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ABSTRACT 

 

Control and Management Strategy of Autonomous Vehicle Functions. 

(December 2010) 

Chang Won Kim, B.S., Pusan National University, Korea; 

M.S., Pusan National University, Korea 

Chair of Advisory Committee: Dr. Reza Langari 

 

 In this research, an autonomous vehicle function management methodology is 

studied. In accordance with the traffic situation, the decision making level chooses the 

optimal function that guarantees safety and minimizes fuel consumption while the 

control level is implemented via neuromorphic strategy based on the brain limbic 

system. To realize the decision making strategy, the Analytic Hierarchy Process (AHP) 

is used by considering driving safety, driving speed, and fuel efficiency as the objectives. 

According to the traffic situation and predefined driving mode, Lane Change Maneuver 

(LCM) and Adaptive Cruise Control (ACC) are chosen as the alternative functions in the 

AHP framework.  

The adaptive AHP is utilized to cope with dynamically changing traffic 

environment. The proposed adaptive AHP algorithm provides an optimal relative 

importance matrix that is essential to make decisions under a varying traffic situation 

and driving modes. The simulation results show that proposed autonomous vehicle 

function management structure produces optimal decisions that satisfy the driving 
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preference. The stability of BLS based control is also investigated via Cell-to-Cell 

Mapping. 

In this research, autonomous vehicle functions such as Lane change maneuver 

and Adaptive cruise control are developed by means of BLS based control. The 

simulation results considered various traffic situations that an autonomous vehicle can 

encounter. To demonstrate the suggested control method Cell-to-Cell Mapping is 

utilized. Subsequently, the autonomous vehicle function management strategy is 

developed by Applying AHP and an adaptive AHP strategy is developed to cope with 

various traffic situations and driving modes. The suggested method is verified numerical 

simulations. 
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In his heart a man plans his course, but the LORD determines his steps                        

( Proverbs 16: 9 ) 
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1. INTRODUCTION 

 

 Increasing number of vehicles has resulted in safety issues affecting the 

transportation sector 1  [1]. Moreover, recent research indicates that driver error 

contributes to up to 75% of all roadway crashes among vehicle defects, environment, 

and road conditions [2] because of the human’s limited perception about the 

environment, limited concentration on driving. To reduce the impact of these accidents, 

additional safety measures in vehicle design have been proposed [3]. An alternative 

solution in this respect is via the concept of intelligent transportation system (ITS). In 

particular, advanced vehicle control technology has been proposed towards the goal of a 

fully autonomous vehicle. The objectives of the unmanned vehicle are not only to 

achieve safety, but also to improve fuel efficiency and enhance driving comfort. To 

fulfill these goals, several functions such as stability control, adaptive cruise control, 

collision mitigation, lane keeping assistance and lane change support etc., have been 

proposed by a number of researchers [4-9].  

 While autonomous vehicles provide a viable approach to improve vehicle safety 

by relying on artificial intelligent control strategies, the vast majority of existing vehicles 

and even recently launched vehicles remain almost entirely dependent on human driving. 

Therefore driving safety and efficient reinforcing facilities are developed and installed in 

                                                 
This dissertation follows the style and format of IEEE Transactions on Vehicular 
Technology. 
 1 World Health Organization (WHO) predicts that traffic accident will be ranked third in 
the order of disease burden by the year 2030[1]. 
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an autonomous vehicle, and the necessity of managing these functions in accordance 

with traffic environments is emerging. Optimal management of multiple autonomous 

vehicle functions will reinforce active safety by reducing driving error. To this end, in 

this research, lane change maneuver and adaptive cruise control strategies are developed 

using a Brain Limbic System (BLS) based control while the individual functions are 

managed by an Analytic Hierarchy Process. These are discussed at more length below. 

 

1.1 Brain Limbic System Based Control 

The previously explained autonomous vehicle functions are realized by a 

neuromorphic based control, especially emotion. Traditionally, emotion has been 

regarded as something that is irrational. However, scientists have recently learned about 

the positive aspects of human emotions. Moreover, for a number of years, the emotional 

signal processing in the brain limbic system has been the subject of research in cognitive 

science. Mowrer [10] described a two-process model of learning through Amygdalo-

Orbitofrontal system. In the suggested learning system, the incoming stimuli are 

analyzed by the stimulus emotional system, and the analyzed results are manipulated as 

an emotional cue for stimulus-response learning. Rolls [11] elucidated the mechanism of 

the emotion and its application to the neural basis of emotion. LeDoux [12] and Rolls 

[13] explained the function of amygdala in the emotional process. In particular, Moren 

and Balkenius [14], [15] developed the computational model of the process of generating 

emotions in the human brain and verified the model using basic simulations. 

Subsequently the applications of the brain limbic system model appeared in the control 
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engineering literatures. Lucas et al. [16] introduced an intelligent controller model, 

which they christened Brain Emotional Learning, or BEL. Mehrabian and Lucas [17] 

designed a robust adaptive controller for stable uncertain nonlinear systems with BEL. 

Chandra and Langari [18] analyzed the BEL based approach, which they referred to as 

the brain limbic system, or BLS, by using methods of nonlinear systems theory. 

Shahmirzadi, et al. [19] compared the BEL based control with sliding mode control for 

rollover prevention of tractor-semitrailers. BEL (or BLS) has also been evaluated in a 

range of other systems [20] – [27]. These studies have demonstrated the performance of 

BLS as an adaptive control methodology, which I believe that this control strategy is 

also applicable to the vehicle driving situation in view of the disturbances affecting the 

vehicle performance. 

 

1.2 Lane Change Maneuver in an Autonomous Vehicle 

In the vehicle dynamics control framework, two major control problems have to 

be solved. One is spacing control and the other is lateral control. The former function is 

to keep the longitudinal space between vehicles at a prescribed level while the latter is to 

maintain the vehicle on a set reference path via steering control [28].  

 Lane change support is one of the functions needed to realize the notion of an 

intelligent or autonomous vehicle. To this end, Chee and Tomizuka [29] used four 

trajectories for the lane change maneuver, which are designed using transition time as 

the performance index. They implemented this function via linear quadratic (LQ) control 

as well as frequency shaped linear quadratic (FSLQ) control. An infrastructure guided 
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lane change using an additional cross-over marker reference, and free lane change using 

a yaw-rate sensor are investigated by Tan et al. [30]. Hatipoglu et al. [31] proposed a 

virtual yaw reference and the utilization of a robust switching controller to generate 

steering commands. Feng et al. [32] made usage of fuzzy-neural networks (FNN) and 

genetic algorithms (GA) to accomplish lane change maneuvers. You et al. [33] have 

presented a robust vehicle controller using a 2-DOF loop shaping design procedure in 

highway driving environment. Naranjo et al. [34] introduced an overtaking system that 

uses a fuzzy controller. The control structure mimics human behavior and reactions 

during overtaking maneuvers. Abe [35] presented a human driver model based controller 

with respect to the looking-ahead distance and vehicle speed. This model is widely seen 

as an effective basis for autonomous or semi-autonomous vehicle control. 

 

1.3 Adaptive Cruise Control in an Autonomous Vehicle 

The other autonomous vehicle function that is considered in this research is 

Adaptive Cruise Control (ACC). ACC was introduced as an extension of conventional 

cruise control by including the detection of a vehicle in front of the ACC-equipped car, 

and inter-vehicle distance regulation with respect to the relevant target. By using a 

LIDAR (Light Detection And Ranging), which is located on the front of the vehicle, or 

cameras mounted on the front of the vehicle one can scan for other vehicles or objects in 

front of the ACC-equipped vehicle. The ACC-equipped vehicle decelerates when 

approaching a vehicle and accelerates again to the preset velocity when traffic condition 
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allows this, therefore providing the ACC equipped the capacity to improve driving safety 

and efficiency.  

 Since ACC-equipped vehicles must follow a preceding vehicle at a desired 

distance, a number of inter-vehicle distance spacing policies have been suggested in the 

literature. These range from constant distance policy to constant time gap (headway) 

policy, and modified velocity dependent gap policy [36-38].  However, constant time 

gap policy, the inter-vehicular spacing varies linearly with vehicle velocity, is utilized in 

the majority of ACC research.  In particular, Ioannou and Chien [39] proposed a control 

law for an AICC (Autonomous Intelligent Cruise Control) system based on constant 

time headway safety distance. More recently, Liang and Peng [40] developed an optimal 

ACC algorithm that minimizes the range and range error for all the vehicles in a string 

considering a two-level methodology. In this two-level approach, which is commonly 

used in ACC research, the higher level computes the desired acceleration/deceleration 

rate and the lower lever controls the throttle/brake to generate the prescribed action. 

Likewise, Swaroop and Hedrick [41] provided a framework for establishing conditions 

for string stability and a metric for analyzing the performance of a platoon resulting from 

different ACC algorithms. Similarly, Santhanakrishnan and Rajamani have developed a 

framework for design and evaluation of spacing policies by considering string stability, 

traffic flow stability, and traffic flow capacity [38]. Bageshwar et al. [42] proposed 

optimal control based on the model predictive framework to achieve a spacing control 

law. Nonlinear reference model based control approach providing dynamic solutions 

consistent with the safety constraint and comfort specifications is developed in [7]. And 
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Ferrara and Vecchio [43] have suggested a second order sliding mode control to achieve 

ACC.  More recently, Tsai et al. [44] developed a fuzzy longitudinal control system for 

achieving adaptive cruise control (ACC) and Stop&Go control.  

 

1.4 Analytic Hierarchy Process 

After autonomous vehicle functions are developed. Subsequently, a multi 

objective decision making theory, so called, Analytic Hierarchy Process (AHP) is 

utilized as the higher level decision maker for integration of active safety features such 

as adaptive cruise control or autonomous lane change function. AHP was developed by 

Thomas L. Saaty in the 1970s [45-46]. This methodology is applied widely in a broad 

range of areas ranging from public policy to business management, industrial process 

scheduling, healthcare, and educational administration. Normally, the AHP is a 

structured method that is used in decision making for complex problems. The decision 

maker is helped by the AHP to choose the best alternative, which satisfies the given 

needs. In particular, by considering the traffic situation that the vehicle encounters, this 

layer decides “which function will be applied when” to ensure safe and efficient driving.  

 

1.5 Contributions 

The eventual goal of this research is to developing an autonomous vehicle. Even 

though a lot of human assistant systems have been developed, those functions do not 

perform an autonomous driving. Figure 1.1 displays the autonomous vehicle developing 

direction. Lane change maneuver (LCM), adaptive cruise control (ACC), forward 
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collision avoidance system (FCAS), and lane keeping system (LKS) are considered as 

the autonomous vehicles main functions, the decision is made by human (driver) in semi 

autonomous vehicle system while the computer makes decision in fully autonomous 

vehicle.   

 
Figure 1.1 An autonomous vehicle. 

 In order to achieve the goal, two of the functions such as LCM and ACC are 

developed by Brain Limbic System based control. Subsequently, the functions are 

managed by Analytic Hierarchy Process to select an optimal function among the 

available autonomous vehicle functions.  

 The contributions of this research are stated below; 

• BLS based control application to LCM and ACC development 

• BLS based control stability analysis via Cell-to-Cell Mapping method 

• Application of AHP to an autonomous vehicle function management  

• An adaptive AHP for various traffic situations and driving modes. 
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1.6 Outline of the Dissertation    

 In Section 2, the detail functions and design and application strategy of brain 

limbic system based control is stated.  

 In Section 3, BLS based control method is applied to lane change maneuver 

function. After design the controller, the results are compared with the human driver 

model introduced by Abe [35]. In the simulation, without and with disturbance cases are 

considered by defining the disturbance of wind load, cornering stiffness uncertainty, and 

mass change. 

 In Section 4, BLS based control is utilized for adaptive cruise control. The results 

of BLS based ACC are compared with conventional method [41] and fuzzy logic method 

[44] by considering various traffic situations such as highway normal, highway 

emergency, downtown traffic light, and downtown traffic congestion case. 

 In Section 5, the stability of BSL based control is investigated by Cell-to-Cell 

Mapping method. LCM model is used to demonstrate the stability of the controller. The 

cell map displays stable initial conditions within a vehicle operation range showing the 

stability of the designed control system. 

 In Section 6, the detail of Analytic Hierarchy Process is explained. To cope with 

various traffic conditions and driving modes an adaptive AHP algorithm is suggested. 

The simulation demonstrates the performance of adaptive AHP. 

  Finally, the conclusions and futures works are given in Section 7.  
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2. BRAIN LIMBIC SYSTEM BASED CONTROL 

 

2.1 Brain Limbic System 

In this research, Brain limbic system (BLS) based control is utilized to 

implement the lane change maneuver and adaptive cruise control. Thus the key aspects 

of Brain Limbic System (BLS) based control framework are summarized in this Section. 

The human brain limbic system learns appropriate reactions to the external stimuli by 

processing the sensory input representing the external stimuli as well as an internal cue 

capturing the emotional impact of the collection of stimuli. By mimicking the emotional 

learning process occurring in the human brain, a control system can be devised to 

achieve a desired goal, i.e. accomplishing lane change or the adaptive cruise control in 

autonomous or semi autonomous driving. 

