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ABSTRACT 

 

Low Cost Power and Supply Noise Estimation and Control in 

Scan Testing of VLSI Circuits. (December 2010) 

Zhongwei Jiang, B.S., Nanjing University of Posts and Telecommunications, China; 

M.S., Shanghai Jiao Tong University, China 

Chair of Advisory Committee: Dr. Duncan M. Walker 

     

Test power is an important issue in deep submicron semiconductor testing. Too much 

power supply noise and too much power dissipation can result in excessive temperature 

rise, both leading to overkill during delay test. Scan-based test has been widely adopted as 

one of the most commonly used VLSI testing method. The test power during scan testing 

comprises shift power and capture power. The power consumed in the shift cycle 

dominates the total power dissipation. It is crucial for IC manufacturing companies to 

achieve near constant power consumption for a given timing window in order to keep the 

chip under test (CUT) at a near constant temperature, to make it easy to characterize the 

circuit behavior and prevent delay test over kill. 

To achieve constant test power, first, we built a fast and accurate power model, which 

can estimate the shift power without logic simulation of the circuit. We also proposed an 

efficient and low power X-bit Filling process, which could potentially reduce both the 

shift power and capture power. Then, we introduced an efficient test pattern reordering 

algorithm, which achieves near constant power between groups of patterns. The number 

of patterns in a group is determined by the thermal constant of the chip. Experimental 
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results show that our proposed power model has very good correlation. Our proposed X-

Fill process achieved both minimum shift power and capture power. The algorithm 

supports multiple scan chains and can achieve constant power within different regions of 

the chip. The greedy test pattern reordering algorithm can reduce the power variation 

from 29-126% to 8-10% or even lower if we reduce the power variance threshold. 

Excessive noise can significantly affect the timing performance of Deep Sub-Micron 

(DSM) designs and cause non-trivial additional delay. In delay test generation, test 

compaction and test fill techniques can produce excessive power supply noise. This can 

result in delay test overkill. Prior approaches to power supply noise aware delay test 

compaction are too costly due to many logic simulations, and are limited to static 

compaction.  

We proposed a realistic low cost delay test compaction flow that guardbands the delay 

using a sequence of estimation metrics to keep the circuit under test supply noise more 

like functional mode. This flow has been implemented in both static compaction and 

dynamic compaction. We analyzed the relationship between delay and voltage drop, and 

the relationship between effective weighted switching activity (WSA) and voltage drop. 

Based on these correlations, we introduce the low cost delay test pattern compaction 

framework considering power supply noise. Experimental results on ISCAS89 circuits 

show that our low cost framework is up to ten times faster than the prior high cost 

framework. Simulation results also verify that the low cost model can correctly guardband 

every path‟s extra noise-induced delay. We discussed the rules to set different constraints 

in the levelized framework. The veto process used in the compaction can be also applied 

to other constraints, such as power and temperature. 
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1. INTRODUCTION 

 

Test power is an important issue in deep submicron (DSM) semiconductor testing. 

Too much power supply noise and too much power dissipation can result in excessive 

temperature rise, both leading to overkill during delay test. Scan-based test has been 

widely adopted as one of the most commonly used VLSI testing methods. The test 

power during scan testing comprises shift power and capture power. During Launch-on-

Shift (LOS) or Launch-on-Capture (LOC) test, the power consumed during the shift 

cycles dominates the total power dissipation, since there is a large amount of signal 

switching during the scan-in/out process for most scan architectures. Capture power is 

dissipated only during the capture cycle, and so is much smaller than the shift power. For 

example, if the scan chain is longer than a thousand scan cells, the shift power could be 

one thousand times larger than the capture power. Since the shift power is expensive to 

compute during the shift-in and shift-out process, we need a simple and fast model to 

estimate it. The power dissipation during different phases of the test process is hard to 

predict, but it is crucial for IC manufacturing companies to achieve near constant power 

consumption during a given timing window, in order to keep the chip under test (CUT) 

at a near constant temperature to avoid exceptional behavior or even over-kill. In 

addition, if the CUT has linear temperature rise, it is easy to characterize the circuit 

behavior during each test phase. Industry data shows that the signal delay rises 35-55% 

   

This dissertation follows the style and format of IEEE Transactions on Very Large 

Scale Integration (VLSI) Systems. 
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for a 100
o
C rise in 65 nm technology. If we can predict the temperature at a given test 

pattern, we can adjust the capture clock timing to avoid overkill. 

Prior work [1][2][3][4][5][6][7][8][9][10] proposed methods to reduce the capture 

power and keep the power supply noise to a low level during compaction or test 

generation. A static compaction technique was proposed to control scan power [11]. 

Test-vector ordering heuristics have been proposed, but they were only concerned with 

minimizing power, at a high computational cost [12]. They do not consider how to keep 

the test power constant.  

Recently, a technique called Preferred Fill [13] was proposed which fills the X 

(don‟t care) bits in a test pattern by using the signal probability. Only a single pass is 

required to compute the signal probability for the entire circuit, and the approach 

achieves very good capture power reduction. Shift power can be minimized by using 

Adjacent Fill, in which X bits are filled with the adjacent 0/1 value.  

Since accurately computing the shift power requires N·M cycles of logic simulation 

if M is the number of bits in a scan chain and N is the number of test patterns, it is 

obvious that this is not feasible for large circuits. Prior work [11] proposed using scan 

chain switching to estimate the shift power, but did not fully consider the structure of the 

circuit, which limited correlation to logic simulation results. 

In order to achieve constant test power, first, we need a fast and accurate power 

model, which can estimate the shift power without logic simulation of the circuit. In 

addition, we need an efficient and low power X-bit Filling process, which can reduce 

both the shift power and capture power. Then, we need an efficient test pattern 
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reordering algorithm, which achieves near constant power between groups of patterns. 

The number of patterns in a group is determined by the thermal time constant of the chip. 

The X-Fill process that we propose combines Preferred Fill, Adjacent Fill and Random 

Fill to achieve both minimum shift power and capture power. The algorithm supports 

multiple scan chains and can achieve constant power within different regions of the chip. 

The greedy test pattern reordering algorithm can reduce the power variation from 29-126% 

to 8-10% or even lower if we reduce the power variance threshold. 

The traditional test pattern compaction process achieves a high compaction rate, but 

does not check the supply noise of each pattern. High compaction will generate higher 

power patterns that may produce excessive power supply noise. The excessive switching 

in the circuit supply network will cause a voltage drop and consequently a delay increase 

on signal paths, potentially violating the timing specification. The approach in [14] 

proposed a static compaction technique, which controls the supply noise so that paths do 

not exceed their timing specification due to noise. This approach is a post-processing 

step based on the un-compacted patterns and the target paths corresponding to each 

pattern. It shows good correlation compared to circuit simulation and it was verified with 

silicon results [4]. The supply noise and delay estimation in [14] was based on a low cost 

power supply noise model and delay model. The major problem of this approach is the 

tremendous number of logic simulations. We enhanced this approach by proposing a 

levelized supply noise estimation framework, which drastically reduces the simulation 

time. The other drawback of [14] is that it is a post-processing step after ATPG. 

Dynamic compaction [ 15 ] during ATPG achieves significantly higher test pattern 
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compaction compared to static compaction. Dynamic compaction combines paths 

together based on their necessary assignments, without fault simulation. This algorithm 

was incorporated into the KLPG ATPG algorithm and significantly reduced pattern 

count without coverage loss. We have incorporated the new low cost supply noise 

estimation framework into dynamic compaction.  

1.1 Test Power 

Test power is an important issue in deep submicron semiconductor testing. Too 

much power supply noise and too much power dissipation can result in excessive 

temperature rise, both leading to overkill during delay test. In this work, we focus on 

power dissipation during the scan-in/out process, since this dominates total power 

dissipation during scan-based testing. For example, if the scan chain is longer than a 

thousand scan cells, the shift power could be a thousand times larger than capture power 

and the capture power is neglectable. The power dissipation during different phases of 

the testing process are hard to predict but it is crucial for IC manufacturing companies to 

achieve near constant power consumption in a given timing window in order to keep the 

chip under test (CUT) at a near constant temperature to avoid exceptional behavior or 

even over-kill. Also, if the CUT has linear temperature rise, it is easy to characterize the 

circuit behavior during each phase of the testing. We can compute the temperature at 

each test pattern and adjust the capture clock timing to avoid overkill. Industry data 

shows that the signal delay rises by 35-55% for a 100
o
C rise, in 65nm technology. 

Prior work [1]-[12] proposed methods to reduce the capture power and keep the 
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power supply noise at a low level during compaction or test generation. The work in [11] 

proposed a static compaction technique to control scan power. The work in [12] 

proposed test-vector ordering heuristics but only concerns about minimizing power and 

the computational complexity is very high. They did not consider how to keep the test 

power constant.  

Recently, a technique called Preferred Fill [13] was proposed that fills the X (don‟t 

care) bits in a test pattern using signal probability, to minimize unnecessary switching 

activity during the launch cycle. It only needs one pass to compute the signal 

probabilities for the whole circuit, and achieves very good capture power reduction. 

Once Preferred Fill has been used, Adjacent Fill can be used to fill the remaining X 

bits. In Adjacent Fill, the X bits are filled with the previous 0/1 (care bit) value loaded 

into the scan chain. This minimizes transitions on the scan chain outputs as it is shifted, 

with a corresponding reduction in circuit activity. We will these two techniques in our 

X-Fill process. 

Since accurately computing the shift power requires N·M cycles of logic simulation 

where M is the number of bits in a scan chain and N is the number of test patterns, it is 

obvious that this is infeasible for large circuits. Prior work [11] proposed using scan 

chain switching to estimate the shift power, but they did not consider circuit statistics, 

reducing the accuracy of the estimation. 

A test pattern reordering algorithm was proposed in [ 16 ] which achieves near 

constant test power across the chip. However, the greedy reordering algorithm has some 

shortcomings, such that it could fall into an infinite loop if there is an extremely high 



 6 

 

power or low power pattern. In addition, the algorithm can only deal with single scan 

chain, while typical industrial circuits have many parallel scan chains. 

We extended the work in [ 17 ] and improved the robustness of the reordering 

algorithm. We also added multiple scan chain support. The most important addition is 

the ability to achieve constant power within a giving region of a chip, as well as for the 

chip as a whole. Section 2 of this dissertation introduces an efficient test pattern 

compaction technique that was used to prepare test data for our algorithm. In Section 3, 

we used a modified version of Preferred Fill combined with Adjacent Fill in order to 

minimize both Capture and Shift Power. Section 4 introduces a shift power estimation 

heuristic that can efficiently estimate the shift power in terms of Weighted Switching 

Activity (WSA) without using logic simulation. We also describe the influence of the 

number of scan chains on the correlation between the chain power (scan chain switching) 

and shift power (circuit switching). Efficient greedy test-pattern re-ordering algorithms 

will be shown in Subsection 2.4 and Subsection 2.5 that can achieve near constant power 

dissipation both across chip and within region. Very good simulation results for KLPG 

delay test for ISCAS89 and ITC99 circuits under different power constraints are 

presented in Subsection 2.6. The variation in power is reduced from 29-126% to 8-10%. 

Our work appears to be the first to target both near-constant shift power while at the 

same time minimizing both shift power and capture power. 

1.2 Power Supply Noise in Delay Test 

Delay testing has become increasingly important due to reduced timing margins and 
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increased clock rates. Small delay defects can be tested using the path delay fault model 

[18]. However, as the semiconductor technology is scaled, designs are becoming more 

sensitive to various noise sources [19], such as leakage noise, crosstalk and power supply 

noise. Too much power supply noise can result in excessive noise-induced circuit delay 

increase, leading to overkill during delay test.  

Several techniques have been proposed for estimating power supply noise during 

timing analysis [20][21]. These methods focused on supply network and circuit models 

to achieve reasonable accuracy. Jiang et al. [22] proposed a vector independent approach 

using genetic algorithms to estimate the worst-case noise-induced delay. Liou et al. [23] 

proposed an estimation method based on a statistical timing analysis framework. 

Most prior work in testing while considering power supply noise adopts a vector-less 

strategy due to the high simulation cost of the power supply noise model on large 

circuits. Tirumurti et al. [24] proposed added power noise to a generalized fault model 

[25]. Pant et al. [26] proposed a vector-less approach for computing the maximum path 

delay under power supply fluctuations. Krstic et al. [27] used a vector-based approach to 

generate the maximum power supply noise on one path at a time. However, the resulting 

maximum noise could be considerably greater than the mission-mode worst-case noise. 

Moreover, the method may be in competition with other goals, such as crosstalk 

generation, that may have greater impact on path delay. Lee et al. [28] introduced a novel 

test pattern generation framework for inducing maximum crosstalk effects on delay-

sensitive paths and Ma et al [ 29 ] proposed a layout-aware pattern generation for 

maximizing supply noise effects on critical paths. The motivation of this work is 
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maximizing noise, which is not consistent with our goal of achieving mission-mode 

noise. 

Previous work [30] introduced a simplified power region model and circuit switching 

model. Good delay estimation results were verified by circuit simulation and 

measurement on ISCAS89 and industrial circuits during static test compaction. The 

major drawback of this approach was the large number of logic simulations required. A 

new dynamic compaction procedure [31] for path delay test reduced pattern count by as 

much as 4x over static compaction, but at the cost of producing some very high noise 

patterns that could result in test overkill.  

Our prior work [32] demonstrated a realistic low cost delay test static compaction 

framework which used a levelized estimation metric to speed up the work in [30]. This 

approach shows up to 5x speed up over the previous work, but did not provide a 

practical approach to determine the different algorithm parameters. In addition, since 

dynamic compaction [31] has shown great advantage over static compaction, it requires 

us to further expand the supply noise analysis work to dynamic compaction during 

ATPG.  

In this work, we focus on power supply noise modeling and estimation during delay 

test pattern compaction, for both static and dynamic compaction. We first introduce a 

realistic levelized low cost static compaction flow for delay test by reusing the noise and 

delay model in [30], and then we combined the low cost flow into dynamic compaction 

[31]. Experimental results on ISCAS89 circuits show that our low cost framework is up 

to 5x faster than the prior high cost framework [30]. Simulation results also verify that 
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the low cost model can correctly guardband the extra noise-induced delay of every path. 

Subsection 3.1 summarizes our delay model and circuit switching model, which is based 

on [30]. Then we analyze the relationship between delay and voltage drop, and the 

relationship between effective weighted switching activity (WSA) and voltage drop. 

Based on these correlations, we introduce the low cost delay test pattern static 

compaction framework considering power supply noise in Subsection 3.2. In Subsection 

3.3 this framework is integrated with dynamic test compaction. Subsection 3.4 gives the 

rules for parameter setting that used in the compaction flow. A pseudo-functional test 

with power analysis is shown in Subsection 3.5. Experimental results together with 

further discussion are given in Subsection 3.6, and conclusions in Subsection 3.7. 
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2. CONSTANT POWER DISSIPATION 

2.1 Compaction 

The original test patterns were generated by a K-Longest Path per Gate (KLPG) 

delay fault ATPG tool named CodGen [33]. It generated launch-on-capture (LOC) 

robust path delay tests targeting the longest rising and falling transition path through 

every line in the circuit. Since it will generate one pattern for each longest path, in order 

to save simulation time, we must compact the patterns.  

For test pattern compaction for ISCAS89 circuits, we implemented a greedy static 

compaction algorithm. Vectors are considered one by one in the order they are generated, 

and combined with the first compatible vector in the compacted vector list. For example, 

if we have two vectors V1=(0XX1X0XX) and V2=(X0XX100X), we check each bit of 

same position of the vectors and see whether the two bits are compatible. The common 

rule is that X is compatible with both 0 and 1; 0 is only compatible with 0; 1 is only 

compatible with 1. The first bit of V1/V2 is 0/X, so the compacted bit will be 0; the 

second bit of V1/V2 is X/0, so the compacted bit will be 0. The same process goes on 

after the last bit has been compacted. After the bit-checking finished, we have the final 

compacted vector V3=(00X1100X). If we change the first bit of V2 to 1, then V1 and 

V2 are not compatible because the first bit is not compatible.  

Figure 1 is the flow chart of the compaction procedure in our experiment. This 

compaction process is brute force because it does not consider supply noise issue and we 

try to minimize the pattern count. The initial patterns after compaction tend to have more 
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bit transitions than the later patterns. We term compaction that does not consider supply 

noise Force Compaction. 

 

 

Figure 1. Static Compaction Flow 

 

We use dynamic compaction [15] for ITC99 circuits. This compacts paths together 

based on their necessary assignments, without fault simulation. Rather than working on 

one pattern at a time, the algorithm considers a pool of paths that are currently being 

compacted into a set of patterns. Each new path generated is compared against this path 

pool. This algorithm was incorporated into the KLPG algorithm and significantly 

reduced pattern count without coverage loss. 
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The data from Table 1 show the difference of the number of compacted vectors 

between original CodGen and static compaction. We can see a tremendous reduction of 

patterns after compaction, especially for larger circuits such as s35932, s38417, b18 and 

b19. A high compaction rate minimizes test data volume and test application time.  

However, the compaction process may generate some extremely high power (noise) test 

patterns. To solve this problem, we propose an X-Fill process in the next subsection. 

