(2000) and Hoyland and Wallace (2001) developed techniques to generate scenarios

for multistage stochastic programs.

In scenario-trees, a node represents a decision point and an arc represents a

specific realization of the uncertain event. A scenario ω is represented by the unique

path leading from the root node to a leaf node nω ∈ NT , where NT ⊂ N is the

set of leaf nodes. Accordingly, each leaf node represents a scenario, while the root

node (n = 0) represents the inherited design of the network. The paths of different

scenarios are not necessarily exclusive throughout the planning horizon—scenarios

can share a common history before they branch into diverging paths.

Each scenario-tree node is associated with a bundle. A bundle Bn is the set of

scenarios passing through node n ∈ N . For example, at the root node B0 = Ω, and

at a leaf node nω ∈ NT corresponding to scenario ω, Bnω = {ω}.

Each node of the scenario-tree is associated with a nodal probability and an

arc probability. The nodal probability of node n, φn, is the probability of reach-

ing scenario-tree node n starting from the root node. It is expressed in terms of

scenarios’ probability as follows: φn = φ({ω|ω ∈ Bn}) =
∑

ω∈Bn
φ({ω}). The arc

probability of node n, φn|a(n), is the probability to reach n ∈ N given that its parent,
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a(n) ∈ N , has been reached (i.e., the probability to select the arc leading to n). The

arc probability of a node n can be computed as follows:

φn|a(n) =
φ({ω|ω ∈ Bn ∩ Ba(n)})
φ({ω|ω ∈ Ba(n)})

=
φ({ω|ω ∈ Bn})
φ({ω|ω ∈ Ba(n)})

=
φn

φa(n)

.

For notational convenience, let N = {1, 2, . . . , N}; i.e., {0} * N . Also, let

NB = N \ NT . Furthermore, let D(n) ⊂ N be the set of immediate descendants of

n /∈ NT (i.e., n ∈ {0} ∪ NB), and D(n) = ∅ for n ∈ NT .

1.5. Model’s general structure

The model aims to find values of the strategic decision variables (x, y) that minimize

the expected cost (4.1) over all possible scenarios ω ∈ Ω. The optimal values

of the strategic variables are related to those of the tactical variables (z) by the

component-coupling constraints (4.3), which characterize a decision’s feasibility for

any given period t ∈ T . The relationship between decisions at different periods of

the planning horizon are restricted by the stage-coupling constraints (4.2).

κ = min Eω∈Ω [κ1(x) + κ2(y) + κ3(z)] , (4.1)

subject to

ϕ1(x, y, ω) = 0, x ∈ X, (4.2)

ϕ2(y, z, ω) = 0, y ∈ Y. (4.3)

2. Decision variables

The goal of the model is to determine the present design decisions that minimize

the long-term expected cost of the network. Future uncertainty and future decisions

(strategic and tactical) take part in the model to assess the impact of present design
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decisions on the long-term performance of the network.

2.1. Strategic variables

Strategic decisions describe the evolution of the supply chain network over the plan-

ning horizon. At each node of the scenario-tree, strategic decisions are resolved

before the realization of the uncertain parameters. Strategic decisions fall into two

categories: configuration selection and reconfiguration planning.

Configuration selection answers the following question: which technology (q ∈

Qj) operates at which capacity level (` ∈ Lq) in which site (j ∈ J )? The model

selects a configuration for each scenario-tree node except for the root node (for which

a given, inherited configuration is imposed) and the leaf nodes (which are terminal

and don’t emanate further scenarios). Thus, configuration selection decisions are

indexed over NB.

Configuration selection involves location, technology, and capacity aspects:

• Location selection (yn
j , j ∈ J , n ∈ NB) indicates whether site j houses an

operational facility.

• Technology selection (yn
0,q,j, q ∈ Qj, j ∈ J , n ∈ NB) indicates whether the

operational facility at site j uses technology q.

• Capacity level selection (yn
`,q,j, ` ∈ Lq, q ∈ Qj, j ∈ J , n ∈ NB) indicates

whether level ` is the capacity level of technology q that operates in site j.

For each node n ∈ NB, variables pertaining to configuration selection are de-
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fined as follows:

yn
j =





1, if site j houses an open facility,

0, otherwise.

yn
0,q,j =





1, if technology q is not used in site j,

0, otherwise.

yn
`,q,j =





1, if technology q operates at capacity level ` in site j,

0, otherwise.

yn groups these variables into one vector:

yn =
(
{yn

j }j∈J , {yn
`,q,j}`∈{0}∪Lq,q∈Qj,j∈J

)
.

Reconfiguration planning answers the following question: what actions are

needed to update configuration ya(n) into yn? Therefore, reconfiguration planning is

also indexed over n ∈ NB and involves location, technology, and capacity aspects:

• Relocation planning indicates whether to establish a new facility in site j

(xn
open j) and whether to dismantle the existing facility in site j (xn

close j).

• Technology planning indicates whether to install technology q in the facility at

site j (xn
0,`,q,j) and whether to remove technology q from the facility at site j

(xn
`,0,q,j).

• Capacity planning (xn
`1,`2 ,q,j) indicates whether to upgrade/downgrade the ca-

pacity of technology q that operates in site j from level `1 ∈ Lj to level `2 ∈ Lj,

where `1 6= `2.

For each node n ∈ NB, variables pertaining to configuration selection are de-
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fined as follows.

xn
open j =





1, if site j is opened,

0, otherwise.

xn
close j =





1, if site j is closed,

0, otherwise.

xn
0,`,q,j =





1, if technology q is installed at level ` in site j,

0, otherwise.

xn
`,0,q,j =





1, if technology q operating at level ` is removed from site j,

0, otherwise.

xn
`1 ,`2,q,j =





1, if capacity level of technology q in site j is adjusted from `1 to `2,

0, otherwise.

xn groups these variables into one vector:

xn =
(
{xn

open j}j∈J , {xn
close j}j∈J , {xn

`1,`2 ,q,j}`1 6=`2∈{0}∪Lj,q∈Qj,j∈J
)
.

2.2. Tactical variables

Tactical decisions describe the production and distribution of products (p ∈ P) at

a given period of the planning horizon. At each node of the scenario-tree, tactical

decisions are resolved after the realization of the uncertain parameters. Tactical

decisions are continuous, and they fall into two categories: transportation decisions

and processing decisions.

Transportation decisions represent the amount of each product shipped between



30

entities of the supply chain. zn
p,s,jr

is the amount of product p shipped from supplier

s to manufacturing location jr. zn
p,jr ,jw

is the amount of product p shipped from

manufacturing location jr to distribution location jw. zn
p,jw ,k is the amount of product

p shipped from distribution location jw to market k.

Processing decisions represent the amount of each product processed in a given

facility. zn
p,`r ,qr ,jr

is the amount of product p processed at manufacturing location jr

by manufacturing technology qr that operates at capacity level `r. z
n
p,`w,qw ,jw

is the

amount of product p processed at distribution location jw by distribution technology

qw that operates at capacity level `w.

zn groups these variables in one vector:

zn =
(
{zn

p,s,jr
}p,s,jr , {zn

p,jr ,jw
}p,jr ,jw , {zn

p,jw,k}p,jw,k, {zn
p,`,q,j}p,`,q,j

)
,

where p, s, jr stands for p ∈ P, s ∈ S, jr ∈ Jr; p, jr, jw stands for p ∈ P, jr ∈

Jr, jw ∈ Jw; p, jw, k stands for p ∈ P, jw ∈ Jw, k ∈ K; and p, `, q, j stands for

p ∈ P, ` ∈ Lq, q ∈ Qj, j ∈ J = Jr ∪ Jw.

3. Constraints

The constraints fall into two groups: stage-coupling constraints and component-

coupling constraints.

3.1. Stage-coupling constraints

Stage-coupling constraints ensure that a supply chain acquires all the resources that

it uses. They do so by enforcing reconfiguration actions to update the configuration

at node a(n) into node n whenever these configurations are not identical. These

reconfiguration actions involve either opening and closing sites as constraint sets
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(4.4)–(4.11) dictate or retooling facilities as constraint sets (4.12)–(4.15) dictate.

Constraint sets (4.4)–(4.11) regulate opening sites to house new facilities. Con-

straint set (4.4) acquires the site that houses a newly established facility. Constraint

sets (4.5) and (4.6) prevent unnecessary opening of sites. Constraint set (4.7) en-

forces the binary nature of xn
open j .

xn
open j ≥ yn

j − y
a(n)
j ∀ j ∈ J , n ∈ NB, (4.4)

xn
open j ≤ yn

j ∀ j ∈ J , n ∈ NB, (4.5)

xn
open j ≤ 1 − ya(n)

j ∀ j ∈ J , n ∈ NB, (4.6)

xn
open j ∈ {0, 1} ∀ j ∈ J , n ∈ NB. (4.7)

Constraint sets (4.8)–(4.11) regulate closing sites that no longer house operat-

ing facilities. Constraint set (4.8) closes a site whenever its facility ceases being

operational. Constraint sets (4.9) and (4.10) prevent unnecessary closing of sites.

Constraint set (4.11) enforces the binary nature of xn
close j .

xn
close j ≥ y

a(n)
j − yn

j ∀ j ∈ J , n ∈ NB, (4.8)

xn
close j ≤ 1 − yn

j ∀ j ∈ J , n ∈ NB, (4.9)

xn
close j ≤ y

a(n)
j ∀ j ∈ J , n ∈ NB, (4.10)

xn
close j ∈ {0, 1} ∀ j ∈ J , n ∈ NB. (4.11)

Constraint sets (4.12)–(4.15) regulate retooling facilities. When `1 = 0, con-

straint set (4.12) ensures that a facility uses a technology in production/distribution

operations only after this technology has been installed. Likewise, it ensures that

non-operational technologies are removed from a facility when `2 = 0. When `1 6= 0

and `2 6= 0, constraint sets (4.12) enforce upgrading/downgrading the capacity level
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of a technology. Constraint sets (4.13) and (4.14) prevent unnecessary retooling

actions. Constraint set (4.15) enforces the binary nature of xn
`1,`2 ,q,j.

xn
`1,`2 ,q,j ≥ yn

`2 ,q,j +y
a(n)
`1,q,j−1 ∀ `1 6= `2 ∈ {0}∪Lq, q ∈ Qj, j ∈ J , n ∈ NB, (4.12)

xn
`1,`2 ,q,j ≤ yn

`2,q,j ∀ `1 6= `2 ∈ {0} ∪ Lq, q ∈ Qj, j ∈ J , n ∈ NB, (4.13)

xn
`1,`2 ,q,j ≤ y

a(n)
`1,q,j ∀ `1 6= `2 ∈ {0} ∪ Lq, q ∈ Qj, j ∈ J , n ∈ NB, (4.14)

xn
`1 ,`2,q,j ∈ {0, 1} ∀ `1 6= `2 ∈ {0} ∪ Lq, q ∈ Qj, j ∈ J , n ∈ NB. (4.15)

3.2. Component-coupling constraints

Component coupling constraints confine the capacity consumed in producing and

distributing products within the capacity limits of available resources. Constraint

set (4.16) dictates that an open facility has exactly one technology and a closed

one has none. Constraint set (4.17) keeps track of non-operational technologies.

Constraint set (4.18) enforces the binary nature of yn
`,q,j.

∑

q∈Qj

∑

`∈Lq

yn
`,q,j = yn

j ∀ j ∈ J , n ∈ NB, (4.16)

∑

`∈{0}∪Lq

yn
`,q,j = 1 ∀ q ∈ Qj, j ∈ J , n ∈ NB, (4.17)

yn
`,q,j ∈ {0, 1} ∀ ` ∈ {0} ∪ Lq, q ∈ Qj, j ∈ J , n ∈ NB. (4.18)

Constraint sets (4.19)–(4.29) involve the tactical variables, zm,m ∈ D(n), n ∈

NB. These constraints help assess the impact of the strategic decisions on the

performance of the network. z1 depends only on the inherited initial configuration

(which is not a decision variable) and thereby is not impacted by the strategic

decisions. Consequently, constraint sets (4.19)–(4.29) are indexed over n ∈ N \ {1}.

Constraint sets (4.19) and (4.20) enforces the capacities of production and dis-
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tribution technologies; where cp,`,q is the portion of the capacity ` of technology q

required to process one product of family p ∈ P. Constraint sets (4.21) and (4.22)

relate the processing decisions to the transportation decisions.

∑

p

cp,`,qz
n
p,`,q,jr

≤ y
a(n)
`,q,j ∀ ` ∈ Lq, q ∈ Qj, j ∈ J = Jr ∪ Jw, n ∈ N \ {1}, (4.19)

zn
p,`,q,j ≥ 0 ∀ p ∈ P, ` ∈ Lq, q ∈ Qj, j ∈ J = Jr ∪ Jw, n ∈ N \ {1}, (4.20)

∑

s∈S

zn
p,s,jr

=
∑

`∈Lq

∑

q∈Qjr

zn
p,`,q,jr

∀ p ∈ P, jr ∈ Jr, n ∈ N \ {1}, (4.21)

∑

k∈K

zn
p,jw,k =

∑

`∈Lq

∑

q∈Qjw

zn
p,`,q,jw

∀ p ∈ P, jw ∈ Jw, n ∈ N \ {1}. (4.22)

Constraint sets (4.23) and (4.24) enforce the balance of flow at production and

distribution locations, respectively.

∑

s

zn
p,s,jr

=
∑

jw

zn
p,jr ,jw

∀ p ∈ P, jr ∈ Jr, nN \ {1}, (4.23)

∑

jr

zn
p,jr ,jw

=
∑

k

zn
p,jw ,k ∀ p ∈ P, jw ∈ Jw, nN \ {1}. (4.24)

Constraint set (4.25) enforces the capacity limits of suppliers, dn
p,s. Constraint

set (4.26) restricts the flow of products to markets such that supply doesn’t exceed

demand.
∑

jr

zn
p,s,jr

≤ dn
p,s ∀ p ∈ P, s ∈ S, nN \ {1}, (4.25)

∑

jw

zn
p,jw,k ≤ dn

p,k ∀ p ∈ P, k ∈ K, nN \ {1}. (4.26)

Constraints sets (4.27) to (4.29) impose the non-negativity of processing and

transportation variables.

zn
p,s,jr

≥ 0 ∀ p ∈ P, s ∈ S, jr ∈ Jr, nN \ {1}, (4.27)

zn
p,jr ,jw

≥ 0 ∀ p ∈ P, jr ∈ Jr, jw ∈ Jw, nN \ {1}, (4.28)
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zn
p,jw ,k ≥ 0 ∀ p ∈ P, jw ∈ Jw, k ∈ K, nN \ {1}. (4.29)

4. Objective function

The objective function minimizes the total expected cost. The total cost function

consists of three terms: supply chain network restructuring cost, κ1(x); fixed oper-

ating cost, κ2(y); and variable production/distribution cost, κ3(z).

4.1. Supply chain network restructuring cost

Restructuring cost involves location, technology, and capacity aspects. Establishing

a new facility in site j involves a one-time cost (fn
open j). Closing the facility in site j

involves a one-time cost (fn
close j). Likewise, a one-time cost (fn

0,`,q,j) is incurred to in-

stall a new technology q in facility j. This cost accounts for all fixed costs associated

with the acquisition and installation of technology q and capacity-dependent costs

associated with acquiring capacity level `. Similarly, removing an existing technol-

ogy q from the facility in site j results in a one-time cost (fn
`,0,q,j), which depends

on technology q, capacity level `, and location j. Finally, upgrading/downgrading

the capacity level of technology q from level `1 to level `2 involves a one-time cost

(fn
`1 ,`2,q,j) that depends on location, technology and capacity.

Relation (4.30) combines these costs, where fnxn is the cost to update the

supply chain network from its configuration at node a(n) to that of node n, and

fn groups all restructuring parameters for node n in one vector. Equation (4.30)

aggregates this cost over relevant scenario-tree nodes.

κ1(x) =
∑

n∈NB

∑

j∈J

fn
open jx

n
open j +

∑

j∈J

fn
close jx

n
close j +

∑

j∈J

∑

q∈Qj

∑

`∈{0}∪Lq

fn
`1,`2 ,q,jx

n
`1,`2 ,q,j

=
∑

n∈NB

fnxn. (4.30)
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4.2. Fixed operating cost

An operational facility results in a fixed, periodically-recurrent cost such as insur-

ance, maintenance, and labor wages. This fixed operating cost (gn
`,q,j) differs from

one period to another and depends on a facility’s technology, capacity, and loca-

tion. Once a facility is closed, this cost ceases. Equation (4.31) neglects the fixed

operating cost at the beginning of the planning horizon since the imposed initial

configuration fixes this cost to a constant.

κ2(y) =
∑

n∈NB

∑

j∈J

∑

q∈Qj

∑

`∈Lq

gn
`,q,jy

n
`,q,j =

∑

n∈NB

gnyn. (4.31)

4.3. Variable production/distribution cost

The production/distribution cost parameters include the processing costs per unit at

a manufacturing facility (hp,`,q,jr) and a distribution facility (hp,`,q,jw), the transporta-

tion cost per unit between entities of the supply chain, and the revenue generated

by selling products p ∈ P at markets k ∈ K.

On top of shipping related expenses, the transportation cost from a supplier s

to a manufacturing location jr (hp,s,jr) includes the procurement cost of the supplies

and the pipeline inventory cost. Likewise, the transportation cost from a distribution

location jw to a market k (hp,jw ,k) is combined with the revenue per unit at that

market and the pipeline inventory cost. Thus, hp,jw ,k are likely to assume negative

values. The transportation cost from a manufacturing location jr to a distribution

location jw (hp,jr ,jw) includes shipping related expenses plus the pipeline inventory
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cost. Equation (4.32) combines these costs.

κ3(z) =
∑

n∈N\{1}

(∑

p∈P

∑

j∈J

∑

q∈Qj

∑

`∈Lq

hp,`,q,jzp,`,q,j +
∑

p∈P

∑

s∈S

∑

jr∈Jr

hp,s,jrzp,s,jr

+
∑

p∈P

∑

jr∈Jr

∑

jw∈Jw

hp,jr ,jwzp,jr ,jw +
∑

p∈P

∑

jw∈Jw

∑

k∈K

hp,jw ,kzp,jw,k

)

=
∑

n∈N\{1}

hnzn. (4.32)

4.4. Total expected cost

The model aims to minimize the total expected cost (κ), which sums the nodal-

probability weighted costs over all scenario-tree nodes. The objective function is

expressed by (4.33). In the last term, κ3(z), every node m is expressed in terms of

its parent n = a(m). This rests on substituting φm = φm|nφn,m ∈ D(n). To simplify

the notation, let gn
0,q,j = hn

p,0,q,j = 0 for p ∈ P, q ∈ Qj, j ∈ J , n ∈ N .

κ = min Eω∈Ω [κ1(x) + κ2(y) + κ3(z)] (4.33)

= min
∑

n∈NB

φn


fnxn + gnyn +

∑

m∈D(n)

φm|nhmzm


 .

5. Model’s compact representation

To simplify the mathematical exposition, the model’s compact representation (Pc)

integrates the components discussed in §3 and §4 as shown by (4.34)–(4.37).

κ = min
∑

n∈NB

φn


fnxn + gnyn +

∑

m∈D(n)

φm|nhmzm


 , (4.34)

subject to

Axn + B1yn + B2ya(n) = b ∀n ∈ NB, (4.35)

yn ∈ Yn ∀n ∈ NB, (4.36)
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Dzm + B3yn = dm ∀m ∈ D(n), n ∈ NB. (4.37)

Constraint (4.35) compactly represents the stage coupling constraints (4.4)–(4.15).

All other constraints represent the component coupling constraints. Constraint

(4.36) compactly represents constraints (4.16)–(4.18). Constraint (4.37) compactly

represents constraints (4.19)–(4.29). The compact representation of constraint (4.35)

results from the followings:

• Extending xn to include the needed slack and surplus variables to turn in-

equalities (4.4)–(4.6), (4.8)–(4.10), and (4.12)–(4.14) into equations.

• Extending fn to match the new size of xn and assigning all new parameters

equal to zero.

• Appropriate choice of A,B1,B2, and b to reflect the proper coefficients.

The compact representation of constraint (4.37) follows from similar measures.

5.1. Special cases

Manipulating the sets over which the decision variables are indexed reduces Pc into

the following special cases. Therefore, the solution approach described in the follow-

ing chapters also applies to all these special cases:

• The single product case results from omitting the index p from the model

(which is equivalent to using P = {1}).

• A location selection model (i.e., neglecting the capacity and technology at-

tributes of a resource) results from removing the indices ` and q from the

model (i.e., both L and Q are empty sets). In this case, yn
j = 0 or 1 when

location j is closed or open, respectively, gn
j represents the fixed operating cost
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of the facility in location j at node n, and cp,j represents the portion of facility

j’s capacity consumed to process one unit of product p.

• A capacity planning model in which capacity and technology decisions for ex-

isting locations evolve through a given planning horizon results from replacing

` ∈ {0} ∪ Lq by ` ∈ Lq for all strategic decision variables.

• The deterministic SCND problem results from replacing node indices by their

time indices counterparts in all decision variables.

• The static SCND problem results from omitting the time index (i.e., using

T = {1}) from the formulation of the deterministic SCND problem.

• A dynamic and stochastic SCND problem in which design decisions must be

taken only at the beginning of the planning horizon (and remain unchanged

thereafter) results from removing time and node indices from all strategic

decision variables. This also effectively reduces the model into a two-stage

stochastic program.

• A two-stage stochastic program in which strategic decisions can evolve through

the planning horizon results from replacing node indices by their time indices

counterparts in all strategic decision variables of Pc. This two-stage stochastic

program is addressed in Chapter VI.

5.2. Solving the SCND model

For practical purposes, Pc is a massive MIP that is beyond current computational

capacity (Schultz, 2009; Sen, 2005). To solve this model, the following chapter

develops an End-of-Horizon (EoH) decomposition that rests on exploiting the end-

of-horizon effect. This EoH decomposition pre-processes a stochastic program to
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reduce its size. The resulting smaller stochastic program can be further exploited by

any stochastic programming decomposition; c.f. Römisch and Schultz (2001).

By construction, Pc exhibits a block angular structure amenable to decompo-

sition by scenario-tree node. Chapter VI and Chapter VII exploit this structure

by a nodal decomposition and a Leontief substitution flow problem reformulation

that significantly reduces solution time. Chapter VI and Chapter VII show that

combining the EoH decomposition and nodal decomposition provide the potential

to radically cut computational effort, which allows larger, realistic problem sizes to

be solved.
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CHAPTER V

END-OF-HORIZON DECOMPOSITION

This chapter exploits the end-of-horizon effect to decompose the developed supply

chain network design (SCND) multistage stochastic mixed-integer program (MSMIP)

into a sequence of smaller—and thus easier to solve—subproblems. This chapter

shows that when the discount rate is 0%, the SCND prescribed by this decomposi-

tion is identical to that of the global optimal solution. Moreover, this chapter derives

a bound on the (suboptimal) solution resulting from this decomposition when the

discount rate is greater than 0%.

The end-of-horizon (EoH) decomposition is neither SCND nor MSMIP specific.

While this chapter frames the EoH decomposition in the context of the SCND

problem, this decomposition applies to any application sensitive to the EoH effect.

Likewise, the EoH decomposition applies to special cases of MSMIP such as two-

stage mixed-integer stochastic programs (SMIP) and dynamic (yet deterministic)

models.

This chapter is organized as follows. First, the EoH effect is discussed. Second,

the EoH decomposition is developed. Third, extensions driven by practical consid-

erations are presented. Finally, the computational experiments and their results are

discussed.

1. End-of-horizon effect

For strategic analyses, multi-period models provide insight into how to adapt to

an evolving business environment. Ideally, long planning horizons are preferred to

enable the proper evaluation of the long lasting impact of SCND decisions. Practi-

cally, the lack of reliable forecasts for distant time periods prevents adopting such
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long horizons. In most practical circumstances, reliable forecasts pertinent to SCND

are not available beyond 10 years (Snyder and Daskin, 2007), which gives rise to the

EoH effect.

The EoH effect refers to a model’s bias against acquiring new resources as the

remaining portion of the planning horizon becomes insufficient to recoup investment

expenditures. This bias affects a model’s ability to properly evaluate investment

options (Hübner, 2007). The SCND literature (and its location selection ances-

tor) resolves the EoH effect in different ways; for a survey of these methods, see

Hübner (2007). Among these methods, Eppen et al.’s (1989) approach is the most

prominent.

Eppen et al.’s (1989) approach rests on optimizing over an infinite planning

horizon in which all parameters remain stationary after the last period for which

a reliable forecast exists. This infinite horizon can be modeled by a discrete finite

horizon, t ∈ {0, ..., T}, in which each t represents one period except for the final

t = T, which stretches into infinity. Fixed and variable production cost parameters

for this final period result from discounting infinite cost series to the beginning of

this period. To render this final period similar to all other periods—albeit with

larger fixed and variable production costs—no network reconfiguration decisions are

allowed to take place during this final period except at its beginning.

2. End-of-horizon decomposition

The EoH decomposition sequentially optimizes subsets of a stochastic program’s

deterministic equivalent model (DEM). It starts by independently optimizing the

SCND of every node of the last level of the scenario-tree for which strategic vari-

ables apply; i.e., n ∈ NT−1. Subsequently, the configurations prescribed by the
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optimal solutions of these nodal subproblems are imposed before optimizing the de-

sign decisions of the remaining nodes of the scenario-tree. The resulting MSMIP is

smaller in size and thus easier to optimize. Sections 2.1, 2.2, and 2.3 elaborate on

the steps of this decomposition.

2.1. Find EoH target configurations

The decomposition imposes EoH target configurations on boundary nodes. Boundary

nodes, n ∈ NT−1, belong to the last level of the scenario-tree for which strategic

variables apply. Descendants of boundary nodes, leaf nodes, involve only tactical

decisions since these nodes don’t emanate further scenarios.

An EoH target configuration for a given boundary node results from inde-

pendently optimizing the nodal subproblem, Pn, corresponding to this boundary

node, n ∈ NT−1. Pn, represented by (5.1), is the deterministic equivalent model

(DEM) of an SMIP in which the first stage selects the optimal configuration (y~
n )1

for a single boundary node (n ∈ NT−1) and the recourse stage selects the op-

timal production/distribution decisions (z~
m) at nodes m ∈ D(n). Consequently,

κ~
n = gny

~
n +

∑
m∈D(n) φm|nhmz~

m, where κ~
n is the optimal solution value of Pn.

κ~
n = min

yn,zm

{gnyn +
∑

m∈D(n)

φm|nhmzm | yn ∈ Yn,Dzm + B3yn = dm}. (5.1)

Pn, n ∈ NT−1, is an NP-hard SMIP. However, tackling nodal subproblems in-

dependently makes them easier to solve. Moreover, the following properties of Pn

makes it amenable to solution by the L-shaped method (Van Slyke and Wets, 1969):

• Fixed recourse-matrix D, as previously defined in section 3.2 of Chapter IV.

1Throughout this document, the superscript ~ refers to nodal optima while su-
perscript ∗ distinguishes elements of the (global) optimal solution for PC
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• Relatively complete-recourse; i.e., for each yn ∈ Yn, there exists a vector zm

for each m ∈ D(n) that satisfies Dzm + B3yn = dm.

• Binary first-stage variables (yn) and continuous recourse variables (zm).

The L-shaped method, which is based on Benders Decomposition, has been ef-

fective in solving similar SMIPs; see, for example, MirHassani et al. (2000) and

Santoso et al. (2005).

2.2. Find configurations for all other scenario-tree nodes

Imposing the EoH target configurations results from pegging yn = y~
n in Pc, (4.34)–

(4.37), for all boundary nodes, n ∈ NT−1. This also eliminates all variables and

constraints relating to leaf nodes m ∈ NT . The last two levels of the scenario-tree

include a large portion of the scenario-tree’s nodes. By imposing given configura-

tions to the boundary nodes (and thereby eliminating their corresponding binary

variables) and eliminating leaf nodes all together, this decomposition results in a

significantly smaller MSMIP. This resulting MSMIP, PB, can be expressed by (5.2)–

(5.5).

κB = min
∑

n∈NB

φnfnxn +
∑

n∈NB\NT−1

φn


gnyn +

∑

m∈D(n)

φm|nhmzm


 , (5.2)

subject to

Axn + B1yn + B2ya(n) = b ∀n ∈ NB, (5.3)

yn ∈ Yn ∀n ∈ NB \ NT−1, (5.4)

Dzm + B3yn = dm ∀m ∈ D(n), n ∈ NB \ NT−1. (5.5)
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2.3. Evaluate the resulting SCND

Equation (5.6) defines the objective function’s value of the solution resulting from

the EoH decomposition, κEoH. κEoH is the sum of the optimal solution value of

PB, κB, and the probability-weighted sum of the optimal nodal solution values for

all boundary nodes.

κEoH = κB +
∑

n∈NT−1

φnκ
~
n . (5.6)

3. Approximating infinite horizons by imposing EoH target configurations

The EoH decomposition captures the essence of Eppen et al.’s (1989) infinite plan-

ning horizon approach. In their approach, stretching the last period into infinity

increases its decisions’ relative influence over the supply chain’s cost. Thus, a global

optimal solution must prescribe nearly optimal configurations for every boundary

node.

3.1. Case (1): discount rate=0%

The following proposition shows that the optimal solution is identical to the solution

resulting from the EoH decomposition when the discount rate is 0% provided that

each nodal subproblem has a unique optimal solution.

Proposition 1 When the discount rate is 0%, the solution resulting from the EoH

decomposition is identical to the optimal solution for Pc (expressed by (4.34)–(4.37)),

provided that the optimal solution for each nodal subproblem, Pn, n ∈ NT−1, is

unique.

