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ABSTRACT 

 

The Impact of Ignoring a Level of Nesting Structure in Multilevel Growth Mixture Model: 

A Monte Carlo Study. (August 2008) 

Qi Chen, B.A., Nanjing University; M.A., Nanjing University 

Co-Chairs of Advisory Committee: Dr. Oi-Man Kwok 
  Dr. Victor L. Willson 

 

The number of longitudinal studies has increased steadily in various social science 

disciplines over the last decade. Growth Mixture Modeling (GMM) has emerged among 

the new approaches for analyzing longitudinal data. It can be viewed as a combination of 

Hierarchical Linear Modeling, Latent Growth Curve Modeling and Finite Mixture 

Modeling. The combination of both continuous and categorical latent variables makes 

GMM a flexible analysis procedure.  However, when researchers analyze their data using 

GMM, some may assume that the units are independent of each other even though it may 

not always be the case. The purpose of this dissertation was to examine the impact of 

ignoring a higher nesting structure in Multilevel Growth Mixture Modeling on the 

accuracy of classification of individuals and the accuracy on tests of significance (i.e., 

Type I error rate and statistical power) of the parameter estimates for the model in each 

subpopulation. Two simulation studies were conducted. In the first study, the impact of 

misspecifying the multilevel mixture model is investigated by ignoring a level of nesting 

structure in cross-sectional data. In the second study, longitudinal clustered data (e.g., 

repeated measures nested within units and units nested within clusters) are analyzed 

correctly and with a misspecification ignoring the highest level of the nesting structure. 
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Results indicate that ignoring a higher level nesting structure results in lower classification 

accuracy, less accurate fixed effect estimates, inflation of lower-level variance estimates, 

and less accurate standard error estimates, the latter result which in turn affects the 

accuracy of tests of significance for the fixed effects. The magnitude of the intra-class 

correlation (ICC) coefficient has a substantial impact when a higher level nesting structure 

is ignored; the higher the ICC, the more variance at the highest level is ignored, and the 

worse the performance of the model. The implication for applied researchers is that it is 

important to model the multilevel data structure in (growth) mixture modeling. In addition, 

researchers should be cautious in interpreting their results if ignoring a higher level nesting 

structure is inevitable. Limitations concerning appropriate use of latent class analysis in 

growth modeling include unknown effects of incorrect estimation of the number of latent 

classes, non-normal distribution effects, and different growth patterns within-group and 

between-group. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

The following chapter is composed of four major parts related to growth mixture 

models (GMM). The first part reviews the emergence and the importance of GMM in 

developmental research, the second part distinguishes a number of concepts that is related 

to GMM, the third part introduces the basic concepts, models, and limitations related to 

GMM (i.e., Finite Mixture Models, Latent Growth Curve Models, Growth Mixture 

Models, and Multilevel Growth Mixture Models), and the last part reviews research related 

to multilevel model and the necessity of studying MGMM. 

Importance of GMM in Developmental Research 

The number of longitudinal studies increases steadily in different social science 

disciplines over the last decade (Khoo, West, Wu, & Kwok, 2006; West, Biesanz, & 

Kwok, 2003). Many new approaches have been proposed to analyze longitudinal data, 

including hierarchical linear models (HLM, Raudenbush & Bryk, 2002), structural 

equation based latent growth curve modeling (LGCM, Meredith & Tisak, 1990; Bollen & 

Curran, 2006; Duncan, Duncan, Strycker, Li, & Alpert, 1999), latent class growth analysis 

(LCGA, Nagin, 1999), and growth mixture modeling (GMM, Muthén, 2004). 

Among these approaches, both HLM and LGCM are variable-centered approaches 

to data analysis (Muthén& Muthén, 2000; Connell & Frye, 2006) because the goals of 

these models are to examine the relations between independent and dependent variables 

and study how constructs influence their indicators. In contrast to the variable-centered 

approach, the person-centered approach aims at classifying individuals into different 

This dissertation follows the style of Journal of Educational Psychology. 
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categories. That is, individuals who shared similar characteristics are classified into the 

same category/group (Muthén & Muthén, 2000).  GMM and LCGA are recent 

developments in statistical technique to handle the longitudinal data integrating both 

variable- and person-centered approaches. These approaches can identify the unobserved 

and heterogeneous developmental trajectories, which are represented by the latent 

categorical/grouping variable (Muthén & Muthén, 2000). The relationship between growth 

parameters can also be examined within each latent class of individuals. The relationship 

between GMM, LGCM, and LCGA will be discussed in detail later in the chapter. 

Growth Mixture Models (GMM) has been recently receiving more attention in 

educational and psychological research. One major reason of this development is due to the 

flexibility of GMM.  For example, GMM allows more complex ideas of development to be 

examined because it can be a part of the general latent variable model including other 

factors (i.e. factor for covariates with measurement errors) influencing the growth factors 

or outcomes influenced by the growth process. Moreover, as pointed out by Nagin (1999), 

psychology has a long tradition of theorizing development based on groups in different 

research areas, such as theories of different kinds of personality development, and theories 

about prosocial and antisocial behaviors development. These theories raise questions such 

as whether one type of people tends to have certain developmental trajectories 

distinguishable from other types of people. It is not likely that population differences in 

developmental trajectories will be as clearly distinct as the differences found in biological 

or physical phenomena (i.e. different types of animal species or the four states of matter). 

Nevertheless, GMM, as a statistical method, can be used to test theories that predict 

prototypal developmental trajectories in population. Rather than assigning subjective 
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categorization, GMM provides a more objective method for determining the number of 

latent classes and calculating the posterior probability of class membership for each 

individual. 

Difference of GMM from Other Models 

There are many person-centered statistical approaches addressing the unobserved 

heterogeneity within data, such as cluster analysis, finite mixture models, latent class 

analysis, latent transition analysis, and GMM. The purpose of this section is to clarify the 

similarity and difference between these approaches, especially to distinguish GMM from 

all these approaches. 

Cluster analysis (Everitt, Landau & Leese, 2001) is a generic term for a wide range 

of numerical methods for examining multivariate data with a view to uncovering or 

discovering groups or clusters from the observed data. Data clustering algorithms can be 

either hierarchical or partitional. Hierarchical clustering is a type of cluster analysis in 

which data are not partitioned into a particular number of classes or clusters at a single 

step. Instead, the classification consists of a series of partitions, which may run from a 

single cluster containing all individuals to n clusters each containing a single individual. 

Hierarchical clustering can use either the agglomerative methods or the divisive methods. 

The researcher needs to decide when to stop for an optimal number of clusters. This type 

of cluster analysis is mostly relevant in biological applications, studies of social systems, 

museology, and librarianship where hierarchy is implicit in the subject matter. On the other 

hand, when a particular partition is required and there is no underlying hierarchy, 

partitional algorithms or optimization clustering techniques that determine the number of 

clusters at one point is more appropriate. Optimization clustering techniques are a class of 
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clustering techniques which produce partition of the individuals into a specified number of 

groups by either minimizing or maximizing some numerical criterion. 

Finite Mixture Models (FMM), also called Mixture Modeling (Muthén& Muthén, 

2006) and Latent Class Cluster Analysis (Vermunt & Magidson, 2002), is one type of 

partitional cluster analysis (Everitt et al., 2001). More detailed information about FMM 

will be provided in later sections. Basically, Finite Mixture Models assume that parameters 

of a statistical model of interest differ across unobserved subgroups called latent classes or 

mixture components.  In FMM, these latent/unobserved classes or subpopulations are 

represented by the categorical latent variables in the model (Muthén & Muthén, 2006). It 

aims at finding a model that can minimize the within-class homogeneity and maximize the 

across-class heterogeneity. As a model-based clustering approach, FMM differs from 

standard cluster analysis (Everitt et al., 2001). Moreover, FMM can be applied to different 

kinds of data, including continuous and categorical, cross-sectional and longitudinal data.  

There are usually two major parts in FMM: one part is the observed indicators (also 

called dependent variables, outcome variables, outputs, endogenous variables, and items) 

measured for each individual, and the other part is the latent categorical variable (also 

called exogenous variable) that specifies the unobserved group membership for each 

individual (Vermunt & Magidson, 2002). FMM can be applied to both cross-sectional and 

longitudinal data. Traditionally, Latent Class Analysis (LCA), also referred as Latent Class 

Models (LCM) (Clogg, 1995), is used when the observed indicators are categorical and 

cross-sectional. For instance, the indicators may correspond to a set of dichotomous 

diagnostic criteria items, and the latent categorical variable may describe the presence or 

absence of an alcohol use disorder (Muthén & Muthén, 2000). On the other hand, when 
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FMM is applied to cross-sectional data with continuous observed indicators, it is called 

Latent Profile Analysis (LPA) (Lazarsfeld & Henry, 1968). 

When FMM is applied to longitudinal data, depending on the kind of change being 

analyzed, there are three major types of models. Khoo et al. (2006) reviewed three major 

types of longitudinal models, namely, autoregressive model, latent trait-state model, and 

growth curve model. Courvoisier, Eid, and Nussbeck (2007) pointed out that these three 

models analyze two types of change, namely, the long lasting and irreversible change (i.e., 

autoregressive model and growth curve model) and the change with status alteration over 

time (i.e., latent trait-state model). When mixture models are applied to analyze 

longitudinal change, there are three types of models, namely, Latent Transition Analysis 

(LTA), Mixture Latent State-Trait Analysis (MLSTA), and Growth Mixture Models 

(GMM). 

LTA is applied when the observed indicators are categorical and longitudinal and 

the aim of the analysis is to detect the qualitative or status change between stages of time 

(Collins & Flaherty, 2002). In LTA, the latent categorical variable becomes a stage-

sequential dynamic latent variable, which changes in systematic ways over time so that 

each stage represents a qualitatively different way of organizing information. The 

researcher can specify the number of consistently transitional stages in a model and study 

the probability of transiting from one class at one time point to another class at the next 

time point. LTA is mostly used in public health research (Collins & Flaherty, 2002). On 

the other hand, MLSTA can be viewed as the counterpart of LTA because it deals with 

continuous rather than categorical observed variables (Courvoisier et al., 2007). In addition 

to modeling change by separating the stable, occasion-specific, and error-specific 
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influences, MLSTA attempts to identify latent groups of individuals who differ in the 

degrees of behavior or attitude and thus susceptible to different levels of influences by 

occasions of measurement. 

When FMM is applied to longitudinal data with irreversible change, it is called 

Growth Mixture Modeling (GMM). GMM can model either all categorical or all 

continuous observed variables as well as data with mixed-mode (i.e. both categorical and 

continuous) variables (Muthén, 2004; Muthén & Muthén, 2006).  The focus of this 

dissertation is on GMM with all continuous observed variables. To simplify the 

presentation, I will use GMM to stand for the growth mixture models with continuous 

observed variables. More details on GMM will be discussed in the following sections. 

Figure 1 shows the graphical relationship between the different types of analyses 

presented previously. There are three different size circles labeled as circles 1, 2, and 3 to 

represent the large, medium and small circles respectively. The largest circle represents all 

kinds of cluster analysis techniques, the 2nd largest circle represents partitioned clustering, 

and the area between circles 1 and 2 represents hierarchical clustering.  Within circle 2 is 

circle 3, which represents all kinds of finite mixture models. Within circle 3, on the right 

side of the solid line are methods for cross sectional data, including LCA for categorical 

observed indicators, LPA for continuous observed indicators, and FMM for mixed mode 

data.  On the left side of the solid line are FMM for longitudinal data, including LTA for 

categorical observed indicators, MLSTA for continuous observed indicators, and GMM for 

mixed-mode data. In the following section, important concepts closely related to the focus 

of this dissertation will be introduced, namely, Finite Mixture Models for continuous 
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indicators, Growth Mixture Models for continuous indicators, and Multilevel Growth 

Mixture Models. 

Muthén (2001b, 2002, 2008) and Vermunt and Magidson (2004b, 2004c) present a 

general latent variable framework, which includes many of the previously mentioned 

models and some other models with continuous latent variable for the purpose of 

classifying observed outcomes (e.g., factor analysis for classifying continuous outcomes 

and latent trait analysis for classifying categorical outcomes). The general framework 

connects many statistical approaches and reflects Muthén’s (2002) aim of integrating 

different types of statistical and psychometric models into a unifying framework for 

statistical modeling. Indeed, Mplus, the statistical modeling program developed by Muthén 

& Muthén (2006) is gaining more and more attention in various research fields due to its 

flexibility of modeling both continuous and categorical latent variables for longitudinal 

data (Muthén, 2004).  Since the focus of this dissertation is not on integrating different 

methods into a general framework, the details about this framework and the many old and 

new mixture models derived from the incorporation of the  traditional variable-centered 

analyses with FMM (described in details by Muthén, 2001a, 2001b, 2002, 2004, 2006) will 

not be elaborated here.  

Concepts Related to Growth Mixture Models 

Growth Mixture Model is a modeling approach integrating two statistical modeling 

techniques, namely, Finite Mixture Models and Latent Growth Curve Models. Therefore, 

in the following section, key concepts related to these two different modeling techniques 

will be presented, followed by the concept of Growth Mixture Models. Notice however, 

only the concepts closely related to the focus of this dissertation will be introduced, 
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namely, Finite Normal Mixture Models for continuous indicators and Growth Mixture 

Models continuous indicators. 