Table 1. Compaction Results 

Circuit # gates # scan cells 
# bits in each 

pattern 

# Paths (Patterns) 

from ATPG 

# Compacted 

Patterns 

s5378 2958 179 214 1799 407 

s9234 5808 211 247 2376 790 

s13207 8589 638 700 3220 909 

s15850 10306 534 611 2646 470 

s35932 17793 1728 1763 9762 36 

s38417 23815 1636 1664 14917 948 

s38584 20679 1426 1464 9724 525 

b15 8816 449 486 4486 1506 

b17 32192 1415 1453 19165 3290 

b18 114561 3320 3358 58858 5434 

b19 231266 6642 6667 114688 5319 

b20 20172 490 523 20351 6234 

b21 20517 490 523 20443 6579 

b22 29897 735 768 30489 8090 
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2.2 X-Fill 

After compaction, we have many fewer test patterns, but more than 95% of the bits 

are still don‟t care (X) bits. In the next step, we compute the signal probability using the 

Preferred Fill [13] technique. The idea of Preferred Fill is to use the signal probability to 

set the X bits. Let the vector pair of one pattern be <V1, V2> and V1={PI1, PPI1}, 

V2={PI2, PPI2}. The outputs after applying V1(V2) is O1(O2) and we have O1={PO1, 

PPO1}, O2={PO2, PPO2}. Here PI means Primary Input, PPI means Pseudo-Primary 

Input, PO means Primary Output and PPO means Pseudo-Primary Output. For Launch-

On-Capture (LOC) test, PPI2=PPO1.  

At first, Preferred Fill will fill all the X values of PPI1. In the original Preferred Fill 

algorithm, a bit of the PPI1 that has a 1-probability close to 0.5 will be randomly filled, 

but we will use Adjacent Fill. Adjacent Fill will cause the least number of scan chain 

output transitions when the output of current pattern is shifting out and the next pattern is 

shifting in. Since the power during test is mainly the shift power, not the capture power, 

Adjacent Fill significantly reduces overall power dissipation. The X-Fill procedure is 

very fast since the signal probabilities can be computed in only one pass and filling all of 

the test patterns can be completed in several seconds.  

Once the scan patterns are filled, we then fill the X values of PI1 and PI2. We use 

minimum transition fill if the bits in the same position are not both X. Then we use 

random fill. For example, if PI1=0XX1X11X, PI2=X0XX10XX, we fill the first bit of 

PI2 to 0 since the first bit of PI1 is 0, then we fill the second bit of PI1 to 0 since the 

second bit of PI2 is 0 and so on. After this step finished, we have PI1=00X1111X and 
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PI2=00X1101X. In the next step, we randomly fill the remaining X bits (but they should 

be the same in both PI1 and PI2). If the random values for the first X is 0 and for the 

second X is 1, finally we have PI1=00011111 and PI2=00011011.  

The circuit response to a test pattern is crucial to our shift power estimation, since 

these values will be shifted out, causing switching activity. By giving V1 as input, we 

can compute the PPO of the circuit then assign it to the PPI part of V2, given the use of 

LOC test. For the X bits of PI of both V1 and V2, we first use Minimal-Transition Fill, 

then random fill to finish the X filling process. 

Once a fully-filled vector V2 is available, PPO2 is computed using logic simulation. 

This step is required since the computation of shift power needs two parts: the PPO2 of 

the first pattern P1, and the PPI1 of the next pattern P2. The next subsection will 

describe in detail how to compute shift power. The pseudo code of the entire X Fill 

algorithm is shown below.  

Algorithm X-Fill () 

1  Compute signal probability prob of all PPI1; 

2  For each test pattern in the list, do 

3       For each pin p of PPI1 which has X value 

4            if (prob < 0.5) then p = 0 

5            else if (prob > 0.5) then p = 1 

6            else Adjacent Fill p 

7       For each pin p of PI1 which has X value 

8           Fill p according to the value of p in PI2  

9       For each pin p of PI2 which has X value 

10         Fill p according to the value of p in PI1  
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11     For each pin p of PI1 and PI2 which has X value 

12         Randomly fill p 

13     Do logic simulation to fill all X values of PPI2 by applying V1 as input 

14     Do logic simulation to compute PPO2 by applying V2 as input  

 

2.3 Shift Power Estimation 

In this work, we use Weighted Switching Activity (WSA) to estimate the power. The 

WSA of a node is the number of state transitions at the driving gate multiplied by 

(1+fan-out of the gate). The WSA of the entire circuit is obtained by summing the WSA 

of all the gates in the circuit.  

The capture power is a small part of the total test power, since each time a bit of the 

output result is shifted out and a bit of the test pattern is shifted in to the scan chain; the 

transitions in the scan chain will propagate to the entire circuit. It is approximately true 

that given a circuit of scan chain length 100, the shift power will be around 100 times the 

capture power. Therefore, our work will only focus on heuristics for keeping the shift 

power constant. 

The precise calculation of shift power is straightforward. Given two consecutive test 

patterns: <V1, V2> and <V1‟, V2‟>, first do logic simulation to compute the output O1 

response to vector V2. The output O1 will be shifted out and at the same time vector V1‟ 

is shifted in. Each time a shift occurs, logic simulation computes the WSA of the entire 

circuit. We already compute O1 in the X-Fill step. But we still have to compute the 

circuit WSA as each bit in O1 is shifted out and each bit in te PPI1 part of V1‟ is shifted 
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in.  

It is obvious that this precise calculation is not feasible for large circuits since we 

cannot afford to simulate N·M times (N is the number of patterns; M is the length of scan 

chain). Previous work [34] indicated that the WSA in the whole circuit is proportional to 

the switching in the scan chain. We improve on that prior work by considering the fan-

out of each scan cell, i.e. the scan chain WSA. This increases the correlation between 

chain and shift power. A scan cell with higher fan-out causes more circuit switching 

when it transitions, and most switching happens in the first few logic levels. We use 

ISCAS89 and ITC99 benchmark circuits as samples and the results are listed in Table 2. 

Here „Shift Power‟ is computed by aggregating the WSA across all scan chain shifts. 

The „Chain Power‟ is computed by aggregating all the scan chain transitions multiplied 

by (1+fan-out of scan cell).  
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Figure 2. Scan Chain Example 

 

For example, if there is a transition between two adjacent bits at scan cell i and the 

fan-out of this cell is fi, then one shift of this bit will increase the WSA in the chain by 
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(1+fi). For example, if O1=010010 and PPI1=100100, let us assume the bits are shifted 

from right to left and the fan-out of each scan cell is (132413) as shown in Figure 2. For 

simplicity, we use D flip-flops to represent the scan cells. The first 2 bits (from left to 

right) of O1 are (01) and there is one transition between them, so shifting out bit 2 of O1 

will cause 1+1=2 WSA because it only shifted through the first cell. The second and 

third bits of O1 are (10), there is one transition between them, so shifting out bit 2 of O1 

will cause (1+1)+(1+3)=6 WSA because the fan-out of the first and second cells are 1 

and 3 respectively and we have to aggregate them when the transition shifted through the 

first and second cell. The computation of WSA when shifting in PPI1 is a little different 

from shifting O1. For example, when the transition between the first and second bit of 

PPI1 is shifted in, it will pass through scan cells 2,3,4,5 and 6. Then the WSA produced 

by it is (1+3) + (1+2) + (1+4) + (1+1) + (1+3) = 18. 

The CPU time to compute the shift power for KLPG tests for circuit s38417 is nearly 

3 hours, while computing the chain power takes approximately 20 seconds. More data 

will be shown in Subsection 2.6. Table 2 shows the correlation between Shift Power and 

Chain Power for ISCAS89 benchmark circuits. We simulate the Shift Power pattern by 

pattern using the compacted patterns in Table 1. For all listed ISCAS89 benchmarks, the 

correlation is above 90% and for s38417 and s38584, the correlation is close to 100%. 

For ITC99 circuits, the correlation is good except for circuit b18. Although b18 has 

lower correlation, we will still use the chain power to estimate the shift power in the 

experimental results in Subsection 2.6. These show that the power variance and standard 

deviation dropped tremendously for all of the circuits during Pattern-Reordering, which 
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gives some confidence in the usage of chain power to estimate shift power. Pattern-

Reordering will be discussed in Subsection 2.4 and 2.5. 

 

Table 2. Relationship Between Shift Power and Chain Power using WSA 

(Computed per Pattern) 

Circuit 
# scan 

chains 

Ave 

Capture 

Power 

Ave Shift 

Power (y) 

Ave Scan 

Chain Power 

(x) 

Equation 
Correlation  

(R
2
) 

s5378 1 1589 318554 31295 y=9.012x+3.7e4 0.909 

s9234 1 2009 718326 66871 y=10.26x+3.2e4 0.967 

s13207 1 3398 3438625 413164 y=6.787x+6.3e4 0.980 

s15850 1 2743 2392278 273651 y=7.578x+3.2e4 0.932 

s35932 1 16986 15130622 2692987 y=4.020x+4e6 0.955 

s38417 

1 14507 16872503 1526040 y=9.254x+3e6 0.997 

2 14507 8557740 774681 y=9.262x+1e6 0.996 

4 14507 4344864 394478 y=9.312x+6.7e4 0.996 

s38584 1 5498 11943562 2281070 y=4.779x+1e6 0.994 

b15 1 3849 959586 144832 y=4.921x+2.5e4 0.951 

b17 1 11292 9430342 1602988 y=4.879x+2e6 0.988 

b18 

5 28532 18298468 2913364 y=4.399x+5e6 0.530 

10 28532 9374047 1487643 y=4.597x+3e6 0.542 

20 28532 4973402 800478 y=4.333x+1e6 0.545 

b19 

9 55288 45711184 6707544 y=5.064x+1e7 0.816 

18 55288 22437717 3366618 y=4.634x+7e6 0.825 

27 55288 14834816 2243794 y=4.741x+4e6 0.845 

b20 1 15892 5523859 254798 y=16.30x+1e6 0.927 

b21 1 15831 5558590 251898 y=16.82x+1e6 0.917 

b22 1 20615 11662497 589127 y=15.08x+3e6 0.925 
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We also conducted experiments by vary the number of scan chains to determine the 

influence of scan chain count on test power estimation. We only changed the number of 

scan chains on circuits s38417, b18 and b19 since the other benchmark circuits had too 

few scan cells. From Table 2 we can see that the average capture power is not related to 

the number of scan chains. However, the average shift power and average chain power is 

almost inverse proportional to the number of scan chains. The reason is that for more 

chains, fewer clock cycles are required to shift the test patterns in and results out.  

Figure 3 shows the parallel vector bit shifting for multiple scan chains. Here shift 

power and chain power actually refer to energy consumption, since formally speaking, 

power is the energy consumed in a giving time. Our goal is to keep this nearly constant. 

The correlation between shift power and chain power changes little change with 

different number of scan chains. Many scan chains corresponds to shorter scan chains 

and is preferable for designs using test compression.   

 

 

Figure 3. Parallel Vector Bit Shifting for Multiple Scan Chains 
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Figure 4 shows the power correlation for circuit s38417. The correlation is near 100 

percent. The chain power is by far the most promising metric for us to estimate shift 

power and the most important thing is that the computation cost is very low compared to 

logic simulation. 

 

 

Figure 4. Power Correlation for s38417 (per pattern) 

 

2.4 Chip-wise Test Pattern Reorder 

After all vectors are filled, we will start re-ordering to achieve constant power. The 

test pattern application time is small compared to the chip thermal time constant. The 

thermal time constant is usually 1-10ms for about a 1
o
C rise. For a 500-bit scan chain 

shifting at 100 MHz, the scan in/out time is only 5µs. Even if we consider 10 patterns in 
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a group, the 50µs application time is still less than 1 ms. Therefore, we can group 

patterns together and reorder these groups to achieve constant power. In our work we 

define the pattern group or time window as 10 patterns. The algorithm attempts to 

equalize the power between groups. We set a power variance bound (pvb) that defines 

the permissible power variation between each pattern group. If the power of all groups is 

within in the bound, we can say that the power is constant. In our experiments, we 

typically set pvb to 0.05 which means a +/-5% variation is allowed between the highest 

and lowest power pattern groups. 

The reordering algorithm shown on the next page uses a greedy approach. It differs 

from the initial version in [16], because if there is an extremely high power pattern and 

an extremely low power pattern, we will continually swap those two patterns and never 

achieve close to the optimal solution. In addition, in the original algorithm, if a pattern 

swap cannot achieve constant power in a group, it will go on to the next group without 

trying to find another swap candidate. The new algorithm introduces an exclusive list 

and a swap-check process to solve this problem. Detailed information is given below. 

The algorithm first randomly shuffles all the patterns because after compaction, the 

initial patterns always tend to have more power than the later patterns. Randomly 

shuffled patterns eliminate this bias, and so form a good starting point for the reordering. 

It then computes the power of each pattern k using the transitions in the chain, stored as 

PP[k]. Then the power of all patterns in a group i is stored as PG[i]. The average power 

of all groups is computed and stored as ave. This initialization procedure is summarized 

in the following pseudo code. 



 22 

 

Chip-wise-Initialize () 

1   Random shuffle all patterns; 

2   Compute Chain power PP[k] of each pattern k; 

3   Group patterns according to predefined time window (10); 

4   Compute power PG[i]of each group i; 

5   Compute average power ave of all groups; 

6   Set iteration to 0; 

For each iteration of the algorithm, we start from the first group and proceed to the 

last group and check whether the total power of that group resides in the range (1+/-

pvb)*ave. If it is higher than (1+pvb)*ave, we pick the pattern m where PP[m] has the 

highest power in the group and meets the following constraints: 

1. PP[m] is higher than the average power of all patterns, which is ave/10 in our 

experiment; 

2. PP[m] should not be in the exclude list. 

For each group i during one iteration, we maintain an exclude list that contains all 

patterns in group i that cannot find a pattern in another group to swap with. This list will 

be initialized each time we start swapping patterns for a new group. Then we tried to 

find another group j where PG[j] is lowest among all other groups. We will pick the 

lowest power pattern t in group j as a candidate to swap with pattern m. This approach 

could make the power more even between groups, since it makes more attempts, 

compared to the one attempt in [17]. 

The change of power induced by swapping pattern m and t is calculated as:  change 

= PP[m]-PP[t]. 
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The difference of power of group i PG[i] and ave is calculated as diff1=PG[i]-ave. 

The difference of power of group j PG[j] and ave is calculated as diff2= ave- PG[j]. 

It is obvious that diff1 and diff2 are positive values according to our selection criteria. 

We then will check that swapping of m and t does not fall into the six illegal cases given 

below. If after checking all the patterns in group j, we still cannot find a legal pattern t to 

swap with m, we put pattern m into the exclude list which means that we can‟t find a 

pattern in group j to swap with it. The reason we do the following check is to ensure that 

the swapping will not make the original power of group i and j worse. This can happen if 

change is very high. The approach in [17] does not perform this checking and will 

increase the power variation for the following cases. 

Case 1: If change > 2*diff1 which means PG[i] deteriorated because diff1’=change-

diff1 is larger than diff1. If change > 2*diff2 and diff2>pvb*ave as Figure 5 shows, PG[j] 

also deteriorated because diff2’=change-diff2 is larger than diff2. We reject this swap. 

 

 

Figure 5. Case 1 of Swap-Check 
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Case 2: If change > 2*diff1 which means PG[i] deteriorated. If change<2*diff2 and 

diff2>pvb*ave as Figure 6 shows, diff2’= change-diff2. Since diff2’ is less than diff2, the 

improvement of PG[j] would be Im[j] = diff2-diff2’ = 2*diff2 - change. The 

deterioration of PG[i] is De[i] = diff1’-diff1 = change-2*diff1. If Im[j]<De[i], we reject 

this swap. 

 

 

Figure 6. Case 2 of Swap-Check 

Case 3: If change > 2*diff1 which means PG[i] deteriorated. If change>2*diff2 and 

diff2<=pvb*ave as Figure 7 shows, PG[j] also deteriorated. We reject this swap. 

 

Figure 7. Case 3 of Swap-Check 
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Case 4: If change < 2*diff1 which means PG[i] improved. If change-diff1-

pvb*ave>0, which means PG[i] becomes less than (1-pvb)*ave after swap. Im[i] = 

diff1-diff1’ = 2*diff1 -change. If diff2>pvb*ave as Figure 8 shows, PG[j] deteriorated, 

De[j] = diff2’-diff2 = change-2*diff2. If Im[i] < De[j], we reject this swap. 

 

 

Figure 8. Case 4 of Swap-Check 

Case 5: If change < 2*diff1 which means PG[i] improved. If change-diff1-

pvb*ave>0, which means PG[i] become less than (1-pvb)*ave after swap. Im[i] = diff1-

diff1’ = 2*diff1- change. If diff2<=pvb*ave as Figure 9 shows, PG[j] deteriorated, De[j] 

is obviously larger than Im[i] so we reject this swap. 
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Figure 9. Case 5 of Swap-Check 

Case 6: If change-diff1-pvb*ave<=0, which means PG[i] improved. If change-

diff1>diff2, which means that De[j] is larger than Im[i] as Figure 10 shows, we reject 

this swap. 