 Amygdala, orbitofrontal cortex, sensory cortex, and thalamus are the main 

components of brain limbic system for the emotional processing and learning. Amygdala 

and the orbito-frontal cortex (OFC) participate in generating the emotional response in 

the human brain. In this emotional learning process, the amygdala learns the appropriate 

relations between neutral and emotionally charged stimuli while the OFC tries to inhibit 

inappropriate links as the task is accomplished. The thalamus functions as a 

communicator between the cortical and the other parts of the loop. The sensory cortex 

manipulates the sensed input to produce SI  from the definition of raw sensory input.  
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2.2 Brain Limbic System Based Control 

 Moren and Balkenius [14-15] developed a computational model of the brain 

limbic system (BLS) process as shown in Figure 2.1.  

 

Figure 2.1 A computational model of the BLS controller. 

 Equations (2.1) through (2.5) describe a simplified model of the process: 

  ∑ ∑−=
i

i
ii OCAMO  (2.1) 

  iAi SIGA
i
⋅=  (2.2) 

  iOCi SIGOC
i
⋅= , (2.3) 

where MO  represents the model output (i.e. the output of the computational model 

representing the brain limbic system) and the subscript i  represents the thi sensing 

stream. 
iAG and 

iOCG  represent the gains of amygdala and the OFC, respectively (with 
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respect to the given sensing stream). The sensory input is denoted by iSI  and the 

emotional cue by EC . 

 In brief, this strategy is inspired by biology, where, based on both good and bad 

experiences, the amygdala constantly learns the associations between the sensory input 

signals and the emotional signal and tends to behave based on the learned associations. 

On the other hand, the OFC’s inhibitory signals act to prevent any inappropriate actions 

to be issued by the amygdala (and hence, by the total model) when it is found 

inappropriate. 

  ⎟
⎠

⎞
⎜
⎝

⎛
−⋅⋅=Δ ∑

i
iiA AECSIG

i
,0maxα  (2.4) 

The Amygdaloid gains, 
iAG , are learned proportionally to the difference between the 

reinforcement ( EC ) and the output signal of the amygdala nodes. Here α  is a learning 

rate, selectable between 0 (no learning) and 1 (instant adaptation). In practice, it is 

usually set at a fairly low value. The learning of the system is a function of the learning 

rateα , the difference between the strength of the emotional cue and the current output of 

the amygdala nodes, and the strength of the stimulus signal SI . The stronger the 

stimulus and the larger the difference between EC  and amygdala output, the faster the 

learning occurs. This subsystem can never unlearn a connection by taking maximum 

value between 0 and the difference between EC  and ∑
i

iA ; once learned, it is 

permanent, giving the system the ability to retain emotional connections for as long as 

necessary. 
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  ⎟
⎠

⎞
⎜
⎝

⎛
−−⋅=Δ ∑∑ ECOCASIG

i
i

i
iiOCi

β , (2.5)  

Unlike the amygdala model, the learning occurring in OFC is not constrained to be 

monotonic; β  is the learning rate of OFC. Because BLS is an online learning algorithm, 

it is influenced by the learning rate of each subsystem. In view of this issue, we set the 

learning rate of the amygdala to be lower than that of OFC to avoid impulsive decisions 

on the part of the controller. In other words, the system operates more carefully in view 

of the larger OFC learning rate. The OFC tracks the mismatch between the system’s 

predictions and the actual received reinforcement, and learns to inhibit the system output 

in proportion to the mismatch. By the observation of (2.4)-(2.5), it is noted that the 

Amygdaloid gains are not affected when EC  is zero; however the OFC gains rapidly 

increases and inhibits the output. After 
iAGΔ and 

iOCGΔ are obtained, the output signal 

of the amygdala, iA , and that of OFC, iOC , are calculated by (2.2)-(2.3). 

 As shown in equations (2.4) and (2.5), SI  and EC  perform significant roles in 

BLS. The emotional cue signal, EC , is internally generated. The form of this signal is 

defined by the designer with respect to the purpose of control. In brain limbic system 

(BLS) design, the most important task is finding a suitable SI and EC  for specific 

objective. As the objective is accomplished, the EC  value should have a tendency to 

increase (or otherwise to decrease). 
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2.3 Summary 

 The research on BLS was started from the effort to figure out the linkage 

between the stimulus and the resulting emotion. At first, the emotion based learning was 

neglected because people thought emotion is not reliable. However, the supporting 

researches demonstrated the advantages of BLS based learning system and it’s robust on 

uncertainties. In this Section, Brain Limbic System and its mechanism as an adaptive 

controller is discussed.  
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3. BRAIN LIMBIC SYSTEM BASED  

LANE CHANGE MANEUVER 

 

3.1 Lateral Vehicle Dynamics 

 In this Section, BLS based application to lane change maneuver is discussed. The 

lane changing maneuver is studied under the consideration of the lateral dynamics of the 

vehicles [28], [35], [47]-[49]. It is assumed that there is a longitudinal control scheme 

that maintains the vehicle speed at a set value during the lane change maneuver. Figure 

3.1 shows the coordinates of the vehicle and the forces that affect it. To describe the 

position of a vehicle, vehicle (body) fixed coordinate is utilized.  

δ

ψ

),,( ψyx

Y

XO
 

Figure 3.1 Schematic model of lateral vehicle dynamics. 
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 The configuration of the vehicle is composed of three components in the global 

coordinate system, x, y, and ψ . By definition, ψ  is the vehicle yaw angle, i.e. the angle 

between the vehicle’s longitudinal direction and the coordinate’s X axis. As shown in 

Figure 3.1, while the vehicle is driven, the lateral direction forces of front and rear tires, 

yfF and yrF , are generated by the cornering stiffness ( )rf CC ,  and the side slip angles: 

  ffyf CF α⋅=  (3.1) 

  rryr CF α⋅= , (3.2) 

where the side -slip angles, fα  and rα  are given by 

  
x

y
f v

av ψ
δα

+
−=  (3.3) 

  
x

y
r v

bv ψ
α

−
−= . (3.4) 

Here δ  is the steering angle and yv  is the lateral velocity of the vehicle. Additionally, a 

and b are defined as the distance from the mass center of the vehicle to the lines of 

actions of the lateral forces acting on the vehicle. Likewise, xv represents the 

longitudinal velocity of the vehicle that is assumed to be constant during the lane 

change.  

 After the front and rear forces are defined, the following relationship is derived 

from Newton’s law under body fixed coordinates: 

  ( ) yryfxy FFvvm 22 +=+ ψ . (3.5) 

From the moment equation 
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  yryf bFaF
dt
dI 222

2

−=
ψ . (3.6) 

By substituting (3.3), (3.4) into (3.5)-(3.6) 

 ψ
ψψ

δ x
x

y
r

x

y
fy mv

v
bv

C
v

av
Cvm −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
−= 22   

 
( ) ( )

δψ fx
x

rf
y

x

rf Cmv
v

bCaC
v

mv
CC

222 +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−

+
−=  (3.7) 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
−=

x

y
r

x

y
f v

bv
bC

v
av

aC
dt
dI

ψψ
δψ 222

2

  

 
( ) ( )

δψ f
x

rf
y

x

rf aC
v

CbCa
v

v
bCaC

2
22 22

+
+

−
−

−= . (3.8) 

By dividing (3.7) and (3.8) by the vehicle mass and yaw moment inertia the final vehicle 

lateral dynamics is obtained. 

 
( ) ( )

m
C

v
mv

bCaC
v

mv
CC

v f
x

x

rf
y

x

rf
y

δ
ψ

2
22 +⎥

⎦

⎤
⎢
⎣

⎡
+

−
−

+
−=  (3.9) 

 
( ) ( )

δψψ
I

aC
Iv

CbCa
v

Iv
bCaC f

x

rf
y

x

rf 222 22

+
+

−
−

−= . (3.10) 

Note that the vehicle gross mass m  and the rotational moment I are assumed given. 

This vehicle model is derived in body fixed coordinate, in order to observe the vehicle 

motion in global perspective, the following relationship is utilized. 

  ψψ sincos yx vvx −=  (3.11) 

  ψψ cossin yx vvy += . (3.12) 
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3.2 BLS Based LCM Design 

 In this subsection, application of the brain limbic system based control to an 

autonomous vehicle function, i.e. lane change maneuver, is discussed. Figure 3.2 shows 

the structure of lane change control for an autonomous vehicle. There are two concepts 

in controlling lateral vehicle dynamics. One approach is via a looking ahead system 

using the vehicle’s sensors and the other is using sensors installed on the road center 

[30].  

μ

λ

y

ψ

δ

 

Figure 3.2 An autonomous vehicle control structure for lane changing maneuver.  

 In this research, the looking ahead method is employed. Therefore, the measured 

lateral displacement and yaw angle are used to compute the deviations from the target 

path of the vehicle during the lane change. The outlook distance is defined as the looking 

ahead distance. And the distance between the look-ahead point and the lane change 

trajectory is defined as the error [35] 

   ψLyye TLCM −−= , (3.13) 
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where Ty and y  represent the lane change trajectory and lateral position of the vehicle, 

respectively. Furthermore, it is expected that the looking ahead distance should be 

comparatively larger as the vehicle’s speed increases. As a matter of fact, the looking 

ahead distance L affects the stability of the system [50]. In particular, a large looking 

ahead distance makes the vehicle stable while a small one generates oscillations [51]. 

Therefore, the looking ahead distance is defined with respect to the velocity of the 

vehicle as [52] 

  ⎥⎦
⎤

⎢⎣
⎡ ⋅×= sec
sec3600

1000 mVL . (3.14) 

 The steering angle,δ , is the input to the vehicle for lane change. To generate the 

appropriate steering angle, the BLS based controller utilizes the essential internal 

signals, sensory input ( SI ) and the emotional cue ( EC ). Now in terms of the 

application to the given control problem, the brain limbic system based controller is 

operated by two input signals SI  and EC . In the lane changing maneuver, SI  has been 

designed as the error between the reference path of the vehicle and EC  as the 

summation of the control output and sensory input. By designing these two input signals, 

the system is expected to produce a smaller EC  as it approaches the reference path.  

  LCMeSI =  (3.15) 

  ( )LCMLCM euEC +=λ , (3.16) 

whereλ  is a positive constant. Here λ  works as a weighting factor to impose a sense of 

relative importance between SI  and EC . By using smaller λ  the system generates a 

slower response through a smaller control output. In contrast, a larger λ  makes the 
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system faster by producing higher control outputs. To select the optimal λ , we consider 

the performance measure,  

   ( )dteP ft

∫ ++=
0

δψ , (3.17) 

where e , ψ , and δ  represent the absolute values of error, yaw angle, and steering 

angle, respectively. Minimizing this measure via a gradient search process, the optimal 

gain λ is obtained. The actual choice of λ  is obtained through trial and error. The 

steering command δ  and the BLS output are given by: 

  LCMuμδ =  (3.18) 

  SIGSIGu ocALCM −= , (3.19) 

where μ  is a positive constant to make the steering angle reasonable, this constant is an 

amplifier of the BLS output. After the steering command is produced from the BLS, it is 

used to follow the reference path and to produce EC  and SI . By taking the differential 

form of Amagdala and OFC learning rules introduced in Section 2, and substituting 

(3.18)-(3.19) into the BLS structure is obtained 

  ( ){ } 21,0max LCMocAA eGGG λλλα +−−=  (3.20) 

  ( ) ( ){ } 211 LCMOCAOC eGGG λλλβ −−−−= . (3.21) 

It is evident from (3.20) that the gain of the amygdala is always positive. However, the 

Orbito-frontal Cortex gain can have both positive and negative values. 
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3.3 Human Driver Model for LCM 

 To demonstrate the performance of the suggested method in lane change 

behavior, the human driver model (HDM) based control scheme is introduced by Abe 

[35]. In Abe’s vehicle control method, the vehicle is controlled by a human model, 

which has the ability to generate steering command with respect to the reference 

deviation of the vehicle. Because a human operator can not react immediately to the 

error signal, a time delay, Lτ  is considered in the human model as the form of sLe τ− . He 

suggested a simplified Ragazzini’s [53] linear transfer function of a human controller 

  ( ) s
DLCM

LeshsH ττ −+= 1)( . (3.22) 

To make the human model simpler, Abe [35] justified that a human operator does not 

have derivative gain, Dτ  because looking ahead is itself similar to the derivative control 

action. Additionally, the delay term is approximated by the small time delay. 

  
L

sLe
τ

τ

+
≈−

1
1 . (3.23) 

Therefore, simplified and modified transfer function of the human driver model is given 

by  

  
s

hsH
L

LCM

τ+
=

1
)( , (3.24) 

where LCMh  represents the human proportional action to the input signal [35]. To get the  

optimal h  value Abe [35] analyzed the driver-vehicle system lane change response by  
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y

ψ

δ

 
Figure 3.3 Human driver based lane change control structure. 

varying h values and finally, they selected .02.0=h  Also to obtain the optimal human 

time delay, τ L = 0.2 , the root-locus of the driver-vehicle system was used in Abe [35]. 

This same value is adopted here for reference. Figure 3.3 explains the control structure 

of HDM. 

