

LOW COST POWER AND SUPPLY NOISE ESTIMATION AND CONTROL IN

SCAN TESTING OF VLSI CIRCUITS

A Dissertation

by

ZHONGWEI JIANG

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2010

Major Subject: Computer Engineering

LOW COST POWER AND SUPPLY NOISE ESTIMATION AND CONTROL IN

SCAN TESTING OF VLSI CIRCUITS

A Dissertation

by

ZHONGWEI JIANG

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Duncan M. Walker

Committee Members, Rabinarayan Mahapatra

 Vivek Sarin

 Jiang Hu

Head of Department, Valerie E. Taylor

December 2010

Major Subject: Computer Engineering

 iii

ABSTRACT

Low Cost Power and Supply Noise Estimation and Control in

Scan Testing of VLSI Circuits. (December 2010)

Zhongwei Jiang, B.S., Nanjing University of Posts and Telecommunications, China;

M.S., Shanghai Jiao Tong University, China

Chair of Advisory Committee: Dr. Duncan M. Walker

Test power is an important issue in deep submicron semiconductor testing. Too much

power supply noise and too much power dissipation can result in excessive temperature

rise, both leading to overkill during delay test. Scan-based test has been widely adopted as

one of the most commonly used VLSI testing method. The test power during scan testing

comprises shift power and capture power. The power consumed in the shift cycle

dominates the total power dissipation. It is crucial for IC manufacturing companies to

achieve near constant power consumption for a given timing window in order to keep the

chip under test (CUT) at a near constant temperature, to make it easy to characterize the

circuit behavior and prevent delay test over kill.

To achieve constant test power, first, we built a fast and accurate power model, which

can estimate the shift power without logic simulation of the circuit. We also proposed an

efficient and low power X-bit Filling process, which could potentially reduce both the

shift power and capture power. Then, we introduced an efficient test pattern reordering

algorithm, which achieves near constant power between groups of patterns. The number

of patterns in a group is determined by the thermal constant of the chip. Experimental

 iv

results show that our proposed power model has very good correlation. Our proposed X-

Fill process achieved both minimum shift power and capture power. The algorithm

supports multiple scan chains and can achieve constant power within different regions of

the chip. The greedy test pattern reordering algorithm can reduce the power variation

from 29-126% to 8-10% or even lower if we reduce the power variance threshold.

Excessive noise can significantly affect the timing performance of Deep Sub-Micron

(DSM) designs and cause non-trivial additional delay. In delay test generation, test

compaction and test fill techniques can produce excessive power supply noise. This can

result in delay test overkill. Prior approaches to power supply noise aware delay test

compaction are too costly due to many logic simulations, and are limited to static

compaction.

We proposed a realistic low cost delay test compaction flow that guardbands the delay

using a sequence of estimation metrics to keep the circuit under test supply noise more

like functional mode. This flow has been implemented in both static compaction and

dynamic compaction. We analyzed the relationship between delay and voltage drop, and

the relationship between effective weighted switching activity (WSA) and voltage drop.

Based on these correlations, we introduce the low cost delay test pattern compaction

framework considering power supply noise. Experimental results on ISCAS89 circuits

show that our low cost framework is up to ten times faster than the prior high cost

framework. Simulation results also verify that the low cost model can correctly guardband

every path‟s extra noise-induced delay. We discussed the rules to set different constraints

in the levelized framework. The veto process used in the compaction can be also applied

to other constraints, such as power and temperature.

 v

DEDICATION

To my parents and my family:

without their support, this would not have been possible.

 vi

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr. Duncan M. (Hank)

Walker, for his guidance, patience and continuous support throughout my doctoral study.

I would also like to thank him for guiding me in my dissertation research with such

dedication and consideration, and never failing to pay attention to any details of my work.

His technical insight, his novel ideas and his encouragement are all essential to this work.

This dissertation would never have been accomplished without his technical and editorial

advice.

I would like to extend my gratefulness to my committee: Dr. Jiang Hu, Dr. Vivek

Sarin and Dr. Rabinarayan Mahapatra. They provided a lot of valuable suggestions and

personal encouragement, and I learned a lot from talking to them.

Thanks to my teammates Zheng Wang, Sivakumar Ganesan, Shayak Lahiri, and

Karthik Tamilarasan. I learned a lot from them in the past several years. I want to thank

Jing Wang for her help and advice on my research. Another special thanks goes to

Wangqi Qiu and Lei Wu for their help on the industrial project on testing a

microprocessor.

My research was funded in part by Semiconductor Research Corporation (SRC) and

by the National Science Foundation (NSF). I thank them for their financial support.

Finally, I want to acknowledge the love and support of my parents and my family.

They were always there for me whenever I had problems, and they always shared my

happiness for every progress I made. I am deeply indebted to them, more than my words

can ever express.

 vii

TABLE OF CONTENTS

Page

ABSTRACT .. iii

DEDICATION ... v

ACKNOWLEDGMENTS ... vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES ... ix

LIST OF TABLES .. xi

1. INTRODUCTION .. 1

1.1 Test Power .. 4
1.2 Power Supply Noise in Delay Test ... 6

2. CONSTANT POWER DISSIPATION .. 10

2.1 Compaction ... 10
2.2 X-Fill ... 13

2.3 Shift Power Estimation ... 15
2.4 Chip-wise Test Pattern Reorder .. 20
2.5 Region-wise Test Pattern Reorder .. 30
2.6 Experimental Results .. 36
2.7 Enhancement Approaches ... 58

2.7.1 Veto Compaction .. 60
2.7.2 Noise Injection .. 63
2.7.3 Level-Sim .. 66
2.7.4 Toggle Probabilistic Analysis Considering SIC (TPASIC) 67
2.7.5 TPASIC Considering Adjacent Fill (TPASICAF) 71

2.8 Conclusions ... 74

3. SUPPLY NOISE IN DELAY TEST .. 75

3.1 Delay Modeling and Analysis ... 75
3.1.1 Power Region Model .. 75

3.1.2 Circuit Switching Model ... 76

3.1.3 Delay vs. Supply Voltage Drop .. 78

3.1.4 Supply Voltage Drop vs. Effective WSA 80

3.1.5 Delay Distribution Analysis .. 82

3.2 Low Cost Supply Noise-Aware Delay Test Static Compaction 83

 viii

3.3 Supply Noise-Aware Delay Test Dynamic Compaction 87

3.4 Parameter Setting .. 90
3.5 Pseudo Functional Test Power Analysis ... 93

3.5.1 Pseudo Functional Test ... 93

3.5.2 Multicycle Capture Power .. 94

3.6 Experimental Results .. 96
3.7 Conclusions ... 113

4. SUMMARY AND FUTURE WORK .. 114

REFERENCES ... 116

VITA ... 123

Page

 ix

LIST OF FIGURES

Page

Figure 1. Static Compaction Flow .. 11

Figure 2. Scan Chain Example ... 16

Figure 3. Parallel Vector Bit Shifting for Multiple Scan Chains 19

Figure 4. Power Correlation for s38417 (per pattern) .. 20

Figure 5. Case 1 of Swap-Check .. 23

Figure 6. Case 2 of Swap-Check .. 24

Figure 7. Case 3 of Swap-Check .. 24

Figure 8. Case 4 of Swap-Check .. 25

Figure 9. Case 5 of Swap-Check .. 26

Figure 10. Case 6 of Swap-Check .. 26

Figure 11. Constant Power Flow .. 37

Figure 12. Chip-wise Constant Power Estimation Result for s38417 (pvb=1%) 46

Figure 13. Chip-wise Constant Power Simulation Result for s38417 (pvb=1%)............... 47

Figure 14. 10 Patterns/Group, Time Window = 10 Patterns, Average Power = 50 48

Figure 15. 10 Patterns/Group, Time Window = 20 Patterns, Average Power = 50 49

Figure 16. Veto Compaction Flow Chart ... 61

Figure 17. Toggling Probability Analysis for 2-Input AND Gate 68

Figure 18. Toggling Probability Analysis for 3-Input AND Gate 69

Figure 19. Fanout Cone Overlap .. 71

Figure 20. Simplified Power Supply Model in a Region ... 76

Figure 21. A Current Waveform for an Inverter .. 77

 x

Page

Figure 22. Effective Regions Associated with a Path .. 78

Figure 23. Voltage Drop vs. Delay Increase for s38417 .. 80

Figure 24. Voltage Drop vs. Effective WSA for s38417 ... 81

Figure 25. Path Delay Distribution for s38417 .. 82

Figure 26. Levelized Low Cost Static Compaction Flow for Delay Test Considering

Power Supply Noise ... 84

Figure 27. Power Supply Noise-Aware Delay Test Dynamic Compaction Flow 89

Figure 28. Correlation Between WSA of Whole Circuit and NAs for s38417 90

Figure 29. Delay Increase Distribution for Paths in s38417 .. 91

Figure 30. Oscilloscope Droop Measurement .. 93

Figure 31. Average WSA for b19 ... 95

Figure 32. Delay Constraint Effect on Different Paths .. 100

Figure 33. Vector Pair Transition Count on Different Paths .. 101

Figure 34. Path Delay Distribution for s35932 .. 102

Figure 35. Actual Path Delay After Compaction for s38417 ... 105

Figure 36. Extra Path Delay After Compaction for s38417 ... 106

 xi

LIST OF TABLES

Page

Table 1. Compaction Results .. 12

Table 2. Relationship Between Shift Power and Chain Power using WSA 18

Table 3. Estimation Results for Chip-wise Constant Power Algorithm (Part 1) 38

Table 4. Estimation Results for Chip-wise Constant Power Algorithm (Part 2) 39

Table 5. Simulation Results for Chip-wise Constant Power Algorithm (Part 1) 41

Table 6. Simulation Results for Chip-wise Constant Power Algorithm (Part 2) 42

Table 7. Estimation and Simulation Results for Different Power Variance Bound

(pvb) in Chip-wise Constant Power Algorithm (Part 1) 44

Table 8. Estimation and Simulation Results for Different Power Variance Bound

(pvb) in Chip-wise Constant Power Algorithm (Part 2) 45

Table 9. Estimation Results for 50 Patterns per Group in Chip-wise Constant

Power Algorithm (pvb=1%) (Part 1) ... 49

Table 10. Estimation Results for 50 Patterns per Group in Chip-wise Constant

Power Algorithm (pvb=1%) (Part 2) ... 50

Table 11. Simulation Results for 50 Patterns per Group in Chip-wise Constant

Power Algorithm (pvb=1%) (Part 1) ... 51

Table 12. Simulation Results for 50 Patterns per Group in Chip-wise Constant

Power Algorithm (pvb=1%) (Part 2) ... 51

Table 13. Estimation Results for Region-wise Constant Power Algorithm

(pvb=5%, timeout=200, 10 Patterns per Group) (Part 1) 52

 xii

Page

Table 14. Estimation Results for Region-wise Constant Power Algorithm

(pvb=5%, timeout=200, 10 Patterns per Group) (Part 2) 53

Table 15. Simulation Results for Region-wise Constant Power Algorithm

(pvb=5%, timeout=200, 10 Patterns per Group) (Part 1) 55

Table 16. Simulation Results for Region-wise Constant Power Algorithm

(pvb=5%, timeout=200, 10 Patterns per Group) (Part 2) 56

Table 17. Chip-wise Shift Power Comparison Between Chip-wise and Region-

wise Reorder Algorithm ... 57

Table 18. Pattern Count Comparison (TCT = 0.05) ... 62

Table 19. Transition Count Comparison (Force-Comp vs. Veto-Comp) 62

Table 20. Power Reduction after Using Veto-Comp (vs. Force-Comp) 62

Table 21. Constant Power Algorithm Results Comparison for ISCAS89 Circuits 65

Table 22. Constant Power Algorithm Results Comparison for ITC99 Circuits 65

Table 23. Level-Sim Results for b14 (4800 Patterns) .. 66

Table 24. Power Correlation Comparison of Different Metrics ... 72

Table 25. Constant Power Results Comparison ... 73

Table 26. Low Cost Delay Estimation Framework During Static Compaction for

ISCAS89 Circuits ... 97

Table 27. High Cost Delay Estimation Framework During Static Compaction For

ISCAS89 Circuits ... 98

Table 28. Low Cost Framework During Static Compaction for s38417 With Same

Delay Constraint Metric Applied ... 104

 xiii

Page

Table 29. High Cost Framework During Static Compaction for s38417 With Same

Delay Constraint Metric Applied ... 104

Table 30. Low Cost Delay Estimation During Static Compaction for s38417 with

Different Threshold1 and Threshold2 .. 108

Table 31. Low Cost Delay Estimation During Static Compaction for s38417 with

Different Threshold3 .. 109

Table 32. Low Cost Delay Estimation Framework During Dynamic Compaction 111

Table 33. High Cost Delay Estimation Framework During Dynamic Compaction 112

 1

1. INTRODUCTION

Test power is an important issue in deep submicron (DSM) semiconductor testing.

Too much power supply noise and too much power dissipation can result in excessive

temperature rise, both leading to overkill during delay test. Scan-based test has been

widely adopted as one of the most commonly used VLSI testing methods. The test

power during scan testing comprises shift power and capture power. During Launch-on-

Shift (LOS) or Launch-on-Capture (LOC) test, the power consumed during the shift

cycles dominates the total power dissipation, since there is a large amount of signal

switching during the scan-in/out process for most scan architectures. Capture power is

dissipated only during the capture cycle, and so is much smaller than the shift power. For

example, if the scan chain is longer than a thousand scan cells, the shift power could be

one thousand times larger than the capture power. Since the shift power is expensive to

compute during the shift-in and shift-out process, we need a simple and fast model to

estimate it. The power dissipation during different phases of the test process is hard to

predict, but it is crucial for IC manufacturing companies to achieve near constant power

consumption during a given timing window, in order to keep the chip under test (CUT)

at a near constant temperature to avoid exceptional behavior or even over-kill. In

addition, if the CUT has linear temperature rise, it is easy to characterize the circuit

behavior during each test phase. Industry data shows that the signal delay rises 35-55%

This dissertation follows the style and format of IEEE Transactions on Very Large

Scale Integration (VLSI) Systems.

 2

for a 100
o
C rise in 65 nm technology. If we can predict the temperature at a given test

pattern, we can adjust the capture clock timing to avoid overkill.

Prior work [1][2][3][4][5][6][7][8][9][10] proposed methods to reduce the capture

power and keep the power supply noise to a low level during compaction or test

generation. A static compaction technique was proposed to control scan power [11].

Test-vector ordering heuristics have been proposed, but they were only concerned with

minimizing power, at a high computational cost [12]. They do not consider how to keep

the test power constant.

Recently, a technique called Preferred Fill [13] was proposed which fills the X

(don‟t care) bits in a test pattern by using the signal probability. Only a single pass is

required to compute the signal probability for the entire circuit, and the approach

achieves very good capture power reduction. Shift power can be minimized by using

Adjacent Fill, in which X bits are filled with the adjacent 0/1 value.

Since accurately computing the shift power requires N·M cycles of logic simulation

if M is the number of bits in a scan chain and N is the number of test patterns, it is

obvious that this is not feasible for large circuits. Prior work [11] proposed using scan

chain switching to estimate the shift power, but did not fully consider the structure of the

circuit, which limited correlation to logic simulation results.

In order to achieve constant test power, first, we need a fast and accurate power

model, which can estimate the shift power without logic simulation of the circuit. In

addition, we need an efficient and low power X-bit Filling process, which can reduce

both the shift power and capture power. Then, we need an efficient test pattern

 3

reordering algorithm, which achieves near constant power between groups of patterns.

The number of patterns in a group is determined by the thermal time constant of the chip.

The X-Fill process that we propose combines Preferred Fill, Adjacent Fill and Random

Fill to achieve both minimum shift power and capture power. The algorithm supports

multiple scan chains and can achieve constant power within different regions of the chip.

The greedy test pattern reordering algorithm can reduce the power variation from 29-126%

to 8-10% or even lower if we reduce the power variance threshold.

The traditional test pattern compaction process achieves a high compaction rate, but

does not check the supply noise of each pattern. High compaction will generate higher

power patterns that may produce excessive power supply noise. The excessive switching

in the circuit supply network will cause a voltage drop and consequently a delay increase

on signal paths, potentially violating the timing specification. The approach in [14]

proposed a static compaction technique, which controls the supply noise so that paths do

not exceed their timing specification due to noise. This approach is a post-processing

step based on the un-compacted patterns and the target paths corresponding to each

pattern. It shows good correlation compared to circuit simulation and it was verified with

silicon results [4]. The supply noise and delay estimation in [14] was based on a low cost

power supply noise model and delay model. The major problem of this approach is the

tremendous number of logic simulations. We enhanced this approach by proposing a

levelized supply noise estimation framework, which drastically reduces the simulation

time. The other drawback of [14] is that it is a post-processing step after ATPG.

Dynamic compaction [15] during ATPG achieves significantly higher test pattern

 4

compaction compared to static compaction. Dynamic compaction combines paths

together based on their necessary assignments, without fault simulation. This algorithm

was incorporated into the KLPG ATPG algorithm and significantly reduced pattern

count without coverage loss. We have incorporated the new low cost supply noise

estimation framework into dynamic compaction.

1.1 Test Power

Test power is an important issue in deep submicron semiconductor testing. Too

much power supply noise and too much power dissipation can result in excessive

temperature rise, both leading to overkill during delay test. In this work, we focus on

power dissipation during the scan-in/out process, since this dominates total power

dissipation during scan-based testing. For example, if the scan chain is longer than a

thousand scan cells, the shift power could be a thousand times larger than capture power

and the capture power is neglectable. The power dissipation during different phases of

the testing process are hard to predict but it is crucial for IC manufacturing companies to

achieve near constant power consumption in a given timing window in order to keep the

chip under test (CUT) at a near constant temperature to avoid exceptional behavior or

even over-kill. Also, if the CUT has linear temperature rise, it is easy to characterize the

circuit behavior during each phase of the testing. We can compute the temperature at

each test pattern and adjust the capture clock timing to avoid overkill. Industry data

shows that the signal delay rises by 35-55% for a 100
o
C rise, in 65nm technology.

Prior work [1]-[12] proposed methods to reduce the capture power and keep the

 5

power supply noise at a low level during compaction or test generation. The work in [11]

proposed a static compaction technique to control scan power. The work in [12]

proposed test-vector ordering heuristics but only concerns about minimizing power and

the computational complexity is very high. They did not consider how to keep the test

power constant.

Recently, a technique called Preferred Fill [13] was proposed that fills the X (don‟t

care) bits in a test pattern using signal probability, to minimize unnecessary switching

activity during the launch cycle. It only needs one pass to compute the signal

probabilities for the whole circuit, and achieves very good capture power reduction.

Once Preferred Fill has been used, Adjacent Fill can be used to fill the remaining X

bits. In Adjacent Fill, the X bits are filled with the previous 0/1 (care bit) value loaded

into the scan chain. This minimizes transitions on the scan chain outputs as it is shifted,

with a corresponding reduction in circuit activity. We will these two techniques in our

X-Fill process.

Since accurately computing the shift power requires N·M cycles of logic simulation

where M is the number of bits in a scan chain and N is the number of test patterns, it is

obvious that this is infeasible for large circuits. Prior work [11] proposed using scan

chain switching to estimate the shift power, but they did not consider circuit statistics,

reducing the accuracy of the estimation.

A test pattern reordering algorithm was proposed in [16] which achieves near

constant test power across the chip. However, the greedy reordering algorithm has some

shortcomings, such that it could fall into an infinite loop if there is an extremely high

 6

power or low power pattern. In addition, the algorithm can only deal with single scan

chain, while typical industrial circuits have many parallel scan chains.