Proof: Let (X∗,Y∗,Z∗) be an optimal solution for Pc (expressed by (4.34)–(4.37)),

where X∗ =
(
x∗

1, . . . ,x
∗
NB

)
, Y∗ =

(
y∗

1, . . . ,y
∗
NB

)
, Z∗ = (z∗2, . . . , z

∗
N) , NB = |NB|,
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and N = |N |. Furthermore, let (X~,Y~,Z~) be a feasible solution for Pc in which

decisions for all nodes n ∈ NB \NT−1 are identical to those of (X∗,Y∗,Z∗),yn = y~
n

for all n ∈ NT−1, zm = z~
m for all m ∈ D(n), n ∈ NT−1, and xn = x~

n for all

n ∈ NT−1, where x~
n is defined by (5.7);

Ax~
n + B2y

~
n + B3y

∗
a(n) = b ∀n ∈ NT−1. (5.7)

Accordingly, the optimality gap, δ, can be defined by (5.8), where κ∗ is the objec-

tive function’s value for (X∗,Y∗,Z∗) and κ~ is the objective function’s value for

(X~,Y~,Z~), κ∗n = gny
∗
n +

∑
m∈D(n) φm|nhmz∗m, and κ~

n is defined by (5.1).

δ = κ~ − κ∗ =
∑

n∈NT−1

φn

(
fnx

~
n − fnx

∗
n +

(
κ~

n − κ∗n
))

> 0. (5.8)

Consider a nodal subproblem Pn, n ∈ NT−1, for which a unique nodal optimal

solution y~
n exists. To get a contradiction, suppose that y~

n 6= y∗
n (and thereby

z~
m 6= z∗m for some m ∈ D(n), n ∈ NT ). Suppose that the last period of the

planning horizon begins at epoch t = T − 1 and stretches up to the end of the

planning horizon, t = τ. Because the discount rate remains 0% throughout this last

time period, κ~
n =

∑τ
t=T−1 κ

~
n,t and κ∗n =

∑τ
t=T−1 κ

∗
n,t. The uniqueness of optimal

solution of Pn implies that κ~
n − κ∗n < 0. Define εn,t = κ~

n,t − κ∗n,t. εn,t < 0 because

all parameters remain constant and the configuration of the supply chain remains

unchanged throughout this last time period. Finally, because this last time period

stretches into infinity, κ~
n −κ∗n = limτ→∞

∑τ
t=T−1 εn,t = −∞, which contradicts (5.8).

�

3.2. Case (2): discount rate>0%

For practical purposes, discount rates usually exceed 0%. In this case, the solution

resulting from the EoH decomposition might not be optimal (with respect to Pc).
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Proposition 2 provides a bound on the optimality gap, δ, resulting from the (sub-

optimal) solution of the EoH decomposition. (5.9) defines the value of this bound,

where δe is the optimal value of the SMIP described by (5.10)–(5.15).

δ ≤
∑

e∈NT−2


 ∑

n∈D(e)

φnκ
~
n − δe


 , (5.9)

δe = min




∑

n∈D(e)

φn


fnxn − fnx

•
n + gnyn +

∑

m∈D(n)

φm|nhmzm





 , (5.10)

subject to

Axn + B2yn + B3ye = b ∀n ∈ D(e), (5.11)

Ax•
n + B2y

~
n + B3ye = b ∀n ∈ D(e), (5.12)

yn ∈ Yn ∀n ∈ D(e), (5.13)

ye ∈ Ye, (5.14)

Dzm + B3yn = dm ∀m ∈ D(n), n ∈ D(e). (5.15)

Proposition 2 When the discount rate exceeds 0%, the optimality gap resulting

from the solution of the EoH decomposition is bounded from above as defined by

(5.9).

Proof: Let (X∗,Y∗,Z∗) be an optimal solution for Pc (expressed by (4.34)–(4.37)),

where X∗ =
(
x∗

1, . . . ,x
∗
NB

)
, Y∗ =

(
y∗

1, . . . ,y
∗
NB

)
, Z∗ = (z∗2, . . . , z

∗
N) , NB = |NB|,

and N = |N |. Furthermore, let (X~,Y~,Z~) be a feasible solution for Pc in which

decisions for all nodes n ∈ NB \NT−1 are identical to those of (X∗,Y∗,Z∗),yn = y~
n

for all n ∈ NT−1, zm = z~
m for all m ∈ D(n), n ∈ NT−1, and xn = x~

n for all

n ∈ NT−1, where x~
n is defined by (5.16).

Ax~
n + B1y

~
n + B2y

∗
e = b ∀n ∈ D(e). (5.16)
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Accordingly, the optimality gap, δ, can be expressed by (5.17), where κ~
n = gny

~
n +

∑
m∈D(n) φm|nhmz~

m, and κ∗n = gny
∗
n +

∑
m∈D(n) φm|nhmz∗m.

δ 6 δ~ =
∑

e∈NT−2


 ∑

n∈D(e)

φn

(
fnx

~
n + κ~

n

)
−
∑

n∈D(e)

φn (fnx
∗
n + κ∗n)


 . (5.17)

Consider the following mathematical program:

q∗e = min{
∑

n∈D(e)

φn


fnxn + gnyn +

∑

m∈D(n)

φm|nhmzm


 | (xn,yn, zm) ∈ Qe},

where the set Qe that is given by (xn,yn, zm) values that satisfy (5.18)–(5.21).

Axn + B1yn + B2ye = b ∀n ∈ D(e), (5.18)

yn ∈ Yn ∀n ∈ D(e), (5.19)

ye ∈ Ye, (5.20)

Dzm + B3yn = dm ∀m ∈ D(n), n ∈ D(e). (5.21)

Clearly, (x∗
n,y

∗
n, z

∗
m) ∈ Qe (because (X∗,Y∗,Z∗) satisfies all constraints of Pc, which

enforce (5.18)–(5.21)). This implies (5.22):

∑

n∈D(e)

φn (fnx
∗
n + κ∗n) > q∗e , (5.22)

A new bound, (5.23), results from (5.17) and (5.22):

δ 6 δ~ 6
∑

e∈NT−2


 ∑

n∈D(e)

φnκ
~
n −


q∗e −

∑

n∈D(e)

φn

(
fnx

~
n

)



 . (5.23)
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q∗e −
∑

n∈D(e) φn (fnx
~
n ) is the value of the SMIP expressed by (5.24):

q∗e −
∑

n∈D(e)

φnfnx
~
n = min




∑

n∈D(e)

φn(fnxn − fnx
~
n

+gnyn +
∑

m∈D(n)

φm|nhmzm) | (xn,yn, zm) ∈ Qe and (5.16)



 .

(5.24)

The SMIP expressed by (5.10) and (5.15) is a relaxation of that expressed by

(5.24), which implies (5.25):

q∗e −
∑

n∈D(e)

φnfnx
~
n > δe. (5.25)

Finally, (5.9) results from (5.23) and (5.25).

�

4. Practical considerations

Stretching the planning horizon into infinity (or, equivalently, imposing EoH target

configurations for nodes n ∈ NT−1) might overly bias decisions from earlier periods.

Rolling the planning horizon and adopting a finite approximation of the infinite-

horizon are strategies that can reduce such a bias.

4.1. Rolling horizon

A rolling horizon approach re-applies the model periodically. In every such appli-

cation, only decisions related to the first period of the planning horizon are im-

plemented. When updated forecasts for subsequent periods become available, the

planning horizon rolls by dropping the now elapsed first period and appending an

extra period at the end of the horizon. Before re-applying the model, EoH target

configurations for the newly added period are imposed. The recently implemented
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SCND serves as the initial configuration for the updated horizon, and the configura-

tions of all other periods become decision variables.

4.2. Finite approximation of the infinite-horizon

Instead of extending the last period into infinity, this last period can include only

the minimum number of years sufficient to cover the payback periods of all candidate

resources. The size of the last period of a planning horizon is therefore instance-

dependent. To assess the EoH decomposition’s sensitivity to this approximation of

a planning horizon, the computational experiment of the following section assumes

different lengths for this last period.

5. Computational experiment

This section uses two sets of computational experiments to demonstrate the com-

putational efficiency of the EoH decomposition. The first set tests the performance

of the EoH decomposition when the SCND problem is modeled as an MSMIP. The

second set tests the performance of the EoH decomposition when the SCND problem

is modeled as an SMIP.

Each set of experiments applies the EoH decomposition over three different

problem sizes. Table II summarizes the sizes of these problems, which are referred

to hereafter as size A, size B and size C. Depending on the problem size, either 3

or 5 instances are tested per problem size. Each instance is solved thirty different

times, each using a different combination of discount rates and finite approxima-

tions for the infinite last period combinations. For each of these combinations, an

instance is solved twice: using CPLEX 11.0 to optimize the DEM and using the

EoH decomposition, where CPLEX 11.0 optimizes the DEMs for the subproblems.
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Table II. Dimensions of test problems
Problem Size A B C

Products 5 5 5

Suppliers 5 5 5

Customers 10 10 15

Manufacturing locations 5 5 10

Manufacturing technologies 2 2 3

Capacity levels per manufacturing technology 2 2 3

Distribution locations 5 10 15

Distribution technologies 1 1 1

Capacity levels per distribution technology 1 3 3

Time periods 5 5 5

Scenarios 81 81 81

All computational experiments were conducted on a quad-core Intel Xeon X5355

processor running at 2.66 GHz with 12 GB RAM. The parameters for all instances

were generated as described by Appendix G.

5.1. Computational experiments for MSMIPs

The results of one instance of each problem size are presented in this section. Appen-

dices A–C present the results of the remaining instances, an appendix per problem

size.

Tables III and IV summarize the results for an instance of problem size A.

Tables V and VI summarize the results for an instance of problem size B. Tables

VII and VIII summarize the results for an instance of problem size C.

Problems size A were allowed unlimited run time under both the DEM and the

EoH decomposition. Because it takes a considerable amount of time to optimize

a DEM of the second or third problem size, their optimization was halted after

one and two hours, respectively. The solution values listed in their corresponding

tables indicate the best solutions achieved within these allotted times. The EoH

decomposition always completed within these allotted times.
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Table III. Solution values for an example MSMIP instance of size A under various

combinations of discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 25,255.4 25,236.5 0.07% 0.26%

2% 100 21,926.9 21,898.8 0.13% 0.62%

2% 50 16,276.4 16,239.8 0.22% 0.86%

2% 20 9,061.3 9,031.1 0.33% 0.95%

2% 10 5,472.3 5,444.3 0.51% 1.42%

2% 5 3,442.5 3,413.8 0.84% 1.46%

5% infinity 9,345.4 9,328.1 0.19% 0.87%

5% 100 9,276.7 9,258.0 0.20% 0.95%

5% 50 8,649.2 8,631.3 0.21% 1.14%

5% 20 6,254.3 6,232.8 0.34% 1.16%

5% 10 4,246.1 4,222.0 0.57% 1.16%

5% 5 2,846.1 2,828.0 0.64% 1.18%

10% infinity 4,085.9 4,075.3 0.26% 1.02%

10% 100 4,083.2 4,072.0 0.27% 1.08%

10% 50 4,099.7 4,078.9 0.51% 1.50%

10% 20 3,633.3 3,602.8 0.84% 1.79%

10% 10 2,857.7 2,832.7 0.88% 1.85%

10% 5 2,086.4 2,067.9 0.89% 1.88%

20% infinity 2,685.4 2,661.1 0.90% 2.12%

20% 100 2,652.9 2,627.4 0.96% 2.17%

20% 50 2,562.2 2,537.3 0.97% 2.21%

20% 20 2,513.8 2,484.0 1.19% 2.70%

20% 10 1,481.0 1,462.9 1.22% 2.74%

20% 5 1,457.2 1,438.7 1.27% 2.78%

50% infinity 273.4 267.8 2.05% 4.04%

50% 100 270.0 264.4 2.07% 4.15%

50% 50 266.5 260.9 2.11% 4.18%

50% 20 265.9 260.1 2.18% 4.70%

50% 10 265.2 259.3 2.20% 4.91%

50% 5 246.8 241.3 2.22% 4.99%
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Table IV. Solution times for an example MSMIP instance of size A under various

combinations of discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 64.10 0.49 0.77% 1.07

2% 100 58.91 0.48 0.82% 1.34

2% 50 58.03 0.51 0.88% 1.04

2% 20 24.32 0.44 1.81% 1.38

2% 10 21.07 0.46 2.19% 1.55

2% 5 9.51 0.50 5.23% 1.50

5% infinity 31.33 0.59 1.87% 2.11

5% 100 54.01 0.58 1.07% 2.56

5% 50 56.75 0.54 0.95% 2.00

5% 20 21.87 0.56 2.57% 2.54

5% 10 9.34 0.53 5.68% 2.42

5% 5 8.72 0.54 6.24% 2.47

10% infinity 10.67 0.66 6.14% 2.22

10% 100 9.35 0.62 6.63% 1.96

10% 50 17.08 0.66 3.84% 1.98

10% 20 46.00 0.67 1.46% 2.32

10% 10 34.34 0.64 1.87% 1.96

10% 5 8.38 0.63 7.48% 1.93

20% infinity 64.80 0.61 0.95% 1.77

20% 100 59.02 0.66 1.11% 1.28

20% 50 42.70 0.68 1.58% 1.10

20% 20 8.85 0.66 7.43% 1.57

20% 10 8.05 0.65 8.10% 1.74

20% 5 12.76 0.64 5.02% 1.35

50% infinity 39.82 0.76 1.91% 1.21

50% 100 36.04 0.76 2.12% 1.32

50% 50 43.30 0.76 1.76% 0.93

50% 20 38.89 0.76 1.95% 0.96

50% 10 41.59 0.74 1.78% 0.98

50% 5 13.36 0.77 5.80% 0.93
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Table V. Solution values for an example MSMIP instance of size B under various

combinations of discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

DEM profit at
one hour runtime

($ 1,000)
Heuristic solution
profit ($ 1,000)

Improvement
over DEM

Bound on
optimality gap

2% infinity 34,776.9 36,437.5 4.6% 0.8%

2% 100 30,343.2 31,635.8 4.1% 0.9%

2% 50 22,456.9 23,537.3 4.6% 1.1%

2% 20 12,448.9 13,013.2 4.3% 1.2%

2% 10 7,557.0 7,920.9 4.6% 1.3%

2% 5 4,748.2 4,951.5 4.1% 1.3%

5% infinity 12,835.0 13,527.5 5.1% 1.0%

5% 100 12,726.4 13,394.0 5.0% 1.0%

5% 50 11,947.5 12,489.0 4.3% 1.1%

5% 20 8,630.8 9,005.7 4.2% 1.7%

5% 10 5,858.5 6,161.5 4.9% 1.7%

5% 5 3,901.6 4,114.7 5.2% 1.8%

10% infinity 5,832.0 5,969.5 2.3% 1.5%

10% 100 5,811.4 5,967.5 2.6% 1.9%

10% 50 5,695.5 5,861.2 2.8% 1.9%

10% 20 5,125.3 5,232.4 2.0% 2.1%

10% 10 4,032.4 4,122.1 2.2% 2.2%

10% 5 2,890.4 2,976.7 2.9% 2.2%

20% infinity 3,713.7 3,902.2 4.8% 2.5%

20% 100 3,629.8 3,795.5 4.4% 2.6%

20% 50 3,564.2 3,738.8 4.7% 2.7%

20% 20 3,403.8 3,579.4 4.9% 2.7%

20% 10 2,050.4 2,136.7 4.0% 2.8%

20% 5 1,927.7 2,020.1 4.6% 2.8%

50% infinity 488.6 494.2 1.1% 3.0%

50% 100 479.1 487.7 1.8% 3.1%

50% 50 471.6 477.8 1.3% 3.2%

50% 20 458.9 467.3 1.8% 3.2%

50% 10 464.0 464.5 0.1% 3.3%

50% 5 455.1 460.2 1.1% 3.6%
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Table VI. Solution times for an example MSMIP instance of size B under various

combinations of discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
DEM solution
time (minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/DEM

Solution time
for bound on
gap (minutes)

2% infinity 60.0 11.2 19% 50.1

2% 100 60.1 13.9 23% 59.4

2% 50 60.1 11.1 18% 50.1

2% 20 60.0 10.5 18% 55.0

2% 10 60.0 13.3 22% 56.8

2% 5 60.1 11.0 18% 55.8

5% infinity 60.1 12.9 21% 69.6

5% 100 60.0 9.7 16% 75.8

5% 50 60.0 11.3 19% 67.6

5% 20 60.0 11.4 19% 67.9

5% 10 60.0 13.2 22% 71.2

5% 5 60.0 10.4 17% 69.8

10% infinity 60.0 15.4 26% 50.5

10% 100 60.1 15.9 26% 58.7

10% 50 60.1 15.8 26% 56.9

10% 20 60.0 14.9 25% 55.7

10% 10 60.1 16.1 27% 58.2

10% 5 60.1 14.1 23% 52.1

20% infinity 60.1 19.9 33% 76.5

20% 100 60.1 22.0 37% 74.7

20% 50 60.0 21.0 35% 78.3

20% 20 60.0 19.6 33% 73.2

20% 10 60.0 19.2 32% 73.8

20% 5 60.0 18.7 31% 74.0

50% infinity 60.0 11.4 19% 42.9

50% 100 60.0 10.2 17% 43.3

50% 50 60.1 11.4 19% 43.2

50% 20 60.1 13.0 22% 42.2

50% 10 60.0 12.9 21% 47.4

50% 5 60.1 11.7 20% 47.1
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Table VII. Solution values for an example MSMIP instance of size C under various

combinations of discount rates and EoH approximations

Discount rate

End-of-horizon
approximation

(years)

DEM profit at
two hours runtime

($ 1,000)
Heuristic solution
profit ($ 1,000)

Improvement over
DEM

2% infinity 271,662.0 289,398.7 6.1%

2% 100 225,135.4 251,049.6 10.3%

2% 50 161,838.8 186,441.3 13.2%

2% 20 94,493.9 103,322.4 8.5%

2% 10 54,146.3 62,643.1 13.6%

2% 5 35,144.4 39,104.8 10.1%

5% infinity 92,875.0 107,150.2 13.3%

5% 100 97,106.2 106,337.0 8.7%

5% 50 91,759.7 98,965.2 7.3%

5% 20 65,429.3 71,320.5 8.3%

5% 10 42,203.3 48,459.4 12.9%

5% 5 28,894.0 32,019.0 9.8%

10% infinity 42,569.4 47,031.5 9.5%

10% 100 41,378.4 46,911.5 11.8%

10% 50 41,501.8 46,633.2 11.0%

10% 20 36,740.3 41,422.0 11.3%

10% 10 27,627.2 32,220.7 14.3%

10% 5 20,552.3 22,901.6 10.3%

20% infinity 27,572.0 30,694.3 10.2%

20% 100 26,645.0 30,648.8 13.1%

20% 50 25,965.2 29,010.4 10.5%

20% 20 24,687.9 28,158.8 12.3%

20% 10 14,384.6 16,417.9 12.4%

20% 5 13,736.4 15,500.5 11.4%

50% infinity 2,924.0 3,163.5 7.6%

50% 100 2,915.9 3,157.1 7.6%

50% 50 2,816.2 3,052.9 7.8%

50% 20 2,767.2 2,978.1 7.1%

50% 10 2,657.6 2,879.3 7.7%

50% 5 2,483.3 2,672.7 7.1%
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Table VIII. Solution times for an example MSMIP instance of size C under various

combinations of discount rates and EoH approximations
Discount

rate
End-of-horizon

approximation (years)
DEM solution
time (minutes)

Heuristic solution
time (minutes)

Solution time ratio:
heuristic/DEM

2% infinity 120.1 59.2 49%

2% 100 120.1 53.8 45%

2% 50 120.0 50.9 42%

2% 20 120.1 50.1 42%

2% 10 120.1 53.6 45%

2% 5 120.0 58.9 49%

5% infinity 120.1 46.7 39%

5% 100 120.1 50.1 42%

5% 50 120.0 52.5 44%

5% 20 120.1 54.8 46%

5% 10 120.1 51.3 43%

5% 5 120.1 55.3 46%

10% infinity 120.1 61.3 51%

10% 100 120.0 59.2 49%

10% 50 120.1 55.9 47%

10% 20 120.0 55.3 46%

10% 10 120.1 56.4 47%

10% 5 120.0 60.8 51%

20% infinity 120.1 73.6 61%

20% 100 120.0 68.1 57%

20% 50 120.0 65.1 54%

20% 20 120.0 63.5 53%

20% 10 120.0 68.5 57%

20% 5 120.0 73.7 61%

50% infinity 120.1 58.3 49%

50% 100 120.0 51.5 43%

50% 50 120.0 57.9 48%

50% 20 120.0 59.4 50%

50% 10 120.0 61.0 51%

50% 5 120.1 55.0 46%
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The results of the experiments exhibit the following features:

• For problem size A, the optimality gap never exceeds 4% and the bound on

this gap never exceeds 6%. For problems sizes B and C, the solution of the

DEM was halted after an hour or two hours, respectively, and the optimal

solution was not achieved. Regardless, the EoH solution was compared to the

best solution achieved by the EoH for the instances of problem sizes B and

C. The solution for the EoH decomposition outperformed that of the DEM

model in all these instances. The improvement over the DEM solution varied

between 0.1% and 5.7% for problem size B and between 6.1% and 18.5% for

problem size C.

• Both the optimality gap and the bound on this gap are more sensitive to

the discount rate than they are to the approximation of the infinite planning

horizon. Consistent with the spirit of proposition 1 (section 3), the lower the

discount rate, the smaller the optimality gap and its bound become. Also,

the longer the approximation of the infinite planning horizon, the smaller the

optimality gap and its bound become.

• Solution time for the EoH decomposition is much shorter than that of the

DEM. Table IV shows for an example instance of problem size A for which

the solution time for the EoH decomposition is at most 8.01% of that of the

DEM. The EoH decomposition also outperformed the DEM in solution time

for problem sizes B and C (where the optimization of the DEM was halted

after an hour or two hours, respectively). Table VI shows that the maximum

EoH runtime was 37% of that of the DEM for an instance of size B. Similarly,

for an example instance of problem size C, table VIII shows that the maximum

EoH runtime was 61% of that of the DEM (the improvement over the DEM
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solution value was 10%).

• Solution time for the EoH decomposition seems sensitive to the discount rate

but insensitive to the approximation of the infinite horizon. In contrast, the

solution time for the DEM seems sensitive to both factors and exhibits consid-

erable variability. For example, depending on the combination of discount rate

and the approximation for the infinite planning horizon, table IV shows that

solution times for the DEM vary between 8.05 to 64.10 minutes. The solution

times exhibit variability for the SMIP that provides a bound on the optimality

gap. Depending on the combination of discount rate and approximation of the

infinite last period, table IV shows that solution times vary between 0.93 to

2.56 minutes.

These observations lead to the following conclusions:

• The optimality gap vanishes as the discount rate converges to 0% and the last

periods’ length approaches infinity.

• The size of the optimality gap is acceptable for practical applications even

when the discount rate is as high as 50% and the approximation for the infinite

last period is as short as 5 years.

• The EoH decomposition significantly cuts the solution time, and this compu-

tational efficiency increases along with the problem size.

• The EoH decomposition’s induced solution efficiency allows solving problems

of larger sizes, which enables modeling SCND problems more realistically than

was possible with previous models.
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5.2. Computational experiments for SMIPs

The results of one instance of each problem size are presented in this section. Appen-

dices D–F present the results of the remaining instances, an appendix per problem

size.

Tables IX and X summarize the results for an instance of problem size A. Tables

XI and XII summarize the results for an instance of problem size B. Tables XIII and

XIV summarize the results for an instance of problem size C. All problem sizes were

allowed unlimited run time under both the DEM and the EoH decomposition.

The results of the experiments exhibit the following features:

• The optimality gap never exceeds 7% and the bound on that gap never exceeds

13%. Both the optimality gap and the bound on this gap are more sensitive to

the discount rate than they are to the approximation of the infinite planning

horizon. Consistent with the spirit of proposition 1 (section 3), the lower the

discount rate, the smaller the optimality gap and its bound become. Also,

the longer the approximation of the infinite planning horizon, the smaller the

optimality gap and its bound become.

• Solution time for the EoH decomposition is shorter than that of the DEM.

Table X shows for an example instance of problem size A for which the solution

time for the EoH decomposition is at most 12% of that of the DEM. Table XII

shows that the maximum EoH runtime was 39% of that of the DEM for an

instance of size B. Similarly, for an example instance of problem size C, table

XIV shows that the maximum EoH runtime was 38% of that of the DEM.

These observations lead to the following conclusions:

• The optimality gap vanishes as the discount rate converges to 0% and the last
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Table IX. Solution values for an example SMIP instance of size A under various

combinations of discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 23,254.2 23,254.2 0.0% 0.0%

2% 100 20,164.3 20,164.3 0.0% 0.0%

2% 50 15,119.7 15,119.7 0.0% 0.0%

2% 20 8,331.5 8,331.5 0.0% 0.0%

2% 10 4,919.1 4,919.1 0.0% 0.0%

2% 5 3,124.9 3,103.8 0.7% 0.7%

5% infinity 8,388.7 8,388.7 0.0% 0.0%

5% 100 8,349.1 8,349.1 0.0% 0.0%

5% 50 7,989.3 7,989.3 0.0% 0.0%

5% 20 5,677.6 5,677.6 0.0% 0.0%

5% 10 3,816.3 3,795.8 0.5% 0.5%

5% 5 2,644.3 2,626.7 0.7% 1.8%

10% infinity 3,670.0 3,670.0 0.0% 0.0%

10% 100 3,669.4 3,669.4 0.0% 0.0%

10% 50 3,389.7 3,389.7 0.0% 0.0%

10% 20 3,348.7 3,348.7 0.0% 0.0%

10% 10 2,579.5 2,546.9 1.3% 1.3%

10% 5 1,864.4 1,836.0 1.5% 2.6%

20% infinity 2,457.2 2,457.2 0.0% 0.0%

20% 100 2,394.6 2,394.6 0.0% 0.0%

20% 50 2,339.0 2,339.0 0.0% 0.0%

20% 20 2,284.5 2,235.0 2.2% 2.2%

20% 10 1,349.5 1,313.1 2.7% 3.7%

20% 5 1,338.2 1,297.1 3.1% 4.8%

50% infinity 252.6 252.6 0.0% 0.0%

50% 100 248.4 244.5 1.6% 2.1%

50% 50 244.9 239.6 2.2% 3.0%

50% 20 241.9 234.6 3.0% 3.6%

50% 10 239.7 231.2 3.6% 4.7%

50% 5 224.6 215.7 4.0% 6.3%
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Table X. Solution times for an example SMIP instance of size A under various com-

binations of discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 9.35 0.41 4.4% 2.45

2% 100 9.24 0.49 5.3% 1.00

2% 50 10.19 0.42 4.1% 2.36

2% 20 9.22 0.42 4.6% 2.85

2% 10 9.11 0.49 5.4% 3.26

2% 5 8.02 0.50 6.3% 2.73

5% infinity 6.98 0.49 7.0% 2.52

5% 100 10.20 0.43 4.2% 1.46

5% 50 9.65 0.46 4.8% 1.82

5% 20 7.02 0.41 5.8% 1.42

5% 10 7.10 0.49 6.9% 1.93

5% 5 7.21 0.32 4.4% 1.10

10% infinity 7.04 0.82 11.6% 1.11

10% 100 7.09 0.80 11.3% 1.50

10% 50 10.27 0.98 9.5% 2.00

10% 20 9.45 0.79 8.4% 1.58

10% 10 7.49 0.79 10.5% 2.52

10% 5 6.91 0.72 10.4% 1.45

20% infinity 8.77 0.66 7.6% 0.99

20% 100 7.50 0.68 9.1% 2.13

20% 50 8.55 0.67 7.8% 1.67

20% 20 8.12 0.70 8.6% 2.92

20% 10 8.37 0.65 7.8% 2.10

20% 5 9.10 0.63 6.9% 2.63

50% infinity 9.69 0.95 9.8% 1.48

50% 100 9.21 0.81 8.8% 3.22

50% 50 9.15 0.83 9.0% 1.49

50% 20 8.59 0.76 8.8% 3.04

50% 10 7.65 0.60 7.9% 2.81

50% 5 7.62 0.59 7.7% 0.61
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Table XI. Solution values for an example SMIP instance of size B under various

combinations of discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 32,337.1 32,337.1 0.00% 0.00%

2% 100 28,010.9 28,010.9 0.00% 0.00%

2% 50 20,369.3 20,369.3 0.00% 0.06%

2% 20 11,090.5 11,090.5 0.00% 0.37%

2% 10 7,003.7 6,998.7 0.07% 0.61%

2% 5 4,345.3 4,286.7 1.35% 0.76%

5% infinity 11,655.2 11,655.2 0.00% 0.06%

5% 100 11,619.3 11,619.3 0.00% 0.22%

5% 50 10,779.9 10,779.9 0.00% 0.30%

5% 20 7,768.4 7,768.4 0.00% 0.60%

5% 10 5,251.2 5,240.7 0.20% 1.50%

5% 5 3,607.7 3,539.2 1.90% 1.70%

10% infinity 5,372.6 5,372.6 0.00% 0.33%

10% 100 5,294.0 5,294.0 0.00% 0.50%

10% 50 5,185.1 5,185.1 0.00% 0.90%

10% 20 4,503.0 4,503.0 0.00% 1.10%

10% 10 3,665.9 3,634.2 0.87% 2.10%

10% 5 2,633.0 2,580.7 1.99% 2.20%

20% infinity 3,327.4 3,327.4 0.00% 0.51%

20% 100 3,221.8 3,221.8 0.00% 0.50%

20% 50 3,190.0 3,190.0 0.00% 1.03%

20% 20 3,148.7 3,099.3 1.57% 1.40%

20% 10 1,827.5 1,790.7 2.02% 2.10%

20% 5 1,702.6 1,633.8 4.04% 2.46%

50% infinity 436.5 436.5 0.00% 0.80%

50% 100 419.9 419.9 0.00% 0.90%

50% 50 417.8 417.7 0.03% 1.30%

50% 20 415.9 407.4 2.04% 2.01%

50% 10 412.9 399.6 3.22% 4.39%

50% 5 395.2 371.0 6.12% 10.01%
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Table XII. Solution times for an example SMIP instance of size B under various

combinations of discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 26.4 1.80 6.8% 11.0