 

3.4 Overshoot Criterion for Safe Lane Change 

 In order to avoid collision between neighboring vehicles due to the deviation 

from the reference path, it is necessary to set a maximum overshoot criterion for the 

vehicle. The vehicle’s yaw angle, ψ , is changed while the vehicle moves to the next 

lane. Because the movement makes the vehicle rotate towards the direction of the target 

lane, an additional length that is longer than the vehicle’s half width should be factored 

in. Figure 3.4 explains the overshoot criterion for safe lane change. The bold line 

represents the lane boundary and the dotted line in the middle is the desired trajectory of 

the vehicle mass center. When the width of the vehicle is defined as vW , the angle shown 

in Figure 3.4, 1θ  and 2θ  are calculated as follows. 
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1θ

2θ
ψ

fw

rw

 
Figure 3.4 Overshoot criterion for safe lane change. 

  ⎟
⎠
⎞

⎜
⎝
⎛= −

a
Wv

2
tan 1

1θ  (3.25) 

  ⎟
⎠
⎞

⎜
⎝
⎛= −

b
Wv

2
tan 1

2θ . (3.26) 

By adding the vehicle’s yaw angle to the obtained angles, the front and rear lateral 

lengths of the vehicle from the center of gravity are 

  ( ) ( )ψθ ++= 1
22 sin2/vf Waw  (3.27) 

  ( ) ( )ψθ ++= 2
22 sin2/vr Wbw . (3.28) 

While the vehicle is rotating, these front and rear lateral vehicle lengths are used to set 

the overshoot criterion for lane change maneuver. In the view of safety, when a vehicle 

changes lane, any part of the vehicle should not cross over into the adjoining lane. To 

guarantee this, the following must be satisfied 
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  ( )rfR llWy ,max
2
3

max −≤  (3.29) 

  RWyOS −= maxmax , (3.30) 

where maxy  stands for the maximum lateral displacement of the vehicle, maxOS  is the 

maximum allowed overshoot, and RW  is the width of the lane. The overshoot criterion 

will be used to evaluate the performance of the proposed strategy.  

 

3.5 Simulations 

 In this subsection, the BLS based lane change control strategy is verified by 

numerical simulations. For simulation purposes, the vehicle parameters of Honda 

Accord are borrowed [50]. The minimum lane width in interstate highway standard is 

chosen as the lane width, RW  [54]. When the discussion about the overshoot criterion is 

considered with the parameters in Table 3.1, the overshoot of the vehicle path, ,OS  has 

to be less than maxOS . In other words, if the maximum lateral displacement is larger than 

maxy , the controller is considered to have failed and collision is expected. 

Table 3.1 Vehicle parameters (Honda Accord). 

 

  

 

 

a 1.22 m  fC  60000 N/rad 

b 1.62 m  rC  60000 N/rad 

m 1590 kg  vW  1.847 m 

I 2920 2mkg  RW  3.62 m 
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3.5.1 LCM under Ordinary Condition 

 The first set of the simulations do not include any disturbances. The dry road 

condition is considered and the vehicle velocity is set as 100 km/h which is the normal 

highway speed. The lane change command is given in the form of a step function at 5 

seconds of the simulation duration with amplitude of the standard road width, .RW  

Figure 3.5 shows the results of the simulation. The steering angle represents the control 

input to the vehicle for lane change. And the control input of BLS (solid line) is smaller 

than that of HDM (dotted line). Finally, the lateral movement plots show both methods 

satisfy the overshoot criterion (the lateral displacement of the vehicle is under 4.24 

[meter]) and demonstrate that the performance of BLS is better in terms of maximum  

 

(a) steering angle )(δ   

Figure 3.5  Lane change behavior comparison between BLS (brain limbic system based  

strategy) and HDM (human drive model) under ordinary condition (100km/h). 

0 5 10 15
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
Steering angle

time [sec]

S
te

er
in

g 
an

gl
e 

(d
el

ta
) [

de
g]

 

 
BLS
HDM



 

 

25

 

(b) yaw angle )(ψ  

  

 

(c) lateral displacement y 

Figure 3.5  Continued. 
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lateral displacement. 

 

3.5.2 Lane Change under Disturbances 

 The actual driving condition has several unexpected situations and uncertainties. 

The vehicle can encounter wind, wet road, or even a snowy path. Not only the external 

factors, but also internal factors such as the tires and mass change can provide 

uncertainties in vehicle dynamics identification. The cornering stiffness is one of the 

uncertain parameter that has to be taken into account. To this end, Sienel [55] has 

reflected on the effect of side-slip angle on cornering stiffness. When the side-slip angle 

is large, the cornering stiffness changes with the road condition. In order to consider 

these various conditions, the robustness of the BLS based controller has to be addressed. 

The following simulations are used to verify this issue.   

3.5.2.1 Wind Load 

 First of all, the wind effect on the driving by using the vehicle dynamics with 

wind load model is considered. The vehicle shape, the air density, vehicle and wind 

speed are mainly affected by the wind load that a vehicle has to bear. The lateral 

dynamics of the vehicle (including an added wind load effect) is as follows 

 
( ) ( )

m
Y

m
C

v
mv

bCaC
v

mv
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v wf
x

x

rf
y

x

rf
y ++⎥

⎦

⎤
⎢
⎣

⎡
+

−
−

+
−=

δ
ψ

2
22  (3.31) 
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v
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+

−
−

−= δψψ
222 22
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where wY  represents the wind load and wl  is the distance from vehicle’s mass center 

where the wind load acts [35].  

 In this simulation, it is assumed that the vehicle experiences wind load during 

lane changing and normal driving. The first wind load (1600 Newton; 30 m/s) occurs  

 

(a) steering angle )(δ   

Figure 3.6 Lane change behavior comparison between BLS and HDM under wind  

blowing condition (100km/h). 
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(b) yaw angle )(ψ  

 
(c) lateral displacement y  

Figure 3.6 Continued. 
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(d) wind load 

Figure 3.6 Continued. 

from t=3 sec to t=15 sec, and 3000 Newton (50 m/s) of wind load occurs from t=20 sec 

for 10 seconds as shown in Figure 3.6 (d). The sudden wind load profile applied to the 

vehicle that is driven at 100km/h. The vehicle’s lateral position is offset toward the wind 

passing direction. Both control strategies successfully control the vehicle under the given 

wind profile. The comparison results show that the steering input and yaw angle are not 

quite different; however, the overshoot of BLS is smaller than that of HDM under windy 

condition.  

 When the yaw angle is observed, clockwise direction of rotation is observed even 

though the wind blows from the right-hand side of the vehicle. It is because of the force 

balance within the vehicle. The engine of a vehicle normally located in front of it. 

Therefore, the distance from the mass center of a vehicle to the each tire axis is not 

normally same. The distance unbalance and force unbalance a resultant force is occurs at 
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NSP (neutral steer point) at 
yryf

yfyr
N FF

aFbF
l

+
−

=  in Figure 3.7. Also when wind 

blows from the side of a vehicle a concentrate force is assumed at the aerodynamic 

center (AC), wl . Then there are the following circular motion is observed by the 

resulting moments; 

a. If AC is in front of NSP, CCW motion occurs. 

b. If AC with coincide with NSP, no circular motion occurs. 

c. If AC is behind the NSP, CW motion occurs. 

In the simulation, I used the vehicle parameters of Honda Accord, i.e. ,22.1 ma =  

,62.1 mb = radNCC rf /60000== . Therefore the NSP occurs at 2.0=Nl  and 

3.0=wl ,  the CW motion is occurred.  

 

Figure 3.7 Wind disturbance and force balance [35]. 
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(a) Steering angle and Yaw angle under no knowledge 

 

(b) Lateral position of the vehicle. 

Figure 3.8 BLS learning under wind disturbance without knowledge case. 
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  Figures 3.8 and 3.9 show the wind disturbance enduring test when there is no 

lane change maneuver. Especially, Figure 3.8 is the results from the setting without 

knowledge. Before the BLS system does not experience the windy condition there is no 

knowledge how to cope with the windy condition. Therefore, the gain of amygdala and 

OFC are set to zero, i.e. 0,0 == OCA GG   to apply no knowledge case. At the first few 

seconds, the BLS system is learning the wind disturbance case while having worse 

results than that of the HDM control method. However, after the learning process, the 

results of steering angle and yaw angle are very similar to the counterpart. Additionally, 

the lateral displacement of BLS based control is better than HDM control. After this 

simulation, the undated values of amygdala and OFC, i.e. ,0015.0=AG  0023.0−=OCG  

are obtained. Subsequently, these gains are used as the knowledge about the windy road 

case. By setting the initial conditions of amygdala and OFC with those values, the same 

wind disturbance situation is conducted again. Figure 3.9 displays the results and there is 

no notable learning process observed. This shows that the BLS system gains are undated 

to appropriate values as the system leans the correct knowledge to accomplish the given 

task. 
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(a) Steering angle and Yaw angle under knowledge 

 

(b) Lateral position of the vehicle. 

Figure 3.9 BLS learning under wind disturbance with knowledge case. 
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(a) steering angle )(δ  

 

 (b) yaw angle )(ψ   

Figure 3.10 Lane change behavior comparison between BLS and HDM  

 under cornering stiffness uncertainty (100km/h).  

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Steering angle

time [sec]

S
te

er
in

g 
an

gl
e 

(d
el

ta
) [

de
g]

 

 
BLS
HDM

0 5 10 15 20 25 30 35 40 45 50
-1

0

1

2

3

4

5

6

7
Yaw angle

time [sec]

Y
aw

 a
ng

le
 (P

si
) [

de
g]

 

 
BLS
HDM



 

 

35

 

 
(c) lateral displacement y 

Figure 3.10 Continued.  

3.5.2.2 Uncertainty of Cornering Stiffness  

 The cornering stiffness is determined from measuring the lateral force. The 

uncertainty of cornering stiffness originates from the associated measurement process. 

And it is assumed that the cornering stiffness varies from -29% to 35% from its nominal 

value and this range follows other relevant literature [33]. To include the uncertainty in 

the simulation, random cornering stiffness values within the given ranges is chosen using 

the ‘rand’ function in Matlab. To this end, 100 different random cornering stiffness 

values are simulated by means of Monte Carlo simulation method. Figure 3.10 is one of 

the 100 different simulation results. It shows that BLS produces smaller steering control 

and yaw angle changes during the lane change maneuver. Also the lateral displacement 

of the suggested method produces smaller overshoot when it is compared with the HDM 
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method. Figure 3.11 shows the maximum lateral displacement and the frequency of 

occurrence of the maximum lateral displacement histogram during the lane change of 

BLS and HDM, respectively. In particular, 100 simulations were carried out and the 

statistics provide the frequency of lateral displacement in the histogram and the mean 

value of the maxy  is calculated to compare the performances. In Figure 3.11, the vertical 

line at the lateral displacement value of 4.24 [meter] represents the displacement for safe 

lane change. As shown in the figures, the mean of maximum lateral displacements of 

BLS is 3.64 [meter] and that of HDM is 3.79 [meter] where the targeted lateral 

displacement is 3.66 [meter]. It demonstrates the safer performance of BLS based 

control. 

 

(a) BLS 

Figure 3.11 Histogram of lateral deviation under cornering stiffness uncertainty  

(100km/h). 
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(b) HDM 

Figure 3.11 Continued.  

3.5.2.3 Wind and Cornering Stiffness 

 In this part, the disturbances from wind and cornering stiffness are considered 

together. The same wind profile and variation of the cornering stiffness are used again. 

Figures 3.12 and 3.13 show the results of this simulation. When the lateral position 

results are compared, BLS shows less overshoot during lane changing. The maxy  

histograms show that the mean of BLS is 3.89 [meter] and the mean of HDM is 4.03 

[meter]. Also the results show several occurrences of failure of the HDM method that 

exceed maxOS . In this result, it is demonstrated that BLS based method is better than 

HDM based control in safety aspect.  
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(a) steering angle )(δ   

 

(b) yaw angle )(ψ  

Figure 3.12 Lane change behavior comparison between BLS and HDM under wind 

blowing and uncertain cornering stiffness (100km/h). 
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(c) lateral displacement y 

Figure 3.12 Continued. 

 

    (a) BLS 

Figure 3.13 Histogram of lateral deviation under wind 

blowing and uncertain cornering stiffness (100km/h). 
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(b) HDM 

Figure 3.13 Continued. 

3.5.2.4 Wind, Cornering Stiffness, and Mass 

 The harshest condition is assumed by simultaneously employing all the 

disturbances in the previous simulations. All the uncertainties and varying rates are 

maintained. Additionally, the passenger (70kg/person, max 350 kg), the fuel (0.76 

kg/liter, max 49.17 kg), and baggage (max 60 kg) are considered by taking account of 

the maximum load to minimum load (one driver, empty fuel tank, and no baggage 

condition). To implement this varying mass, the random mass is chosen between the 

maximum and minimum loading conditions. When the simulation results (Figure 3.14) 

are compared, the BLS based method is strong in all aspects during the lane change. In 
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Figure 3.15, the safety of the proposed method is demonstrated again by providing the 

histograms and the mean maxy  of BLS is 3.93 [meter] and that of HDM is 4.01[meter].   