Finite Mixture Model 

Due to the availability of inexpensive high-speed computers in the late twenty’s 

century and the advances in posterior simulation techniques, mixture model has received 

more and more attention among both practitioners and statisticians (McLachlan & Peel, 

2000). Finite mixture models (FMM) underpins a number of statistical techniques, one of 

which is growth mixture modeling (GMM), a technique becoming increasingly useful in 

longitudinal studies (Muthén & Shedden, 1999; Muthén, 2004; Bauer & Curran, 2004). 

The following section on the basic definition and formula of FMM is a summary of 

the works by Everitt and Hand (1981), McLachlan and Basford (1988), McLachlan & Peel 

(2000), and Vermunt and Magidson (2005). Finite normal mixture models assume that a 

population consists of a finite number of unobserved or latent component distributions, 

each of which characterized by its own normal distribution for the continuous measures. 

The probability density function (pdf) of the finite multivariate normal mixture model is  

 

∑
=

Σ=Ψ
g

i
iijiij ),;y(f);y(f

1
μπ  (1a) 

 

where jy  denotes the observed value of individual j (j = 1, …, N) on the p-th continuous 

random variable (of a total of P variables where P=1,…, p) and therefore jy  is a PN × data 

matrix, Ψ is a vector containing all the unknown parameters in the mixture model. Each 

jy  can be viewed as arising from a superpopulation G, which is a mixture of a finite 
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number of g populations (i.e., gGG ,...,1 ) with the corresponding proportions 

(i.e., gππ ,...,1 ). iπ  , referred as mixing proportions or weights, is the probability of 

belonging to (latent) class i (where∑
=

=
g

i
i

1

1π  and 0≥iπ , i = 1, …, G ). The class specific 

densities )( ji yf  are called the component densities of the mixture, and specified as 

multivariate normal with mean vector iμ  and covariance matrix iΣ . Its PDF is as follows:  

 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ −Σ−−Σ=Σ −−−

iji
T

iji

p

iiji yyyf μμπμ 12
1

2

2
1exp)2(),;(  (1b) 

 

The likelihood function for a sample of j = 1, …, N randomly drawn observations from the 

mixture is : 

 

( ) ∏
=

Ψ=Ψ
N

j
jyfL

1

);(  (1c) 

 

In the most general specification where no restrictions are imposed on iμ  and iΣ , a 

multivariate normal mixture model with G latent classes contains G-1 unknown class 

proportions, pG ×  class-specific means, pG × class-specific variance, and 

21)p(pG −××  class-specific covariances. 

Maximum likelihood (ML) is one of the main estimation methods in FMM. Most 

software packages use the EM algorithm or some modifications of it to find the ML 

estimates. Upon achieving convergence, the estimates of the model parameters and their 
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asymptotic covariances are provided. In addition, classification of individuals into different 

(latent) clusters can be done based on the posterior class membership. The posterior 

probability of jy  belonging to cluster i can be computed by using Bayes’ rule: 

 

( )
∑
=

Σ
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=Ψ g

h
hhjhh
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The standard classification method is to assign individual to the class with the highest 

posterior probability. 

By assuming the data under analysis are composed of a discrete number of 

components, finite mixture models can handle situations where a single parametric family 

is unable to provide a satisfactory model for local variations in the observed data 

(McLachlan & Peel, 2000). FMM is the analytical basis for GMM, in which the population 

being analyzed is composed of individuals coming from a finite number of latent trajectory 

classes (Muthén, 2001b). Mixture modeling is similar to multiple group analysis. However, 

an important difference between mixture modeling and the standard multiple group 

analysis is that in mixture modeling, the group membership cannot be directly observed 

(Muthén, 2001b; Vermunt & Magidson, 2005). This is why sometimes researchers refer 

FMM as latent class analysis (LCA). As mentioned by Muthén (2002) and Vermunt 

(2007), mainstream statistics often refer mixture models with continuous indicators as 

finite mixture models and reserve the term LCA for mixture models with all categorical 

response variables. In this dissertation I will use the two terms interchangeably. 
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Latent Growth Curve Models 

Latent Growth Curve Models (LGCM) is a special form of Structural Equation 

Modeling (SEM; Bollen & Curran, 2006) to address the analysis of change. The basic idea 

is that there exist some unobserved latent factors which can account for the means and 

covariances of (the changes of) the observed repeated measures. The interest of analysis is 

more in the latent factors, which are referred to as growth factors, instead of the repeated 

measures.  

Bollen and Curran (2006) give a very detailed and organized description of 

different kinds of LGCM. In their framework, there are unconditional versus conditional 

LCGM.  Conditional LCGM includes covariates affecting the growth trajectory whereas 

the unconditional LCGM does not. There are linear versus nonlinear LGCM. The linear 

LGCM is governed by an intercept and a linear slope component whereas the nonlinear 

LGCM includes higher-order polynomials (i.e., powers of time) that result in quadratic or 

cubic growth trajectories. There are also univariate versus multivariate LGCM, with the 

univariate LGCM only considering repeated measures of a specific outcome whereas the 

multivariate LGCM considering repeated measures for multiple outcomes. In addition, 

LGCM can be extended to include both continuous and categorical observed outcomes, 

and in many other ways. Indeed, LGCM is a very useful statistical technique to model 

longitudinal data. In this dissertation, however, only the notations of the conditional linear 

LGCM is summarized, on the one hand because the focus of this dissertation is on the 

linear growth models, on the other hand because this type of models lays the foundation 

for the other more complicated ones. 
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First of all, the data requirement for identifying and estimating a polynomial 

growth trajectory with d degrees is to have at least 2+d repeated observations (Bollen & 

Curran, 2006). Therefore, in order to fit a linear trajectory ( 1=d ), at least three repeated 

measures are needed whereas for a quadratic trajectory ( 2=d ), at least four measure are 

needed. Figure 2 shows a hypothetical linear LGCM for four repeated measures and one 

covariate predicting the intercept and slope. 

Unlike traditional SEM model with one factor loading fixed as the scaling indicator 

for the corresponding factor, LGCM fixes all the loadings to specific values to represent 

the time intervals. In this figure, α represents the intercept factor with the loadings from the 

factor to each measure fixed to 1, and β represents the slope factor with the loadings fixed 

as 0, 1, 2, and 3 for measures from time1 to time4 respectively. The intercepts of the 

repeated measures are set to 0, and the means for the growth factors are estimated. As a 

result, the model-implied mean structure of the repeated measures is determined entirely 

by the means of the growth factors. The estimated residual variance of the repeated 

measures is the variance not explained by the growth process. In addition to mean, the 

variances and the covariance of the two growth factors will also be estimated, which reflect 

the degree of variability of the individual intercepts and slopes around the means. 

The conditional linear latent growth curve model would look like this: 

 

Measurement: ititiitY εβλα ++=  ),0(~ 2σε Nit  (2a) 

Structural: i

Q

q
qiqi X ααα ζγμα ∑

=

++=
1

 ),0(~ ζζ TNi  (2b) 
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 i

Q

q
qiqi X βββ ζγμβ ∑

=

++=
1

 (2c) 

 

where the level-1 model (i.e., equation 2a) captures the change within individuals over 

time. itY is the value of the trajectory variable y for the ith individual at time t 

( Tt ,...,3,2,1= ). iα is the intercept and iβ is the slope for individual i. tλ ( 1−= ttλ ) is a 

predictor variable measuring time within each individual, and itε is the residual. The level-

2 model (i.e., equations 2b & 2c) captures: A) the overall model with the average initial 

score (i.e., αμ ) at time 1 ( 01 =λ ) and the average rate of change over time (i.e., βμ ) 

across all individuals when the q ( Qq ,...,3,2,1= ) time-invariant covariates qiX  are zero, B) 

the variance (or variation) of the initial status (i.e., 00)( τζα =iV ) and the variance (or 

variation) of the rate of change over time (i.e., 11)( τζα =iV ) between individuals from the 

overall model when the covariates qiX  are zero, and C) the influence of q covariates 

(reflected by the covariate coefficients γ) on the random intercepts and slopes (i.e., the 

intercepts and slopes will change by qβγ  when there is one unit change in qX and all other 

variables are held constant). These models can also be presented in the matrix terms as the 

following: 

 

Measurement: iiiY εη +Λ=  (2d) 
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Yi    =    Λi          ηi    +   εi 

(2e) 

Structural: iii X ζμη η +Γ+=  (2f) 
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where for the i-th individual, Yi contains the observed repeated measures, Λi contains the 

time information, ηi contains the latent intercept and linear growth rate, and εi contains the 

random errors.  The means of the latent factors αμ  and βμ  are the average initial status 

(i.e., αμα =)( iE ) and growth rate (i.e., βμβ =)( iE ) when covariates are zero, whereas the 

two iζ ’s are the random effects and the variances of them capture the variances of the 

initial status (i.e., 00)( τζα =iV ) and the rate of change over time (i.e., 11)( τζα =iV ). 

Γ contains the corresponding regression coefficients of the Q exogenous X’s predicting the 

growth factors. Combining equations 2d and 2f, the reduced-form model for LGCM is: 

 

iiii XY εζμη +Λ+Γ+Λ= )(  (2h) 
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 The above equation allows any number of repeated measures and covariates. In an 

unconditional linear model, the part related to covariates will be omitted and the model is: 

 

iiiY εζμη ++Λ= )(  (2i) 

 

LGCM is generally estimated using Maximum Likelihood (ML) estimator and the 

ML function for each individual in the sample is (Arbuckle, 1996): 

 

)]([)()]([
2
1)(ln

2
1)(ln ' θμθθμθθ −−−−= ∑∑ iiiiii zzKL  (2j) 

 

where iz  is a vector of observed variables for the ith individual, and iK is a constant 

unrelated toθ . The likelihood function for all individuals is: 

 

∑
=

=
N

i
iLL

1
)(ln)(ln θθ  (2k) 

 

The ML estimator is quite stable when the observed variables have the same multivariate 

kurtosis as a multivariate normal distribution (i.e. no excess multivariate kurtosis) 

(Browne, 1984). Other estimators such as Weighted Least Squares are also available when 

the multivariate normal distribution assumption is violated. Fit statistics such as CFI, 

RMSEA, and SRMR are available to assess the fit of the model (Muthén & Muthén, 2006). 

It is worth noticing that in Hierarchical Linear Models (HLM) or Multilevel 

Models (Raudenbush & Bryk, 2002) are very similar models which can also use for 
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estimating the growth trajectories. A single-level model as expressed in equations 2h under 

the LGCM framework can be expressed as a two-level model under the HLM framework. 

The measurement part of LGCM where the growth factors (i.e., iα  & iβ ) are measured by 

the multiple time measures (i.e., 1iY  to itY ) can be seen as the level 1 model in HLM, 

whereas the structural part of LGCM which relates the growth factors to other potential 

level 2 variables (i.e., time invariant covariates such as gender and SES) becomes the level 

2 model in HLM. Although HLM and LGCM are two different approaches for the same 

problem, LGCM combines the strength of conventional HLM and SEM and has many 

modeling flexibilities, such as its adaptability in handling measurement error, availability 

of alternative estimators and fit indices, ability to analyzing the relationship between 

growth factors, multiple processes and multiple groups, and most important of all, the 

possibility of being a part of the general latent variable model  including other factors (i.e. 

factor for covariates with measurement errors) influencing the growth factors or outcomes 

influenced by the growth process (Muthén, 2004; Bollen & Curran, 2006). 

Growth Mixture Models 

Concept and Notations 

Both HLM and LGCM assume that all individuals are drawn from a single 

population with a common set of population parameters, thus mapping one average 

trajectory over the individual trajectories. However, in substantive research areas, 

unobserved/underlying heterogeneous groups often exist, such as in market research 

(Jedidi, Jagpal & DeSarbo, 1997), developmental psychology (Dolan & van der Maas, 

1998), sociology research (Arminger & Stein, 1997), and educational research (Muthén, 

2002). Statistical method that address a priori (or known) grouping such as multiple group 
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SEM analysis is not suitable for such situations, because the group is not observed and 

need to be decided based on the observed measures (Jedidi et al., 1997). Mixture SEM 

model is thus developed to address the statistical modeling difficulties, such as using a 

model-based approach to perform cluster analysis concurrently with taking into account 

measurement error and testing the hypothesized model structure (Jedidi et al., 1997). 

Mixture SEM is viewed as generalizing or extending the multiple group SEM analysis to 

where the group membership is unknown (Jedidi et al., 1997; Vermunt & Magidson, 

2005). Growth Mixture Models, therefore, is a special case of Mixture SEM in which the 

SEM part of the model is the Latent Growth Curve Modeling. 