We extended the work in [17] and improved the robustness of the reordering

algorithm. We also added multiple scan chain support. The most important addition is

the ability to achieve constant power within a giving region of a chip, as well as for the

chip as a whole. Section 2 of this dissertation introduces an efficient test pattern

compaction technique that was used to prepare test data for our algorithm. In Section 3,

we used a modified version of Preferred Fill combined with Adjacent Fill in order to

minimize both Capture and Shift Power. Section 4 introduces a shift power estimation

heuristic that can efficiently estimate the shift power in terms of Weighted Switching

Activity (WSA) without using logic simulation. We also describe the influence of the

number of scan chains on the correlation between the chain power (scan chain switching)

and shift power (circuit switching). Efficient greedy test-pattern re-ordering algorithms

will be shown in Subsection 2.4 and Subsection 2.5 that can achieve near constant power

dissipation both across chip and within region. Very good simulation results for KLPG

delay test for ISCAS89 and ITC99 circuits under different power constraints are

presented in Subsection 2.6. The variation in power is reduced from 29-126% to 8-10%.

Our work appears to be the first to target both near-constant shift power while at the

same time minimizing both shift power and capture power.

1.2 Power Supply Noise in Delay Test

Delay testing has become increasingly important due to reduced timing margins and

 7

increased clock rates. Small delay defects can be tested using the path delay fault model

[18]. However, as the semiconductor technology is scaled, designs are becoming more

sensitive to various noise sources [19], such as leakage noise, crosstalk and power supply

noise. Too much power supply noise can result in excessive noise-induced circuit delay

increase, leading to overkill during delay test.

Several techniques have been proposed for estimating power supply noise during

timing analysis [20][21]. These methods focused on supply network and circuit models

to achieve reasonable accuracy. Jiang et al. [22] proposed a vector independent approach

using genetic algorithms to estimate the worst-case noise-induced delay. Liou et al. [23]

proposed an estimation method based on a statistical timing analysis framework.

Most prior work in testing while considering power supply noise adopts a vector-less

strategy due to the high simulation cost of the power supply noise model on large

circuits. Tirumurti et al. [24] proposed added power noise to a generalized fault model

[25]. Pant et al. [26] proposed a vector-less approach for computing the maximum path

delay under power supply fluctuations. Krstic et al. [27] used a vector-based approach to

generate the maximum power supply noise on one path at a time. However, the resulting

maximum noise could be considerably greater than the mission-mode worst-case noise.

Moreover, the method may be in competition with other goals, such as crosstalk

generation, that may have greater impact on path delay. Lee et al. [28] introduced a novel

test pattern generation framework for inducing maximum crosstalk effects on delay-

sensitive paths and Ma et al [29] proposed a layout-aware pattern generation for

maximizing supply noise effects on critical paths. The motivation of this work is

 8

maximizing noise, which is not consistent with our goal of achieving mission-mode

noise.

Previous work [30] introduced a simplified power region model and circuit switching

model. Good delay estimation results were verified by circuit simulation and

measurement on ISCAS89 and industrial circuits during static test compaction. The

major drawback of this approach was the large number of logic simulations required. A

new dynamic compaction procedure [31] for path delay test reduced pattern count by as

much as 4x over static compaction, but at the cost of producing some very high noise

patterns that could result in test overkill.

Our prior work [32] demonstrated a realistic low cost delay test static compaction

framework which used a levelized estimation metric to speed up the work in [30]. This

approach shows up to 5x speed up over the previous work, but did not provide a

practical approach to determine the different algorithm parameters. In addition, since

dynamic compaction [31] has shown great advantage over static compaction, it requires

us to further expand the supply noise analysis work to dynamic compaction during

ATPG.

In this work, we focus on power supply noise modeling and estimation during delay

test pattern compaction, for both static and dynamic compaction. We first introduce a

realistic levelized low cost static compaction flow for delay test by reusing the noise and

delay model in [30], and then we combined the low cost flow into dynamic compaction

[31]. Experimental results on ISCAS89 circuits show that our low cost framework is up

to 5x faster than the prior high cost framework [30]. Simulation results also verify that

 9

the low cost model can correctly guardband the extra noise-induced delay of every path.

Subsection 3.1 summarizes our delay model and circuit switching model, which is based

on [30]. Then we analyze the relationship between delay and voltage drop, and the

relationship between effective weighted switching activity (WSA) and voltage drop.

Based on these correlations, we introduce the low cost delay test pattern static

compaction framework considering power supply noise in Subsection 3.2. In Subsection

3.3 this framework is integrated with dynamic test compaction. Subsection 3.4 gives the

rules for parameter setting that used in the compaction flow. A pseudo-functional test

with power analysis is shown in Subsection 3.5. Experimental results together with

further discussion are given in Subsection 3.6, and conclusions in Subsection 3.7.

 10

2. CONSTANT POWER DISSIPATION

2.1 Compaction

The original test patterns were generated by a K-Longest Path per Gate (KLPG)

delay fault ATPG tool named CodGen [33]. It generated launch-on-capture (LOC)

robust path delay tests targeting the longest rising and falling transition path through

every line in the circuit. Since it will generate one pattern for each longest path, in order

to save simulation time, we must compact the patterns.

For test pattern compaction for ISCAS89 circuits, we implemented a greedy static

compaction algorithm. Vectors are considered one by one in the order they are generated,

and combined with the first compatible vector in the compacted vector list. For example,

if we have two vectors V1=(0XX1X0XX) and V2=(X0XX100X), we check each bit of

same position of the vectors and see whether the two bits are compatible. The common

rule is that X is compatible with both 0 and 1; 0 is only compatible with 0; 1 is only

compatible with 1. The first bit of V1/V2 is 0/X, so the compacted bit will be 0; the

second bit of V1/V2 is X/0, so the compacted bit will be 0. The same process goes on

after the last bit has been compacted. After the bit-checking finished, we have the final

compacted vector V3=(00X1100X). If we change the first bit of V2 to 1, then V1 and

V2 are not compatible because the first bit is not compatible.

Figure 1 is the flow chart of the compaction procedure in our experiment. This

compaction process is brute force because it does not consider supply noise issue and we

try to minimize the pattern count. The initial patterns after compaction tend to have more

 11

bit transitions than the later patterns. We term compaction that does not consider supply

noise Force Compaction.

Figure 1. Static Compaction Flow

We use dynamic compaction [15] for ITC99 circuits. This compacts paths together

based on their necessary assignments, without fault simulation. Rather than working on

one pattern at a time, the algorithm considers a pool of paths that are currently being

compacted into a set of patterns. Each new path generated is compared against this path

pool. This algorithm was incorporated into the KLPG algorithm and significantly

reduced pattern count without coverage loss.

 12

The data from Table 1 show the difference of the number of compacted vectors

between original CodGen and static compaction. We can see a tremendous reduction of

patterns after compaction, especially for larger circuits such as s35932, s38417, b18 and

b19. A high compaction rate minimizes test data volume and test application time.

However, the compaction process may generate some extremely high power (noise) test

patterns. To solve this problem, we propose an X-Fill process in the next subsection.

Table 1. Compaction Results

Circuit # gates # scan cells
bits in each

pattern

Paths (Patterns)

from ATPG

Compacted

Patterns

s5378 2958 179 214 1799 407

s9234 5808 211 247 2376 790

s13207 8589 638 700 3220 909

s15850 10306 534 611 2646 470

s35932 17793 1728 1763 9762 36

s38417 23815 1636 1664 14917 948

s38584 20679 1426 1464 9724 525

b15 8816 449 486 4486 1506

b17 32192 1415 1453 19165 3290

b18 114561 3320 3358 58858 5434

b19 231266 6642 6667 114688 5319

b20 20172 490 523 20351 6234

b21 20517 490 523 20443 6579

b22 29897 735 768 30489 8090

 13

2.2 X-Fill

After compaction, we have many fewer test patterns, but more than 95% of the bits

are still don‟t care (X) bits. In the next step, we compute the signal probability using the

Preferred Fill [13] technique. The idea of Preferred Fill is to use the signal probability to

set the X bits. Let the vector pair of one pattern be <V1, V2> and V1={PI1, PPI1},

V2={PI2, PPI2}. The outputs after applying V1(V2) is O1(O2) and we have O1={PO1,

PPO1}, O2={PO2, PPO2}. Here PI means Primary Input, PPI means Pseudo-Primary

Input, PO means Primary Output and PPO means Pseudo-Primary Output. For Launch-

On-Capture (LOC) test, PPI2=PPO1.

At first, Preferred Fill will fill all the X values of PPI1. In the original Preferred Fill

algorithm, a bit of the PPI1 that has a 1-probability close to 0.5 will be randomly filled,

but we will use Adjacent Fill. Adjacent Fill will cause the least number of scan chain

output transitions when the output of current pattern is shifting out and the next pattern is

shifting in. Since the power during test is mainly the shift power, not the capture power,

Adjacent Fill significantly reduces overall power dissipation. The X-Fill procedure is

very fast since the signal probabilities can be computed in only one pass and filling all of

the test patterns can be completed in several seconds.

Once the scan patterns are filled, we then fill the X values of PI1 and PI2. We use

minimum transition fill if the bits in the same position are not both X. Then we use

random fill. For example, if PI1=0XX1X11X, PI2=X0XX10XX, we fill the first bit of

PI2 to 0 since the first bit of PI1 is 0, then we fill the second bit of PI1 to 0 since the

second bit of PI2 is 0 and so on. After this step finished, we have PI1=00X1111X and

 14

PI2=00X1101X. In the next step, we randomly fill the remaining X bits (but they should

be the same in both PI1 and PI2). If the random values for the first X is 0 and for the

second X is 1, finally we have PI1=00011111 and PI2=00011011.

The circuit response to a test pattern is crucial to our shift power estimation, since

these values will be shifted out, causing switching activity. By giving V1 as input, we

can compute the PPO of the circuit then assign it to the PPI part of V2, given the use of

LOC test. For the X bits of PI of both V1 and V2, we first use Minimal-Transition Fill,

then random fill to finish the X filling process.

Once a fully-filled vector V2 is available, PPO2 is computed using logic simulation.

This step is required since the computation of shift power needs two parts: the PPO2 of

the first pattern P1, and the PPI1 of the next pattern P2. The next subsection will

describe in detail how to compute shift power. The pseudo code of the entire X Fill

algorithm is shown below.

Algorithm X-Fill ()

1 Compute signal probability prob of all PPI1;

2 For each test pattern in the list, do

3 For each pin p of PPI1 which has X value

4 if (prob < 0.5) then p = 0

5 else if (prob > 0.5) then p = 1

6 else Adjacent Fill p

7 For each pin p of PI1 which has X value

8 Fill p according to the value of p in PI2

9 For each pin p of PI2 which has X value

10 Fill p according to the value of p in PI1

 15

11 For each pin p of PI1 and PI2 which has X value

12 Randomly fill p

13 Do logic simulation to fill all X values of PPI2 by applying V1 as input

14 Do logic simulation to compute PPO2 by applying V2 as input

2.3 Shift Power Estimation

In this work, we use Weighted Switching Activity (WSA) to estimate the power. The

WSA of a node is the number of state transitions at the driving gate multiplied by

(1+fan-out of the gate). The WSA of the entire circuit is obtained by summing the WSA

of all the gates in the circuit.

The capture power is a small part of the total test power, since each time a bit of the

output result is shifted out and a bit of the test pattern is shifted in to the scan chain; the

transitions in the scan chain will propagate to the entire circuit. It is approximately true

that given a circuit of scan chain length 100, the shift power will be around 100 times the

capture power. Therefore, our work will only focus on heuristics for keeping the shift

power constant.

The precise calculation of shift power is straightforward. Given two consecutive test

patterns: <V1, V2> and <V1‟, V2‟>, first do logic simulation to compute the output O1

response to vector V2. The output O1 will be shifted out and at the same time vector V1‟

is shifted in. Each time a shift occurs, logic simulation computes the WSA of the entire

circuit. We already compute O1 in the X-Fill step. But we still have to compute the

circuit WSA as each bit in O1 is shifted out and each bit in te PPI1 part of V1‟ is shifted

 16

in.

It is obvious that this precise calculation is not feasible for large circuits since we

cannot afford to simulate N·M times (N is the number of patterns; M is the length of scan

chain). Previous work [34] indicated that the WSA in the whole circuit is proportional to

the switching in the scan chain. We improve on that prior work by considering the fan-

out of each scan cell, i.e. the scan chain WSA. This increases the correlation between

chain and shift power. A scan cell with higher fan-out causes more circuit switching

when it transitions, and most switching happens in the first few logic levels. We use

ISCAS89 and ITC99 benchmark circuits as samples and the results are listed in Table 2.

Here „Shift Power‟ is computed by aggregating the WSA across all scan chain shifts.

The „Chain Power‟ is computed by aggregating all the scan chain transitions multiplied

by (1+fan-out of scan cell).

Q

Q
SET

CLR

D

Scan OutScan In

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

CLK

Figure 2. Scan Chain Example

For example, if there is a transition between two adjacent bits at scan cell i and the

fan-out of this cell is fi, then one shift of this bit will increase the WSA in the chain by

 17

(1+fi). For example, if O1=010010 and PPI1=100100, let us assume the bits are shifted

from right to left and the fan-out of each scan cell is (132413) as shown in Figure 2. For

simplicity, we use D flip-flops to represent the scan cells. The first 2 bits (from left to

right) of O1 are (01) and there is one transition between them, so shifting out bit 2 of O1

will cause 1+1=2 WSA because it only shifted through the first cell. The second and

third bits of O1 are (10), there is one transition between them, so shifting out bit 2 of O1

will cause (1+1)+(1+3)=6 WSA because the fan-out of the first and second cells are 1

and 3 respectively and we have to aggregate them when the transition shifted through the

first and second cell. The computation of WSA when shifting in PPI1 is a little different

from shifting O1. For example, when the transition between the first and second bit of

PPI1 is shifted in, it will pass through scan cells 2,3,4,5 and 6. Then the WSA produced

by it is (1+3) + (1+2) + (1+4) + (1+1) + (1+3) = 18.

The CPU time to compute the shift power for KLPG tests for circuit s38417 is nearly

3 hours, while computing the chain power takes approximately 20 seconds. More data

will be shown in Subsection 2.6. Table 2 shows the correlation between Shift Power and

Chain Power for ISCAS89 benchmark circuits. We simulate the Shift Power pattern by

pattern using the compacted patterns in Table 1. For all listed ISCAS89 benchmarks, the

correlation is above 90% and for s38417 and s38584, the correlation is close to 100%.

For ITC99 circuits, the correlation is good except for circuit b18. Although b18 has

lower correlation, we will still use the chain power to estimate the shift power in the

experimental results in Subsection 2.6. These show that the power variance and standard

deviation dropped tremendously for all of the circuits during Pattern-Reordering, which

 18

gives some confidence in the usage of chain power to estimate shift power. Pattern-

Reordering will be discussed in Subsection 2.4 and 2.5.

Table 2. Relationship Between Shift Power and Chain Power using WSA

(Computed per Pattern)

Circuit
scan

chains

Ave

Capture

Power

Ave Shift

Power (y)

Ave Scan

Chain Power

(x)

Equation
Correlation

(R
2
)

s5378 1 1589 318554 31295 y=9.012x+3.7e4 0.909

s9234 1 2009 718326 66871 y=10.26x+3.2e4 0.967

s13207 1 3398 3438625 413164 y=6.787x+6.3e4 0.980

s15850 1 2743 2392278 273651 y=7.578x+3.2e4 0.932

s35932 1 16986 15130622 2692987 y=4.020x+4e6 0.955

s38417

1 14507 16872503 1526040 y=9.254x+3e6 0.997

2 14507 8557740 774681 y=9.262x+1e6 0.996

4 14507 4344864 394478 y=9.312x+6.7e4 0.996

s38584 1 5498 11943562 2281070 y=4.779x+1e6 0.994

b15 1 3849 959586 144832 y=4.921x+2.5e4 0.951

b17 1 11292 9430342 1602988 y=4.879x+2e6 0.988

b18

5 28532 18298468 2913364 y=4.399x+5e6 0.530

10 28532 9374047 1487643 y=4.597x+3e6 0.542

20 28532 4973402 800478 y=4.333x+1e6 0.545

b19

9 55288 45711184 6707544 y=5.064x+1e7 0.816

18 55288 22437717 3366618 y=4.634x+7e6 0.825

27 55288 14834816 2243794 y=4.741x+4e6 0.845

b20 1 15892 5523859 254798 y=16.30x+1e6 0.927

b21 1 15831 5558590 251898 y=16.82x+1e6 0.917

b22 1 20615 11662497 589127 y=15.08x+3e6 0.925

 19

We also conducted experiments by vary the number of scan chains to determine the

influence of scan chain count on test power estimation. We only changed the number of

scan chains on circuits s38417, b18 and b19 since the other benchmark circuits had too

few scan cells. From Table 2 we can see that the average capture power is not related to

the number of scan chains. However, the average shift power and average chain power is

almost inverse proportional to the number of scan chains. The reason is that for more

chains, fewer clock cycles are required to shift the test patterns in and results out.

Figure 3 shows the parallel vector bit shifting for multiple scan chains. Here shift

power and chain power actually refer to energy consumption, since formally speaking,

power is the energy consumed in a giving time. Our goal is to keep this nearly constant.

The correlation between shift power and chain power changes little change with

different number of scan chains. Many scan chains corresponds to shorter scan chains

and is preferable for designs using test compression.

Figure 3. Parallel Vector Bit Shifting for Multiple Scan Chains

 20

Figure 4 shows the power correlation for circuit s38417. The correlation is near 100

percent. The chain power is by far the most promising metric for us to estimate shift

power and the most important thing is that the computation cost is very low compared to

logic simulation.

Figure 4. Power Correlation for s38417 (per pattern)

2.4 Chip-wise Test Pattern Reorder

After all vectors are filled, we will start re-ordering to achieve constant power. The

test pattern application time is small compared to the chip thermal time constant. The

thermal time constant is usually 1-10ms for about a 1
o
C rise. For a 500-bit scan chain

shifting at 100 MHz, the scan in/out time is only 5µs. Even if we consider 10 patterns in

y = 9.2545x + 3E+06

R² = 0.997

9.0E+06

1.1E+07

1.3E+07

1.5E+07

1.7E+07

1.9E+07

2.1E+07

2.3E+07

2.5E+07

2.7E+07

7.0E+05 1.0E+06 1.3E+06 1.6E+06 1.9E+06 2.2E+06 2.5E+06

S
h

if
t

P
o
w

er
 (

W
S

A
)

Chain Power (WSA)

 21

a group, the 50µs application time is still less than 1 ms. Therefore, we can group

patterns together and reorder these groups to achieve constant power. In our work we

define the pattern group or time window as 10 patterns. The algorithm attempts to

equalize the power between groups. We set a power variance bound (pvb) that defines

the permissible power variation between each pattern group. If the power of all groups is

within in the bound, we can say that the power is constant. In our experiments, we

typically set pvb to 0.05 which means a +/-5% variation is allowed between the highest

and lowest power pattern groups.

The reordering algorithm shown on the next page uses a greedy approach. It differs

from the initial version in [16], because if there is an extremely high power pattern and

an extremely low power pattern, we will continually swap those two patterns and never

achieve close to the optimal solution. In addition, in the original algorithm, if a pattern

swap cannot achieve constant power in a group, it will go on to the next group without

trying to find another swap candidate. The new algorithm introduces an exclusive list

and a swap-check process to solve this problem. Detailed information is given below.

The algorithm first randomly shuffles all the patterns because after compaction, the

initial patterns always tend to have more power than the later patterns. Randomly

shuffled patterns eliminate this bias, and so form a good starting point for the reordering.

It then computes the power of each pattern k using the transitions in the chain, stored as

PP[k]. Then the power of all patterns in a group i is stored as PG[i]. The average power

of all groups is computed and stored as ave. This initialization procedure is summarized

in the following pseudo code.