 
(a) steering angle )(δ  

Figure 3.14 Lane change behavior comparison between BLS and HDM under all 

disturbances (100km/h). 
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(b) yaw angle )(ψ  

 

(c) lateral displacement y 

Figure 3.14 Continued. 

 In the first part of the simulation, the BLS based control results have worse 

performance until it updates the appropriate gains for the amygdala and OFC. The most  
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(a) BLS  

 

(b) HDM 

Figure 3.15 Histogram of lateral deviation under all disturbances (100km/h). 
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important aspect of the vehicle driving is the safety while driving. The statistical results 

show that BLS based lane change provides smaller lateral displacement during lane 

change. 

 

3.6 Summary 

 In this Section, lane change maneuver for an autonomous vehicle is discussed. It 

is assumed that the lane change support works after all the required data are given and 

the lane changing decision is made by a higher level decision maker. The brain limbic 

system based controller is utilized to accomplish autonomous lane change function under 

defined environments. To compare the performance of the suggested method, human 

driver model based controller is introduced. The performance of designed lane change 

controller is demonstrated by numerical simulations. And the disturbance from wind, 

cornering stiffness uncertainty, mass change, and mixture of them are considered. From 

the simulation results, it is concluded that the suggested method is safer than HDM in all 

simulated cases by showing larger safety margin.  
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4. BRAIN LIMBIC SYSTEM BASED 

ADAPTIVE CRUISE CONTROL 

 

4.1 Longitudinal Vehicle Dynamics 

 Longitudinal vehicle control is utilized to develop adaptive cruise control (ACC) 

for an autonomous vehicle. Unlike traditional cruise control, ACC has two control 

modes. One is speed control mode, which is the conventional cruise control itself, and 

the other is the time gap control mode. When there is no vehicle in front of the ACC-

equipped vehicle, the speed control mode comes into operation to maintain the set-up 

velocity; however, constant time gap control is activated in presence of a vehicle within 

the desired inter-vehicle distance gap. The transition between the two control modes is 

determined automatically by this presence [56].  

 A set of vehicles is considered as depicted in Figure 4.1. In the figure, x  and x

(or v ) represent the absolute position and velocity of the ACC-equipped vehicle. Here, 

the subscript T  represents the leading (target) vehicle while the following vehicle is  

Tx
vx,

  

Figure 4.1 Set of adaptive cruise control vehicles. 
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defined with its location.  

 To generate the control input at the lower level, vehicle engine and braking 

system must work together. In this research, the higher level control is focused on by 

assuming the lower level servo control performs normally. However, the realization of 

the desired control input is generally limited by the components. Bageshwar, Garrard 

and Rajamani [42] have suggested a first order time lag model to cover the limitations of 

control input in the engine and the brake. Therefore the acceleration based vehicle model 

is derived as follows; 

  )(tuxx
dt
d

ACCii =+τ , (4.1) 

where τ is the time delay of the vehicle. And the acceleration of the vehicle has upper 

and lower boundaries defined as 

  maxmin )( utuu ACC ≤≤ ,  (4.2)  

where minu and maxu are the minimum and maximum control inputs, respectively. In this 

study, it is assumed that 2
min /5 smu −=  and 2

max /5.2 smu =  as typical values that are 

also used in other reference [42]. Deceleration is generated by the braking system and 

the braking force is larger in absolute value than that of the motive forced produced by 

the accelerator. 

 

4.2 BLS Based ACC Design 

 In this subsection, the application of the introduced neuromorphic control 

methodology to an autonomous vehicle is presented. A set of lead and follower vehicles 
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is considered to evaluate the BLS based ACC. In this set-up, the ACC-equipped vehicle 

controls the velocity according to the lead (or target) vehicle velocity while maintaining 

a predefined constant time gap. Figure 4.2 displays the control structure of the BLS 

based ACC. To implement the suggested control method, it is assumed that the sensors 

used to measure the relative distance and velocity, and the controlled vehicle’s 

acceleration function perfectly. Therefore, all sensed data pertaining to the vehicles are 

regarded as accurate2 [57]. After the ACC-equipped vehicle detects the position and 

velocity of its target vehicle, the relative distance ( e ), the relative velocity (e ), and the 

acceleration of the ACC-equipped vehicle ( ACCa ) are sent to the signal processor to 

generate SI and EC according to the designated form of each signal. The BLS controller 

subsequently updates the gains of the amygdala and the OFC using the resulting signals 

such as SI and EC. 

 

Figure 4.2 BLS control structure for ACC. 

                                                 
2  R. Sharifi, Y. Kim and R. Langari [57] have developed and applied sensor fault 
isolation and detection technique that has been applied to engineering applications. The 
same technique will be utilized to get accurate sensed data and will be incorporated in 
practical implementation of the proposed approach as the case may require. 
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 As a spacing policy, the constant time gap policy that is varying with the vehicle 

velocity is employed [43].  

  vhll ACC ⋅+= 0 , (4.3)  

where 0l  is the safety inter-vehicle distance when both leading and following vehicles 

are stopped, l  represents the constant time headway distance of the vehicle, and ACCh  

refers to the time gap of the defined system. The distance, velocity, and spacing error 

between vehicles are defined as 

  ACCT xxe −= , (4.4) 

  ACCT xxe −= , (4.5) 

  ( )vhlxxs ACCACCTe ⋅+−−= 0 . (4.6) 

 BLS is operated by the emotional cues and sensory input, which are designed for 

specific application. To achieve the objective of ACC, the sensory input, ,SI  and 

emotional cue, EC , are defined as follows 

  ACCe awewswSI 321 ++= , (4.7) 

  ACCuSIEC += , (4.8) 

where 1w , 2w , and 3w are positive gains for spacing error, velocity errors, and the 

acceleration of the controlled vehicle. In adaptive cruise control, two important things to 

demonstrate the control performance are the inter-vehicular distance and velocity error. 

To this end, the following performance measure is defined  

  ( )∫ += ft

e dtesP
0

, (4.9) 
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while the gins are obtained by trial and error, the performance measure is utilized.  

 According to the various traffic situations, the gains also need to be changed to 

get better performance. To cover the various traffic situations, the gain scheduling 

method is utilized to update the SI  gains. Table 4.1 shows all SI gains with respect to 

the current preceding vehicle speed and the velocity difference between preceding and 

ACC vehicle. It is assumed that the velocity change is not larger than 10 km/h, in normal 

driving condition:  

Table 4.1 Parameters of SI with respect to the current target 

velocity and velocity difference. 

 
)/( hkm

VΔ
   

)/( hkm
Vt  

  1w     2w     3w  
 

)/( hkm
VΔ

   
           

-10 ~ -5 

10 6 1 2 

0 ~ 5 

10 12 1 6 
20 6 1 3 20 12 1 5 
30 5 1 1 30 9 2 2 
40 5 1 2 40 6 1 1 
50 4 1 1 50 4 3 1 
60 4 1 2 60 3 2 1 
70 4 1 2 70 2 3 1 
80 3 1 1 80 2 2 1 
90 2 3 1 90 2 2 1 

100 2 2 1 100 1 2 1 

-5 ~ 0 

10 10 1 4 

5 ~ 10 

10 5 2 2 
20 8 1 2 20 5 2 2 
30 7 1 3 30 4 3 1 
40 5 1 1 40 3 3 1 
50 5 1 2 50 3 1 1 
60 4 1 1 60 2 2 1 
70 3 2 1 70 2 1 1 
80 3 1 1 80 1 4 1 
90 2 2 1 90 1 4 1 

100 2 2 1 100 1 3 1 

)/( hkm
Vt

1w 2w 3w
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To get this table, four velocity difference regions are defined, i.e. ,510 1 −<Δ≤− V  

,05 2 <Δ≤− V ,50 3 <Δ≤ V .105 4 <Δ≤ V   And current velocities are define the medium 

value of region, i.e. 10 represents  .155 <≤V The gain scheduling table is used to update 

SI gains with respect to the encountered traffic situation. From Table 4.1, it is analyzed 

that as ACC vehicle’s velocity is slower the inter-vehicular gain, 1w is relatively larger 

than the other gains. Also as the ACC vehicle’s velocity is faster the velocity error gain, 

2w  is relatively larger than other gains. Therefore it can be concluded that speed control 

is conducted when the vehicle velocity relatively fast while inter-vehicular distance is 

focused on under relatively slow velocity. This conclusion is compatible with Francher 

and Bareket [58]. From these two internally generated signals, BLS based controller 

updates the gains of the amygdala and the OFC, i.e.
iAG and 

iOCG . 

 

4.3 Simulations  

 In this subsection, numerical simulations and their results are presented to 

demonstrate the performance of developed controller. Showing highway and city traffic 

situations, the application of the BLS based ACC is extended to various traffic 

environments. In the highway traffic environment, it is assumed that there are two 

disturbances with respect to the driving situation, a normal (albeit complex) road 

condition and an emergency road condition.  

 In the normal, complex road condition, various velocity profiles are defined in 

terms of the relevant speed limits and working zone restrictions that maybe applicable. 
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The emergency road condition, which requires a sudden stop due to an accident or fallen 

debris on the road, is also investigated.  Additionally, city (downtown) traffic situations 

are simulated. In the center of a city traffic environment, traffic flow control by traffic 

signals and traffic congestion are the main contributors to the velocity changes of a 

vehicle. These situations are covered in downtown traffic simulation. To compare the 

performance of the suggested method with the fuzzy logic methods and PD control 

method are simulated under the same condition. The fuzzy rules and membership 

functions were utilized in [44] is presented in Table 4.2 and Figure 4.3, respectively:  

 Table 4.2 The rule matrix for the fuzzy longitudinal controller [44]. 

 
Distance Error 

NL NM ZE PM PL 

Relative 

Speed 

NL NL NL NM NM ZE 

NM NL NM NM ZE PM 

ZE NM NM ZE PM PM 

PM NM ZE PM PM PL 

PL ZE PM PM PL PL 
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Figure 4.3 Fuzzy sets for the fuzzy longitudinal controller [44]. 

And Swaroop and Hedrick [41] used the following control law to implement the PD 

control 

  ( )eACC
CTG

PD Se
h

u λ+−=
1 , (4.10) 

where, CTGh is constant time gap and λ  is a positive constant.  ACCe and eS are defined in 

Equations (4.5)-(4.6). 
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4.3.1 Highway Normal Condition 

 Highway normal condition is defined by in terms of several conditions which can 

occur during normal driving in highway setting. To implement the velocity changes 

caused by changes in the speed limit and working zones, the lead vehicle velocity profile 

is defined in Figure 4.4 (b) with dot-dash line. It is assumed that the highway speed limit 

is changed from 100km/h to 80 km/h and the vehicle then encounters a working zone 

speed limit of 60km/h. After the working zone, the vehicle speed returns to 100km/h. 

When ACC maneuver is utilized, the ACC system needs to determine the control modes 

among speed control, spacing control, and sudden braking [59]. Because the speed 

control is suitable in the high way normal condition, a relatively large relative velocity 

gain ( 2w ) is used. When the results are compared with the result of the PD and fuzzy 

ACC, the suggested method shows smaller inter-vehicular distance following a 

perturbation, Figure 4.4 (a). Table 4.3 shows the performance measure of each method.  
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(a) Inter-vehicle distance 

 

(b) ACC velocity  

Figure 4.4 ACC result for highway normal conditions. 
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(c) ACC acceleration 

 
(d) ACC jerk 

Figure 4.4 Continued. 
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Table 4.3 Performance measure for highway normal condition. 

 Fuzzy PD BLS 

dtSft

e∫0  93.01 104.60 50.76 

dteft

∫0  165.65 166.69 166.81 

P 258.66 271.28 217.57 
 

In the inter-vehicular error integration, BLS has the smallest error accumulation while 

fuzzy logic has smallest velocity error performance. However, the summation of these 

two measure, P , shows the smallest value in BLS based ACC. 

 Typically, the acceleration magnitude is used as a comfort metric [59]. In 

particular, changes the vehicle’s longitudinal acceleration is used as an evaluation metric 

[7]. When the acceleration and its time derivative, jerk, are observed, the BLS based 

method operates the vehicle more comfortably and indicates a reasonable range of 

accelerations/decelerations [42] that real vehicles can generate.  

4.3.2 Highway Emergency Condition  

 The highway emergency condition requires a sudden stop to avoid collisions. To 

implement a sudden stop, the sensory input, SI incorporates a relatively large 

acceleration gain ( 3w ), thereby enhancing the acceleration/deceleration response of the 

system. It is assumed that the lead vehicle senses the situation around 100m ahead of its 

current position on the road. To address the emergency condition, the desired target 

speed of 100km/h is reduced to 0km/h in 5.56 seconds (in consideration of the 

deceleration limit also used in other studies [42].) In this scenario, stopping distance and 

time are important. The result demonstrates that the performance of the suggested 
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control scheme has shorter stopping time than proportional derivative control law [36] 

and fuzzy logic control [44] in highway emergency condition, in Figure 4.5 (b).  