2% 100 31.4 2.79 26.7% 12.3

2% 50 36.8 2.61 21.3% 11.5

2% 20 34.9 1.53 13.2% 9.2

2% 10 34.7 3.32 28.8% 13.7

2% 5 31.4 1.93 18.4% 10.7

5% infinity 20.7 2.68 38.8% 8.6

5% 100 30.5 1.62 15.9% 7.0

5% 50 27.1 1.77 19.6% 8.3

5% 20 29.5 2.47 25.1% 9.7

5% 10 40.1 2.32 17.3% 10.5

5% 5 23.4 2.34 30.0% 9.4

10% infinity 30.4 3.18 31.4% 12.1

10% 100 35.9 1.71 14.3% 11.1

10% 50 37.0 2.11 17.1% 9.3

10% 20 22.3 2.89 38.9% 9.3

10% 10 23.4 3.30 42.3% 10.5

10% 5 40.1 1.64 12.2% 11.0

20% infinity 37.7 2.72 21.7% 11.5

20% 100 31.1 2.81 27.1% 10.5

20% 50 37.2 3.12 25.2% 12.0

20% 20 41.0 1.84 13.5% 11.0

20% 10 29.2 2.44 25.0% 11.7

20% 5 39.0 1.51 11.6% 8.9

50% infinity 26.1 1.69 19.4% 9.0

50% 100 38.9 1.55 12.0% 12.0

50% 50 26.1 2.06 23.7% 10.7

50% 20 28.0 2.88 30.8% 9.7

50% 10 27.2 2.26 25.0% 10.6

50% 5 30.1 1.88 18.7% 10.5
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Table XIII. Solution values for an example SMIP instance of size C under various

combinations of discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 223,465.4 223,465.4 0.0% 0.0%

2% 100 185,440.5 185,255.1 0.1% 0.1%

2% 50 134,097.8 133,887.2 0.2% 0.2%

2% 20 86,575.9 86,304.9 0.3% 1.9%

2% 10 45,008.0 43,812.1 2.7% 3.2%

2% 5 30,558.3 29,651.3 3.0% 3.6%

5% infinity 94,840.2 94,870.1 0.0% 0.0%

5% 100 88,509.8 88,216.0 0.3% 0.6%

5% 50 87,882.3 87,038.0 1.0% 1.4%

5% 20 62,643.4 61,352.7 2.1% 2.7%

5% 10 35,163.3 34,147.4 2.9% 3.0%

5% 5 25,123.6 24,327.8 3.2% 3.7%

10% infinity 41,039.6 40,987.7 0.1% 0.1%

10% 100 40,770.3 40,546.6 0.5% 0.6%

10% 50 38,289.8 37,573.9 1.9% 2.2%

10% 20 31,874.4 31,055.0 2.6% 2.8%

10% 10 26,791.4 25,955.4 3.1% 3.1%

10% 5 19,520.5 18,786.4 3.8% 3.8%

20% infinity 24,664.4 24,467.4 0.8% 1.6%

20% 100 22,714.2 22,295.2 1.8% 2.4%

20% 50 23,079.5 22,494.8 2.5% 2.5%

20% 20 21,595.3 20,746.8 3.9% 4.6%

20% 10 12,649.9 12,139.7 4.0% 4.8%

20% 5 11,399.7 10,937.5 4.1% 4.9%

50% infinity 2,761.4 2,714.9 1.7% 2.2%

50% 100 2,641.6 2,587.1 2.1% 2.8%

50% 50 2,533.1 2,458.9 2.9% 3.1%

50% 20 2,408.8 2,312.4 4.0% 5.3%

50% 10 2,228.1 2,136.7 4.1% 5.5%

50% 5 2,198.8 2,093.3 4.8% 6.9%
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Table XIV. Solution times for an example SMIP instance of size C under various

combinations of discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 62.2 16.3 26% 36.0

2% 100 87.7 11.2 13% 87.4

2% 50 62.7 16.1 26% 40.3

2% 20 77.3 12.7 16% 47.7

2% 10 73.9 18.0 24% 70.3

2% 5 63.8 20.7 32% 47.0

5% infinity 82.5 18.4 22% 39.9

5% 100 60.9 18.9 31% 45.0

5% 50 72.3 13.2 18% 47.7

5% 20 64.0 11.5 18% 54.2

5% 10 75.1 12.1 16% 29.8

5% 5 51.0 19.2 38% 50.0

10% infinity 88.8 20.0 23% 44.3

10% 100 98.8 12.3 12% 86.0

10% 50 56.2 11.8 21% 42.0

10% 20 60.5 17.0 28% 40.4

10% 10 66.7 14.6 22% 51.3

10% 5 66.4 10.4 16% 55.2

20% infinity 62.5 10.4 17% 54.3

20% 100 56.1 18.1 32% 40.4

20% 50 65.2 14.7 23% 62.9

20% 20 53.3 11.7 22% 31.7

20% 10 69.6 18.6 27% 60.8

20% 5 75.3 16.4 22% 70.5

50% infinity 74.5 19.9 27% 61.2

50% 100 77.6 13.1 17% 37.0

50% 50 81.7 11.7 14% 76.8

50% 20 72.4 18.5 26% 56.9

50% 10 68.2 16.9 25% 51.3

50% 5 77.7 19.2 25% 74.0
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periods’ length approaches infinity.

• The size of the optimality gap is acceptable for practical applications even

when the discount rate is as high as 20% and the approximation for the infinite

last period is as short as 5 years.

• The EoH decomposition significantly reduces the solution time.

• The EoH decomposition’s induced solution efficiency allows solving problems

of larger sizes, which enables modeling SCND problems more realistically than

was possible with previous models.
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CHAPTER VI

TWO-STAGE SCND DECOMPOSITION AND HEURISTIC

This chapter presents a practical solution approach for the supply chain network

design (SCND) problem when modeled as a two-stage stochastic mixed-integer pro-

gram (SMIP). The solution approach for this SMIP is developed as a stepping stone

towards solving the multistage stochastic mixed-integer program Pc, (4.35)–(4.37).

The developed solution approach is a type-I column generation procedure, which

has proved successful in solving NP-hard problems (Wilhelm, 2001). It rests on

applying nodal decomposition on a SMIP, as section 2 of this chapter explains. This

decomposition results in a conveniently structured master problem that links T − 2

otherwise independent subproblems.

These subproblems are still NP-hard SMIPs, but their relatively smaller sizes

makes them easier to solve. The L-shaped method particularly suits solving these

subproblems, as section 2.1 elaborates. Furthermore, its resulting iterative solutions

provide the master problem’s columns, as shown in section 2.2.

Section 3 reformulates the master problem into a shortest path problem (SPP),

which enjoys the integrality property. The reformulated master problem is restricted

in the sense that it includes only a subset of all feasible columns. Thus, the heuristic

developed in section 4 does not necessarily produce an optimal solution. However,

as section 5 shows, the results of the computational experiments indicate that this

heuristic’s optimality gap is below 6%. The heuristic’s solution time is always less

than 93% of that of the deterministic equivalent model (DEM), which results in

an optimal solution. The computational efficiency of this heuristic enables solving

larger problems than current technology allows, which benefits practical business

application.
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1. Two-stage stochastic program

Chapter IV developed Pc, a DEM of an MSMIP that models the SCND problem.

As section 5.1 explained, the SMIP special case of this MSMIP model results from

replacing node indices by their time indices counterparts for all strategic decision

variables. As such, the resulting SCND decisions still evolve throughout the planning

horizon but uncertainty unfolds only after the design decisions of all time periods

are implemented. Thereby, SMIP forfeits the benefits of applying the information

gained by the gradual unfolding of uncertainty in making design decisions.

Chapter V developed an end-of-horizon (EoH) decomposition that pegs the

configuration of the last period for which design decisions exist to the optimal con-

figuration for that period. This reduces the size of a SMIP and thus renders it easier

to solve.

The following SMIP, (6.1)–(6.4), results from applying the EoH decomposition

to the SMIP special case of Pc. The objective function (6.1) sums the costs asso-

ciated with design decisions (xt, yt) and production and distribution decisions (zm).

The costs of production and distribution decisions are weighted by combining the

probability of all scenarios to which they apply (which is equivalent to their respec-

tive nodal probability in the MSMIP scenario-tree, φm), as explained in section 1.4 of

Chapter IV. Because uncertainty unfolds after all design decisions are implemented,

design decisions are associated with a probability of 1.0.

κSMIP = min
T−1∑

t=1


ftxt + gtyt +

∑

m∈Nt+1

φmhmzm


 , (6.1)

subject to

Axt + B1yt + B2yt−1 = b ∀ t = 1, . . . , T − 1, (6.2)

yt ∈ Yt ∀t = 1, . . . , T − 2, (6.3)
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Dzm + B3ytm−1 = dm ∀m = 2, . . . , NB. (6.4)

Constraint set (6.2) compactly represents the stage coupling constraints (4.4)–

(4.15). Constraints belonging to this set establish the interdependency among suc-

cessive time periods. When t = 1, yt−1 = y0, which is the inherited initial configura-

tion that could be null. When t = T−1, yt = yT−1, which is the target configuration

imposed by the EoH decomposition; this model assigns gT−1 = (0, . . . ,0) to simplify

the expression of the objective function.

Constraint sets (6.3) and (6.4) represent the component coupling constraints.

Constraint set (6.3) compactly represents constraints (4.16)–(4.18). Each constraint

of set (6.3) describes the configuration of the supply chain at a given time period.

Constraint set (6.4) compactly represents constraints (4.19)–(4.29). Each constraint

of this set describes the production and distribution decisions, zm, under a unique

combination of a time period, tm = 2, . . . , T − 1, and a realization of the demand

scenarios. The capacity of the existing supply chain configuration, ytm−1, and the

customers’ demand dm, restrict these production and distribution decisions. z1

and zT are not included in (6.4) since they depend only on the inherited initial

configuration and the fixed target configuration, respectively.

2. Model decomposition

The block-angular structure of the SMIP (6.1)–(6.4) allows for decomposing the

model by time period. Relaxing the stage coupling constraint set (6.2) results into

T − 2 independent subproblems, each consisting of a single time period. A master

problem re-establishes the interdependence among these subproblems.
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2.1. Single-period subproblems

The subproblems result from relaxing constraint (6.2) and omitting
∑T−1

t=1 ftxt from

the objective function (6.1). Each subproblem seeks the best SCND for a single time

period. An arbitrary nodal subproblem, Pt, is defined by (6.5).

κt = min



gtyt +

∑

m∈Nt+1

φmhmzm | yt ∈ Yt,Dzm + B3yt = dm



 . (6.5)

Pt is a SMIP in which the first stage, (6.6), selects the operational resources

(yt) at time t. Given yt and ω ∈ Ω, the recourse stage, (6.7), selects the produc-

tion/distribution decisions (zm) at time t+ 1.

κt = min {gtyt +Q(yt) | yt ∈ Yt} , (6.6)

Q(yt) = EωQ(yt, ω) = min {
∑

m∈Nt+1

φm (hmzm) | Dzm + B3yt = dm}. (6.7)

Pt is amenable to solution by the L-shaped method (Van Slyke and Wets, 1969)

because it exhibits the following properties:

• Fixed recourse-matrix; i.e., D is scenario independent, as previously defined in

section 3.2 of Chapter IV.

• Relatively complete-recourse; i.e., for each yt ∈ Yt, there exists a vector zm for

each m ∈ Nt+1 that satisfies (6.4).

• Binary first-stage variables (yt) and continuous recourse variables (zm).

MirHassani et al. (2000) and Santoso et al. (2005) use the L-shaped method to solve

similar SMIPs of sizes comparable to those of the single-period subproblems.
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2.2. Master problem

The master problem tracks the evolution of the network’s configuration throughout

the planning horizon and thereby accounts for network reconfiguration costs. It

results from expressing yt in terms of the members of its feasible solution set as

described by (6.8), where {yv
t |v ∈ Vt} is the set of these solution points, and Vt is

its index set.

yt =
∑

v∈Vt

λv
t y

v
t ,

∑

v∈Vt

λv
t = 1, λv

t ∈ {0, 1} ∀v ∈ Vt. (6.8)

∑
v∈Vt

κv
tλ

v
t substitutes for the contribution of yt and zm,m ∈ Nt+1, in the objective

function. Relation (6.9) defines the value of κv
t , t = 1, . . . , T − 2. κv

T−1 is the value

of the fixed target configuration, yv
T−1; both κv

T−1 and yv
T−1 are given by the EoH

decomposition.

κv
t = gty

v
t +

∑

m∈Nt+1

φmhmzv
m ∀ t = 1, . . . , T − 2. (6.9)

The resulting master problem, PM , is expressed as follows:

κ = min
T−1∑

t=1

ftxt +
T−2∑

t=1

∑

v∈Vt

κv
tλ

v
t , (6.10)

subject to

Ax1 +
∑

v∈V1

B1y
v
1λ

v
1 = −B2y0, (6.11)

Axt +
∑

v∈Vt

B1y
v
t λ

v
t +

∑

u∈Vt−1

B2y
u
t−1λ

u
t−1 = b ∀ t = 2, . . . , T − 2, (6.12)

AxT−1 +
∑

u∈VT−2

B2y
u
T−2λ

u
T−2 = −B1yT−1, (6.13)

∑

v∈Vt

λv
t = 1 ∀ t = 1, . . . , T − 2, (6.14)

λv
t ∈ {0, 1} ∀ v ∈ Vt, t = 1, . . . , T − 2. (6.15)
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In this mathematical program, constraints (6.14) and (6.15) dictate selecting

exactly one configuration per time period. Constraint sets (6.11)–(6.13) enforce the

reconfiguration actions necessary to transition between the configurations of two

successive time periods. The objective function accounts for the reconfiguration

costs and the costs associated with the selected configurations. The mathematical

structure of PM is amenable to reformulation into a shortest path problem, which is

the focus of the following section.

3. Shortest path reformulation

The shortest path problem (SPP) exhibits the integrality property and is amenable

to efficient solution algorithms. To take advantage of these properties, the mas-

ter problem is reformulated into a SPP. Section 3.1 explains the logic behind this

reformulation and section 3.2 discusses the ensuing mathematical model.

3.1. Correspondence between the master problem and the SPP

PM is mainly concerned with selecting a configuration for each time period. In

contrast, its SPP reformulation focuses on the reconfiguration actions required to

transition between the successive configurations that PM selects. The following

paragraphs use the graph depicted by Fig. 4 to elaborate on the relationship between

PM and its SPP reformulation.

Fig. 4 depicts an example problem involving three time periods. Each such

period is depicted by an ellipse. A vertex v ∈ Vt drawn inside an ellipse represents

a possible feasible solution {yv
t | t = 1, . . . , T − 1} for this time period. Each such

feasible solution, yv
t , describes a possible configuration, v, for node n. Due to the

strong association between a feasible solution, the supply chain network configura-
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Fig. 4.: Partial graphical representation of the shortest path reformulation, PSPP .

tion it prescribes, and the vertex that represents this solution in the hypergraph, the

three terms are used interchangeably hereafter. The initial and target configurations

of the supply chain are represented by vertices 0 and T − 1, respectively. Their dis-

tinct shape helps to distinguish them from the other vertices that represent decision

variables in PM .

The reconfiguration action required to transition between every two successive

configurations is represented by an arc joining their corresponding vertices. There-

fore, the total number of arcs connecting any two successive time periods, t− 1 and

t, is equal to |Vt−1| × |Vt|. Fig. 4 depicts only a subset of these arcs since depicting

all of them would make it cumbersome.

In PM , constraint (6.14) indicates that a feasible solution must include exactly

one configuration per time period. This is equivalent to selecting exactly one vertex

per time period in Fig. 4. This constraint is satisfied by selecting a set of arcs that

satisfy the following conditions:

• Exactly one arc emanates from each time period t = 0, . . . , T − 2.

• If an arc leading to a vertex v, v /∈ VT−1 is selected, an arc emanating from

this vertex must be selected.

Combined, these two conditions are equivalent to selecting exactly one path con-

necting the root vertex 0 to the target vertex.
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The cost of a path is the sum of the weights of its constituent arcs. To achieve

equivalence between the weights of these arcs and the cost of the reconfiguration ac-

tion they represent, variables x
vt−1→vt

open j , x
vt−1→vt

close j , and x
vt−1→vt

`1,`2,q,j , are defined by (6.16)–

(6.18) for each vt−1 ∈ Vt−1 and vt ∈ Vt.

x
vt−1→vt

open j = max{0, yvt
open j − y

vt−1

open j} ∀ j ∈ J , (6.16)

x
vt−1→vt

close j = max{0,−yvt
close j + y

vt−1

close j} ∀ j ∈ J , (6.17)

x
vt−1→vt

`1 ,`2,q,j = max{0, yvt
`2 ,q,j + y

vt−1

`1,q,j − 1} ∀ `1 6= `2 ∈ Lq, q ∈ Qj, j ∈ J . (6.18)

xi
t groups x

vt−1→vt

open j , x
vt−1→vt

close j , and x
vt−1→vt

`1 ,`2,q,j in a single vector as shown by (6.19).

xi
t =

(
{xvt−1→vt

open j }j∈J , {x
vt−1→vt

close j }j∈J , {x
vt−1→vt

`1,`2,q,j }`1 6=`2∈{0}∪Lj,q∈Qj,j∈J
)
. (6.19)

A weight ci is associated with every arc ai, where i ∈ A and A is the index set

of arcs. Equation (6.20) defines this weight, where κvt
t is the cost associated with

configuration yvt
t and is defined by (6.9), ftx

i
t is the cost to update the supply chain

design from configurations y
vt−1

t−1 to configuration yvt
t .

ci = ftx
i
t + κvt

t . (6.20)

The following equation defines the value of this reconfiguration cost, where f t
open j is

the cost to open a new facility in location j, f t
close j is the cost to close the facility at

site j, and f t
`1,`2 ,q,j is the cost to adjust the capacity level of technology q from level

`1 to level `2.

ftx
i
t =

∑

j∈J

f t
open jx

vt−1→vt

open j +
∑

j∈J

f t
close jx

vt−1→vt

close j +
∑

j∈J

∑

q∈Qj

∑

`∈{0}∪Lq

f t
`1,`2 ,q,jx

vt−1→vt

`1,`2 ,q,j .
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3.2. Reformulated master problem

The master problem is reformulated into a single-source shortest hyperpath problem

(SPP). Problem PSPP seeks the shortest path connecting the vertex representing the

initial configuration (t = 0) and that representing the target configuration (t = T−1)

of the supply chain network. A path, β, consists of |T − 1| arcs; β = (β1, . . . , βH)

where βi is a binary variable indicating whether arc ai, i ∈ A, takes part of the path

(βi = 1) or not (βi = 0), and A = |A|. A shortest path, β∗, is a path with minimum

weight; i.e., cβ∗ ≤ cβj for all possible hyperpaths βj, where c = (c1, . . . , cA).

To ease the mathematical exposition, let A+
v and A−

v be the index sets of

arcs leaving and entering vertex v ∈ V, respectively, where V = ∪T−1
t=1 Vt. Further,

A−
0 = A+

v = ∅ for v ∈ VT−1, where ∅ is the empty set.

The shortest path problem, PSPP , can be expressed by the linear program

(6.21)–(6.24)

κSPP = min
∑

i∈A

ciβi, (6.21)

subject to
∑

i∈A+
v0

βi = 1, (6.22)

∑

i∈A+
v

βi −
∑

i∈A−
v

βi = 0 ∀ v ∈ V, (6.23)

βi ≥ 0 ∀ i ∈ A. (6.24)

The objective function (6.21) minimizes the cost of the selected arcs, κSPP . The

first constraint (6.22) ensures that exactly one unit of flow leaves the root vertex.

Constraint set (6.23) forces a flow leaving the source vertex to eventually reach the

target vertex by ensuring conservation of flow at each time period t = 1, . . . , T − 2.

The nonnegativity constraint set (6.24) suffices to achieve binary variables due to

the integrality property of the SPP.
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4. SMIP heuristic

The developed solution procedure is a type-I column generation procedure, and thus

it consists of two steps:

1. Approximate the solution space of the original problem Pc with a set of feasible

configurations.

2. Use a restricted master problem to evaluate the interdependencies among dif-

ferent time periods and select the best combination of generated configurations,

one configuration per time period.

As such, this procedure does not guarantee an optimal solution. However, the results

of the computational experiments of section 5 reveal satisfactory performance, which

is consistent with the results of type-I column generation procedures for other NP-

hard problems (Wilhelm, 2001).

4.1. Approximating the solution space

The solution space is approximated by applying the L-shaped method on each single-

period subproblem (6.5) for time periods t = 1, . . . , T − 2. The L-shaped method

generates iterative solutions in the process of finding an optimal solution. These

iterative solutions are feasible and thus serve as columns in the restricted master

problem.

The configurations generated by solving a subproblem for a time period t serve

multiple functions:

1. They populate the columns associated with this time period in the restricted

master problem.
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2. They also serve as columns for all other time periods. This results from the

relatively complete recourse property of the subproblems, which ensures that

a configuration generated for one time period is feasible for all other periods.

A prerequisite to using a configuration to populate columns of other periods

is to evaluate the impact of this configuration on the optimal values of the

second stages of these periods. This entails solving one linear program per

demand scenario for each of these periods. Nevertheless, solving these linear

programs is more computationally efficient than re-generating these columns

from scratch, which involves repeatedly solving the same linear programs on

top of a binary first stage problem.

3. They jump start the L-shape procedure for all following subproblems. The

parameters needed to generate the Benders cuts associated with these config-

urations become available through solving these linear programs.

Consequently, as the solution procedure progresses, the required computation effort

declines.

Numerous variants of Benders cuts exist. This heuristic adopts the variant

suggested by Geoffrion and Graves (1974). This variant prevents solving each iter-

ation of the first stage to optimality. Instead, once a feasible solution for the first

stage is found, the procedure immediately moves on to the second stage. The suc-

cessively imposed Benders cuts on the first stage render all previously found first

stage solutions infeasible for future iterations. The procedure terminates when the

successively added Benders cuts render the master problem infeasible. The following

benefits justify the selection of this variant:

• Using this variant preserves the pure-binary nature of the first stage. Other

Benders variants introduce continuous variables in the first stage. The re-
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sulting MIP is less convenient to solve than the original pure-binary problem

(Geoffrion and Graves, 1974).

• Accumulating Benders cuts improves the approximation of the second stage.

The poor approximation of the second stage in the earliest iterations doesn’t

warrant the effort spent to strictly optimize the first stage (Geoffrion and

Graves, 1974).

• The increased number of iteration that this variant might require to converge

benefits this heuristic. The iterative solutions provide the columns for the re-

stricted master problem. The greater the number of restricted master problem

columns, the higher the chance of achieving the (global) optimal solution of

Pc.

4.2. Selecting the best combination of generated configurations

The SPP is constructed as explained in section 3.2. Applying Dijkstra’s algorithm

(Dijkstra, 1959) to the SPP results in the best reconfiguration schedule throughout

the planning horizon. This reconfiguration schedule implies the best configuration

per time period for the supply chain network.

Lucas et al. (2001) and Mitra et al. (2006) solve a comparable SCND problem

using a type-I column generation heuristic but the solution time for their restricted

master problems is in terms of days. The effectiveness of my heuristic relies on the

computational efficiency of Dijkstra’s algorithm, which is enabled by the decompo-

sition discussed in section 2. The following section uses computational experiments

to illustrate this computational efficiency.
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5. Computational experiment

This computational experiment applies this heuristic over three different problem

sizes. Table II (section 5 of Chapter V) summarizes the sizes of these problems,

which are referred to hereafter as size A, size B and size C. Ten instances are

tested per problem size. Each instance is solved three different times to achieve the

following:

• Optimize the DEM using CPLEX 11.0.

• Apply the EoH decomposition, which uses CPLEX 11.0 to optimize its sub-

problems.

• Apply this heuristic, which uses CPLEX 11.0 to solve the nodal subproblems.

All computational experiments were conducted on a quad-core Intel Xeon X5355

processor running at 2.66 GHz with 12 GB RAM. All instances for all problem sizes

were allowed to run to completion. The cost discount rate in all instances was

2% and the planning horizon was considered infinite. All other parameters were

generated as described by Appendix G.

Tables XV and XVI summarize the results for the instances of problem size A.

Tables XVII and XVIII summarize the results for the instances of problem size B.

Tables XIX and XX summarize the results for the instances of problem size C.

The following features can be observed in the results:

• For instances of size A, the heuristic’s solution time ranges from 1.47% to

5.41% of the DEM time (see Table XVI). For instances of size B, the heuristic’s

solution time ranges from 2.54% to 6.47% of the DEM time (see Table XVIII).

For instances of size C, the heuristic’s solution time ranges from 3.91% to

6.82% of the DEM time (see Table XX).
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Table XV. Solution values for SMIP instances for a SCND problem of size A
Instance DEM profit ($ 1,000) Heuristic profit ($ 1,000) Optimality gap

1 23,254.2 23,159.0 0.41%

2 366.3 364.1 0.60%

3 884.2 859.5 2.80%

4 3, 779.8 3, 614.9 4.36%

5 32,291.7 30,984.9 4.05%

6 18,199.6 17,190.3 5.55%

7 111,081.8 109,740.1 1.21%

8 40,776.3 39,426.6 3.31%

9 15,126.2 14,284.0 5.57%

10 26,947.0 25,327.5 6.01%

Table XVI. Solution times for SMIP instances for a SCND problem of size A

Instance
DEM solution time

(minutes)
Heuristic solution time

(minutes)
Solution time ratio:

heuristic/DEM

1 9.35 0.17 1.81%

2 7.77 0.17 2.23%

3 7.32 0.21 2.93%

4 8.82 0.13 1.47%

5 8.89 0.48 5.41%

6 8.71 0.24 2.71%

7 8.82 0.33 3.69%

8 7.68 0.19 2.53%

9 8.37 0.30 3.57%

10 9.44 0.22 2.37%

Table XVII. Solution values for SMIP instances for a SCND problem of size B
Instance DEM profit ($ 1,000) Heuristic profit ($ 1,000) Optimality gap

1 32,337.1 32,337.1 0.00%

2 269.1 269.0 0.05%

3 13,383.5 13,135.4 1.85%

4 94,770.2 93,712.3 1.12%

5 16,156.2 16,156.2 0.00%

6 1, 232.5 1, 210.8 1.76%

7 26,512.7 26,118.5 1.49%

8 230,987.9 228,144.0 1.23%

9 11,277.5 11,075.9 1.79%

10 3, 388.6 3, 388.6 0.00%
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Table XVIII. Solution times for SMIP instances for a SCND problem of size B

Instance
DEM solution time

(minutes)
Heuristic solution time

(minutes)
Solution time ratio:

heuristic/DEM

1 26.4 1.3 4.75%

2 35.4 2.3 6.47%

3 33.1 1.8 5.35%

4 24.2 1.1 4.51%

5 24.4 1.3 5.26%

6 24.7 1.2 4.71%

7 28.3 0.7 2.54%

8 38.5 1.5 3.90%

9 31.2 1.5 4.96%

10 32.1 1.1 3.27%

Table XIX. Solution values for SMIP instances for a SCND problem of size C
Instance DEM profit ($ 1,000) Heuristic profit ($ 1,000) Optimality gap

1 223,465.4 222,514.4 0.43%

2 542,452.6 537,082.3 0.99%

3 7, 594.4 7, 584.6 0.13%

4 42,325.5 41,552.0 1.83%

5 142,094.8 139,484.7 1.84%

6 6, 128.7 6, 049.8 1.29%

7 53,607.7 52,713.5 1.67%

8 419,008.4 414,274.4 1.13%

9 38,527.1 37,839.9 1.78%

10 596,366.4 588,061.4 1.39%

Table XX. Solution times for SMIP instances for a SCND problem of size C

Instance
DEM solution time

(minutes)
Heuristic solution time

(minutes)
Solution time ratio:

heuristic/DEM

1 62.2 4.0 6.43%

2 96.7 4.2 4.34%

3 74.9 4.7 6.34%

4 98.3 6.0 6.11%

5 71.9 4.9 6.82%

6 94.1 4.7 4.99%

7 108.8 4.5 4.13%

8 63.5 2.7 4.25%

9 98.0 4.1 4.22%

10 104.9 4.1 3.91%
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• For instances of size A, the optimality gap ranges from 0.41% to 6.01% (see

Table XV). For instances of size B, the optimality gap ranges from 0.00% to

1.85% (see Table XVII). For instances of size C, the optimality gap ranges

from 0.13% to 1.84% (see Table XIX).

These observations lead to the following conclusions:

• The optimality gap is acceptable for practical applications.

• The heuristic significantly reduces the solution time.

• The heuristic’s computational efficiency allows solving problems of larger sizes

than is possible using the direct application of MIP tools over their DEMs.

The heuristic’s performance for SCND problems modeled as SMIPs encourages

extending it to tackle its MSMIPs counterparts, which is the focus of the following

chapter.
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CHAPTER VII

MULTISTAGE SCND DECOMPOSITION AND HEURISTIC

Chapter IV developed Pc, a deterministic equivalent model (DEM) of a multistage

stochastic mixed-integer program (MSMIP) that models the supply chain network

design (SCND) problem. To reduce the size of this MSMIP, Chapter V developed

an EoH decomposition that pegs the configuration of the last period for which

design decisions exist to the optimal configuration for that period. The MSMIP

represented by (5.2)–(5.5) results from applying this EoH decomposition to Pc. This

chapter develops a practical solution method for this MSMIP. This solution method

generalizes the solution procedure developed in Chapter VI for the two-stage special

case of this MSMIP.

This generalized solution approach is a type-I column generation procedure,

which has proved successful in solving NP-hard problems (Wilhelm, 2001). It rests

on decomposing the supply chain network design (SCND) model by scenario-tree

node into a conveniently structured master problem and a number of nodal sub-

problems as section 1 of this chapter explains.

These subproblems are still NP-hard but their (relatively) small-size allows

them to be solved more efficiently. The L-shaped method particularly suits solving

these subproblems, and its resulting iterative solutions provide the master problem’s

columns.