 22

Chip-wise-Initialize ()

1 Random shuffle all patterns;

2 Compute Chain power PP[k] of each pattern k;

3 Group patterns according to predefined time window (10);

4 Compute power PG[i]of each group i;

5 Compute average power ave of all groups;

6 Set iteration to 0;

For each iteration of the algorithm, we start from the first group and proceed to the

last group and check whether the total power of that group resides in the range (1+/-

pvb)*ave. If it is higher than (1+pvb)*ave, we pick the pattern m where PP[m] has the

highest power in the group and meets the following constraints:

1. PP[m] is higher than the average power of all patterns, which is ave/10 in our

experiment;

2. PP[m] should not be in the exclude list.

For each group i during one iteration, we maintain an exclude list that contains all

patterns in group i that cannot find a pattern in another group to swap with. This list will

be initialized each time we start swapping patterns for a new group. Then we tried to

find another group j where PG[j] is lowest among all other groups. We will pick the

lowest power pattern t in group j as a candidate to swap with pattern m. This approach

could make the power more even between groups, since it makes more attempts,

compared to the one attempt in [17].

The change of power induced by swapping pattern m and t is calculated as: change

= PP[m]-PP[t].

 23

The difference of power of group i PG[i] and ave is calculated as diff1=PG[i]-ave.

The difference of power of group j PG[j] and ave is calculated as diff2= ave- PG[j].

It is obvious that diff1 and diff2 are positive values according to our selection criteria.

We then will check that swapping of m and t does not fall into the six illegal cases given

below. If after checking all the patterns in group j, we still cannot find a legal pattern t to

swap with m, we put pattern m into the exclude list which means that we can‟t find a

pattern in group j to swap with it. The reason we do the following check is to ensure that

the swapping will not make the original power of group i and j worse. This can happen if

change is very high. The approach in [17] does not perform this checking and will

increase the power variation for the following cases.

Case 1: If change > 2*diff1 which means PG[i] deteriorated because diff1’=change-

diff1 is larger than diff1. If change > 2*diff2 and diff2>pvb*ave as Figure 5 shows, PG[j]

also deteriorated because diff2’=change-diff2 is larger than diff2. We reject this swap.

Figure 5. Case 1 of Swap-Check

 24

Case 2: If change > 2*diff1 which means PG[i] deteriorated. If change<2*diff2 and

diff2>pvb*ave as Figure 6 shows, diff2’= change-diff2. Since diff2’ is less than diff2, the

improvement of PG[j] would be Im[j] = diff2-diff2’ = 2*diff2 - change. The

deterioration of PG[i] is De[i] = diff1’-diff1 = change-2*diff1. If Im[j]<De[i], we reject

this swap.

Figure 6. Case 2 of Swap-Check

Case 3: If change > 2*diff1 which means PG[i] deteriorated. If change>2*diff2 and

diff2<=pvb*ave as Figure 7 shows, PG[j] also deteriorated. We reject this swap.

Figure 7. Case 3 of Swap-Check

 25

Case 4: If change < 2*diff1 which means PG[i] improved. If change-diff1-

pvb*ave>0, which means PG[i] becomes less than (1-pvb)*ave after swap. Im[i] =

diff1-diff1’ = 2*diff1 -change. If diff2>pvb*ave as Figure 8 shows, PG[j] deteriorated,

De[j] = diff2’-diff2 = change-2*diff2. If Im[i] < De[j], we reject this swap.

Figure 8. Case 4 of Swap-Check

Case 5: If change < 2*diff1 which means PG[i] improved. If change-diff1-

pvb*ave>0, which means PG[i] become less than (1-pvb)*ave after swap. Im[i] = diff1-

diff1’ = 2*diff1- change. If diff2<=pvb*ave as Figure 9 shows, PG[j] deteriorated, De[j]

is obviously larger than Im[i] so we reject this swap.

 26

Figure 9. Case 5 of Swap-Check

Case 6: If change-diff1-pvb*ave<=0, which means PG[i] improved. If change-

diff1>diff2, which means that De[j] is larger than Im[i] as Figure 10 shows, we reject

this swap.

Figure 10. Case 6 of Swap-Check

 The pseudo code of Swap-Check() listed below checks all of the six rules and if the

swap does not violate any of them, the function returns false. If any rule is violated, the

function returns true. If pattern t passes the rule checking by calling Swap-Check(), we

proceed to swap with pattern m, and re-compute the chain power for pattern m-1, m, t-1,

 27

t since the shift power computation of vector i is dependent on the next vector to be

shifted in. For example, computing shifting power for vector m-1 needs the PPI1 of

pattern m because we are shifting out the PPO2 of pattern m-1 and shifting in the PPI1

of pattern m. Then we update the total power of the affected group and re-compute the

average group power ave, because the power of the affected groups has changed.

boolean Swap-Check (diff1, diff2, change)

1 if (change - 2*diff1 > 0) {

2 if (diff2 > pvb*ave) {

3 if (change >= 2*diff2)

4 return true; //case 1

5 else if (change - diff2 - pvb*ave >= 0)

6 if (2*diff2 - change < change - 2*diff1)

7 return true; //case 2

8 }

9 else return true; //case 3

10 }

11 else if (change - diff1 - pvb*ave > 0) {

12 if (diff2 > pvb*ave) {

13 if (2*diff1 - change < change – 2*diff2)

14 return true; //case 4

15 }

16 else return true; // case 5

17 }

18 else if (change - diff1 > diff2)

19 return true; //case 6

20 return false; //default

 28

Similarly, if PG[i] is lower than (1-pvb)*ave, we follow steps similar to when PG[i]

is higher than (1+pvb)*ave, making sure to select the lowest power pattern m in group i

and that power PP[m] is lower than ave/10; Also, find group j (j≠i) where PG[j] is the

highest among all groups; find pattern t which PP[t] is the highest in group j and PP[t]

is more than PP[m].

This process will stop when constant power is achieved or the total number of

iterations exceeds a pre-defined timeout value. The following are the pseudo codes of the

Pattern-Reorder algorithm and the sub-routine to check the legality of swapping two

patterns which is called Swap-Check(). Note that a variable called attempts is used

during swapping for each group i. It is set to 5 (= half the group size) which is the

number of attempts to select and swap patterns in the group. The reason why we

introduced this loop variable is that we try to even out the group power PG[i] as best as

we can during each iteration. Experiments showed good results after we added this

variable.

The pseudo code of chip-wise pattern reordering algorithm is summarized as follows.

Algorithm Chip-wise-Pattern-Reorder ()

1 Chip-wise-Initialize();

2 while iteration < timeout and power is not constant, do{

3 Increment iteration by 1;

4 Initialize the exclude list;

5 For each group i, do{

6 start:

7 if PG[i] > (1+pvb)*ave {

8 Set attempts = 0;

 29

9 while (true) {

10 if PG[i] < (1+pvb)*ave,

11 break; // PG[i] is constant

12 if (attempts < 5){//try 5 swaps to even PG[i]

13 Increment attempts by 1;

14 Set diff1= PG[i]-ave;

15 Select the highest power pattern m in group i which is not in

16 exclude list and power PP[m] is higher than ave/10;

17 if m is not found

18 break;

19 Find group j (j≠i) which PG[j]is the lowest among all groups;

20 Set t = first pattern in group j;

21 Set swapped = false; // a flag to mark if pattern t found

22 For each pattern n in group j, do {

23 // Find pattern t which PP[t] is the lowest in

24 // group j and PP[t] is less than PP[m].

25 Set change = PP[m]- PP[n];

26 If change <= 0 || PP[n] >= PP[t], continue;

27 Set diff2= ave - PG[j];

28 if Swap-Check (diff1, diff2, change);

29 continue; //swap illegal

30 else {

31 set t = n;

32 set swapped = true; // pattern t found

33 }

34 } //end for

35 if (swapped = false){

36 //can‟t find pattern in group j to swap with pattern m

37 Put pattern m into exclude list and goto start;

 30

38 }else {

39 //swap pattern m and t

40 Re-compute Chain power for pattern m-1, m, t-1, t;

41 Re-compute power for group i, j;

42 Update ave;

43 }

44 }// end if

45 }//end while

46 }//end if

47 else if PG[i] < (1-pvb)*ave{

48 //follow the similar steps as above, make sure to pick up

49 //the lowest power pattern m in group i and power

50 //PP[m] is lower than ave/10; find group j (j≠i) which

51 //PG[j]is the highest in all groups; find pattern t which

52 //PP[t] is the highest in group j and PP[t] > PP[m].

53 }//end if

54 }//end for

55 }//end while

2.5 Region-wise Test Pattern Reorder

For large circuits, we found some regions of circuits that always had more switching

than other regions, even if the total power is constant. We call those regions „hot spots‟.

In test mode, we want to keep the power dissipation in each region constant in addition

to keeping the total power constant. This is obviously a harder problem because we have

to know the layout information of the circuit and want to keep the power in each region

 31

to be constant. Intuitively, if we have reordered patterns that can achieve chip-wise

constant power, we cannot guarantee that this pattern order can achieve region-wise

constant power. On the contrary, if we have region-wise constant power patterns, we are

sure the chip-wise power is constant because of the following proof.

Assume we have n regions and each region has constant power (within +/-pvb).

Assume we have m pattern groups. Suppose the power of group g in region r is PG[r][g]

and we have 1≤r≤n, 1≤g≤m. Then the power of group g in for the whole chip is the sum

of the power in all regions. We have the following two equations:

avepvbngrPGgrPG
nr

nr






)1(])][[(max]][[
1

1







nr
nr

grPGngrPGavepvb
1

1
]][[])][[(min)1(

Since we already have region-wise constant power, which means that the max and

min power of each region is within the +/- pvb range, the chip-wise power should also be

constant. Here we only focused on evening out the pattern-to-pattern power variation

within each region, not the power between regions, since some regions will inherently

have more switching activity than others.

The algorithm Region-wise-Pattern-Reorder() is similar like Chip-wise-Pattern-

Reorder(). Region-wise-Initialize() is called first to initialize the power for each region

of each group. Chip-wise-Pattern-Reorder() is called instead of random shuffle in Chip-

wise-Initialize() because we think starting from the patterns that achieves chip-wise

constant power is a good starting point of our region-wise algorithm. Obviously region-

wise reordering is more costly than chip-wise reordering. Two-dimensional arrays

 32

PP[r][k] and PG[r][i] are used to store the region-wise group power per pattern and per

group. We also need to store the average power ave[r] for each region r.

Region-wise-Initialize ()

1 Chip-wise-Pattern-Reorder ();

2 Compute Chain power PP[r][k] of each pattern k in each region r;

3 Group patterns according to predefined time window (10);

4 Compute power PG[r][i]of each group i in each region r;

5 Compute average power ave[r] of all groups in each region r;

6 Set iteration to 0;

Then, we call FindRegion() to even out the power of the region that has the most

variance from the average power of that region, then switch to the next region until the

power for this group is even among all regions. If we cannot find a pattern to swap, we

go to next group. Here the array var[r] is computed by subtracting the group power

PG[r][i] by ave[r] where r is the region ID and i is the group ID. A simple sort is used

here to find the largest var[r] by its absolute value. The region which has the largest

absolute value of var[r] is returned as our target region.

FindRegion (i)

1 //For group i, compute the power difference of each region from the average

2 for each region r, do

3 var[r] = PG[r][i]-ave[r];

4 Sort var[r] decreasingly by it‟s absolute value;

5 Return the first region r in the var list;

We added a function called Swap-Check-Region() to check if a swap between pattern

m and n for evening the power of region i does not deteriorate the power variation for

 33

any regions other than group i. The process shown below is similar to Swap-Check() in

chip-wise reordering. First, we check the power change after swapping pattern m and n

and save it as variable diff. Then we check whether the region power variance var[j]

(which is computed in function FindRegion()) is above the pvb*ave[j]. If yes, this means

region j is a high power region with diff less than zero. This indicates that the swap will

make the power variation in region j higher, so we reject this swap. For the case that

var[j] is less than negative pvb*ave[j], which means region j is a lower power region

and diff is larger than zero. This indicates that the swap will make the power for region j

lower, so we also reject this move.

boolean Swap-Check-Region (i,m,n)

1 for any other region j other than i, do {

2 Set diff = PP[j][m]- PP[j][n];

3 if (var[j] > pvb*ave[j]&& diff <0)

4 return true;

5 if (var[j] < -pvb*ave[j]&& diff >0)

6 return true;

7 }

8 return false; //default

It is critical to mention that in line 6 of algorithm Region-wise-Pattern-Reorder(), we

will check the power variance n times (n is the number of regions). And in line 7, we call

FindRegion() to even the power of the maximum power variance region. Each time we

find a pattern to swap, we need to make sure the 6 rules defined in Subsection 2.5 are

followed by calling Swap-Check() in line 30. The value to be passed in to the function is

 34

the region-wise power variance between ave[r] and PG[r][j], not the chip-wise power

variance between ave and PG[j]. The iterations will end when the power is constant or a

pre-defined timeout occurs.

Algorithm Region-wise-Pattern-Reorder ()

1 Region-wise-Initialize();

2 while iteration < timeout and power is not constant, do{

3 Increment iteration by 1;

4 Initialize the exclude list;

5 For each group i, do{

6 For each region r, do {

7 r = FindRegion(i); //Find target region to even;

8 start:

9 if PG[r][i] > (1+pvb)*ave[r] {

10 Set attempts = 0;

11 while (true) {

12 if PG[r][i] < (1+pvb)*ave[r]

13 break; // PG[r][i] is constant

14 if (attempts < 5){//try 5 swaps to even PG[r][i]

15 Increment attempts by 1;

16 Set diff1= PG[r][i]-ave[r];

17 Select the highest power pattern m in group i which is not in

18 exclude list and power PP[r][m] is higher than ave/10;

19 if m is not found

20 break;

21 Find group j (j≠i) that PG[r][j]is the lowest among all groups;

22 Set t = first pattern in group j;

23 Set swapped = false; // a flag to mark if pattern t found

 35

24 For each pattern n in group j, do {

25 // Find pattern t which PP[r][t] is the lowest in

26 // group j and PP[r][t] is less than PP[r][m].

27 Set change = PP[r][m]- PP[r][n];

28 if change <= 0 || PP[r][n] >= PP[r][t], continue;

29 Set diff2= ave[r] – PG[r][j];

30 if (Swap-Check (diff1, diff2, change)

31 || Swap-Check-Region(r, m, n)) continue;

32 else {

33 set t = n;

34 set swapped = true; // pattern t found

35 }

36 }// end for

37 if (swapped = false){

38 //can‟t find pattern in group j to swap with pattern m

39 Put pattern m into exclusive list and goto start;

40 }else {

41 //swap pattern m and t

42 Re-compute Chain power for pattern m-1, m, t-1, t;

43 Re-compute power for group i, j;

44 Update ave[r];

45 }

46 }// end if

47 }//end while

48 }//end if

49 else if PG[r][i] < (1-pvb)*ave[r]{

50 //follow the similar steps as above, make sure to pick up

51 //the lowest power pattern m in group i and power

52 //PP[r][m] is lower than ave[r]/10; find group j (j≠i) which

 36

53 //PG[r][j]is the highest in all groups; find pattern t which

54 //PP[r][t] is the highest in group j and PP[r][t] > PP[r][m].

55 }//end if

56 }//end for

57 }//end for

58 }//end while

2.6 Experimental Results

The algorithm was implemented by C++ and run on a Windows XP PC with Intel

Core 2 Duo processor (2.66GHz) and 4GB memory. Figure 11 is the complete flow

chart of the procedures discussed above. It starts from reading the netlist and

uncompacted test patterns, then compacting patterns and filling X bits using the

algorithm in Subsection 2.2, then reordering the patterns by using the algorithm in

Subsection 2.4 and 2.5. If we reorder patterns for region-wise constant power, we need

to read in the layout information that describes cell placement. The reordering algorithm

is independent from the X-Fill algorithm and compaction algorithm used to generate the

patterns. Thus, it can be used on other test patterns, such as transition fault patterns.

 37

Start

End

Circuit

initialization
Net list Load vector

Vector

Compaction

X Fill

Reorder

Patterns
Power Constant?

No

Yes

Yes

Timeout?

No

Region-wise?

No

Load LayoutLayout
Yes

Figure 11. Constant Power Flow

As we can see from Table 3 and Table 4, our algorithm greatly reduces the power

variation by reducing the Max power and increasing the Min power. Column “Initial

Chain Power” is the power computed before re-ordering and column “Final Chain Power”

is the power after reordering. The column „Reorder Time‟ is the CPU time for reordering

patterns, which requires only 1 second to reorder more than 500 patterns for circuit

s38584. For the other small circuits, the total time is rounded up to 1 second. The

reordered patterns reduce the overall Max/Ave (Min/Ave) from 176.18% (50.61%) to

104.50% (95.45%) and the Standard Deviation/Ave dropped from 20.66% to 2.64% for

s38584. The variance between Max/Min dropped from around 126% to 9%. Note that

after compaction, for circuit s35932, we only have 36 patterns which could only been

 38

Table 3. Estimation Results for Chip-wise Constant Power Algorithm (Part 1)

Circuit
Patterns

(# Groups)

scan

chains

Initial Chain Power (before Reorder)

Ave(WSA) (Max-Min)/Ave Stdev/Ave

s5378 407(40) 1 312948 28.84% 8.53%

s9234 790(79) 1 668711 46.48% 12.02%

s13207 909(90) 1 4131639 29.35% 4.95%

s15850 470(47) 1 2736509 73.30% 16.84%

s35932 36(3) 1 26929867 93.74% 49.03%

s38417 948(94)

1 15260402 82.08% 17.49%

2 7746811 78.33% 16.98%

4 3944785 77.12% 16.46%

s38584 525(52) 1 22810696 125.57% 20.66%

b15 1506(150) 1 1448320 107.17% 15.49%

b17 3290(329) 1 16029879 56.01% 11.22%

b18 5434(543)

5 29133638 44.79% 9.56%

10 14876425 46.08% 9.81%

20 8004780 44.32% 9.94%

b19 5319(531)

9 67075436 41.65% 8.79%

18 33666184 42.28% 9.20%

27 22437942 44.90% 10.18%

b20 6234(623) 1 2547979 78.23% 14.28%

b21 6579(657) 1 2518977 70.77% 13.24%

b22 8090(809) 1 5891267 56.43% 11.36%

 39

Table 4. Estimation Results for Chip-wise Constant Power Algorithm (Part 2)

Circuit
scan

chains

Final Chain Power (after Reorder)
Iterations

Total

Time

(m:s)

Reorder

Time

(m:s)

Ave(WSA) (Max-

Min)/Ave

Stdev/Ave

s5378 1 312471 8.04% 2.61% 1 00:03 00:01

s9234 1 669484 9.91% 2.86% 1 00:07 00:01

s13207 1 4135834 8.69% 2.03% 1 00:15 00:02

s15850 1 2733073 9.75% 2.79% 1 00:07 00:01

s35932 1 24638404 5.40% 2.83% 1 00:02 00:01

s38417

1 15225594 9.44% 2.85% 1 00:48 00:11

2 7727072 9.86% 2.76% 1 00:52 00:13

4 3932966 9.00% 2.78% 1 00:55 00:15

s38584 1 22727131 9.06% 2.64% 2 00:23 00:06

b15 1 1450203 9.64% 3.01% 3 00:14 00:03

b17 1 16025113 9.77% 2.76% 1 03:30 01:17

b18

5 29128507 9.21% 2.47% 1 19:48 07:19

10 14874256 9.87% 2.63% 1 20:08 07:18

20 8003301 9.87% 2.76% 2 20:00 07:13

b19

9 67058303 9.63% 2.52% 1 39:57 15:31

18 33660060 9.45% 2.60% 1 39:47 15:12

27 22432003 9.95% 2.76% 1 39:59 15:22

b20 1 2547109 9.95% 2.59% 2 03:18 01:19

b21 1 2518064 9.91% 2.59% 1 03:46 01:28

b22 1 5888644 9.74% 2.52% 2 07:29 02:58

 40

assembled to 3 pattern groups. The high compaction rate of our static compaction

process could potentially produce extremely high power patterns and very low power

patterns in a group. This is why the routine Swap-Check was introduced in our

reordering algorithm.

We also conducted experiments by changing the number of scan chains for s38417,

b18 and b19. The improvement in Max-Min variance and Standard Variation are almost

independent of the number of scan chains.