 

(a)Inter-vehicle distance 

 

(b) ACC velocity 

Figure 4.5 ACC result for highway emergency condition. 
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(c) ACC acceleration 

 

(d) ACC jerk 

Figure 4.5 Continued. 
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Furthermore, the BLS based ACC introduces less jerk and a potentially more 

comfortable ride for the passengers as shown in Figure 4.5 (d). Table 4.4 shows the 

performance measure of each method in highway emergency condition. As similar as in  

Table 4.4 Performance measure for highway emergency condition. 

 Fuzzy PD BLS 

dtSft

e∫0  106.30   135.85   67.46 

dteft

∫0  201.63   203.20     202.58 

P 307.93   339.06   270.04 
 

the previous simulation, BLS has best performance in following inter-vehicular distance, 

while Fuzzy has best velocity tracking performance where the performance of each 

method is very close to each other. Finally, the performance measure, ,P  shows the best 

performance in BLS.  

4.3.3 Downtown Traffic Light  

 In this subsection, the performance of the BLS based ACC is considered when 

the vehicle is driven in a typical city traffic environment where downtown traffic lights 

are prevalent. In the center of a city, the vehicle must stop at red lights and recover its 

limit speed when the light turns green. To cope with this situation, a Stop&Go function 

is developed that emphasizes spacing control by incorporating a relatively large spacing 

error gain, 1w . The velocity profile is depicted in Figure 4.6 (b). Assuming the speed 

limit of 40 km/h, the vehicle encounters the red light twice over a period of slightly over 

two minutes. The results, Figure 4.6 and Table 4.5, demonstrate that all the strategies 
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perform well in the Stop&Go setting. However, BLS based approach shows a faster 

response in achieving the required relative distance even though the values of the 

performance measure are very close to each other. 

 

(a)Inter-vehicle distance  

Figure 4.6 ACC result for downtown traffic light condition. 
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(b) ACC velocity 

 
(c) ACC acceleration  

Figure 4.6 Continued. 
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(d) ACC jerk 

Figure 4.6 Continued. 

Table 4.5 Performance measure for downtown traffic light condition. 

 Fuzzy PD BLS 

dtSft

e∫0  61.56 64.15 53.63 

dteft

∫0  160.46 160.72 160.58 

P 222.01 224.87 214.21 
 

  

4.3.4 Downtown Traffic Congestion 

 The rush hour traffic condition is taken into account in this subsection. During 

the commute time, the vehicle velocity changes frequently. To realize this, a sinusoidal 

velocity profile is utilized that varies from 25km/h to 0km/h. In this traffic situation, the 

performance of the BLS based method is better as compared with the conventional 
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approaches. The results show that the inter-vehicular distance of the BLS based strategy 

follows the required level with a very small error. Also it is expected that the driver’s 

fatigue is reduced by the proposed ACC system in frequent stop and go situations by 

using ACC function. When Figure 4.7 and Table 4.6 is analyzed PD control has best 

performance in velocity tracking, however, by having the smallest inter-vehicular error 

accumulation, BLS based control has best performance measure value, .P  

Table 4.6 Performance measure for downtown traffic jam condition. 

 Fuzzy PD BLS 

dtSft

e∫0  51.42 27.64 16.00 

dteft

∫0  108.94 99.65 100.98 

P 160.37 127.29 116.98 
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(a)Inter-vehicle distance 

 

(b)ACC velocity  

Figure 4.7 ACC result for downtown traffic jam condition. 
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(c) ACC acceleration 

 
(d) ACC jerk 

Figure 4.7 Continued. 
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4.4 Summary 

 In this Section, the brain limbic system based controller is utilized to develop the 

Adaptive cruise control that can be applied in highway and downtown driving 

environment. Brain limbic system updates the gains of the amygdala and OFC through 

defined sensory input and emotional cue. And these signals are obtained from the 

relative distance, velocity, and acceleration of the ACC vehicle. To demonstrate the 

performance of the suggested method, four different velocity profiles are assumed and 

compared with constant time gap based PD control and fuzzy logic control. In most 

traffic situations, the BLS based control shows better inter-vehicle distance tracking 

performance while fuzzy logic control has better performance in velocity tracking 

performance. Therefore, it cannot be said that the developed method overwhelms the 

conventional method. However, the simulation results demonstrate effective 

performance of the neuromorphic control approach, which is the computational model of 

brain limbic system, for an autonomous vehicle.  
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5. CELL-TO-CELL MAPPING: STABILITY ANALYSIS  

OF BLS BASED CONTROL SYSTEM 

 

5.1 Cell-to-Cell Mapping 

 In this Section, the stability analysis for BLS based control is discussed. In this 

research, a bio-inspired learning algorithm, is applied to control problem. Even though it 

is necessary to investigate the stability, the well-known analytical technique, Lyapunov 

theory, cannot be used due to the nonlinearity and complicacy of BLS structure. To this 

end, Shahmirzadi and Langari [60] employed Cell-to-Cell Mapping to investigate the 

behavior of the BLS based control system.  

 Cell-to-Cell Mapping is a computational technique for global analysis of 

nonlinear dynamic systems [61-62]. Cell-to-Cell Mapping technique is based on 

discretization of a partition of the state space into small grids, called cell. The cells are 

defined as the initial conditions. And based on the dynamics of the system a Cell-to-Cell 

Mapping can be evolved. In order to analyze different nonlinear systems such as, a 

forced zero-stiffness impact oscillator, a fuzzy control system, and a power system Cell-

to-Cell Mapping is applied [63-67]. 

 To implement Cell-to-Cell Mapping, the region of interest, a particular region in 

the state space, ( ) is discretized into a finite number of cells. A cell in  is selected as 

the initial state (condition). With this initial condition, the subsequent states are evolved 

based on the dynamics of the system until final states is obtained. After observing all the 

initial conditions, it can be concluded that there exist two different set of cells, stable 

Ω Ω
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cells and unstable cells. The trajectories of stable cells are staying in the region of 

interest; however, those of unstable cells are going out from the region of interest. Figure 

5.1 shows two different groups of cells. One group of cells (1, 2, 3, 4, and 5) eventually 

form an orbit; however, the trajectory of the system moving through cell 6 goes outside 

from the region, . After investigating all the initial states within Ω , a stability map of 

the system is obtained. And the stable initial conditions are marked with ‘o’ sign while 

the unstable initial conditions are marked with ‘x’ sign. 

1X

2X

O
 

Figure 5.1 Cell to Cell Mapping and two different cell groups. 

5.2 Stability Analysis of BLS Based Control 

 In this subsection, the Cell-to-Cell Mapping method is employed to examine the 

stability of BLS based control. Especially, the stability of BLS based LCM control is 

Ω
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analyzed. In order to implement BLS based LCM, the sensory input and emotional cue 

are defined in Section 3 as follows,  

  LCMeSI = , (5.1) 

  ( )LCMeuEC += λ , (5.2) 

with 1=λ  and look ahead point error, ψLyye TLCM −−= . To analyze the stability of 

the BLS control system, the reference value zero is set, i.e. .0=Ty  And the following 

lateral vehicle dynamic under the assumptions constant velocity and straight road 

traveling 
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rf 222 22

+
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−
−

−= . (5.4) 

  ( ){ } 21,0max SIGGGG AOCAA −+−= λα  (5.5) 

  ( ){ } 21 SIGGGGG OCAOCAOC +−−−= λβ  (5.6) 

In the BLS based LCM control system, there are six states to examine. To avoid the high 

calculation load, the BLS gains AG and OCG  are set to zero. It is reasonable because BLS 

is a kind of learning structure. In other words, before the system experience a certain 

task, it does not have any knowledge about the task. To this end, other four states are 

observed to investigate the stability of BLS based control. Therefore the region of 

interest is defined within the possible vehicle operation ranges for each state, ,,, ψyvy

and ψ=r .  
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⎭
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6]/[6,6][6
5]/[5,83.1][83.1

πππψπ sradrrad
smvmy y and .0== OCA GG  

The range of lateral displacement is obtained from the interstate highway road width 

3.66 [m], and the yaw angle range is obtained from the maximum and minimum possible 

angle of the vehicle.  

 In order to implement Cell-to-Cell Mapping, the regions of interest of lateral 

motion and angular motion are discretized with the size of 0.1 cells and 0.01 cells. 

However, when the results are indicated in the figure, the interval of the initial 

conditions is set larger to make the figure readable. Therefore, in Figure 5.2 the interval 

of lateral displacement, lateral velocity, yaw angle, and yaw angle rate is given as 0.5 

[m], 0.5 [m/s], 36π  [rad], and 36π  [rad/s], respectively. Because each initial condition 

value is defined as the center position of each cell, all points within the same cell are 

represented by the center value of corresponding cell.   

 In this research, we used Cell-to-Cell Mapping for a four states system by 

assuming the BLS initial gains are zero. In order to display the stable cells, 4-

dimensional display method is needed. To this end, the stable cell information is 

obtained first and the number of stable cell set ( ,,, ψyvy and ψ ) are investigated. By 

the defined region of interests, 6237 stable cells are obtained out of 31941 cells (from 

the defined cell interval). To display one set of cells, two of the states, i.e. y  and yv , or 

ψ and ψ  are fixed while the other two states are varying. In Figure 5.2 (a), the yaw 

angle and yaw angle rate are fixed as 09.0−=ψ and 171.0=ψ . When the vehicle is 

directing negative yaw angle direction, the vehicle stability basin is larger in positive lat- 
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(a) Lateral motion 

 

(b) Angular motion 

Figure 5.2 Cell-to-Cell Mapping BLS contro results. 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-5

-4

-3

-2

-1

0

1

2

3

4

5

Lateral Displacement (y) [m]

La
te

ra
l v

el
oc

ity
 (v

y) [
m

/s
]

Lateral Displacement VS. Lateral velocity: Psy=-0.09 r=0.171

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Yaw angle (Psi) [rad]

Y
aw

 a
ng

le
 ra

te
 (r

) [
ra

d]

Yaw angle VS. Yaw angle rate: y=-0.5 vy=1



 

 

72

eral displacement. From 5.2 (b), the lateral cell map lateral displacement and lateral 

velocity are fixed as 5.0−=y and 1=yv . The resulting plot shows that positive yaw 

angle area has larger attractive basin when the vehicle is shifted negative direction. If the 

trajectories are stay in the regions of interest, the corresponding initial conditions are 

marked with ‘o’. And the other cells are marked with ‘x’. When the cell map is analyzed, 

the stable range of lateral motion and angular motion are located around the origin, the 

normal operation range of driving, for each map. Therefore, under the normal driving 

condition, it can be concluded that the BLS based LCM is stable. 

 Figure 5.3 displays the BLS based control results when the vehicle’s initial 

condition is defined as of a stable initial condition and an unstable initial condition. 

These conditions are selected from Figure 5.2 to investigate the phenomenon with 

respect to the initial condition, when it is stable or not. The results are indicated in 

Figure 5.3 (a) are gotten from a stable initial condition and the red dotted line indicates 

the limit line of the region of interest for each state. Under a stable initial condition, all 

trajectories are staying in the region and heading to the equilibrium point. However, the 

results from unstable condition, Figure 5.3 (b), are a little bit different. The responses for 

lateral displacement, lateral velocity, and the yaw angle rate cross over the region limit. 

However, they converge to the equilibrium point, eventually. Even though the 

trajectories are converge to the equilibrium point, these initial conditions are regarded as 

unstable states because these initial conditions can arouse a collision with the 

neighboring lane’s vehicle by invading to the next lane. 
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(a) Stable initial condition 

 
(b) Unstable initial condition 

Figure 5.3 BLS based LCM results. 
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 Figures 5.4 and 5.5 are the trajectories of Cell-to-Cell Mapping. Two stable 

initial conditions and one unstable initial condition as follows, 

  12,36,1,5.0 ππψ ===−= ryy  (Stable initial condition) 

  18,365,3,5.1 ππψ −==== ryy  (Unstable initial condition) 

  36,12,1,5.0 ππψ =−=== ryy  (Stable initial condition). 

In Figures 5.4 and 5.5, the cell size is defiend as 1.01.0 × and the results are compared 

with the real trajectory of correponding initial conditions, which Cell-to-Cell Mapping is 

not applied initial conditions. The trajectories of stable cells remain in the region of 

interest, however, the trajectory of unstable cell departures from the region and return to 

the region of interest. Even though all initial conditions are return to the equilibrium 

eventually, the unstable trajectory can cause accident with the next lane’s vehicle by 

departuring the region of interst which is the normal vehicle operation  boundaries. 
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(a) Region of interest  

 
(b) Region of the trajecories 

Figure 5.4 Cell-to-Cell Mapping lateral motion trajectories with cell size ( 1.01.0 × ): 

BLS based control. 
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(a) Region of interest 

 
(b) Region of the trajecories. 

Figure 5.5 Cell-to-Cell Mapping angular motion trajectories with cell size ( 1.01.0 × ): 

BLS based control. 
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Therefore in the sense of Cell-to-Cell Mapping, the initila conditions that the 

corresponding trajectories are going out from the region of interest defined as unstable 

cell. Figures 5.6 and 5.7 are the Cell-to-Cell Mapping lateral and angular motion of the 

BLS based LCM control with smaller cell size, i.e. 01.001.0 × . By defing smaller cell 

size, the trajectoreis are more closer to the real trajectory and the results are not different 

from larger cell case. Therefore, it can be concluded that one benefit of Cell-to-Cell 

Mapping is reducing the number of trajectories that laying on the same cell by defining   

each cell representing point as the center of the cell.   