Section 1.2 reformulates the master problem into a Leontief substitution flow

problem (LSFP). This reformulation exhibits the integrality property, which ren-

ders it amenable to efficient solution algorithms. Section 2.4 tailors one of these

algorithms to exploit the special structure of the reformulated master problem and

thereby further improve solution efficiency.
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The results of the computational experiments presented in section 4 show that

this heuristic’s performance is suitable for realistic applications.

1. Nodal decomposition

To overcome mathematical intractability, the block-angular structure of Pc is ex-

ploited by Dantzig-Wolf decomposition (Dantzig and Wolfe, 1961). The resulting

master problem links |NB| − |NT−1| otherwise independent nodal subproblems.

1.1. Nodal subproblem

A nodal subproblem seeks the best SCND for a single scenario-tree node. An arbi-

trary nodal subproblem, Pn, is expressed as follows:

κn = min {gnyn +
∑

m∈D(n)

φm|nhmzm | yn ∈ Yn,Dzm + B3yn = dm}. (7.1)

Subproblem (7.1) results from relaxing constraint (4.35).

Pn is a two-stage stochastic mixed-integer program (SMIP) in which the first

stage, (7.2), selects the operational resources (yn) at node n ∈ NB\NT−1. Excluding

the nodes belonging to the set NT−1 results from the EoH decomposition, which

tackles these nodes independently. Given yn and ω ∈ Ω, the recourse stage, (7.3),

selects the production/distribution decisions (zm) at nodes m ∈ D(n).

κn = min {gnyn +Q(yn) | yn ∈ Yn}, (7.2)

Q(yn) = EωQ(yn, ω) = min {
∑

m∈D(n)

φm|n (hmzm) | Dzm + B3yn = dm}. (7.3)

Pn is amenable to solution by the L-shaped method (Van Slyke and Wets, 1969)

for the reasons explained in section 2.1 of Chapter VI.
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1.2. Master problem

The master problem tracks the evolution of the network’s configuration throughout

the planning horizon under all possible demand scenarios and thereby accounts for

network reconfiguration costs. It results from expressing yn, n ∈ NB\NT−1, in terms

of the members of its feasible solution set as follows:

yn =
∑

v∈Vn

λv
ny

v
n,

∑

v∈Vn

λv
n = 1, λv

n ∈ {0, 1} ∀v ∈ Vn,

where {yv
n|v ∈ Vn} is the set of these solution points, and Vn is its index set.

Likewise,
∑

v∈Vn
κv

nλ
v
n substitutes for the contribution of yn and zm,m ∈ D(n),

in the objective function; κv
n = gny

v
n +

∑
m∈D(n) φm|nhmzv

m, n ∈ NB \ NT−1. The

resulting master problem, PM , is expressed as follows:

κ = min
∑

n∈NB

φnfnxn +
∑

n∈NB\NT−1

∑

v∈Vn

φnκ
v
nλ

v
n, (7.4)

subject to

Ax1 +
∑

v∈V1

B1y
v
1λ

v
1 = −B2y0, (7.5)

Axn +
∑

v∈Vn

B1y
v
nλ

v
n +

∑

u∈Va(n)

B2y
u
a(n)λ

u
a(n) = b ∀n ∈ NB \ (NT−1 ∪ {1}) , (7.6)

Axn +
∑

u∈Va(n)

B2y
u
a(n)λ

u
a(n) = −B1yn ∀n ∈ NT−1, (7.7)

∑

v∈Vn

λv
n = 1 ∀n ∈ NB \ NT−1, (7.8)

λv
n ∈ {0, 1} ∀ v ∈ Vn n ∈ NB \ NT−1. (7.9)

In PM , constraints (7.8) and (7.9) dictate the selection of exactly one config-

uration per node. Constraint sets (7.5)–(7.7) enforce the reconfiguration actions

necessary to transition between the configurations of two successive nodes. The ob-

jective function accounts for the reconfiguration costs and the costs associated with
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the selected configurations.

Traditionally, when a master problem involves binary variables, Dantzig-Wolf

decomposition is followed by branch and price (Barnhart et al., 1989), which is

computationally prohibitive for SCND problems. The pricing step involves many

iterations; each entails solving the NP-hard nodal subproblems. Closing the duality-

gap of the master problem further magnifies the computational burden. This entails

performing several iterations, each involving the pricing step. The following section

circumvents this computational burden using a Leontief substitution flow problem

formulation.

2. Leontief substitution flow problem

The Leontief substitution flow problem (LSFP) exhibits the integrality property and

is amenable to efficient solution algorithms. To take advantage of these properties,

the master problem is reformulated into a LSFP. Section 2.1 explains the logic

behind this reformulation. Section 2.2 discusses the ensuing mathematical model.

Section 2.3 develops the dual formulation for this LSFP model.

2.1. Equivalent Leontief substitution flow problem

PM is mainly concerned with selecting a configuration for each node. In contrast,

its LSFP reformulation focuses on the reconfiguration actions required to transition

between the successive configurations that PM selects. In other words, the optimal

solution of the LSFP reformulation specifies the actions necessary to transition be-

tween the configurations described by the optimal solution of PM . The following

paragraphs use Fig. 5 and Fig. 6 to elaborate on the distinctions between PM and

PL.
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Fig. 5 depicts a master problem, PM . The root node (n = 0) represents the

original configuration of the supply chain network (at t = 0). The boundary nodes

(nω ∈ NT−1) represent the final configurations for the network. A node n, n ∈ NB \

NT−1, represents a nodal subproblem Pn. Vertices v ∈ Vn drawn inside a node n, n ∈

NB \ NT−1, represent nodal feasible solutions, {yv
n | v ∈ Vn}. Each nodal feasible

solution, yv
n, describes a possible configuration, v, for node n. Due to the strong

association between a nodal feasible solution, the supply chain network configuration

it describes, and the vertex that represents this solution in the hypergraph, the three

terms are used interchangeably hereafter.

The optimal solution of PM selects exactly one configuration per node such

that the total cost is minimized. In Fig. 5, vertices 2, 4, 6, 7, 10, 11, and 14

represent these configurations. The reconfiguration actions required to transition

between these configurations are depicted by hyperarcs h1, h2, h3, h4, h5, h6, h7 and

h8. A hyperarc is an arc capable of joining more than two vertices. Graphs involving

hyperarcs, such as that in Fig. 5, are referred to as hypergraphs. For an exposition

of hypergraphs, see Koehler et al. (1975), Martin et al. (1990), and Jeroslow et al.

(1992).

The proposed LSFP involves selecting the reconfiguration actions that achieve

the optimal solution. It assumes that all possible hyperarcs are available (Fig.

6 depicts a subset of these hyperarcs since depicting all of them would make it

cumbersome). The LSFP, PL, achieves the same optimal solution of PM by selecting

a set of hyperarcs such that:

• Exactly one of the hyperarcs emanating from node n is selected, for n ∈

{0} ∪ NB \ NT−2.

• If the selected hyperarc, hi, emanating from node n leads to vertex v, v ∈



88

4

5

1

2

3

12

0

n 1

n 3

8

9

h1 h2

h3

h4

h5

h6

h7

14

Node 4

Node 5

Node 6

Node 1

Node 2

Node 3

n 2
10

n 4

h8

11

6 13
Node 7

7
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Vm,m ∈ D(n), n ∈ {0} ∪ NB \ NT−3, then the selected hyperarc for node m

must emanate from vertex v.

Combined, these two conditions are equivalent to selecting exactly one configuration

per scenario-tree node.

To ease the mathematical exposition, let H be the index set of hyperarcs.

H+
v and H−

v are the index sets of hyperarcs leaving and entering vertex v ∈ V,

respectively, where V = ∪n∈NB
Vn. Further, H−

0 = H+
v = ∅, where ∅ is the empty

set, for v ∈ Vn, n ∈ NT . Hyperarc hi emanates from vertex vhi ∈ V ∪ V0. Vhi, i ∈ H,

denotes the set of vertices to which hi leads. For example, in Fig. 6, vh3 = {4} and

Vh3 = {7, 10, 11}.

Hypergraphs associate a weight, ci, with every hyperarc, hi. Achieving equiva-

lence between the weights of the hyperarcs and the cost of the SCND rests on the

following definitions. Let vhi ∈ Vm and vn ∈ Vhi, n ∈ D(m). Equations (7.10)–(7.12)

specify the required reconfiguration actions to transition from the configuration de-

scribed by y
vhi
m =

(
{yvhi

j }j∈J , {y
vhi
`,q,j}`∈{0}∪Lq,q∈Qj,j∈J

)
to the configuration described

by yvn
n =

(
{yvn

j }j∈J , {yvn
`,q,j}`∈{0}∪Lq,q∈Qj ,j∈J

)
.

x
vhi

→vn

open j = max{0, yvhi
open j − yvn

open j} ∀ j ∈ J , (7.10)

x
vhi

→vn

close j = max{0,−yvhi
close j + yvn

close j} ∀ j ∈ J , (7.11)

x
vhi

→vn

`1,`2 ,q,j = max{0, yvhi
`2,q,j + yvn

`1 ,q,j − 1} ∀ `1 6= `2 ∈ Lq, q ∈ Qj, j ∈ J . (7.12)

x
vhi

→vn

n groups x
vhi

→vn

open j , x
vhi

→vn

close j , and x
vhi

→vn

`1,`2 ,q,j in a single vector as follows:

x
vhi

→vn

n =
(
{xvhi

→vn

open j }j∈J , {x
vhi

→vn

close j }j∈J , {x
vhi

→vn

`1,`2 ,q,j}`1 6=`2∈{0}∪Lj,q∈Qj,j∈J
)
.

Moreover, define the reconfiguration cost between vertex vhi ∈ Va(n) to vertex vn ∈
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Vn as follows:

f
vhi

→vn

n = fnx
vhi

→vn

n ,

where fn =
(
{fn

open j}j∈J , {fn
close j}j∈J , {fn

`1 ,`2,q,j}`1 6=`2∈{0}∪Lj,q∈Qj,j∈J
)
.

Thus, the cost associated with a given hypergraph, hi, can be calculated by

(7.13), where κvn
n is the cost associated with yvn

n as defined by (7.1).

ci =
∑

vn∈Vhi

φn

(
f

vhi
→vn

n + κvn
n

)
. (7.13)

2.2. Reformulated master problem

Problem PL seeks the shortest hyperpath between the root and boundary nodes

of the scenario-tree. A hyperpath, β, is a subset of hyperarcs that form a tree

rooted at the scenario-tree root node and ending at the scenario-tree boundary

nodes; β = (β1, . . . , βH) where βi is a binary variable indicating whether hyperarc

hi, i ∈ H, takes part of the hyperpath (βi = 1) or not (βi = 0), and H = |H|. A

shortest hyperpath, β∗, is a hyperpath with minimum weight; i.e., cβ∗ ≤ cβj for

all possible hyperpaths βj, where c = (c1, . . . , cH).

The shortest hyperpath problem is a LSFP and can be expressed by the follow-

ing linear program, PL:

κL = min
∑

i∈H

ciβi, (7.14)

subject to
∑

i∈H+
v0

βi = 1, (7.15)

∑

i∈H+
v

βi −
∑

i∈H−
v

βi = 0 ∀ v ∈ Vn, n ∈ NB \ NT−1, (7.16)

βi ≥ 0 ∀ i ∈ H. (7.17)

The objective function (7.14) minimizes the cost of the selected hyperarcs. The
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first constraint (7.15) ensures that exactly one unit of flow leaves the root node.

Constraint set (7.16) forces a flow leaving the root node to eventually reach the

boundary nodes by ensuring conservation of flow at each node (except root and

boundary nodes). The nonnegativity constraint set (7.17) suffices to achieve binary

variables due to the integrality property of the LSFP.

PL is a LSFP because it exhibits the following characteristics:

• Elements of the constraint-matrix are either 0,+1, or −1.

• The constraint-matrix has exactly one positive element per column.

• Elements of the right-hand side are binary.

• The corresponding hypergraph (Fig. 6) is free of paracycles due to its under-

lying scenario-tree structure.

Proposition 3 The linear program PL, represented by (7.14)–(7.17), has a binary

optimal solution.

Proof: In vector form, PL can be expressed as κL = minβ≥0{cβ | Hβ = b}. Matrix

H is pre-Leontief since it has exactly one positive element per column (Veinott,

1968). Furthermore, Hβ = b is a pre-Leontief substitution system since H is

pre-Leontief, b ≥ 0 and β ≥ 0 (Veinott, 1968). By construction, this system is

free of paracycles (due to its underlying scenario-tree structure). Consequently,

minβ≥0{cβ | Hβ = b} is a Leontief substitution flow problem, and its optimal

solution is integral (Veinott, 1968). Furthermore, this optimal solution is binary

since the elements of b are binary and the elements of H are either 0,+1, or −1

(Jeroslow et al., 1992). �

Hyperarc hi, i ∈ H, belongs to the shortest hyperpath if the optimal solution of

PL indicates that β∗
i = 1. This implies that λ

vhi
n = λvm

m = 1, vm ∈ Vhi,m ∈ D(n), in
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the optimal solution of PM . This equivalence between the optimal solution of PM

and that of PL results from the following proposition.

Proposition 4 The shortest hyperpath problem PL, represented by (7.14)–(7.17),

and the master problem PM , represented by (7.4)–(7.9), are equivalent.

Proof: This proof consists of the following two steps.

1. Show that constraints (7.8) and (7.9) are equivalent to (7.15)–(7.17).

2. Show that min
{∑

n∈NB
φnfnxn +

∑
n∈NB\NT−1

∑
v∈Vn

φnκ
v
nλ

v
n | (7.5), (7.6), (7.7)

}

is equivalent to min
{∑

i∈H ciβi | βi ≥ 0
}
.

To show that constraints (7.8) and (7.9) are equivalent to (7.15)–(7.17), consider

node n ∈ NB \NT−1, and its descendants m ∈ D(n).
∑

um∈Vm
λum

m = 1,m ∈ D(n) by

constraint (7.8). This results in the following equation:

∏

m∈D(n)

( ∑

um∈Vm

λum
m

)
= 1.

Multiplying both sides of this equation by λv
n for a given v ∈ Vn results in the

following relationship:

λv
n

∏

m∈D(n)

( ∑

um∈Vm

λum
m

)
= λv

n.

Expanding the left hand side results into the sum of
∏

m∈D(n) |Vm| unique terms. Let

H+
v be an index set, where H+

v = {1, . . . ,H+
v }, and let H+

v =
∏

m∈D(n) |Vm|. Let βi

be an arbitrary term of this sum; βi = λv
n

∏
m∈D(n) λ

um
m , for an arbitrary um ∈ Vm,

for each m ∈ D(n). This results in the following equation:

∑

i∈H+
v

βi = λv
n

∏

n∈D(m)

( ∑

um∈Vm

λum
n

)
= λv

n ∀v ∈ Vn, n ∈ {0} ∪ NB \NT−1. (7.18)
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Equation 7.19 results from applying a similar logic on node e = a(n), and its

descendants ng ∈ D(e), where n = ng for an arbitrary g.

∑

i∈H−
v

βi = λv
n

(∑

w∈Ve

λw
e

) ∏

ng∈D(e)\{n}


 ∑

vng∈Vng

λ
vng
ng


 = λv

n ∀v ∈ Vn, n ∈ NB.

(7.19)

Constraint (7.16) results from (7.18) and (7.19). Constraint (7.17) results from

defining βi as the product of binary terms; βi = λv
n

∏
m∈D(n) λ

um
m , for an arbitrary

um ∈ Vm, for each m ∈ D(n).

Finally, λ1
0 = 1 results from the uniqueness of the inherited initial configuration,

and constraint (7.15) results from substituting λv
n = λ1

0 = 1 in equation (7.18). This

completes the first step of the proof.

The second step of this proof follows from relations (7.21), (7.23), and (7.24),

which will be constructed one at a time. In the mathematical program (7.4)–(7.9), y0

and yn, n ∈ NT−1 are given parameters. An equivalent representation is to express

them as decision variables, and define V0 and Vn such that |V0| = |Vn| = 1, n ∈ NT−1.

In this case, κv0
0 = κvn

n = 0, n ∈ NT−1. The resulting mathematical program, P ′
M , is

expressed as follows.

κ = min
∑

n∈NB

(
φnfnxn +

∑

v∈Vn

φnκ
v
nλ

v
n

)
,

subject to

Axn +
∑

v∈Vn

B1y
v
nλ

v
n +

∑

u∈Va(n)

B2y
u
a(n)λ

u
a(n) = b ∀n ∈ NB, (7.20)

∑

v∈Vn

λv
n = 1 ∀n ∈ NB,

λv
n ∈ {0, 1} ∀ v ∈ Vn, n ∈ NB.
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Therefore, by construction,

PM ≡ P ′
M . (7.21)

P ′
M expresses the root and boundary nodes like all other nodes. This circumvents

the effort that would have been otherwise required to prove the boundary conditions,

(7.5) and (7.7), independently.

For any node m ∈ D(n), n ∈ NB \ NT−1, by inspection of constraints (4.4)–

(4.15) and equations (7.10)–(7.12), it can be shown that, for a given u ∈ Vn and

vm ∈ Vm, fmxm = λu
nλ

vm
m fmxu→vm

m = λu
nλ

vm
m fu→vm

n . This leads to the following result,

where xm is defined by (7.20) for a given λvm
m and a given λu

n.

λu
nλ

vm
m φm (fu→v

m + κvm
m ) = φm (fmxm + λvm

m κvm
m ) .

Summing both sides of this equation over all configurations of a node n (u ∈ Vn)

and its descendants m ∈ D(n) (vm ∈ Vvm), leads to the following equation, where

xm is defined by (7.20) for a given n.

∑

m∈D(n)

∑

u∈Vn

∑

vm∈Vm

λu
nλ

vm
m φm (fu→v

m + κvm
m ) =

∑

m∈D(n)

∑

vm∈Vm

φm (fmxm + λvm
m κvm

m ) .

(7.22)

Further, summing both sides of equation (7.22) over nodes n ∈ NB ∪ {0} \ NT−1

leads to the following result, where xn is defined by (7.20).

∑

n∈NB∪{0}\NT−1

∑

m∈D(n)

∑

u∈Vn

∑

vm∈Vm

λu
nλ

vm
m φm (fu→vm

m + κvm
m )

=
∑

n∈NB

φn

(
fnxn +

∑

vn∈Vn

λvm
m κvm

m

)
. (7.23)

Finally, the last result relates the left-hand-side of (7.23) to the cost of hyper-
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arcs.
∑

i∈H+
u

ciβi = λu
n


 ∏

vm∈Vhi

λvm
m




 ∑

vm∈Vhi

φm (fu→vm
m + κvm

m )


 .

The following equation rests on
∑

vm∈Vm
λvm

m = 1 and λvm
m ∈ {0, 1}.

∑

i∈H+
u

ciβi =
∑

u∈Vn

∑

vm∈Vm

λu
nλ

vm
m φm (fu→vm

m + κvm
m ) .

Summing both sides of this equation over all vertices u ∈ Vn and all n ∈ NB ∪ {0} \

NT−1 leads to the following equation.

∑

i∈H

ciβi =
∑

n∈NB∪{0}\NT−1

∑

m∈D(n)

∑

u∈Vn

∑

vm∈Vm

λu
nλ

vm
m φm (fu→vm

m + κvm
m ) . (7.24)

Finally, combining (7.24), (7.23), and (7.21) completes the proof.

�

PL expresses hyperarcs explicitly. As the number of vertices per node increases,

the number of hyperarcs grows exponentially. Consequently, expressing hyperarcs

implicitly in terms of their vertices improves computational efficiency. This is at-

tained by the dual formulation of PL.

2.3. Dual formulation

Let ψ0 be the dual variable associated with constraint (7.15), and ψv, v ∈ V, be

those associated with constraint set (7.16). The dual problem of PL, PD
L , can be

expressed by the following linear program.

κD
L = maxψ0 (7.25)

Subject to

ψvhi
−
∑

v∈Vhi

ψv ≤ ci ∀ i ∈ H+
v , v ∈ Vn, n ∈ {0} ∪ NB \ (NT−1 ∪ NT−2) , (7.26)
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ψvhi
≤ ci ∀ i ∈ H+

v , v ∈ Vn, n ∈ NT−2, (7.27)

ψv unrestricted ∀ v ∈ Vn, n ∈ {0} ∪ NB \ NT−1. (7.28)

Constraint sets (7.26) and (7.27) imply that ψv is the cost of the shortest hy-

perpath connecting vertex v to the boundary nodes of the scenario-tree. Consistent

with the terminology traditionally used in network problems, ψv will be referred

to as the potential of vertex v. Constraint (7.28) indicates that ψv can take neg-

ative values, which is consistent with how Pc was constructed (refer to section 4.3

of Chapter IV for a discussion about the likelihood of negative values for hp,jw ,k

as a result of combining the revenue per unit of product p and the transportation

cost to market k in one parameter). Thus, ψvhi
will take a negative value whenever

−
∑

v∈Vhi
ψv ≥ ci. The objective function (7.25) calculates the cost of the shortest

hyperpath. If κD
L < 0, the supply chain is profitable.

2.4. Shortest hyperpath algorithm

Martin et al. (1990) show that the optimal solution for PD
L , ψ∗

v, v ∈ {0} ∪ V, can be

recursively calculated as follows:

ψ∗
v = min{ci +

∑

u∈Vhi

ψ∗
u | i ∈ H+

v }. (7.29)

Martin et al. (1990) also develop a polynomial-time, shortest hyperpath algorithm,

which uses an explicit list of hyperarcs as input. As applied to PL, their algorithm

scans the hypergraph backwards (starting from boundary nodes and progressing

towards the root node). At each vertex, only hypergraphs emanating from this

vertex are examined, and the one associated with the least expensive hyperpath

towards the boundary nodes is selected. The complexity of this algorithm is O (|H|)

since each hyperarc is visited exactly once. Expressed in terms of nodes and ver-
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tices, this shortest hyperpath algorithm’s complexity is O
(
|N ||̂Vn|

|̂D(n)|+1
)

, where

|̂D(n)| = maxn∈N{|D(n)|} and |̂Vn| = maxn∈N{|Vn|}.

This section customizes this shortest hyperpath algorithm to the special struc-

ture of PL and thereby reduces its complexity to O(|N ||̂D(n)||̂Vn|
2
). Specifically,

the ability to divide the cost of a hyperarc into independent components allows for

constructing fewer hyperarcs. By construction, equation (7.13) expresses the cost

associated with a hyperarc as the probability weighted sum of a transition cost from

vertex u at node n to each of the vertices at node m, vm ∈ Vm,m ∈ D(n). This cost

structure allows treating a hyperarc as a virtual collection of arcs, each leading from

vertex u at node n to one of the vertices vm ∈ Vm of one of its descendant nodes

m ∈ D(n).

Instead of enumerating all possible hyperarcs, this treatment allows for con-

structing the best hyperarc to transition between these configurations. This hyper-

arc results from selecting from each descendant node m a vertex vm that produces

the least cheap arc between u and vm. Grouping the least cheap arc for each de-

scendant forms a hyperarc. This implicit representation of a hyperarc reduces the

number of evaluated hyperarcs per vertex u from
∏

m∈D(n) |Vm| to |D(n)||Vm|.

To apply this concept analytically, equation (7.30) defines the cost ψu→m asso-

ciated with the transition from configuration un to the best configuration of node

m ∈ D(n).

ψu→m = min
λv

m∈B

{∑

v∈Vm

(φm (fu→v
m + κv

m) + ψv)λ
v
m |

∑

v∈Vm

λv
m = 1

}
. (7.30)

Proposition 5 establishes the customized recursive relationship for PD
L .
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Proposition 5 The optimal solution for PD
L can be recursively calculated as follows:

ψ∗
u =

∑

m∈D(n)

ψu→m ∀u ∈ {0} ∪ Vn, n ∈ NB \ NT−1,

where ψu→m = minλv
m∈B

{∑
v∈Vm

(φm (fu→v
m + κv

m) + ψv)λ
v
m |
∑

v∈Vm
λv

m = 1
}
.

Proof: Martin et al. (1990) proves that the optimal solution for PD
L can be cal-

culated using the recursive relation (7.29). The following equation results from

substituting equation (7.13) for ci in this recursive relation.

ψ∗
u = min

i∈H+
u




∑

vm∈Vhi

(φn (fu→vm
m + κv

m) + ψvm)



 .

The following equation results because Vm ∩ Vhi = vm.

ψ∗
u = min

λvm
m ∈B




∑

m∈D(n)

∑

vm∈Vm

(φm (fu→vm
m + κvm

m ) + ψv)λ
vm
m |

∑

vm∈Vm

λvm
m = 1



 .

By rearranging the summation terms, the following equation results.

ψ∗
u =




∑

m∈D(n)

min
λvm

m ∈B

∑

vm∈Vm

(φm (fu→vm
m + κvm

m ) + ψv)λ
vm
m |

∑

vm∈Vm

λvm
m = 1



 .

Finally, by invoking equation (7.30), we get the desired result:

ψ∗
u =

∑

m∈D(n)

ψu→m.

�

Fig. 7 summarizes this customized shortest hyperpath algorithm. The algo-

rithm starts by initializing ψu = 0, u ∈ VT−1 and ψu→m = ∞ for all u and

m combinations. Afterwards, it scans the scenario-tree from boundary nodes to

root node to recursively calculate vertices’ potentials as proposition 5 instructs.

γu = (γu→n, n ∈ D(m)) enables tracing the shortest hyperpath, β∗, by storing
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Data: φm, f
u→v
m , κv

m ∀v ∈ Vm, u ∈ Vn,m ∈ D(n), n ∈ {0} ∪ NB \ NT−1

Result: ψv, v ∈ {0} ∪ V
begin

foreach u ∈ Vn, n ∈ NT−1 do

ψu ←− 0;

end

foreach t ∈ {T − 2, . . . , 0} do

foreach u ∈ Vn, n ∈ Nt do

foreach m ∈ D(n) do

ψu→m ←−∞;

foreach v ∈ Vm do

if ψu→m > φm (fu→v
m + κv

m) + ψv then

ψu→m ←− φm (fu→v
m + κv

m) + ψv;

γu→m ←− v;
end

end
end

ψu ←−
∑

m∈D(n) ψu→m;

end
end

end

Fig. 7.: Customised shortest hyperpath algorithm.

v ∈ Vhi, where hi ∈ β∗.

Proposition 6 The customised shortest hyperpath algorithm converges to the opti-

mal solution of PM in a finite number of iterations.

Proof: The algorithm converges in a finite number of iterations since it visits each

vertex exactly once, and the number of vertices is finite. Proposition 5 proves that

the selected hyperpath is the optimal solution for PD
L . By strong duality theorem,
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κD
L = κL. Proposition 4 proves that κL = κM , which completes the proof. �

The speed and simplicity of this shortest hyperpath algorithm allow solving

large master problems. Thereby, this algorithm is a corner stone in the SCND

heuristic outlined in the following section.

3. MSMIP heuristic for the SCND problem

The developed solution procedure is a type-I column generation procedure, and thus

it consists of two steps:

1. Approximate the solution space of the original problem Pc with a set of feasible

configurations.

2. Use a restricted master problem to evaluate the interdependencies among dif-

ferent scenario-tree nodes and select the best combination of generated config-

urations, one configuration per node.

As such, this procedure doesn’t guarantee an optimal solution. However, the results

of the computational experiments of section 4 reveal satisfactory performance, which

is consistent with the results of type-I column generation procedures for other NP-

hard problems (Wilhelm, 2001).

Approximating the solution space is achieved by applying the L-shaped method

on each nodal subproblem (7.1) for scenario-tree nodes n ∈ NB \ NT−1. The L-

shaped method generates iterative solutions in the process of finding a nodal optimal

solution. These iterative solutions are feasible and thus serve as columns in the

restricted master problem.

As discussed in section 4 of Chapter VI, these iterative solutions serve multiple

functions:
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1. They populate the columns associated with their node in the restricted master

problem.

2. They also serve as columns for all other nodes as a result of the relatively

complete recourse property of the subproblems.

3. They jump start the L-shape procedure for all following subproblems.

As a result, as the solution procedure progresses, the required computation effort

declines.

Numerous variants of the Benders cuts exist. This heuristic adopts the variant

suggested by Geoffrion and Graves (1974) for the reasons explained section 4 of

Chapter VI.

The shortest hyperpath is constructed as explained in section 2.4. Due to using

a restricted set of vertices per node, the optimality of the resulting solution is not

guaranteed. However, the results of the computational experiments presented in the

following chapter indicates a performance suitable for solving practical problems.

4. Computational experiments

This computational experiment applies this heuristic over three different problem

sizes. Table II (section 5 of Chapter V) summarizes the sizes of these problems,

which are refered to hereafter as size A, size B and size C. Ten instances are tested

per problem size. Each instance is solved three different times to achieve the follow-

ings:

• Optimize the DEM using CPLEX 11.0.

• Apply the EoH decomposition, which uses CPLEX 11.0 to optimize its sub-

problems.
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• Apply this heuristic, which uses CPLEX 11.0 to solve the nodal subproblems.

All computational experiments were conducted on a quad-core Intel Xeon X5355

processor running at 2.66 GHz with 12 GB RAM. Problems of size A were allowed

unlimited run time under both the DEM and the heuristic. Because it takes a

considerable amount of time to optimize a DEM of the second or third problem size,

their optimization was halted after one and two hours, respectively. The solution

values listed in their corresponding tables indicate the best solutions achieved within

these allotted times. The EoH decomposition always finished within these allotted

times. The cost discount rate in all instances was 2% and the planning horizon was

considered infinite. All other paramters were generated as described by Appendix

G.

Tables XXI and XXII summarize the results for the instances of problem size

A. Tables XXIII and XXIV summarize the results for the instances of problem size

B. Tables XXV and XXVI summarize the results for the instances of problem size

C.