Muthén and Shedden (1999) introduced GMM which relaxes the homogeneity 

assumption and allows for parameter differences across unobserved subpopulations (or 

latent classes). Instead of only considering individual variation around a single mean 

growth trajectory in LGCM, GMM can model different classes of individuals to vary 

around different mean growth trajectories. It is important to distinguish the concept of 

GMM from the Latent Class Growth Analysis (LCGA) model proposed by Nagin (1999), 

which is also a complement to HLM and LGCM. LCGA uses a multinomial modeling 

strategy to map group trajectories as latent classes in the data and identify homogeneous 

clusters of developmental trajectories (Jones, Nagin, & Roeder 2001). This “prototypal” 

classification recognizes fuzziness in the data, since all individuals cannot be assumed to 

exactly fit one and only one group trajectory (Nagin, 1999). However, LCGA treats classes 

as fixed; that is, individuals within a class have exactly the same developmental trajectory 

and the growth factor variances and covariances are assumed to be zero. Thus, LCGA  is 

considered as a special type of the GMM (Muthen, 2004). 
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Unlike Latent Class Analysis and Latent Profile Analysis used for cross-sectional 

data, which both assume conditional independence among the observed outcomes 

conditional on class (i.e. the latent variable explains why the observed outcomes are related 

to each other), GMM does not assume uncorrelated outcomes in a given class (Muthén, 

2002; Vermunt & Magidson, 2004a, 2004c). Instead, GMM allows within class random 

variation for the growth factors and the correlation between outcomes at all time points 

(Muthén, 2002). There have been some arguments about whether within-class variation 

should be allowed (Nagin, 2005; Muthén, 2006a). Compared to LCGA, GMM usually 

generate fewer classes for the same data (Nagin, 2005; Bauer & Curran, 2004).  However, 

Nagin (2005) raised the issue of possible “group cross-overs” due to the allowed within-

class variation. Muthén (2006a), on the other hand, argues that GMM can represent the 

data more realistically. It goes beyond the focus of this dissertation to explicate on this 

controversy, however, the implication for researchers is that potential importance of 

within-class variation is also an empirical question and worth researchers’ exploration 

(Connell & Frye, 2006). 

The GMM equations and the corresponding matrix forms (i.e. equations 3a-3j) for 

a linear growth mixture model with covariates predicting both the growth factors and latent 

class variable are the summary of the works by Muthén and Shedden (1999), Jedidi et al. 

(1997), Vermunt & Magidson (2005), and Bollen and Curan (2006), Palardy and Vermunt 

(2007) as following: 

 

Measurement: ititiitY εβλα ++=  ),0(~ 2σε Nit  (3a) 
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Structural: i
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Measurement: iiiY εη +Λ=  (3e)
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Yi    =    Λi          ηi    +   εi 

(3f) 

Structural: iiii Xc ζη +Γ+Α=  (3g)
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Latent Class: ii X)w(itlog Λ+Κ=  (3i) 
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)(log iwit    =    Κ     +                  Λ                           iX  

 

where the measurement model (i.e. equations 3a, 3e, 3f) remains the same as in LGCM, 

while in the structural part of the model growth factors (i.e. equations 3b, 3c, 3g and 3h) 

are related to the categorical latent variable c (i.e., ikc symbolizes k indicator variables, 

where 1=ikc if individual i belongs to class k and is zero otherwise, k=1, 2, 3, …, k and k is 

the total number of mixture components or latent classes) given the observed covariate X.  

The matrixΑ in equation 3g and 3h contains the intercept parameters for each c class, and 

the other parameters and assumptions are the same as previously stated for LGCM 

equations. Equations 3d, 3i and 3j show how the categorical latent variable c relates to 

covariate X through a multinomial logit regression model for unordered polytomous 

response using class k as the reference category, defining )|1( iikik XcPw == and 

)',,,( 21 ikiii wwww L= . 

Model Estimation 

The density of Yi, );( θiyf , is a mixture or weighted sum of k class-specific 

densities );( kiyf θ as follows: 

 

∑
=

=
g

i
kikikii YfXwwXYf

1
);()(),,;( θθ  (3k) 

 



 21

where 10 << kw and 1
1

=∑ =

K

k kw , kθ contains the vector of unknown model parameters for 

class k, and )( ik Xw is the probability of individual i belong to class k given the 

corresponding covariate value iX . 

 Define [ ]'''
kkk XYz = as the joint vector of observed indicators conditional on 

membership in class k, and assume that within each class the distribution of the observed 

variables kz is multivariate normal. The unconditional distribution of z is then a finite 

mixture of kz . The likelihood function for a sample '
21 ),( Nzzz L  randomly drawn from the 

mixture is: 
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where Ni ,,2,1 L= , ikw is the probability that the individual i belong to class k, kμ is the 

class specific mean vector and kΣ the class-specific covariance matrix, and p and q are the 

numbers of indicators for the endogenous and exogenous constructs. 

For an observation in group k, the model implied mean vector and covariance 

matrix can be expressed as follows: 
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where the superscript k is attached to each variable and parameter to show the class it 

belongs to, θ is the vector of the unknown model parameters for group k, )( k
x

kkk μμη Γ+Λ  

is the model implied mean vector for Y, k
xμ is the vector of means for the covariates kX , 

and k
xxΣ is the population covariance matrix of the kX . Each latent group in the analysis 

has the similar model implied matrices. In an unconditional linear model, k
xxΣ and kΓ will 

be set to zero. 

 Model estimation for GMM is usually done using the EM algorithm or some 

modifications of it to maximize the likelihood function (Muthén & Sheddan, 1999; Jedidi 

et al., 1997; Vermunt & Magidson, 2005). This estimation method was explained in details 

by Dempster, Laird, and Rubin (1977). Since its advent, maximum likelihood (ML) is the 

most commonly used approach to fit FMM (McLachlan & Peel, 2000). By treating the 

continuous latent variables iα and iβ and the categorical latent variable ic as missing data, 

the E (expectation) and M (maximization) steps proceeds iteratively to maximize the L 

function in equation 3l with respect to the free parameters given in the observed sample 

data and a specified number of classes k, while also taking into account the constraints on 

w and 0>Σk for all k (Jedidi et al., 1997). 

 Once convergence is reached, the algorithm provides estimates of the model 

parameters and their asymptotic covariances (McLachlan, 1992). The posterior probability 

of individual i belonging to class k can be calculated using the parameter estimates using 

Bayes’ rule: 
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Posterior Probability: ∑
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where ikP is the posterior probability. Each individual is then assigned to the class with the 

highest posterior probability. 

Model Selection 

Two issues arise in the model selection process for GMM: 1) the decision about the 

number of classes; and 2) the form of the model given the number of classes (Jedidi et al., 

1997; Vermunt & Magidson, 2002). 

The form of the model can be examined using the standard likelihood-ratio test 

(LRT) for nested models when the number of classes has been determined (Vermunt & 

Magidson, 2002). An example of such nested models would be for a LCGA model and a 

GMM model fitted to the same set of data with the same number of latent classes, with the 

former having a restricted covariance matrix compared to the latter. However, LRT cannot 

be used for class number determination, because LRT is not asymptotically distributed as a 

chi-square distribution between the likelihood values of models with k versus k-1 number 

of classes (McLachlan & Peel, 2000). 

Testing for the number of components is of great theoretical and practical 

importance, yet it is very difficult problem and has not yet been completely resolved 

(McLachlan & Peel, 2000). A combination of criteria has been recommended to guide 

applied researchers in selecting the optimal number of classes. Nevertheless, Muthén 

(2003) emphasized the importance of checking on substantive knowledge before using any 

of these statistical criteria. The fit statistics can be grouped into four categories (Tofighi & 
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Enders, 2008; Vermunt & Magidson, 2002; Henson, Reise, & Kim, 2007): information-

based criteria, nested model likelihood ratio tests, goodness of fit measures, and 

classification-based statistics. Researchers (Celeux & Soromenho, 1996; Tofighi & Enders, 

2008; Nylund, Asparouhov & Muthén, 2008; Henson et al., 2007) have studied the 

performance of these fit statistics in the context of latent variable mixture modeling and 

following information about the use of these statistics is summarized from these articles.  

Information Criterion (IC) indices are based on the log likelihood value of a fitted 

model and the penalty on model complexity such as the number of model parameters 

and/or sample size. The following ICs have been studied: Bayesian information criterion 

(BIC), a sample size adjusted BIC (SABIC), Akaike’s Information Criteria (AIC), the 

consistent AIC (CAIC), and a sample size adjusted CAIC (SACAIC). IC indices are 

penalized log likelihood criteria (McLachlan & Peel, 2000), which means that as log 

likelihood increases with the addition of a component to a mixture model, the decreased -2 

log likelihood is penalized by adding a term related to the number of parameters in the 

model (i.e., )log(log2 npLBIC +−= , where n is the sample size, and p is the number of 

estimated parameters, L is the likelihood and 10 ≤< L , larger values of L yield smaller 

non-negative values of Llog2− , )log(np is the penalty term for model complexity). A 

lower IC value favors model with higher likelihood value and fewer parameters, and lower 

IC values indicates better model fit. Because of the different penalty functions in the 

indices, it is possible that different ICs may favor different class solution as the best model. 

The nested model likelihood ratio tests include: the Lo-Mendell-Rubin adjusted 

likelihood ratio test (LMR), the adjusted Lo-Mendell-Rubin likelihood ratio test (ALMR), 

and the bootstrap likelihood ratio test (BLRT). All these statistics were developed using 

http://en.wikipedia.org/wiki/Parameter
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LRT and they are testing the null hypothesis that the restricted model with k-1 classes fits 

the data as well as the full model with k classes. A small probability value of these tests 

indicates that the k-1 class model should be rejected in favor of the k class model. 

The classification-based statistics include: CLC (classification likelihood 

information criterion), ICL–BIC (integrated classification likelihood), normalized entropy 

criterion (NEC), and entropy. These statistics are calculated based on the classification of 

individuals and the separation of latent classes. Smaller values of CLC, ICL-BIC, and 

NEC, and larger values of entropy indicate a more unambiguous classification. 

The goodness of fit statistics is the Multivariate Skewness and Kurtosis Tests 

(MKT & MKT). These statistics compare the k-class model-implied multivariate skewness 

and kurtosis values to those from the sample data. Small probability values would indicate 

that the k class model differs from the sample distribution and does not fit the data. Large 

probability values would then indicate the model adequately fits the data. 

Of all these fit statistics, Tofighi and Enders (2008) found that the SABIC and 

LMR were useful in enumerating the correct number of classes, although they did not 

evaluate the performance of BLRT due to software limitation. Nylund et al. (2006) found 

that BLRT was the best among the statistics they examined (including LMR), following by 

BIC and then SABIC. However, they also pointed out compared to LMR, BLRT has 

limitations such as requiring long computation time, dependence on distributional and 

model assumptions, and inability to accommodate complex survey data. Therefore, they 

recommended using BIC and LMR to narrow the solutions to a few plausible models first 

and then requesting BLRT for these models to select the best model. Neither Tofighi and 

Enders (2008) nor Nylund et al. (2006) studied the classification-based statistics. Henson 
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et al. (2007) studied all four types of fit statistics and found that ABIC performed best. 

They also found that except for entropy, the classification statistics performed well but not 

as good as the information-based criteria or the nested model likelihood ratio tests, 

contrary to what Celeux & Soromenho (1996) found for NEC. They did not find the MST 

or MKT useful for their study model, whereas Tofighi and Enders (2008) speculated that 

the performance of MST and MKT is model-specific according to their simulations. Both 

Tofighi and Enders (2008) and Henson et al. (2007) found that the ALMR performed 

similar as LMR, whereas Nylund et al. (2006) only examined LMR. 

Although the types of latent variable mixture models employed in the simulation 

studies vary, they seem to agree on the use of SABIC, BIC, and LMR for model selection. 

BLRT was studied in only one simulation study yet still worth consideration due to the 

consistency found in three types of mixture models (Nylund et al. 2007). Last but not the 

least, it can never be emphasized enough that researchers must check whether the model 

solution makes sense according their substantive knowledge. 

Limitations 

GMM certainly is a very useful and promising statistical tool for studying change 

over time.  In addition, it allows more complex ideas of development to be examined for 

being part of a general latent variable framework (Muthén, 2001b). However, researchers 

(Bauer & Curran, 2003a, 2003b, 2004; Hipp & Bauer, 2006) have pointed out that there 

are potential limitations of GMM that is worth applied researchers’ attention and 

consideration. 

The first limitation is estimation difficulty, namely, the mixture model’s 

susceptibility to local optimal solutions and model non-convergence problems (McLachlan 
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& Peel, 2000; Muthén, 2001b; Bollen & Curran, 2006). It is recommended that multiple 

sets of starting values be used to avoid theses irregularities on the likelihood surface and to 

discriminate local optima from the global optimum. Hipp and Bauer (2006) conducted both 

empirical and Monte Carlo studies to examine the consequence of failing to consider the 

possible presence of local optima in both GMM and LCGA models. They found that the 

percentage of starts converged on a solution declined as model complexity increased (i.e. 

model with more classes, permitting random effects within classes). Despite the previous 

ambiguous recommendations to vary start values, they give the following 

recommendations according to their study results: 1) at least 50 to 100 sets of starting 

values will be needed and this is especially necessary for more complex models; 2) 

compare the substantive results of the key solutions obtained to see whether there are 

similar results arising, and determine the robustness of latent classes by running models 

with more or fewer classes; 3) be wary that the optimal solution should occur more 

frequently if the model is correctly specified and vice versa; and 4) override the default 

start values in the computer program to specify a larger range of start values. 

The second limitation, which was highlighted by Bauer and Curran (2003a, 2004), 

is that when the multivariate normality assumption for the repeated measures in a one-

group LGCM is violated, latent trajectory classes can be estimated even in the absence of 

population heterogeneity. Their basic argument is that GMM has two distinct functions: 

the first is to identify qualitatively distinct classes of individuals with heterogeneous 

patterns of change over time, and the second is to approximate intractable or complex 

distributions with a small number of simpler component distributions. It is not easy to 

distinguish between the two functions analytically, nor do the fit statistics provide relevant 
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information. Their simulation study showed that for data with nonnormal distribution from 

the same population, the two-class model fit the data better than the single-class model, 

however, the overextracted model resulted in largely uninterpretable within class 

parameter estimates. The problem becomes more complicated when there is a mixture of 

nonnormal distributions. They cautioned applied researchers to validate the conclusion of 

multiple latent classes by substantive theory, check on the sources of nonnormality, and be 

mindful that alternative explanation for the same result exists (Bauer & Curran, 2003b, 

2004). 