The number of pattern groups is computed by dividing the pattern number by 10 and

truncating the remainder because the remainder patterns would not be able to fill a full

time window. This is not essential to the algorithm, since it computers per-pattern

statistics for each group, and so can handle groups with different pattern counts. We do

not calculate the shift-in power for the first pattern because initially the chain is preset to

all 0‟s or all 1‟s, which would have very low shift power. Our time window starts from

the shift in of the second test pattern.

In order to show the correctness of our power estimation, we do logic simulation to

compute the Total Shift Power for each circuit to see whether the reordered patterns

achieve constant shift power. Here we do logic simulation each time we shift in/out a bit

from the scan chain. Table 5 and Table 6 show the corresponding Shift Power compared

to the Chain Power in Table 3 and Table 4. The time cost to compute shift power is so

high that for the largest ITC99 circuit b19 with 9 scan chains, it cost more than 144 CPU

hours to compute the initial shift power, and then this cost is repeated to compute the

final shift power. Note that this is performed only as an evaluation of the final results,

 41

Table 5. Simulation Results for Chip-wise Constant Power Algorithm (Part 1)

Circuit
Patterns

(# Groups)

scan

chains

Initial Shift Power (before Reorder)

Ave(WSA)
(Max-

Min)/Ave
Stdev/Ave

Time

(h:m:s)

s5378 407(40) 1 3185536 31.06% 7.94% 0:00:25

s9234 790(79) 1 7183262 47.48% 12.13% 0:01:43

s13207 909(90) 1 34386247 26.17% 4.17% 0:10:10

s15850 470(47) 1 23922777 60.93% 14.02% 0:04:57

s35932 36(3) 1 151306220 74.42% 39.10% 0:03:06

s38417 948(94)

1 168725032 68.88% 14.72% 2:43:39

2 85577398 65.91% 14.33% 1:39:23

4 43448643 65.10% 14.02% 58:01

s38584 525(52) 1 119435620 112.80% 18.70% 1:15:19

b15 1506(150) 1 9595860 77.16% 11.25% 0:16:28

b17 3290(329) 1 94303420 45.60% 9.29% 20:14:54

b18 5434(543)

5 182984680 36.24% 7.13% 41:42:05

10 93740465 36.76% 7.01% 26:05:14

20 49734021 39.35% 7.26% 18:02:10

b19 5319(531)

9 457111842 35.45% 6.67% 144:53:48

18 224499510 35.39% 6.76% 85:52:41

27 148348164 39.14% 7.64% 57:45:39

b20 6234(623) 1 55238589 62.75% 10.99% 7:41:22

b21 6579(657) 1 55585899 49.99% 10.48% 8:12:53

b22 8090(809) 1 116624969 45.47% 8.88% 24:16:33

 42

Table 6. Simulation Results for Chip-wise Constant Power Algorithm (Part 2)

Circuit
scan

chains

Final Shift Power (after Reorder)

Ave(WSA) (Max-Min)/Ave Stdev/Ave Time

(h:m:s)
s5378 1 3183594 9.89% 2.48% 0:00:26

s9234 1 7187976 10.53% 2.78% 0:01:43

s13207 1 34412756 7.60% 1.69% 0:09:37

s15850 1 23908167 13.25% 2.85% 0:04:48

s35932 1 135100344 15.07% 7.70% 0:02:50

s38417

1 168457613 8.48% 2.38% 2:42:28

2 85422031 8.54% 2.29% 1:38:01

4 43343391 7.77% 2.35% 0:57:41

s38584 1 119184448 9.06% 2.51% 1:13:05

b15 1 9606710 10.26% 2.55% 0:16:34

b17 1 94281909 9.51% 2.32% 20:39:38

b18

5 182933251 15.04% 2.46% 42:20:29

10 93742759 14.20% 2.47% 25:50:07

20 49635595 14.48% 2.56% 17:51:14

b19

9 457141343 10.75% 2.08% 144:26:14

18 224583866 9.92% 2.04% 85:15:59

27 148396215 10.77% 2.27% 58:06:35

b20 1 55232269 12.14% 2.31% 7:52:33

b21 1 55594752 13.10% 2.44% 8:22:05

b22 1 116636580 12.55% 2.19% 24:16:09

 43

rather than during the reordering. If we reorder patterns using full logic simulation, the

execution time would be infeasible. Our estimation algorithm requires only 40 minutes

and the results correlate well to logic simulation. For circuit s38417 with one scan chain,

the estimation time is only 48 seconds compared to more than 160 minutes for

simulation (will need twice that time to compute both initial and final power). For other

circuits listed, our estimation also performs very well, at much lower CPU cost.

Our proposed greedy reordering algorithm also shows close correlation between

Shift Power and Chain Power. For circuit s38417 with 1 scan chain, Table 3 and Table 4

show the estimated results that the (Max-Min)/Ave is 9.44% and Stdev/Ave is 2.85%

after reordering. Using simulation, from Table 5 and Table 6 we can see that the (Max-

Min)/Ave is 8.48% which is within the +/-5% bound and Stdev/Ave is 2.38%. For circuit

b17 with 1 scan chain, the estimated results show that the (Max-Min)/Ave is 9.77% and

Stdev/Ave is 2.76% after reordering. The simulation results show that the (Max-

Min)/Ave is 9.51%, which is also within the +/-5% bound and Stdev/Ave is 2.32% after

reordering.

We also executed experiments using different values of the power variation bound

(pvb) for the larger circuits s38417, s38584, b17, b18, b19, b21 and b22. The results are

summarized in Table 7 and Table 8. First, we can see that even if we reduce the pvb to 1%

for most circuits, our algorithm still can still reorder patterns in a short time. Since the

number of scan chains has little impact on the simulation results, we use 1 scan chain for

the smaller circuits, 10 chains for b18 and 18 chains for b19, in order to reduce

simulation time. The column „Total Time‟ consists of the time to read in scan chain,

 44

Table 7. Estimation and Simulation Results for Different Power Variance Bound

(pvb) in Chip-wise Constant Power Algorithm (Part 1)

Circuit
scan

chains
pvb

Total

Time

(m:s)

Reorder

Time

(m:s)

Reorder

Iterations

Final Chain Power

Ave(WSA)
(Max-

Min)/Ave
Stdev/Ave

s38417 1

3% 00:49 00:12 2 15218815 5.73% 1.70%

2% 00:50 00:13 3 15216761 3.66% 0.98%

1% 00:51 00:14 14 15210029 1.74% 0.50%

s38584 1

3% 00:24 00:06 4 22735206 5.37% 1.60%

2% 00:25 00:07 8 22729259 3.54% 1.13%

1% 00:26 00:08 13 22742189 1.93% 0.62%

b17 1
2% 03:56 01:20 14 16029610 3.70% 1.05%

1% 04:12 01:35 20 16026938 1.98% 0.57%

b21 1
2% 03:36 01:13 19 2518275 3.87% 1.13%

1% 03:51 01:28 21 2518120 1.99% 0.60%

b22 1
2% 07:42 02:54 7 5888778 3.96% 1.11%

1% 07:49 03:02 14 5888084 1.99% 0.59%

b18 10 3% 20:08 07:18 2 14874277 5.93% 1.72%

b19 18 3% 39:49 15:14 1 33661516 5.95% 1.65%

 45

Table 8. Estimation and Simulation Results for Different Power Variance Bound

(pvb) in Chip-wise Constant Power Algorithm (Part 2)

Circuit

 Final Shift Power

scan

chains
pvb Ave(WSA) (Max-Min)/Ave Stdev/Ave

s38417 1

3% 168394083 5.53% 1.47%

2% 168371311 3.66% 0.88%

1% 168317122 2.12% 0.50%

s38584 1

3% 119249912 6.22% 1.56%

2% 119217402 5.17% 1.27%

1% 119271968 3.42% 0.79%

b17 1
2% 94306017 4.34% 0.97%

1% 94291941 3.73% 0.62%

b21 1
2% 55606503 9.77% 1.68%

1% 55603244 8.89% 1.55%

b22 1
2% 116636381 8.86% 1.42%

1% 116628884 7.90% 1.25%

b18 10 3% 93748252 13.77% 2.21%

b19 18 3% 224592057 7.05% 1.39%

netlist and un-ordered test patterns, the time to reorder patterns and the time to output

reordered patterns. If we look at the „Final Shift Power‟ column, we can see that after

computing the shift power by simulation, the correlation between Chain Power and Shift

Power is very good even when the pvb is 1%. For example, for s38417, when pvb=1%,

the „(Max-Min)/Ave‟ and „Stdev/Ave‟ of „Final Shift Power‟ is 2.12% and 0.5%

respectively which is very close to 1.74% and 0.5%. Keep in mind that the actual

 46

variation experienced by the chip will be even smaller, since the pattern group

application time is much less than the chip thermal time constant.

When we reduce the value of pvb, the reorder time and reorder iterations increased

accordingly. For example, we need only 2 iterations to even out the power for s38417

when pvb is set to 3%, but we need up to 14 iterations when pvb is 1%. The reorder time

also increased from 12 to 14 seconds. Note that the number of pattern swaps in each

iteration is not equal, so that the number of iterations is not linear to the reorder time.

Figure 12. Chip-wise Constant Power Estimation Result for s38417 (pvb=1%)

9.0E+06

1.1E+07

1.3E+07

1.5E+07

1.7E+07

1.9E+07

2.1E+07

2.3E+07

1 11 21 31 41 51 61 71 81 91

C
h
ai

n
 P

o
w

er
 (

W
S

A
)

Group #

Initial Power Final Power

 47

Figure 13. Chip-wise Constant Power Simulation Result for s38417 (pvb=1%)

Figure 12 shows the estimation result of s38417 when pvb is set to 1%. It is easy to

see the tremendous change in Chain Power before and after reordering. The chain power

is almost constant between groups.

Figure 13 shows the simulation result of s38417, running logic simulation on the

patterns before and after reordering, to verify our algorithm correctness. We can see that

the final total shift power is near constant compared to the initial total shift power.

Figure 12 and Figure 13 also showed the power distribution of statically compacted test

patterns – the initial patterns are high power and the later patterns are relatively low

power.

1.1E+08

1.3E+08

1.5E+08

1.7E+08

1.9E+08

2.1E+08

2.3E+08

2.5E+08

1 11 21 31 41 51 61 71 81 91

S
h
if

t
P

o
w

er
 (

W
S

A
)

Group #

Initial Power Final Power

 48

Note that our pattern reordering algorithm is not capable of reducing the power

variation within a group, which means that when we shift the time window along with

the time line, the power consumption within a time window will change and the power

variation between windows might increase.

Figure 14. 10 Patterns/Group, Time Window = 10 Patterns, Average Power = 50

Figure 14 shows an example of 10 patterns per group and the time window is the

time needed to apply 10 patterns. Although we can achieve constant power for the first

two groups, when we shift the window six patterns along the time line, the group power

within the two consecutive windows is larger than before. The reason is that the last

several patterns in group 1 and the first several patterns in group 2 have higher power.

When we shifted the window, the new group 1 happens to have included all those high

power patterns and the new group 2 happens to have some low power patterns. To deal

with this situation, we can run our algorithm for a small number pattens per group

 49

compared to the actual time window. Given a time window of 100 patterns and if we can

have constant power for every 10 patterns‟ group, the variation of power when shifting

the time window for 100 patterns will be much smaller than a time window of 10

patterns.

Figure 15. 10 Patterns/Group, Time Window = 20 Patterns, Average Power = 50

Figure 15 shows an example of constant power of 10 patterns per group and the time

window is 20 patterns. It shows that when we shift the window, the variation of power in

the window is much less than before. If the time window is 50 patterns or even more, the

power variations while shifting the time window will be even less.

Table 9. Estimation Results for 50 Patterns per Group in Chip-wise Constant

Power Algorithm (pvb=1%) (Part 1)

Circuit
Patterns

(# Groups)

scan

chains

Initial Chain Power (before Reorder)

Ave(WSA) (Max-Min)/Ave Stdev/Ave

b17 3290(32) 1 80141712 39.77% 10.37%

b21 6579(65) 1 12599386 48.79% 11.31%

b22 8090(80) 1 29478473 39.98% 10.35%

 50

Table 10. Estimation Results for 50 Patterns per Group in Chip-wise Constant

Power Algorithm (pvb=1%) (Part 2)

Circuit

Final Chain Power (after Reorder)

Iterations

Total

Time

(h:m:s)

Reorder

Time

(h:m:s)
Ave(WSA) (Max-Min)/Ave Stdev/Ave

b17 80169996 1.98% 0.58% 1 03:42 01:20

b21 12589563 1.79% 0.52% 2 03:36 01:23

b22 29442332 1.87% 0.51% 1 07:34 03:02

Table 9 and Table 10 show the estimation result of three circuits when we use 50

patterns per group instead of the previous 10 patterns per group. Here we set pvb to 1%

and all circuits use 1 scan chain. Compared to Table 7 and Table 8, the iterations need to

reorder patterns drops significnatly because more patterns are grouped, resulting in less

power variation. This reduces the iterations needed to even out the power across groups.

From the viewpoint of the thermal time constant, 50 patterns would be applied in 0.25

ms, assuming a 500 bit scan chain and 100 MHz scan rate. This is still less than the

thermal time constant. Intuitively, the larger the pattern group, the easier it is to achieve

constant power. Table 11 and Table 12 show the corresponding simulated results. It can

be seen that the shift power (Max-Min)/ave variation and standard deviation are closedto

the estimated results, which means using chain power to estimate shift power is a good

metric.

 51

Table 11. Simulation Results for 50 Patterns per Group in Chip-wise Constant

Power Algorithm (pvb=1%) (Part 1)

Circuit
Patterns

(# Groups)

scan

chains

Initial Shift Power (before Reorder)

Ave(WSA)
(Max-

Min)/Ave
Stdev/Ave

Time

(h:m:s)

b17 3290(32) 1 471425682 31.82% 8.58% 20:14:54

b21 6579(65) 1 278029059 38.26% 8.94% 8:12:53

b22 8090(80) 1 583473664 30.73% 8.06% 24:16:33

Table 12. Simulation Results for 50 Patterns per Group in Chip-wise Constant

Power Algorithm (pvb=1%) (Part 2)

Circuit
Final Shift Power (after Reorder)

Ave(WSA) (Max-Min)/Ave Stdev/Ave Time (h:m:s)

b17 471636925 1.96% 0.50% 20:15:14

b21 277959273 3.53% 0.78% 8:22:05

b22 583111762 3.21% 0.67% 24:16:09

Table 13 and Table 14 show the estimation results for the Region-wise constant

power algorithm with pvb set to 5% and 10 patterns per group. We only listed the two

largest ISCAS89 circuits and one of the largest circuits in ITC99 since the smaller

circuits do not have enough gates to divide into regions. The layouts of these circuits

were created using Cadence SOC Encounter with TSMC 180 nm technology. The

number of scan chains for s38417, b17 and b19 is 1, 1 and 18 respectively. Since s38417

 52

Table 13. Estimation Results for Region-wise Constant Power Algorithm

(pvb=5%, timeout=200, 10 Patterns per Group) (Part 1)

Circuit
Region

ID

Scan

Cells

Chain Power before Reorder Chain Power after Chip-wise

Reorder

Ave
(Max-Min)

/Ave
Stdev/Ave Ave

(Max-

Min)

/Ave

Stdev/Ave

s38417

1 441 4337023 81.73% 17.57% 4324136 9.34% 2.53%

2 417 3689107 83.44% 17.57% 3678538 10.25% 2.59%

3 396 3689289 83.02% 17.86% 3678449 9.35% 2.60%

4 382 3544983 80.10% 16.98% 3534597 9.08% 2.41%

b17

1 253 4779645 56.99% 11.34% 4777707 12.60% 2.99%

2 307 3394306 57.43% 11.57% 3392797 11.22% 2.94%

3 432 4042883 55.79% 11.18% 4041393 10.74% 2.86%

4 423 3813045 54.31% 10.92% 3811470 13.41% 2.89%

b19

1 1043 5526596 39.40% 7.80% 5526027 19.36% 3.29%

2 1146 4405387 50.63% 13.17% 4404758 23.71% 4.56%

3 610 4470274 64.21% 15.46% 4470294 27.58% 5.23%

4 389 1862794 38.80% 7.28% 1862459 22.32% 3.28%

5 443 2646726 59.21% 13.80% 2646181 29.51% 4.95%

6 880 3029939 48.05% 11.84% 3029556 23.23% 3.94%

7 813 5396912 33.23% 7.72% 5396485 18.91% 3.29%

8 710 2941721 49.78% 9.98% 2941285 23.26% 4.10%

9 608 3385835 50.07% 9.61% 3385461 19.27% 3.65%

 53

Table 14. Estimation Results for Region-wise Constant Power Algorithm

(pvb=5%, timeout=200, 10 Patterns per Group) (Part 2)

Circuit
Region

ID

Chain Power after Region-wise Reorder
Region-

wise

Iterations

Total

Time

(m:s)

Total

Reorder

Time

(m:s)

Ave
(Max-Min)

/Ave
Stdev/Ave

s38417

1 4324136 8.86% 2.26%

2 01:01 00:22
2 3678538 8.62% 2.25%

3 3678449 8.31% 2.32%

4 3534597 8.24% 2.13%

b17

1 4777707 9.53% 2.48%

2 04:27 01:23
2 3392797 9.70% 2.40%

3 4041393 9.49% 2.37%

4 3811470 9.50% 2.43%

b19

1 5526081 8.89% 2.10%

8 52:03 20:12

2 4404752 9.85% 2.34%

3 4470339 9.71% 2.58%

4 1862471 9.02% 2.15%

5 2646169 9.56% 2.45%

6 3029520 9.55% 2.16%

7 5396455 9.65% 2.38%

8 2941293 9.45% 2.40%

9 3385442 8.57% 2.23%

and b17 are small, we just use 1 chain but b19 has more than 200K gates and 6600+ scan

cells. We use multiple scan chains both because this is realistic and it reduces the

simulation time.

 54

We divided the layout of s38417 and b17 to 4 regions of the same size (a 2 by 2

division). Since the die of b19 is much larger, we divide it into 9 regions (a 3 by 3

division). The column „Region ID‟ identifies different regions and column „# Scan Cells‟

indicates how many scan cells are in that region. It can be seen from Table 13 and Table

14 that the regions with more scan cells most times has more scan chain power because

more scan cells have potentially more switching activity than regions with fewer scan

cells. On the other hand, the fan-out of scan cells and the switching in the scan chain are

not equal between regions, so more scan cells cannot guarantee more WSA in the scan

chain. For example, region 2 of s38417 has more scan cells than region 3 but less

average chain power. The column „Chain Power after Chip-wise Reorder‟ shows the

power of different regions after chip-wise reordering. We saw that the chip-wise

reordering algorithm could not achieve constant power for region 2 of s38417 and all

regions in b17 and b19. The column „Region-wise Iterations‟ shows how many iterations

we need in the region-wise constant power algorithm. The column „Total Reorder Time‟

shows the total time during reordering including both chip- and region-wise reordering.

For b19, we can see that the chip-wise reordering still left large variations within each

region but when those variations across regions are added together, we can have constant

power over the chip because the low power and high power regions canceled out. After

Region-wise reordering, the power variation in each region of b19 becomes constant.

For example, the (Max-Min)/Ave and Stdev/Ave of region 3 is 64.21% and 15.46%

initially, then reduces to 27.58% and 5.23% respectively after Chip-wise reordering and

finally shrinks to 9.71% and 2.58% respectively after Region-wise reordering.