The following features can be observed in the results:

• For instances of size A, the heuristic’s solution time ranges from 0.45% to

1.68% of that of the DEM (see Table XXII). For instances of size B where the

optimization of the DEM was halted after one hour, the heuristic’s solution

time ranges from 9% to 26% of that of the DEM (see Table XXIV). For

instances of size C where the optimization of the DEM was halted after two

hours, the heuristic’s solution time ranges from 15% to 31% of that of the

DEM (see Table XXVI).

• For instances of size A, the optimality gap ranges from 0.00% to 5.42%, as

Table XXI shows. For instances of size B, because the DEM did not reach
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an optimal solution in the allotted time, an upper bound on the optimality

gap is calculated using an upper bound on the profit of the DEM. This upper

bound is based on the profit associated with the solution generated by the

EoH decomposition and the upper bound on the optimality gap generated for

the EoH decomposition. The upper bound on this heuristic’s optimality gap

ranges from 0.00% to 2.16% (see Table XXIII). For instances of size C, the

DEM did not reach an optimal solution within the allotted time and a bound

on the EoH was not generated. Thus, an approximation for the optimality gap

is calculated based on the EoH solution value (which could be inferior to the

DEM solution value). This approximation for the optimality gap ranges from

0.00% to 1.60% (see Table XXV).

• For instances of size B, the heuristic resulted in a 1.22% to 5.07% improvement

in profit over that of the DEM, which did not achieve an optimal solution in

the allotted time. For instances of size C, the heursitic resulted in a 6.13% to

14.54% improvement in profit over the DEM, which did not achieve an optimal

solution within the allotted time.

These observations lead to the following conclusions:

• The optimality gap is acceptable for practical applications.

• The heuristic significantly reduces the solution time.

• The heuristic’s computational efficiency allows solving problems of larger sizes,

which enables modeling SCND problems more realistically than was possible

with previous models.

• The heuristic produces a improvement in profit over the DEM when it is halted

after exceeding the allotted runtime.
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Table XXI. Solution values for the instances of a MSMIP for a SCND problem of size

A
Instance DEM profit ($ 1,000) Heuristic profit ($ 1,000) Optimality gap

1 25,255.4 24,365.4 3.52%

2 396.1 377.8 4.63%

3 934.9 933.4 0.17%

4 3, 934.3 3, 887.1 1.20%

5 34,302.9 34,296.1 0.02%

6 19,556.7 19,332.1 1.15%

7 122,160.4 115,534.7 5.42%

8 44,106.7 42,671.5 3.25%

9 16,033.8 15,747.9 1.78%

10 29,104.2 29,104.2 0.00%

Table XXII. Solution times for the instances of a MSMIP for a SCND problem of

size A

Instance
DEM solution time

(minutes)
Heuristic solution time

(minutes)
Solution time ratio:

heuristic/DEM

1 64.10 0.29 0.45%

2 46.69 0.24 0.51%

3 37.82 0.41 1.08%

4 49.83 0.16 0.32%

5 43.00 0.52 1.19%

6 52.42 0.06 0.12%

7 28.39 0.33 1.15%

8 61.60 0.20 0.32%

9 57.33 0.05 0.09%

10 35.62 0.60 1.68%
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Table XXIII. Solution values for the instances of a MSMIP for a SCND problem of

size B

Instance

Upper bound
on DEM profit

($ 1,000)
Heuristic profit

($ 1,000)

Upper bound
on optimality

gap

DEM profit at
one hour runtime

($ 1,000)

Heuristic’s profit
improvement over

DEM

1 36,731.4 35,953.2 2.12% 34,776.9 3.27%

2 312.9 306.3 2.11% 302.4 1.27%

3 15,671.9 15,436.0 1.51% 15,071.5 2.36%

4 115,831.1 113,333.7 2.16% 111,946.5 1.22%

5 18,895.5 18,655.7 1.27% 18,311.9 1.84%

6 1, 434.5 1, 421.3 0.92% 1,375.9 3.19%

7 31,847.1 31,598.5 0.78% 29,995.7 5.07%

8 273,111.9 269,342.3 1.38% 265,016.5 1.61%

9 12,968.8 12,968.8 0.00% 12,522.0 3.45%

10 3, 874.3 3, 790.5 2.16% 3,628.6 4.27%

Table XXIV. Solution times for the instances of a MSMIP for a SCND problem of

size B

Instance

DEM
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/DEM

Nodal
Subproblems

runtime
(minutes)

LSFP
runtime

(minutes)

1 60.0 5.6 9% 5.4 0.2

2 60.0 11.8 20% 11.4 0.4

3 60.0 15.0 25% 14.6 0.4

4 60.1 12.4 21% 11.9 0.5

5 60.0 9.9 16% 9.5 0.4

6 60.0 11.7 19% 11.3 0.4

7 60.1 15.5 26% 15.1 0.4

8 60.0 14.2 24% 13.9 0.3

9 60.0 5.8 10% 5.5 0.3

10 60.1 13.2 22% 12.6 0.6



106

Table XXV. Solution values for the instances of a MSMIP for a SCND problem of

size C

Instance

EoH
decomposition
profit ($ 1,000)

Heuristic
solution profit

($ 1,000)

Approximation
for

optimality-gap

DEM profit at
two hours runtime

($ 1,000)

Heuristic’s profit
improvement over

DEM

1 289,398.7 289,398.7 0.00% 271,662.0 6.13%

2 700,759.4 691,054.3 1.38% 614,758.2 11.04%

3 9,337.6 9,187.9 1.60% 8, 284.5 9.83%

4 53,868.1 53,045.0 1.53% 47,209.9 11.00%

5 186,957.2 186,842.0 0.06% 161,587.1 13.52%

6 7,713.8 7,597.0 1.51% 6, 754.8 11.09%

7 67,684.5 66,741.0 1.39% 58,864.9 11.80%

8 507,613.4 501,569.6 1.19% 436,309.6 13.01%

9 47,086.6 47,050.8 0.08% 40,212.0 14.54%

10 787,771.6 776,861.8 1.38% 684,766.5 11.85%

Table XXVI. Solution times for the instances of a MSMIP for a SCND problem of

size C

Instance

DEM
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/DEM

Nodal
subproblems

runtime
(minutes)

LSFP
runtime

(minutes)

1 120.1 20.8 17% 20.3 0.5

2 120.1 27.5 23% 27.1 0.4

3 120.0 20.5 17% 19.8 0.6

4 120.0 26.9 22% 26.4 0.5

5 120.1 21.9 18% 21.2 0.7

6 120.0 33.2 28% 32.6 0.6

7 120.0 17.7 15% 17.0 0.7

8 120.1 37.5 31% 37.0 0.5

9 120.0 23.9 20% 23.2 0.7

10 120.1 18.8 16% 18.3 0.5



107

5. Advantage of MSMIP SCND over SMIP

MSMIPs are more computationally demanding than SMIP. This explains the preve-

lance of SMIP models in SCND and the scarcity of those using MSMIP (see section

1.2 in Chapter II for a review.) However, MSMIPs provide better design decisions

due to their ability to benefit from the information gained by the gradual unfolding

of uncertainty. But since MSMIPs are hard to solve, little insight exists regarding

the size of improvement in solution value due to applying MSMIP.

It appears that Huang and Ahmed (2009) provide the only study of the value of

MSMIP. The value of MSMIP evaluates the solution quality of an MSMIP relative

to its SMIP counterpart. It results from dividing the difference between the optimal

solutions of an MSMIP and its SMIP counterpart by the optimal solution of the

SMIP (Huang and Ahmed, 2009). Huang and Ahmed (2009) show that a lower

bound on the value of MSMIP ranges between 5% to 40% for a capacity expansion

problem (when three scenarios emanate from each scenario-tree node). They also

demonstrate the this value increases along with the variability in customers’ demand,

the length of the planning horizon, and the number of scenarios emanating from each

scenario-tree node.

The SCND heuristic developed in this chapter enables the study of the value

of MSMIP for SCND problems. The following sections discuss the value of MSMIP

in SCND problems and the extra computational effort required to solve an MSMIP

using this heuristic.

5.1. Value of multistage modeling of SCND

Solving the same instances for both the SMIP and the MSMIP formulations for the

SCND problem allows to calculation of the value of MSMIP for SCND problems.
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Tables XXVII, XXVIII, and XXIX summarize these values for SCND problems of

sizes A, B, and C, respectively.

The following features can be observed in these tables:

• For problem size A, the value of the MSMIP ranges from 4.1% to 10.0%, as

shown in table XXVII.

• For problem size B, since the DEM did not achieve an optimal solution within

the allotted time, the heuristic solution value is used in lieu of the optimal

solution value in calculating the value of MSMIP. This results in a lower bound

on the value of MSMIP. This lower bound on the value of the MSMIP ranges

from 11.2% to 19.6%, as shown in table XXVIII.

• For prolem size C, the lower bound on the value of MSMIP ranges from 19.7%

to 31.5%, as shown in table XXIX.

These observations lead to the following conlusions:

• The value of MSMIP warrants the additional computational effort involved in

solving an MSMIP for a SCND problem.

• The value of MSMIP increases as the supply chain network size increases.

The results reported in tables XXVII–XXIX are consistent with the results

reported by Huang and Ahmed (2009). Also, the conclusions of the experiment

regrading the SCND problem straightly aligns with their conclusions regarding the

capacity expansion problem. Huang and Ahmed (2009) also concluded that the value

of MSMIP depends on demand variabiliy and the length of the planning horizon but

did not study the effect of the size of the supply chain network.
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Table XXVII. Value of MSMIP for instances of size A of the SCND problem

Instance
SMIP: DEM profit

($ 1,000)
MSMIP: DEM profit

($ 1,000) Value of MSMIP

1 23,254.2 25,255.4 8.6%

2 366.3 396.1 8.1%

3 884.2 934.9 5.7%

4 3, 779.8 3,934.3 4.1%

5 32,291.7 34,302.9 6.2%

6 18,199.6 19,556.7 7.5%

7 111,081.8 122,160.4 10.0%

8 40,776.3 44,106.7 8.2%

9 15,126.2 16,033.8 6.0%

10 26,947.0 29,104.2 8.0%

Table XXVIII. Value of MSMIP for instances of size B of the SCND problem

Instance
SMIP: DEM profit

($ 1,000)
MSMIP: heuristic profit

($ 1,000)
Lower bound on the value

of MSMIP

1 32,337.1 35,953.2 11.2%

2 269.1 306.3 13.8%

3 13,383.5 15,436.0 15.3%

4 94,770.2 113,333.7 19.6%

5 16,156.2 18,655.7 15.5%

6 1, 232.5 1,421.3 15.3%

7 26,512.7 31,598.5 19.2%

8 230,987.9 269,342.3 16.6%

9 11,277.5 12,968.8 15.0%

10 3, 388.6 3,790.5 11.9%

Table XXIX. Value of MSMIP for instances of size C of the SCND problem

Instance
SMIP: DEM profit

($ 1,000)
MSMIP: heuristic profit

($ 1,000)
Lower bound on the value

of MSMIP

1 223,465.4 289,399.0 29.5%

2 542,452.6 691,054.3 27.4%

3 7, 594.4 9,187.9 21.0%

4 42,325.5 53,045.0 25.3%

5 142,094.8 186,842.0 31.5%

6 6, 128.7 7,597.0 24.0%

7 53,607.7 66,741.0 24.5%

8 419,008.4 501,569.6 19.7%

9 38,527.1 47,050.8 22.1%

10 596,366.4 776,861.8 30.3%
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5.2. Additional computational effort incurred by MSMIP

Tables XXII–XXVI and XVI–XX show that, for each problem size, solving the

MSMIP using the developed heuristic consumed less time than optimizing the DEM

for the SMIP for the same problem. However, SMIPs have been increasingly popular

and their solution algorithms have been constantly improving. Fortunately, since the

developed SCND heuristic relies on solving several nodal subproblems, each is an

SMIP, the advances in solving SMIPs also benefit this heuristic, as the following

section elaborates.

6. Solution scalability

This MSMIP heuristic involves two major steps:

1. Approximate the solution space by iteratively generating nodal solutions.

2. Choose a global solution by selecting exactly one nodal solution per nodal

subproblem.

The second step entails applying the customized shortest hyperpath algorithm,

which is polynomial-time. Therefore, the computational effort involved in imple-

menting this step is scalable to accommodate increasing scenario-tree sizes.

The first step, on the other hand, presents an exponentially computational

difficulty as the problem size increases. Many accelerated Benders techniques exist

to expedite this step (c.f. Santoso et al. (2005) and MirHassani et al. (2000)). These

techniques have not been integrated in the C++ implementation of this model, and

therefore the results of the previous sections did not benefit from the computational

efficiencies they enduce.
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Furthermore, because the nodal subproblems are SMIPs, they can benefit from

any existing or future accelerated solution methodologies for SMIPs. It’s important

to note that while this heuristic relies on nodal decomposition to decompose the

SCND problem into a conveniently structured master problem and smaller subprob-

lems, nothing prevents decomposing the subproblems themselves by either scenario-

decomposition or component decomposition. The only requirement is that the so-

lution approach be iterative to provide the master problem columns (which is in-

variably the case due to the complex nature of these SMIPs). In short, solving a

nodal subproblem should not consume more time than solving a SCND problem

formulated as a SMIP.

The large number of nodal subproblems can present a computational challenge.

This challenge can be mitigated with parallel computing, which this heuristic can

exploit since nodal subproblems are independent. Consequently, this heuristic can

solve a problem in the same time as any current SMIP model but with a much better

solution (see section 5.1).

7. Solution stability

The purpose of multi-period models, such as SCND, is to provide insight for man-

aging an evolving business environment. In doing so, this SCND model achieves the

best objective function value by periodically updating a supply chain’s configuration

(see section 5 of Chapter IV). Consequently, the solutions produced by computa-

tional experiments (see section 4) require frequent capacity updates for open facilities

(almost every period). However, the technology and location decisions tend to be

more stable.

A conflict exists between capitalizing on the benefits of multistage modeling
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and the stability of a model’s solution. On the one hand, managers tend to find the

frequent updates to a supply chain’s configuration chaotic. On the other hand, a

model that updates a supply chain’s configuration as frequently as it updates cost

and demand parameters results in a superior objective function value. The SCND

literature (and its facility location ancestor) has traditionally alleviated this conflict

by the following mechanisms:

• Enforce a minimum duration between successive supply chain network updates.

This is done by fixing the length of each time-period to this minimum duration.

• Discourage frequent updates by including a penalty to the facility reconfigura-

tion cost.

• Restrict the number of configuration updates for each facility during the plan-

ning horizon. This is usually achieved by allowing at most one update during

the planning horizon.

• Make frequent capacity expansions counterproductive (in situations when de-

mand is non-decreasing). This is done by reducing the available capacity of

a facility that undergoes a configuration update for the time period in which

this update takes place.

The developed SCND model does not incorporate any of these mechanisms. Apply-

ing the first two mechanisms to improve solution stability is straight-forward. The

third mechanism requires updating the shortest hyperpath algorithm to eliminate

any path that exceeds the allowable number of updates per facility. This extension

is an interesting research question that is addressed in section 3.5 of Chapter IX.

The last mechanism seems irreconcilable with the nodal decomposition underlying
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the SCND heuristic since it introduces further dependencies between each node and

its predecessor.



114

CHAPTER VIII

METHODOLOGY EXTENSION TO OTHER APPLICATIONS

The proposed methodology is rooted in SCND. Nevertheless, it is generic enough

that it is amenable various applications beyond SCND. This chapter provide general

guidelines on formulating other applications so that they benefit from the solution

approach developed for the SCND problem.

1. Characteristics of candidate applications

A candidate application must be amenable to formulation into an MSMIP that

exhibits the following properties:

1. Decomposable into a master problem and a set of independent nodal subprob-

lems.

2. Each subproblem is a two-stage stochastic mixed-integer program (SMIP) that

is amenable to solution using an iterative solution procedure.

3. A feasible solution for the master problem can be constructed by selecting

exactly one feasible nodal solution per nodal subproblem.

The third property disallows constraints excluding specific combinations of feasible

nodal subproblems.

2. Example applications

These properties are inherent in diverse applications. Examples include loading

plans for container ships where a vessel’s stability and its partial unloading and
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reloading speed at successive calling ports are critical factors. In this case, hy-

perarcs represent reshuffling containers loaded in pervious ports. Another example

involves setting prices for services or products where constantly adjusting prices

carries consequences. In this case, a hyperarc’s weight represents the cost associ-

ated with marketing campaigns required to mitigate the effect of price adjustments

between successive periods.

3. Guidelines to formulate and solve candidate applications

The characteristics discussed in section 1 can be induced by following specific steps.

3.1. Variables selection

Three sets of variables need be defined. Each such set consists of one vector of

variables per scenario-tree node (i.e., one vector for each combination of time period

and scenario realization). The first set represents the state of the system describing

the application under consideration. Members of this set are binary. The second

describes the recourse actions that can be taken once uncertainty unfolds. Members

of this set are continuous variables. The third set describes the necessary actions to

transition from one state variable set (of the first variables set) to another. Members

of this set are binary.

3.2. Scenario-tree formulation

The scenario-tree node formulation of a problem can be constructed in two steps.

First, mathematically formulate each nodal subproblem by a SMIP for which the

first-stage decision involves a single period and the second-stage decisions involves a

single period. The first-stage decisions represent the state of the system before the
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unfolding of uncertainty. The second-stage decisions represent the recourse actions

that could be implemented after the unfolding of uncertainty.

The second step involves the stage coupling constraints. These constraints

establish the interdependencies between scenario-tree nodes by describing the actions

necessary to transition for the state of the system in a parent node to that of its

descendant. In other words, these constraints establish the relationship between the

first and third of variables.

Following these steps results into constraints indexed over scenario-tree nodes.

3.3. Relatively-complete recourse

The relatively complete recourse property refers to the existence of a feasible second

stage solution for any feasible first stage solution. This property enables using

a solution of one nodal subproblem to jump start another nodal subproblem (see

section 3 of Chapter VII for more details regarding the role of relatively-complete

recourse in solving the nodal subproblems).

Inducing the relatively-complete recourse property into a second-stage of a

SMIP can be done by introducing an extra set of variables. These variables act

as surplus or slack variables for constraints that could otherwise be violated. Pe-

nalizing these variables in the objective function guide the second-stage to choose

a solution that sets these variables to zero over one that doesn’t. These variables

cary practical meaning depending on the application. For example, in production

and distribution applications, a set of variables representing the shortage in fulfilling

customers’ demand artificially guarantees the feasibility of a constraint mandating

that all demand be satisfied.
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3.4. Nodal decomposition

By relaxing the stage coupling constraints, the problem decomposes into a number

of independent nodal subproblems. Each nodal subproblem is a SMIP enjoying the

property of relatively complete recourse.

The master problem re-establishes the interdependencies among these nodal

subproblems. The state variables are now decided in the nodal subproblems. Con-

sequently, each state variable is replaced by all its feasible values, each weighted by

a binary indicator variable.

3.5. Master problem reformulation

The master problem is reformulated into a Leontief substitution flow system (LSFS).

This is best achieved by using a hypergraph. In this hypergraph, a vertex represents

a possible solution for a nodal subproblem. A hyperarc represents possible transition

between nodal subproblem solutions. Each such transition combine several of the

third variable type (as many as the number of descendants for a node).

The weights associated with a hyperarc are carefully chosen to induce equiva-

lence between a transition cost in the hypergraph and a transition cost in the master

problem. This is achieved by calculating the weighted sum of the transition costs to

each of the descendant nodes that a hyperac leads to and the state variable cost for

these nodes, where each cost is weighted by the arc probability of its corresponding

node.

3.6. Solution space approximation

Approximating the solution space is achieved by applying an iterative algorithm on

each nodal subproblem. If these iterative solutions are feasible (i.e., resulting from a
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primal algorithm like the L-shaped method) they form vertices for the hypergraph.

If they are not feasible (i.e., resulting from a dual algorithm like the Lagrangian

relaxation) a feasible solution need to be constructed using these infeasible solution.

This process will differ from one application to another. However, usually dual

algorithms involves finding such a feasible solution to use its value as a bound. This

implies that no additional effort is expended to find these feasible solutions.

The generated iterative solutions serve multiple functions:

1. They populate the columns associated with their node in the restricted master

problem.

2. They also serve as columns for all other nodes as a result of the relatively

complete recourse property of the subproblems.

3. They jump start the L-shape procedure for all following subproblems, as de-

scribed in section 4 of Chapter VI.

As a result, as the solution procedure progresses, the required computation effort

declines.

3.7. Global solution selection

Once the problem is expressed as an LSFP and its vertices are generated using nodal

subproblems, it becomes amenable to solution using the customized shortest hyper-

path algorithm summarized in Fig. 7 of Chapter VII. This algorithm constructs a

global solution by selecting the best combination of generated nodal solutions.



119

CHAPTER IX

CONCLUSION

This chapter lists the conclusions, contributions, and future research.

1. Conclusions

This dissertation extends the rich literature of supply chain network design (SCND)

both in terms of model scope and solution approach.

The developed SCND model is more realistic than current models. This model

mimics the actual problem more closely by including all the followings as shown by

sections 2–4 of Chapter IV:

• The location, capacity, and technology attributes of a resource.

• The effect of the economies of scale on the cost structure.

• Multiple products and multiple levels of supply chain hierarchy.

• Stochastic, dynamic, and correlated demand.

• Using the gradually unfolding uncertainty to improve design decisions.

The resulting model is a multistage stochastic mixed-integer program (MSMIP) that

has no known practical general purpose solution methodology.

A heuristic procedure has been developed to solve this model. This heuristic

has been implemented using C++ and CPLEX 11.0. The results of the conducted

computational experiments presented in section 4 of Chapter VII demonstrate that

this heuristic produces satisfactory results. Furthermore, this heuristic can handle

problems that are no smaller than those tackled by current models as shown by sec-

tion 5.2 of Chapter VII. Finally, using the gradually unfolding uncertainty provides
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improved design decisions, which is reflected by the value of this MSMIP over its

SMIP counterparts as shown in section 5.1 of Chapter VII.

The foundation underlying this heuristic are the scenario-tree node formulation

of the SCND problem, the developed end-of-horizon (EoH) decomposition that pre-

processes the model to shrink its size, the nodal decomposition of this formulation,

and the reformulation of the resulting master problem into a Leontief flow problem.

The developed EoH decomposition preprocesses an MSMIP to shrink its size

and thereby reduces its solution time as shown in section 5 of Chapter V. This EoH

decomposition rests on exploiting the traditional treatment of the end-of-horizon

effect, which enables the independent optimization of each boundary node (a node

belonging to the last level of the scenario-tree for which design decisions apply).

This reduction in the MSMIP size is significant due to the scenario-tree structure:

the last two level of the scenario-tree constitute a large portion of its nodes. The

optimality of the resulting solution (with respect to the original MSMIP) is proved

mathematically when the cost discount rate is 0%. When this discount rate exceeds

0%, a bound on the optimality gap is deduced. Computational results of section 5

of Chapter V show that this bound never exceeds 6%. Despite their significantly

reduced sizes, the MSMIPs resulting from the EoH decomposition remain beyond

current computational technology for models reflecting the sizes of actual business

applications.

The developed EoH decomposition is neither SCND nor MSMIP specific; it per-

tains to any application sensitive to the EoH-effect and to special cases of MSMIP. To

demonstrate this versatility, additional computational experiments were conducted

for a two-stage stochastic mixed-integer program (SMIP) for this SCND problem.

The SMIP results echo those of the MSMIP in terms of solution time and bound on

optimality gap as shown in section 5.2 of Chapter V .
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A heuristic has been developed to solve the MSMIP resulting form the EoH

decomposition as shown in section 3 of Chapter VII. This heuristic rests on the nodal

decomposition of the MSMIP. As such, this heuristic provides the first application of

nodal decomposition into MSMIP and thereby demonstrates that this decomposition

can form the basis of viable MSMIP solution techniques.

The nodal decomposition of this MSMIP results into a conveniently structured

master problem that ties many otherwise independent nodal subproblems. These

nodal subproblems are still NP-hard but their smaller size renders them easier to

solve. The structure of these subproblems makes them amenable to solution via the

L-shaped method as shown in section 1.1 of Chapter VII.

The structure of the master problem allows its reformulation into a Leontief sub-

stitution flow problem (LSFP) that enjoys the integrality property and is amenable

to polynomial time solution algorithms. As shown in section 2 of Chapter VII, this

LSFP can be represented graphically using a hypergraph, in which vertices repre-

sent the solutions of the subproblems and hyperarcs represent the stage coupling

constraints of the MSMIP. This handling of the master problem is novel in MSMIP.

Conceptually, it reformulates the master problem to avoid the duality-gap. Tech-

nologically, it provides the first application of Leontief substitution flow problems

in MSMIP and thereby shows that hypergraphs lend themselves to loosely coupled

MSMIPs.

This LSFP is amenable to solution using the polynomial time shortest hyper-

path algorithm developed by Martin et al. (1990). To exploit the special structure

the SCND model provides, this shortest hyperpath algorithm has been customized,

as shown in section 2.4 of Chapter VII, and thereby a further reduction in solution

time has been achieved.

The developed heuristic relies on pulling together the solution algorithm for



122

the subproblems and that for the master problem. The principal mechanism of

this heuristic is that of type-I column generation procedures. The iterative nodal

solutions generated by the L-shaped method provide the restricted master problem

columns. The selection of the best solution among the generated columns relies

on the customized shortest hyperpath algorithm. By generating only a subset of all

feasible columns, this heuristic does not guarantee an optimal solution. Nevertheless,

the computational results indicate satisfactory results.

The results of the computational experiment of section 4 of Chapter VII show

that this heuristic produces remarkable savings in solution time as compared to

the direct application of MIP techniques over the DEM. As a result, this heuristic

enables tackling problem sizes that current technology fails to handle. The resulting

optimality gap never exceeds 6% and tends to shrink as the problem size increases.

This heuristic is an improvement over current models as shown in section 5

of Chapter VII. First, it can benefit from most acceleration techniques for current

models, as shown in section 5.2 of Chapter VII. Second, the results of the computa-

tional experiments show that the sub-optimal solutions generated by this heuristic

are always superior to the optimal solutions resulting from their SMIP counterparts

as shown in section 5.1 of Chapter VII. Furthermore, these results also show that

the value of MSMIP (over SMIP) ranges from 4% to 31.5% of the SMIP optimal

solution values. These figures are consistent with the results reported by a previous

study involving the value of MSMIP in capacity expansion problems (Huang and

Ahmed, 2009). The computation results also show that the value of MSMIP tend to

increase as the problem size increases.

This heuristic still applies when the SCND problem is modeled as a SMIP. In

this case, the restricted master problem is reformulated into a shortest path problem

as shown in section 3.2 of Chapter VI. Computational results for this SMIP indicate
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a 88% reduction in solution time as compared to its DEM and an 13% bound on the

optimality-gap.

2. Contributions

The contributions of this research fall into two fields: supply chain management and

stochastic programming. In supply chain management, this research contributes the

following:

1. Model the SCND problem more realistically than current models, and provide

a practical solution approach useful for business applications.

2. Provide computational results that show the value of the multistage modeling

of stochastic SCND problems over the traditional two-stage models.

3. Develop a practical solution approach for the SCND problem when modeled

as a two-stage mixed integer stochastic program (SMIP).

In stochastic programming, this research will contribute the following:

1. Provide the first application of nodal decomposition in MSMIP, showing that

nodal decomposition lends itself to loosely coupled MSMIPs, and therefore

can form the basis of a viable solution approach; and provide the first compu-

tational results involving the application of nodal decomposition in MSMIP,

illustrating the usefulness of this decomposition to MSMIPs.

2. Provide the first application of Leontief flow problems in stochastic program-

ming, and show that hypergraphs lend themselves to multistage stochastic

programs.
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3. Develop an End-of-Horizon Decomposition that significantly reduces the solu-

tion time for (two-stage and multi-stage) stochastic programs. This decompo-

sition is SCND-independent and therefore applies to any stochastic program

that models a problem sensitive to the end-of-horizon effect.

4. Extend the developed formulation and solution methodology to applications

beyond SCND problems by establishing guidelines to formulate a MSMIP such

that its decomposition results in conveniently structured master problem and

describing a methodology to reformulate the master problem into an easy to

solve, integral, Leontief flow problem.

3. Future research

This SCND model and heuristic can be deployed to investigate and potentially

resolve several SCND persisting concerns. This section explores this prospect.

3.1. Location-inventory problem

Traditionally, SCND has excluded inventory considerations when evaluating loca-

tion decisions (Owen and Daskin, 1998). Likewise, the scope of inventory planning

models do not extend beyond the relationships between stocking and demand points

(Melo et al., 2009). This decoupling is not unreasonable especially since location

selection and inventory planning belong to different hierarchical planning levels and

that each is already a complex task.

Nevertheless, in some applications inventory implications can discredit an oth-

erwise optimal location decision (Owen and Daskin, 1998). Examples include situa-

tions when safety stocks are sizable and associated with dominating costs, such as

in international sourcing and distribution networks.
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Effective models that integrate location decisions and inventory planning re-

main elusive. Risk pooling introduces a nonlinear cost term resulting in a "nasty

combinatorial optimization problem" (Shu et al., 2005).

The SCND model and heuristic developed in this dissertation have the potential

to account for this cost. This heuristic compiles the weights of hyperarcs (or arcs in

the case of the shortest path problem) before associating them with binary variables.

This makes these weights amenable to including nonlinear cost terms. By exploit-

ing this feature, a clever formulation and decomposition of the location-inventory

problem can build on this SCND model and heuristic.

3.2. Global supply chain network design

Unique uncertainties such as exchange rates influence design decisions for global

supply chains (Melo et al., 2009). Considering combinations of different demand re-

alizations and different exchange rates dramatically increases the number of possible

scenarios, which makes this problem much harder to solve.

With some extensions, the SCND heuristic can effectively tackle this problem.

In the SCND heuristic, solving the shortest hyperpath problem is computationally

efficient and can handle the implications of including global aspects of a supply chain

network. Providing the shortest hyperpath problem with its hypergraph with ver-

tices is the computationally taxing part. Generating these vertices involves solving

a SMIP problem for each node of the scenario-tree. The number of these nodes in-

creases as the number of scenarios does. Applying the sample average approximation

(SAA) technique can alleviate this exceedingly computational burden.