The third limitation is that model misspecification for the latent classes can lead to 

wrong decision on the number of classes. Bauer and Curran (2004) studied two model 

misspecification situations by simulation: one was to fit a LCGA model to data generated 

using GMM one-class model, which led to overextraction of latent classes; the other was to 

fit a linear GMM model to data generated by a non-linear one class latent growth curve 

model and the model fit statistics showed preference for a two-class model. 

A fourth issue with GMM is the inclusion of covariate in the prediction of class 

variable and growth factors. Although in both LGCM and GMM, it is recommended to 

include covariates to predict growth factors and/or the latent class variable (Muthén, 2004; 

Bollen & Curran, 2006), applied research and simulation studies have shown that the 

inclusion of covariate is detrimental to class enumeration (Chen & Willson, 2006; Tofighi 

& Enders, 2008). Tofighi and Enders (2008) found that the benefits of inclusion of 

covariates for better class enumeration was evident at extremely large sample size (i.e., 

N=2000) while at smaller sample sizes including covariates caused the lost of power for 

class enumeration. Chen and Willson (2006) examined the influence of the inclusion of an 
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exogenous covariate in conditional and unconditional GMM, and found that the latent class 

model with covariate resulted in losing power and inflating Type I error rate when 

comparing to the known class model. The power decreased and Type I error rate was 

inflated as sample size decreases and the magnitude of covariance between the covariate 

and latent class variable becomes smaller. Muthén (2006b) recently proposed to decide the 

number of classes first without including covariate in the analysis and then include the 

covariate in follow-up analysis. 

Multilevel Growth Mixture Model 

The concept of Multilevel Growth Mixture Model (MGMM) is a relatively new 

modeling idea (Muthén, 2004). Longitudinal data are often collected through cluster 

sampling and this gives rise to the multilevel data with repeated measures nested within 

individuals and individuals nested within organizations. Asparouhov and Muthén (2008) 

described MGMM, which is a statistical model integrating multilevel models, finite 

mixture models, and structural equation models. They also described several more 

complicated MGMM model including the model with between level classification. Palardy 

and Vermunt (2007) extended the simple MGMM (Muthén, 2004) which classifies the 

individuals but not the organizations into a more complex MGMM that can classify either 

the within (i.e., individual) or between (i.e. organization) or both levels of units. Such kind 

of modeling allows researchers to study the associations between organizational 

characteristics and individual growth patterns. This modeling framework is complicated 

though, as Palardy and Vermunt (2007) proposed, because it contains three possible 

configurations at both the within and the between levels and yields nine possible MGMM 

models.  
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As mentioned earlier, the LGCM and the LCGA models can be viewed as special 

cases of GMM, with LGCM modeling the random effects of the growth factors but only 

assuming one single class in the population, whereas the LCGA assuming multiple classes 

in the population without modeling the random variation for growth factors. GMM is a 

more general model and can be viewed as a combination of LGCM and LCGA because it 

models both random effects for growth factors and assuming the existence of 

heterogeneous classes. If there are three alternative approaches (i.e., LGCM, LCGA, and 

GMM) to account for the heterogeneity at both the individual level growth trajectories and 

the organizational level growth trajectories, researchers then have nine approaches to 

model the multilevel longitudinal data depending on whether they assume heterogeneity 

and/or model the random effects at each level. The focus of this dissertation is on MGMM 

with GMM model at the individual level and LGCM at the organizational level. Palardy 

and Vermunt (2007) pointed out that some of the approaches are more useful than others, 

nevertheless, the most general formulation of the MGMM which use GMM at both levels 

in the model, is introduced below for heuristic purposes. Notice that the matrix terms are 

not listed here and they would look very similar as the ones shown in equations 3e-3j. 
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where Equations 4a-4d show the within level of MGMM, which remains largely the same 

as equations 3a-3d for GMM except for subscript j is added to stand for the number of 

clusters at the organizational level. Latent classes can be drawn from either the individual 

or organizational level, or both. Equations 4e-4g describes the between level of MGMM, 

which is another set of GMM models but with different symbols. L (l =1, 2, 3, …, l) is 

used to denote the number of classes at the organizational level, so as to distinguish from 

the individual level number of classes K (k). jld , functioning similar as ijkc but for the 

organizational level, symbolizes the indicator variables equal to 1 if an organization j 

belongs to between-level latent class l and 0 otherwise. l0ν and l1ν are the mean intercept 

and slope for class l, whereas p0ν and p1ν are the regression coefficients between 

organizational level covariate pjW with a total number of p (p =1, 2, 3, …, p). Equation 4g 

describes using between level covariate to predict the organizational class membership. 

The Necessity of Studying MGMM 

The combination of both continuous and categorical latent variables makes GMM a 

flexible analysis framework (Muthén & Muthén, 2006-2007).  However, when researchers 
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analyze their data using GMM, some of them may assume that the participants are 

independent from each other even though it may not always be true.  For example, in 

educational setting, the data structure is very likely to contain three or more levels (e.g., 

repeated measures nested within students and students nested within schools).  

Nevertheless, some researchers analyzed their data using GMM without considering the 

higher level nesting structure (e.g., schools) and assuming the independence between 

students (e.g., D'Angiulli, Siegel, & Maggi, 2004; Boscardin, Muthén, Francis, & Baker, 

2008). 

The reasons for ignoring a level in analysis have been reviewed, including: to 

reduce the complications in data analysis (Wampold & Serlin, 2000; Meyers & Beretvas, 

2006), to compensate the lack of identifiers on all possible levels of nesting in data 

(Moerbeek, 2004), and to reduce the difficulty in achieving convergence in model 

estimation (Van Landeghem, Fraine & Damme, 2005). Although some of these reasons 

may be justifiable, it is still important to examine the impact of ignoring a level of nesting 

structure in MGMM and to provide researchers with recommendations when ignoring a 

level of nesting structure is not avoidable. 

The impact of ignoring a level in multilevel model has been studied and discussed 

(Wampold & Serlin, 2000; Moerbeek, 2004; Van Landeghem et al., 2005; Meyers & 

Beretvas, 2006; Luo & Kwok, 2006) and mixed findings have been reported. Some 

common findings are that the variance of the ignored level was redistributed to adjacent 

levels or non-ignored cross-classified factors and the fixed effect estimates are not affected 

(Moerbeek, 2004; Meyers & Beretvas, 2006; Luo & Kwok, 2006). However, there were 

reports of both inflation of Type I error rate due to underestimation of standard errors 
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(Wampold & Serlin, 2000; Meyers & Beretvas, 2006) and decreased power resulting from 

inflation of Type II error rate due to overestimation in standard errors (Moerbeek, 2004).   

The topic of Multilevel Growth Mixture Models is relatively new (Asparouhov & 

Muthén, 2008, Palardy & Vermunt, 2007) and the impact of ignoring a level of nesting 

structure in MGMM has not yet been well examined. The purpose of this dissertation is to 

examine the impact of ignoring a higher nesting structure in MGMM on the accuracy of 

classification of individuals and the accuracy as well as the test of significance (i.e., Type I 

error rate and statistical power) of the parameter estimates for the model of each 

subpopulation. 

Two studies were conducted. In Study One, the impact of misspecifying the 

multilevel mixture model, a model similar to MGMM, was investigated by ignoring a level 

of nesting structure in cross-sectional data. In Study Two, longitudinal clustered data (e.g. 

repeated measures nested within students and students nested within schools) was analyzed 

with misspecifications such as ignoring the highest level (school level) of the nesting 

structure. The impact of misspecification on the accuracy of classification, and the 

estimation and statistical inference of the parameters within each latent class was 

investigated. 
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CHAPTER II 

STUDY ONE 

 
Because FMM is the foundation of GMM, as a preliminary step, Study One 

examined the impact of ignoring a higher nesting level in multilevel mixture model on the 

accuracy of classification of individuals and the accuracy as well as the test of significance 

(i.e., Type I error rate and statistical power) of the parameter estimates for the model of 

each subpopulation. A two-level data structure (e.g., students nested within schools) was 

considered. Two latent classes with known group memberships were generated and then 

analyzed by the true (mixture modeling considering the higher level structure) and false 

(mixture modeling ignoring the higher level structure) models. Study One was composed 

of two simulations, namely, Simulations 1A and 1B. In Simulation 1A, the two latent 

classes were balanced in both sizes and variances, whereas in Simulation 1B the two latent 

classes were unbalanced in sizes and variances. The method of each simulation is first 

described, followed by the results and discussion. 

Simulation 1A 

Method 

Data Generation 

In Simulation 1A, data with two known subpopulations under a two-level model 

was first generated with equal population sizes. Then, the data was analyzed as a two-level 

model (i.e., true model) using multilevel mixture modeling and as a single-level model (i.e., 

false model) using mixture modeling. Mixture modeling is referred as Latent Class 

Analysis (LCA) in the following presentation. The two-level model for data generation is 

shown below: 
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Level 1: ijijjjij eionSubpopulatY ++= 10 ββ  (5a)

 with ),o(N~eij
2σ  (5b)

Level 2: jj 0000 μγβ +=  (5c)

 011 γβ =j  (5d)

 with ),o(N~j 000 τμ  (5e)

 

where subpopulationij was a dichotomized variable with 0 and 1 representing two different 

subpopulations. 

 Suppose level 1 is the student level and level 2 is the school level. There were 40 

schools, and within each school there were 20 students. The number of students in each 

subpopulation was 400, since the mixing proportion was set to be 50% vs. 50%. Within 

each school, there were 20 students coming from 2 subpopulations, 10 at risk vs. 10 non-

at-risk. Altogether there were 800 students within each replication for data generation. The 

number of higher level units was set to be 40 given that the recommended minimum 

number of higher level units for multilevel mixture models is 30 (Bengt Muthén, 2005; 

Linda Muthén, 2003). 

In this two-level model, a total of 4 parameters needed to be specified: two fixed 

effect coefficients (i.e., γ00 & γ01) and two variances of the random effects (i.e., σ2 & τ00).  

Before specifying the population parameters in the conditional model, a random intercept 

model in which there are no subpopulations is presented as follows: 
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The variance of the random effect at level 1 was specified following Raudenbush and Liu’s 

(2001) criteria, namely, 1*2 =σ . 

For *
00τ , the intra-class correlation (ICC) formula )(ICC 00

2
00 τστ +=  was used 

to obtain the values corresponding to small and medium effect size. By fixing ICC equal to 

0.10 as a small ICC which is very common for studies in education (Hox, 2002) and 0.20 

as a medium ICC, the values for a small *
00τ  (0.111) and a medium *

00τ  (0.250) was 

obtained. 

According to Sinjders & Bosker (1999), adding a predictor (i.e. subpopulationij) at 

level 1 only contributes to the variance of the level-1 random errors, but does not 

contribute to between level variance. The formulas for calculating the within- and 

between-variances when there is multilevel structure in the data are 22 σσ =within  and 

)n/(between
2

00
2 στσ += , where n is the number of students per school. 

Using these formulae for calculation, a small (0.161) and a medium (0.300) between
2σ  

for the random intercept model was obtained. After adding subpopulationij as a predictor at 

level one, j1β  was actually the difference between the two subpopulations within each 

school (cluster), and 01γ  was the average difference between these two subpopulations 
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across all clusters. The effect size 2R  was used to characterize the difference between the 

two subpopulations with small, medium, and large effect sizes being 0.1, 0.3, and 0.5 

according to Cohen (1988, 1992). 502 .R =  meant that 50% of the variance between the 

two subpopulations could be explained by their group membership. Therefore, the larger 

the 2R , the larger the difference between the two subpopulations. 

Using the 2R  information, small, medium, and large j1β  values could be calculated 

and was 0.632, 1.095, and 1.414 respectively. The corresponding 2σ  in the conditional 

model for small, medium and high levels of group difference was 0.9, 0.7, and 0.5. 00τ  for 

the conditional model could be solved using equation 

)n/()n/( **
between

2
00

2
00

2 στστσ +=+= , because ICC magnitude stayed the same across 

the random intercept and the conditional models. For ICC = .1, 00τ  was 0.116, 0.126, and 

0.136 for small, medium and large effect sizes respectively; for ICC = .2, 00τ  was 0.255, 

0.265, and 0.275 for small, medium and large effect sizes respectively. 

After fixing 00γ  to 1, the mean for Subpopulation A and the mean for 

Subpopulation B were calculated using equation (5a). The mean of Subpopulation A was 1 

in all conditions, and the means for Subpopulation B were 1.632, 2.095, and 2.414 at 

different levels of 2R . 