 55

Table 15. Simulation Results for Region-wise Constant Power Algorithm

(pvb=5%, timeout=200, 10 Patterns per Group) (Part 1)

Circuit
Region

ID

Shift Power before Reorder Shift Power after Chip-wise Reorder

Ave
(Max-

Min)/Ave
Stdev/Ave

Time

(h:m:s)
Ave

(Max-

Min)/Ave
Stdev/Ave

Time

(h:m:s)

s38417

1 37797308 75.07% 16.40%

3:23:29

37698602 8.89% 2.39%

3:17:41
2 41313969 67.90% 14.43% 41220638 8.23% 2.12%

3 40979987 69.64% 14.86% 40888432 8.49% 2.18%

4 42863191 63.58% 13.41% 42786472 8.22% 1.94%

b17

1 21802858 46.94% 9.78%

20:35:19

21796151 11.86% 2.65%

20:36:23
2 25717510 46.89% 9.36% 25709607 9.73% 2.47%

3 21079347 44.79% 9.19% 21074909 9.20% 2.44%

4 23619558 43.15% 8.90% 23613076 11.39% 2.46%

b19

1 24178722 31.40% 6.54%

87:23:55

24178168 17.43% 2.76%

87:31:08

2 18310477 42.93% 11.58% 18307831 21.69% 4.06%

3 21087664 56.34% 13.96% 21089830 25.01% 4.71%

4 24174107 50.49% 9.42% 24192498 25.45% 3.73%

5 31063344 40.25% 8.48% 31079009 17.42% 2.94%

6 21009688 40.26% 9.30% 21026229 18.20% 3.15%

7 28294492 27.97% 5.69% 28293852 14.10% 2.30%

8 23059753 48.99% 7.90% 23095508 21.83% 3.34%

9 29903466 51.14% 9.29% 29908170 21.45% 3.83%

 56

Table 16. Simulation Results for Region-wise Constant Power Algorithm

(pvb=5%, timeout=200, 10 Patterns per Group) (Part 2)

Circuit
Region

ID

Shift Power after Region-wise Reorder

Ave
(Max-Min)

/Ave
Stdev/Ave

Time

(h:m:s)

s38417

1 37698621 8.21% 2.15%

3:15:45
2 41220802 7.47% 1.86%

3 40888453 7.66% 1.94%

4 42786492 7.34% 1.72%

b17

1 21796151 10.01% 2.21%

20:32:48
2 25709483 9.50% 2.06%

3 21074916 8.55% 2.02%

4 23612997 9.27% 2.09%

b19

1 24178592 7.67% 1.71%

87:30:48

2 18308219 10.27% 2.17%

3 21090074 10.15% 2.38%

4 24192466 17.97% 3.08%

5 31080053 10.55% 1.87%

6 21027518 11.23% 1.99%

7 28293600 8.32% 1.70%

8 23095128 12.72% 2.41%

9 29908894 18.95% 3.27%

Table 15 and Table 16 show the simulation results based on the estimation results in

from Table 13 and Table 14. The column „Shift Power before Reorder‟ shows the shift

 57

power before reorder. Column „Shift Power after Chip-wise Reorder‟ and „Shift Power

after Region-wise Reorder‟ shows the power after chip-wise and region-wise reorder.

Compared to the time for estimation, the simulation time is much longer and infeasible

for industrial circuits. After this verification step, we can see that the actual shift power

of each region after reordering had less variation than the initial value, which confirms

the value of our power estimation metric. For circuit b19, the (Max-Min)/Ave and

Stdev/Ave of region 3 is 56.34% and 13.96% initially, then reduces to 25.01% and 4.71%

respectively after Chip-wise reordering and finally shrinks to 10.15% and 2.38%

respectively after Region-wise reordering. For regions 4 and 9 of b19, the final power

variation is 17.97% and 18.95%, which is well above the +/-5% pvb, mainly because of

the correlation between shift power and chain power is not perfect. However, compared

to the original and chip-wise reordering results, our region-wise reordering results are

much better in terms of controlling the power within each region.

Table 17. Chip-wise Shift Power Comparison Between Chip-wise and Region-

wise Reorder Algorithm

Circuit

Chip-wise Shift Power after

Chip-wise Reorder

Chip-wise Shift Power after

Region-wise Reorder

Ave
(Max-Min)

/Ave
Stdev/Ave Ave

(Max-Min)

/Ave
Stdev/Ave

s38417 168457613 8.48% 2.38% 162667295 6.63% 1.81%

b17 94281909 9.51% 2.32% 92193547 8.52% 2.00%

b19 224583866 9.92% 2.04% 221174543 5.67% 1.10%

 58

We also computed the chip-wise power by aggregating the power of each region

after region-wise reordering to investigate the influence of the region-wise reordering

algorithm on the whole chip based on the results in Table 15 and Table 16. Table 17

shows that the region-wise reordered patterns can achieve better constant chip-wise

power than the original chip-wise algorithm. For circuit b19, the (Max-Min)/Ave and

Stdev/Ave are 9.92% and 2.04% respectively after chip-wise reordering which shrink to

5.67% and 1.10% respectively after region-wise reordering.

2.7 Enhancement Approaches

The constant power flow has some shortcomings. The first problem is that for some

circuits the greedy reordering algorithm cannot achieve a tight pvb specification. One

observation is that there are some extremely low and high power patterns in the pattern

set that make it hard to find a group to put them into to achieve constant power. One way

to reduce the number of high power patterns is called Veto-Compaction, which is

described in Subsection 2.7.1. Another way to reduce the number of low power patterns

is called Noise-Injection which will be shown in Subsection 2.7.2.

The second problem is that the power estimation model shown in Subsection 2.3

does not work very well for circuits b14, b18, and b19. It may be that some control

signals deep in the logic turn on or off many gates. Alternatively, there might be many

gates in some circuit levels that are un-evenly distributed compared to other levels. We

want to create new metrics to more accurately model the shift power. An approach called

Level-Sim [17] will be demonstrated in Subsection 2.7.3. It takes the first several levels

 59

of gates from scan chain into account when computing the WSA. This approach

achieves higher accuracy when using more levels, but at higher CPU cost. To further

address the problem, two other techniques are given in Subsection 2.7.4 and 2.7.5. One

is called Toggle Probablistic Analysis considering Single Input Change (TPASIC),

which assumes only 1 output of the scan chain toggles, with all other scan chain values

held constant with a 50% chance of being 0 and 50% chance of being 1. A preprocessing

step computes the WSA for the fan-out cone of each toggling scan cell. This step

comprises N calculations for an N-cell scan chain. Then, we can estimate the shift power

for each pattern by summing the fan-out WSA for each toggling scan cell. This

technique assumes that toggling fan-out cones do not interact. This technique improves

the correlation of b18 to 62%, as shown in Table 2. Another technique called TPASIC

considering Adjacent Fill (TPASICAF) was developed. This differs from TPASIC by

considering the effects of Adjacent Fill. The difference is that the scan cells besides the

toggling value are filled using Adjacent Fill. This will have less average WSA than

TPASIC because it is not possible to have other scan cells toggle. So it is less likely to

overestimate the shift power WSA. Experiments show that TPASICAF can further

increase the correlation to for b18 to 73% compared to only 54% in the original

approach in Subsection 2.3. However, we also found that using TPASIC and TPASICAF

in pattern reordering, only small improvements in (Max-Min)/Ave and Std/Ave are

achieved (as measured by simulation). This suggests that roughly a 60% correlation is

good enough to achieve nearly constant power. In addition, since WSA itself is an

 60

estimation of power, it is sufficient to use the fast and accurate enough metric in

Subsection 2.3 for power estimation.

2.7.1 Veto Compaction

As described previously, un-compacted test patterns are generated by CodGen [33]

and then compacted using a greedy forward-order static compaction. This is termed

Force Compaction (Force-Comp). This procedure could generate very high-power

patterns, if many paths can be packed into a test pattern. We want to minimize the

creation of these patterns, since they make it difficult to achieve constant test power. In

order to do that, we do a fast pre-check for each pattern: if the transition count (TC) of

the two vectors is within a predefined threshold, we can allow the compaction to proceed,

else another pattern pair is considered for compaction. The pre-check step is a rough

prediction of whether the pattern has high power. The transition count threshold (TCT)

can be set by experience and it will be the only parameter to influence the compacted

vector number in our experiment. We term this step Veto Compaction (Veto-Comp).

Figure 16 is the flow chart of the proposed compaction procedure in our experiment.

We set TCT to be 0.05·(the number of bits in each vector). In other words, if more than

5% of the bits in a pattern will transition, this compaction is vetoed. The data below

shows the increase in compacted patterns using Veto Compaction.

 61

Start

EndMore vectors?

Load next vector

and pre-check

Too much

transitions?

Add to compacted

vector list

Yes

Yes

Find next compatible

vector in order

No

Found?

Yes

Compact

Too much

transitions?

Yes

Undo compact

No

No

No

Figure 16. Veto Compaction Flow Chart

 62

Table 18. Pattern Count Comparison (TCT = 0.05)

Circuit
Scan Chain

Length

Initial #

Patterns

Patterns after Compaction

Force Veto % increase for Veto

s15850 534 2646 470 470 0.00%

s38417 1636 14917 948 963 1.58%

Table 19. Transition Count Comparison (Force-Comp vs. Veto-Comp)

Circuit

Transition Count in Pattern

Force-Comp Veto-Comp

Ave Max
Standard

Deviation
Ave Max

Standard

Deviation

s15850 10.49 121 12.19 10.57 30 9.13

s38417 57.93 324 29.58 57.21 83 21.5

Table 20. Power Reduction after Using Veto-Comp (vs. Force-Comp)

Circuit
% drop of Max Power % drop of (Max-Min) Power

Capture Power Shift Power Capture Power Shift Power

s15850 17.39% 19.70% 50.95% 19.01%

s38417 4.68% 11.49% 7.18% 9.17%

From Table 18 and Table 19 we can see that Veto-Comp only caused a small

increase in pattern count, but caused a large reduction in the maximum transition count

and transition count variation. Table 20 shows the power variation reduction after using

 63

Veto-Comp. It can be seen that not only the Max capture power but also the Max shift

power were reduced. In addition, the power variation (Max-Min) is also greatly reduced.

For s15850, the (Max-Min) for shift power dropped nearly 20%. The results of using

these Veto-Comp patterns in pattern reordering will be shown below.

2.7.2 Noise Injection

There may also be some cases with extremely low power patterns that makes it

difficult for the test pattern reordering algorithm to find patterns during each swap

iteration. We minimize the occurrence of low power patterns using an approach called

Noise-Injection. This approach is embedded in the X-Fill process discussed in

Subsection 2.2. The modified X-Fill algorithm called X-Fill-NoiseInject is shown below.

Algorithm X-Fill-NoiseInject ()

1 Pre-Compute the Transition count (tc[i]) for each un-filled pattern i;

2 Compute the average transition count as trans_ave;

3 Compute signal probability prob of all PPI1;

4 For each test pattern in the list, do

5 For each pin p of PPI1 which has X value

6 if (prob < 0.5) then p = 0

7 else if (prob > 0.5) then p = 1

8 else if (tc[i] >= tcb*trans_ave) then Adjacent Fill p

9 else Random Fill p; //Noise was injected here

10 For each pin p of PI1 which has X value

11 Fill p according to the value of p in PI2

12 For each pin p of PI2 which has X value

13 Fill p according to the value of p in PI1

 64

14 For each pin p of PI1 and PI2 which has X value

15 Randomly fill p;

16 Do logic simulation to fill all X bits of PPI2 by applying V1 as input

The major difference from the original X-Fill algorithm is line 1, 2, 8 and 9. Line 1

and 2 first compute the transition count for each pattern and keep a record of the average

transition count. During the Preferred Fill process [13] starting at line 5, if the signal

probability is 0.5, we first check whether the transition count of this pattern is below a

bound (defined by value tcb*trans_ave, tcb is set to 0.5 in our experiments), if not, we

do Adjacent Fill as before; if yes, we will execute the noise injection approach. The

noise injection could have different format and for different patterns we can adjust the

rate of injected noise, but for simplicity, we use random fill in our experiments. For

example, if a pattern is {01XXX10}, then in normal Adjacent Fill, it would become

{0111110}, but after noise injection, it could be {0110010}, two new transitions

between the third and fourth bit and between the fifth and sixth bit are introduced. The

noise injected brings the power level of the low power pattern up to a higher level, which

also could make the constant power algorithm execute faster. Experimental results on

ISCAS89 and ITC99 circuits are shown below.

The column „Force‟ in Table 21 shows the time/iterations using patterns after Force-

Comp and „Veto‟ stands for using the patterns after Veto-Comp. We can see that for

s38417, the iterations dropped from 14 for Force compacted patterns to 5 for Veto

compacted patterns. When we inject noise to Force compacted patterns, the iterations

dropped to 8. When we inject noise into the Veto compacted patterns, the iterations

 65

dropped to 4. Since Veto-Comp reduces the Max power and Noise-Inject increases the

Min power, using Veto+NoiseInject has the best running time.

Table 21. Constant Power Algorithm Results Comparison for ISCAS89 Circuits

Circuit pvb

Reorder Time (m:s) Iterations

Force Veto
Force+

NoiseInject

Veto+

NoiseInject
Force Veto

Force+

NoiseInject

Veto+

NoiseInject

s15850 1% 0:02 0:01 0:01 0:01 12 7 8 4

s38417 1% 0:14 0:06 0:08 0:05 14 5 8 4

Table 22. Constant Power Algorithm Results Comparison for ITC99 Circuits

Circuit pvb
Reorder Time(m:s) Iterations

Dynamic Dynamic+NoiseInject Dynamic Dynamic+NoiseInject

b18
2% Timeout 07:34 Timeout 5

1% Timeout 08:01 Timeout 8

b19
2% Timeout 19:30 Timeout 2

1% Timeout 20:13 Timeout 13

The column „Dynamic‟ in Table 22 shows the time/iterations using patterns after

Dynamic Compaction and column „Dynamic+NoiseInject‟ shows the results that applied

NoiseInject into the dynamic compacted patterns. We can see that the Noise Injection

approach can produce reordered patterns in a short time while the original patterns

without any noise injection cannot meet the pvb (1% or 2%) within the timout value (500

in our experiments). We did not conduct experiments with Veto-Comp for b18 and b19

for dynamic compaction.

 66

2.7.3 Level-Sim

Our power estimation approach used in Subsection 2.3 is to estimate the total shift

power in the CUT from the WSA in the scan chain. This approach works well for most

ISCAS89 and ITC99 circuits but not very well for circuit b14 and b18, with a power

correlation below 60%. Here a new approach called Level-Sim can take the next several

levels of the circuit into account to increase the accuracy of power estimation.

Table 23. Level-Sim Results for b14 (4800 Patterns)

Level Correlation Time (sec)

1 0.568 11

3 0.589 174

5 0.605 198

7 0.645 207

9 0.698 215

11 0.767 240

13 0.812 333

15 0.909 389

17 0.926 482

19 0.978 577

21 0.988 728

61 1 3070

The basic idea of Level-Sim is to do logic simulation for the first n (n << logic depth

of the circuit) levels of gates and compute the WSA to be used in the constant power

algorithm. Logic simulation is expensive, but if we limit the simulation to the first

 67

several levels, it can be affordable. The simulation results for b14 are shown in Table 23.

It can be seen that the scan chain power has only 56.8% correlation with the total shift

power. We increase the simulated levels by 2 each time and the correlation increased

correspondingly, and is almost 1 at 20 levels, which is only 1/3 of the logic depth.

From all of the other benchmark circuits in ISCAS89 and ITC99, if the correlation is

above 80%, the power estimation approach can achieve very good simulation results.

For b14, an 80% correlation corresponds to 12-13 logic levels that must be simulated.

Although Level-Sim needs much more time than the scan chain power estimation

(Level=1), it is an order of magnitude faster than full logic simulation.

2.7.4 Toggle Probabilistic Analysis Considering SIC (TPASIC)

The major issue raised from Level-Sim is the high computational cost for simulation.

In addition, it is not possible to determine how many levels to simulate to achieve

sufficient correlation, without running a series of experiments. One technique to address

this problem is taking the signal toggling of all levels into account by using a

probabilistic analysis.

The analysis is comprised of three parts. The first step is to assume that one scan

input is toggling (either rising or falling) and all the other scan cells are stable at random

values. The second step is to do a pre-calculation of the WSA of the whole circuit for

each of the scan cells toggling (N times where N is the number of scan cells) considering

the probability. The WSA calculated in this manner is termed the Pseudo-WSA or

PWSA. For each scan cell, we calculate PWSA by by propagating the toggle at the scan

 68

through its fan-out cone. Note that there will be 2 calculations as we are considering

both rising and falling toggle. The final step is to do a pattern by pattern analysis by

taking all the scan cell toggles into account. The idea is to simply sum the PWSA of all

scan cells that are toggling in that shift cycle, and then for all shift cycles in the pattern.

The aggregated PWSA will be the estimated shift power of this pattern.

p1

p2

pz

Figure 17. Toggling Probability Analysis for 2-Input AND Gate

For better understanding of this technique, Figure 17 shows a 2-input AND gate. p1

is the probability that input1 toggles (either rising or falling). To compute the toggling

probability of the 2-input AND gate, there are three cases to be considered:

Case 1: p1 and p2 are both rising or both falling, which occurs with probability

(p1/2)·(p2/2) ·2.

Case 2: p1 is toggling, keep p2 stable and non-controlling, with probability p1·(1-

p2)/2.

Case 3: p2 is toggling, keep p1 stable and non-controlling, with probability p2·(1-

p1)/2.

The final toggling probability of the output is:

 69

p1

p2 pz

p3

Figure 18. Toggling Probability Analysis for 3-Input AND Gate

Figure 18 shows a 3-input AND gate. p1 is the probability that input1 toggles (either

rising or falling). To compute the toggling probability of 3-input AND gates, there are

seven cases:

Case 1: p1, p2 and p3 are both rising or both falling, with probability of (p1/2)

·(p2/2) ·(p3/2) ·2.

Case 2: p1 is toggling, keep p2&p3 stable and non-controlling, with probability of

p1·((1-p2)/2) ·((1-p3)/2).

Case 3: p2 is toggling, keep p1&p3 stable and non-controlling, with probability of

p2· ((1-p1)/2) · ((1-p3)/2).

Case 4: p3 is toggling, keep p1&p2 stable and non-controlling, with probability of

p3·((1-p1)/2) ·((1-p2)/2).

Case 5: p1 and p2 are toggling in the same direction (both rising or falling), p3 is

non-controlling, with probability of (p1/2) ·(p2/2) ·2· ((1-p3)/2).

Case 6: p1 and p3 are toggling in the same direction (both rising or falling), p2 is

stable and non-controlling, with probability of (p1/2) · (p3/2) ·2· ((1-p2)/2).

Case 7: p2 and p3 are toggling in the same direction (both rising or falling), p1 is

stable and non-controlling, with probability of (p2/2) · (p3/2) ·2· ((1-p1)/2).

So the final toggling probability of the output (and also of the gate itself) will be:

 70

Similar formula can be made for gates with more than 3 inputs and other type of

primitive gates.

To compute WSA with probability (PWSA) for each scan cell, we set the toggling

probability of this cell to 1 and the toggling probability of all other scan cells and PIs to

0. This is a Single-Input-Change (SIC) vector. Thus we call this technique Toggle

Probabilistic Analysis considering SIC (TPASIC).

Then by using the previous described formulae, we can compute the toggling

probability of all gates. Summing together the probabilities in the scan cell fan-out cone,

we get the PWSA of each scan cell:

The drawback of this approach is that it has potential to overestimate power as seen

from Figure 19. The fanout PWSA of launch scan cell L1 overlaps with the fanout

PWSA of launch scan cell L7. The overlap is colored grey. However, considering the

low care bit density of test patterns, the overlap effect should be minimal.

 71

PPI PPO

PI

PO

L1

L7

C3

C4

Figure 19. Fanout Cone Overlap

The computational complexity for computing the toggling probablity is O(# of scan

cells). While computing the PWSA, we did not use time-consuming simulation such as

used in Level-Sim [19]. The experimental results using this technique will be shown in

together with Subsection 2.7.5 for comparison.