The SAA reduces the computational burden by repeatedly solving a reduced-

sized problem involving a subset of the scenarios. This method has been usefully

implemented to solve subsets of the SCND problems (c.f. Schutz et al. (2007) and
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Santoso et al. (2005)). However, these applications involve scenario formulations and

scenario decompositions. Adapting the SAA to nodal formulation and decomposition

on which this SCND heuristic relies is an interesting research question.

3.3. Robust supply chain network design

Klibi et al. (2010) defines a robust supply chain network as one capable of creating

value under any plausible future scenario. As such, aversion to performance vari-

ability under the different plausible scenarios is a cornerstone of the robust design

for supply chains. Invariably, minimizing performance variability involves objective

functions more complex than the traditional expected value of discounted cash flows

(Klibi et al., 2010). Snyder and Daskin (2007) discuss several objective functions

that enable robust models.

The shortest hyperpath problem provides an opportunity to include more com-

plex objective functions. The weight of each hyperarc is computed prior to solving

this problem. Computing this weight currently accommodates the expected value

objective function of the SCND model but could be extended to emphasis risk aver-

sion. An example is to include a measure of SCND performance variation for the

vertices to which a hyperarc leads. Properly designing the constituents of a hyper-

arc’s weight leads to a risk-averse hyperpath and is an attractive research direction.

3.4. Solution’s value assessment in dynamic problems

In models that adopt a rolling horizon strategy, only the solution of their first period

is implemented. Decisions for later periods are revised as the planning horizon is

updated and the problem resolved. Therefore, two feasible solutions that share

the same first period decisions but are otherwise different have the exact practical

implications and thus are practically equivalent.
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A measure that captures the effects of rolling a planning horizon is needed.

Objective functions that emphasize the entire horizon, such as the expected value

of discounted cash flows, fail to reflect this equivalence. On the other hand, a

greedy algorithm that neglects the long-term implications of immediate decisions

can produce poor solutions and is unsuitable for problems involving sizable upfront

investments, such as the SCND problems.

The structure of shortest hyperpath reformulation of the master problem of

this SCND model can help explore new measures of performance suitable for rolling

horizons. Devising a cost structure that assigns the same value for all paths leading

out each vertex can provide a starting point to eliminate the difference in objective

function values for practically equivalent solutions.

3.5. Methodology extension to other applications

Although the proposed methodology is rooted in SCND, it is generic enough and

amenable to applications beyond SCND. Identifying applications that stand to ben-

efit the most and tailoring the heuristic to suit them is a promising research area.

A candidate application must have a formulation with the following properties:

1. A formulation decomposable into a master problem and a set of nodal sub-

problems exists.

2. An iterative solution procedure to solve the nodal subproblems exists.

3. A feasible solution for the master problem can be constructed by selecting

exactly one feasible nodal solution per nodal subproblem.

These properties are inherent in diverse applications. Examples include loading

plans for container ships where a vessel’s stability and its partial unloading and
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reloading speed at successive ports are critical factors. In this case, hyperarcs rep-

resent reshuffling containers loaded in previous ports. Another example involves

setting prices for services or products where constantly adjusting prices carries con-

sequences. In this case, a hyperarc’s weight represents the cost associated with

marketing campaigns required to mitigate the effect of price adjustments between

successive periods.

Furthermore, this heuristic can be updated to fit other applications that do not

possess all those properties. For example, the third property disallows constraints

excluding specific combinations of feasible nodal subproblems. However, accommo-

dating such constraints is straight-forward if they involve only a parent node and/or

its immediate descendants. In this case, the weight of the specific hyperarc joining

the infeasible combination of vertices can be set to infinity. Constraints that exclude

combining specific vertices of distant nodes are trickier to accommodate and require

further investigation. Devising a cost structure that penalizes the entire hyperpath

containing the offending vertices can resolve this issue.

3.6. SCND heuristic extension into an optimization algorithm

Many directions to extend this SCND heuristic into an algorithm that guarantees an

optimal solution exist. Generating additional hyperarcs that have the potential to

improve the solution is a common goal among these directions. Directly generating

these hyperarcs can be computationally burdensome since it involves solving a sub-

problem that combines multiple scenario-tree nodes. In contrast, generating vertices

that enable constructing a combination of promising hyperacs carry more potential.

Generating these vertices involves either identifying conditions that guide the

search for promising vertices that can improve the incumbent shortest hyperpath

or conditions that prevent the generation of unpromising vertices that could not



129

possibly improve it.

One way to generate promising vertices on the fly involves a type-II column

generation procedure (Wilhelm, 2001). In this case, information gained from the

incumbent shortest hyperpath guides the search for new vertices. The difficulty

lurking in this direction emerges from the dependency of a hyperarc’s weight on all

the vertices it joins. Isolating the effect of each vertex on a hyperarc’s cost can be

challenging yet very effective if attained.

One way to hinder the generation of unpromising vertices involves excluding

them from the feasible space of nodal subproblems using exclusion cuts. Deriving

these cuts requires deducing a strong lower bound on the total weight of a feasible

shortest hyperpath.
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MSMIPS FOR THE FIRST PROBLEM SIZE
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Table XXX. Solution values for MSMIP instance A2 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 396.1 396.1 0.00% 0.00%

2% 100 375.4 375.1 0.10% 0.23%

2% 50 261.3 260.9 0.13% 0.29%

2% 20 146.5 146.2 0.19% 0.31%

2% 10 84.7 84.5 0.21% 0.46%

2% 5 52.5 52.4 0.24% 0.53%

5% infinity 162.1 161.9 0.11% 0.44%

5% 100 160.2 160.0 0.12% 0.45%

5% 50 139.3 139.0 0.18% 0.58%

5% 20 91.8 91.6 0.22% 0.62%

5% 10 63.7 63.5 0.30% 0.65%

5% 5 49.4 49.2 0.35% 0.67%

10% infinity 63.1 62.2 1.46% 3.70%

10% 100 62.6 61.6 1.60% 3.76%

10% 50 60.8 59.6 1.95% 4.08%

10% 20 54.7 53.6 2.10% 4.49%

10% 10 43.3 42.1 2.95% 4.59%

10% 5 34.2 33.1 2.97% 4.74%

20% infinity 47.4 46.2 2.46% 4.00%

20% 100 45.6 44.4 2.60% 4.07%

20% 50 43.2 42.0 2.95% 4.13%

20% 20 42.2 40.9 3.10% 4.21%

20% 10 30.5 29.5 3.15% 4.81%

20% 5 24.1 23.3 3.25% 4.95%

50% infinity 4.7 4.6 3.05% 5.22%

50% 100 4.5 4.4 3.17% 5.31%

50% 50 4.4 4.3 3.20% 5.73%

50% 20 4.4 4.3 3.20% 5.84%

50% 10 4.3 4.1 3.80% 5.91%

50% 5 4.2 4.1 3.91% 5.98%
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Table XXXI. Solution times for MSMIP instance A2 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 46.69 0.48 1.03% 4.98

2% 100 60.72 0.48 0.79% 6.70

2% 50 26.88 0.47 1.76% 5.18

2% 20 28.00 0.47 1.67% 5.76

2% 10 53.98 0.48 0.89% 6.40

2% 5 29.67 0.47 1.57% 5.74

5% infinity 40.58 0.44 1.07% 6.59

5% 100 51.15 0.43 0.85% 7.08

5% 50 43.28 0.43 1.00% 6.51

5% 20 51.96 0.45 0.86% 7.44

5% 10 34.95 0.43 1.24% 7.21

5% 5 43.97 0.44 1.00% 8.25

10% infinity 55.46 0.50 0.91% 7.33

10% 100 50.08 0.49 0.99% 6.00

10% 50 26.52 0.50 1.90% 5.08

10% 20 48.56 0.50 1.03% 8.78

10% 10 50.42 0.50 0.99% 5.86

10% 5 43.06 0.51 1.17% 6.52

20% infinity 41.58 0.58 1.40% 3.54

20% 100 30.10 0.58 1.94% 4.74

20% 50 36.12 0.58 1.60% 5.39

20% 20 43.16 0.58 1.34% 4.70

20% 10 27.16 0.59 2.16% 4.93

20% 5 26.01 0.59 2.25% 3.33

50% infinity 70.23 0.49 0.70% 4.34

50% 100 50.46 0.48 0.96% 6.50

50% 50 32.23 0.50 1.54% 5.49

50% 20 74.94 0.49 0.65% 6.43

50% 10 28.52 0.49 1.73% 4.57

50% 5 50.18 0.49 0.98% 5.28
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Table XXXII. Solution values for MSMIP instance A3 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 934.9 934.9 0.00% 0.26%

2% 100 862.0 862.0 0.00% 0.26%

2% 50 594.3 594.3 0.00% 0.36%

2% 20 356.2 356.2 0.02% 0.37%

2% 10 199.3 199.0 0.16% 0.41%

2% 5 131.0 130.7 0.21% 0.48%

5% infinity 349.9 349.4 0.13% 0.40%

5% 100 349.6 349.1 0.13% 0.41%

5% 50 325.6 325.1 0.17% 0.57%

5% 20 226.7 226.2 0.22% 0.67%

5% 10 163.1 162.5 0.32% 0.70%

5% 5 103.6 103.0 0.49% 0.82%

10% infinity 158.7 158.4 0.21% 1.41%

10% 100 156.0 155.6 0.24% 1.49%

10% 50 153.9 153.4 0.34% 1.55%

10% 20 134.3 133.5 0.60% 1.58%

10% 10 112.1 111.2 0.79% 1.72%

10% 5 81.7 81.0 0.96% 1.82%

20% infinity 100.8 100.0 0.79% 2.25%

20% 100 94.1 93.3 0.86% 2.50%

20% 50 94.0 93.1 0.90% 2.53%

20% 20 93.5 92.4 1.15% 2.79%

20% 10 55.0 54.4 1.26% 2.92%

20% 5 54.1 53.3 1.58% 2.98%

50% infinity 10.2 10.1 1.38% 3.40%

50% 100 10.2 10.0 1.39% 3.47%

50% 50 10.1 10.0 1.59% 3.60%

50% 20 10.1 9.9 2.07% 3.82%

50% 10 10.1 9.9 2.27% 3.55%

50% 5 9.5 9.3 2.73% 3.53%
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Table XXXIII. Solution times for MSMIP instance A3 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 37.82 1.16 3.08% 7.76

2% 100 41.40 1.22 2.94% 6.71

2% 50 75.54 1.48 1.96% 5.79

2% 20 59.23 1.44 2.44% 7.18

2% 10 62.98 1.82 2.89% 6.39

2% 5 65.60 1.35 2.06% 6.19

5% infinity 82.30 2.48 3.01% 8.29

5% 100 75.31 2.15 2.86% 8.87

5% 50 71.39 2.20 3.08% 8.19

5% 20 77.70 2.29 2.95% 8.59

5% 10 42.39 2.56 6.05% 8.71

5% 5 37.29 2.08 5.57% 8.10

10% infinity 50.09 1.67 3.33% 6.85

10% 100 51.45 1.88 3.65% 7.12

10% 50 66.57 1.66 2.50% 7.04

10% 20 67.54 1.41 2.09% 7.22

10% 10 23.20 1.39 6.00% 6.92

10% 5 21.44 1.24 5.78% 6.88

20% infinity 75.33 1.44 1.91% 7.51

20% 100 67.07 1.65 2.46% 7.77

20% 50 61.01 1.59 2.60% 7.75

20% 20 88.67 1.55 1.75% 7.10

20% 10 66.63 1.79 2.68% 7.35

20% 5 79.64 1.05 1.32% 6.99

50% infinity 32.60 1.43 4.40% 4.83

50% 100 33.72 1.85 5.50% 4.57

50% 50 36.18 1.62 4.48% 4.52

50% 20 38.27 1.73 4.52% 4.76

50% 10 38.02 1.98 5.22% 4.21

50% 5 25.63 1.40 5.46% 4.02
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Table XXXIV. Solution values for MSMIP instance A4 under various combinations

of discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 3,934.3 3,934.3 0.00% 0.00%

2% 100 3,364.2 3,364.2 0.00% 0.08%

2% 50 2,394.5 2,393.2 0.05% 0.15%

2% 20 1,317.8 1,316.8 0.08% 0.19%

2% 10 871.2 870.4 0.09% 0.23%

2% 5 526.4 525.8 0.11% 0.26%

5% infinity 1,512.5 1,499.7 0.85% 1.15%

5% 100 1,490.1 1,475.4 0.99% 1.76%

5% 50 1,314.3 1,298.5 1.20% 1.86%

5% 20 977.3 964.7 1.29% 2.10%

5% 10 646.8 638.3 1.32% 2.36%

5% 5 448.3 442.3 1.34% 2.41%

10% infinity 756.9 747.8 1.20% 2.39%

10% 100 701.6 692.5 1.30% 2.57%

10% 50 644.0 633.8 1.58% 3.38%

10% 20 545.4 535.2 1.87% 3.62%

10% 10 438.0 429.5 1.93% 3.94%

10% 5 325.9 319.6 1.96% 3.98%

20% infinity 444.6 435.6 2.04% 3.98%

20% 100 427.5 418.7 2.05% 3.99%

20% 50 403.4 394.8 2.13% 4.02%

20% 20 369.4 361.5 2.14% 4.24%

20% 10 235.3 230.0 2.24% 4.27%

20% 5 218.0 211.9 2.80% 4.76%

50% infinity 42.0 40.9 2.53% 4.31%

50% 100 40.5 39.4 2.72% 4.35%

50% 50 39.1 38.0 2.81% 4.49%

50% 20 38.7 37.6 2.88% 4.69%

50% 10 38.5 37.3 3.02% 4.87%

50% 5 38.4 37.2 3.11% 5.15%
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Table XXXV. Solution times for MSMIP instance A4 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 49.83 0.35 0.70% 5.37

2% 100 49.18 0.35 0.71% 5.67

2% 50 45.17 0.35 0.76% 5.57

2% 20 47.64 0.34 0.72% 5.12

2% 10 52.53 0.35 0.67% 5.81

2% 5 27.08 0.34 1.26% 5.60

5% infinity 39.64 0.36 0.90% 5.40

5% 100 49.40 0.36 0.72% 5.81

5% 50 104.15 0.36 0.34% 5.41

5% 20 59.53 0.37 0.62% 5.74

5% 10 30.20 0.36 1.18% 5.05

5% 5 29.17 0.36 1.24% 5.61

10% infinity 51.30 0.37 0.72% 3.16

10% 100 50.53 0.36 0.71% 3.18

10% 50 50.73 0.37 0.72% 3.74

10% 20 20.90 0.37 1.75% 3.43

10% 10 54.58 0.36 0.67% 3.83

10% 5 39.28 0.37 0.94% 3.47

20% infinity 49.35 0.37 0.74% 4.57

20% 100 45.26 0.37 0.81% 4.34

20% 50 45.70 0.36 0.79% 5.00

20% 20 45.70 0.36 0.79% 4.40

20% 10 24.29 0.37 1.51% 4.26

20% 5 49.81 0.37 0.74% 4.99

50% infinity 21.89 0.36 1.65% 6.15

50% 100 23.72 0.35 1.49% 6.27

50% 50 21.08 0.36 1.72% 5.88

50% 20 22.52 0.36 1.58% 6.12

50% 10 20.43 0.36 1.76% 5.37

50% 5 22.10 0.36 1.62% 5.42
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Table XXXVI. Solution values for MSMIP instance A5 under various combinations

of discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 34,302.9 34,302.9 0.00% 0.00%

2% 100 29,785.7 29,785.7 0.00% 0.00%

2% 50 22,155.1 22,155.1 0.00% 0.10%

2% 20 12,298.1 12,293.6 0.04% 0.14%

2% 10 7,482.9 7,466.7 0.22% 0.71%

2% 5 4,708.5 4,683.1 0.54% 0.72%

5% infinity 12,699.1 12,699.1 0.00% 0.00%

5% 100 12,634.6 12,634.6 0.00% 0.10%

5% 50 11,766.1 11,760.2 0.05% 0.13%

5% 20 8,497.2 8,488.7 0.10% 0.40%

5% 10 5,798.5 5,781.3 0.30% 1.81%

5% 5 3,874.2 3,843.6 0.79% 1.88%

10% infinity 5,579.7 5,579.7 0.00% 0.00%

10% 100 5,581.2 5,578.4 0.05% 0.16%

10% 50 5,569.8 5,556.7 0.24% 0.37%

10% 20 4,979.9 4,952.0 0.56% 1.17%

10% 10 3,917.8 3,874.6 1.10% 1.18%

10% 5 2,851.9 2,817.0 1.22% 1.78%

20% infinity 3,658.2 3,620.3 1.03% 1.56%

20% 100 3,526.0 3,485.0 1.16% 1.58%

20% 50 3,482.8 3,429.9 1.52% 1.96%

20% 20 3,416.4 3,359.6 1.66% 2.14%

20% 10 2,025.9 1,989.6 1.79% 2.21%

20% 5 1,986.4 1,949.7 1.85% 2.55%

50% infinity 375.0 366.7 2.21% 4.19%

50% 100 373.4 364.4 2.41% 4.23%

50% 50 367.2 357.7 2.60% 4.32%

50% 20 366.6 356.9 2.66% 4.62%

50% 10 362.8 353.1 2.68% 4.67%

50% 5 338.8 329.3 2.78% 4.87%
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Table XXXVII. Solution times for MSMIP instance A5 under various combinations

of discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 43.0 1.7 3.98% 9.2

2% 100 43.1 1.7 3.97% 9.2

2% 50 40.8 1.7 4.15% 9.6

2% 20 34.9 1.7 4.81% 9.0

2% 10 45.3 1.7 3.78% 9.4

2% 5 37.4 1.7 4.49% 8.9

5% infinity 43.1 1.6 3.73% 3.9

5% 100 41.9 1.6 3.82% 4.3

5% 50 37.5 1.6 4.28% 4.2

5% 20 33.4 1.6 4.90% 4.1

5% 10 21.5 1.6 7.45% 4.4

5% 5 34.7 1.6 4.68% 4.1

10% infinity 42.5 1.8 4.15% 7.3

10% 100 44.8 1.7 3.89% 7.4

10% 50 38.3 1.8 4.61% 7.4

10% 20 55.5 1.8 3.17% 7.5

10% 10 47.6 1.8 3.69% 7.2

10% 5 35.1 1.8 5.04% 7.0

20% infinity 51.9 1.9 3.75% 8.0

20% 100 37.5 2.0 5.20% 8.3

20% 50 33.9 1.9 5.71% 8.2

20% 20 44.7 1.9 4.33% 8.3

20% 10 24.0 2.0 8.16% 8.0

20% 5 43.5 2.0 4.49% 8.1

50% infinity 42.4 1.7 4.12% 8.6

50% 100 40.0 1.7 4.30% 8.6

50% 50 35.5 1.8 4.93% 8.5

50% 20 45.6 1.7 3.79% 8.6

50% 10 34.3 1.7 5.07% 8.8

50% 5 44.2 1.7 3.92% 8.6
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APPENDIX B

COMPUTATIONAL RESULTS FOR THE EOH DECOMPOSITION OF

MSMIPS FOR THE SECOND PROBLEM SIZE



148

Table XXXVIII. Solution values for MSMIP instance B2 under various combinations

of discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

DEM profit at
one hour runtime

($ 1,000)
Heuristic solution
profit ($ 1,000)

Improvement
over DEM

Bound on
optimality gap

2% infinity 302.4 311.3 2.8% 0.5%

2% 100 261.4 270.3 3.3% 0.6%

2% 50 190.9 201.8 5.4% 0.7%

2% 20 110.1 112.4 2.0% 0.7%

2% 10 65.6 68.7 4.5% 0.7%

2% 5 41.7 43.5 4.3% 0.8%

5% infinity 110.3 115.8 4.7% 0.8%

5% 100 112.2 114.5 2.0% 1.0%

5% 50 105.0 109.7 4.2% 1.2%

5% 20 73.4 76.7 4.2% 1.3%

5% 10 55.1 57.3 3.8% 1.3%

5% 5 32.7 34.6 5.5% 1.3%

10% infinity 51.5 52.9 2.6% 1.5%

10% 100 47.7 50.6 5.6% 1.6%

10% 50 50.2 51.9 3.3% 1.7%

10% 20 49.7 51.2 2.8% 1.7%

10% 10 33.1 34.8 4.9% 1.8%

10% 5 27.2 28.2 3.7% 1.8%

20% infinity 37.6 39.5 4.7% 2.0%

20% 100 33.1 35.1 5.6% 2.0%

20% 50 33.5 34.7 3.4% 2.1%

20% 20 29.9 31.2 4.3% 2.3%

20% 10 17.1 17.8 4.1% 2.4%

20% 5 16.0 16.8 4.6% 2.4%

50% infinity 6.1 6.3 3.9% 3.4%

50% 100 3.9 4.0 2.2% 3.5%

50% 50 3.9 4.0 2.7% 3.6%

50% 20 3.9 4.0 3.5% 3.7%

50% 10 3.8 3.9 3.7% 3.8%

50% 5 2.9 3.0 2.8% 4.1%
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Table XXXIX. Solution times for MSMIP instance B2 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
DEM solution
time (minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/DEM

Solution time
for bound on
gap (minutes)

2% infinity 60.0 26.8 45% 116.0

2% 100 60.0 27.8 46% 117.0

2% 50 60.0 29.8 50% 111.8

2% 20 60.0 32.6 54% 116.9

2% 10 60.0 31.7 53% 118.4

2% 5 60.1 32.4 54% 118.6

5% infinity 60.1 29.9 50% 84.4

5% 100 60.0 30.3 51% 86.2

5% 50 60.1 29.2 49% 81.4

5% 20 60.1 34.6 58% 97.6

5% 10 60.1 23.1 38% 90.9

5% 5 60.1 36.9 61% 89.5

10% infinity 60.0 27.1 45% 87.5

10% 100 60.0 38.8 65% 78.2

10% 50 60.0 31.1 52% 77.6

10% 20 60.0 36.0 60% 82.8

10% 10 60.1 40.6 68% 86.3

10% 5 60.1 31.9 53% 77.7

20% infinity 60.0 34.9 58% 108.3

20% 100 60.0 43.4 72% 110.3

20% 50 60.1 42.0 70% 102.2

20% 20 60.1 42.1 70% 114.7

20% 10 60.1 35.0 58% 117.2

20% 5 60.0 31.4 52% 141.0

50% infinity 60.0 25.5 42% 81.8

50% 100 60.0 34.9 58% 86.1

50% 50 60.0 31.6 53% 82.2

50% 20 60.1 32.5 54% 88.1

50% 10 60.0 30.4 51% 83.2

50% 5 60.0 33.1 55% 82.3



150

Table XL. Solution values for MSMIP instance B2 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

DEM profit at
one hour runtime

($ 1,000)
Heuristic solution
profit ($ 1,000)

Improvement
over DEM

Bound on
optimality gap

2% infinity 15,071.5 15,562.2 3.2% 0.7%

2% 100 12,954.8 13,498.1 4.0% 0.8%

2% 50 9,768.3 10,020.1 2.5% 0.9%

2% 20 5,516.6 5,550.9 0.6% 1.1%

2% 10 3,225.2 3,368.9 4.3% 1.1%

2% 5 2,072.4 2,102.5 1.4% 1.2%

5% infinity 5,514.2 5,760.4 4.3% 0.8%

5% 100 5,672.5 5,715.3 0.7% 1.1%

5% 50 5,174.1 5,321.6 2.8% 1.3%

5% 20 3,760.9 3,834.5 1.9% 1.4%

5% 10 2,508.6 2,607.5 3.8% 1.4%

5% 5 1,688.3 1,721.8 1.9% 1.5%

10% infinity 2,469.2 2,529.8 2.4% 1.4%

10% 100 2,466.0 2,521.0 2.2% 1.4%

10% 50 2,423.5 2,506.7 3.3% 1.5%

10% 20 2,159.4 2,226.6 3.0% 1.6%

10% 10 1,687.4 1,730.6 2.5% 1.6%

10% 5 1,189.5 1,233.7 3.6% 1.8%

20% infinity 1,666.0 1,700.7 2.0% 2.0%

20% 100 1,529.0 1,599.1 4.4% 2.1%

20% 50 1,534.0 1,556.9 1.5% 2.2%

20% 20 1,478.1 1,510.4 2.1% 2.2%

20% 10 857.5 881.9 2.8% 2.3%

20% 5 810.6 835.0 2.9% 2.4%

50% infinity 165.8 169.4 2.2% 3.2%

50% 100 163.9 167.5 2.2% 3.6%

50% 50 165.7 167.2 0.9% 3.7%

50% 20 162.1 162.9 0.5% 3.7%

50% 10 152.4 155.6 2.0% 3.8%

50% 5 139.2 145.3 4.2% 4.1%
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Table XLI. Solution times for MSMIP instance B3 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
DEM solution
time (minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/DEM

Solution time
for bound on
gap (minutes)

2% infinity 60.0 26.3 44% 113.4

2% 100 60.0 20.6 34% 114.6

2% 50 60.0 29.1 49% 113.0

2% 20 60.1 28.8 48% 120.0

2% 10 60.0 26.5 44% 116.6

2% 5 60.0 27.0 45% 119.5

5% infinity 60.1 19.8 33% 113.1

5% 100 60.0 27.4 46% 118.9

5% 50 60.1 20.2 34% 112.8

5% 20 60.0 22.6 38% 116.8

5% 10 60.1 23.8 40% 115.4

5% 5 60.0 25.7 43% 112.3

10% infinity 60.0 28.9 48% 115.4

10% 100 60.0 32.5 54% 111.3

10% 50 60.0 26.2 44% 113.1

10% 20 60.1 27.6 46% 119.9

10% 10 60.0 22.9 38% 112.7

10% 5 60.1 31.5 52% 117.4

20% infinity 60.0 24.7 41% 111.4

20% 100 60.1 27.3 45% 114.2

20% 50 60.1 26.9 45% 115.7

20% 20 60.0 12.4 21% 119.1

20% 10 60.1 24.9 41% 114.6

20% 5 60.0 26.8 45% 112.6

50% infinity 60.0 27.6 46% 113.8

50% 100 60.0 30.6 51% 121.0

50% 50 60.1 25.7 43% 117.8

50% 20 60.1 25.0 42% 117.2

50% 10 60.1 28.3 47% 117.4

50% 5 60.0 27.9 46% 116.8
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Table XLII. Solution values for MSMIP instance B4 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

DEM profit at
one hour runtime

($ 1,000)
Heuristic solution
profit ($ 1,000)

Improvement
over DEM

Bound on
optimality gap

2% infinity 111,946.5 115,251.9 2.9% 0.5%

2% 100 97,365.7 99,990.0 2.6% 0.6%

2% 50 71,376.1 74,239.1 3.9% 0.6%

2% 20 39,815.2 41,135.2 3.2% 0.7%

2% 10 24,213.6 24,936.7 2.9% 0.7%

2% 5 15,086.5 15,601.3 3.3% 0.8%

5% infinity 40,546.6 42,648.9 4.9% 1.2%

5% 100 40,305.9 42,363.8 4.9% 1.3%

5% 50 37,315.3 39,430.9 5.4% 1.3%

5% 20 26,961.1 28,411.1 5.1% 1.4%

5% 10 18,208.4 19,316.6 5.7% 1.4%

5% 5 12,047.5 12,760.7 5.6% 1.4%

10% infinity 17,925.0 18,735.6 4.3% 1.4%

10% 100 17,906.9 18,696.0 4.2% 1.4%

10% 50 17,744.5 18,577.2 4.5% 1.7%

10% 20 15,881.2 16,498.9 3.7% 1.7%

10% 10 12,310.4 12,831.3 4.1% 1.9%

10% 5 8,831.6 9,130.2 3.3% 1.9%

20% infinity 11,752.1 12,242.0 4.0% 2.1%

20% 100 11,352.4 11,819.2 3.9% 2.2%

20% 50 11,179.3 11,552.3 3.2% 2.2%

20% 20 10,734.9 11,205.6 4.2% 2.2%

20% 10 6,300.5 6,546.9 3.8% 2.5%

20% 5 5,873.2 6,205.3 5.4% 2.5%

50% infinity 1,231.3 1,256.7 2.0% 2.9%

50% 100 1,212.4 1,239.4 2.2% 3.0%

50% 50 1,192.9 1,225.3 2.6% 3.0%

50% 20 1,164.6 1,188.5 2.0% 3.0%

50% 10 1,123.6 1,151.0 2.4% 3.2%

50% 5 1,039.7 1,060.9 2.0% 3.3%
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Table XLIII. Solution times for MSMIP instance B4 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
DEM solution
time (minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/DEM

Solution time
for bound on
gap (minutes)

2% infinity 60.1 19.4 32% 48.1

2% 100 60.1 23.4 39% 50.0

2% 50 60.1 21.9 36% 46.6

2% 20 60.1 21.7 36% 50.6

2% 10 60.1 20.2 34% 45.8

2% 5 60.0 22.1 37% 47.5

5% infinity 60.1 17.9 30% 53.0

5% 100 60.1 20.3 34% 52.2

5% 50 60.1 20.8 35% 52.6

5% 20 60.0 20.3 34% 50.5

5% 10 60.1 20.4 34% 49.3

5% 5 60.1 19.5 32% 49.3

10% infinity 60.1 21.6 36% 70.6

10% 100 60.1 22.8 38% 75.6

10% 50 60.1 23.1 38% 75.9

10% 20 60.0 22.1 37% 72.4

10% 10 60.1 22.1 37% 73.7

10% 5 60.0 21.7 36% 76.6

20% infinity 60.1 24.5 41% 68.2

20% 100 60.0 23.8 40% 65.3

20% 50 60.1 25.2 42% 67.6

20% 20 60.1 24.7 41% 64.2

20% 10 60.1 26.3 44% 66.2

20% 5 60.1 26.8 45% 66.6

50% infinity 60.1 21.7 36% 57.9

50% 100 60.0 21.5 36% 53.9

50% 50 60.0 21.8 36% 52.0

50% 20 60.2 20.0 33% 52.1

50% 10 60.0 19.9 33% 54.3

50% 5 60.1 21.7 36% 51.7



154

Table XLIV. Solution values for MSMIP instance B5 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