 

Figure 10. Case 6 of Swap-Check 

    The pseudo code of Swap-Check() listed below checks all of the six rules and if the 

swap does not violate any of them, the function returns false. If any rule is violated, the 

function returns true. If pattern t passes the rule checking by calling Swap-Check(), we 

proceed to swap with pattern m, and re-compute the chain power for pattern m-1, m, t-1, 
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t since the shift power computation of vector i is dependent on the next vector to be 

shifted in. For example, computing shifting power for vector m-1 needs the PPI1 of 

pattern m because we are shifting out the PPO2 of pattern m-1 and shifting in the PPI1 

of pattern m. Then we update the total power of the affected group and re-compute the 

average group power ave, because the power of the affected groups has changed. 

     

boolean Swap-Check (diff1, diff2, change)  

1    if (change - 2*diff1 > 0) { 

2        if (diff2 > pvb*ave ) { 

3            if (change >= 2*diff2)   

4                return true;  //case 1 

5            else if (change - diff2 - pvb*ave >= 0) 

6                if (2*diff2 - change < change - 2*diff1) 

7                    return true; //case 2 

8        } 

9        else  return true;  //case 3 

10  } 

11  else if (change - diff1 - pvb*ave > 0) { 

12      if (diff2 > pvb*ave) { 

13           if (2*diff1 - change < change – 2*diff2) 

14                 return true;  //case 4 

15      } 

16      else  return true;  // case 5 

17  } 

18  else if (change - diff1 > diff2)  

19      return true; //case 6 

20  return false; //default 
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Similarly, if PG[i] is lower than (1-pvb)*ave, we follow steps similar to when PG[i] 

is higher than (1+pvb)*ave, making sure to select the lowest power pattern m in group i 

and that power PP[m] is lower than ave/10; Also, find group j (j≠i) where PG[j] is the 

highest among all groups; find pattern t  which PP[t] is the highest in group j and PP[t] 

is more than PP[m].  

This process will stop when constant power is achieved or the total number of 

iterations exceeds a pre-defined timeout value. The following are the pseudo codes of the 

Pattern-Reorder algorithm and the sub-routine to check the legality of swapping two 

patterns which is called Swap-Check(). Note that a variable called attempts is used 

during swapping for each group i. It is set to 5 (= half the group size) which is the 

number of attempts to select and swap patterns in the group. The reason why we 

introduced this loop variable is that we try to even out the group power PG[i] as best as 

we can during each iteration. Experiments showed good results after we added this 

variable. 

The pseudo code of chip-wise pattern reordering algorithm is summarized as follows. 

Algorithm Chip-wise-Pattern-Reorder ()  

1  Chip-wise-Initialize(); 

2  while iteration < timeout and power is not constant, do{ 

3     Increment iteration by 1; 

4     Initialize the exclude list; 

5     For each group i, do{    

6 start:    

7       if PG[i] >  (1+pvb)*ave { 

8          Set attempts = 0; 
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9          while (true) { 

10            if PG[i] <  (1+pvb)*ave,  

11                break;  // PG[i ] is constant 

12            if (attempts < 5){//try 5 swaps to even PG[i] 

13                Increment attempts by 1; 

14                Set diff1= PG[i]-ave;             

15                Select the highest power pattern m in group i which is not in  

16                    exclude list and power PP[m] is higher than ave/10; 

17                if m is not found 

18                    break; 

19                Find group j (j≠i) which PG[j]is the lowest among all groups; 

20                Set t = first pattern in group j; 

21                Set swapped = false; // a flag to mark if pattern t found 

22                For each pattern n in group j, do { 

23                   // Find pattern t which PP[t] is the lowest in  

24                   // group j and PP[t] is less than PP[m]. 

25                   Set change = PP[m]- PP[n]; 

26                   If change <= 0 || PP[n] >= PP[t], continue; 

27                   Set diff2= ave - PG[j]; 

28                   if Swap-Check (diff1, diff2, change);                     

29                       continue; //swap illegal 

30                   else { 

31                       set t = n;  

32                       set swapped = true; // pattern t found 

33                   } 

34                } //end for 

35                if (swapped = false){ 

36                    //can‟t find pattern in group j to swap with pattern m 

37                    Put pattern m into exclude list and goto start; 
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38                }else { 

39                    //swap pattern m and t 

40                    Re-compute Chain power for pattern m-1, m, t-1, t; 

41                    Re-compute power for group i, j; 

42                    Update ave; 

43                } 

44             }// end if 

45          }//end while 

46       }//end if 

47       else if PG[i] < (1-pvb)*ave{ 

48          //follow the similar steps as above, make sure to pick up 

49          //the lowest power pattern m in group i and power  

50          //PP[m] is lower than ave/10; find group j (j≠i) which  

51          //PG[j]is the highest in all groups; find pattern t  which  

52          //PP[t] is the highest in group j and PP[t] > PP[m]. 

53       }//end if 

54    }//end for 

55 }//end while 

  

2.5 Region-wise Test Pattern Reorder 

For large circuits, we found some regions of circuits that always had more switching 

than other regions, even if the total power is constant. We call those regions „hot spots‟. 

In test mode, we want to keep the power dissipation in each region constant in addition 

to keeping the total power constant. This is obviously a harder problem because we have 

to know the layout information of the circuit and want to keep the power in each region 
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to be constant. Intuitively, if we have reordered patterns that can achieve chip-wise 

constant power, we cannot guarantee that this pattern order can achieve region-wise 

constant power. On the contrary, if we have region-wise constant power patterns, we are 

sure the chip-wise power is constant because of the following proof. 

Assume we have n regions and each region has constant power (within +/-pvb). 

Assume we have m pattern groups. Suppose the power of group g in region r is PG[r][g] 

and we have 1≤r≤n, 1≤g≤m. Then the power of group g in for the whole chip is the sum 

of the power in all regions. We have the following two equations: 
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Since we already have region-wise constant power, which means that the max and 

min power of each region is within the +/- pvb range, the chip-wise power should also be 

constant. Here we only focused on evening out the pattern-to-pattern power variation 

within each region, not the power between regions, since some regions will inherently 

have more switching activity than others. 

The algorithm Region-wise-Pattern-Reorder() is similar like Chip-wise-Pattern-

Reorder(). Region-wise-Initialize() is called first to initialize the power for each region 

of each group. Chip-wise-Pattern-Reorder() is called instead of random shuffle in Chip-

wise-Initialize() because we think starting from the patterns that achieves chip-wise 

constant power is a good starting point of our region-wise algorithm. Obviously region-

wise reordering is more costly than chip-wise reordering. Two-dimensional arrays 
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PP[r][k] and PG[r][i] are used to store the region-wise group power per pattern and per 

group. We also need to store the average power ave[r] for each region r. 

Region-wise-Initialize () 

1   Chip-wise-Pattern-Reorder (); 

2   Compute Chain power PP[r][k] of each pattern k in each region r; 

3   Group patterns according to predefined time window (10); 

4   Compute power PG[r][i]of each group i in each region r; 

5   Compute average power ave[r] of all groups in each region r; 

6   Set iteration to 0; 

Then, we call FindRegion() to even out the power of the region that has the most 

variance from the average power of that region, then switch to the next region until the 

power for this group is even among all regions. If we cannot find a pattern to swap, we 

go to next group. Here the array var[r] is computed by subtracting the group power 

PG[r][i] by ave[r] where r is the region ID and i is the group ID. A simple sort is used 

here to find the largest var[r] by its absolute value. The region which has the largest 

absolute value of var[r] is returned as our target region. 

FindRegion (i) 

1   //For group i, compute the power difference of each region from the average 

2  for each region r, do  

3         var[r] = PG[r][i]-ave[r]; 

4  Sort var[r] decreasingly by it‟s absolute value; 

5  Return the first region r in the var list; 

We added a function called Swap-Check-Region() to check if a swap between pattern 

m and n for evening the power of region i does not deteriorate the power variation for 
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any regions other than group i. The process shown below is similar to Swap-Check() in 

chip-wise reordering. First, we check the power change after swapping pattern m and n 

and save it as variable diff. Then we check whether the region power variance var[j] 

(which is computed in function FindRegion()) is above the pvb*ave[j]. If yes, this means 

region j is a high power region with diff less than zero. This indicates that the swap will 

make the power variation in region j higher, so we reject this swap. For the case that 

var[j] is less than negative pvb*ave[j], which means region j is a lower power region 

and diff is larger than zero. This indicates that the swap will make the power for region j 

lower, so we also reject this move. 

boolean Swap-Check-Region (i,m,n)  

1    for any other region j other than i, do {  

2        Set diff = PP[j][m]- PP[j][n]; 

3        if (var[j] > pvb*ave[j]&& diff <0) 

4            return true; 

5        if (var[j] < -pvb*ave[j]&& diff >0) 

6            return true; 

7    } 

8    return false; //default 

It is critical to mention that in line 6 of algorithm Region-wise-Pattern-Reorder(), we 

will check the power variance n times (n is the number of regions). And in line 7, we call 

FindRegion() to even the power of the maximum power variance region. Each time we 

find a pattern to swap, we need to make sure the 6 rules defined in Subsection 2.5 are 

followed by calling Swap-Check() in line 30. The value to be passed in to the function is 
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the region-wise power variance between ave[r] and PG[r][j], not the chip-wise power 

variance between ave and PG[j]. The iterations will end when the power is constant or a 

pre-defined timeout occurs. 

Algorithm Region-wise-Pattern-Reorder ()  

1  Region-wise-Initialize(); 

2  while iteration < timeout and power is not constant, do{ 

3     Increment iteration by 1; 

4     Initialize the exclude list; 

5     For each group i, do{  

6         For each region r, do { 

7             r = FindRegion(i); //Find target region to even; 

8 start:    

9            if PG[r][i] >  (1+pvb)*ave[r] { 

10             Set attempts = 0; 

11             while (true) { 

12                 if PG[r][i] <  (1+pvb)*ave[r] 

13                     break;  // PG[r][i] is constant 

14                 if (attempts < 5){//try 5 swaps to even PG[r][i] 

15                    Increment attempts by 1; 

16                    Set diff1= PG[r][i]-ave[r];             

17                    Select the highest power pattern m in group i which is not in  

18                        exclude list and power PP[r][m] is higher than ave/10; 

19                    if m is not found 

20                        break; 

21                        Find group j (j≠i) that PG[r][j]is the lowest among all groups; 

22                   Set t = first pattern in group j; 

23                   Set swapped = false; // a flag to mark if pattern t found 
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24                   For each pattern n in group j, do { 

25                      // Find pattern t which PP[r][t] is the lowest in  

26                      // group j and PP[r][t] is less than PP[r][m]. 

27                      Set change = PP[r][m]- PP[r][n]; 

28                      if change <= 0 || PP[r][n] >= PP[r][t], continue; 

29                      Set diff2= ave[r] – PG[r][j]; 

30                      if (Swap-Check (diff1, diff2, change)  

31                             || Swap-Check-Region(r, m, n) )  continue; 

32                      else { 

33                          set t = n;  

34                          set swapped = true; // pattern t found 

35                      } 

36                   }// end for 

37                   if (swapped = false){  

38                      //can‟t find pattern in group j to swap with pattern m 

39                      Put pattern m into exclusive list and goto start; 

40                   }else { 

41                       //swap pattern m and t 

42                       Re-compute Chain power for pattern m-1, m, t-1, t; 

43                       Re-compute power for group i, j; 

44                       Update ave[r]; 

45                   } 

46                }// end if 

47             }//end while 

48          }//end if 

49          else if PG[r][i] < (1-pvb)*ave[r]{ 

50             //follow the similar steps as above, make sure to pick up 

51             //the lowest power pattern m in group i and power  

52             //PP[r][m] is lower than ave[r]/10; find group j (j≠i) which  



 36 

 

53             //PG[r][j]is the highest in all groups; find pattern t  which  

54             //PP[r][t] is the highest in group j and PP[r][t] > PP[r][m]. 

55          }//end if 

56       }//end for 

57    }//end for 

58 }//end while 

 

2.6 Experimental Results 

The algorithm was implemented by C++ and run on a Windows XP PC with Intel 

Core 2 Duo processor (2.66GHz) and 4GB memory. Figure 11 is the complete flow 

chart of the procedures discussed above. It starts from reading the netlist and 

uncompacted test patterns, then compacting patterns and filling X bits using the 

algorithm in Subsection 2.2, then reordering the patterns by using the algorithm in 

Subsection 2.4 and 2.5. If we reorder patterns for region-wise constant power, we need 

to read in the layout information that describes cell placement. The reordering algorithm 

is independent from the X-Fill algorithm and compaction algorithm used to generate the 

patterns. Thus, it can be used on other test patterns, such as transition fault patterns. 
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Figure 11. Constant Power Flow 

As we can see from Table 3 and Table 4, our algorithm greatly reduces the power 

variation by reducing the Max power and increasing the Min power. Column “Initial 

Chain Power” is the power computed before re-ordering and column “Final Chain Power” 

is the power after reordering. The column „Reorder Time‟ is the CPU time for reordering 

patterns, which requires only 1 second to reorder more than 500 patterns for circuit 

s38584. For the other small circuits, the total time is rounded up to 1 second. The 

reordered patterns reduce the overall Max/Ave (Min/Ave) from 176.18% (50.61%) to 

104.50% (95.45%) and the Standard Deviation/Ave dropped from 20.66% to 2.64% for 

s38584. The variance between Max/Min dropped from around 126% to 9%. Note that 

after compaction, for circuit s35932, we only have 36 patterns which could only been  
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Table 3. Estimation Results for Chip-wise Constant Power Algorithm (Part 1) 

Circuit 
# Patterns 

(# Groups) 

# scan 

chains 

Initial Chain Power (before Reorder) 

Ave(WSA) (Max-Min)/Ave Stdev/Ave 

s5378 407(40) 1 312948 28.84% 8.53% 

s9234 790(79) 1 668711 46.48% 12.02% 

s13207 909(90) 1 4131639 29.35% 4.95% 

s15850 470(47) 1 2736509 73.30% 16.84% 

s35932 36(3) 1 26929867 93.74% 49.03% 

s38417 948(94) 

1 15260402 82.08% 17.49% 

2 7746811 78.33% 16.98% 

4 3944785 77.12% 16.46% 

s38584 525(52) 1 22810696 125.57% 20.66% 

b15 1506(150) 1 1448320 107.17% 15.49% 

b17 3290(329) 1 16029879 56.01% 11.22% 

b18 5434(543) 

5 29133638 44.79% 9.56% 

10 14876425 46.08% 9.81% 

20 8004780 44.32% 9.94% 

b19 5319(531) 

9 67075436 41.65% 8.79% 

18 33666184 42.28% 9.20% 

27 22437942 44.90% 10.18% 

b20 6234(623) 1 2547979 78.23% 14.28% 

b21 6579(657) 1 2518977 70.77% 13.24% 

b22 8090(809) 1 5891267 56.43% 11.36% 



 39 

 

Table 4. Estimation Results for Chip-wise Constant Power Algorithm (Part 2) 

Circuit 
# scan 

chains 

Final Chain Power (after Reorder) 
Iterations 

Total 

Time 

(m:s) 

Reorder 

Time 

(m:s) 

Ave(WSA) (Max-

Min)/Ave 

Stdev/Ave 

s5378 1 312471 8.04% 2.61% 1 00:03 00:01 

s9234 1 669484 9.91% 2.86% 1 00:07 00:01 

s13207 1 4135834 8.69% 2.03% 1 00:15 00:02 

s15850 1 2733073 9.75% 2.79% 1 00:07 00:01 

s35932 1 24638404 5.40% 2.83% 1 00:02 00:01 

s38417 

1 15225594 9.44% 2.85% 1 00:48 00:11 

2 7727072 9.86% 2.76% 1 00:52 00:13 

4 3932966 9.00% 2.78% 1 00:55 00:15 

s38584 1 22727131 9.06% 2.64% 2 00:23 00:06 

b15 1 1450203 9.64% 3.01% 3 00:14 00:03 

b17 1 16025113 9.77% 2.76% 1 03:30 01:17 

b18 

5 29128507 9.21% 2.47% 1 19:48 07:19 

10 14874256 9.87% 2.63% 1 20:08 07:18 

20 8003301 9.87% 2.76% 2 20:00 07:13 

b19 

9 67058303 9.63% 2.52% 1 39:57 15:31 

18 33660060 9.45% 2.60% 1 39:47 15:12 

27 22432003 9.95% 2.76% 1 39:59 15:22 

b20 1 2547109 9.95% 2.59% 2 03:18 01:19 

b21 1 2518064 9.91% 2.59% 1 03:46 01:28 

b22 1 5888644 9.74% 2.52% 2 07:29 02:58 
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assembled to 3 pattern groups. The high compaction rate of our static compaction 

process could potentially produce extremely high power patterns and very low power 

patterns in a group. This is why the routine Swap-Check was introduced in our 

reordering algorithm.  

We also conducted experiments by changing the number of scan chains for s38417, 

b18 and b19. The improvement in Max-Min variance and Standard Variation are almost 

independent of the number of scan chains.  

The number of pattern groups is computed by dividing the pattern number by 10 and 

truncating the remainder because the remainder patterns would not be able to fill a full 

time window. This is not essential to the algorithm, since it computers per-pattern 

statistics for each group, and so can handle groups with different pattern counts. We do 

not calculate the shift-in power for the first pattern because initially the chain is preset to 

all 0‟s or all 1‟s, which would have very low shift power. Our time window starts from 

the shift in of the second test pattern.  