In summary, by specifying 2R (0.1, 0.3, & 0.5) and ICC (0.1 & 0.2) values, and 

also set 2δ  = 1, 100 =γ , the population parameter values for the other fixed effect 

coefficient (i.e., γ01) and the two variances of the random effects (i.e., σ2 & τ00) were 

obtained. 
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The simulation used a 3 (effect sizes—amount of variance explained by group 

membership) * 2 (magnitude of ICC) factorial design to generate the data.  A total of 500 

replications were generated for each condition using SAS 9.1, yielding a total of 3000 

datasets.  Each dataset was then analyzed by a true model (LCA considering the 

higher/cluster level, type = twolevel mixture) and a false model (LCA ignoring the 

higher/cluster level, type = mixture) using Mplus 4.2 Mixture routine (Muthén & Muthén, 

2006-2007). 

Analysis 

For each condition, valid replications for data analysis were selected because 

among the replications with converged results, there were latent classes with very few 

students (i.e. 1 or 2). A valid replication was defined as one of the two subpopulations (or 

classes) with class size at least equal to or larger than 6% of the total sample size (i.e. 48 

out of 800). This 6% criterion was based on the average percentage of sample size for the 

smallest class in published studies using LCA found in PsycINFO database. 

The accuracy of classification of individuals, and the accuracy as well as the test of 

significance (i.e., Type I error rate and statistical power) of the parameter estimates of the 

model for each subpopulation were then evaluated. 

Hit rate is the percentage of at-risk/non-at-risk students correctly classified as at-

risk/non-at risk. The true and false models were evaluated by comparing the hit rate 

difference between the two models. 

The group mean parameter estimates from the true and false models were 

summarized across the valid replications for each of the 6 conditions. The relative bias 

(RB) for each parameter estimate was calculated using the following equation:  
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where estθ̂  is the mean of a parameter estimate across the valid replications and popθ  is the 

true parameter value. RB equal to zero indicates an unbiased estimate of the parameter. A 

negative RB indicates an underestimation of the parameter (i.e. the estimated value is 

smaller than the true parameter value), whereas a positive RB indicates an overestimation 

of the parameter (i.e. the estimated value is larger than the true parameter value). The 

cutoff value of 0.05 recommended by Hoogland and Boomsma (1998) was used for 

acceptable RB of parameter estimates. 

The RB of estimated standard errors was computed using the following equation:  
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where FalseS _ˆ
ˆ
θ

 is the mean of the estimated standard errors of the group mean parameter 

estimate across the valid replications in the false model, and TrueS _ˆ
ˆ
θ

 is the standard 

deviation of the parameter estimate across the valid replications in the true model within a 

particular design condition. The standard deviation was obtained after fitting the correctly 

specified model to the data (i.e., the model considering the higher level nesting structure), 

and thus represents the “true” sampling variation, or standard error, that would have been 
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achieved had the model been properly specified. Hoogland and Boomsma (1998) 

recommended a cutoff value of 0.10 for acceptable relative bias of estimated standard 

errors. 

Analyses of variance (ANOVAs) were conducted to determine the contribution of 

the two design factors (i.e., 2R & ICC) and their interaction effect, with 2η (i.e., 

TotalEffect SSSS=2η  ) as the effect size indicator. 2η  instead of the significance test was 

used because with the large number of records, the sum of square error was substantially 

reduced and any tiny effect could be detected as significant using the F test. Therefore, 

012 .≥η  was adopted as the effect size indicator to filter out the effects trivial in 

magnitude and to evaluate the impact of design factors. 

Results 

Hit Rate 

Table 1 presents the number of valid replications in Simulation 1A and the average 

hit rate under true and false models across valid replications. The results show that as 

group difference increased, the hit rate increased for both true and false model. Besides, 

within the same design condition, the hit rate under true model is always higher than that 

under false model. As ICC increased, the difference in hit rate between true and false 

models increased. 

 ANOVA results indicate that only 2R (F (2, 2257) = 12217.44, p<.001, η2 = .91) had 

substantial impact on  the true model hit rate, which increased as 2R  increased. On the 

other hand, for the false model, both 2R  (F (2, 2257) = 5904.61, p<.001, η2 = .83) and ICC 

(F (1, 2257) = 142.551, p<.001, η2 = .01) had impact. The hit rate under false model 

increased as 2R  increased, but decreased as ICC increased. For the difference in hit rate 
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between true and false models, there was an interaction effect between R2 and ICC (F (2, 

2257) = 24.55, p<.001, η2 = .02), which was shown in Figure 4. As R2 and ICC increased, 

the difference in hit rate between true and false models increased. 

Relative Bias of Group Mean Estimates 

 Table 2 presents the mean relative bias (RB) of group mean estimates across valid 

replications under true and false models. There was an underestimate of Class 1 (the 

smaller mean) mean and an overestimation of Class 2 (the larger mean) mean under both 

true and false models when 12 .R = . When 2R = .3 and .5, the mean RBs under both models 

were close to zero, except for the mean RB for Class 1 was underestimated slightly when 

ICC = 0.2. 

 ANOVA results showed that only 2R ( Fs (2, 2257) = 323.481 and 606.988, 

ps<.001, η2 s = .22 and .35 for Class 1 and Class 2 respectively) had substantial impact on  

the relative bias of group mean estimates under true model, which decreased as 2R  

increased. Similar results were found for false model (Fs (2, 2257) = 366.814 and 681.945, 

ps<.001, η2 s = .24 and .38 for Class 1 and Class 2 respectively). 

Relative Bias of Variance Estimates 

 Table 3 presents the mean RBs of variance estimates of the true and false model. 

For the true model, the mean RB of most level-1 and level-2 variance estimates were 

within %10± , where as for the false model, there was a trend of overestimation in level-1 

variance estimates. 

 ANOVA results indicated that 2R (F (2, 2257) = 506.515, p<.001, η2 = .31) had 

substantial impact on the RB of level-1 variance estimates under true model, and ICC (F 

(1, 2257) = 32.515, p<.001, η2 = .01) had an impact on level-2 variance estimates under 
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true model. For the false model, there was an interaction effect between 2R and ICC (F (2, 

2257) = 43.726, p<.001, η2 = .014), which was shown in Figure 5. 

Relative Bias of Standard Errors of Group Mean Estimates 

 Table 4 presents the mean RBs of standard errors for group mean estimates under 

the false model. There was an inflation of standard errors for group mean estimates under 

the false model. ANOVA results show that 2R (Fs (2, 2257) = 10.017 and 13.931, ps<.001, 

η2 s = .009 and .012 for Class 1 and Class 2 respectively) was the major source of impact 

when RBs of the standard errors for group mean estimates were the dependent variables. 

Simulation 1B 

Method 

Data Generation 

To extend the findings from Simulation 1A which was based on the balanced 

design (i.e., the two classes had exactly same number of observations and variance across 

clusters), Simulation 1B was conducted by taking the unbalanced sample size and variance 

(i.e., unequal class size for the two subpopulations) into account along with other design 

factors as considered in Simulation 1A. There were two imbalance types, Imbalance Type 

1 and Imbalance Type 2. In Imbalance Type 1, large size was associated with large 

variance in Group 1 and small size was associated with small size in Group 2; in 

Imbalance Type 2, large size was associated with small variance in Group 1 and small size 

was associated with large size in Group 2. The group size and variance varied at level 1 for 

the two latent classes. A large group size was a group of 15 students, whereas a small 

group size is a group of 5 students. A larger variance group has a variance three times of 

the variance of the smaller variance group, so that the variance between the two latent 



 43

groups was distinguishable. Equation (9) was used to calculate the variances of each 

individual group based on the size of each group. The value of 2
pS , which was the pooled 

level 1 variance of the two latent classes, was set to be 0.9, 0.7, and 0.5 respectively 

because the variance accounted for by group membership was 0.1, 0.3, and 0.5 in 

Simulation 1A.  
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The simulation used a 3 (amount of variance explained by group membership) * 2 

(magnitude of ICC) * 2 (Imbalance Type) factorial design to generate the data. A total of 

500 replications were generated for each condition using SAS 9.1, yielding a total of 6000 

datasets.  Each dataset was then analyzed by a true model (LCA considering the 

higher/cluster level) and a false model (LCA ignoring the higher/cluster level) using Mplus 

4.2 Mixture routine (Muthén & Muthén, 2006).  

Analysis 

Similar to Simulation 1A, valid replications were selected, with hit rates and 

relative biases of parameter estimates under the 12 conditions for both true and false 

models calculated and examined. Analyses of variance (ANOVAs) were conducted to 

determine the contribution of the design factors and all possible interactions. 
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Results 

Hit Rate 

Table 5 presents the number of valid replications for Simulation 1B and the average 

hit rate under true and false models. Similar to the results found in Study One, as group 

difference increased, the hit rate increased for both true and false models. Besides, the hit 

rate under true model was always higher than that under false model within the same 

condition. As ICC increased, the difference in hit rate between true and false models 

increased. In addition, Imbalance Type 2 (i.e., large variance associated with small class) 

always had higher hit rates than Imbalance Type1 (i.e., large variance associated with large 

class) when all other conditions remained the same. 

ANOVA results indicated that there was an interaction effect between the 

magnitude of 2R and Imbalance Type (F(2, 3642) = 1028.61, p<.001, η2 = .15 for true 

model; F(2, 3642) = 359.02, p<.001, η2 = .08 for false model) for both the true and false 

models when the hit rate was the dependent variable. The hit rate increased for both 

Imbalance Types as 2R increased. However, When 2R was low, the difference between the 

two Imbalance Types was larger than when 2R was high. The hit rate for Imbalance Type2 

was higher than that for Imbalance Type1. Under the false model, when other conditions 

stay the same, hit rate was higher when the ICC value was smaller (F(1, 3642) = 79.92, 

p<.001, η2 = .01). 

There was an interaction effect between the magnitude of 2R and Imbalance Type 

on the hit rate difference between true and false models (F (2, 3642) = 22.56, p<.001, η2 = 

.01). As shown by Figure 6, the estimated mean hit rate difference between true and false 

models increased for both imbalance types as 2R increased. Hit rate under true model was 
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higher than that under the false model. However, at higher levels of 2R , the difference in 

hit rate for Imbalance Type 1 is larger than that for Imbalance Type 2. Besides, when other 

conditions stayed the same, difference in hit rate was larger when the ICC value was larger 

(F (1, 3642) = 110.85, p<.001, η2 = .03). 

Relative Bias of Group Mean Estimates 

Table 6 presents the mean RBs of group mean estimates under true and false 

models. There was bias outside the range of %10± for both the true and false models. 

ANOVA results indicated that there was an interaction effect between 2R and ICC (Fs (2, 

3642) = 449.637 and 92.023, ps<.001, η2s = .15 and .04 for the two classes in the true 

model; Fs (2, 3642) = 253.900 and 45.950, ps<.001, η2s = .09 and .02 for the two classes in 

the false model) when the RBs of Class 1 and Class 2 were the dependent variables 

separately. As shown in Figures 7-10, the mean RB decreased for both Imbalance Types as 

2R increased. There were more biases under Imbalance Type 1 than Imbalance Type 2. 

There tended to be more biases for Class 1 (smaller mean) mean estimate than that for 

Class 2 (larger mean). 

Relative Bias of Variance Estimates 

 Table 7 presents the mean RBs of variance estimates of the true and false model. 

Because the level-1 variances for two groups were estimated separately in both the true and 

the false models, there were two 2σ s for each model. For the true model, the mean RBs 

for level-2 variance estimates were within or close to %10± , and there was no 012 .≥η  

when RB of 00τ  was the dependent variable. For level-1 variance, there was 

underestimation for 2
1σ  and overestimation for 2

2σ  under Imbalance Type 1; whereas there 

was less biases for Imbalance Type 2. ANOVA results indicated that there was an 



 46

interaction effect between 2R and Imbalance Type (Fs(2, 3642) = 68.793 and 293.125, 

ps<.001, η2s = .035 and .126 respectively). Figures 11 and 12 show the interaction effects.  

For the false model, there was a trend of overestimation in 2
2σ  under both 

Imbalance Types, whereas there was both underestimation and overestimation of 2
1σ only 

under Imbalance Type 1. ANOVA results indicated that there was an interaction effect 

between 2R and Imbalance Type (Fs(2, 3642) = 57.494 and 34.857, ps<.001, η2s = .027 

and .012 respectively). In addition, ICC has a substantial impact on 2
2σ  overestimation 

(F(1, 3642) = 367.945, ps<.001, η2s = .065). Figures 13 and 14 show the interaction 

effects. 

Relative Bias of Standard Errors of Group Mean Estimates 

Because the level-1 variances were estimated separately, there were two RBs of 

standard errors under each model. RBs of SE1 are for the large variance groups and RBs of 

SE2 are for the smaller variance group under both Imbalance Types. Again, there was a 

tendency of inflation of standard errors under the false model under most conditions. 

ANOVA results indicated that Imbalance Types (Fs (1, 3642) = 99.10 & 651.57, ps<.001, 

η2s= .03 & .13) and ICC (Fs (1, 3642) = 82.85 & 60.81, ps<.001, η2s= .02 & .01) were the 

two major contributing factors, although there was a slight interaction effect between them 

for SE1. The false model had more inflation of standard errors under Imbalance Type 1 

than Imbalance Type2. Besides, within the same Imbalance Type, bias was higher at higher 

level of ICC.  

Discussion 

The purpose of this study was to investigate the impact of ignoring a higher level 

nesting structure in cross-sectional data. Two simulations were conducted, one including 
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2R  and ICC as design factors, and the other including 2R , ICC, and Imbalance Type. The 

accuracy of classification of individuals, and the accuracy as well as the test of significance 

(i.e., Type I error rate and statistical power) of the parameter estimates of the model for 

each subpopulation are then examined. Multilevel data with two subpopulations were 

generated and then analyzed using the true model (Multilevel Mixture Model) and the false 

model (single-level Mixture Model). The results of each simulation are summarized and 

explained. 