 

(a) Region of interest 

Figure 5.6 Cell-to-Cell Mapping lateral motion trajectories with cell size ( 01.001.0 × ): 

BLS based control. 
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(b) Region of the trajecories 

Figure 5.6 Continued. 

 

(a) Region of interest 

Figure 5.7 Cell-to-Cell Mapping angular motion trajectories with cell size ( 01.001.0 × ): 

BLS based control. 
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(b) Region of the trajecories 

Figure 5.7 Continued. 

 

5.3 Stability Analysis of HDM Based LCM Control 

 In this subsection, Cell-to-Cell Mapping is applied to human driver model based 

control which BLS based control results are compared with. The same cell size and the 

region of interest with BLS based control are defined. The region of interest is , 
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 To implement Cell-to-Cell Mapping, the regions of interest of lateral motion and 

angular motion are partitioned with the size of 0.1 cells and 0.01 cells. However, the 

interval of the initial conditions is made larger to make the figure distinguishable, i.e. the 
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interval of lateral displacement, lateral velocity, yaw angle, and yaw angle rate is given 

as 0.5 [m], 0.5 [m/s], 0.2 [rad], and 0.2 [rad/s], respectively. 

 As stated in the BLS based control stability analysis case, in order to display 4D 

states, the same method is and the same fixed lateral displacement and lateral velocity 

set and yaw angle and yaw angle rate set are utilized. Figure 5.8 is the result of HDM 

based control analysis with respect to the initial conditions. When the stable cell number 

is investigated the stable cells of HDM based control has 6059 stable cells out of 31941 

cells. This number is smaller than that of BLS based control (6237). Larger number of 

stable initial condition means that BLS based control more margin of stability with 

respect to the states change. From the cell map, Figure 5.8 (a) and (b), it is observed that 

HDM based LCM has smaller stability range than that of BLS based control. This 

supports the better performance of BLS based system again. 
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(a) Lateral motion 

 
(b) Angular motion 

Figure 5.8 Cell-to-Cell Mapping HDM LCM control results. 
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  12,36,1,5.0 ππψ ===−= ryy  (Stable initial condition) 

  18,365,3,5.1 ππψ −==== ryy  (Unstable initial condition) 

  36,12,1,5.0 ππψ =−=== ryy  (Unstable initial condition). 

The cell size is defined as 01.001.0 × . The unstable intial conditions are leaving from the 

region of interst and back again to the equilibrium point. 

 

(a) Region of interest 

Figure 5.9 Cell-to-Cell Mapping lateral motion trajectories with cell size ( 01.001.0 × ): 

HDM basd control. 
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(b) Region of the trajecories 

Figure 5.9 Continued. 

 

(a) Region of interest 

Figure 5.10 Cell-to-Cell Mapping angular motion 

trajectories with cell size ( 01.001.0 × ): HDM based control. 
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(b) Region of the trajecories 

Figure 5.10 Continued. 

 

5.4 Summary 

 In this Section, the stability of BLS based control is analyzed via Cell-to-Cell 

Mapping method. BLS based control system cannot be analyzed by conventional 

Lyapunov’s method because of the nonlinearity and complicacy of BLS structure. Cell-

to-Cell Mapping applied LCM problem by defining the region of interest as the vehicle 

operating range. 

 The resulting cell map indicated the stable and unstable initial conditions on 

lateral and angular motion plane. In order to display four states, two of the states are 

fixed. By analyzing the cell map, it is concluded that BLS based LCM is stable under 

normal driving conditions for lateral motion and angular motion. 
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 Subsequently, the stability of HDM based LCM is analyzed with the same 

method. By investigating the stable cell numbers of two control strategy, BLS based 

control has more number of stable states meaning that has larger stability margin in BLS 

based control. In the resulting cell map, it is observed that stable initial states area of 

BLS based LCM is a little bit broader than that of HDM.   
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6. ANALYTIC HIERARCHY PROCESS 

 

6.1 Autonomous Vehicle Decision Making via AHP 

 In this Section, a multi objective decision making method, Analytic Hierarchy 

Process (AHP) is explained and the application of AHP to an autonomous vehicle 

decision making process is provided. AHP provides a comprehensive and rational 

framework for structuring a problem, for representing and quantifying its elements, for 

relating those elements to overall goals, and for evaluating alternative solutions [68]. In 

order to implement AHP, the designer (or user) has to standardize the problem as 

hierarchies. In AHP based decision making, the highest level is the overall goal and the 

lowest level of the hierarchy is the final function (or alternative) among available 

candidates. To make an optimal decision, the designer has to define the objectives as the 

considerations in decision making. And those objectives form intermediate hierarchies 

(or hierarchy). After these hierarchies are formalized, the relative importance matrix (

RM ), relative importance between objectives, has to be defined. Before AHP decision 

making is done, the consistency of the RM  has to be checked to make rational decision. 

If the RM  is not consistent then the decision based on the particular RM  cannot be 

reliable. Therefore by consistency consideration, the acceptability of the defined matrix 

is investigated. Subsequently, the alternatives’ values are evaluated according to the 

objectives. Numerical priorities are calculated for each of the alternative. And the final 

decision is made by choosing the function that has maximum value.  
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6.1.1 Hierarchy Formalizing 

 In AHP, there are three main hierarchies such as goal, objectives, and 

alternatives. Figure 6.1 shows the hierarchy of decision making to determine the optimal 

function. In autonomous vehicle function management problem, the goal is to select an 

optimal function among allowed functions; the objectives (the consideration when the 

decision is made) are safety, driving speed, and fuel economy; and the alternatives are 

LLCM _ ,  RLCM _ , and ACC  that stand for lane change maneuver to the left lane, 

lane change maneuver to the right lane, and adaptive cruise control, respectively. In this 

research, a three lane road is considered. Therefore, the allowed functions are different 

according to the vehicle position; if the vehicle is located at the 1st lane ACC and 

RLCM _ are allowed; however, if the vehicle is in the  2nd lane it can have all the 

function; finally by locating at the 3rd lane it only obtains LLCM _  and ACC . After the 

hierarchy is designed, the preferences (or priority among the entries) are determined by  

 

Figure 6.1 Hierarchy for getting optimal function. 
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the designer according to the importance of each objective. After these levels are 

decided, AHP chooses the best function which satisfies the defined preferences [45]. 

6.1.2 Relative Importance Matrix 

 The first step of using AHP is to decide the relative importance of the objectives. 

In AHP theory, the pairwise comparison scale is given [46] to define an RM . According 

to the relative importance of an objective to the other, one can define a scale from 1 to 9. 

Table 6.1 shows the pair-wise comparison scale that is used in forming an RM . 

Table 6.1 The pairwise comparison scale [45]. 

Intensity 

of Importance 
Definition 

1 Equal importance of elements 

3 Moderate importance of one element over another 

5 Strong importance of one element over another 

7 Very Strong importance of one element over another 

9 Extreme importance of one element over another 

2, 4, 6, 8 Intermediate values between two adjacent judgment 

 

 The RM  of the objectives is defined O . And the size of an RM  matrix is κκ ×  

when κ  is the number of objectives. In this research, three objectives are considered. 

,1O ,2O  and 3O represent the degree of safety, driving speed, and fuel economy, 

respectively. In the RM is formalized by the following structure, 
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In Equation (6.1), all diagonal elements are ‘1’ and the same equation shows that an 

RM can be defined by only three elements, a, b, and c. This form of matrix is called as 

reciprocal matrix. In order to obtain a weighted objective matrix the RM is to be 

normalized. A normalized matrix of the relative important matrix obtained by the 

following equation, 
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where κ,,3,2,1=i  and κ  is the number of objectives. 

And normO is a κκ × matrix. To get a weighted objective matrix, the average of each row 

in (6.2) is calculated, 
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where objW is a κ×1  row vector.  

 

 

 



 

 

90

6.1.3 Consistency of Relative Importance Matrix 

 However, the limitation of Saaty’s discrete 9-value scale and the inconsistency of 

human’s judgments make the weight inappropriate [69]. Therefore, Saaty [45] proposed 

a method to measure the inconsistency. Saaty [70] proved that the consistent of a 

positive reciprocal matrix. Under the perfect consistency, the largest eigenvalue of the 

RM  is equal to the size of the matrix, i.e., n=maxλ . It is also possible to estimate the 

departure from consistency by the consistency index, difference n−maxλ  dividing by 

1−n . Therefore the consistency index (CI ) is defined as  

  
1

max

−
−

=
n

nCI λ
, (6.4) 

where n  is the number of objectives. After the CI (consistency index) is obtained, it is 

divided by the random consistency index to get the consistency ratio,  

  
RC
CICR = , (6.5) 

where the random consistency index is randomly generated reciprocal matrix using scale  

9,8,,1,,
8
1,

9
1

by Saaty. Saaty [45] suggests that the appropriate measure, 

consistency ratio, ought to be no more than 0.1. In other words, if CR  is greater than 

0.1, the result is not accepted and another relative importance matrix is assessed until the 

consistency ratio satisfies the condition appropriately, 1.0<CR . For the acceptability of 

using 0.1 as the threshold, Vargas [71] figured out that the consistency index follows a 

truncated normal distribution when uniform distributions are used. He proved this by the 

500 times of different size matrices simulation and normality tested. From the results, 
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Vargas concluded that for a reciprocal random matrix, an acceptable upper bound of the 

ratio between the consistency index of a reciprocal matrix, and its corresponding average 

random consistency index is 10% [72]. The average random consistency index of sample 

size 500 matrices is shown in the table below. 

Table 6.2 Random consistency index (RC). 

Number of objectives 1 2 3 4 5 6 7 8 9 

RC 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 

 

6.1.4 Evaluation of Alternatives 

 After the weighted objective matrix is obtained and the consistency is 

investigated, the next step is to evaluate the given three alternatives, LLCM _ ,  

RLCM _ , and ACC  with respect to each objective. To get the evaluation matrix of 

each objective, the following evaluation is utilized, 

  ( ) ( )
( )mi

li
lmi fO

fOOE = , (6.6)  

where ( )li fO  represents the value of thl  function in consideration of thi  objective, and 

γ,,2,1=l , γ,,2,1=m , where γ  is the number of alternatives. Also by the same 

process of (6.2) – (6.3), normalized matrices and the weighted alternative matrices of 

each corresponding objectives are obtained. To make the notation simple, (6.6) is 

reformed to ( )iOE , and the normalized form of (6.6) is defined  
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where γ  is the number of alternatives and ( )normiOE is a γγ × matrix. The weighted 

alternative matrix of each objective is obtained with the following equation 
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where )( ialter OW is a γ×1  row vector, and iO  represents the thi  objective. By considering 

all the functions that are equipped the following weighted alternative matrix is obtained. 

 [ ]T
alter

T
alter

T
alteralter OWOWOWW )()()( 21 κ= . (6.9) 

And alterW is a γκ ×  matrix for κ  is the number of objectives and γ is the number of 

alternatives.  

 The optimal function which has the highest value will be suggested by 

multiplying the two resulting matrices (6.3) and (6.9) composed of weights,  

  ( )T
objalter

l
WWFunction ×= maxarg* . (6.10) 

 Therefore after the hierarchy is formalized, the relative objective matrix is 

defined by the decision maker possessing consistency. However, an autonomous vehicle 

has to be operated in real traffic situation which has various traffic conditions.  
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6.2 Adaptive AHP 

 In this subsection, adaptive AHP is considered to cope with various traffic 

situations and driving modes. Before the autonomous vehicle functions are managed by 

AHP, one have to find the way to set up an RM . Also, the importance of each objective 

is varying with the situation especially in dynamic traffic environment. Therefore, the 

fixed RM does not eligible to apply an autonomous vehicle function management 

problem. To this end, adaptive AHP that can find optimal importance of each objective 

is developed. 

 The purpose of adaptive AHP is to select an RM  to get optimal function 

according to the autonomous vehicle encountering situations and driving modes. In this 

research, the three different modes are defined such as aggressive mode, careful mode, 

and fuel economy mode. Aggressive mode prioritizes the driving speed by taking an 

RM that has highest priority in speed. In Careful mode, the algorithm chooses an RM

which has highest weighting in safety focusing on the safety factor most. And the fuel 

economy mode takes an RM that has maximum relative importance in fuel economy. It 

can be expect that by taking aggressive mode the traveling time is reduced; by taking 

carful mode the safe travel is guaranteed; and the fuel economy mode can reduce the 

consumption of gas. Therefore, the suggested adaptive AHP can provide an RM that 

satisfies the given traffic situation and driving mode. 

  ( ) ⎟
⎠
⎞⎜

⎝
⎛ ×=

T

modeobjalter
l

mode WWFunction
*

maxarg* . (6.11) 
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In adaptive AHP, Equation (6.11) selects the function that satisfies driving mode and 

maximum value in the multiplication of the weighted alternative matrix and weighted 

objective matrix. 