In order to show the correctness of our power estimation, we do logic simulation to 

compute the Total Shift Power for each circuit to see whether the reordered patterns 

achieve constant shift power. Here we do logic simulation each time we shift in/out a bit 

from the scan chain. Table 5 and Table 6 show the corresponding Shift Power compared 

to the Chain Power in Table 3 and Table 4. The time cost to compute shift power is so 

high that for the largest ITC99 circuit b19 with 9 scan chains, it cost more than 144 CPU 

hours to compute the initial shift power, and then this cost is repeated to compute the 

final shift power. Note that this is performed only as an evaluation of the final results,  
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Table 5. Simulation Results for Chip-wise Constant Power Algorithm (Part 1) 

Circuit 
# Patterns 

(# Groups) 

# scan 

chains 

Initial Shift Power (before Reorder) 

Ave(WSA) 
(Max-

Min)/Ave 
Stdev/Ave 

Time 

(h:m:s) 

s5378 407(40) 1 3185536 31.06% 7.94% 0:00:25 

s9234 790(79) 1 7183262 47.48% 12.13% 0:01:43 

s13207 909(90) 1 34386247 26.17% 4.17% 0:10:10 

s15850 470(47) 1 23922777 60.93% 14.02% 0:04:57 

s35932 36(3) 1 151306220 74.42% 39.10% 0:03:06 

s38417 948(94) 

1 168725032 68.88% 14.72% 2:43:39 

2 85577398 65.91% 14.33% 1:39:23 

4 43448643 65.10% 14.02% 58:01 

s38584 525(52) 1 119435620 112.80% 18.70% 1:15:19 

b15 1506(150) 1 9595860 77.16% 11.25% 0:16:28 

b17 3290(329) 1 94303420 45.60% 9.29% 20:14:54 

b18 5434(543) 

5 182984680 36.24% 7.13% 41:42:05 

10 93740465 36.76% 7.01% 26:05:14 

20 49734021 39.35% 7.26% 18:02:10 

b19 5319(531) 

9 457111842 35.45% 6.67% 144:53:48 

18 224499510 35.39% 6.76% 85:52:41 

27 148348164 39.14% 7.64% 57:45:39 

b20 6234(623) 1 55238589 62.75% 10.99% 7:41:22 

b21 6579(657) 1 55585899 49.99% 10.48% 8:12:53 

b22 8090(809) 1 116624969 45.47% 8.88% 24:16:33 
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Table 6. Simulation Results for Chip-wise Constant Power Algorithm (Part 2) 

Circuit 
# scan 

chains 

Final Shift Power (after Reorder) 

Ave(WSA) (Max-Min)/Ave Stdev/Ave Time  

(h:m:s) 
s5378 1 3183594 9.89% 2.48% 0:00:26 

s9234 1 7187976 10.53% 2.78% 0:01:43 

s13207 1 34412756 7.60% 1.69% 0:09:37 

s15850 1 23908167 13.25% 2.85% 0:04:48 

s35932 1 135100344 15.07% 7.70% 0:02:50 

s38417 

1 168457613 8.48% 2.38% 2:42:28 

2 85422031 8.54% 2.29% 1:38:01 

4 43343391 7.77% 2.35% 0:57:41 

s38584 1 119184448 9.06% 2.51% 1:13:05 

b15 1 9606710 10.26% 2.55% 0:16:34 

b17 1 94281909 9.51% 2.32% 20:39:38 

b18 

5 182933251 15.04% 2.46% 42:20:29 

10 93742759 14.20% 2.47% 25:50:07 

20 49635595 14.48% 2.56% 17:51:14 

b19 

9 457141343 10.75% 2.08% 144:26:14 

18 224583866 9.92% 2.04% 85:15:59 

27 148396215 10.77% 2.27% 58:06:35 

b20 1 55232269 12.14% 2.31% 7:52:33 

b21 1 55594752 13.10% 2.44% 8:22:05 

b22 1 116636580 12.55% 2.19% 24:16:09 
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rather than during the reordering. If we reorder patterns using full logic simulation, the 

execution time would be infeasible. Our estimation algorithm requires only 40 minutes 

and the results correlate well to logic simulation. For circuit s38417 with one scan chain, 

the estimation time is only 48 seconds compared to more than 160 minutes for 

simulation (will need twice that time to compute both initial and final power). For other 

circuits listed, our estimation also performs very well, at much lower CPU cost.  

Our proposed greedy reordering algorithm also shows close correlation between 

Shift Power and Chain Power. For circuit s38417 with 1 scan chain, Table 3 and Table 4 

show the estimated results that the (Max-Min)/Ave is 9.44% and Stdev/Ave is 2.85% 

after reordering. Using simulation, from Table 5 and Table 6 we can see that the (Max-

Min)/Ave is 8.48% which is within the +/-5% bound and Stdev/Ave is 2.38%. For circuit 

b17 with 1 scan chain, the estimated results show that the (Max-Min)/Ave is 9.77% and 

Stdev/Ave is 2.76% after reordering. The simulation results show that the (Max-

Min)/Ave is 9.51%, which is also within the +/-5% bound and Stdev/Ave is 2.32% after 

reordering. 

We also executed experiments using different values of the power variation bound 

(pvb) for the larger circuits s38417, s38584, b17, b18, b19, b21 and b22. The results are 

summarized in Table 7  and Table 8. First, we can see that even if we reduce the pvb to 1% 

for most circuits, our algorithm still can still reorder patterns in a short time. Since the 

number of scan chains has little impact on the simulation results, we use 1 scan chain for 

the smaller circuits, 10 chains for b18 and 18 chains for b19, in order to reduce 

simulation time. The column „Total Time‟ consists of the time to read in scan chain,  
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Table 7. Estimation and Simulation Results for Different Power Variance Bound 

(pvb) in Chip-wise Constant Power Algorithm (Part 1) 

Circuit 
# scan 

chains 
pvb 

Total 

Time 

(m:s) 

Reorder 

Time 

(m:s) 

Reorder  

Iterations 

Final Chain Power 

Ave(WSA) 
(Max-

Min)/Ave 
Stdev/Ave 

s38417 1 

3% 00:49 00:12 2 15218815 5.73% 1.70% 

2% 00:50 00:13 3 15216761 3.66% 0.98% 

1% 00:51 00:14 14 15210029 1.74% 0.50% 

s38584 1 

3% 00:24 00:06 4 22735206 5.37% 1.60% 

2% 00:25 00:07 8 22729259 3.54% 1.13% 

1% 00:26 00:08 13 22742189 1.93% 0.62% 

b17 1 
2% 03:56 01:20 14 16029610 3.70% 1.05% 

1% 04:12 01:35 20 16026938 1.98% 0.57% 

b21 1 
2% 03:36 01:13 19 2518275 3.87% 1.13% 

1% 03:51 01:28 21 2518120 1.99% 0.60% 

b22 1 
2% 07:42 02:54 7 5888778 3.96% 1.11% 

1% 07:49 03:02 14 5888084 1.99% 0.59% 

b18 10 3% 20:08 07:18 2 14874277 5.93% 1.72% 

b19 18 3% 39:49 15:14 1 33661516 5.95% 1.65% 
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Table 8. Estimation and Simulation Results for Different Power Variance Bound 

(pvb) in Chip-wise Constant Power Algorithm (Part 2) 

Circuit 

  Final Shift Power 

# scan 

chains 
pvb Ave(WSA) (Max-Min)/Ave Stdev/Ave 

s38417 1 

3% 168394083 5.53% 1.47% 

2% 168371311 3.66% 0.88% 

1% 168317122 2.12% 0.50% 

s38584 1 

3% 119249912 6.22% 1.56% 

2% 119217402 5.17% 1.27% 

1% 119271968 3.42% 0.79% 

b17 1 
2% 94306017 4.34% 0.97% 

1% 94291941 3.73% 0.62% 

b21 1 
2% 55606503 9.77% 1.68% 

1% 55603244 8.89% 1.55% 

b22 1 
2% 116636381 8.86% 1.42% 

1% 116628884 7.90% 1.25% 

b18 10 3% 93748252 13.77% 2.21% 

b19 18 3% 224592057 7.05% 1.39% 

 

netlist and un-ordered test patterns, the time to reorder patterns and the time to output 

reordered patterns. If we look at the „Final Shift Power‟ column, we can see that after 

computing the shift power by simulation, the correlation between Chain Power and Shift 

Power is very good even when the pvb is 1%. For example, for s38417, when pvb=1%, 

the „(Max-Min)/Ave‟ and „Stdev/Ave‟ of „Final Shift Power‟ is 2.12% and 0.5% 

respectively which is very close to 1.74% and 0.5%. Keep in mind that the actual 
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variation experienced by the chip will be even smaller, since the pattern group 

application time is much less than the chip thermal time constant. 

When we reduce the value of pvb, the reorder time and reorder iterations increased 

accordingly.  For example, we need only 2 iterations to even out the power for s38417 

when pvb is set to 3%, but we need up to 14 iterations when pvb is 1%. The reorder time 

also increased from 12 to 14 seconds. Note that the number of pattern swaps in each 

iteration is not equal, so that the number of iterations is not linear to the reorder time.  

 

 

Figure 12. Chip-wise Constant Power Estimation Result for s38417 (pvb=1%) 
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Figure 13. Chip-wise Constant Power Simulation Result for s38417 (pvb=1%) 

 

Figure 12 shows the estimation result of s38417 when pvb is set to 1%. It is easy to 

see the tremendous change in Chain Power before and after reordering. The chain power 

is almost constant between groups.  

Figure 13 shows the simulation result of s38417, running logic simulation on the 

patterns before and after reordering, to verify our algorithm correctness. We can see that 

the final total shift power is near constant compared to the initial total shift power. 

Figure 12 and Figure 13 also showed the power distribution of statically compacted test 

patterns – the initial patterns are high power and the later patterns are relatively low 

power. 
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Note that our pattern reordering algorithm is not capable of reducing the power 

variation within a group, which means that when we shift the time window along with 

the time line, the power consumption within a time window will change and the power 

variation between windows might increase.  

 

 

Figure 14. 10 Patterns/Group, Time Window = 10 Patterns, Average Power = 50 

 

Figure 14 shows an example of 10 patterns per group and the time window is the 

time needed to apply 10 patterns. Although we can achieve constant power for the first 

two groups, when we shift the window six patterns along the time line, the group power 

within the two consecutive windows is larger than before. The reason is that the last 

several patterns in group 1 and the first several patterns in group 2 have higher power. 

When we shifted the window, the new group 1 happens to have included all those high 

power patterns and the new group 2 happens to have some low power patterns. To deal 

with this situation, we can run our algorithm for a small number pattens per group 
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compared to the actual time window. Given a time window of 100 patterns and if we can 

have constant power for every 10 patterns‟ group, the variation of power when shifting 

the time window for 100 patterns will be much smaller than a time window of 10 

patterns.   

 

 
Figure 15. 10 Patterns/Group, Time Window = 20 Patterns, Average Power = 50 

 
Figure 15 shows an example of constant power of 10 patterns per group and the time 

window is 20 patterns. It shows that when we shift the window, the variation of power in 

the window is much less than before. If the time window is 50 patterns or even more, the 

power variations while shifting the time window will be even less. 

 

Table 9. Estimation Results for 50 Patterns per Group in Chip-wise Constant 

Power Algorithm (pvb=1%) (Part 1) 

Circuit 
# Patterns 

(# Groups) 

# scan 

chains 

Initial Chain Power (before Reorder) 

Ave(WSA) (Max-Min)/Ave Stdev/Ave 

b17 3290(32) 1 80141712 39.77% 10.37% 

b21 6579(65) 1 12599386 48.79% 11.31% 

b22 8090(80) 1 29478473 39.98% 10.35% 
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Table 10. Estimation Results for 50 Patterns per Group in Chip-wise Constant 

Power Algorithm (pvb=1%) (Part 2) 

Circuit 

Final Chain Power (after Reorder) 

Iterations 

Total 

Time 

(h:m:s) 

Reorder 

Time 

(h:m:s) 
Ave(WSA) (Max-Min)/Ave Stdev/Ave 

b17 80169996 1.98% 0.58% 1 03:42 01:20 

b21 12589563 1.79% 0.52% 2 03:36 01:23 

b22 29442332 1.87% 0.51% 1 07:34 03:02 

 

Table 9 and Table 10 show the estimation result of three circuits when we use 50 

patterns per group instead of the previous 10 patterns per group. Here we set pvb to 1% 

and all circuits use 1 scan chain. Compared to Table 7 and Table 8, the iterations need to 

reorder patterns drops significnatly because more patterns are grouped, resulting in less 

power variation. This reduces the iterations needed to even out the power across groups. 

From the viewpoint of the thermal time constant, 50 patterns would be applied in 0.25 

ms, assuming a 500 bit scan chain and 100 MHz scan rate. This is still less than the 

thermal time constant. Intuitively, the larger the pattern group, the easier it is to achieve 

constant power. Table 11 and Table 12 show the corresponding simulated results. It can 

be seen that the shift power (Max-Min)/ave variation and standard deviation are closedto 

the estimated results, which means using chain power to estimate shift power is a good 

metric. 
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Table 11. Simulation Results for 50 Patterns per Group in Chip-wise Constant 

Power Algorithm (pvb=1%) (Part 1) 

Circuit 
# Patterns 

(# Groups) 

# scan 

chains 

Initial Shift Power (before Reorder) 

Ave(WSA) 
(Max-

Min)/Ave 
Stdev/Ave 

Time 

(h:m:s) 

b17 3290(32) 1 471425682 31.82% 8.58% 20:14:54 

b21 6579(65) 1 278029059 38.26% 8.94% 8:12:53 

b22 8090(80) 1 583473664 30.73% 8.06% 24:16:33 

 

 

Table 12. Simulation Results for 50 Patterns per Group in Chip-wise Constant 

Power Algorithm (pvb=1%) (Part 2) 

Circuit 
Final Shift Power (after Reorder) 

Ave(WSA) (Max-Min)/Ave Stdev/Ave Time (h:m:s) 

b17 471636925 1.96% 0.50% 20:15:14 

b21 277959273 3.53% 0.78% 8:22:05 

b22 583111762 3.21% 0.67% 24:16:09 

 

Table 13 and Table 14 show the estimation results for the Region-wise constant 

power algorithm with pvb set to 5% and 10 patterns per group. We only listed the two 

largest ISCAS89 circuits and one of the largest circuits in ITC99 since the smaller 

circuits do not have enough gates to divide into regions. The layouts of these circuits 

were created using Cadence SOC Encounter with TSMC 180 nm technology. The 

number of scan chains for s38417, b17 and b19 is 1, 1 and 18 respectively. Since s38417  
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Table 13. Estimation Results for Region-wise Constant Power Algorithm 

(pvb=5%, timeout=200, 10 Patterns per Group) (Part 1) 

Circuit 
Region 

ID 

# 

Scan 

Cells 

Chain Power before Reorder Chain Power after Chip-wise 

Reorder 

Ave 
(Max-Min) 

/Ave 
Stdev/Ave Ave 

(Max-

Min) 

/Ave 

Stdev/Ave 

s38417 

1 441 4337023 81.73% 17.57% 4324136 9.34% 2.53% 

2 417 3689107 83.44% 17.57% 3678538 10.25% 2.59% 

3 396 3689289 83.02% 17.86% 3678449 9.35% 2.60% 

4 382 3544983 80.10% 16.98% 3534597 9.08% 2.41% 

b17 

1 253 4779645 56.99% 11.34% 4777707 12.60% 2.99% 

2 307 3394306 57.43% 11.57% 3392797 11.22% 2.94% 

3 432 4042883 55.79% 11.18% 4041393 10.74% 2.86% 

4 423 3813045 54.31% 10.92% 3811470 13.41% 2.89% 

b19 

1 1043 5526596 39.40% 7.80% 5526027 19.36% 3.29% 

2 1146 4405387 50.63% 13.17% 4404758 23.71% 4.56% 

3 610 4470274 64.21% 15.46% 4470294 27.58% 5.23% 

4 389 1862794 38.80% 7.28% 1862459 22.32% 3.28% 

5 443 2646726 59.21% 13.80% 2646181 29.51% 4.95% 

6 880 3029939 48.05% 11.84% 3029556 23.23% 3.94% 

7 813 5396912 33.23% 7.72% 5396485 18.91% 3.29% 

8 710 2941721 49.78% 9.98% 2941285 23.26% 4.10% 

9 608 3385835 50.07% 9.61% 3385461 19.27% 3.65% 
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Table 14. Estimation Results for Region-wise Constant Power Algorithm 

(pvb=5%, timeout=200, 10 Patterns per Group) (Part 2) 

Circuit 
Region 

ID 

Chain Power after Region-wise Reorder 
Region-

wise 

Iterations 

Total 

Time 

(m:s) 

Total 

Reorder 

Time 

(m:s) 

Ave 
(Max-Min) 

/Ave 
Stdev/Ave 

s38417 

1 4324136 8.86% 2.26% 

2 01:01 00:22 
2 3678538 8.62% 2.25% 

3 3678449 8.31% 2.32% 

4 3534597 8.24% 2.13% 

b17 

1 4777707 9.53% 2.48% 

2 04:27 01:23 
2 3392797 9.70% 2.40% 

3 4041393 9.49% 2.37% 

4 3811470 9.50% 2.43% 

b19 

1 5526081 8.89% 2.10% 

8 52:03 20:12 

2 4404752 9.85% 2.34% 

3 4470339 9.71% 2.58% 

4 1862471 9.02% 2.15% 

5 2646169 9.56% 2.45% 

6 3029520 9.55% 2.16% 

7 5396455 9.65% 2.38% 

8 2941293 9.45% 2.40% 

9 3385442 8.57% 2.23% 

 

and b17 are small, we just use 1 chain but b19 has more than 200K gates and 6600+ scan 

cells. We use multiple scan chains both because this is realistic and it reduces the 

simulation time. 
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We divided the layout of s38417 and b17 to 4 regions of the same size (a 2 by 2 

division). Since the die of b19 is much larger, we divide it into 9 regions (a 3 by 3 

division). The column „Region ID‟ identifies different regions and column „# Scan Cells‟ 

indicates how many scan cells are in that region. It can be seen from Table 13 and Table 

14 that the regions with more scan cells most times has more scan chain power because 

more scan cells have potentially more switching activity than regions with fewer scan 

cells. On the other hand, the fan-out of scan cells and the switching in the scan chain are 

not equal between regions, so more scan cells cannot guarantee more WSA in the scan 

chain. For example, region 2 of s38417 has more scan cells than region 3 but less 

average chain power. The column „Chain Power after Chip-wise Reorder‟ shows the 

power of different regions after chip-wise reordering. We saw that the chip-wise 

reordering algorithm could not achieve constant power for region 2 of s38417 and all 

regions in b17 and b19. The column „Region-wise Iterations‟ shows how many iterations 

we need in the region-wise constant power algorithm. The column „Total Reorder Time‟ 

shows the total time during reordering including both chip- and region-wise reordering. 