2.7.5 TPASIC Considering Adjacent Fill (TPASICAF)

The improvement of using the probabilistic technique that is shown in Subsection

2.7.4 over the original metric 3 is visible, but still not good enough for b14, b18, and

even for b19. That is because we did not consider the X-Fill effect. In fact, the X-Fill

process described in Subsection 2.2 uses Adjacent Fill for all the left over X-bits after

Preferred Fill. The computation of the fan-out cone WSA of each scan cell can be more

accurately computed by setting the stable scan cell values using adjacent fill. This

technique is the same as described in Subsection 2.7.4 except we assume only one scan

 72

input change during pre-calculation and all the other scan cell value are filled using

adjacent fill. We will call this technique TPASIC with Adjacent Fill (TPASICAF).

Table 24. Power Correlation Comparison of Different Metrics

Circuit
scan

chains

Correlation

using Chain

WSA

Correlation

using TPASIC

Correlation

using

TPASICAF

s1488 1 95.40% 93.03% 95.28%

s5378 1 90.90% 89.35% 89.20%

s9234 1 96.70% 95.58% 96.19%

s13207 1 98.00% 97.99% 97.84%

s15850 1 93.20% 84.65% 87.83%

s35932 1 95.50% 87.93% 88.30%

s38417 4 99.60% 99.36% 99.30%

s38584 1 99.40% 98.62% 98.89%

b14 1 56.80% 64.41% 68.32%

b15 1 95.10% 92.15% 93.14%

b17 1 98.80% 97.85% 98.57%

b18 10 54.20% 61.86% 73.02%

b19 9 81.60% 85.99% 94.41%

b20 1 92.70% 90.90% 91.38%

b21 1 91.70% 88.77% 89.75%

b22 1 92.50% 89.89% 89.38%

Table 24 shows the improvement of using TPASIC and TPASICAF over the original

scan chain WSA metric in terms of power correlation between simulated shift power and

estimated shift power. It can be seen that TPASICAF is overall the best technique among

 73

the three. Specifically for b14, there is 11.54% increase and for b18, there is a 18.82%

increase for TPASICAF over Chain WSA. The improvement of TPASICAF over

TPASIC is also noticeable in b14, TPASICAF has a 3.91% improvement over TPASIC,

and for b18, TPASICAF has a 11.16% improvement over TPASIC. For b19, the

improvement of TPASICAF over Chain WSA is 12.81%. For some other benchmark

curcits, TPASICAF has slightly worse correlation than Chain WSA. For s15850, the

degradation is 5.37%. But this side effect does not influence the pattern reordering result

because experimental results showed that a correlation of over 80% is good enough

because WSA itself is an estimation of real power consumption.

The constant power result after applying the different power estimation model can be

seen in Table 25 where the improvement of TPASIC over Original is not very much. But

after TPASICAF is applied, the improvement is visible. The power variation is

represented in terms of (Max-Min)/Ave and SD/Ave where SD stands for standard

deviation.

Table 25. Constant Power Results Comparison

Circuit

Original TPASIC TPASICAF

(Max-

Min)/Ave
SD/Ave

(Max-

Min)/Ave
SD/Ave

(Max-

Min)/Ave
SD/Ave

b14 22.36% 4.13% 23.48% 3.71% 20.93% 3.71%

b18 14.92% 2.52% 13.91% 2.51% 12.79% 2.48%

b19 9.92% 2.04% 9.85% 1.98% 9% 1.97%

 74

2.8 Conclusions

In this work, we introduced an X-bit filling technique that targets minimizing both

shift power and capture power. Then we proposed an efficient power estimation

algorithm based on the power model that estimates shift power from chain power.

Finally, a chip-wise and a region-wise test pattern reordering algorithms are shown

which generate re-ordered vectors and achieved near constant power. We then showed

techniques to improve the results for circuits where the simple power estimation model

did not work well. Our future work will be dealing with reducing power variations

between different test patterns and further improving the correlation between shift power

and chain power.

 75

3. SUPPLY NOISE IN DELAY TEST

3.1 Delay Modeling and Analysis

3.1.1 Power Region Model

Much previous work [35][36][37] has been published on transient power grid

analysis. However, RLC or RC network analysis is much too expensive for compaction.

Therefore, we make several approximations to simplify the problem. Power grid analysis

[24] of bumped chips shows that the supply voltage impact of a switching transient is

contained within a local area, since most current flows through nearby pads. Therefore

we assume that the supply voltage within a region (e.g. between a set of power pads) is

uniform, and the voltage of each region is independent of each other. Hence, voltage

drop for any gate in the region is identical. In addition, all switching activities across the

region are equivalent, and any switching events outside the region can be neglected.

As manufacture technology shrinks in the DSM era, dI/dt effects becomes more and

more important as shown in [38][39]. In this research, we only consider power supply

noise caused by IR (resistive) voltage drop in the on-chip power grid. This permits

modeling the power grid as an RC network. To accurately model and analyze LdI/dt

(inductive) drop, a RLC network is necessary, which is computationally too expensive

[27][40]. We use a power region model similar to that in [30], as shown in Figure 20. Cd

is the distributed decoupling capacitance in a region, and Cp is the total parasitic

capacitance of devices and interconnects within the region connected to the power

 76

supply network in the current clock cycle. All switching gates that draw current from the

supply within this region during the clock cycle are modeled as time-varying current

sources Iswitching_i. The switching current model is discussed in next subsection. Ion-chip is

the current from the on-chip capacitance, and Ioff-chip is the current from off chip.

Figure 20. Simplified Power Supply Model in a Region [30]

The maximum regional voltage drop ΔVmax during a clock cycle is:

ΔVmax = (∫Ion-chip) / (Cd + Cp)

 = (∫Iswitching_i -∫Ioff-chip)/(Cd + Cp) (1)

We assume that ∫Iswitching_i occurs over the time of the nominally longest path delay

during that clock cycle. After the switching transitions, VDD recovers through Ioff-chip to

VDDinit at the start of the next cycle.

3.1.2 Circuit Switching Model

We must calculate ∫Iswitching_i for each logic gate in order to compute ΔVmax. Tirumurti

[24] created a table of peak power and ground currents for different values of gate output

VDD

Gnd

C

d

C

p

Ion-

chip

Ioff-

chip

Iswitc

hing_1

Iswitc

hing_n Cd Cp
switching

gates

 77

load and input slope by simulation. We adopt a similar strategy which was used in [30]

where a lookup table was created from circuit simulation for all types of primitive gates

with different number of inputs. For example, for a NAND gate, we generated data for 2,

3 and 4 inputs NAND gates, similar data was also generated for AND, OR, NOR, NOT

gates. Figure 21 shows a typical waveform for an inverter. This waveform is

approximated as triangular if the load is small, otherwise as a trapezoid, in order to

compute the total charge of each transition. For simplicity, we are not considering

ground bounce so the actual capacitance charging occurs only when a rising transition

appears. To analysis the extra delay induced by voltage drop along a path, we should

compute the capacitance charge over the gates that are on the target path.

Figure 21. A Current Waveform for an Inverter

-200

-150

-100

-50

0

50

100

150

200

-3

-2

-1

0

1

2

3

2.00 2.04 2.06 2.08 2.20 2.24 2.26 2.28 cu
rr

en
t
(µ

A
)

v
o
lt

ag
e

(V
)

time(ns)

Vin

Vout

Iout

 78

3.1.3 Delay vs. Supply Voltage Drop

Several models been proposed for cell delay functions including power supply

voltage. Bai [41] proposed using a quadratic delay equation that is a function of the

supply voltage, input slope and output load capacitance. He also suggested linear

functions of supply voltage if the voltage drop is not too large. The error of this linear

model was estimated to be less than 5%. Hence, our model of rising transition delay

increase is as follows:

 Δdelay / delay = δΔV / VDD (2)

where delay is the nominal delay, ΔV is the estimated voltage drop at the cell, and VDD is

the ideal supply voltage. A table of coefficients δ under different output loads and input

slopes is obtained by simulation for each cell type. The accuracy of these models was

verified with circuit simulation on circuit s1488 [30] and from measurement on

industrial design [42].

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Figure 22. Effective Regions Associated with a Path

 79

We conducted experiments using these models to determine the correlation between

voltage drop in the effective regions and delay increase. Here the effective regions are

the power regions that the circuit path under test traverses. The three gray regions in

Figure 22 shows a chip divided into four power regions (shown here as rectangular for

illustration). The regions colored gray are the effective regions for the path shown. The

path starts from a scan cell in the lower left region and ends at another scan cell in the

upper right region. By the definition of region construction, only the voltage drop in

these three regions can affect the delay of the target path. The size of each region is

determined by the RC time constant of the power grid.

Figure 23 shows the correlation of voltage drop in effective regions to modeled delay

increase for ISCAS89 circuit s38417 for more than 14K paths generated from a delay

test ATPG [18], with minimum transition fill of the don‟t care bits. The correlation is

0.97, which shows that voltage drop is a good estimation of extra delay and voltage drop

can be used as a guardband of delay. Since computing voltage drop is computationally

less expensive than computing delay, if we know the percentage drop of voltage, we can

decide if we have to veto the compaction because of the excessive noise brought to by it.

 80

Figure 23. Voltage Drop vs. Delay Increase for s38417

3.1.4 Supply Voltage Drop vs. Effective WSA

Weighted switching activity (WSA) can be used to estimate test power [43].The

WSA of a node is the number of state transitions at the gate multiplied by (1+fan-out of

the gate). The WSA of the entire circuit is obtained by aggregating the WSA of all the

gates in the circuit.

WSA is also a good metric to estimate voltage drop. We conducted experiments to

find the correlation between regional voltage drop and the effective WSA. Here effective

WSA means the WSA in those regions traversed by the target path. We only consider

rising transitions because most supply droop is caused by charging the load capacitance.

y = 0.4316x - 0.0002

R² = 0.9702

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

0% 1% 2% 3% 4% 5% 6% 7%

D
el

a
y

 I
n

cr
ea

se
 (

%
)

Voltage Drop of Effective Regions (%)

 81

Figure 24. Voltage Drop vs. Effective WSA for s38417

Figure 24 shows near perfect correlation between voltage drop and effective WSA

for s38417. We can see that for this circuit, the correlation is almost 100% which

provides confidence for us to use effective WSA to estimate/guardband voltage drop

which eventually guardbands delay.

In order to compute WSA of the whole circuit, we need to know the test vector pair

with all don‟t care bits filled, and we need to perform a logic simulation before we know

which gates has rising transition. Logic simulation is computational expensive which

should be used as less frequently as possible. However, if we do not have a good WSA

estimation metric, we cannot avoid whole circuit simulation.

On the other hand, since we have to know all the rising transitions before computing

voltage drop which means logic simulation is a prerequisite to compute voltage, if we

y = 5E-05x - 0.0002

R² = 0.9975

0%

2%

4%

6%

8%

10%

12%

14%

0 500 1000 1500 2000 2500

V
o
lg

a
te

 D
ro

p
 (

%
)

Effective WSA

 82

know the threshold of WSA which corresponds to a threshold of voltage drop, we can

skip the voltage computation step which increases the speed of test compaction as well.

3.1.5 Delay Distribution Analysis

Prior work [30] did not distinguish the path length during compaction, so much time

was spent unnecessarily checking short paths, and rejecting compaction attempts that did

not increase circuit delay. Figure 25 shows the delay distribution of the paths for circuit

s38417 in Figure 23. The cell-to-cell Standard Delay Format (SDF) delay was generated

using Synopsys PrimeTime with 180 nm technology. We can see that many paths are

short enough that noise-induced delay will not cause them to exceed the delay of the

critical path, and so they can be ignored during compaction.

Figure 25. Path Delay Distribution for s38417

0%

2%

4%

6%

8%

10%

12%

14%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

#
 p

a
th

s
(%

)

Path Delay (ns)

 83

As patterns are compacted, one test pattern can contain tests for many paths. As

explained above, we will only focus on all of the longer paths tested in that pattern. In

such way, we could greatly reduce the delay calculation time by reducing the search

range to those long paths while the prior work [30] considered all paths including those

short paths. The „long‟ paths are those paths that are longer than a threshold which can

be a fraction of the maximum length of all paths. During static compaction process,

since we know all the paths and test patterns, we can set the threshold before

compaction. But during dynamic compaction, since we don‟t have all the paths

generated before compaction, we have to find a global longest path first before

compaction. This can be done by searching all structural longest path and justify all the

side inputs along this path until we find a two vector pair to test the path.

For the example in Figure 25, the percentage of long paths (path delay > 1ns) is very

small so if we only considering those long paths, the speed up of compaction should be

huge. Note that this circuit is just a special case, different circuits have different

distribution that some of them could have huge percentage of long paths. Even for those

circuits whose long paths are dominant, our heuristics would still work better than the

old one [30] with experimental results shown in Subsection 3.5.

3.2 Low Cost Supply Noise-Aware Delay Test Static Compaction

We improved on the high cost delay test static compaction algorithm in [30] by

exploiting the correlations discussed above. Figure 26 shows our proposed delay test

compaction framework that consists of two major steps, with each step having a four-

 84

level estimation flow embedded. The initial test set is one pattern per path which is

generated from an ATPG engine [18].

Step 1: Uncompacted paths are loaded in the order generated and a pre-check is

performed. Before doing any delay estimation, we will fill the don‟t care bits for each

pattern. The care bit density of each uncompacted pattern is at most a few percent for

most circuits. Experience also shows that random fill causes noise that is usually much

worse than mission mode [44] and minimal transition fill will potentially have the

minimal delay impact so we used minimal transition fill for each vector before analyzing

the noise of each vector. Note that the filling process here is not a „real‟ filling because

after analysis finished, we have to „unfill‟ it to restore its original value before

compaction. This „pseudo-filling‟ takes place each time we begins delay analysis of any

vector, both the new vector come into process or the old vector in the compacted list that

Figure 26. Levelized Low Cost Static Compaction Flow for Delay Test

Considering Power Supply Noise

 85

has many vectors been compacted into. During this checking flow, we used a so-called

levelized low cost estimation approach, with each level having higher accuracy at higher

computational cost. In Level 1, we only check if the SDF delay of this path m is too long

(set by threshold1), if not, we go to Step 2; if yes, we start Level 2, where we estimate

the WSA of the pattern to test path m without logic simulation. If the WSA is within a

limit (threshold3), we go to Step 2, otherwise we will go to Level 3, which is similar to

the approach in [28]. Logic simulation is used to compute voltage drop and estimate

delay. So this level is high cost compared to previous levels. The voltage drop can be

easily computed after logic simulation because we know which cells will have rising

transitions and how much charge will be consumed during load capacitance charging. If

the voltage drop threshold (threshold4) is not exceeded, we go to Step 2, otherwise we

go to Level 4. Level 4 computes the path delay. If the path delay is above a threshold

(delay constraint), this vector is too noisy all by itself, so we put it on an „Exceed List‟.

The high supply noise level of vectors on this list is due to ATPG, rather than

compaction. Such vectors should be rare, given the low care bit density in path delay test

vectors.

Step 2: We try to find a compatible pattern n for pattern (path) m from Step 1. If the

SDF delay of the longest target paths for patterns m and n are both smaller than

threshold2, from our previous knowledge, they can safely be compacted. The reason is

that two very short paths being compacted will not generate extra delay sufficient to

slow the circuit. Here threshold2 is smaller than threshold1, since during compaction,

the care bit density and gate switching increases and we want to set a lower threshold to

 86

catch them. If the delay is larger than threshold2, we will follow an approach similar to

step 1. Note that during each compaction, we will do a „pseudo-compaction‟ step to

compact pattern m and n to be a new pattern n’ before analyzing the WSA, Voltage Drop

and delay. If any of the analysis shows negative results, we will discard the compaction

and also the new pattern n’. Actually n’ will be the real compacted patterns that be put

into compacted list if it passed the delay checking and n will be deleted. In Level 4 of

this step, we will compute the delay of the long paths using delay look-up tables. If the

supply noise level for patterns n and m together is within limits, compaction is

performed and the new vector is added to the set of compacted vectors. If the

compaction is rejected, the next compatible vector is considered. We need a fast model

to estimate the effective WSA without doing logic simulation. We have tried to use scan

chain WSA [43] but the scan chain WSA during the capture cycle does not have good

correlation to the WSA in the circuit. The reason that [43] has good correlation is that

they are computing the cycle. Prior work [30] used the transition count of each vector

pair as a supply noise pre-check, but our simulations show this is not very accurate. To

deal with the low correlation issue, [45] proposed a technique called „Level-Sim‟ to

simulate the circuit for the first several logic levels. Significant correlation

improvements were shown on some ITC99 circuits. However, the question is then how

to decide the number of levels to simulate. The Level-Sim time is also much higher than

computing the scan chain WSA. Therefore, in our static compaction flow, we do not use

WSA as a delay estimate. We do use WSA in dynamic compaction because the ATPG

 87

[18] has information about necessary assignments that improves the accuracy of the

WSA estimate, while static compaction only has knowledge of the vector pair.

3.3 Supply Noise-Aware Delay Test Dynamic Compaction

Dynamic compaction [31] has been used in KLPG delay test ATPG [18] that shows

up to 3x reduction of pattern count over static compaction. The pattern count after

dynamic compaction is comparable to the number of transition fault tests, while

achieving higher test quality. We modified the supply noise framework described above

and embedded it into the dynamic compaction algorithm. The basic idea of dynamic

compaction is that for each path that is recently generated by ATPG, we retain the set of

necessary assignments (NAs), rather than primary input justification values, since the

NAs are unique to each path. When checking two paths for compatibility, the NAs are

first checked, and if they are compatible, then a direct implication [18] is done to verify

compatibility. A direct implication on a gate is one where the input or output value of

that gate can be determined from other values assigned to that gate. If direct implication

was successful, then a PODEM-based final justification [18] is performed to find a

vector pair that sensitizes this path. If justification is successful, the new pattern is

placed into a Path Pool [31], with each pattern retaining knowledge of the set of paths it

contains. After we check pattern compatibility, we perform the noise check before we

accept this compaction.

The supply noise aware dynamic compaction flow is shown in Figure 27. The major

difference from the compaction flow in [31] is that two checking steps marked in dark

 88

have been added. The first one is called „Initially Too Noisy‟ which essentially did the

Step 1 check which has been depicted in Figure 26. If this step fails which means the

newly generated pattern itself is too noisy, we will simply write out this pattern and go

on to the next one. This step is still necessary in dynamic compaction because if we

neglect this step, some high noise patterns will be appended to the Path Pool which will

potentially be compatible candidates during compaction that none of the following noise

check could pass. This would consequently induce huge number of redundant noise

computation time. The other process embedded is called „Pass Supply Noise Check‟

which has been added between „Pass Justification‟ and „Update P with F‟. It performed

the Step 2 operation in Figure 26., If a pattern in the Path Pool fails the check M times in

a row, then we write out the pattern that the pointer P points to. In our experiments, we

set M to 1000 and the Path Pool size to 5000. Theoretically the higher M and Pool size

are, the higher the compaction rate and CPU time are. Those values are set by experience

and a tradeoff between compaction rate and CPU time.

 89

Start with New

Pattern F

POOL empty? Insert F into POOL

End

Y

Set pointer P to the first

pattern in POOL

Conflict check between

F and P

Conflict?
Y

Set pointer P to the

next pattern in POOL

End of POOL?

Y

N

Combine Necessary

Assignments of F and P

Pass Direct

Implication?

Pass Justification?

Y

Y

N

N

Update P with F

N

N

Pass Supply

Noise Check?

Y
N

Initially Too Noisy?

N

Pattern P cont.

fail M times?

Write out

pattern P

Y

N

Write out

pattern F

Y

Figure 27. Power Supply Noise-Aware Delay Test Dynamic Compaction Flow

Since dynamic compaction is performed during ATPG, we know the necessary

assignments (NAs) of all the internal gates along the new path being considered for

compaction. We performed experiments to find the correlation between the WSA of the

NAs and the entire circuit. Figure 28 shows the correlation for s38417. The correlation is

 90

high enough that WSA of NAs can be used to estimate whole circuit WSA, which

eventually can estimate delay. Note that logic simulation is not required here since WSA

of NAs can be used as a guardband for WSA of whole circuit. But in static compaction

flow (Figure 26) we have to do logic simulation to compute WSA. From Figure 23 and

Figure 28, we can determine threshold3. The data in Figure 28 is only available after

ATPG is completed, not when we need it during dynamic compaction. A set of long

paths can be generated to estimate the maximum WSA. Then we can set threshold3 to be

a fraction of this maximum WSA.