Simulation 1A 

When a higher level structure in cross-sectional data is ignored, the variance at the 

higher level is redistributed to the lower level, thus affecting the hit rate and group mean 

and standard error estimates. 

Hit Rate 

2R is an important factor influencing hit rate. For both the true and false models, hit 

rate increases when the 2R increases, which means that as group difference becomes 

larger, the classification under both models will become more accurate and this is quite 

reasonable. 

The difference between true and false model is that for true model, ICC magnitude 

does not affect hit rate much within the same design. Whereas for false model, ICC 

magnitude affects the hit rate, and the hit rate is higher when ICC is smaller. Under the 

false model the level-2 variance is ignored in model estimation, and more variance is 

ignored at higher ICC. Obviously ignoring variance at level-2 will decrease classification 

accuracy, and the more variance ignored, the less accurate the classification. 

Relative Bias in Group Mean Estimates 
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The difference in RB for group mean estimates between true and false models are 

all within ±5%, which indicates that the true and false models do not differ tremendously 

in the estimates of the group means. In other words, there was no substantial difference on 

the group mean estimates between the true and false models.  

Relative Bias in Standard Error Estimates 

There is an inflation of standard errors for group mean estimates when a higher 

level nesting structure is ignored. This inflation of standard errors under the false model is 

due to the redistribution of level-2 variance to level-1. When ICC is larger, false model has 

more inflation of standard errors when all other conditions stay the same. 

Simulation 1B 

After adding one more design factor—Imbalance Type, the findings in Simulation 

1B related to R2 and ICC remain consistent with findings in Simulation 1A. Therefore, the 

following discussion focuses on the influence of Imbalance Type. 

Hit Rate 

When all other conditions stay the same, the hit rate under Imbalance Type 2 is 

higher than that under Imbalance Type 1. In addition, the difference in hit rate between 

true and false models is smaller for Imbalance Type2, in which large group size is 

associated with smaller variance and small group size associated with larger variance. This 

means that under Imbalance Type 2, the false model’s performance is relatively better than 

the false model under Imbalance Type 1. This result is not surprising, because when a 

group has smaller variance, it is easier to identify them as coming from the same group. In 

Imbalance Type2, when large size is associated with smaller variance, the subjects within 

this group have a higher chance of being classified as the same group. Compared to 
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Imbalance Type1, where smaller group size is associated with smaller variance, although 

the subjects within this group have a higher chance of being classified as the same group, 

they are still a smaller percentage of all subjects comparing to that in Imbalance Type2. 

This is why in general the Imbalance Type2 has higher hit rates than Imbalance Type1. 

Relative Bias in Group Mean Estimates 

In general, the RBs under Imbalance Type 2 are smaller than that under Imbalance 

Type 1. For the same reason mentioned before, for Imbalance Type 2, it is easier for both 

the true and false models to classify the subjects into the correct group, therefore resulting 

in more accurate estimate of the group mean. Whereas for Imbalance Type1, there are 

more RBs under different levels of 2R , most likely resulting from the wrong classification 

of subjects into wrong groups. 

Relative Bias in Standard Error Estimates 

When a higher level nesting structure is ignored, the standard errors of the fixed 

effects (i.e., the means of the two latent classes) tend to be inflated under Imbalance Type 

1, but have less bias or underestimation under Imbalance Type 2. This may result from 

either the mis-classification of subjects, or the inflation of level-1 variance, or both. 
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CHAPTER III 

STUDY TWO 

 

Study Two examined the impact of ignoring a higher nesting level in multilevel 

growth mixture model on the accuracy of classification of individuals and the accuracy as 

well as the test of significance (i.e., Type I error rate and statistical power) of the parameter 

estimates for the model of each subpopulation. A three-level data structure (e.g., repeated 

measures nested within students nested within schools) was considered. Two latent classes 

with known group memberships were generated and then analyzed by the true (MGMM 

considering the higher level structure) and false (GMM ignoring the higher level structure) 

models. The method of the study is first described, followed by the results and discussion. 

Method 

Data Generation 

Although no simulation studies have been done to examine the impact of ignoring a 

level of nesting structure in MGMM, some simulation studies related to growth mixture 

models have been published lately and there are some consistent findings related to several 

design factors. First, it was discovered that the level of class separation had a dramatic 

impact on the ability to correctly enumerate the number of classes (Henson, Reise, & Kim, 

2007; Tofighi & Enders, 2008). If the generated classes were well-separated, the correct 

number of classes was easier to identify (Henson, et al., 2007; Tofighi & Enders, 2008) 

and the percentage of individuals correctly classified is higher (Chen, Kwok, & Luo, 

2007). Second, the number of repeated measures had minor impact on class enumeration 

(Tofighi & Enders, 2008; Enders & Tofighi, 2008). Third, the mixing proportion of latent 
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classes had a substantial impact on class enumeration (Henson, et al., 2007; Tofighi & 

Enders, 2008; Enders & Tofighi, 2008). In unbalanced situations where one latent class 

had an extremely low mixing proportion (i.e. 7% in Tofighi & Enders, 2008, 10% in 

Henson, et al., 2007), the model was less likely to converge and the class enumeration was 

less accurate. Fourth, sample size influenced the performance of fit indices in class 

enumeration and fit indices performed better with larger sample size (Henson, et al., 2007; 

Tofighi & Enders, 2008). Given the previous findings and the focus of this study, mixing 

proportions of latent classes and sample size were included as design factors, whereas the 

number of repeated measures was fixed and the level of class separation was set at a 

relatively easy-to-separate level.  

For this study, data with two known subpopulations under a three-level model were 

first generated. Then, the data were analyzed as a two-level model using GMM and as a 

three-level model using MGMM. The three-level model for data generation is shown 

below: 

 

Level 1: tijtijijijtij eTimeY ++= )(10 ππ  (10a)

 with ),(~ 2σoNetij  (10b)
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 0101 γβ =j  (10g)

 1010 γβ =j  (10h)

 1111 γβ =j  (10i)

 with ),(~ 000 βτμ oNj  (10j)

 

 where subpopulationij was a dichotomized variable with 0 and 1 to represent two different 

subpopulations. 

 In this three-level model, a total of 9 parameters needed to be specified: 4 fixed 

effect coefficients (i.e., γ00, γ01, γ10, & γ11) and 5 variances and covariance of the random 

effects (i.e., σ2, τπ00, τπ01, τπ11, τβ00).  The average growth models for the two 

subpopulations were specified as follows so that they represent “well-separated classes” 

following the design by Nylund, Asparouhov, & Muthén (2007), with Subpopulation A 

representing a slow-growing group and Subpopulation B representing a fast-growing group.  

 

Subpopulation A (Slow Growing Class): tijtij )Time(*..Ŷ 10001 +=  (11a) 

Subpopulation B (Fast Growing Class): tijtij )Time(*..Ŷ 50502 +=  (11b) 

 

where  00γ  was equal to 1, 01γ  was equal to 1.5, 10γ  was equal to 0.1, and 11γ  was equal to 

0.50. The intercepts for each subpopulation were 1.00 (I1), 2.50 (I2), and the slopes 

were .10 (S1), .50 (S2) respectively. 

Following Raudenbush and Liu’s (2001) criteria, the variances and covariance of 

the random effects were specified as follows: 
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By doing so, the growth factor means were held constant for the two subpopulations, but 

the magnitude of within-class variance parameters vary, mimicking the “high separation” 

and “low separation” classes described in Tofighi & Enders (2008). 

Equation )( 0000
2

00 βπβ ττστ ++=ICC  for intra-class correlation (ICC) 

calculation was used to obtain the values of 00βτ  corresponding to small and medium πT . 

Similar as in Study One, ICC values were set to be .10 and .20. The values for a small 00βτ  

(0.122) and a medium 00βτ  (0.133) for ICC = .10 and a small 00βτ  (0.275) and a medium 

00βτ  (0.300) for ICC = .20 were then obtained.  

 Additionally, different sample sizes associated with different levels were 

considered (i.e., number of repeated measures, number of individuals, and number of 

higher level clusters (e.g., schools)).  Four waves was chosen as the number of repeated 

measures based on two criteria. On the one hand, according to Khoo et al.’s (2006) review 

of the multiwave longitudinal studies published in Developmental Psychology in 2002, 

more than half (52%) of these studies collected data with three or four occasions and the 

mean number of waves of the other 48% of studies was 8. On the other hand, because in 

previous GMM simulation studies the number of repeated measures had no significant 

impact and 4 waves of repeated measures were used and reported in several simulation 

studies (Tofighi & Enders, 2008; Enders & Tofighi, 2008; Nylund, et al., 2007). The time 



 54

variable was centered so it had a mean of 0 and 1 unit between adjacent observations (i.e., 

Time4waves’ = [-1.5 -.5 .5 1.5]). 

For the number of higher level clusters, 30 was adopted as a small number of 

clusters and 50 as a large number of clusters according to Bengt (2005) and Linda 

Muthén’s (2003) suggestions on the Mplus online discussion forum. For the number of 

participants nested within each cluster, based on the conditions used in past simulation 

studies, thirty (individuals) was the smallest sample size considered in both Keselman, 

Algina, Kowalchuk, & Wolfinger (1998) and Ferron, Dailey, & Yi (2002). However, from 

a realistic point of view, in research projects funded by national grants, sample size as 

large as 900 (i.e. 30 individuals nested within 30 clusters) was not easily obtained. Take a 

relatively funded large-scale project, Project Achieve funded by the NICHD as an 

example, there were 784 students nested within 36 elementary schools at the starting data 

collection years. On the other hand, in previous simulation study, it was found that larger 

sample sizes were always beneficial for class enumeration and model convergence 

(Henson, et al., 2007; Tofighi & Enders, 2008). It is the interest of this study to find out 

how MGMM would perform in relatively smaller and more realistically obtainable 

samples, therefore, 20 was chosen as a small cluster size and 40 as a large cluster size. 

Combining the cluster number (i.e., school number) and cluster size (i.e., number of 

students nested within each school) conditions, altogether there were four sample sizes 

conditions, namely, 600, 1000, 1200, and 2000. 

The mixing proportions of the two subpopulations were set to be balanced or 

unbalanced. In the balanced situation, mixing proportion was set to be 50% and 50% for 

the two subpopulations. In the unbalanced situation, mixing proportion was set to be 25% 
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for the slow growing group and 75% for the fast growing group following Nylund et al. 

(2007). The imbalance proportion was set this way because in previous studies, researchers 

found that models with extreme population mixture proportions (i.e., 10% or 7%) of a 

subpopulation were less likely to converge and the class enumeration was less accurate 

(Chen et al., 2007; Henson, et al., 2007; Tofighi & Enders, 2008). 

The simulation used a 2 (magnitude of the πΤ  matrix: small or medium; magnitude 

of 00βτ : small or medium) * 2 (number of participants per cluster: 20 or 40 cases) * 2 

(number of clusters: 30 or 50 clusters) * 2 (mixing proportions: 50%:50% or 75%:25%) * 

2 (ICC: .10 or .20) factorial design to generate the data. 500 replications were generated for 

each condition using the SAS 9.1 Proc IML procedure, yielding a total of (500 datasets * 

32 conditions) 16000 datasets.  Each dataset was then analyzed as a two-level model (i.e., 

false model, ignoring the highest (cluster) level, type = mixture) and a three-level model 

(i.e., true model, considering the highest (cluster) level, type = twolevel mixture) using 

Mplus 4.21 Mixture routine (Muthén & Muthén, 2006-2007).  The accuracy of 

classification of individuals, and the accuracy as well as the test of significance (i.e., Type 

I error rate and statistical power) of the parameter estimates of the model for each 

subpopulation were evaluated. 

Analysis 

Similar to in Study One, valid replications (i.e., converged with at least 6% of the 

observations identified for one of the classes) were selected (it turned out that all 16000 

replications were valid), with hit rates and relative biases of parameter estimates under the 

32 conditions for both true and false models calculated and examined. Analyses of 
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variance (ANOVAs) were conducted to determine the contribution of the design factors 

and all possible interactions. 

Results 

Results of Study One were summarized in Tables 9-14, and ANOVA results 

indicating factors with 01.2 ≥η were summarized in Table 15. 

Hit Rate 

Table 9 presents the hit rate of the true and false models under the 32 design 

conditions. The results show that true model’s hit rate ranged from 87% to 95%, whereas 

false model’s hit rate ranged from 79% to 90%. In addition, true model had hit rates of 2% 

to 6% higher compared to the false model within the same design condition. 

For the true model, ANOVA results show that two factors had substantial impact 

on the hit rate, namely, magnitude of the πΤ  matrix (F (1, 15968) = 24944.579, 

p<.001, 4622 .=η ) and mixing proportion (F (1, 15968) = 12506.110, p<.001, 2322 .=η ). 

As the magnitude of the πΤ  matrix increased, the hit rate of the true model decreased. On 

the other hand, as the mixing proportions changed from balanced to unbalanced for the two 

subpopulations, the hit rate of the true model increased. 