DEM profit at
one hour runtime

($ 1,000)
Heuristic solution
profit ($ 1,000)

Improvement
over DEM

Bound on
optimality gap

2% infinity 18,311.9 18,744.3 2.31% 0.08%

2% 100 15,863.6 16,256.6 2.42% 0.09%

2% 50 11,779.0 12,070.8 2.42% 0.16%

2% 20 6,549.6 6,686.8 2.05% 0.22%

2% 10 3,937.3 4,052.3 2.84% 0.29%

2% 5 2,412.9 2,532.1 4.71% 0.40%

5% infinity 6,689.4 6,934.7 3.54% 0.11%

5% 100 6,721.6 6,884.3 2.36% 0.12%

5% 50 6,254.5 6,408.4 2.40% 0.14%

5% 20 4,505.7 4,617.6 2.42% 0.15%

5% 10 3,024.0 3,136.3 3.58% 0.19%

5% 5 2,005.3 2,072.8 3.25% 0.28%

10% infinity 3,795.5 3,957.8 4.10% 0.23%

10% 100 3,500.3 3,642.9 3.92% 0.25%

10% 50 2,905.5 3,015.1 3.63% 0.26%

10% 20 2,619.8 2,677.6 2.16% 0.32%

10% 10 1,995.6 2,082.0 4.15% 0.37%

10% 5 1,423.9 1,481.1 3.86% 0.39%

20% infinity 2,094.6 2,186.2 4.19% 1.22%

20% 100 2,113.6 2,160.0 2.15% 1.27%

20% 50 1,796.7 1,873.7 4.11% 1.35%

20% 20 1,753.1 1,817.5 3.54% 1.36%

20% 10 1,019.1 1,059.0 3.77% 1.46%

20% 5 961.0 1,002.9 4.17% 1.71%

50% infinity 194.8 201.3 3.23% 2.42%

50% 100 192.9 198.1 2.61% 2.54%

50% 50 188.8 193.7 2.55% 2.63%

50% 20 185.3 190.5 2.74% 2.64%

50% 10 176.9 184.9 4.34% 2.63%

50% 5 162.1 168.1 3.61% 2.97%



155

Table XLV. Solution times for MSMIP instance B5 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 60.0 18.9 31% 55.1

2% 100 60.0 19.3 32% 56.3

2% 50 60.0 18.5 31% 58.1

2% 20 60.1 20.7 35% 59.9

2% 10 60.1 21.8 36% 58.0

2% 5 60.1 26.7 44% 56.9

5% infinity 60.1 21.8 36% 71.5

5% 100 60.0 20.6 34% 71.9

5% 50 60.0 19.1 32% 73.0

5% 20 60.1 19.6 33% 75.2

5% 10 60.0 21.4 36% 71.0

5% 5 60.1 20.8 35% 72.3

10% infinity 60.1 27.5 46% 57.8

10% 100 60.0 24.0 40% 54.5

10% 50 60.1 19.3 32% 56.2

10% 20 60.1 22.8 38% 58.3

10% 10 60.0 26.2 44% 52.9

10% 5 60.0 20.9 35% 57.2

20% infinity 60.0 29.7 49% 65.0

20% 100 60.0 22.8 38% 63.1

20% 50 60.1 31.5 52% 67.9

20% 20 60.1 27.4 46% 68.8

20% 10 60.0 29.4 49% 66.6

20% 5 60.1 28.9 48% 66.8

50% infinity 60.0 23.7 40% 36.6

50% 100 60.1 23.7 39% 35.2

50% 50 60.0 23.4 39% 34.5

50% 20 60.0 23.6 39% 32.9

50% 10 60.0 27.4 46% 32.4

50% 5 60.0 26.4 44% 38.5
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APPENDIX C

COMPUTATIONAL RESULTS FOR THE EOH DECOMPOSITION OF

MSMIPS FOR THE THIRD PROBLEM SIZE
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Table XLVI. Solution values for MSMIP instance C2 under various combinations of

discount rates and EoH approximations

Discount rate

End-of-horizon
approximation

(years)

DEM profit at
two hours runtime

($ 1,000)
Heuristic solution
profit ($ 1,000)

Improvement over
DEM

2% infinity 614,758.2 700,759.4 12.3%

2% 100 508,612.0 591,275.2 14.0%

2% 50 375,176.4 448,309.7 16.3%

2% 20 232,037.5 268,083.2 13.4%

2% 10 135,681.5 160,810.7 15.6%

2% 5 85,274.5 99,380.4 14.2%

5% infinity 265,429.6 304,394.6 12.8%

5% 100 262,980.4 303,540.0 13.4%

5% 50 225,624.2 262,785.6 14.1%

5% 20 166,367.2 190,783.6 12.8%

5% 10 102,738.9 123,066.8 16.5%

5% 5 80,859.5 95,034.1 14.9%

10% infinity 140,166.7 166,371.1 15.8%

10% 100 132,149.0 158,339.5 16.5%

10% 50 120,497.4 140,447.9 14.2%

10% 20 102,132.3 122,908.3 16.9%

10% 10 79,514.2 97,240.9 18.2%

10% 5 71,212.9 84,067.4 15.3%

20% infinity 99,713.0 116,242.3 14.2%

20% 100 76,847.8 94,294.8 18.5%

20% 50 75,719.1 89,284.2 15.2%

20% 20 71,041.4 84,443.4 15.9%

20% 10 41,476.5 49,610.9 16.4%

20% 5 35,775.5 42,098.5 15.0%

50% infinity 47,240.9 53,978.8 12.5%

50% 100 46,585.5 52,246.5 10.8%

50% 50 43,844.0 49,169.7 10.8%

50% 20 36,708.2 42,222.0 13.1%

50% 10 33,231.5 37,156.0 10.6%

50% 5 27,017.2 30,440.1 11.2%
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Table XLVII. Solution times for MSMIP instance C2 under various combinations of

discount rates and EoH approximations
Discount

rate
End-of-horizon

approximation (years)
DEM solution
time (minutes)

Heuristic solution
time (minutes)

Solution time ratio:
heuristic/DEM

2% infinity 120.1 65.2 54%

2% 100 120.1 51.9 43%

2% 50 120.1 57.5 48%

2% 20 120.1 62.5 52%

2% 10 120.1 47.1 39%

2% 5 120.0 44.4 37%

5% infinity 120.1 48.9 41%

5% 100 120.0 46.3 39%

5% 50 120.1 69.5 58%

5% 20 120.0 50.4 42%

5% 10 120.1 41.9 35%

5% 5 120.0 58.0 48%

10% infinity 120.1 61.9 52%

10% 100 120.0 53.1 44%

10% 50 120.1 43.3 36%

10% 20 121.1 68.5 57%

10% 10 120.0 56.8 47%

10% 5 120.0 63.3 53%

20% infinity 120.1 64.6 54%

20% 100 120.1 82.3 68%

20% 50 120.0 76.5 64%

20% 20 120.1 64.9 54%

20% 10 120.1 65.2 54%

20% 5 120.1 62.1 52%

50% infinity 120.0 72.5 60%

50% 100 120.0 68.0 57%

50% 50 120.1 71.2 59%

50% 20 120.1 73.0 61%

50% 10 120.1 73.9 62%

50% 5 120.1 72.9 61%
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Table XLVIII. Solution values for MSMIP instance C3 under various combinations of

discount rates and EoH approximations

Discount rate

End-of-horizon
approximation

(years)

DEM profit at
two hours runtime

($ 1,000)
Heuristic solution
profit ($ 1,000)

Improvement over
DEM

2% infinity 8,284.5 9,337.6 11.3%

2% 100 7,086.6 8,098.3 12.5%

2% 50 5,248.1 6,012.6 12.7%

2% 20 2,933.2 3,330.5 11.9%

2% 10 1,771.6 2,021.7 12.4%

2% 5 1,110.2 1,264.2 12.2%

5% infinity 3,121.2 3,514.8 11.2%

5% 100 2,973.9 3,429.7 13.3%

5% 50 2,803.1 3,194.5 12.3%

5% 20 1,960.3 2,300.5 14.8%

5% 10 1,320.3 1,562.8 15.5%

5% 5 903.4 1,034.8 12.7%

10% infinity 1,367.4 1,523.4 10.2%

10% 100 1,312.3 1,514.2 13.3%

10% 50 1,287.2 1,504.7 14.5%

10% 20 1,175.0 1,336.4 12.1%

10% 10 890.2 1,039.2 14.3%

10% 5 655.2 740.9 11.6%

20% infinity 885.4 997.2 11.2%

20% 100 844.5 957.4 11.8%

20% 50 839.4 935.3 10.2%

20% 20 823.2 905.9 9.1%

20% 10 462.3 529.7 12.7%

20% 5 431.1 500.1 13.8%

50% infinity 90.4 102.2 11.5%

50% 100 89.9 101.3 11.2%

50% 50 88.9 100.5 11.5%

50% 20 86.7 96.2 9.9%

50% 10 86.0 94.9 9.3%

50% 5 78.4 86.8 9.7%
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Table XLIX. Solution times for MSMIP instance C3 under various combinations of

discount rates and EoH approximations
Discount

rate
End-of-horizon

approximation (years)
DEM solution
time (minutes)

Heuristic solution
time (minutes)

Solution time ratio:
heuristic/DEM

2% infinity 120.0 57.7 48%

2% 100 120.0 63.7 53%

2% 50 120.0 51.8 43%

2% 20 120.0 57.6 48%

2% 10 120.1 56.8 47%

2% 5 120.0 54.1 45%

5% infinity 120.1 37.7 31%

5% 100 120.0 29.8 25%

5% 50 120.1 42.7 36%

5% 20 120.0 39.1 33%

5% 10 120.0 34.3 29%

5% 5 120.0 59.2 49%

10% infinity 120.0 48.6 40%

10% 100 120.1 57.9 48%

10% 50 120.0 57.3 48%

10% 20 120.1 41.3 34%

10% 10 120.0 47.6 40%

10% 5 120.0 42.7 36%

20% infinity 120.0 55.6 46%

20% 100 120.1 45.2 38%

20% 50 120.0 61.4 51%

20% 20 120.1 54.6 45%

20% 10 120.1 58.8 49%

20% 5 120.0 55.3 46%

50% infinity 120.0 53.5 45%

50% 100 120.0 51.0 42%

50% 50 120.0 57.4 48%

50% 20 120.1 44.6 37%

50% 10 120.1 42.9 36%

50% 5 120.0 40.4 34%



161

APPENDIX D

COMPUTATIONAL RESULTS FOR THE EOH DECOMPOSITION OF SMIPS

FOR THE FIRST PROBLEM SIZE
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Table L. Solution values for SMIP instance A2 under various combinations of dis-

count rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 366.3 366.3 0.0% 0.1%

2% 100 350.1 350.1 0.0% 0.0%

2% 50 240.6 240.6 0.0% 0.0%

2% 20 137.5 136.9 0.4% 1.8%

2% 10 78.9 77.7 1.5% 3.9%

2% 5 48.3 47.3 1.9% 4.8%

5% infinity 149.6 149.6 0.0% 0.0%

5% 100 146.7 146.7 0.0% 0.0%

5% 50 127.5 126.4 0.9% 1.9%

5% 20 85.3 83.9 1.6% 3.3%

5% 10 58.1 56.7 2.4% 4.8%

5% 5 46.4 45.0 2.9% 5.8%

10% infinity 57.8 57.8 0.0% 0.0%

10% 100 58.4 58.4 0.0% 0.6%

10% 50 56.4 55.8 1.1% 2.5%

10% 20 50.8 49.6 2.4% 4.7%

10% 10 39.8 38.6 2.9% 5.7%

10% 5 31.2 30.2 3.4% 6.6%

20% infinity 43.5 43.2 0.5% 1.2%

20% 100 42.7 42.1 1.5% 3.0%

20% 50 40.1 39.2 2.2% 4.5%

20% 20 39.1 37.9 3.0% 6.1%

20% 10 27.9 26.9 3.6% 7.3%

20% 5 21.9 21.0 4.0% 8.0%

50% infinity 4.5 4.4 0.9% 1.8%

50% 100 4.1 4.1 1.9% 3.9%

50% 50 4.1 4.0 2.8% 5.3%

50% 20 4.3 4.0 5.6% 9.2%

50% 10 4.0 3.8 5.9% 11.1%

50% 5 4.0 3.7 5.7% 12.3%
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Table LI. Solution times for SMIP instance A2 under various combinations of dis-

count rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 7.77 0.41 5% 3.38

2% 100 3.77 0.40 11% 1.64

2% 50 3.91 0.42 11% 1.70

2% 20 4.00 0.34 8% 1.74

2% 10 10.45 0.32 3% 4.54

2% 5 8.72 0.40 5% 3.79

5% infinity 6.91 0.58 8% 3.00

5% 100 6.66 0.59 9% 2.89

5% 50 8.59 0.56 6% 3.73

5% 20 3.83 0.54 14% 1.66

5% 10 3.89 0.51 13% 1.69

5% 5 3.57 0.59 17% 1.55

10% infinity 4.84 0.81 17% 2.11

10% 100 6.67 0.71 11% 2.90

10% 50 5.17 0.82 16% 2.25

10% 20 8.29 0.81 10% 3.60

10% 10 6.34 0.84 13% 2.75

10% 5 4.71 0.77 16% 2.05

infinity

20% 1000000 10.72 0.45 4% 4.66

20% 100 7.10 0.45 6% 3.09

20% 50 9.87 0.70 7% 4.29

20% 20 8.84 0.75 8% 3.84

20% 10 7.16 0.70 10% 3.11

20% 5 6.06 0.72 12% 2.64

50% infinity 7.79 0.31 4% 3.39

50% 100 8.89 0.30 3% 3.87

50% 50 7.69 0.38 5% 3.34

50% 20 7.58 0.32 4% 3.29

50% 10 8.45 0.33 4% 3.67

50% 5 7.43 0.33 4% 3.23
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Table LII. Solution values for SMIP instance A3 under various combinations of dis-

count rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 884.2 884.2 0.0% 0.0%

2% 100 799.7 799.7 0.0% 0.1%

2% 50 542.0 542.0 0.0% 0.1%

2% 20 330.5 330.5 0.0% 0.1%

2% 10 180.0 175.6 2.4% 2.9%

2% 5 121.3 117.1 3.4% 6.6%

5% infinity 322.6 322.6 0.0% 0.1%

5% 100 314.6 314.6 0.0% 0.1%

5% 50 301.5 299.6 0.6% 0.8%

5% 20 204.7 201.3 1.6% 2.6%

5% 10 147.2 143.3 2.7% 4.9%

5% 5 94.0 91.0 3.2% 6.7%

10% infinity 145.7 145.7 0.0% 0.1%

10% 100 144.0 144.0 0.0% 0.2%

10% 50 141.3 138.3 2.1% 2.5%

10% 20 122.8 119.6 2.6% 5.3%

10% 10 101.4 98.2 3.1% 6.4%

10% 5 76.2 73.5 3.6% 7.5%

20% infinity 93.0 93.0 0.0% 0.1%

20% 100 89.4 88.3 1.3% 1.6%

20% 50 88.0 85.6 2.7% 4.5%

20% 20 86.4 83.3 3.6% 7.1%

20% 10 51.5 49.6 3.8% 8.2%

20% 5 50.2 48.0 4.4% 9.1%

50% infinity 9.2 9.1 1.4% 1.7%

50% 100 9.2 9.1 1.5% 3.4%

50% 50 9.2 8.9 2.9% 5.0%

50% 20 9.2 8.9 3.6% 7.2%

50% 10 9.2 8.8 3.9% 8.4%

50% 5 8.9 8.5 5.0% 9.9%
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Table LIII. Solution times for SMIP instance A3 under various combinations of dis-

count rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 7.32 0.63 8.6% 4.43

2% 100 4.67 0.60 12.9% 2.09

2% 50 8.05 0.55 6.9% 1.71

2% 20 5.37 0.53 9.9% 2.25

2% 10 8.59 0.54 6.3% 2.93

2% 5 8.02 0.57 7.1% 2.99

5% infinity 7.41 0.82 11.0% 2.70

5% 100 7.40 0.84 11.4% 3.93

5% 50 9.35 0.73 7.8% 3.52

5% 20 10.03 0.79 7.9% 1.21

5% 10 8.65 0.74 8.6% 1.12

5% 5 6.63 0.84 12.7% 1.49

10% infinity 5.47 0.85 15.5% 1.90

10% 100 7.38 0.94 12.7% 2.89

10% 50 5.76 1.04 18.1% 2.23

10% 20 7.20 0.83 11.5% 1.95

10% 10 7.09 0.80 11.3% 1.24

10% 5 8.28 0.85 10.3% 3.80

20% infinity 9.62 0.62 6.4% 3.42

20% 100 14.66 0.59 4.0% 2.55

20% 50 6.03 0.60 10.0% 3.09

20% 20 9.09 0.64 7.0% 3.23

20% 10 8.47 0.63 7.4% 4.08

20% 5 10.98 0.60 5.5% 4.16

50% infinity 8.62 0.79 9.2% 1.04

50% 100 10.52 0.71 6.8% 4.98

50% 50 7.12 0.78 10.9% 4.59

50% 20 10.26 0.60 5.8% 1.77

50% 10 8.90 0.62 7.0% 1.68

50% 5 6.35 0.61 9.6% 3.41
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Table LIV. Solution values for SMIP instance A4 under various combinations of dis-

count rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 3,779.8 3,779.8 0.0% 1.4%

2% 100 3,215.5 3,209.9 0.2% 1.6%

2% 50 2,275.8 2,269.0 0.3% 1.8%

2% 20 1,183.0 1,178.0 0.4% 2.1%

2% 10 775.9 772.6 0.4% 2.2%

2% 5 499.2 495.7 0.7% 2.4%

5% infinity 1,427.2 1,426.0 0.1% 1.4%

5% 100 1,336.3 1,329.6 0.5% 1.9%

5% 50 1,199.8 1,182.2 1.5% 3.4%

5% 20 934.2 906.6 3.0% 5.7%

5% 10 627.3 601.3 4.2% 8.5%

5% 5 401.8 383.5 4.5% 9.9%

10% infinity 710.2 708.1 0.3% 1.6%

10% 100 666.5 661.1 0.8% 2.5%

10% 50 618.4 602.2 2.6% 4.8%

10% 20 530.4 510.7 3.7% 7.7%

10% 10 421.6 402.8 4.5% 9.6%

10% 5 294.3 278.4 5.4% 11.2%

20% infinity 430.2 425.0 1.2% 2.5%

20% 100 409.7 399.0 2.6% 5.1%

20% 50 384.3 374.0 2.7% 6.6%

20% 20 332.8 317.6 4.6% 8.6%

20% 10 210.0 200.2 4.7% 10.7%

20% 5 206.2 193.8 6.0% 11.1%

50% infinity 39.5 38.5 2.4% 3.8%

50% 100 38.8 37.7 3.0% 6.7%

50% 50 36.7 35.4 3.5% 7.8%

50% 20 36.2 34.1 5.7% 10.5%

50% 10 34.4 32.4 5.8% 12.8%

50% 5 34.4 32.1 6.8% 12.9%
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Table LV. Solution times for SMIP instance A4 under various combinations of dis-

count rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 8.8 0.6 7% 3.94

2% 100 6.3 0.6 10% 1.54

2% 50 5.3 0.6 12% 1.66

2% 20 9.6 0.8 8% 3.94

2% 10 7.8 0.7 8% 2.36

2% 5 7.2 0.6 8% 1.10

5% infinity 8.2 0.7 8% 0.84

5% 100 9.6 0.7 7% 3.32

5% 50 8.5 0.7 8% 0.79

5% 20 7.8 0.7 8% 1.39

5% 10 9.6 0.8 8% 3.00

5% 5 7.6 0.6 8% 2.77

10% infinity 10.2 0.6 6% 2.31

10% 100 5.8 0.6 10% 1.92

10% 50 6.0 0.6 10% 1.26

10% 20 7.2 0.6 8% 1.96

10% 10 8.5 0.7 8% 1.40

10% 5 9.7 0.7 7% 1.92

20% infinity 9.7 0.8 8% 3.21

20% 100 13.0 0.8 6% 3.20

20% 50 9.9 0.8 8% 0.90

20% 20 14.2 1.1 8% 3.81

20% 10 9.5 0.8 8% 3.96

20% 5 9.1 0.8 9% 3.19

50% infinity 5.7 0.6 10% 1.33

50% 100 5.8 0.6 11% 2.30

50% 50 7.5 0.6 8% 0.89

50% 20 5.1 0.6 12% 0.94

50% 10 3.9 0.5 14% 0.46

50% 5 3.9 0.6 15% 1.21
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Table LVI. Solution values for SMIP instance A5 under various combinations of dis-

count rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 32,291.7 32,235.3 0.2% 0.3%

2% 100 27,600.8 27,524.0 0.3% 0.5%

2% 50 20,651.7 20,589.0 0.3% 0.6%

2% 20 11,529.2 11,186.4 3.0% 3.3%

2% 10 6,995.5 6,758.5 3.4% 6.4%

2% 5 4,413.7 4,215.8 4.5% 7.9%

5% infinity 11,863.3 11,847.1 0.1% 0.2%

5% 100 11,720.5 11,658.7 0.5% 0.7%

5% 50 10,893.7 10,760.4 1.2% 1.8%

5% 20 7,820.2 7,611.3 2.7% 3.9%

5% 10 5,330.8 5,130.7 3.8% 6.5%

5% 5 3,657.3 3,489.1 4.6% 8.4%

10% infinity 5,295.3 5,275.7 0.4% 0.5%

10% 100 5,251.9 5,204.5 0.9% 1.4%

10% 50 5,245.3 5,114.0 2.5% 3.5%

10% 20 4,641.5 4,491.0 3.2% 5.8%

10% 10 3,632.8 3,490.7 3.9% 7.2%

10% 5 2,655.4 2,529.6 4.7% 8.7%

20% infinity 3,632.6 3,591.6 1.1% 1.2%

20% 100 3,349.7 3,271.1 2.3% 3.5%

20% 50 3,199.0 3,095.3 3.2% 5.6%

20% 20 3,187.8 3,028.6 5.0% 8.3%

20% 10 1,884.0 1,788.4 5.1% 10.1%

20% 5 1,879.7 1,763.5 6.2% 11.3%

50% infinity 356.1 348.1 2.2% 2.3%

50% 100 346.0 336.4 2.8% 5.1%

50% 50 341.6 329.2 3.6% 6.4%

50% 20 340.7 323.8 5.0% 8.6%

50% 10 337.3 319.9 5.1% 10.2%

50% 5 317.6 297.0 6.5% 11.7%
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Table LVII. Solution times for SMIP instance A5 under various combinations of dis-

count rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 8.89 1.03 12% 1.63

2% 100 6.52 1.03 16% 1.98

2% 50 6.77 1.09 16% 1.68

2% 20 4.61 0.96 21% 1.69

2% 10 5.12 1.27 25% 1.35

2% 5 9.11 0.73 8% 1.33

5% infinity 9.11 1.12 12% 4.08

5% 100 9.84 1.17 12% 4.85

5% 50 6.93 0.71 10% 2.00

5% 20 8.01 1.26 16% 2.20

5% 10 5.15 1.30 25% 2.07

5% 5 6.58 0.77 12% 2.92

10% infinity 5.51 1.15 21% 1.63

10% 100 6.65 1.23 19% 1.57

10% 50 8.15 1.23 15% 3.61

10% 20 15.39 0.74 5% 2.44

10% 10 9.83 1.05 11% 3.63

10% 5 5.35 0.74 14% 1.61

20% infinity 8.28 1.26 15% 2.97

20% 100 9.46 1.03 11% 3.95

20% 50 6.10 1.31 21% 1.67

20% 20 5.20 1.00 19% 1.96

20% 10 9.02 0.80 9% 3.51

20% 5 7.57 0.72 9% 1.74

50% infinity 8.13 1.16 14% 3.37

50% 100 6.48 1.26 19% 3.22

50% 50 7.59 0.70 9% 3.53

50% 20 7.33 0.80 11% 2.52

50% 10 9.57 0.68 7% 1.72

50% 5 6.43 1.19 18% 2.99
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APPENDIX E

COMPUTATIONAL RESULTS FOR THE EOH DECOMPOSITION OF SMIPS

FOR THE SECOND PROBLEM SIZE
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Table LVIII. Solution values for SMIP instance B2 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 269.1 269.0 0.0% 0.1%

2% 100 217.2 217.1 0.0% 0.1%

2% 50 163.7 163.5 0.1% 0.2%

2% 20 101.6 101.4 0.2% 0.4%

2% 10 57.9 56.6 2.1% 3.3%

2% 5 38.6 37.6 2.4% 4.6%

5% infinity 105.6 105.6 0.0% 0.1%

5% 100 102.3 101.9 0.4% 0.5%

5% 50 91.2 90.4 0.9% 1.3%

5% 20 65.0 63.7 1.9% 2.8%

5% 10 45.5 44.3 2.6% 4.6%

5% 5 31.1 30.2 2.8% 5.5%

10% infinity 44.9 44.8 0.1% 0.2%

10% 100 44.6 44.4 0.5% 0.7%

10% 50 44.1 43.3 1.7% 2.3%

10% 20 43.6 42.6 2.3% 4.1%

10% 10 29.8 28.9 2.8% 5.2%

10% 5 25.1 24.2 3.4% 6.3%

20% infinity 35.3 35.0 0.7% 0.8%

20% 100 31.7 31.2 1.7% 2.4%

20% 50 31.1 30.4 2.3% 4.0%

20% 20 27.5 26.6 3.5% 5.9%

20% 10 14.7 14.2 3.7% 7.3%

20% 5 14.5 13.8 4.4% 8.2%

50% infinity 5.1 5.1 1.5% 1.6%

50% 100 3.7 3.6 1.8% 3.4%

50% 50 3.5 3.4 2.7% 6.6%

50% 20 3.2 3.1 3.6% 7.3%

50% 10 3.2 3.1 4.7% 8.0%

50% 5 2.6 2.5 5.3% 9.6%
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Table LIX. Solution times for SMIP instance B2 under various combinations of dis-

count rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 35.4 8.2 23% 25.4

2% 100 33.6 8.5 25% 10.8

2% 50 42.2 10.7 25% 24.8

2% 20 40.1 8.0 20% 12.9

2% 10 35.3 10.1 29% 15.8

2% 5 33.9 8.2 24% 22.0

5% infinity 36.6 8.8 24% 10.7

5% 100 40.1 9.9 25% 13.3

5% 50 34.2 9.0 26% 11.6

5% 20 35.3 9.1 26% 24.0

5% 10 35.9 7.1 20% 20.4

5% 5 40.7 9.9 24% 28.7

10% infinity 42.9 8.7 20% 10.9

10% 100 29.0 7.3 25% 10.8

10% 50 39.6 7.6 19% 30.4

10% 20 36.7 7.7 21% 33.3

10% 10 29.6 7.5 25% 27.2

10% 5 39.3 7.7 20% 13.6

20% infinity 33.5 8.4 25% 21.8

20% 100 24.4 6.5 27% 9.0

20% 50 40.2 7.8 20% 19.9

20% 20 35.5 6.9 19% 9.3

20% 10 41.7 6.4 15% 26.0

20% 5 41.1 6.7 16% 40.4

50% infinity 34.7 8.5 24% 8.7

50% 100 40.1 9.4 23% 17.6

50% 50 40.8 8.7 21% 8.7

50% 20 39.0 7.8 20% 18.9

50% 10 46.0 10.8 23% 24.5

50% 5 43.3 9.3 22% 22.3
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Table LX. Solution values for SMIP instance B3 under various combinations of dis-

count rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 13,383.5 13,383.5 0.0% 0.0%

2% 100 12,403.1 12,403.1 0.0% 0.4%

2% 50 8,837.4 8,837.4 0.0% 0.5%

2% 20 4,851.7 4,851.7 0.0% 1.0%

2% 10 3,004.0 2,987.1 0.6% 3.1%

2% 5 1,868.6 1,807.3 3.3% 6.4%

5% infinity 4,953.9 4,953.9 0.0% 0.0%

5% 100 4,989.0 4,989.0 0.0% 0.4%

5% 50 4,684.9 4,684.9 0.0% 1.0%

5% 20 3,430.4 3,430.4 0.0% 1.6%

5% 10 2,347.1 2,318.3 1.2% 5.6%

5% 5 1,578.3 1,524.2 3.4% 5.9%

10% infinity 2,175.6 2,175.6 0.0% 0.2%

10% 100 2,307.2 2,307.2 0.0% 0.7%

10% 50 2,284.8 2,284.8 0.0% 1.1%

10% 20 1,988.1 1,922.2 3.3% 5.1%

10% 10 1,489.0 1,438.5 3.4% 5.7%

10% 5 1,128.6 1,088.3 3.6% 6.1%

20% infinity 1,462.6 1,462.6 0.0% 0.3%

20% 100 1,383.8 1,383.8 0.0% 1.7%

20% 50 1,370.2 1,366.4 0.3% 2.8%

20% 20 1,366.2 1,319.2 3.4% 6.0%

20% 10 762.5 734.9 3.6% 6.9%

20% 5 752.2 716.9 4.7% 7.0%

50% infinity 145.7 145.7 0.0% 0.8%

50% 100 147.6 145.7 1.3% 2.2%

50% 50 147.1 141.7 3.7% 4.3%

50% 20 142.8 135.0 5.4% 7.1%

50% 10 140.0 132.1 5.6% 10.4%

50% 5 125.9 118.2 6.1% 12.3%
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Table LXI. Solution times for SMIP instance B3 under various combinations of dis-

count rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 33.1 5.3 16% 26.2

2% 100 41.7 4.2 10% 12.5

2% 50 34.1 5.0 15% 24.2

2% 20 42.1 5.8 14% 19.6

2% 10 33.8 6.8 20% 17.3

2% 5 23.4 4.4 19% 13.4

5% infinity 27.8 5.1 18% 18.1

5% 100 34.8 5.4 16% 14.9

5% 50 32.9 5.7 17% 15.8

5% 20 34.7 5.9 17% 23.8

5% 10 41.8 9.2 22% 20.9

5% 5 35.5 9.3 26% 20.3

10% infinity 25.1 5.5 22% 12.5

10% 100 28.7 4.7 16% 9.6

10% 50 26.5 5.1 19% 13.6

10% 20 33.8 8.1 24% 20.3

10% 10 41.9 9.5 23% 11.7

10% 5 35.6 8.1 23% 19.0

20% infinity 39.2 5.1 13% 19.1

20% 100 38.6 6.4 17% 19.6

20% 50 41.7 10.3 25% 12.1

20% 20 40.2 5.9 15% 10.0

20% 10 28.7 5.4 19% 17.9

20% 5 27.0 5.5 20% 17.2

50% infinity 39.3 4.7 12% 25.3

50% 100 36.0 5.2 14% 10.5

50% 50 26.8 5.4 20% 11.6

50% 20 32.8 6.1 19% 16.7

50% 10 25.5 5.2 20% 9.1

50% 5 31.0 7.2 23% 15.8
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Table LXII. Solution values for SMIP instance B4 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 94,770.2 94,769.7 0.0% 0.0%