Figure 28. Correlation Between WSA of Whole Circuit and NAs for s38417

3.4 Parameter Setting

As discussed from previous subsections, there are totally 4 parameters used in the

compaction flow: threshold1, threshold2, threshold3 and threshold4. Here threshold1 is

y = 0.4558x + 9720.7

R² = 0.7994

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

1 3 5 7 9 11 13 15 17 19 21 23 25 27

W
h

o
le

 C
ir

cu
it

 W
S

A
 (
×

1
0
4
)

WSA of NAs (×103)

 91

used to guardband the path length during initial check, threshold2 is used to guardband

path length during compaction, threshold3 is used in guardbanding WSA and threshold4

is used to guardband voltage drop. The following rules are proposed on how to set those

parameters.

Rule 1: threshold1 should be set to 75% of the delay of the longest testable path or the

delay of system clock period. However, to be conservative, a smaller threshold1 can be

used for the accurate calculation of excessive delay. This recommendation is based on

the experimental results shown in Figure 29. The delay increase was caused by

compaction and for all the paths generated for s38417, we can see that the delay increase

is within 4% to 8% of max delay. Setting threshold1 to 75% is safe enough to prevent

estimation escape since the max delay increase is less than 20%.

Figure 29. Delay Increase Distribution for Paths in s38417

0

500

1000

1500

2000

2500

3000

3500

4000

0% 5% 10% 15% 20%

#
 o

f
P

a
th

s

delay increase compared to global max delay (%)

 92

Rule 2: threshold2 should be set to 50% of the delay of the longest testable path or

the delay of system clock period. The reason that threshold2 is smaller than threshold1 is

that during compaction, one pattern can test multiple paths which makes the supply

noise of all tested paths higher. To be conservative, setting a smaller value for

threshold2 can catch those path delay escapes that pass the threshold1 due to compaction.

Rule 3: threshold4 can be estimated by doing a cell delay library simulation before

compaction. Just as there is a correlation between voltage drop and delay as shown in

Figure 23, we can do a pre-simulation for our delay model by using a sample set of test

patterns. For most libraries, we expect to see a correlation similar to Figure 23. The cell

delay library could come from SPICE or any other simulation tool. For example,

suppose we have a relationship between voltage drop (x) and delay (y) of x = 2·y with

very good correlation (>90%). The formula to set threhold4 will be threshold4 =

2 · delay_constraint. Then if we set the delay_constraint to 5% of nominal delay, then

we can set threshold4 to be 2·5% which is 10% of nominal supply voltage. However, if

the correlation is not very high, say less than 70%, we could conservatively reduce

threshold4, say to 1.5·5% which is 7.5% of nominal supply voltage.

Rule 4: threshold3 is set by using the correlation between WSA and voltage drop as

shown in Figure 24. The results from this figure could come from simulation from a

sample of test patterns. The only requirement is to find the trend and correlations. We do

not have to simulate all the patterns to get the trend. In order to set threshold3, we need

to set threshold4 first because eventually threshold3 is used to filter the delay, not the

voltage and we can use threshold4 as a bridge for threshold3 to guardband delay.

 93

Suppose the WSA (x) and voltage drop (y) has a relationship of x = 2000·y with good

correlation (>90%) and threshold4 is 10%. Then the formular to set threshold3 will be

threshold3 = 2000 · threshold4. Then we can set threshold3 to be 2000 · 10% = 200.

However, if the correlation is lower, say less than 70%, we could conservatively reduce

threshold3, say to 1500·10% which is 150.

Experimental results in Subsection 3.6 show the effects of different parameter

settings.

3.5 Pseudo Functional Test Power Analysis

3.5.1 Pseudo Functional Test

Traditional at-speed test can over-test a chip because the supply droop during the

capture cycle can slow down the circuit elements. The authors in [46] show observations

of a burst of 30 at-speed clock pulses after a period of quiescence.

Figure 30. Oscilloscope Droop Measurement [46]

 94

Figure 30 shows that there is a large droop event corresponding to the start of the

clock burst, with a typical ringing shape. There is also a power supply overshoot

corresponding to the end of the clock burst, as the circuit experiences a sudden drop in

current demand. One of the options that has been proposed to reduce the effect of power

supply droop is to increase the length of the capture sequence and apply the first few

capture cycles at slower speeds.

The experiments in [46] also show that in all the slow/fast capture sequences, the

actual droop seen during the at-speed clocks is dramatically reduced and shows that this

method can be effective in achieving its goal. It should be noted that longer capture

sequences increase test generation complexity significantly. Moreover, ATPG tools need

to understand that the slow capture cycles are not catching any speed defects and need to

account for this during fault grading. We call this approach pseudo functional test and

we will analysis the power in terms of WSA in the next subsection.

3.5.2 Multicycle Capture Power

We conducted experiments on ITC99 benchmark circuit b19 by analyzing the WSA

of 10 at-speed clock cycles. b19 was selected because it is the largest benchmark circuits

we have which comprises 200k gates. Ideally, we should use ATPG tool such as

CodGen to generate test patterns that launch pseudo-functionally N-1 cycles and capture

delay defects at the Nth cycle. Due to the unavailability of CodGen‟s multiple cycle

ATPG functionality, we only use 2 cycle Launch-on-Capture test patterns.

 95

Figure 31 shows the average WSA for b19 using 5319 dynamic compacted patterns

for 10 cycles. We can see that at the first launch cycle, Preferred Fill has much lower

WSA than random fill due to the former technique‟s process of minimizing the capture

power. However, from the 2
nd

 launch cycle forward until the 10
th

 cycle, we cannot see

much difference by using Preferred Fill. In addition, since we are hold the PIs constant

during the 10 cycles, the WSA is gradually falling off to a steady state where the WSA is

very low compared to the 1
st
 cycle. This is partially due to the switching activity

intentionally made by ATPG to sensitize the path in the 1
st
 cycle gradually faded away

after multiple cycles.

Figure 31. Average WSA for b19

The other finding from this is that we need new X-Fill technique to boost the WSA

of the 10
th

 cycle, which is the actually capture cycle. This will be part of our future work.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8 9 10

P
o
w

er
 (

W
S

A
)

Cycle #

Preferred Fill Random Fill

 96

3.6 Experimental Results

The realistic low cost delay test compaction framework was implemented in C++

and running on a Windows platform with Core 2 Duo 2.66 GHz CPU and 2GB DDR2

memory. The circuit layout was created using SOC Encounter and 180 nm technology.

By default, we set threshold1 to be 0.75 and threshold2 to be 0.5 of maximum delay of

all paths. We set threshold3 to 0.5 of maximum WSA and threshold4 to be the same as

the circuit delay constraint, since we want to be conservative in using the correlation

shown in Figure 23. Ideally, the higher the threshold we set, the faster the compaction

flow will be, but the greater the risk of creating test patterns that exceed the desired noise

levels.

The path delay patterns are generated with the CodGen K-Longest Path per Gate

(KLPG) ATPG [18] tool. It is used to generate the 2K longest paths through each line in

the circuit, with K paths having a rising transition at the fault site and K paths having a

falling transition. In this work we will use K=1.

Table 26 and Table 27 show the static compaction results for four ISCAS89 circuits

by comparing the low cost framework discussed in the paper and the high cost

framework [30]. For each benchmark circuit, we conducted experiments on several

different delay constraints whose value can be seen in column „Delay Constraint‟.

Initially, we used a greedy forward-order procedure to compact all the patterns without

considering supply noise. We term this procedure “force compaction.” It corresponds to

„No‟ in the „Delay Constraint‟ column. We term the noise-aware compaction approach

“veto compaction” because we will veto any compaction that violates our delay

 97

Table 26. Low Cost Delay Estimation Framework During Static Compaction

for ISCAS89 Circuits

Circuit

Paths

Delay

Constraint

Low Cost Framework

Total Time

(m:s)

Delay Estimate

Time (m:s)

Patterns

After

Compaction

Exceed

Paths

Simulations

s1488 167

3% 0:01 0:01 85 5 89

5% 0:01 0:01 83 4 90

7% 0:01 0:01 82 3 91

10% 0:01 0:01 79 0 94

18% 0:01 0:01 79 0 94

No 0:01 0:01 79 0 0

s15850 2415

3% 0:14 0:11 483 15 3279

5% 0:13 0:10 481 11 2874

7% 0:12 0:09 480 8 2660

8% 0:08 0:05 467 0 1556

16% 0:08 0:05 467 0 1556

No 0:03 0:00 467 0 0

s35932 9442

3% 2:42 1:35 122 62 24295

5% 2:22 1:15 72 20 17440

7% 1:52 0:45 49 1 13535

8% 1:44 0:37 46 0 11187

No 1:07 0:00 46 0 0

s38417 14405

3% 3:32 2:39 1093 157 19338

5% 3:10 2:17 996 30 16679

7% 2:57 2:04 977 1 14860

8% 2:56 2:03 977 0 14826

14% 2:56 2:03 977 0 14826

No 0:53 0:00 977 0 0

 98

Table 27. High Cost Delay Estimation Framework During Static Compaction For

ISCAS89 Circuits

Circuit

Paths

Delay

Constraint

High Cost Framework

Total Time

(m:s)

Delay

Estimate Time (m:s)

Patterns

After

Compaction

Exceed

Paths

Simulations

s1488 167

3% 0:01 0:01 117 46 217

5% 0:01 0:01 106 33 228

7% 0:01 0:01 98 24 236

10% 0:01 0:01 93 16 241

18% 0:01 0:01 79 0 260

No 0:01 0:01 79 0 0

s15850 2415

3% 0:19 0:16 602 203 4280

5% 0:21 0:18 539 87 4319

7% 0:21 0:18 510 53 4320

8% 0:21 0:18 503 40 4329

16% 0:22 0:19 467 0 4362

No 0:03 0:00 467 0 0

s35932 9442

3% 37:50 36:43 1421 1010 311979

5% 9:41 8:34 249 133 71223

7% 3:59 2:52 71 6 29574

8% 2:31 1:24 51 0 18557

No 1:07 0:00 46 0 0

s38417 14405

3% 30:24 29:31 1941 960 210646

5% 14:54 14:01 1265 275 100713

7% 7:36 6:43 1103 129 49280

8% 6:15 5:22 998 17 38957

14% 4:24 3:31 977 0 24974

No 0:53 0:00 977 0 0

 99

constraint. Column „Total Time‟ is the total compaction time while “Delay Estimate

Time‟ is only the time used in the delay estimation including logic simulation and table

lookup. Column „# Patterns After Compaction‟ is the total number of patterns after

compaction which includes all the „# Exceed Paths‟ which are the paths that are initially

too noisy and are put into the „Exceed List‟ in Step 1 of Figure 25. The number of logic

simulations made during delay estimation is shown in column „# Simulations‟.

Since the high cost model in [30] considers all paths as target paths without looking

at their nominal delay, it will reject many compactions, even though the same amount of

extra delay for those short paths will not actually cause a timing issue. For example, as

shown in Figure 32, suppose the delay bound of a circuit is 1 ns and the maximum path

delay is 0.9 ns. Then for safe compaction, we should set the delay constraint to be 11%

of max delay, which is 0.1 ns. However, a compaction is still safe if it adds 0.3 ns extra

delay to a short path #1 with nominal delay of 0.5 ns. If the extra 0.3 ns is added to the

0.9 ns path #2, it would violate the delay constraint, so this compaction should be

vetoed. During static compaction, we know the maximum nominal delay of all paths, so

we know the threshold of how much extra delay we can tolerant. As a result, the low

cost model can reduce unnecessary simulations and accept some compactions that were

rejected by [30].

 100

Figure 32. Delay Constraint Effect on Different Paths

The high cost framework has used some redundant delay estimation pruning

technique by simply overlook the delay calculation if the two compatible patterns being

compacted have very small transition count [47]. The transition count threshold was set

by experience that could be simply as a tiny fraction of the total number of bits in a

vector. However, this pre-check is prone to delay underestimation because small

transition count cannot guarantee short path. For example as shown in Figure 33, the

vector pair to test path B has higher transition count (2) than the transition count (1) of

vector pair to test path A, but path B in fact is shorter than path A. This applies to both

robust and non-robust transition fault test. Therefore, in our low cost framework, we did

not use transition count as a threshold.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

1

2

Delay (ns)

P
a

th
 I

D

Original Delay Extra Delay Delay

Bound

 101

V1 V2

X X

Path A

Path B

0 1

1 1

1 1

X X

X X

V1 V2

X X

X X

X X

1 0

0 1

 0 X

Figure 33. Vector Pair Transition Count on Different Paths

For all the delay increase constraints considered in Table 26 and Table 27, the low

cost model has smaller pattern count after compaction than the high cost model. For

circuit like s38417 with a 5% delay increase constraint, the low cost model is 5x faster

than the high cost model in delay estimation. For a 3% delay constraint, the low cost

model‟s pattern count is almost half the size of the high cost model. The number of

simulations also has been greatly reduced. For a 3% delay constraint, more than 210K

simulations are need in the high cost model but only around 45K simulations are used in

the low cost model. Also, the high cost model needs the constraint to be relaxed to 15%

constraint to generate the 977 patterns of the force compaction model, while the low cost

model achieves this pattern count while meeting a 7% constraint. For circuit like s35932,

the high cost framework with 3% delay constraint generates 1421 patterns with 1010

 102

originally failed patterns that are more than 10 times the number of the low cost

framework. The major problem is that the high cost model considers delay constraints

per path while low cost framework considers delay constraints globally.

Figure 34. Path Delay Distribution for s35932

Figure 34 shows the path delay distribution of 9442 paths of circuit s35932 that were

generated from ATPG where many are short paths. It is interesting that most paths are

either short or long with no paths in the middle range of delay (0.3~0.45 ns). For those

paths that are shorter than 0.1 ns delay, the high cost framework would probably think

some of them are too noisy during initial check and put them to originally failed patterns

while low cost framework would not. In addition, this circuit has an extremely high

compaction rate compared to other circuits, partially due to the high portion of short

0%

5%

10%

15%

20%

25%

30%

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

#
 o

f
p

a
th

s
(%

)

Path Delay (ns)

 103

paths with low care bit density which on the other hand increases the compatibility of

two vectors.

The delay constraint used in [30] is applied per path, not the globally longest path.

For example, it will reject compaction if the extra delay of path P is over a delay

constraint (normally a fraction, or x% of the original delay of path P). Realistically, the

delay constraint should be set a percent of the global longest path that determines the

clock cycle of the circuit. In our experiments, we will veto any compaction if the extra

delay is over x% of the global longest path delay. This information is available for static

compaction since we already have the complete path list but not available for dynamic

compaction unless all the paths are generated. However, CodGen [18] has the ability to

generate the global longest path first before it generates other paths such that we can use

that information to set our delay constraint.

In order to further show the efficiency of low cost framework, we applied the delay

constraint similarly on high cost framework using the globally longest path delay. Table

28 and Table 29 show the experimental results on s38417 with different delay constraint.

 104

Table 28. Low Cost Framework During Static Compaction for s38417 With Same

Delay Constraint Metric Applied

(Threshold1=0.75, Threshold2=0.5, Threshold3=0.5, Threshold4=Delay Constraint)

Delay

Constraint

Low Cost Framework

Total

Time

(m:s)

Delay

Estimate

Time (m:s)

Patterns After

Compaction

Exceed

Paths
Simulations

3% 3:32 2:39 1093 157 19338

4% 3:24 2:31 1026 74 18313

5% 3:10 2:17 966 30 16679

6% 2:58 2:05 983 9 14912

7% 2:57 2:04 977 1 14860

8% 2:56 2:03 977 0 14826

Table 29. High Cost Framework During Static Compaction for s38417 With Same

Delay Constraint Metric Applied

(Threshold1=0.75, Threshold2=0.5, Threshold3=0.5, Threshold4=Delay Constraint)

Delay

Constraint

High Cost Framework

Total Time

(m:s)

Delay

Estimate

Time (m:s)

Patterns

After

Compaction

Exceed

Paths

Simulations

3% 5:40 4:47 1093 157 29436

4% 5:23 4:30 1026 74 28414

5% 5:10 4:17 966 30 26771

6% 4:58 5:05 983 9 25010

7% 4:57 5:04 977 1 24979

8% 4:57 5:04 977 0 24948

 105

In order to verify that our low cost framework is more realistic than high cost model,

we also simulated the delay of all the paths after static compaction by exporting one

pattern per target path. It is an important step to see after compaction, whether all the

paths‟ delays are within timing bound because a higher compaction rate would induce

higher supply noise. For circuit s38417, before compaction, the max path delay is 1.44

ns, and the 5% delay constraint is set to 0.07 ns, which increases the delay bound to 1.51

ns.

Figure 35. Actual Path Delay After Compaction for s38417

Figure 35 shows that our low cost model can keep the max path delay of almost all

paths within the delay bound except for those 30 patterns that are originally too noisy.

Those noisy patterns are coming from ATPG while not from compaction because in

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2000 4000 6000 8000 10000 12000 14000

A
ct

u
a
l

D
el

a
y
 (

n
s)

Path ID

Delay bound(1.51ns)

 106

order to test those paths, the excessive switching in those effective regions will reduce

the voltage and introduce extra delay that goes beyond the delay constraints. However,

we still have to test those paths by relaxing the delay constraint or make the circuit

running at a slower speed.

Figure 36 shows that the extra delay induced by compaction. We can see that for

some short paths, we can tolerate them having extra delay larger than 0.07 ns while for

long paths, they must strictly obey the constraint. While for high cost framework, it is

obvious that all extra delay would be constrained to within 0.07ns.

Figure 36. Extra Path Delay After Compaction for s38417

We also analyzed the effect of different thresholds on the compaction speed. Table

30 shows that by changing threshold1 and threshold2 on 3% delay constraint with

0

0.05

0.1

0.15

0.2

0.25

0 2000 4000 6000 8000 10000 12000 14000

E
x
tr

a
 D

el
a
y
 (

n
s)

Path ID

5% delay

 107

threshold4 fixed to 3%, the number of simulations differs accordingly. When we fixed

threshold1 to 0.75 but changed threshold2, we can see that the higher the threshold2, the

less the number of simulations because we are reducing the number of patterns under

delay estimation by filtering out even more short paths. Similar results can be seen if we

fixed threshold2 to 0.5 and altered threshold1. The smaller threshold2 is, the higher the

number of simulations is needed because we enlarged the number of patterns for delay

estimation which includes shorter paths. Note that from the data in Table 29, we can see

that our default setting of threshold pair [threshold1, threshold2] which is [0.75, 0.5] is

pessimistic because for the highest „working‟ pair which is [0.8, 0.7] we set, the number

of patterns after compaction is the same but the delay estimation time is 58 seconds or

15% less. Here „working‟ means the number of patterns after compaction is the same

with [0.75, 0.5]. On the other hand, we should limit the value of threshold1 or

threshold2 in case the compaction flow underestimates the delay which can be seen in

the threshold pair [0.9, 0.7]. For this case, we are too optimistic about the guardband of

threshold1 that for some paths that are shorter than 90% but longer than 80% of the

longest path, they could bring excessive switching in the circuit that slows down the

transition propagation that goes beyond the delay constraint we set. The „# Exceed

Paths‟ shows 23 patterns less than the threshold pair [0.8, 0.7] which means some

patterns skip the delay check and were added into the final compaction pattern set. The

side effect of those patterns is that they could be compatible with other patterns but they

will fail the delay check every time. The redundant delay checking will bring more

simulations and which explains the higher running time that did no good to our

 108

compaction. So be conservative, we should set the threshold1 and threshold2 to smaller

values. To our experience, [0.75, 0.5] is a good conservative pair.