For b19, we can see that the chip-wise reordering still left large variations within each 

region but when those variations across regions are added together, we can have constant 

power over the chip because the low power and high power regions canceled out. After 

Region-wise reordering, the power variation in each region of b19 becomes constant. 

For example, the (Max-Min)/Ave and Stdev/Ave of region 3 is 64.21% and 15.46% 

initially, then reduces to 27.58% and 5.23% respectively after Chip-wise reordering and 

finally shrinks to 9.71% and 2.58% respectively after Region-wise reordering.  
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Table 15. Simulation Results for Region-wise Constant Power Algorithm 

(pvb=5%, timeout=200, 10 Patterns per Group) (Part 1) 

Circuit 
Region 

ID 

Shift Power before Reorder Shift Power after Chip-wise Reorder 

Ave 
(Max-

Min)/Ave 
Stdev/Ave 

Time 

(h:m:s) 
Ave 

(Max-

Min)/Ave 
Stdev/Ave 

Time 

(h:m:s) 

s38417 

1 37797308 75.07% 16.40% 

3:23:29 

37698602 8.89% 2.39% 

3:17:41 
2 41313969 67.90% 14.43% 41220638 8.23% 2.12% 

3 40979987 69.64% 14.86% 40888432 8.49% 2.18% 

4 42863191 63.58% 13.41% 42786472 8.22% 1.94% 

b17 

1 21802858 46.94% 9.78% 

20:35:19 

21796151 11.86% 2.65% 

20:36:23 
2 25717510 46.89% 9.36% 25709607 9.73% 2.47% 

3 21079347 44.79% 9.19% 21074909 9.20% 2.44% 

4 23619558 43.15% 8.90% 23613076 11.39% 2.46% 

b19 

1 24178722 31.40% 6.54% 

87:23:55 

24178168 17.43% 2.76% 

87:31:08 

2 18310477 42.93% 11.58% 18307831 21.69% 4.06% 

3 21087664 56.34% 13.96% 21089830 25.01% 4.71% 

4 24174107 50.49% 9.42% 24192498 25.45% 3.73% 

5 31063344 40.25% 8.48% 31079009 17.42% 2.94% 

6 21009688 40.26% 9.30% 21026229 18.20% 3.15% 

7 28294492 27.97% 5.69% 28293852 14.10% 2.30% 

8 23059753 48.99% 7.90% 23095508 21.83% 3.34% 

9 29903466 51.14% 9.29% 29908170 21.45% 3.83% 
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Table 16. Simulation Results for Region-wise Constant Power Algorithm 

(pvb=5%, timeout=200, 10 Patterns per Group) (Part 2) 

Circuit 
Region 

ID 

Shift Power after Region-wise Reorder 

Ave 
(Max-Min) 

/Ave 
Stdev/Ave 

Time 

(h:m:s) 

s38417 

1 37698621 8.21% 2.15% 

3:15:45 
2 41220802 7.47% 1.86% 

3 40888453 7.66% 1.94% 

4 42786492 7.34% 1.72% 

b17 

1 21796151 10.01% 2.21% 

20:32:48 
2 25709483 9.50% 2.06% 

3 21074916 8.55% 2.02% 

4 23612997 9.27% 2.09% 

b19 

1 24178592 7.67% 1.71% 

87:30:48 

2 18308219 10.27% 2.17% 

3 21090074 10.15% 2.38% 

4 24192466 17.97% 3.08% 

5 31080053 10.55% 1.87% 

6 21027518 11.23% 1.99% 

7 28293600 8.32% 1.70% 

8 23095128 12.72% 2.41% 

9 29908894 18.95% 3.27% 

 

 

Table 15 and Table 16 show the simulation results based on the estimation results in 

from Table 13 and Table 14. The column „Shift Power before Reorder‟ shows the shift 
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power before reorder. Column „Shift Power after Chip-wise Reorder‟ and „Shift Power 

after Region-wise Reorder‟ shows the power after chip-wise and region-wise reorder. 

Compared to the time for estimation, the simulation time is much longer and infeasible 

for industrial circuits. After this verification step, we can see that the actual shift power 

of each region after reordering had less variation than the initial value, which confirms 

the value of  our power estimation metric. For circuit b19, the (Max-Min)/Ave and 

Stdev/Ave of region 3 is 56.34% and 13.96% initially, then reduces to 25.01% and 4.71% 

respectively after Chip-wise reordering and finally shrinks to 10.15% and 2.38% 

respectively after Region-wise reordering. For regions 4 and 9 of b19, the final power 

variation is 17.97% and 18.95%, which is well above the +/-5% pvb, mainly because of 

the correlation between shift power and chain power is not perfect. However, compared 

to the original and chip-wise reordering results, our region-wise reordering results are 

much better in terms of controlling the power within each region. 

 

Table 17. Chip-wise Shift Power Comparison Between Chip-wise and Region-

wise Reorder Algorithm 

Circuit 

Chip-wise Shift Power after 

Chip-wise Reorder 

Chip-wise Shift Power after 

Region-wise Reorder 

Ave 
(Max-Min) 

/Ave 
Stdev/Ave Ave 

(Max-Min) 

/Ave 
Stdev/Ave 

s38417 168457613 8.48% 2.38% 162667295 6.63% 1.81% 

b17 94281909 9.51% 2.32% 92193547 8.52% 2.00% 

b19 224583866 9.92% 2.04% 221174543 5.67% 1.10% 

 



 58 

 

We also computed the chip-wise power by aggregating the power of each region 

after region-wise reordering to investigate the influence of the region-wise reordering 

algorithm on the whole chip based on the results in Table 15 and Table 16. Table 17 

shows that the region-wise reordered patterns can achieve better constant chip-wise 

power than the original chip-wise algorithm. For circuit b19, the (Max-Min)/Ave and 

Stdev/Ave are 9.92% and 2.04% respectively after chip-wise reordering which shrink to 

5.67% and 1.10% respectively after region-wise reordering. 

2.7 Enhancement Approaches 

The constant power flow has some shortcomings. The first problem is that for some 

circuits the greedy reordering algorithm cannot achieve a tight pvb specification. One 

observation is that there are some extremely low and high power patterns in the pattern 

set that make it hard to find a group to put them into to achieve constant power. One way 

to reduce the number of high power patterns is called Veto-Compaction, which is 

described in Subsection 2.7.1. Another way to reduce the number of low power patterns 

is called Noise-Injection which will be shown in Subsection 2.7.2.  

The second problem is that the power estimation model shown in Subsection 2.3 

does not work very well for circuits b14, b18, and b19. It may be that some control 

signals deep in the logic turn on or off many gates. Alternatively, there might be many 

gates in some circuit levels that are un-evenly distributed compared to other levels. We 

want to create new metrics to more accurately model the shift power. An approach called 

Level-Sim [17] will be demonstrated in Subsection 2.7.3. It takes the first several levels 
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of gates from scan chain into account when computing the WSA. This approach 

achieves higher accuracy when using more levels, but at higher CPU cost. To further 

address the problem, two other techniques are given in Subsection 2.7.4 and 2.7.5. One 

is called Toggle Probablistic Analysis considering Single Input Change (TPASIC), 

which assumes only 1 output of the scan chain toggles, with all other scan chain values 

held constant with a 50% chance of being 0 and 50% chance of being 1. A preprocessing 

step computes the WSA for the fan-out cone of each toggling scan cell. This step 

comprises N calculations for an N-cell scan chain. Then, we can estimate the shift power 

for each pattern by summing the fan-out WSA for each toggling scan cell. This 

technique assumes that toggling fan-out cones do not interact. This technique improves 

the correlation of b18 to 62%, as shown in Table 2. Another technique called TPASIC 

considering Adjacent Fill (TPASICAF) was developed. This differs from TPASIC by 

considering the effects of Adjacent Fill. The difference is that the scan cells besides the 

toggling value are filled using Adjacent Fill. This will have less average WSA than 

TPASIC because it is not possible to have other scan cells toggle. So it is less likely to 

overestimate the shift power WSA. Experiments show that TPASICAF can further 

increase the correlation to for b18 to 73% compared to only 54% in the original 

approach in Subsection 2.3. However, we also found that using TPASIC and TPASICAF 

in pattern reordering, only small improvements in (Max-Min)/Ave and Std/Ave are 

achieved (as measured by simulation). This suggests that roughly a 60% correlation is 

good enough to achieve nearly constant power.  In addition, since WSA itself is an 
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estimation of power, it is sufficient to use the fast and accurate enough metric in 

Subsection 2.3 for power estimation. 

2.7.1 Veto Compaction 

As described previously, un-compacted test patterns are generated by CodGen [33] 

and then compacted using a greedy forward-order static compaction. This is termed 

Force Compaction (Force-Comp). This procedure could generate very high-power 

patterns, if many paths can be packed into a test pattern. We want to minimize the 

creation of these patterns, since they make it difficult to achieve constant test power. In 

order to do that, we do a fast pre-check for each pattern: if the transition count (TC) of 

the two vectors is within a predefined threshold, we can allow the compaction to proceed, 

else another pattern pair is considered for compaction. The pre-check step is a rough 

prediction of whether the pattern has high power. The transition count threshold (TCT) 

can be set by experience and it will be the only parameter to influence the compacted 

vector number in our experiment. We term this step Veto Compaction (Veto-Comp). 

Figure 16 is the flow chart of the proposed compaction procedure in our experiment. 

We set TCT to be 0.05·(the number of bits in each vector). In other words, if more than 

5% of the bits in a pattern will transition, this compaction is vetoed. The data below 

shows the increase in compacted patterns using Veto Compaction. 
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Figure 16. Veto Compaction Flow Chart 
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Table 18. Pattern Count Comparison (TCT = 0.05) 

Circuit 
Scan Chain 

Length 

Initial # 

Patterns 

# Patterns after Compaction 

Force Veto % increase for Veto 

s15850 534 2646 470 470 0.00% 

s38417 1636 14917 948 963 1.58% 

 

 

Table 19. Transition Count Comparison (Force-Comp vs. Veto-Comp) 

Circuit 

Transition Count in Pattern 

Force-Comp Veto-Comp 

Ave Max 
Standard 

Deviation 
Ave Max 

Standard 

Deviation 

s15850 10.49 121 12.19 10.57 30 9.13 

s38417 57.93 324 29.58 57.21 83 21.5 

 

 

Table 20. Power Reduction after Using Veto-Comp (vs. Force-Comp) 

Circuit 
% drop of Max Power % drop of (Max-Min) Power 

Capture Power Shift Power Capture Power Shift Power 

s15850 17.39% 19.70% 50.95% 19.01% 

s38417 4.68% 11.49% 7.18% 9.17% 

 

 

From Table 18 and Table 19 we can see that Veto-Comp only caused a small 

increase in pattern count, but caused a large reduction in the maximum transition count 

and transition count variation. Table 20 shows the power variation reduction after using 
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Veto-Comp. It can be seen that not only the Max capture power but also the Max shift 

power were reduced. In addition, the power variation (Max-Min) is also greatly reduced. 

For s15850, the (Max-Min) for shift power dropped nearly 20%. The results of using 

these Veto-Comp patterns in pattern reordering will be shown below. 

2.7.2 Noise Injection 

There may also be some cases with extremely low power patterns that makes it 

difficult for the test pattern reordering algorithm to find patterns during each swap 

iteration. We minimize the occurrence of low power patterns using an approach called 

Noise-Injection. This approach is embedded in the X-Fill process discussed in 

Subsection 2.2. The modified X-Fill algorithm called X-Fill-NoiseInject is shown below. 

Algorithm X-Fill-NoiseInject () 

1  Pre-Compute the Transition count (tc[i]) for each un-filled pattern i; 

2  Compute the average transition count as trans_ave; 

3  Compute signal probability prob of all PPI1; 

4  For each test pattern in the list, do 

5       For each pin p of PPI1 which has X value 

6            if (prob < 0.5) then p = 0 

7            else if (prob > 0.5) then p = 1 

8            else if (tc[i] >= tcb*trans_ave) then Adjacent Fill p 

9            else Random Fill p;  //Noise was injected here 

10       For each pin p of PI1 which has X value 

11       Fill p according to the value of p in PI2  

12       For each pin p of PI2 which has X value 

13          Fill p according to the value of p in PI1  
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14     For each pin p of PI1 and PI2 which has X value 

15          Randomly fill p; 

16     Do logic simulation to fill all X bits of PPI2 by applying V1 as input 

The major difference from the original X-Fill algorithm is line 1, 2, 8 and 9. Line 1 

and 2 first compute the transition count for each pattern and keep a record of the average 

transition count. During the Preferred Fill process [13] starting at line 5, if the signal 

probability is 0.5, we first check whether the transition count of this pattern is below a 

bound (defined by value tcb*trans_ave, tcb is set to 0.5 in our experiments), if not, we 

do Adjacent Fill as before; if yes, we will execute the noise injection approach. The 

noise injection could have different format and for different patterns we can adjust the 

rate of injected noise, but for simplicity, we use random fill in our experiments. For 

example, if a pattern is {01XXX10}, then in normal Adjacent Fill, it would become 

{0111110}, but after noise injection, it could be {0110010}, two new transitions 

between the third and fourth bit and between the fifth and sixth bit are introduced. The 

noise injected brings the power level of the low power pattern up to a higher level, which 

also could make the constant power algorithm execute faster. Experimental results on 

ISCAS89 and ITC99 circuits are shown below. 

The column „Force‟ in Table 21 shows the time/iterations using patterns after Force-

Comp and „Veto‟ stands for using the patterns after Veto-Comp. We can see that for 

s38417, the iterations dropped from 14 for Force compacted patterns to 5 for Veto 

compacted patterns. When we inject noise to Force compacted patterns, the iterations 

dropped to 8. When we inject noise into the Veto compacted patterns, the iterations 
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dropped to 4. Since Veto-Comp reduces the Max power and Noise-Inject increases the 

Min power, using Veto+NoiseInject has the best running time. 

Table 21. Constant Power Algorithm Results Comparison for ISCAS89 Circuits 

Circuit pvb 

Reorder Time (m:s) Iterations 

Force Veto 
Force+ 

NoiseInject 

Veto+ 

NoiseInject 
Force Veto 

Force+ 

NoiseInject 

Veto+ 

NoiseInject 

s15850 1% 0:02 0:01 0:01 0:01 12 7 8 4 

s38417 1% 0:14 0:06 0:08 0:05 14 5 8 4 

 

 

Table 22. Constant Power Algorithm Results Comparison for ITC99 Circuits  

Circuit pvb 
Reorder Time(m:s) Iterations 

Dynamic Dynamic+NoiseInject Dynamic Dynamic+NoiseInject 

b18 
2% Timeout 07:34 Timeout 5 

1% Timeout 08:01 Timeout 8 

b19 
2% Timeout 19:30 Timeout 2 

1% Timeout 20:13 Timeout 13 

 

The column „Dynamic‟ in Table 22 shows the time/iterations using patterns after 

Dynamic Compaction and column „Dynamic+NoiseInject‟ shows the results that applied 

NoiseInject into the dynamic compacted patterns. We can see that the Noise Injection 

approach can produce reordered patterns in a short time while the original patterns 

without any noise injection cannot meet the pvb (1% or 2%) within the timout value (500 

in our experiments). We did not conduct experiments with Veto-Comp for b18 and b19 

for dynamic compaction. 
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2.7.3 Level-Sim 

Our power estimation approach used in Subsection 2.3 is to estimate the total shift 

power in the CUT from the WSA in the scan chain. This approach works well for most 

ISCAS89 and ITC99 circuits but not very well for circuit b14 and b18, with a power 

correlation below 60%. Here a new approach called Level-Sim can take the next several 

levels of the circuit into account to increase the accuracy of power estimation. 