For the false model, ANOVA results showed that three factors had substantial 

impact on the hit rate, namely, mixing proportion (F (1, 15968) = 4466.341, p<.001, 

1572 .=η ), magnitude of the πΤ  matrix (F (1, 15968) = 4028.444, p<.001, 1412 .=η ), 

and ICC (F (1, 15968) = 3356.696, p<.001, 1182 .=η ). As the magnitude of the πΤ  matrix 

increased, the hit rate of the true model decreased. On the other hand, as the mixing 

proportions changed from balanced to unbalanced for the two subpopulations, the hit rate 
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of the true model increased. As the ICC magnitude increased, hit rate of the false model 

decreased. 

Two factors, ICC (F (1, 15968) = 3608.102, p<.001, 1752 .=η ) followed by 

mixing proportion (F (1, 15968) = 631.705, p<.001, 0312 .=η ), had impact on the hit rate 

difference between the true and false models. As the ICC magnitude increased, the hit rate 

difference increased. As the mixing proportions changed from balanced to unbalanced, the 

hit rate difference decreased. 

Relative Bias of Fixed Effect Estimates 

Table 10 presents the mean relative bias (RB) of fixed effect estimates for true and 

false models under the 32 design conditions. There were four fixed effect estimates, 

namely, the mean intercept (I1) and mean slope (S1) for latent class 1 (the slow growing 

group), and the mean intercept (I2) and mean slope (S2) for latent class 2 (the fast growing 

group). 

For the true model, all mean RBs for all four fixed effect estimates were close to 

zero. ANOVA results indicated that no 2η s of the five design factors and their interaction 

effects were larger than .01 when the RB of I1, I2, S1, and S2 were the dependent 

variables. 

For the false model, all mean RBs for all four fixed effect estimates were within 

%5± with four exceptions. The exceptions all occurred for S1 when ICC = 0.2 and cluster 

size = 20. Three were overestimation of the population value (i.e., 24%, 9%, and 22% 

respectively), and one was underestimation (i.e., -9%). ANOVA results indicated that no 

2η s of the five design factors and their interaction effects were larger than .01 when the 
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RB of I1, I2, S1, and S2 were the dependent variables.  In other words, none of the design 

factors had substantial effect on the RB of the fixed effect estimates. 

Relative Bias of Level-1 Residual Variance Estimates 

Table 11 presents the mean relative bias (RB) of level-1 residual variance 

estimates 2σ  for true and false models under the 32 design conditions. There were four 2σ  

for the repeated measures y. 

For both the true and false models, all mean RBs for all four 2σ were close to zero. 

ANOVA results indicated that no 2η s of the five design factors and their interaction 

effects were larger than .01 when the RB of each 2σ were the dependent variables. 

Relative Bias of Level-2 Variance-Covariance Estimates 

Table 12 presents the mean relative bias (RB) of level-1 variance and covariance 

estimates for true and false models under the 32 design conditions. There were three 

estimates, namely, the variance of intercept ( 00πτ ), the variance of slope ( 11πτ ), and the 

covariance between intercept and slope ( 10πτ ). 

For the true model, all mean RBs for 00πτ , 11πτ  and 10πτ  were within %5± . 

ANOVA results indicated that no 2η s of the five design factors and their interaction 

effects were larger than .01 when the RB of 00πτ , 11πτ  and 10πτ  were the dependent 

variables. 

For the false model, the overestimation of intercept variance was substantial and 

there was overestimation for 00πτ  under all design conditions. The overestimation ranged 

from 62% to 278%. ANOVA results showed that there was an interaction effect (F (1, 

15968) = 1133.247, p<.001, 0282 .=η ) between two factors, namely, ICC and magnitude 
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of the πΤ  matrix. As shown in Figure 1, the overestimation decreased as the magnitude of 

the πΤ  matrix increased, and the overestimation was larger when ICC was larger.  

However, the difference in intercept variance overestimation was larger between different 

ICC conditions when the magnitude of the πΤ  matrix was smaller, holding constant all 

other conditions. 

On the other hand, the mean RB was not large for false model 11πτ . As shown in 

Table 12, there were 11πτ  underestimation in only three conditions and the values were 

close to -5%. These underestimation of 11πτ  occurred under conditions where cluster 

number = 30, cluster size = 20, and mixing proportions was balanced. ANOVA results 

indicated that no 2η s of the five design factors and their interaction effects were larger 

than .01 when the RB of 11πτ  was the dependent variable. 

As shown in Table 12, the mean RB of 10πτ was out of the range of %5±  for 8 

conditions but within the range of %5±  for the other 24 conditions. For the 8 conditions, 

10πτ  was overestimated under 7 conditions. ANOVA results indicated that no 2η s of the 

five design factors and their interaction effects were larger than .01 when the RB of 10πτ  

was the dependent variable. 

Relative Bias of Standard Errors of Fixed Effects Estimates 

 As shown in Table 13, using the cutoff value of %10±  (Hoogland & Boomsma, 

1998) for RB of standard errors of fixed effects estimates (i.e., 1ISE & 2ISE for intercepts, 

and 1SSE & 2SSE for slopes), the mean RBs of 1ISE  and 2ISE  showed a trend of 
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underestimation, whereas the mean RBs of 1SSE  and 2SSE  showed a trend of 

overestimation. 

ANOVA results showed that RBs of 1ISE  and 2ISE  were both affected by three 

design factors, namely, cluster size (Fs (1, 15968) = 840.561 and 731.261, ps < .001, 2η s 

= .046 and .042 respectively), mixing proportions (Fs (1, 15968) = 882.369 and 260.775, 

ps < .001, 2η s = .048 and .015 respectively), and magnitude of the πΤ  matrix (Fs (1, 

15968) = 298.624 and 363.441, ps < .001, 2η s = .016 and .021 respectively). 

Underestimation of 1ISE  and 2ISE  increased as cluster size increased, but decreased as 

magnitude of the πΤ  matrix increased. When the mixing proportion of the slow growing 

class decreased from 50% to 25%, the underestimation of 1ISE  decreased; whereas the 

underestimation of 2ISE  increased as the mixing proportion of the fast growing class 

increased from 50% to 75%. In other words, the underestimation of standard errors for 

intercepts is a function of the latent class size; larger class size is associated with larger 

standard error.The RBs of 1SSE  and 2SSE  were both affected by ICC (Fs (1, 15968) = 

391.188 and 181.654, ps < .001, 2η s = .024 and .011 respectively). The overestimation 

of 1SSE  and 2SSE  increased as ICC increased. 

Statistical Power to Detect Significant Level-2 Variance and Covariance 

 Statistical power to detect significant 00πτ , 11πτ  and 10πτ were examined, since the 

true parameter values of 00πτ , 11πτ  and 10πτ were larger than zero. The  empirical power 

was represented by the proportion of significant effects (i.e. Z > 1.96) within each 

condition. The results are shown in Table 14. 
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 The overall mean power for detecting 00πτ , 11πτ  and 10πτ  was .98 .91 .52 for the 

true model, and 1.00 .84 .35 for the false model respectively. The POWER to detect 11πτ  

and 10πτ is higher but equal or lower for detecting 00πτ  in true model compared to false 

model, Because power is a direct function of sample size (i.e., cluster number and cluster 

size) and effect size (i.e., the magnitude of 00πτ , 11πτ  and 10πτ ), it is natural to find for both 

true and false models, cluster number, cluster size, and the magnitude of the πΤ  matrix had 

a substantial impact (i.e. main effects or interaction effects) on POWER as shown in Table 

14. Besides, the POWER was largest for 00πτ , followed by 11πτ  and 10πτ . 

 According to ANOVA results, power to detect 00πτ , 11πτ  and 10πτ  under the true 

model was all affected by cluster number, cluster size, and the magnitude of the πΤ  matrix. 

However, under the false model, in addition to the previously mentioned factors, the power 

to detect 10πτ  was also affected by ICC (F (1, 15968) = 240.302, p < .001, 0132 .=η ). The 

power decreased as ICC increased. On the other hand, ANOVA results indicated that no 

2η s of the five design factors and their interaction effects were larger than .01 when the 

power to detect 00πτ  was the dependent variables. 

Discussion 

The purpose of this study was to examine the impact of ignoring a higher level 

nesting structure in multilevel growth mixture models. The accuracy of classification of 

individuals, and the accuracy as well as the test of significance (i.e., Type I error rate and 

statistical power) of the parameter estimates of the model for each subpopulation were 

examined. Five design factors were considered, namely, magnitude of the πΤ  matrix, 

number of participants per cluster, number of clusters, mixing proportions, and ICC. 
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Multilevel data with two subpopulations were generated and then analyzed using the true 

model (MGMM) and the false model (GMM). The results of Study Two are summarized 

and explained. 

Hit Rate 

Ignoring the higher level nesting structure results in less accurate classification of 

the individuals. It is not surprising that classification becomes less accurate as the variance 

and covariance of each latent class increases, because the individual growth trajectories 

overlap more between the two latent classes when the variances of the intercept and slope 

increase. The result that unbalanced mixing proportion leads to more accurate 

classification is consistent with the finding by Keng, Leite, and Beretvas (2008). When 

comparing traditional GMM (i.e. using means of multiple indicators at each time point) 

and Curve-of-factor Model (i.e. using latent factor with multiple indicators at each time 

point), Keng et al (2008) found that correct class assignment was higher when proportion 

in each class was more different. 

The magnitude of ICC impacts the classification accuracy of false model and the 

hit rate difference between true and false models. As the variance ignored at the higher 

level increases (i.e. ICC increases), the classification accuracy decreases. An important 

advantage of multilevel modeling is that by modeling the higher level nesting structure 

(e.g. schools or classrooms), the variation in individual growth trajectories can be 

decomposed into within- and between-school components (Raudenbush & Bryk, 2002). In 

the same vein, by partitioning out the variance residing in the higher nesting level, MGMM 

can estimate the variance at the lower-level (e.g. individuals) more precisely and classify 

individuals more accurately. 



 63

Relative Bias of Fixed Effect Estimates 

Although there were a few conditions with large relative bias for S1, ignoring the 

higher level nesting structure does not affect fixed effects estimates very much. This 

finding is consistent with findings in previous studies (Moerbeek, 2004; Meyers & 

Beretvas, 2006) examining the impact of ignoring a higher level nesting in multilevel 

analysis and ignoring a cross-classified factor in cross-classified data structures. 

Relative Bias of Level-1 and Level-2 Variance Estimates 

Ignoring the higher level nesting structure affects level-2 variance-covariance 

estimates, but not level-1 residual variance estimates. This finding is also consistent with 

findings in previous studies (Moerbeek, 2004). 

Because the ignored variance component at level-3 resides in cluster mean intercept 

(i.e. 00βτ ), it is natural that this variance is redistributed to level-2 intercept variance, 

resulting in overestimation of the level-2 intercept variance and little influence on slope 

variance estimation. In addition, as the variance ignored increased, the overestimation of 

00πτ  increases. Smaller πΤ  matrix results in larger overestimation, because when the 

amount of redistributed level-3 variance is the same and all other design conditions are the 

same, the impact on 00πτ  is greater when 00πτ  is smaller according to the way RB is 

calculated. 

Relative Bias of Standard Errors of Fixed Effects Estimates 

 Ignoring the higher level nesting structure affects the standard errors (SE) of 

intercepts and slopes in different ways. There is a trend of underestimating intercept SEs 

whereas the slope SEs are generally overestimated. The result related to intercept SE is 

consistent with the results in Moerbeek’s (2004) study. When ignoring the higher level 
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nesting structure in a model with random intercept and one single population, Moerbeek 

found that the variance of the intercept was overestimated but the SE of intercept was 

underestimated. In a study examining the impact of ignoring a cross-classified factor in a 

model with random intercept and a single population (Meyers and Beretvas, 2006), similar 

results were also found when a cross-classified factor was ignored. The results of 

underestimated intercept SE, both from this study and other previous studies is still unclear 

and further research on this is needed. On the other hand, the slope SE is obviously a 

function of both slope ( 11πτ ) and intercept ( 00πτ ) variances and the overestimation of the 

slope SE is probably due to the inflation of 00πτ  but not 11πτ . 

Statistical Power to Detect Significant Level-2 Variance and Covariance 

 Ignoring the higher level nesting structure results in less power to detect significant 

intercept-slope covariance 10πτ  and slope variance 11πτ , but does not influence the power to 

detect significant intercept variances 00πτ . This situation can be explained by the inflation 

of 00πτ  in the false model. Besides, the amount of variance at level-3 influences power.  
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CHAPTER IV 

GENERAL DISCUSSION AND CONCLUSIONS 

 
Summary and Discussion 

 In this dissertation, the impact of ignoring a higher level nesting structure has been 

examined in both cross-sectional and longitudinal data. There are three design factors 

(i.e. 2R , ICC and Imbalance Type) for the cross-sectional study, and five factors (i.e., 

magnitude of the πΤ  matrix, number of participants per cluster, number of clusters, mixing 

proportions, and ICC) for the longitudinal study. The accuracy of classification of 

individuals, and the accuracy as well as the test of significance (i.e., Type I error rate and 

statistical power) of the parameter estimates of the model for each subpopulation have 

been examined. The impact of ignoring a higher level nesting structure in (growth) mixture 

model is summarized as follows around hit rate, fixed effect estimates, variance estimates, 

and standard error estimates. 

Hit Rate 

Classification of individuals is less accurate when ignoring a higher level structure. 