Table 31 shows the effect of different threshold4 on the results of static compaction

using low cost framework. Here we keep the delay constraint to be 3% of max delay,

threshold1 to be 0.75 and threshold2 to be 0.5. From Figure 23 we can see that

threshold4 could be any value less than twice the value of delay constraint which is 6%

for s38417. The experimental results show that setting threshold4 to 3% is very

conservative as it vetoes many compaction which is safe for supply noise where we can

see directly from column „# Exceed Paths‟. However considering the inaccuracy of delay

model we used, setting a smaller threshold4 can guarantee that we are not overlooking

any extra delay caused by supply noise.

Table 30. Low Cost Delay Estimation During Static Compaction for s38417

with Different Threshold1 and Threshold2

(Delay Constraint=3%, Threshold4=3%)

Threshold1 Threshold2
Total

Time (m:s)

Delay Estimate

Time (m:s)

Patterns

After

Compaction

Exceed

Paths

Simulations

0.55 0.5 3:57 3:04 1093 157 22780

0.65 0.5 3:42 2:49 1093 157 20631

0.75 0.5 3:32 2:39 1093 157 19338

0.75 0.6 3:23 2:30 1093 157 18467

0.75 0.7 2:54 2:01 1093 157 14350

0.8 0.7 2:47 1:54 1093 157 13882

0.9 0.7 9:07 8:14 1091 134 62061

 109

Table 31. Low Cost Delay Estimation During Static Compaction for s38417 with

Different Threshold3

(Delay Constraint=3%, Threshold1=0.75, Threshold2=0.5)

Threshold4 Total Time (m:s)
Delay Estimate

Time (m:s)

Patterns After

Compaction

Exceed

Paths

Simulations

3:32 2:39 1093 157 19338 3:32

3:32 2:39 1093 157 19338 3:32

3:33 2:40 1091 151 19514 3:33

3:34 2:41 1089 147 19865 3:34

Dynamic compaction (DC) results on four ISCAS89 circuits can be seen in Table 32

and Table 33. As with static compaction (SC), the high cost framework is slower due to

more simulations. Similar like experiments on static compaction, before applying the

frameworks, we conducted force compaction that did not consider supply noise effects.

For example, for s38417, if we use the low cost model, a 10% constraint produces 389

patterns in less than 5 extra CPU minutes. At a 7% constraint, only 4 additional test

patterns are generated. For a 3% delay constraint, 353 extra patterns are generated, using

considerably more CPU time. The large CPU time increase is due to the many patterns

near their delay increase thresholds, requiring many more simulations. In addition, each

time a compaction was rejected due to noise, we must find another compatible pattern

and pass both the direct implication and final justification phases, which require

significant time. Column „Extra Time‟ includes all these efforts and delay estimation.

For high cost model, more than half an hour extra time was spent for 3% delay constraint

 110

which is almost 2x slower than low cost model and the pattern count is more than twice

of the low cost model. For delay constraint like 5% and 7%, delay estimation of low cost

model is still 2x faster than high cost model together with huge reduction of pattern

count. By comparing Table 25 and Table 31, we can see that DC needs more execution

time but has smaller pattern count than SC. Also in both cases the low cost framework

works well until the delay constraint becomes so stringent that many patterns are close to

the constraint, and so require detailed analysis. The reason that DC has fewer

simulations than SC for the 3% delay constraint, even though it has a higher compaction

rate, is that the if two short paths are compacted during DC that do not need noise

estimation, but they are not compatible in SC while they are compatible with a long path,

then we need to estimate supply noise in SC for the compacted pattern. But for most

cases, DC should have more number of simulations than SC due to the high compaction

rate which need more number of delay estimations each time two patterns are compacted

together.

 111

Table 32. Low Cost Delay Estimation Framework During Dynamic Compaction

Circuit Delay Constraint

Low Cost Framework

Total Time

(m:s)

Extra

Time

(m:s)

Patterns

After Compaction

Exceed

Paths

Simulations

s1488

3% 0:02 0:01 66 5 100

5% 0:02 0:01 64 4 101

7% 0:02 0:01 63 3 102

10% 0:02 0:01 60 0 104

16% 0:02 0:01 60 0 104

No 0:01 0:00 60 0 0

s15850

3% 1:49 0:30 294 15 4146

5% 1:46 0:27 291 11 3607

7% 1:40 0:21 291 8 3068

8% 1:36 0:17 279 0 2338

16% 1:35 0:16 274 0 2285

No 1:19 0:00 274 0 0

s35932

3% 9:26 5:09 108 62 21000

5% 8:27 4:10 57 20 17534

7% 7:57 3:40 35 1 15455

8% 7:37 3:20 31 0 14561

No 4:17 0:00 28 0 0

s38417

3% 40:34 18:03 742 295 36983

5% 35:05 12:34 469 63 20146

7% 33:04 10:33 393 0 15979

10% 32:22 9:51 389 0 15749

15% 32:22 9:51 389 0 15749

No 22:31 0:00 389 0 0

 112

Table 33. High Cost Delay Estimation Framework During Dynamic Compaction

Circuit Delay Constraint

High Cost Framework

Total Time

(m:s)

Extra Time

(m:s)

Patterns

After

Compaction

Exceed

Paths

Simulations

s1488

3% 0:03 0:02 96 46 238

5% 0:03 0:02 87 33 247

7% 0:03 0:02 79 24 255

10% 0:03 0:02 74 16 240

16% 0:03 0:02 60 0 270

No 0:01 0:00 60 0 0

s15850

3% 1:45 0:25 447 203 4554

5% 1:48 0:27 350 87 4592

7% 1:45 0:24 318 53 4514

8% 1:46 0:25 310 40 4580

16% 1:46 0:25 274 0 4556

No 1:19 0:00 274 0 0

s35932

3% 38:35 34:18 1406 1010 144534

5% 21:52 17:35 247 133 68855

7% 10:31 6:14 66 6 25207

8% 8:40 4:23 42 0 18234

No 4:17 0:00 28 0 0

s38417

3% 54:46 32:15 1427 960 80969

5% 46:42 24:11 698 275 48982

7% 39:08 16:37 527 129 31480

10% 34:44 12:13 413 17 28721

15% 34:28 11:57 389 0 25536

No 22:31 0:00 389 0 0

 113

3.7 Conclusions

In this work, we have introduced a realistic low cost delay test compaction flow that

guardbands the circuit delay using a sequence of estimation metrics. Significant

improvements are demonstrated over prior work using benchmark circuits. Current work

targets larger designs. The veto compaction process can be also applied as a guardband

for other constraints, such as test power, where similar approaches have been

demonstrated [45]. Finally, this work only considers on-chip IR drop. In the future, we

want to also consider off-chip LdI/dt effects during ATPG and compaction.

 114

4. SUMMARY AND FUTURE WORK

In this work, we first proposed a constant test power dissipation flow that combines

X-Fill, shift power estimation and test pattern reordering algorithm together. The flow is

independent of the X-Fill algorithm. Our work proposed an X-Fill algorithm that

minimizes both capture power and shift power using Preferred Fill [13] and Adjacent

Fill. Weighted Switching Activity (WSA) was used as a power estimation metric. The

shift power estimation metric was also enhanced by probabilistic analysis. The constant

power was achieved using pattern reordering as we are not using X-Fill or ATPG itself

to even out the power. Good experimental results prove our reordering algorithm‟s

effectiveness and correctness. However, we still have to solve the poor estimation of

shift power estimation for circuits b14 and b18. In addition, since WSA itself is an

estimation of power, we need silicon results to show the real power dissipation after

applying our reordered patterns.

We also proposed a realistic power supply noise-aware delay test compaction

framework that has great improvement over prior work [1]. This framework used a

series of thresholds to guardband the excessive delay induced by compaction and tried to

minimize the unnecessary simulations which on the other hand greatly speeds up the

algorithm. We also discussed how to set those thresholds to make this framework

theoretical and practical. We have conducted experiments by combining the framework

to both static compaction and dynamic compaction. The next step is to consider dI/dt

 115

effects because on our current circuit model, we only considered IR drop. This will

require more complicated circuit model.

 116

REFERENCES

[1] J. Wang, X. Lu, W. Qiu, Z. Yue, S. Fancler, W. Shi and D. M. H. Walker, “Static

Compaction of Delay Tests Considering Power Supply Noise.” in Proc. IEEE

VLSI Test Symposium, 2005, pp. 235-240.

[2] W. Li, S. M. Reddy and I. Pomeranz, “On Reducing Peak Current and Power

During Test,” in Proc. IEEE Computer Society Annual Symposium on VLSI,

Tampa, FL, May 2005, pp. 156-161.

[3] X. Lin, J. Rajski, I. Pomeranz, and S. M. Reddy, “On Static Test Compaction and

Test Pattern Ordering for Scan Designs”, in Proc. IEEE International Test

Conference, 2001, pp. 1088-1097.

[4] J. Wang, D. M. H. Walker, et al, “Power Supply Noise in Delay Testing”, in Proc.

IEEE International Test Conference, Charlotte, NC, Oct. 2006, pp. 1-10.

[5] P.Girard, “Low Power Testing of VLSI Circuits: Problems and Solutions”, in

Proc. International Symposium on Quality Electronic Design, 2000, pp. 173-179.

[6] S.Gerstendorfer and H. J. Wunderlich, “Minimized Power Consumption for Scan

Based BIST”, in Proc. IEEE International Test Conference, 1999, pp. 77-84.

[7] X. Wen, Y. Yamashitam, S. Kajihara, L. T. Wang, K. K. Saluja and K. Kinoshita,

“On Low-Capture-Power Test Generaion for Scan Testing”, in Proc. IEEE VLSI

Test Symposium, 2005, pp. 265 – 270.

[8] W. Li, S. M. Reddy and I. Pomeranz, “On Reducing peak current and power

during test,” in Proc. IEEE Computer Society Annual Symposium on VLSI, 2005,

pp. 156-161.

 117

[9] X. Wen, Y. Yamashita, S. Morishima, S. Kajihara, L.T. Wang, K. K. Saluja and

K. Kinoshita, “Low-capture-power test generation for scan-based at-speed

testing,” in Proc. IEEE International Test Conference, 2005, pp. 1019-1028.

[10] S. Sharifi, J. Jaffari, M. Hosseinabady, A. Afsali-Kusha and Z. Navabi, “Simul-

taneous Reduction of Dynamic and Static Power in Scan Structures”, in Proc.

DATE, 2005, pp. 846-851.

[11] R. Sankaralingam, R. R. Oruganti and N. A. Touba, “Static Compaction Tech-

niques to Control Scan Vector Power Dissipation,” in Proc. IEEE VLSI Test

Symposium, Apr. 2000, pp. 34-40.

[12] V. Dabholkar, S. Chakravarty, I. Pomeranz and S. M. Reddy, “Techniques for

Minimizing Power Dissipation in Scan and Combinational Circuits During Test

Application”, IEEE Transactions on Computer Aided Design of Integrated

Circuits and Systems, Vol. 17, No. 12, December 1998.

[13] S. Remersaro, X. Lin, Z. Zhang, S. M. Reddy, I. Pomeranz and J. Rajski,

“Preferred Fill: A Scalable Method to Reduce Capture Power for Scan Based

Designs,” in Proc. IEEE International Test Conference, 2006, pp. 1-10.

[14] J. Wang, D. M. H. Walker, et al, A Vector-Based Approach for Power Supply

Noise Analysis in Test Compaction, in Proc. IEEE International Test

Conference, 2005

[15] Z. Wang, D. M. H. Walker, “Dynamic Compaction for High Quality Delay Test”,

in Proc. IEEE VLSI Test Symposium, Apr. 2008.

 118

[16] Z. Jiang, D. M. H. Walker, “An Efficient Algorithm for Achieving Chip-wise

Constant Test Power”, in IEEE Workshop on Defect and Data Driven Testing,

2008

[17] Z. Jiang, D. M. H. Walker, “Enhancement Approaches for Constant Test Power

Algorithm", International Test Synthesis Workshop, Austin, TX, 2009

[18] W. Qiu, et al, “K Longest Paths Per Gate (KLPG) Test Generation for Scan-

Based Sequential Circuits,” IEEE Int’l Test Conf., Charlotte, NC, Oct. 2004, pp.

223-231.

[19] K. L. Shepard and V. Narayanan, “Noise in Deep Submicron Digital Design,”

IEEE Int’l Conf. Computer Aided Design, San Jose, CA, Nov. 1996, pp. 524-531.

[20] Y.-S. Chang, S. K. Gupta and M. A. Breuer, “Analysis of Ground Bounce in

Deep Sub-Micron Circuits,” IEEE VLSI Test Symp., Monterey, CA, Apr. 1997,

pp. 110-116.

[21] H. H. Chen and D. D. Ling, “Power Supply Noise Analysis Methodology for

Deep Submicron VLSI Chip Design,” ACM/IEEE Design Auto. Conf., Anaheim,

CA, June 1997, pp. 638-643.

[22] Y.-M. Jiang and K.-T. Cheng, “Analysis of Performance Impact Caused by

Power Supply Noise in Deep Submicron Devices,” ACM/IEEE Design Auto.

Conf., New Orleans, LA, June 1999, pp. 760-765.

 119

[23] J.-J. Liou, A. Krstic, Y.-M. Jiang and K.-T. Cheng, “Modeling, Testing, and

Analysis for Delay Defects and Noise Effects in Deep Submicron Devices,”

IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 22, no. 6, Jun.

2003, pp. 756-769.

[24] C. Tirumurti, S. Kundu, S. Sur-Kolay and Y.-S. Chang, “A Modeling Approach

for Addressing Power Supply Switching Noise Related Failures of Integrated

Circuits,” Design, Automation and Test in Europe, Paris, France, Feb. 2004, pp.

1078-1083.

[25] S. T. Zachariah, Y.-S. Chang, S. Kundu and C. Tirumurti, “On Modeling Cross-

talk Faults,” Design, Automation and Test in Europe, Munich, Germany, Mar.

2003, pp. 490-495.

[26] S. Pant, D. Blaauw, V. Zolotov, S. Sundareswaran and R. Panda, “Vectorless

Analysis of Supply Noise Induced Delay Variation,” IEEE/ACM Int’l Conf.

Computer Aided Design, San Jose, CA, Nov. 2003, pp. 184-191.

[27] A. Krstic, et al, “Pattern Generation for Delay Testing and Dynamic Timing

Analysis Considering Power Supply Noise Effects,” IEEE Trans. on CAD of

Integrated Circuits and Systems, vol. 20, no. 3, Mar. 2003, pp. 416-425.

[28] J. Lee and M. Tehranipoor, “A Novel Test Pattern Generation Framework for

Inducing Maximum Crosstalk Effects on Delay-Sensitive Paths”, IEEE Int’l Test

Conf., Santa Clara, CA, Oct. 2008, pp.1-10.

 120

[29] J. Ma, J. Lee and M. Tehranipoor, “Layout-Aware Pattern Generation for

Maximizing Supply Noise Effects on Critical Paths”, IEEE VLSI Test Symp.,

Santa Cruz, CA, May. 2009, pp. 221-226.

[30] J. Wang, et al, “A Vector-based Approach for Power Supply Noise Analysis in

Test Compaction,” IEEE Int’l Test Conf., Austin, TX, Nov.2005, pp. 517-526.

[31] Z. Wang and D. M. H. Walker, “Dynamic Compaction for High Quality Delay

Test”, IEEE VLSI Test Symp., San Diego, CA, Apr. 2008, pp. 243-248.

[32] Z. Jiang, Z. Wang, J. Wang and D. M. H. Walker, “Realistic Low Cost Frame-

work for Supply Noise-Aware Delay Test Static Compaction”, IEEE Workshop

on Defect and Data Driven Testing, Austin, TX, Nov. 2009.

[33] W. Qiu, J. Wang, D. M. H. Walker, D. Reddy, X. Lu, Z. Li, W. Shi and H.

Balachandran, “K Longest Paths Per Gate (KLPG) Test Generation for Scan-

Based Sequential Circuits,” in Proc. IEEE International Test Conference, 2004,

pp. 223-231.

[34] R. Sankaralingam, R. R. Oruganti and N. A. Touba, “Static Compaction Tech-

niques to Control Scan Vector Power Dissipation,” in Proc. IEEE VLSI Test

Symposium, Apr. 2000, pp. 34-40.

[35] S. R. Nassif and J. N. Kozhaya, “Fast Power Grid Simulation,” ACM/ IEEE

Design Auto. Conf., Los Angeles, CA, Jun. 2000, pp. 156-161.

[36] H. Qian, S. R. Nassif and S. S. Sapatnekar, “Random Walk in a Supply Network,”

ACM/IEEE Design Auto. Conf, Anaheim, CA, Jun. 2003, pp. 93-98.

 121

[37] Z. Zhu, B. Yao and C.-K. Cheng, “Power Network Analysis Using an Adaptive

Algebraic Multigrid Approach,” ACM/IEEE Design Auto. Conf, Anaheim, CA,

Jun. 2003, pp. 105-108.

[38] P. Pant, J. Zelman, “Understanding Power Supply Droop during At-Speed Scan

Testing”, IEEE VLSI Test Symp., Santa Cruz, CA, May. 2009, pp. 227-232.

[39] B. Nadeau-Dostie, K. Takeshita and J. Côté, “Power-Aware At-Speed Scan Test

Methodology for Circuits with Synchronous Clocks,” IEEE Int’l Test Conf, Santa

Clara, CA, Oct. 2008, pp. 1-10.

[40] Y.-M. Jiang, K. -T. Cheng and A. -C. Deng, “Estimation of Maximum Power

Supply Noise for Deep Sub-Micron Designs,” IEEE Symp. on Low Power

Electronics and Design, Monterey, CA, Aug. 1998, pp. 233-238

[41] G. Bai, S. Bodda and I. N. Hajj, “Static Timing Analysis Including Power Supply

Noise Effect on Propagation Delay in VLSI Circuits,” IEEE Design Auto. Conf.,

Las Vegas, NV, June 2001, pp. 295-300.

[42] J. Wang, et al, “Power Supply Noise in Delay Testing”, IEEE Int’l Test Conf.,

Santa Clara, CA, Oct. 2006, pp. 1-10.

[43] Z. Jiang and D. M. H. Walker, “An Efficient Algorithm to Achieve Constant Test

Power”, IEEE Workshop on Defect and Data Driven Testing, Santa Clara, CA,

Oct. 2008.

[44] J. Saxena, K. M. Butler, V. B. Jayaram, S. Kundu, N. V. Arvind, P. Sreeprakash

and M. Hachinger, “A Case Study of IR-Drop in Structured At-Speed Testing,”

IEEE Int’l Test Conf., Charlotte, NC, Sept. 2003, pp. 1098-1104.

 122

[45] Z. Jiang and D. M. H. Walker, “Enhancement Approaches for Constant Test

Power Algorithm”, IEEE Int’l Test Synth. Workshop, Austin, TX, Mar. 2009.

[46] P. Pant and J. Zelman, “Understanding Power Supply Droop During At-Speed

Scan Testing”, IEEE VLSI Test Symposium, 2009, pp. 227-232.

[47] A. Kokrady and C. Ravikumar, “Fast, Layout-Aware Validation of Test Vectors

for Nanometer-Related Timing Failures,” IEEE International Conference on

VLSI Design, Bombay, India, Jan. 2004, pp. 597-602

 123

VITA

Zhongwei Jiang

Computer Science and Engineering Dept., Texas A&M University,

College Station, TX 77840

E-mail: jzweiwei@gmail.com

Zhongwei Jiang was born in Nanjing, China. He obtained his B.S. in electrical

engineering from Nanjing University of Posts and Telecommunications, Nanjing, China

in July 2002, M.S. in computer engineering from Shanghai Jiao Tong University,

Shanghai, China in July 2004 and a Ph.D. in computer engineering from Texas A&M

University, College Station, Texas, in December 2010. He worked for HP as a software

engineer for 2 years. His research interests are delay testing, automatic test pattern

generation, power and supply noise analysis. He is a member of the IEEE.