 

Table 23. Level-Sim Results for b14 (4800 Patterns) 

Level Correlation Time (sec) 

1 0.568 11 

3 0.589 174 

5 0.605 198 

7 0.645 207 

9 0.698 215 

11 0.767 240 

13 0.812 333 

15 0.909 389 

17 0.926 482 

19 0.978 577 

21 0.988 728 

61 1 3070 

 

The basic idea of Level-Sim is to do logic simulation for the first n (n << logic depth 

of the circuit) levels of gates and compute the WSA to be used in the constant power 

algorithm. Logic simulation is expensive, but if we limit the simulation to the first 
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several levels, it can be affordable. The simulation results for b14 are shown in Table 23. 

It can be seen that the scan chain power has only 56.8% correlation with the total shift 

power. We increase the simulated levels by 2 each time and the correlation increased 

correspondingly, and is almost 1 at 20 levels, which is only 1/3 of the logic depth. 

From all of the other benchmark circuits in ISCAS89 and ITC99, if the correlation is 

above 80%, the power estimation approach can achieve very good simulation results. 

For b14, an 80% correlation corresponds to 12-13 logic levels that must be simulated. 

Although Level-Sim needs much more time than the scan chain power estimation 

(Level=1), it is an order of magnitude faster than full logic simulation. 

2.7.4 Toggle Probabilistic Analysis Considering SIC (TPASIC) 

The major issue raised from Level-Sim is the high computational cost for simulation. 

In addition, it is not possible to determine how many levels to simulate to achieve 

sufficient correlation, without running a series of experiments. One technique to address 

this problem is taking the signal toggling of all levels into account by using a 

probabilistic analysis.  

The analysis is comprised of three parts. The first step is to assume that one scan 

input is toggling (either rising or falling) and all the other scan cells are stable at random 

values. The second step is to do a pre-calculation of the WSA of the whole circuit for 

each of the scan cells toggling (N times where N is the number of scan cells) considering 

the probability. The WSA calculated in this manner is termed the Pseudo-WSA or 

PWSA. For each scan cell, we calculate PWSA by by propagating the toggle at the scan 
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through its fan-out cone. Note that there will be 2 calculations as we are considering 

both rising and falling toggle. The final step is to do a pattern by pattern analysis by 

taking all the scan cell toggles into account. The idea is to simply sum the PWSA of all 

scan cells that are toggling in that shift cycle, and then for all shift cycles in the pattern. 

The aggregated PWSA will be the estimated shift power of this pattern. 

 

p1

p2

pz

 
Figure 17. Toggling Probability Analysis for 2-Input AND Gate 

 

For better understanding of this technique, Figure 17 shows a 2-input AND gate. p1 

is the probability that input1 toggles (either rising or falling). To compute the toggling 

probability of the 2-input AND gate, there are three cases to be considered: 

Case 1: p1 and p2 are both rising or both falling, which occurs with probability 

(p1/2)·(p2/2) ·2. 

Case 2: p1 is toggling, keep p2 stable and non-controlling, with probability p1·(1-

p2)/2. 

Case 3: p2 is toggling, keep p1 stable and non-controlling, with probability p2·(1-

p1)/2. 

The final toggling probability of the output is: 
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Figure 18. Toggling Probability Analysis for 3-Input AND Gate 

 

Figure 18 shows a 3-input AND gate. p1 is the probability that input1 toggles (either 

rising or falling). To compute the toggling probability of 3-input AND gates, there are 

seven cases: 

Case 1: p1, p2 and p3 are both rising or both falling, with probability of (p1/2) 

·(p2/2) ·(p3/2) ·2. 

Case 2: p1 is toggling, keep p2&p3 stable and non-controlling, with probability of 

p1·((1-p2)/2) ·((1-p3)/2). 

Case 3: p2 is toggling, keep p1&p3 stable and non-controlling, with probability of 

p2· ((1-p1)/2) · ((1-p3)/2). 

Case 4: p3 is toggling, keep p1&p2 stable and non-controlling, with probability of 

p3·((1-p1)/2) ·((1-p2)/2). 

Case 5: p1 and p2 are toggling in the same direction (both rising or falling), p3 is 

non-controlling, with probability of (p1/2) ·(p2/2) ·2· ((1-p3)/2). 

Case 6: p1 and p3 are toggling in the same direction (both rising or falling), p2 is 

stable and non-controlling, with probability of (p1/2) · (p3/2) ·2· ((1-p2)/2). 

Case 7: p2 and p3 are toggling in the same direction (both rising or falling), p1 is 

stable and non-controlling, with probability of (p2/2) · (p3/2) ·2· ((1-p1)/2). 

So the final toggling probability of the output (and also of the gate itself) will be: 
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Similar formula can be made for gates with more than 3 inputs and other type of 

primitive gates. 

To compute WSA with probability (PWSA) for each scan cell, we set the toggling 

probability of this cell to 1 and the toggling probability of all other scan cells and PIs to 

0.  This is a Single-Input-Change (SIC) vector. Thus we call this technique Toggle 

Probabilistic Analysis considering SIC (TPASIC).  

Then by using the previous described formulae, we can compute the toggling 

probability of all gates. Summing together the probabilities in the scan cell fan-out cone, 

we get the PWSA of each scan cell: 

                                      

 

   

 

The drawback of this approach is that it has potential to overestimate power as seen 

from Figure 19. The fanout PWSA of launch scan cell L1 overlaps with the fanout 

PWSA of launch scan cell L7. The overlap is colored grey. However, considering the 

low care bit density of test patterns, the overlap effect should be minimal. 
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Figure 19. Fanout Cone Overlap 

     

The computational complexity for computing the toggling probablity is O(# of scan 

cells). While computing the PWSA, we did not use time-consuming simulation such as 

used in Level-Sim [19]. The experimental results using this technique will be shown in 

together with Subsection 2.7.5 for comparison. 

2.7.5 TPASIC Considering Adjacent Fill (TPASICAF) 

The improvement of using the probabilistic technique that is shown in Subsection 

2.7.4 over the original metric 3 is visible, but still not good enough for b14, b18, and 

even for b19. That is because we did not consider the X-Fill effect. In fact, the X-Fill 

process described in Subsection 2.2 uses Adjacent Fill for all the left over X-bits after 

Preferred Fill. The computation of the fan-out cone WSA of each scan cell can be more 

accurately computed by setting the stable scan cell values using adjacent fill. This 

technique is the same as described in Subsection 2.7.4 except we assume only one scan 
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input change during pre-calculation and all the other scan cell value are filled using 

adjacent fill. We will call this technique TPASIC with Adjacent Fill (TPASICAF). 

 

Table 24. Power Correlation Comparison of Different Metrics 

Circuit 
# scan 

chains 

Correlation 

using Chain 

WSA 

Correlation 

using TPASIC 

Correlation 

using 

TPASICAF 

s1488 1 95.40% 93.03% 95.28% 

s5378 1 90.90% 89.35% 89.20% 

s9234 1 96.70% 95.58% 96.19% 

s13207 1 98.00% 97.99% 97.84% 

s15850 1 93.20% 84.65% 87.83% 

s35932 1 95.50% 87.93% 88.30% 

s38417 4 99.60% 99.36% 99.30% 

s38584 1 99.40% 98.62% 98.89% 

b14 1 56.80% 64.41% 68.32% 

b15 1 95.10% 92.15% 93.14% 

b17 1 98.80% 97.85% 98.57% 

b18 10 54.20% 61.86% 73.02% 

b19 9 81.60% 85.99% 94.41% 

b20 1 92.70% 90.90% 91.38% 

b21 1 91.70% 88.77% 89.75% 

b22 1 92.50% 89.89% 89.38% 

 

Table 24 shows the improvement of using TPASIC and TPASICAF over the original 

scan chain WSA metric in terms of power correlation between simulated shift power and 

estimated shift power. It can be seen that TPASICAF is overall the best technique among 



 73 

 

the three. Specifically for b14, there is 11.54% increase and for b18, there is a 18.82% 

increase for TPASICAF over Chain WSA. The improvement of TPASICAF over 

TPASIC is also noticeable in b14, TPASICAF has a 3.91% improvement over TPASIC, 

and for b18, TPASICAF has a 11.16% improvement over TPASIC. For b19, the 

improvement of TPASICAF over Chain WSA is 12.81%. For some other benchmark 

curcits, TPASICAF has slightly worse correlation than Chain WSA. For s15850, the 

degradation is 5.37%. But this side effect does not influence the pattern reordering result 

because experimental results showed that a correlation of over 80% is good enough 

because WSA itself is an estimation of real power consumption. 

The constant power result after applying the different power estimation model can be 

seen in Table 25 where the improvement of TPASIC over Original is not very much. But 

after TPASICAF is applied, the improvement is visible. The power variation is 

represented in terms of (Max-Min)/Ave and SD/Ave where SD stands for standard 

deviation.  

 

Table 25. Constant Power Results Comparison 

Circuit 

Original TPASIC TPASICAF 

(Max-

Min)/Ave 
SD/Ave 

(Max-

Min)/Ave 
SD/Ave 

(Max-

Min)/Ave 
SD/Ave 

b14 22.36% 4.13% 23.48% 3.71% 20.93% 3.71% 

b18 14.92% 2.52% 13.91% 2.51% 12.79% 2.48% 

b19 9.92% 2.04% 9.85% 1.98% 9% 1.97% 
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2.8 Conclusions 

In this work, we introduced an X-bit filling technique that targets minimizing both 

shift power and capture power. Then we proposed an efficient power estimation 

algorithm based on the power model that estimates shift power from chain power. 

Finally, a chip-wise and a region-wise test pattern reordering algorithms are shown 

which generate re-ordered vectors and achieved near constant power. We then showed 

techniques to improve the results for circuits where the simple power estimation model 

did not work well. Our future work will be dealing with reducing power variations 

between different test patterns and further improving the correlation between shift power 

and chain power. 
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3. SUPPLY NOISE IN DELAY TEST 

3.1 Delay Modeling and Analysis 

3.1.1 Power Region Model 

Much previous work [35][36][37] has been published on transient power grid 

analysis. However, RLC or RC network analysis is much too expensive for compaction. 

Therefore, we make several approximations to simplify the problem. Power grid analysis 

[24] of bumped chips shows that the supply voltage impact of a switching transient is 

contained within a local area, since most current flows through nearby pads. Therefore 

we assume that the supply voltage within a region (e.g. between a set of power pads) is 

uniform, and the voltage of each region is independent of each other. Hence, voltage 

drop for any gate in the region is identical. In addition, all switching activities across the 

region are equivalent, and any switching events outside the region can be neglected.  

As manufacture technology shrinks in the DSM era, dI/dt effects becomes more and 

more important as shown in [38][39]. In this research, we only consider power supply 

noise caused by IR (resistive) voltage drop in the on-chip power grid. This permits 

modeling the power grid as an RC network. To accurately model and analyze LdI/dt 

(inductive) drop, a RLC network is necessary, which is computationally too expensive 

[27][40]. We use a power region model similar to that in [30], as shown in Figure 20. Cd 

is the distributed decoupling capacitance in a region, and Cp is the total parasitic 

capacitance of devices and interconnects within the region connected to the power 
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supply network in the current clock cycle. All switching gates that draw current from the 

supply within this region during the clock cycle are modeled as time-varying current 

sources Iswitching_i. The switching current model is discussed in next subsection. Ion-chip is 

the current from the on-chip capacitance, and Ioff-chip is the current from off chip. 

 

 

Figure 20. Simplified Power Supply Model in a Region [30] 

 

The maximum regional voltage drop ΔVmax during a clock cycle is: 

ΔVmax = ( ∫Ion-chip ) / ( Cd + Cp ) 

          = (∫Iswitching_i -∫Ioff-chip )/( Cd + Cp )          (1) 

We assume that ∫Iswitching_i occurs over the time of the nominally longest path delay 

during that clock cycle. After the switching transitions, VDD recovers through Ioff-chip to 

VDDinit at the start of the next cycle. 

3.1.2 Circuit Switching Model 

We must calculate ∫Iswitching_i for each logic gate in order to compute ΔVmax. Tirumurti 

[24] created a table of peak power and ground currents for different values of gate output 

VDD  

Gnd 

C

d 

C

p 

Ion-

chip  

Ioff-

chip  

Iswitc

hing_1  

Iswitc

hing_n  Cd Cp 
switching 

gates 



 77 

 

load and input slope by simulation. We adopt a similar strategy which was used in [30] 

where a lookup table was created from circuit simulation for all types of primitive gates 

with different number of inputs. For example, for a NAND gate, we generated data for 2, 

3 and 4 inputs NAND gates, similar data was also generated for AND, OR, NOR, NOT 

gates. Figure 21 shows a typical waveform for an inverter. This waveform is 

approximated as triangular if the load is small, otherwise as a trapezoid, in order to 

compute the total charge of each transition. For simplicity, we are not considering 

ground bounce so the actual capacitance charging occurs only when a rising transition 

appears. To analysis the extra delay induced by voltage drop along a path, we should 

compute the capacitance charge over the gates that are on the target path. 

 

Figure 21. A Current Waveform for an Inverter 
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3.1.3 Delay vs. Supply Voltage Drop 

Several models been proposed for cell delay functions including power supply 

voltage. Bai [41] proposed using a quadratic delay equation that is a function of the 

supply voltage, input slope and output load capacitance. He also suggested linear 

functions of supply voltage if the voltage drop is not too large. The error of this linear 

model was estimated to be less than 5%. Hence, our model of rising transition delay 

increase is as follows: 

    Δdelay / delay = δΔV / VDD                      (2) 

where delay is the nominal delay, ΔV is the estimated voltage drop at the cell, and VDD is 

the ideal supply voltage. A table of coefficients δ under different output loads and input 

slopes is obtained by simulation for each cell type. The accuracy of these models was 

verified with circuit simulation on circuit s1488 [30] and from measurement on 

industrial design [42].   
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Figure 22. Effective Regions Associated with a Path 
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We conducted experiments using these models to determine the correlation between 

voltage drop in the effective regions and delay increase. Here the effective regions are 

the power regions that the circuit path under test traverses. The three gray regions in 

Figure 22 shows a chip divided into four power regions (shown here as rectangular for 

illustration). The regions colored gray are the effective regions for the path shown. The 

path starts from a scan cell in the lower left region and ends at another scan cell in the 

upper right region. By the definition of region construction, only the voltage drop in 

these three regions can affect the delay of the target path. The size of each region is 

determined by the RC time constant of the power grid. 

Figure 23 shows the correlation of voltage drop in effective regions to modeled delay 

increase for ISCAS89 circuit s38417 for more than 14K paths generated from a delay 

test ATPG [18], with minimum transition fill of the don‟t care bits. The correlation is 

0.97, which shows that voltage drop is a good estimation of extra delay and voltage drop 

can be used as a guardband of delay. Since computing voltage drop is computationally 

less expensive than computing delay, if we know the percentage drop of voltage, we can 

decide if we have to veto the compaction because of the excessive noise brought to by it. 
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Figure 23. Voltage Drop vs. Delay Increase for s38417 
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Weighted switching activity (WSA) can be used to estimate test power [43].The 

WSA of a node is the number of state transitions at the gate multiplied by (1+fan-out of 
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gates in the circuit.  

WSA is also a good metric to estimate voltage drop. We conducted experiments to 

find the correlation between regional voltage drop and the effective WSA. Here effective 
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Figure 24. Voltage Drop vs. Effective WSA for s38417 
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know the threshold of WSA which corresponds to a threshold of voltage drop, we can 

skip the voltage computation step which increases the speed of test compaction as well. 

3.1.5 Delay Distribution Analysis 

Prior work [30] did not distinguish the path length during compaction, so much time 

was spent unnecessarily checking short paths, and rejecting compaction attempts that did 

not increase circuit delay. Figure 25 shows the delay distribution of the paths for circuit 

s38417 in Figure 23. The cell-to-cell Standard Delay Format (SDF) delay was generated 

using Synopsys PrimeTime with 180 nm technology. We can see that many paths are 

short enough that noise-induced delay will not cause them to exceed the delay of the 

critical path, and so they can be ignored during compaction.  

 

Figure 25. Path Delay Distribution for s38417 
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As patterns are compacted, one test pattern can contain tests for many paths. As 

explained above, we will only focus on all of the longer paths tested in that pattern. In 

such way, we could greatly reduce the delay calculation time by reducing the search 

range to those long paths while the prior work [30] considered all paths including those 

short paths. The „long‟ paths are those paths that are longer than a threshold which can 

be a fraction of the maximum length of all paths. During static compaction process, 

since we know all the paths and test patterns, we can set the threshold before 

compaction. But during dynamic compaction, since we don‟t have all the paths 

generated before compaction, we have to find a global longest path first before 

compaction. This can be done by searching all structural longest path and justify all the 

side inputs along this path until we find a two vector pair to test the path. 

For the example in Figure 25, the percentage of long paths (path delay > 1ns) is very 

small so if we only considering those long paths, the speed up of compaction should be 

huge. Note that this circuit is just a special case, different circuits have different 

distribution that some of them could have huge percentage of long paths. Even for those 

circuits whose long paths are dominant, our heuristics would still work better than the 

old one [30] with experimental results shown in Subsection 3.5. 

3.2 Low Cost Supply Noise-Aware Delay Test Static Compaction 

We improved on the high cost delay test static compaction algorithm in [30] by 

exploiting the correlations discussed above. Figure 26  shows our proposed delay test 

compaction framework that consists of two major steps, with each step having a four-
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level estimation flow embedded. The initial test set is one pattern per path which is 

generated from an ATPG engine [18]. 