2% 100 86,788.2 86,788.2 0.0% 0.0%

2% 50 67,659.5 67,617.2 0.1% 0.2%

2% 20 35,962.3 35,874.7 0.2% 0.4%

2% 10 23,793.6 23,603.3 0.8% 1.3%

2% 5 14,655.1 14,442.6 1.5% 2.7%

5% infinity 36,024.4 36,024.2 0.0% 0.0%

5% 100 35,312.3 35,311.7 0.0% 0.0%

5% 50 33,121.9 33,021.7 0.3% 0.4%

5% 20 25,716.0 25,537.7 0.7% 1.2%

5% 10 17,624.6 17,342.6 1.6% 2.8%

5% 5 11,421.6 11,152.4 2.4% 4.7%

10% infinity 16,805.9 16,801.0 0.0% 0.0%

10% 100 15,754.2 15,606.6 0.9% 1.2%

10% 50 15,606.0 15,388.3 1.4% 3.2%

10% 20 15,508.9 15,276.3 1.5% 4.3%

10% 10 11,792.8 11,518.2 2.3% 5.1%

10% 5 7,616.0 7,391.7 2.9% 6.3%

20% infinity 11,039.2 11,037.9 0.0% 0.0%

20% 100 10,674.0 10,556.6 1.1% 1.3%

20% 50 9,662.1 9,507.5 1.6% 3.2%

20% 20 9,652.4 9,478.6 1.8% 4.1%

20% 10 5,897.0 5,749.6 2.5% 6.2%

20% 5 5,447.1 5,261.9 3.4% 7.1%

50% infinity 1,156.3 1,143.6 1.1% 1.3%

50% 100 1,139.2 1,126.1 1.1% 2.7%

50% 50 1,097.1 1,077.4 1.8% 3.9%

50% 20 1,046.6 1,018.3 2.7% 4.8%

50% 10 1,001.8 965.8 3.6% 8.6%

50% 5 906.4 851.1 6.1% 11.6%
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Table LXIII. Solution times for SMIP instance B4 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 24.2 6.3 26% 17.4

2% 100 40.2 10.1 25% 28.4

2% 50 47.8 12.0 25% 31.0

2% 20 44.3 11.1 25% 25.7

2% 10 41.2 10.4 25% 20.9

2% 5 33.1 8.4 25% 23.2

5% infinity 23.9 6.2 26% 10.7

5% 100 25.1 6.5 26% 10.6

5% 50 38.0 9.6 25% 32.2

5% 20 45.5 11.4 25% 27.7

5% 10 29.1 7.5 26% 16.3

5% 5 43.8 11.0 25% 25.7

10% infinity 37.5 9.5 25% 18.4

10% 100 36.7 9.3 25% 33.3

10% 50 43.2 10.8 25% 26.4

10% 20 41.5 10.4 25% 31.7

10% 10 28.0 7.2 26% 20.2

10% 5 30.8 7.9 26% 20.3

20% infinity 32.2 8.2 25% 10.3

20% 100 26.8 6.9 26% 10.5

20% 50 40.2 10.1 25% 25.6

20% 20 36.9 9.3 25% 15.1

20% 10 23.5 6.1 26% 14.6

20% 5 41.9 10.5 25% 28.1

50% infinity 45.6 11.4 25% 32.0

50% 100 47.8 11.9 25% 29.6

50% 50 36.2 9.2 25% 17.0

50% 20 36.6 9.3 25% 20.6

50% 10 45.8 11.5 25% 38.7

50% 5 47.0 11.8 25% 35.1



177

Table LXIV. Solution values for SMIP instance B5 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 16,156.2 16,156.2 0.0% 0.0%

2% 100 13,709.9 13,709.9 0.0% 0.2%

2% 50 10,238.2 10,238.2 0.0% 0.3%

2% 20 5,716.9 5,716.9 0.0% 2.0%

2% 10 3,489.2 3,412.5 2.2% 5.2%

2% 5 2,161.5 2,109.5 2.4% 5.9%

5% infinity 5,962.9 5,962.9 0.0% 0.0%

5% 100 5,940.9 5,940.9 0.0% 0.3%

5% 50 5,570.0 5,570.0 0.0% 1.2%

5% 20 4,188.1 4,149.3 0.9% 3.1%

5% 10 2,873.3 2,766.7 3.7% 5.6%

5% 5 1,801.9 1,733.4 3.8% 6.7%

10% infinity 3,524.8 3,524.8 0.0% 0.2%

10% 100 3,087.1 3,087.1 0.0% 0.7%

10% 50 2,621.3 2,621.3 0.0% 2.2%

10% 20 2,296.7 2,231.2 2.9% 4.9%

10% 10 1,799.7 1,715.2 4.7% 6.1%

10% 5 1,280.1 1,219.5 4.7% 6.8%

20% infinity 1,875.9 1,875.9 0.0% 0.6%

20% 100 1,852.6 1,848.6 0.2% 2.5%

20% 50 1,722.6 1,670.9 3.0% 5.0%

20% 20 1,611.0 1,557.2 3.3% 5.7%

20% 10 955.5 903.5 5.4% 7.3%

20% 5 848.7 802.2 5.5% 8.0%

50% infinity 180.8 180.8 0.0% 1.2%

50% 100 178.7 175.4 1.8% 3.9%

50% 50 172.3 165.3 4.0% 6.2%

50% 20 161.1 151.0 6.3% 6.4%

50% 10 159.0 148.5 6.6% 10.6%

50% 5 148.8 138.5 6.9% 11.0%
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Table LXV. Solution times for SMIP instance B5 under various combinations of dis-

count rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 24.4 5.9 24% 15.0

2% 100 41.5 10.2 25% 36.0

2% 50 38.6 9.4 24% 11.7

2% 20 37.0 9.5 26% 19.3

2% 10 43.9 9.7 22% 11.8

2% 5 39.8 9.5 24% 16.9

5% infinity 36.1 5.9 16% 16.9

5% 100 19.3 5.0 26% 16.6

5% 50 39.6 5.7 14% 18.8

5% 20 42.4 7.4 18% 20.3

5% 10 37.7 5.1 14% 26.7

5% 5 41.2 7.9 19% 14.2

10% infinity 25.5 5.6 22% 20.1

10% 100 32.5 6.2 19% 21.0

10% 50 37.2 7.9 21% 10.5

10% 20 32.3 5.5 17% 31.1

10% 10 31.3 5.3 17% 19.9

10% 5 48.4 10.5 22% 13.5

20% infinity 33.6 6.4 19% 11.4

20% 100 40.7 8.2 20% 24.8

20% 50 41.7 10.1 24% 24.3

20% 20 37.7 10.2 27% 33.6

20% 10 34.7 8.1 23% 15.4

20% 5 21.3 5.2 24% 20.2

50% infinity 31.8 4.3 13% 17.3

50% 100 40.5 4.3 11% 29.0

50% 50 29.6 4.9 17% 17.1

50% 20 32.0 4.7 15% 27.4

50% 10 39.6 4.1 10% 29.1

50% 5 36.0 5.0 14% 32.3
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APPENDIX F

COMPUTATIONAL RESULTS FOR THE EOH DECOMPOSITION OF SMIPS

FOR THE THIRD PROBLEM SIZE
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Table LXVI. Solution values for SMIP instance C2 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 542,452.6 542,452.6 0.0% 0.0%

2% 100 488,641.0 488,641.0 0.0% 0.0%

2% 50 374,580.0 374,580.0 0.0% 0.0%

2% 20 225,521.4 223,942.7 0.7% 1.7%

2% 10 120,306.6 118,863.0 1.2% 2.0%

2% 5 77,864.6 76,930.2 1.2% 2.1%

5% infinity 247,895.4 245,912.2 0.8% 0.8%

5% 100 243,072.0 241,127.4 0.8% 1.0%

5% 50 196,711.4 194,744.3 1.0% 1.2%

5% 20 153,638.1 151,640.8 1.3% 3.3%

5% 10 103,284.4 101,838.4 1.4% 3.5%

5% 5 76,011.0 74,566.8 1.9% 4.1%

10% infinity 135,011.5 133,796.3 0.9% 1.7%

10% 100 134,031.5 132,691.2 1.0% 1.6%

10% 50 106,917.3 105,634.3 1.2% 3.2%

10% 20 90,795.3 89,615.0 1.3% 3.3%

10% 10 71,147.4 69,795.6 1.9% 4.5%

10% 5 63,776.0 62,436.7 2.1% 4.8%

20% infinity 86,009.4 84,633.3 1.6% 3.1%

20% 100 76,122.6 74,904.6 1.6% 4.0%

20% 50 73,625.1 72,373.4 1.7% 4.1%

20% 20 64,186.0 63,030.7 1.8% 4.8%

20% 10 37,571.4 36,744.8 2.2% 5.0%

20% 5 34,429.4 33,637.5 2.3% 5.2%

50% infinity 45,198.5 44,384.9 1.8% 4.0%

50% 100 40,772.4 39,997.7 1.9% 4.1%

50% 50 36,890.0 36,004.6 2.4% 4.9%

50% 20 32,321.3 31,157.7 3.6% 5.1%

50% 10 27,586.2 26,565.5 3.7% 8.3%

50% 5 22,518.5 21,572.7 4.2% 9.2%
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Table LXVII. Solution times for SMIP instance C2 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 96.7 21.4 22% 49.1

2% 100 63.2 15.4 24% 43.9

2% 50 66.4 15.0 23% 39.6

2% 20 62.2 17.1 27% 36.7

2% 10 68.7 20.7 30% 49.1

2% 5 68.0 11.4 17% 54.4

5% infinity 84.4 13.6 16% 57.5

5% 100 67.3 15.9 24% 53.5

5% 50 71.9 14.0 20% 58.5

5% 20 72.4 21.4 30% 60.2

5% 10 88.1 20.0 23% 62.0

5% 5 75.7 15.0 20% 52.6

10% infinity 81.9 14.9 18% 41.4

10% 100 89.9 22.1 25% 46.8

10% 50 73.6 12.9 17% 42.2

10% 20 77.5 19.0 25% 40.8

10% 10 68.9 19.8 29% 39.0

10% 5 66.6 12.7 19% 47.8

20% infinity 65.0 19.8 31% 73.0

20% 100 88.7 21.5 24% 75.1

20% 50 82.1 19.5 24% 69.3

20% 20 88.4 18.4 21% 72.1

20% 10 61.3 15.1 25% 70.9

20% 5 66.9 18.1 27% 75.1

50% infinity 68.1 16.3 24% 40.1

50% 100 82.6 17.3 21% 40.9

50% 50 71.0 17.3 24% 49.0

50% 20 58.1 13.4 23% 47.8

50% 10 69.3 21.2 31% 50.7

50% 5 61.2 18.5 30% 43.2
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Table LXVIII. Solution values for SMIP instance C3 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)
Optimal solution
profit ($ 1,000)

Heuristic solution
profit ($ 1,000)

Optimality
gap

Bound on
optimality gap

2% infinity 7,594.4 7,594.4 0.0% 1.4%

2% 100 5,969.7 5,969.7 0.0% 2.0%

2% 50 4,738.1 4,643.4 2.0% 2.9%

2% 20 2,757.1 2,670.7 3.1% 3.5%

2% 10 1,575.5 1,516.7 3.7% 4.8%

2% 5 1,017.2 977.9 3.9% 4.9%

5% infinity 2,833.9 2,760.9 2.6% 2.8%

5% 100 2,760.5 2,682.0 2.8% 3.1%

5% 50 2,366.7 2,296.5 3.0% 4.2%

5% 20 1,796.0 1,736.0 3.3% 4.7%

5% 10 1,211.7 1,166.5 3.7% 5.2%

5% 5 784.1 750.7 4.3% 5.3%

10% infinity 1,160.3 1,118.7 3.6% 4.0%

10% 100 1,213.9 1,166.5 3.9% 4.1%

10% 50 1,161.0 1,115.0 4.0% 4.8%

10% 20 991.5 945.4 4.6% 5.2%

10% 10 860.8 818.6 4.9% 5.9%

10% 5 611.9 577.8 5.6% 6.0%

20% infinity 784.0 752.6 4.0% 5.3%

20% 100 702.1 672.2 4.3% 5.5%

20% 50 772.4 738.8 4.3% 6.2%

20% 20 700.0 665.8 4.9% 6.3%

20% 10 389.5 368.4 5.4% 6.3%

20% 5 369.1 348.1 5.7% 6.5%

50% infinity 80.9 77.6 4.2% 3.9%

50% 100 81.0 77.3 4.6% 7.5%

50% 50 81.7 77.9 4.7% 8.7%

50% 20 70.9 66.8 5.8% 9.3%

50% 10 79.9 74.9 6.2% 11.6%

50% 5 73.3 68.5 6.6% 11.8%
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Table LXIX. Solution times for SMIP instance C3 under various combinations of

discount rates and EoH approximations

Discount
rate

End-of-horizon
approximation

(years)

Optimal
solution time

(minutes)

Heuristic
solution time

(minutes)

Solution time
ratio:

heuristic/optimal

Solution time
for bound on
gap (minutes)

2% infinity 74.9 22.4 30% 51.1

2% 100 87.2 27.7 32% 55.7

2% 50 86.5 29.0 34% 51.3

2% 20 76.3 23.2 30% 52.8

2% 10 70.0 19.7 28% 65.8

2% 5 68.7 18.9 28% 31.6

5% infinity 82.2 26.6 32% 62.8

5% 100 79.4 25.0 31% 57.1

5% 50 70.0 19.7 28% 42.2

5% 20 75.8 23.0 30% 49.8

5% 10 61.2 20.8 34% 38.4

5% 5 74.1 22.0 30% 68.1

10% infinity 105.8 26.6 25% 65.0

10% 100 65.3 17.0 26% 46.4

10% 50 107.2 27.4 26% 49.3

10% 20 70.9 20.2 28% 37.7

10% 10 63.7 22.5 35% 40.9

10% 5 70.3 19.9 28% 30.7

20% infinity 82.4 20.1 24% 42.3

20% 100 75.1 25.5 34% 66.8

20% 50 77.8 23.0 30% 39.1

20% 20 68.3 18.7 27% 33.7

20% 10 77.8 24.1 31% 63.3

20% 5 70.6 20.0 28% 53.3

50% infinity 68.6 18.9 27% 44.7

50% 100 86.9 29.2 34% 68.4

50% 50 70.0 19.7 28% 39.9

50% 20 82.5 26.8 32% 56.9

50% 10 46.8 12.5 27% 37.6

50% 5 43.3 11.5 27% 36.5
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APPENDIX G

PARAMETERS GENERATION FOR COMPUTATIONAL EXPERIMENTS

The generation of test problem instances follows three steps. First, the candi-

date sites for the supply chain network are randomly selected. Second, parameters

for first node of the scenario-tree (n = 1) are randomly generated. Third, all other

nodes (n 6= 1, n ∈ N ) generate their parameters by varying around those of their

immediate ancestor.

The generated parameters fall in three categories: supply chain network candi-

date locations, markets’ demand and capacities of suppliers and of manufacturing

and distribution facilities, and cost parameters. The following sections explain how

these parameters are generated.

1. Supply chain network

Generating locations for the entities of a supply chain network involves randomly

selecting a major trading center (MTC) for each market, supply-region, candidate

manufacturing site, and candidate distribution site. A MTC is a city that serves as

a primary center of wholesaling, distribution, banking, and other specialized services

for at least two basic trading areas (Rand-McNally, 2006). A basic trading area

relies on a nearby city (a basic trading center) for shopping goods purchases (Rand-

McNally, 2006). The USA has 50 MTCs (Rand-McNally, 2006); examples include

New York City, Los Angeles, Chicago, Houston, Dallas, and San Antonio, among

others.

The same MTC can house at most one entity of each hierarchical level of the

supply chain network; for example, the same MTC can be the location for a market,
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a supplier, a manufacturing facility, and/or a distribution facility. Generating cost

and demand parameters uses the following attributes for a MTC:

• A market ability index (MAI), which describes a market’s potential rela-

tive to other markets of the USA (Rand-McNally, 2006). MAI takes into

consideration many attributes of a market, such as the total disposable in-

come of its inhabitants, its total annual retail sales, and its total population

(Rand-McNally, 2006). MAI plays an essential role in the generation of de-

mand/supply amounts for markets/supplier-zones.

• A cost of living index (CLI), which measures the relative cost for consumer

goods and services in 303 areas of the USA (C2ER, 2008). The average for

all participating places equals 100, and each participant’s index is read as a

percentage of the average for all places (C2ER, 2008). CLI plays an essential

role in generating cost parameters.

Moreover, Rand-McNally (2006) mileage chart provides the distances between every

two MTCs. These distances are based on the routes usually followed by freight

trucks.

2. Markets’ demand generation

A base demand is randomly generated using a discrete uniform distribution with

given upper and lower bounds. The demand per product-family per market for each

node of the scenario-tree is generated using the following equation:

dn
p,k = ρn × ρk,n × ρp,k,n × dbase,

where dn
p,k is the demand of product-family p at market k for node n, ρn is a nodal

multiplier and is defined in section 2.1, ρk,n is a market multiplier and is defined in
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section 2.2, ρp,k,n is a product-family multiplier and is defined in section 2.3, and

dbase is the base demand.

2.1. Nodal multiplier

For the first scenario-tree node, n = 1, the nodal multiplier equals 1 (ρ1 = 1). For

all other nodes, the nodal multiplier, ρn > 0, describes the total demand for node n

relative to its parent’s, ρa(n). Using ρa(n) to define ρn produces dependent demand

scenarios.

ρn results from multiplying its parent’s nodal multiplier, ρa(n), with a random

number generated from a log-normal distribution λ(µn, σ), where µn is the expec-

tation and σ is the standard deviation. The following factors motivate choosing a

log-normal distribution to generate demand parameters:

• This distribution suits modeling economic uncertain variables such as demand

(Kamath and Pakkala, 2002).

• Log-normal distributions preserve the nonnegativity of demand parameters.

• Other researchers have successfully used this distribution to generate the un-

certain demand parameters of their SCND models (c.f. Huang and Ahmed

(2009) and Santoso et al. (2005)).

The value of the standard deviation is held constant for all node, σ = 0.2. The

value of µn depends on the scenario leading to node n. Three scenarios emanate from

each node (except leaf nodes). The first scenario represents an increasing demand,

µn = 1.5. The second scenario represents a stable demand, µn = 1. The third

scenario represents a declining demand, µn = 0.5. These choices are inspired by

Huang and Ahmed (2009).
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2.2. Market multiplier

The market multiplier, ρk,n, describes the share of each market k of the total demand

for node n. For the first node, ρk,1 is generated as follows.

ρk,1 =
MPIk∑

k∈K MPIk
∀ k ∈ K,

where MPIk is the market ability index for market k.

For all other scenario-tree nodes, ρk,n is generated using their parents’ market

multiplier, ρk,a(n), and a number un,k between 0.8 and 1.2 randomly chosen from a

uniform distribution;

ρk,n =
un,kρk,a(n)∑

k∈K un,kρk,a(n)
∀ k ∈ K, n = {2, . . . , N}.

2.3. Product-family multiplier

The product-family multiplier ρp,k,n indicates the share of each product-family p ∈ P

of the total demand in a given market k ∈ K. The following three steps assign the

values of the product-family multiplier for the first scenario-tree node, ρp,k,1:

1. For each market, product-families are randomly classified into three categories

with respect to their demand levels:

• Product-families associated with low-demand

• Product-families associated with medium-demand

• Product-families associated with high-demand

2. A weight of 1 is assigned to each low-demand product-family, a weight of 2 is

assigned to each medium-demand product-family, and a weight of 4 is assigned

to each high-demand product-family.
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3. The product-family multiplier ρp,k,1 results from dividing the weight assigned

to product-family k by the total weights for all product-families.

For all other scenario-tree nodes, ρp,k,n is generated using their parents’ product-

family multiplier as follows.

ρp,k,n =
up,n,kρp,k,a(n)∑
p∈P up,n,kρk,a(n)

∀ p ∈ P, k ∈ K, n = {2, . . . , N},

where up,n,k is a number between 0.8 and 1.2 chosen randomly from a uniform

distribution.

3. Suppliers’ capacity generation

A base total suppliers’ capacity value (dsupply) is randomly generated by multiplying

the base demand, dbase, by a number randomly selected from a uniform distribution

with a lower bound equals 0.8 and an upper bound equals 1.5. A supplier’s capacity

per product-family for each node of the scenario-tree is generated using the following

equation:

dn
p,s = ρn × ρs,n × ρp,s,n × dsupply,

where dn
p,s is the capacity of supplier s ∈ S with respect to product-family p ∈ P at

node n = {2, . . . , N}, ρn is a nodal multiplier, ρs,n is a supplier’s location multiplier,

and ρp,s,n is a product-family multiplier. The value of these multipliers are assigned

using the same procedure applied for their market’s demand counterparts (section

2.1–section 2.3).

4. Generation of capacity levels for manufacturing and distribution facilities

Manufacturing and distribution facilities are treated the same way. Therefore this

section uses the generic term facility to refer to either a manufacturing or distribu-
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tion facility.

Each technology q can process a subset of the product families (Pq ⊆ P).

Moreover, each technology comes in a given number of capacity levels, ` ∈ Lq. The

rates at which a technology q processes the different product families, p ∈ Pq, depend

on this technology’s capacity level, ` ∈ Lq. The following rules guide the assignment

of these processing rates:

1. At the maximum capacity level available for technology q (`max ∈ Lq), the

processing rates must be sufficient to satisfy the demand for all products at

the first scenario-tree node,
∑

p∈Pq

∑
k∈K d

1
p,k.

2. At the minimum capacity level available for technology q (`1 ∈ Lq), the pro-

cessing rates must be sufficient to satisfy a portion of the demand at the first

scenario-tree node. This portion equals 1
|Jr | for manufacturing facilities and

1
|Jw | for distribution facilities. In other words, installing the smallest technol-

ogy level in every candidate site must provide enough aggregate capacity to

satisfy all markets’ demand for all the products this technology can produce.

3. All other capacity levels are assigned processing rates between those of the

minimum and maximum capacity levels such that the difference between every

two successive levels’ output is constant.

cp,`,q is the portion of capacity level ` of technology q required to process one

product of family p ∈ P; i.e., cp,`,q is the inverse of the processing rate of level ` of

technology q for product p. For each technology q, the values for cp,`,q are assigned

using the following steps. First, a number up,`,q between 1 and 10 is randomly

selected from a uniform distribution for each p and q combination, where p ∈ Pq;

i.e., up,`1,q = · · · = up,`max,q = up,`,q. Second, consistent with the first processing
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rates’ assignment rule, the following equation assigns the values for cp,`max ,q.

cp,`max,q =
up,`,q

(∑
k∈K d

1
p,k

)
∑

p∈Pq
up,`,q

(∑
k∈K d

1
p,k

).

Third, consistent with the second processing rates’ assignment rule, the following

equation assigns the values for cp,`1 ,q.

cp,`1 ,q = cp,`max,q|Jf |,

where Jf = Jr in case of manufacturing facilities, and Jf = Jw in case of distribu-

tion facilities. Finally, cp,`,q, ` 6= `1, ` 6= `max, ` ∈ Lq, is assigned at constant intervals

between cp,`1,q and cp,`max,q to satisfy the third processing rates’ assignment rule.

5. Cost parameters generation

Cost parameters fall into seven categories:

• Variable processing cost (hn
p,`,q,j) per product of family p ∈ P for capacity level

` ∈ Lq of technology q ∈ Qj in site j ∈ J .

• Raw material and subassemblies procurement cost (ϕn
p,s) per product of family

p from supplier-zone s ∈ S.

• Revenue (ϕn
p,k) per product of family p sold at market k ∈ K.

• Transportation cost (hp,j1,j2) per product of family p between a source j1 and

a destination j2.

• Fixed operating cost (gn
`,q,j) for the facility operating at site j ∈ J using

technology q ∈ Qj at capacity level ` ∈ Lq.

• Retooling cost (fn
`1,`2 ,q,j) incurred to upgrading or downgrading the capacity

level of technology q from level `1 to level `2 at site j.
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• The cost to open a new facility at site j (fn
open j) and the cost to close the

facility at site j (fn
close j).

The variable processing cost (hn
p,`,q,j) per product of family p ∈ Pq for capacity

level ` ∈ Lq of technology q ∈ Qj in site j ∈ J is calculated by the following

steps. First, for each technology q and product-family p combination, a random

per unit processing cost (h1
p,q) is randomly selected between 1 and 2 from a uniform

distribution. Second, this cost is adjusted to reflect the cost of living index for the

location j of this facility. Third, the present value of this adjusted cost is calculated

for each node n. The following equation reflects these steps.

hn
p,`,q,j = π(h1

p,q × CLIj),

where CLIj is the cost of living index for location j and π(.) returns the present

value (at the first time period).

The raw material and subassemblies procurement cost (ϕn
p,s) per product of

family p from supplier-zone s ∈ S is calculated in two steps. First, for each product

family, a random procurement cost is selected between 1 and 2 from a uniform distri-

bution. Second, this procurement cost is adjusted to reflect the cost of living index

for the location of supplier s. Third, the present value of the adjusted procurement

cost is calculated for each node n.

The revenue (ϕn
p,k) per product of family p sold at market k ∈ K is assigned

by the following three steps. First, for each product family, a random revenue is

selected between 10ĥ1
p,`,q,j and 20ĥ1

p,`,q,j, where ĥ1
p,`,q,j = max`∈Lq ,q∈Qj,j∈J {

h1
p,`,q,j

CLIj
}.

Second, adjust this revenue to reflect the cost of living index for the location of

market k. Third, the present value of the adjusted revenue is calculated for each

node n.
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The transportation cost (hp,j1,j2) per product of family p between a source j1

and a destination j2. It is calculated using the following five steps. First, for each

product p ∈ P, a random number representing the transportation cost per unit

per mile is randomly selected between 0.002 to 0.005 from a uniform distribution.

Second, for every source j1 and destination j2, the total trip cost is calculated by

multiplying this random per mile cost by the distance between j1 and j2. Third, the

trip cost is adjust using the average of the cost of living indices of locations j1 and

j2. Fourth, the present value of this adjusted trip cost is calculated for each node

n. Fifth, if this trip originate at a supplier s, the raw material and subassemblies

procurement cost, ϕn
p,s, is added to the transportation cost. Sixth, if market k

is the destination of this trip, the revenue per unit, ϕn
p,k, is subtracted from the

transportation cost (resulting in a negative value).

Fixed operating cost (gn
`,q,j) for the facility operating at site j ∈ J using tech-

nology q ∈ Qj at capacity level ` ∈ Lq is calculated using the following steps. First,

an initial value equal to
∑

p∈Pq

h1
p,`,q,j

|Pq |×cp,`,q
is assigned. Note that h1

p,`,q,j is already ad-

justed to reflect the living cost index of location j. Second, to include the economies

of scale in operating cost, this initial value is multiplied by 1.1(`max−`). For example,

for a technology q where |Lq| = 4, gn
`2 ,q,j is multiplied by 1.1(4−2) = 1.12. Third, the

present value is calculated for each node n.

The values for retooling costs dependent on whether this retooling results in

upgrading or downgrading a facility’s capacity. The cost to upgrade the capacity of

technology q from level `1 to level `2 is calculated in three steps. First, a number

uq between 1 and 10 is selected from a uniform distribution. Second, an initial

value equal to uq

(
1.1(`2−`1)

) (
g1

`2 ,q,j −
g1

`1,q,j

1.1(`2−`1)

)
is assigned. Third, the present value

is calculated for each node n. The cost to downgrade the capacity of technology

q from level `1 to level `2 follows the same steps with two exceptions. First, uq
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is selected between 0.5 and 2 to reflect the cost of removing equipment from this

facility and costs associated with reducing its workforce. Second, use the absolute

value for the initial retooling cost since in this case g1
`2 ,q,j < g1

`1 ,q,j.

The cost to open a new facility at site j (fn
open j) is calculated in three steps.

First, a number uj between 1 and 3 is selected from a uniform distribution. Second,

an initial value equal to
uk

∑
q∈Qj

g1
`max,q,j

|Qj | is assigned. Third, the present value is

calculated for each node n. Note that fn
open j does not include the value of assets

that are likely to be recouped when this site is closed; it only includes the cost to

customize this site to suit the function of this facility.

The cost to close the facility at site j (fn
close j) is calculated in three steps. First,

a number uj between 0.5 and 2 is selected from a uniform distribution. Second,

an initial value equal to
uk

∑
q∈Qj

g1
`max,q,j

|Qj | is assigned. Third, the present value is

calculated for each node n. Note that fn
close j only includes the cost to restore a site

to its original condition and to properly dispose of all removed items.
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