6.2.1 Adaptive AHP Algorithm 

 An RM has reciprocal matrix and it can be defined with only three relative 

importance scales from Equation (6.1). In AHP framework, only 9 numbers are used 

with respect to the importance degree, i.e. 1 to 9. By the inverse of the numbers, 17 

numbers can be used to define an RM  such as ⎥⎦
⎤

⎢⎣
⎡ 9,8,2,1,

7
1,

8
1,

9
1 . By choosing 

three numbers among the available numbers, one can define 4913 matrices. However, 

the number is reduced to 3835 matrices by removing matrices that have the same ratio.  
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Figure 6.2 The reduction of relative importance matrix candidates. 
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Finally, the consistency investigation cuts the number of matrix to 813. Figure 6.2 

displays the matrix reduction process.  

 Subsequently, Equation (6.11) is evaluated for the RM that satisfies driving 

modes under traffic situations are evaluated according to the objectives. Therefore, the 

optimal function is selected by taking the RM that creates the maximum value in the 

multiplication of (6.11). However, the driving mode cannot be always implemented due 

to the safety issue. If all available functions are above the safety threshold, i.e. 

5.0_ >LLCMS , 5.0>ACCS , and 5.0_ >RLCMS , the driving mode can be used. However, 

the safety condition is not hold, the algorithm takes the safety mode, which is the careful 

mode. Figure 6.3 displays the adaptive AHP structure. In the structure, RM is not a fixed 

matrix but a flexible variable that can be changed with respect to the traffic situation and 

driving mode. 

 

Figure 6.3 An adaptive AHP structure. 
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6.3 Measurement of Traffic Environment 

 In order to make an optimal decision for an autonomous vehicle via AHP, the 

degree of safety of a given action, the traffic flow, and fuel economy are considered; the 

safety and fuel economy are implemented via a fuzzy logic based method that 

determines a safer and cheaper function in a given traffic situation. And the traffic flows 

are defined as Lf , Ff , and Rf  representing the traffic flow for left lane, driving lane, and 

right lane, respectively. The traffic flows of each lane are obtained from the average 

velocity of each lane. It is assumed that the data measured by LIDAR (Light Detection 

And Ranging). Figure 6.4 displays the traffic situation that the subject vehicle (centered 

in the figure) encounters. The ellipse represents the sensing range provided by radar 

measurement systems that is assumed installed on the vehicle. It is further assumed that 

the sensing data is accurate;  

 

Figure 6.4 Traffic situation of an autonomous vehicle. 
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LRl , LFl , Rl , Fl , RRl , and RFl  represent length from the autonomous car’s rear/front 

sensors to the left rear, left front, rear, front, right rear, and right front, respectively. 

(Consideration of errors in these measurements is the subject of an upcoming article by 

the authors[57].) 

 In this research, two autonomous vehicle functions, LCM and ACC, are 

considered. In normal highway driving environment, it is assumed that the vehicle is 

driven via ACC. By monitoring the surrounding traffic situation, the subject vehicle 

makes a decision among ,_ LLCM ,_ RLCM  and .ACC  Fuzzy logic is used to assess 

the traffic conditions surrounding the subject vehicle such as safety of each function and 

fuel economy of each function by taking the corresponding lane. 

 

6.4 Alternative Evaluation 

 In order to implement (adaptive) AHP, all the possible alternatives need to be 

evaluated with respect to the objective. In this subsection, the alternative evaluation 

methods are discussed.   

6.4.1 Safety Degree of Lane Change 

 The safe distance varies according to the vehicle velocity in conjunction with the 

so called three-second rule for safe distance following policy [73]. To measure the safety 

degree of the lane change maneuver, the gap between the vehicles ( ig ), the ratio 

between the rear and the front gaps ( ig ), and the gap rate ( ig ) are considered. These 

quantities are defined as follows: 
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  vehiFiRi lllg ++=  (6.12) 

  ( )
( )iFiR

iFiR
i ll

llg
,max
,min

=  (6.13) 

  iRiFi vvg −= , (6.14) 

where vehl is the length of controlled vehicle and ,Li = R . Further, iFv and iRv  represent 

the velocity of  the front and rear vehicles in each of the two adjacent lanes.  

 If the subject vehicle is located too close to its rear or front vehicles in lateral 

view point, lane change safety cannot be guaranteed even though ig  is large. The gap 

ratio captures this sense of where the subject vehicle located. The gap rate notifies that 

two vehicles in next lane are approaching or not. During lane change, the notion of safe 

distance must vary with the velocity of the subject vehicle, i.e. the faster the velocity of 

the vehicle, the larger the safe distance required to secure a lane change: 

Table 6.3 LCM fuzzy rules. 

 Antecedents Consequent 

 ig  ig  ig  degs  

Rule 1 Very Short Near Extremely Negative Very Unsafe 

Rule 2 Very Short Near Negative Very Unsafe 

     

Rule 75 Very Long Far Extremely Positive Very Safe 
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This is reflected in the definition of the membership functions associated with the gap 

variable, ig , in the rule set used to characterize the condition for safe lane change. In 

this rule set the linguistic variables in the antecedent clause are ig , ig , and ig and while 

the consequent of each rule states the degree of safety, degs , of the traffic situation from a 

lane change perspective. The structure of each rule is given by 

If ig is ( ) and ig  is ( ), and ig  is ( ), then degs is ( ), 

which are implemented as a Mamdani fuzzy model, i.e. the truth condition of each rule 

is the minimum of the truth value of each of the three antecedent conditions. Table 6.3 

shows the specific rules developed for LCM safety evaluation and total list of the rules 

are provided in the Appendix A. The gap ig  has five members such as ‘Very Short’, 

‘Short’, ‘Medium’, ‘Long’, and ‘Very Long’. And in the ratio ig  has ‘Near’, ‘Medium’, 

and ‘Far’. ig  has ‘Extremely Negative’, ‘Negative’, ‘Medium’, ‘Positive’, and  

‘Extremely Positive’. While the safety membership function includes ‘Very Unsafe’, 

‘Unsafe’, ‘Medium’, ‘Safe’, and ‘Very Safe’. Figures 6.5 and 6.6 show the membership 

functions that are applied described above and fuzzy rule surface from fuzzy rules. 
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Figure 6.5 Membership functions to get LCM safety degree. 
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Figure 6.6 Surface of LCM fuzzy rules. 

6.4.2 Safety Degree of Adaptive Cruise Control   

 The degree safety of using ACC is evaluated in this subsection. In this evaluation 

process, only three vehicles in the same lane are considered. It is further defined the 

front and rear gaps between the subject vehicle and its front and rear vehicles as follows: 

  FF lg =  (6.15) 

  RR lg = . (6.16) 

The gap rate  

  ( )
( )RF

RF

vv
vvg
,max

−
−= ,  (6.17)  

where Fv and Rv  represent the velocity of the front and rear vehicle of subject vehicle. 

To calculate the gap rate, deviation from the maximum velocity is evaluated. And the 

negative sign in equation (6.17) represents that the positive sign of gap rate has negative 

effect on safety degree. It is considered that the distance from the front and rear vehicles 
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and the velocity change of the two vehicles in determining the safety of the ACC 

maneuver. To this end, 125 fuzzy rules are developed with the linguistic structure of  

If Fg is ( ) and Rg is ( ) and g  is ( ), then degs  is ( ). 

Table 6.4 lists the sequence of rules for ACC safety evaluation and the full rules are  

Table 6.4 ACC fuzzy rules. 

 Antecedents Consequent 

 Fg  Rg  g  degs
 

Rule 1 Very Short Very Short Extremely Negative Medium 

Rule 2 Very Short Short Negative Safe 

Rule 3 Very Short Medium Zero  

     

Rule 125 Very Long Very Long Extremely Positive Safe 

 

provided in the Appendix B while Figures 6.7 and 6.8 depicts the membership functions 

of each antecedent and consequence component and the fuzzy rule surface obtained from 

fuzzy rules.  
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Figure 6.7 Membership functions to get ACC safety degree. 
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Figure 6.8 Surface of ACC fuzzy rules. 

6.4.3 Energy (Fuel) Consumption of Each Lane 

 In this subsection, the fuel consumption is taken into account as the third 

objective. In order to adjust the subjective vehicle’s velocity to each lane such as left, 

right, and driving lane, different amount of energy is consumed. However, to hold the 

consistency about each objective, all the objectives have larger grade for better choice. 

Therefore, the fuel economy of each lane is calculated by fuzzy logic and fuzzy rules 

reflect the consistency point of view. By taking the velocity differences between the 

controlling vehicle and the traffic flow of each lane, the energy consumption is expected. 

As the velocity difference is larger the vehicle has to be accelerated or decelerated more, 

i.e. it is assumed that braking energy is 10% higher than accelerating energy in highway 

driving [74]. If the velocity of the subjective vehicle is higher than comparing lane then 

braking energy is applied by having 10% more fuel than accelerating situation when the 
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velocity is lower than the comparing lane. 3 rules are developed to relate the velocity 

difference and fuel efficiency. Table 6.5 shows the fuzzy rules and membership 

functions and fuzzy surface are displayed in Figures 6.9 and 6.10, respectively. 

Table 6.5 Energy efficiency fuzzy rules (3 rules). 

 Antecedents Consequent 

 diffv  effF  

Rule 1 Small Large 

Rule 2 Medium Medium 

Rule 3 Large Small 

 

 

 

Figure 6.9 Membership functions to get fuel economy degree. 
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Figure 6.10 Surface of fuel economy fuzzy rules. 

6.5 Adaptive AHP Based Decision Making 

 An adaptive AHP based decision making simulation results are presented. In the 

simulations, seven vehicles, the autonomous vehicle and surrounding six vehicles, are 

considered. At first, it is assumed that the vehicle is located in the center lane. Therefore, 

there are three functions are available such as LLCM _ , ACC , and RLCM _ . The 

position of each vehicle is determined as Figure 6.11. From the top right to bottom left, 

151.1, 53.3, 151.1, 26.2, 160, and 71.1, respectively in meter scale. The red rectangular 

represents the autonomous vehicle and the others are surrounding vehicles. The number 

within the parenthesis represents the velocity of each vehicle when the traffic flows from 

the left hand side to right hand side. It is assumed that the suggested adaptive AHP 

makes decision under the given situation.  
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Figure 6.11 Vehicle position and velocity at decision making. 

 The adaptive AHP makes decision under driving mode, it can be set with three 

different options. Table 6.6 show the decision made by adaptive AHP. When aggressive 

and careful driving mode is selected, lane change to the left lane is chosen as the optimal 

function. However, by selecting fuel economy mode, Adaptive cruise control is 

suggested as the optimal function. It is obvious that aggressive mode takes the function  

Table 6.6 AAHP decision making (center lane). 

Driving mode Decision 

Aggressive Mode LLCM _  

Careful Mode LLCM _  

Fuel Economy Mode ACC  
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that shifting the vehicle position to the fastest lane; careful mode takes the function that 

moves the vehicle position to the safest lane; and fuel economy mode takes the function 

that uses least fuel. After the decision is made, the autonomous vehicle takes different 

action with respect to the decision. In the simulations, there are four steps in 

accomplishing the lane changing. 

20 40 60 80 100 120 140 160

-5

-4

-3

-2

-1

0

1

2

3

4

5

(99)

(99)(98)

(90)(96)(90)

(99)

 

(a) Decision making  

Figure 6.12 Adaptive cruise control process (center lane). 
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(b) ACC 

Figure 6.12 Continued. 

 When the decision is ACC by choosing fuel economy mode in the vehicle 

environmental settings Figure 6.12 (a), the autonomous vehicle keeps the function ACC . 

Figure 6.12 (b) staying at the same lane until the next decision is made. However, 

LLCM _  decision is made from the higher level, the first step of lane change is the 

velocity adjusting by using ACC . The autonomous vehicle adjusts the velocity to the 

left front vehicle, Figure 6.13 (b). After the velocity is matched to new targeting vehicle, 

it changes the lateral position by the steering angle input (LCM), Figure 6.13 (c). When 

the vehicle finished the lane change, ACC  function is activated until next decision is 

made as shown in Figure 6.13 (d).   
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(a) Decision making 
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(b) Velocity adjusting  

Figure 6.13 Lane change to the left process. 
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(c) Lane changing 
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(d) Adaptive cruise control 

Figure 6.13 Continued. 

 Figures 6.14 and 6.15 show the decision making result when the vehicle is 

located at the 1st lane. By locating at the 1st lane the autonomous vehicle has only two 

available functions, i.e. ACC and RLCM _ . Therefore, in AHP structure there are two 
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alternatives while three objectives considering. According to the driving mode, the 

adaptive AHP decides different function. 
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(b) Velocity adjusting 

Figure 6.14 Lane change to the right process. 
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(c) Lane changing 
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(d) Adaptive cruise control 

Figure 6.14 Continued. 
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Table 6.7 AAHP decision making (left lane). 