Step 1: Uncompacted paths are loaded in the order generated and a pre-check is 

performed. Before doing any delay estimation, we will fill the don‟t care bits for each 

pattern. The care bit density of each uncompacted pattern is at most a few percent for 

most circuits. Experience also shows that random fill causes noise that is usually much 

worse than mission mode [44] and minimal transition fill will potentially have the 

minimal delay impact so we used minimal transition fill for each vector before analyzing 

the noise of each vector.  Note that the filling process here is not a „real‟ filling because 

after analysis finished, we have to „unfill‟ it to restore its original value before 

compaction. This „pseudo-filling‟ takes place each time we begins delay analysis of any  

vector, both the new vector come into process or the old vector in the compacted list that 

 

 

Figure 26. Levelized Low Cost Static Compaction Flow for Delay Test 

Considering Power Supply Noise 
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has many vectors been compacted into. During this checking flow, we used a so-called 

levelized low cost estimation approach, with each level having higher accuracy at higher 

computational cost. In Level 1, we only check if the SDF delay of this path m is too long 

(set by threshold1), if not, we go to Step 2; if yes, we start Level 2, where we estimate 

the WSA of the pattern to test path m without logic simulation. If the WSA is within a 

limit (threshold3), we go to Step 2, otherwise we will go to Level 3, which is similar to 

the approach in [28].  Logic simulation is used to compute voltage drop and estimate 

delay. So this level is high cost compared to previous levels. The voltage drop can be 

easily computed after logic simulation because we know which cells will have rising 

transitions and how much charge will be consumed during load capacitance charging. If 

the voltage drop threshold (threshold4) is not exceeded, we go to Step 2, otherwise we 

go to Level 4. Level 4 computes the path delay. If the path delay is above a threshold 

(delay constraint), this vector is too noisy all by itself, so we put it on an „Exceed List‟. 

The high supply noise level of vectors on this list is due to ATPG, rather than 

compaction. Such vectors should be rare, given the low care bit density in path delay test 

vectors. 

Step 2: We try to find a compatible pattern n for pattern (path) m from Step 1. If the 

SDF delay of the longest target paths for patterns m and n are both smaller than 

threshold2, from our previous knowledge, they can safely be compacted. The reason is 

that two very short paths being compacted will not generate extra delay sufficient to 

slow the circuit. Here threshold2 is smaller than threshold1, since during compaction, 

the care bit density and gate switching increases and we want to set a lower threshold to 
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catch them. If the delay is larger than threshold2, we will follow an approach similar to 

step 1. Note that during each compaction, we will do a „pseudo-compaction‟ step to 

compact pattern m and n to be a new pattern n’ before analyzing the WSA, Voltage Drop 

and delay. If any of the analysis shows negative results, we will discard the compaction 

and also the new pattern n’. Actually n’ will be the real compacted patterns that be put 

into compacted list if it passed the delay checking and n will be deleted. In Level 4 of 

this step, we will compute the delay of the long paths using delay look-up tables. If the 

supply noise level for patterns n and m together is within limits, compaction is 

performed and the new vector is added to the set of compacted vectors. If the 

compaction is rejected, the next compatible vector is considered. We need a fast model 

to estimate the effective WSA without doing logic simulation. We have tried to use scan 

chain WSA [43] but the scan chain WSA during the capture cycle does not have good 

correlation to the WSA in the circuit. The reason that [43] has good correlation is that 

they are computing the cycle. Prior work [30] used the transition count of each vector 

pair as a supply noise pre-check, but our simulations show this is not very accurate. To 

deal with the low correlation issue, [45] proposed a technique called „Level-Sim‟ to 

simulate the circuit for the first several logic levels. Significant correlation 

improvements were shown on some ITC99 circuits. However, the question is then how 

to decide the number of levels to simulate. The Level-Sim time is also much higher than 

computing the scan chain WSA. Therefore, in our static compaction flow, we do not use 

WSA as a delay estimate. We do use WSA in dynamic compaction because the ATPG 
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[18] has information about necessary assignments that improves the accuracy of the 

WSA estimate, while static compaction only has knowledge of the vector pair. 

3.3 Supply Noise-Aware Delay Test Dynamic Compaction 

Dynamic compaction [31] has been used in KLPG delay test ATPG [18] that shows 

up to 3x reduction of pattern count over static compaction. The pattern count after 

dynamic compaction is comparable to the number of transition fault tests, while 

achieving higher test quality. We modified the supply noise framework described above 

and embedded it into the dynamic compaction algorithm. The basic idea of dynamic 

compaction is that for each path that is recently generated by ATPG, we retain the set of 

necessary assignments (NAs), rather than primary input justification values, since the 

NAs are unique to each path. When checking two paths for compatibility, the NAs are 

first checked, and if they are compatible, then a direct implication [18] is done to verify 

compatibility. A direct implication on a gate is one where the input or output value of 

that gate can be determined from other values assigned to that gate. If direct implication 

was successful, then a PODEM-based final justification [18] is performed to find a 

vector pair that sensitizes this path. If justification is successful, the new pattern is 

placed into a Path Pool [31], with each pattern retaining knowledge of the set of paths it 

contains. After we check pattern compatibility, we perform the noise check before we 

accept this compaction.  

The supply noise aware dynamic compaction flow is shown in Figure 27. The major 

difference from the compaction flow in [31] is that two checking steps marked in dark 
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have been added. The first one is called „Initially Too Noisy‟ which essentially did the 

Step 1 check which has been depicted in Figure 26. If this step fails which means the 

newly generated pattern itself is too noisy, we will simply write out this pattern and go 

on to the next one. This step is still necessary in dynamic compaction because if we 

neglect this step, some high noise patterns will be appended to the Path Pool which will 

potentially be compatible candidates during compaction that none of the following noise 

check could pass. This would consequently induce huge number of redundant noise 

computation time. The other process embedded is called „Pass Supply Noise Check‟ 

which has been added between „Pass Justification‟ and „Update P with F‟. It performed 

the Step 2 operation in Figure 26., If a pattern in the Path Pool fails the check M times in 

a row, then we write out the pattern that the pointer P points to. In our experiments, we 

set M to 1000 and the Path Pool size to 5000. Theoretically the higher M and Pool size 

are, the higher the compaction rate and CPU time are. Those values are set by experience 

and a tradeoff between compaction rate and CPU time. 
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Figure 27. Power Supply Noise-Aware Delay Test Dynamic Compaction Flow 

 

Since dynamic compaction is performed during ATPG, we know the necessary 

assignments (NAs) of all the internal gates along the new path being considered for 

compaction. We performed experiments to find the correlation between the WSA of the 

NAs and the entire circuit. Figure 28 shows the correlation for s38417. The correlation is 
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high enough that WSA of NAs can be used to estimate whole circuit WSA, which 

eventually can estimate delay. Note that logic simulation is not required here since WSA 

of NAs can be used as a guardband for WSA of whole circuit. But in static compaction 

flow (Figure 26) we have to do logic simulation to compute WSA. From Figure 23  and 

Figure 28, we can determine threshold3. The data in Figure 28 is only available after 

ATPG is completed, not when we need it during dynamic compaction.  A set of long 

paths can be generated to estimate the maximum WSA. Then we can set threshold3 to be 

a fraction of this maximum WSA. 

     

Figure 28. Correlation Between WSA of Whole Circuit and NAs for s38417 
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used to guardband the path length during initial check, threshold2 is used to guardband 

path length during compaction, threshold3 is used in guardbanding WSA and threshold4 

is used to guardband voltage drop. The following rules are proposed on how to set those 

parameters.  

Rule 1: threshold1 should be set to 75% of the delay of the longest testable path or the 

delay of system clock period. However, to be conservative, a smaller threshold1 can be 

used for the accurate calculation of excessive delay. This recommendation is based on 

the experimental results shown in Figure 29. The delay increase was caused by 

compaction and for all the paths generated for s38417, we can see that the delay increase 

is within 4% to 8% of max delay. Setting threshold1 to 75% is safe enough to prevent 

estimation escape since the max delay increase is less than 20%. 

 

 

Figure 29. Delay Increase Distribution for Paths in s38417 
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Rule 2: threshold2 should be set to 50% of the delay of the longest testable path or 

the delay of system clock period. The reason that threshold2 is smaller than threshold1 is 

that during compaction, one pattern can test multiple paths which makes the supply 

noise of all tested paths higher. To be conservative, setting a smaller value for 

threshold2 can catch those path delay escapes that pass the threshold1 due to compaction. 

Rule 3: threshold4 can be estimated by doing a cell delay library simulation before 

compaction. Just as there is a correlation between voltage drop and delay as shown in 

Figure 23, we can do a pre-simulation for our delay model by using a sample set of test 

patterns. For most libraries, we expect to see a correlation similar to Figure 23. The cell 

delay library could come from SPICE or any other simulation tool. For example, 

suppose we have a relationship between voltage drop (x) and delay (y) of x = 2·y with 

very good correlation (>90%). The formula to set threhold4 will be threshold4 = 

2 · delay_constraint. Then if we set the delay_constraint to 5% of nominal delay, then 

we can set threshold4 to be 2·5% which is 10% of nominal supply voltage. However, if 

the correlation is not very high, say less than 70%, we could conservatively reduce 

threshold4, say to 1.5·5% which is 7.5% of nominal supply voltage. 

Rule 4: threshold3 is set by using the correlation between WSA and voltage drop as 

shown in Figure 24. The results from this figure could come from simulation from a 

sample of test patterns. The only requirement is to find the trend and correlations. We do 

not have to simulate all the patterns to get the trend. In order to set threshold3, we need 

to set threshold4 first because eventually threshold3 is used to filter the delay, not the 

voltage and we can use threshold4 as a bridge for threshold3 to guardband delay. 
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Suppose the WSA (x) and voltage drop (y) has a relationship of x = 2000·y with good 

correlation (>90%) and threshold4 is 10%. Then the formular to set threshold3 will be 

threshold3 = 2000 · threshold4. Then we can set threshold3 to be 2000 · 10% = 200. 

However, if the correlation is lower, say less than 70%, we could conservatively reduce 

threshold3, say to 1500·10% which is 150. 

Experimental results in Subsection 3.6 show the effects of different parameter 

settings. 

3.5 Pseudo Functional Test Power Analysis 

3.5.1 Pseudo Functional Test 

Traditional at-speed test can over-test a chip because the supply droop during the 

capture cycle can slow down the circuit elements. The authors in [46] show observations 

of a burst of 30 at-speed clock pulses after a period of quiescence.  

 

Figure 30. Oscilloscope Droop Measurement [46] 
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Figure 30 shows that there is a large droop event corresponding to the start of the 

clock burst, with a typical ringing shape. There is also a power supply overshoot 

corresponding to the end of the clock burst, as the circuit experiences a sudden drop in 

current demand. One of the options that has been proposed to reduce the effect of power 

supply droop is to increase the length of the capture sequence and apply the first few 

capture cycles at slower speeds. 

The experiments in [46] also show that in all the slow/fast capture sequences, the 

actual droop seen during the at-speed clocks is dramatically reduced and shows that this 

method can be effective in achieving its goal. It should be noted that longer capture 

sequences increase test generation complexity significantly. Moreover, ATPG tools need 

to understand that the slow capture cycles are not catching any speed defects and need to 

account for this during fault grading. We call this approach pseudo functional test and 

we will analysis the power in terms of WSA in the next subsection. 

3.5.2 Multicycle Capture Power 

We conducted experiments on ITC99 benchmark circuit b19 by analyzing the WSA 

of 10 at-speed clock cycles. b19 was selected because it is the largest benchmark circuits 

we have which comprises 200k gates. Ideally, we should use ATPG tool such as 

CodGen to generate test patterns that launch pseudo-functionally N-1 cycles and capture 

delay defects at the Nth cycle. Due to the unavailability of CodGen‟s multiple cycle 

ATPG functionality, we only use 2 cycle Launch-on-Capture test patterns. 
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Figure 31 shows the average WSA for b19 using 5319 dynamic compacted patterns 

for 10 cycles. We can see that at the first launch cycle, Preferred Fill has much lower 

WSA than random fill due to the former technique‟s process of minimizing the capture 

power. However, from the 2
nd

 launch cycle forward until the 10
th

 cycle, we cannot see 

much difference by using Preferred Fill. In addition, since we are hold the PIs constant 

during the 10 cycles, the WSA is gradually falling off to a steady state where the WSA is 

very low compared to the 1
st
 cycle. This is partially due to the switching activity 

intentionally made by ATPG to sensitize the path in the 1
st
 cycle gradually faded away 

after multiple cycles.  

 

Figure 31. Average WSA for b19  

 

The other finding from this is that we need new X-Fill technique to boost the WSA 

of the 10
th

 cycle, which is the actually capture cycle. This will be part of our future work. 
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3.6 Experimental Results 

The realistic low cost delay test compaction framework was implemented in C++ 

and running on a Windows platform with Core 2 Duo 2.66 GHz CPU and 2GB DDR2 

memory. The circuit layout was created using SOC Encounter and 180 nm technology. 

By default, we set threshold1 to be 0.75 and threshold2 to be 0.5 of maximum delay of 

all paths. We set threshold3 to 0.5 of maximum WSA and threshold4 to be the same as 

the circuit delay constraint, since we want to be conservative in using the correlation 

shown in Figure 23. Ideally, the higher the threshold we set, the faster the compaction 

flow will be, but the greater the risk of creating test patterns that exceed the desired noise 

levels. 

The path delay patterns are generated with the CodGen K-Longest Path per Gate 

(KLPG) ATPG [18] tool. It is used to generate the 2K longest paths through each line in 

the circuit, with K paths having a rising transition at the fault site and K paths having a 

falling transition. In this work we will use K=1.  

Table 26 and Table 27 show the static compaction results for four ISCAS89 circuits 

by comparing the low cost framework discussed in the paper and the high cost 

framework [30]. For each benchmark circuit, we conducted experiments on several 

different delay constraints whose value can be seen in column „Delay Constraint‟. 

Initially, we used a greedy forward-order procedure to compact all the patterns without 

considering supply noise. We term this procedure “force compaction.” It corresponds to 

„No‟ in the „Delay Constraint‟ column. We term the noise-aware compaction approach 

“veto compaction” because we will veto any compaction that violates our delay  
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Table 26.  Low Cost Delay Estimation Framework During Static Compaction 

for ISCAS89 Circuits 

Circuit 
# 

Paths 

Delay 

Constraint 

Low Cost Framework 

Total Time 

(m:s) 

Delay Estimate 

Time (m:s) 

# Patterns 

After 

Compaction 

# 

Exceed 

Paths 

# 

Simulations 

s1488 167 

3% 0:01 0:01 85 5 89 

5% 0:01 0:01 83 4 90 

7% 0:01 0:01 82 3 91 

10% 0:01 0:01 79 0 94 

18% 0:01 0:01 79 0 94 

No 0:01 0:01 79 0 0 

s15850 2415 

3% 0:14 0:11 483 15 3279 

5% 0:13 0:10 481 11 2874 

7% 0:12 0:09 480 8 2660 

8% 0:08 0:05 467 0 1556 

16% 0:08 0:05 467 0 1556 

No 0:03 0:00 467 0 0 

s35932 9442 

3% 2:42 1:35 122 62 24295 

5% 2:22 1:15 72 20 17440 

7% 1:52 0:45 49 1 13535 

8% 1:44 0:37 46 0 11187 

No 1:07 0:00 46 0 0 

s38417 14405 

3% 3:32 2:39 1093 157 19338 

5% 3:10 2:17 996 30 16679 

7% 2:57 2:04 977 1 14860 

8% 2:56 2:03 977 0 14826 

14% 2:56 2:03 977 0 14826 

No 0:53 0:00 977 0 0 
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Table 27.  High Cost Delay Estimation Framework During Static Compaction For 

ISCAS89 Circuits 

Circuit 
# 

Paths 

Delay 

Constraint 

High Cost Framework 

Total Time 

(m:s) 

Delay 

Estimate Time (m:s) 

# Patterns 

After 

Compaction 

# 

Exceed 

Paths 

# 

Simulations 

s1488 167 

3% 0:01 0:01 117 46 217 

5% 0:01 0:01 106 33 228 

7% 0:01 0:01 98 24 236 

10% 0:01 0:01 93 16 241 

18% 0:01 0:01 79 0 260 

No 0:01 0:01 79 0 0 

s15850 2415 

3% 0:19 0:16 602 203 4280 

5% 0:21 0:18 539 87 4319 

7% 0:21 0:18 510 53 4320 

8% 0:21 0:18 503 40 4329 

16% 0:22 0:19 467 0 4362 

No 0:03 0:00 467 0 0 

s35932 9442 

3% 37:50 36:43 1421 1010 311979 

5% 9:41 8:34 249 133 71223 

7% 3:59 2:52 71 6 29574 

8% 2:31 1:24 51 0 18557 

No 1:07 0:00 46 0 0 

s38417 14405 

3% 30:24 29:31 1941 960 210646 

5% 14:54 14:01 1265 275 100713 

7% 7:36 6:43 1103 129 49280 

8% 6:15 5:22 998 17 38957 

14% 4:24 3:31 977 0 24974 

No 0:53 0:00 977 0 0 
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constraint. Column „Total Time‟ is the total compaction time while “Delay Estimate 

Time‟ is only the time used in the delay estimation including logic simulation and table 

lookup. Column „# Patterns After Compaction‟ is the total number of patterns after 

compaction which includes all the „# Exceed Paths‟ which are the paths that are initially 

too noisy and are put into the „Exceed List‟ in Step 1 of Figure 25. The number of logic 

simulations made during delay estimation is shown in column „# Simulations‟. 

Since the high cost model in [30] considers all paths as target paths without looking 

at their nominal delay, it will reject many compactions, even though the same amount of 

extra delay for those short paths will not actually cause a timing issue. For example, as 

shown in Figure 32, suppose the delay bound of a circuit is 1 ns and the maximum path 

delay is 0.9 ns. Then for safe compaction, we should set the delay constraint to be 11% 

of max delay, which is 0.1 ns. However, a compaction is still safe if it adds 0.3 ns extra 

delay to a short path #1 with nominal delay of 0.5 ns. If the extra 0.3 ns is added to the 

0.9 ns path #2, it would violate the delay constraint, so this compaction should be 

vetoed. During static compaction, we know the maximum nominal delay of all paths, so 

we know the threshold of how much extra delay we can tolerant. As a result, the low 

cost model can reduce unnecessary simulations and accept some compactions that were 

rejected by [30].  
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Figure 32. Delay Constraint Effect on Different Paths 

 

The high cost framework has used some redundant delay estimation pruning 

technique by simply overlook the delay calculation if the two compatible patterns being 

compacted have very small transition count [47]. The transition count threshold was set 

by experience that could be simply as a tiny fraction of the total number of bits in a 

vector. However, this pre-check is prone to delay underestimation because small 

transition count cannot guarantee short path. For example as shown in Figure 33, the 

vector pair to test path B has higher transition count (2) than the transition count (1) of 

vector pair to test path A, but path B in fact is shorter than path A. This applies to both 

robust and non-robust transition fault test. Therefore, in our low cost framework, we did 

not use transition count as a threshold. 
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Figure 33. Vector Pair Transition Count on Different Paths 

 

For all the delay increase constraints considered in Table 26 and Table 27, the low 

cost model has smaller pattern count after compaction than the high cost model. For 

circuit like s38417 with a 5% delay increase constraint, the low cost model is 5x faster 

than the high cost model in delay estimation. For a 3% delay constraint, the low cost 

model‟s pattern count is almost half the size of the high cost model. The number of 

simulations also has been greatly reduced. For a 3% delay constraint, more than 210K 

simulations are need in the high cost model but only around 45K simulations are used in 

the low cost model. Also, the high cost model needs the constraint to be relaxed to 15% 

constraint to generate the 977 patterns of the force compaction model, while the low cost 

model achieves this pattern count while meeting a 7% constraint. For circuit like s35932, 

the high cost framework with 3% delay constraint generates 1421 patterns with 1010 
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originally failed patterns that are more than 10 times the number of the low cost 

framework. The major problem is that the high cost model considers delay constraints 

per path while low cost framework considers delay constraints globally.  

 

Figure 34. Path Delay Distribution for s35932 

 

Figure 34 shows the path delay distribution of 9442 paths of circuit s35932 that were 

generated from ATPG where many are short paths. It is interesting that most paths are 

either short or long with no paths in the middle range of delay (0.3~0.45 ns). For those 

paths that are shorter than 0.1 ns delay, the high cost framework would probably think 

some of them are too noisy during initial check and put them to originally failed patterns 

while low cost framework would not. In addition, this circuit has an extremely high 

compaction rate compared to other circuits, partially due to the high portion of short 
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paths with low care bit density which on the other hand increases the compatibility of 

two vectors. 

The delay constraint used in [30] is applied per path, not the globally longest path. 

For example, it will reject compaction if the extra delay of path P is over a delay 

constraint (normally a fraction, or x% of the original delay of path P). Realistically, the 

delay constraint should be set a percent of the global longest path that determines the 

clock cycle of the circuit. In our experiments, we will veto any compaction if the extra 

delay is over x% of the global longest path delay. This information is available for static 

compaction since we already have the complete path list but not available for dynamic 

compaction unless all the paths are generated. However, CodGen [18]  has the ability to 

generate the global longest path first before it generates other paths such that we can use 

that information to set our delay constraint.  

In order to further show the efficiency of low cost framework, we applied the delay 

constraint similarly on high cost framework using the globally longest path delay. Table 

28 and Table 29 show the experimental results on s38417 with different delay constraint. 
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Table 28.  Low Cost Framework During Static Compaction for s38417 With Same 

Delay Constraint Metric Applied 

(Threshold1=0.75, Threshold2=0.5, Threshold3=0.5, Threshold4=Delay Constraint) 

Delay 

Constraint 

Low Cost Framework 

Total 

Time 

(m:s) 

Delay 

Estimate 

Time (m:s) 

# Patterns After 

Compaction 

# Exceed 

Paths 
# Simulations 

3% 3:32 2:39 1093 157 19338 

4% 3:24 2:31 1026 74 18313 

5% 3:10 2:17 966 30 16679 

6% 2:58 2:05 983 9 14912 

7% 2:57 2:04 977 1 14860 

8% 2:56 2:03 977 0 14826 

 

Table 29.  High Cost Framework During Static Compaction for s38417 With Same 

Delay Constraint Metric Applied 

(Threshold1=0.75, Threshold2=0.5, Threshold3=0.5, Threshold4=Delay Constraint) 

Delay 

Constraint 

High Cost Framework 

Total Time 

(m:s) 

Delay 

Estimate 

Time (m:s) 

# Patterns 

After 

Compaction 

# Exceed 

Paths 

# 

Simulations 

3% 5:40 4:47 1093 157 29436 

4% 5:23 4:30 1026 74 28414 

5% 5:10 4:17 966 30 26771 

6% 4:58 5:05 983 9 25010 

7% 4:57 5:04 977 1 24979 

8% 4:57 5:04 977 0 24948 
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In order to verify that our low cost framework is more realistic than high cost model, 

we also simulated the delay of all the paths after static compaction by exporting one 

pattern per target path. It is an important step to see after compaction, whether all the 

paths‟ delays are within timing bound because a higher compaction rate would induce 

higher supply noise. For circuit s38417, before compaction, the max path delay is 1.44 

ns, and the 5% delay constraint is set to 0.07 ns, which increases the delay bound to 1.51 

ns.  

 

Figure 35. Actual Path Delay After Compaction for s38417 

 

Figure 35 shows that our low cost model can keep the max path delay of almost all 

paths within the delay bound except for those 30 patterns that are originally too noisy. 
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order to test those paths, the excessive switching in those effective regions will reduce 

the voltage and introduce extra delay that goes beyond the delay constraints. However, 

we still have to test those paths by relaxing the delay constraint or make the circuit 

running at a slower speed.  

Figure 36 shows that the extra delay induced by compaction. We can see that for 

some short paths, we can tolerate them having extra delay larger than 0.07 ns while for 

long paths, they must strictly obey the constraint. While for high cost framework, it is 

obvious that all extra delay would be constrained to within 0.07ns.  

 

 

Figure 36. Extra Path Delay After Compaction for s38417 
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threshold4 fixed to 3%, the number of simulations differs accordingly. When we fixed 

threshold1 to 0.75 but changed threshold2, we can see that the higher the threshold2, the 

less the number of simulations because we are reducing the number of patterns under 

delay estimation by filtering out even more short paths. Similar results can be seen if we 

fixed threshold2 to 0.5 and altered threshold1. The smaller threshold2 is, the higher the 

number of simulations is needed because we enlarged the number of patterns for delay 

estimation which includes shorter paths. Note that from the data in Table 29, we can see 

that our default setting of threshold pair [threshold1, threshold2] which is [0.75, 0.5] is 

pessimistic because for the highest „working‟ pair which is [0.8, 0.7] we set, the number 

of patterns after compaction is the same but the delay estimation time is 58 seconds or 

15% less. Here „working‟ means the number of patterns after compaction is the same 

with [0.75, 0.5]. On the other hand, we should limit the value of threshold1 or 

threshold2 in case the compaction flow underestimates the delay which can be seen in 

the threshold pair [0.9, 0.7]. For this case, we are too optimistic about the guardband of 

threshold1 that for some paths that are shorter than 90% but longer than 80% of the 

longest path, they could bring excessive switching in the circuit that slows down the 

transition propagation that goes beyond the delay constraint we set. The „# Exceed 

Paths‟ shows 23 patterns less than the threshold pair [0.8, 0.7] which means some 

patterns skip the delay check and were added into the final compaction pattern set. The 

side effect of those patterns is that they could be compatible with other patterns but they 

will fail the delay check every time. The redundant delay checking will bring more 

simulations and which explains the higher running time that did no good to our 
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compaction. So be conservative, we should set the threshold1 and threshold2 to smaller 

values. To our experience, [0.75, 0.5] is a good conservative pair. 

Table 31 shows the effect of different threshold4 on the results of static compaction 

using low cost framework. Here we keep the delay constraint to be 3% of max delay, 

threshold1 to be 0.75 and threshold2 to be 0.5. From Figure 23 we can see that 

threshold4 could be any value less than twice the value of delay constraint which is 6% 

for s38417. The experimental results show that setting threshold4 to 3% is very 

conservative as it vetoes many compaction which is safe for supply noise where we can 

see directly from column „# Exceed Paths‟. However considering the inaccuracy of delay 

model we used, setting a smaller threshold4 can guarantee that we are not overlooking 

any extra delay caused by supply noise. 

 

Table 30.  Low Cost Delay Estimation During Static Compaction for s38417 

with Different Threshold1 and Threshold2 

(Delay Constraint=3%, Threshold4=3%) 

Threshold1 Threshold2 
Total 

Time (m:s) 

Delay Estimate 

Time (m:s) 

# Patterns 

After 

Compaction 

# 

Exceed 

Paths 

# 

Simulations 

0.55 0.5 3:57 3:04 1093 157 22780 

0.65 0.5 3:42 2:49 1093 157 20631 

0.75 0.5 3:32 2:39 1093 157 19338 

0.75 0.6 3:23 2:30 1093 157 18467 

0.75 0.7 2:54 2:01 1093 157 14350 

0.8 0.7 2:47 1:54 1093 157 13882 

0.9 0.7 9:07 8:14 1091 134 62061 
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Table 31. Low Cost Delay Estimation During Static Compaction for s38417 with 

Different Threshold3 

(Delay Constraint=3%, Threshold1=0.75, Threshold2=0.5) 

Threshold4 Total Time (m:s) 
Delay Estimate  

Time (m:s) 

# Patterns After 

Compaction 

# 

Exceed 

Paths 

# 

Simulations 

3:32 2:39 1093 157 19338 3:32 

3:32 2:39 1093 157 19338 3:32 

3:33 2:40 1091 151 19514 3:33 

3:34 2:41 1089 147 19865 3:34 

 

Dynamic compaction (DC) results on four ISCAS89 circuits can be seen in Table 32 

and Table 33. As with static compaction (SC), the high cost framework is slower due to 

more simulations. Similar like experiments on static compaction, before applying the 

frameworks, we conducted force compaction that did not consider supply noise effects. 

For example, for s38417, if we use the low cost model, a 10% constraint produces 389 

patterns in less than 5 extra CPU minutes. At a 7% constraint, only 4 additional test 

patterns are generated. For a 3% delay constraint, 353 extra patterns are generated, using 

considerably more CPU time. The large CPU time increase is due to the many patterns 

near their delay increase thresholds, requiring many more simulations. In addition, each 

time a compaction was rejected due to noise, we must find another compatible pattern 

and pass both the direct implication and final justification phases, which require 

significant time. Column „Extra Time‟ includes all these efforts and delay estimation. 

For high cost model, more than half an hour extra time was spent for 3% delay constraint 
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which is almost 2x slower than low cost model and the pattern count is more than twice 

of the low cost model. For delay constraint like 5% and 7%, delay estimation of low cost 

model is still 2x faster than high cost model together with huge reduction of pattern 

count. By comparing Table 25 and Table 31, we can see that DC needs more execution 

time but has smaller pattern count than SC. Also in both cases the low cost framework 

works well until the delay constraint becomes so stringent that many patterns are close to 

the constraint, and so require detailed analysis. The reason that DC has fewer 

simulations than SC for the 3% delay constraint, even though it has a higher compaction 

rate, is that the if two short paths are compacted during DC that do not need noise 

estimation, but they are not compatible in SC while they are compatible with a long path, 

then we need to estimate supply noise in SC for the compacted pattern. But for most 

cases, DC should have more number of simulations than SC due to the high compaction 

rate which need more number of delay estimations each time two patterns are compacted 

together. 
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Table 32. Low Cost Delay Estimation Framework During Dynamic Compaction 

Circuit Delay Constraint 

Low Cost Framework 

Total Time 

(m:s) 

Extra 

Time 

(m:s) 

# Patterns 

After Compaction 

# Exceed 

Paths 

# 

Simulations 

s1488 

3% 0:02 0:01 66 5 100 

5% 0:02 0:01 64 4 101 

7% 0:02 0:01 63 3 102 

10% 0:02 0:01 60 0 104 

16% 0:02 0:01 60 0 104 

No 0:01 0:00 60 0 0 

s15850 

3% 1:49 0:30 294 15 4146 

5% 1:46 0:27 291 11 3607 

7% 1:40 0:21 291 8 3068 

8% 1:36 0:17 279 0 2338 

16% 1:35 0:16 274 0 2285 

No 1:19 0:00 274 0 0 

s35932 

3% 9:26 5:09 108 62 21000 

5% 8:27 4:10 57 20 17534 

7% 7:57 3:40 35 1 15455 

8% 7:37 3:20 31 0 14561 

No 4:17 0:00 28 0 0 

s38417 

3% 40:34 18:03 742 295 36983 

5% 35:05 12:34 469 63 20146 

7% 33:04 10:33 393 0 15979 

10% 32:22 9:51 389 0 15749 

15% 32:22 9:51 389 0 15749 

No 22:31 0:00 389 0 0 
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Table 33. High Cost Delay Estimation Framework During Dynamic Compaction 

Circuit Delay Constraint 

High Cost Framework 

Total Time 

(m:s) 

Extra Time 

(m:s) 

# Patterns 

After 

Compaction 

# Exceed 

Paths 

# 

Simulations 

s1488 

3% 0:03 0:02 96 46 238 

5% 0:03 0:02 87 33 247 

7% 0:03 0:02 79 24 255 

10% 0:03 0:02 74 16 240 

16% 0:03 0:02 60 0 270 

No 0:01 0:00 60 0 0 

s15850 

3% 1:45 0:25 447 203 4554 

5% 1:48 0:27 350 87 4592 

7% 1:45 0:24 318 53 4514 

8% 1:46 0:25 310 40 4580 

16% 1:46 0:25 274 0 4556 

No 1:19 0:00 274 0 0 

s35932 

3% 38:35 34:18 1406 1010 144534 

5% 21:52 17:35 247 133 68855 

7% 10:31 6:14 66 6 25207 

8% 8:40 4:23 42 0 18234 

No 4:17 0:00 28 0 0 

s38417 

3% 54:46 32:15 1427 960 80969 

5% 46:42 24:11 698 275 48982 

7% 39:08 16:37 527 129 31480 

10% 34:44 12:13 413 17 28721 

15% 34:28 11:57 389 0 25536 

No 22:31 0:00 389 0 0 
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3.7 Conclusions 

In this work, we have introduced a realistic low cost delay test compaction flow that 

guardbands the circuit delay using a sequence of estimation metrics. Significant 

improvements are demonstrated over prior work using benchmark circuits. Current work 

targets larger designs. The veto compaction process can be also applied as a guardband 

for other constraints, such as test power, where similar approaches have been 

demonstrated [45]. Finally, this work only considers on-chip IR drop. In the future, we 

want to also consider off-chip LdI/dt effects during ATPG and compaction. 
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4. SUMMARY AND FUTURE WORK 

 

In this work, we first proposed a constant test power dissipation flow that combines 

X-Fill, shift power estimation and test pattern reordering algorithm together. The flow is 

independent of the X-Fill algorithm. Our work proposed an X-Fill algorithm that 

minimizes both capture power and shift power using Preferred Fill [13] and Adjacent 

Fill. Weighted Switching Activity (WSA) was used as a power estimation metric. The 

shift power estimation metric was also enhanced by probabilistic analysis. The constant 

power was achieved using pattern reordering as we are not using X-Fill or ATPG itself 

to even out the power. Good experimental results prove our reordering algorithm‟s 

effectiveness and correctness. However, we still have to solve the poor estimation of 

shift power estimation for circuits b14 and b18. In addition, since WSA itself is an 

estimation of power, we need silicon results to show the real power dissipation after 

applying our reordered patterns. 

We also proposed a realistic power supply noise-aware delay test compaction 

framework that has great improvement over prior work [1]. This framework used a 

series of thresholds to guardband the excessive delay induced by compaction and tried to 

minimize the unnecessary simulations which on the other hand greatly speeds up the 

algorithm. We also discussed how to set those thresholds to make this framework 

theoretical and practical. We have conducted experiments by combining the framework 

to both static compaction and dynamic compaction. The next step is to consider dI/dt 
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effects because on our current circuit model, we only considered IR drop. This will 

require more complicated circuit model. 
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