Driving mode Decision 

Aggressive Mode RLCM _  

Careful Mode ACC  

Fuel Economy Mode ACC  

 

 Aggressive mode selects  RLCM _  while the other driving modes choose ACC  

as shown in Table 6.7. The lane change step is very similar to the lane change decision 

when the vehicle is located at the center lane. After the decision is made in Figure 6.14 

(a), the autonomous vehicle set the right front vehicle as a new target while following up 

the velocity, Figure 6.14(b). Lane change is performed subsequently when the velocity is 

enough to cut into the center lane (2nd lane). Again ACC  is followed the RLCM _ until 

the next decision making. Careful mode and fuel economy mode decide to follow the 

preceding vehicle without lane change therefore the autonomous vehicle keep the 

function, adaptive cruise control. 
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(a) Lane changing  
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(b) Adaptive cruise control 

Figure 6.15 Adaptive cruise control process (left lane). 
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6.6 Summary 

 In this Section, a multi objective decision making method Analytic Hierarchy 

Process (AHP) is explained and the application of AHP to an autonomous vehicle 

decision making process is provided. After the hierarchy is formalized, relative 

importance matrix generating method is explained.  

 To cope with the real traffic situation, an adaptive AHP algorithm that selects a 

relative importance matrix satisfying the driving modes and AHP optimality is 

suggested. The simulation results demonstrate that the adaptive AHP decides an optimal 

function with respect to the driving mode and traffic situation that an autonomous 

vehicle encounters.  
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7. CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

 In this research, control and management strategy of autonomous vehicle is 

studied. The lower level control functions are developed by Brain Limbic System based 

control and the higher level decision making structure is implemented by Analytic 

Hierarchy Process.  

 In the Section 2, the structure of Brain Limbic System is explained by providing 

the functions of each component. The emotional learning mechanism is studied as an 

adaptive controller. 

 Subsequently, BLS based control method is applied to develop autonomous 

vehicle functions such as lane change maneuver and adaptive cruise control. First of all, 

LCM function is implemented by BLS control scheme. The performance of BLS based 

LCM is compared with human driver model. The simulation results demonstrate that 

BLS based control LCM has better performance with and without disturbance. 

 Adaptive cruise control function also developed by means of the same control 

method and the performance is compared with PD like control and fuzzy logic control. 

The BLS based ACC is simulated on various traffic situations. From the simulation 

results, it is observed that the BLS based control shows better inter-vehicle distance 

tracking performance. While in terms of velocity tracking, fuzzy logic method has best 

performance among them. However, from the performance measure for each simulation, 
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the results demonstrate effective performance of the BLS based control approach for an 

autonomous vehicle.  

 The stability of BLS based control is analyzed via Cell-to-Cell Mapping method. 

Cell-to-Cell Mapping is a global dynamics system analyzing tool. This method 

successfully analyzed BLS based control system that hardly investigated by Lyapunov 

method. By analyzing cell map, it is concluded that BLS based LCM is stable under 

normal driving conditions for lateral motion and angular motion. Subsequently, the 

stability of HDM based LCM is investigated and it is observed that BLS based control 

has more stable margin having more stable initial condition under the same region of 

interests. 

 After BLS based control and its stability is considered, AHP method is applied to 

make decision under rapidly changing traffic situations. The procedure of AHP 

developing in an autonomous vehicle is explained. By the demand of operating real 

traffic situation that cannot expectable, adaptive AHP algorithm is suggested. The 

simulation results show the decision that is made by adaptive AHP considering driving 

mode. 

 

7.2 Future Work 

 This research mainly focused on autonomous vehicle. From this research, the 

application of BLS control method and control function managing strategy is studied. 

First of all, another autonomous vehicle functions can be developed by the same 
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controller. And the function management under more complex situation will be 

considered. 

 Also, in the following researches, the systematic method to design a BLS 

controller will be studied. And energy based system will be targeted to apply the same 

controller and by means of (adaptive) AHP, the optimal operating method of a multi 

control functioned system will be studied.     
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APPENDIX A  

FUZZY RULES FOR LANE CHANGE MANEUVER  

Rule statement: If ig is ( ) and ig  is ( ), and ig  is ( ), then degs is ( ) 

Table A.1 LCM fuzzy rules (75 rules). 

 
 Antecedents Consequent 

 ig  gi  g  S 

1 Very short Near Extremely negative Very unsafe 

2 Very short Near Negative Very unsafe 

3 Very short Near Zero Very unsafe 

4 Very short Near Positive Very unsafe 

5 Very short Near Extremely positive Very unsafe 

6 Very short Medium Extremely negative Very unsafe 

7 Very short Medium Negative Unsafe 

8 Very short Medium Zero Unsafe 

9 Very short Medium Positive Unsafe 

10 Very short Medium Extremely positive Unsafe 

11 Very short Far Extremely negative Unsafe 

12 Very short Far Negative Medium 

13 Very short Far Zero Medium 

14 Very short Far Positive Medium 

15 Very short Far Extremely positive Medium 

16 Short Near Extremely negative Very unsafe 

17 Short Near Negative Very unsafe 

18 Short Near Zero Very unsafe 

19 Short Near Positive Unsafe 

20 Short Near Extremely positive Unsafe 
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21 Short Medium Extremely negative Unsafe 

22 Short Medium Negative Unsafe 

23 Short Medium Zero Unsafe 

24 Short Medium Positive Medium 

25 Short Medium Extremely positive Medium 

26 Short Far Extremely negative Medium 

27 Short Far Negative Medium 

28 Short Far Zero Medium 

29 Short Far Positive Medium 

30 Short Far Extremely positive Safe 

31 Medium Near Extremely negative Very unsafe 

32 Medium Near Negative Very unsafe 

33 Medium Near Zero Very unsafe 

34 Medium Near Positive Unsafe 

35 Medium Near Extremely positive Unsafe 

36 Medium Medium Extremely negative Unsafe 

37 Medium Medium Negative Unsafe 

38 Medium Medium Zero Unsafe 

39 Medium Medium Positive Medium 

40 Medium Medium Extremely positive Medium 

41 Medium Far Extremely negative Medium 

42 Medium Far Negative Safe 

43 Medium Far Zero Safe 

44 Medium Far Positive Safe 

45 Medium Far Extremely positive Safe 

46 Long Near Extremely negative Unsafe 

47 Long Near Negative Medium 

48 Long Near Zero Medium 

49 Long Near Positive Medium 

50 Long Near Extremely positive Medium 

51 Long Medium Extremely negative Medium 
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52 Long Medium Negative Medium 

53 Long Medium Zero Safe 

54 Long Medium Positive Safe 

55 Long Medium Extremely positive Safe 

56 Long Far Extremely negative Safe 

57 Long Far Negative Safe 

58 Long Far Zero Very safe 

59 Long Far Positive Very safe 

60 Long Far Extremely positive Very safe 

61 Extremely long Near Extremely negative Medium 

62 Extremely long Near Negative Medium 

63 Extremely long Near Zero Medium 

64 Extremely long Near Positive Medium 

65 Extremely long Near Extremely positive Safe 

66 Extremely long Medium Extremely negative Safe 

67 Extremely long Medium Negative Safe 

68 Extremely long Medium Zero Safe 

69 Extremely long Medium Positive Safe 

70 Extremely long Medium Extremely positive Very safe 

71 Extremely long Far Extremely negative Very safe 

72 Extremely long Far Negative Very safe 

73 Extremely long Far Zero Very safe 

74 Extremely long Far Positive Very safe 

75 Extremely long Far Extremely positive Very safe 
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APPENDIX B 

FUZZY RULES FOR ADAPTIVE CRUISE CONTROL   

Rule statement: If Fg is ( ) and Rg is ( ) and g  is ( ), then degs  is ( ). 

Table A.2 ACC fuzzy rules (125 rules) 

 Antecedents Consequent 

Rule Fg  Rg  g  degs
 

1 Very Short Very Short Extremely negative Very unsafe 

2 Very Short Very Short Negative Very unsafe 

3 Very Short Very Short Zero Very unsafe 

4 Very Short Very Short Positive Very unsafe 

5 Very Short Very Short Extremely positive Very unsafe 

6 Very Short Short Extremely negative Very unsafe 

7 Very Short Short Negative Very unsafe 

8 Very Short Short Zero Very unsafe 

9 Very Short Short Positive Unsafe 

10 Very Short Short Extremely positive Unsafe 

11 Very Short Medium Extremely negative Unsafe 

12 Very Short Medium Negative Unsafe 

13 Very Short Medium Zero Unsafe 

14 Very Short Medium Positive Unsafe 

15 Very Short Medium Extremely positive Medium 

16 Very Short Long Extremely negative Unsafe 

17 Very Short Long Negative Medium 

18 Very Short Long Zero Medium 

19 Very Short Long Positive Medium 

20 Very Short Long Extremely positive Medium 

21 Very Short Very long Extremely negative Medium 

22 Very Short Very long Negative Medium 

23 Very Short Very long Zero Medium 

24 Very Short Very long Positive Safe 
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25 Very Short Very long Extremely positive Safe 

26 Short Very Short Extremely negative Very unsafe 

27 Short Very Short Negative Very unsafe 

28 Short Very Short Zero Very unsafe 

29 Short Very Short Positive Very unsafe 

30 Short Very Short Extremely positive Unsafe 

31 Short Short Extremely negative Very unsafe 

32 Short Short Negative Very unsafe 

33 Short Short Zero Unsafe 

34 Short Short Positive Unsafe 

35 Short Short Extremely positive Unsafe 

36 Short Medium Extremely negative Unsafe 

37 Short Medium Negative Unsafe 

38 Short Medium Zero Unsafe 

39 Short Medium Positive Medium 

40 Short Medium Extremely positive Medium 

41 Short Long Extremely negative Medium 

42 Short Long Negative Medium 

43 Short Long Zero Medium 

44 Short Long Positive Medium 

45 Short Long Extremely positive Safe 

46 Short Very long Extremely negative Medium 

47 Short Very long Negative Medium 

48 Short Very long Zero Safe 

49 Short Very long Positive Safe 

50 Short Very long Extremely positive Safe 

51 Medium Very Short Extremely negative Very unsafe 

52 Medium Very Short Negative Very unsafe 

53 Medium Very Short Zero Unsafe 

54 Medium Very Short Positive Unsafe 

55 Medium Very Short Extremely positive Unsafe 

56 Medium Short Extremely negative Unsafe 

57 Medium Short Negative Unsafe 

58 Medium Short Zero Unsafe 
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59 Medium Short Positive Unsafe 

60 Medium Short Extremely positive Medium 

61 Medium Medium Extremely negative Unsafe 

62 Medium Medium Negative Medium 

63 Medium Medium Zero Medium 

64 Medium Medium Positive Medium 

65 Medium Medium Extremely positive Medium 

66 Medium Long Extremely negative Medium 

67 Medium Long Negative Medium 

68 Medium Long Zero Safe 

69 Medium Long Positive Safe 

70 Medium Long Extremely positive Safe 

71 Medium Very long Extremely negative Safe 

72 Medium Very long Negative Safe 

73 Medium Very long Zero Safe 

74 Medium Very long Positive Safe 

75 Medium Very long Extremely positive Very safe 

76 Long Very Short Extremely negative Very unsafe 

77 Long Very Short Negative Unsafe 

78 Long Very Short Zero Unsafe 

79 Long Very Short Positive Unsafe 

80 Long Very Short Extremely positive Medium 

81 Long Short Extremely negative Unsafe 

82 Long Short Negative Unsafe 

83 Long Short Zero Medium 

84 Long Short Positive Medium 

85 Long Short Extremely positive Medium 

86 Long Medium Extremely negative Medium 

87 Long Medium Negative Medium 

88 Long Medium Zero Medium 

89 Long Medium Positive Safe 

90 Long Medium Extremely positive Safe 

91 Long Long Extremely negative Medium 

92 Long Long Negative Safe 
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93 Long Long Zero Safe 

94 Long Long Positive Safe 

95 Long Long Extremely positive Very safe 

96 Long Very long Extremely negative Safe 

97 Long Very long Negative Safe 

98 Long Very long Zero Very safe 

99 Long Very long Positive Very safe 

100 Long Very long Extremely positive Very safe 

101 Very long Very Short Extremely negative Unsafe 

102 Very long Very Short Negative Unsafe 

103 Very long Very Short Zero Unsafe 

104 Very long Very Short Positive Medium 

105 Very long Very Short Extremely positive Medium 

106 Very long Short Extremely negative Unsafe 

107 Very long Short Negative Medium 

108 Very long Short Zero Medium 

109 Very long Short Positive Medium 

110 Very long Short Extremely positive Medium 

111 Very long Medium Extremely negative Medium 

112 Very long Medium Negative Medium 

113 Very long Medium Zero Safe 

114 Very long Medium Positive Safe 

115 Very long Medium Extremely positive Safe 

116 Very long Long Extremely negative Safe 

117 Very long Long Negative Safe 

118 Very long Long Zero Safe 

119 Very long Long Positive Very safe 

120 Very long Long Extremely positive Very safe 

121 Very long Very long Extremely negative Safe 

122 Very long Very long Negative Very safe 

123 Very long Very long Zero Very safe 

124 Very long Very long Positive Very safe 

125 Very long Very long Extremely positive Very safe 
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