The accuracy of classification is mostly affected by the difference in fixed effect parameter 

between the latent classes (i.e., 2R ), the amount of variance ignored at the highest level 

(i.e., ICC), the variance of each latent class (i.e., Imbalance Type, πΤ  matrix), and the 

mixing proportion of each latent class (i.e., Imbalance Type, mixing proportion). It is not 

surprising that factors related to the separation of latent classes (i.e. 2R , Imbalance Type, 

πΤ  matrix) affect classification accuracy. 
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ICC, the factor that measures the proportion of variance in the outcome that is 

between groups/clusters, has a great impact on classification accuracy. This reinforces the 

importance of modeling the higher level nesting structure in (growth) mixture modeling. 

By modeling the higher level nesting structure (e.g. schools or classrooms), the variation in 

individual growth trajectories can be decomposed into within- and between-cluster 

components, the variances at the within-cluster level can be better estimated and 

individuals can be classified more accurately. 

It is interesting to find unbalanced mixing proportion actually helps classification in 

Study Two. This result is a little bit different from that of Simulation 1B in Study One, 

probably because the unbalanced condition in Simulation 1B is more complicated than the 

condition in Study Two. In Simulation 1B, the unbalanced latent classes differed not only 

in mixing proportions, but also in variances. However, the latent classes in Study Two are 

well-separated classes, whereas in Simulation 1B there were different separation levels. It 

is likely that the difference in variances of latent classes and the separation level play an 

important role in classification accuracy in Simulation 1B. Nevertheless, the result in 

Study Two is consistent with findings by Keng et al. (2008) and this factor is worth more 

investigation. 

Fixed Effect Estimates 

Fixed effect estimates are less likely to be affected when a higher level nesting 

structure is ignored. The accuracy of fixed effect estimates is affected by difference in 

fixed effect parameter between the latent classes (i.e., 2R ) and the amount of variance 

ignored at the highest level (i.e., ICC). It is not surprising that the factor related to the 

separation of latent classes (i.e., 2R ) affects fixed effect estimates. As shown by Study 
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One, RBs of fixed effect estimates was less accurate at low levels of 2R  even when the 

higher level nesting structure is modeled. On the other hand, as shown by results in both 

studies, the fixed effect estimates are more likely to be biased under conditions with higher 

levels of ICC when all other conditions stay the same. 

Variance Estimates 

Ignoring a higher level structure will cause the variance at the highest level (i.e., 

school) to be redistributed to next adjacent level (i.e. student), but not the lowest level (i.e. 

repeated measures), as shown in Study Two. The variance estimation bias is affected by 

ICC and factors related to variance of each latent class (i.e., Imbalance Type and πΤ  

matrix), as according to the RB calculation method, the RB is a function of the numerator 

(i.e., the difference between variance at the highest level and the level-1 variance) and 

denominator (level-1 variance). In addition, the statistical power to detect significant 

covariance between the intercept and slope decreased as ICC increased according to the 

finding in Study Two. 

Standard Error Estimates 

In Study One, there is a trend of inflation for SE of group mean estimates; whereas 

in Study Two, there is a trend of underestimation for SE for intercept estimates and 

inflation for SE of slope estimates. The major difference between the two studies on the 

random effect design is that in Study One, there is only one random effect associated with 

each level; whereas in Study Two, there are two random effects at level-2 and there are 

three variance-covariance parameters. The seemingly contradictory results may be due to 

the complexity of the variance-covariance matrix of the random effects in Study Two and 
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further research on this is needed. As a result, the statistical power to detect the significant 

fixed effect is compromised. 

Implications 

These findings have practical implications for researchers. According to the 

findings of the study, ignoring a higher level nesting structure results in lower 

classification accuracy, less accurate fixed effect estimates, inflation of lower-level 

variance estimates, and less accurate SE estimates. Therefore, it is important to model the 

higher level nesting structure in (growth) mixture modeling. Since ICC is an important 

influencing factor when ignoring the higher level nesting structure, it would be good for 

researchers to calculate or estimate the magnitude of ICC before conducting the analysis. If 

the ICC is larger than 0.1, it probably is not suitable to ignore the higher level nesting 

structure. 

In real data analysis, researchers seldom know in advance the true parameter values 

(i.e. the difference between groups, the true variance and mixing proportions of each latent 

class) and the class membership. Therefore, in order to have more accurate classification 

and parameter estimates, and the correct statistical test to detect significant effect, it is 

important to model the nesting structure and use multilevel (growth) mixture model. 

In addition, there are situations when it is difficult to take into account the nesting 

structure, such as the lack of identifiers on all possible levels of nesting in data (Moerbeek, 

2004) and the difficulty in achieving convergence in model estimation (Van Landeghem, 

Fraine & Damme, 2005). If this is the case, researchers should then be cautious in interpret 

the findings, especially when they have a marginally significant test result, because it 

might be a significant result if the researchers considered the nesting structure of the data, 
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or it might just be a spurious significant results due to the underestimation of standard 

error. 

Limitations and Suggestions for Future Research 

 The first limitation of the dissertation is that a major assumption made in both 

studies is that both the true and false models can actually detect there are two latent classes 

so that the focus is to compare what happens after two latent classes are uncovered. 

However, it is possible that the false model might not be able to recover the correct number 

of classes. 

Second, only strictly hierarchical data structure is examined in both studies, 

whereas in reality some data structure is not strictly hierarchical. They are cross-classified 

in the sense that students come from varied combinations of higher level nesting factors 

such as schools and neighborhoods. Researchers have found that ignoring the cross-

classified structure will result in bias in standard error estimates although the fixed effects 

estimates were not affected (Van Landeghem, Fraine & Damme, 2005; Meyers & 

Beretvas, 2006; Luo & Kwok, 2006). However, there is no software available in the area of 

structural equation modeling to take into account the cross-classified structure in multilevel 

(growth) mixture modeling. More research and advances in software is needed for the area 

of multilevel (growth) mixture modeling. 
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Table1 
Hit Rate of True and False Models in Simulation 1A 

Conditions Hit Rate  
2R  ICC 

Valid 
Replications True False Differ 

0.1 0.1 258 61% 61% 1%
0.1 0.2 217 61% 60% 2%
0.3 0.1 411 73% 70% 3%
0.3 0.2 390 73% 68% 4%
0.5 0.1 496 84% 81% 3%
0.5 0.2 491 84% 78% 6%

Note. Differ = True Model Hit Rate – False Model Hit Rate. 
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Table 2 
Relative Bias of Group Mean Estimates in Simulation 1A
Conditions True False 

2R  ICC Class1 Class2 Class1 Class2 

0.1 0.1 -23% 15% -24% 17%
0.1 0.2 -23% 16% -28% 20%
0.3 0.1 -5% 3% -5% 3%
0.3 0.2 -6% 3% -9% 4%
0.5 0.1 -2% 1% 0% 0%
0.5 0.2 -3% 1% -1% 0%
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Table 3 
Relative Bias of Variance Estimates  in Simulation 1A

Conditions True False 
2R  ICC 2σ  00τ  2σ  

0.1 0.1 -20% -9% -11%
0.1 0.2 -20% -5% 0%
0.3 0.1 -5% -16% 11%
0.3 0.2 -6% -7% 26%
0.5 0.1 -1% -16% 27%
0.5 0.2 -3% -9% 53%
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Table 4 
Relative Bias of Standard Errors of Group Mean Estimates in Simulation 1A 

Conditions False Model S.E. Bias 
2R  ICC SE1 SE2 

0.1 0.1 9% 17% 
0.1 0.2 11% 8% 
0.3 0.1 20% 31% 
0.3 0.2 21% 20% 
0.5 0.1 3% 9% 
0.5 0.2 13% 13% 
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Table 5 
Hit Rate of True and False Models in Simulation 1B 

Conditions Average Hit Rate 
Imbalance 2R  ICC 

Valid 
Replications True False Differ 

1 0.1 0.1 134 52% 51% 1% 
1 0.1 0.2 98 53% 49% 3% 
1 0.3 0.1 320 72% 67% 6% 
1 0.3 0.2 276 72% 63% 10% 
1 0.5 0.1 431 87% 82% 6% 
1 0.5 0.2 341 87% 76% 11% 
2 0.1 0.1 176 77% 76% 1% 
2 0.1 0.2 146 77% 75% 3% 
2 0.3 0.1 401 83% 81% 1% 
2 0.3 0.2 356 83% 79% 3% 
2 0.5 0.1 496 87% 85% 2% 
2 0.5 0.2 479 88% 83% 4% 

Note.  
Imbalance Type 1: Class 1—large size large variance, Class 2—small size small variance 
Imbalance Type 2: Class 1—large size small variance, Class 2—small size large variance 
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Table 6 
Relative Bias of Group Mean Estimates in Simulation 1B 

Conditions 
True Model Class 

Mean Bias 
False Model Class 

Mean Bias 
Imbalance 2R  ICC Class 1 Class 2 Class 1 Class 2 

1 0.1 0.1 -64% -5% -66% -5% 
1 0.1 0.2 -64% -3% -69% -2% 
1 0.3 0.1 -23% -3% -33% -7% 
1 0.3 0.2 -24% -3% -44% -8% 
1 0.5 0.1 -2% 1% -6% -1% 
1 0.5 0.2 -3% 1% -14% -3% 
2 0.1 0.1 -3% 0% -3% 0% 
2 0.1 0.2 -3% 2% -4% 1% 
2 0.3 0.1 1% 15% 1% 14% 
2 0.3 0.2 -1% 14% -3% 10% 
2 0.5 0.1 0% 4% 1% 6% 
2 0.5 0.2 0% 5% 1% 6% 

Note.  
Imbalance Type 1: Class 1—large size large variance, Class 2—small size small variance 
Imbalance Type 2: Class 1—large size small variance, Class 2—small size large variance 
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Table 7 
Relative Bias of Variance Estimates in Simulation 1B 

Conditions True False 
Imbalance 2R  ICC 2

1σ  2
2σ  00τ  2

1σ  2
2σ  

1 0.1 0.1 -26% 50% -7% -16% 78% 
1 0.1 0.2 -29% 47% -7% -7% 110% 
1 0.3 0.1 -16% 18% -12% -7% 71% 
1 0.3 0.2 -16% 14% -8% 2% 117% 
1 0.5 0.1 -2% -4% -11% 17% 67% 
1 0.5 0.2 -5% -3% -11% 28% 133% 
2 0.1 0.1 -6% -13% -11% -1% 2% 
2 0.1 0.2 -7% -13% -10% 2% 17% 
2 0.3 0.1 -17% 0% -8% -9% 24% 
2 0.3 0.2 -18% -1% -5% 1% 43% 
2 0.5 0.1 -8% -1% -7% 0% 37% 
2 0.5 0.2 -9% 0% -5% 11% 74% 

Note.  
Imbalance Type 1: Class 1—large size large variance, Class 2—small size small variance 
Imbalance Type 2: Class 1—large size small variance, Class 2—small size large variance 
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Table 8 
Relative Bias of Standard Errors of Group Mean Estimates in Simulation 1B 

Conditions False Model SE Bias 
Imbalance 2R  ICC SE1 SE2 

1 0.1 0.1 -21% 17% 
1 0.1 0.2 14% 33% 
1 0.3 0.1 14% 20% 
1 0.3 0.2 32% 32% 
1 0.5 0.1 47% 63% 
1 0.5 0.2 75% 90% 
2 0.1 0.1 2% -5% 
2 0.1 0.2 4% -18% 
2 0.3 0.1 -13% -19% 
2 0.3 0.2 0% -8% 
2 0.5 0.1 -21% -1% 
2 0.5 0.2 -16% 16% 

Note.  
Imbalance Type 1: Class 1—large size large variance, Class 2—small size small variance 
Imbalance Type 2: Class 1—large size small variance, Class 2—small size large variance 
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Table 9 
Mean Hit Rate for True and False Models 

Conditions Hit Rate 
Mixing% ICC πτ  Cluster# Clus Size True False Differ 

20 90% 87% 3%30 40 90% 88% 3%
20 90% 88% 3%Small 

50 40 91% 88% 3%
20 87% 84% 3%30 40 87% 85% 3%
20 87% 84% 3%

0.1 

Medium 
50 40 87% 85% 3%

20 90% 84% 6%30 40 91% 85% 6%
20 90% 85% 6%Small 

50 40 91% 85% 5%
20 87% 79% 8%30 40 87% 81% 6%
20 87% 81% 6%

50%: 50% 

0.2 

Medium 
50 40 88% 82% 5%

20 92% 90% 2%30 40 92% 90% 2%
20 92% 90% 2%Small 

50 40 92% 90% 2%
20 89% 87% 2%30 40 90% 88% 2%
20 90% 88% 2%

0.1 

Medium 
50 40 90% 88% 2%

20 92% 87% 5%30 40 92% 88% 4%
20 92% 88% 4%Small 

50 40 92% 88% 4%
20 89% 84% 5%30 40 90% 85% 4%
20 90% 85% 4%

25%: 75% 

0.2 

Medium 
50 40 90% 86% 4%

Note. Differ=True Model Hit Rate – False Model Hit Rate. 
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Table 10 
Mean Relative Bias of Fixed Effect Estimates for True and False Models 

Conditions True Model 
Fixed Effect Bias 

False Model 
Fixed Effect Bias 

Mixing% ICC πτ  Cluster# ClusSize I1 I2 S1 S2 I1 I2 S1 S2 
20 -2% 0% 1% 0% 0% 0% 2% 0%30 40 -1% 0% 1% 0% 0% 0% 2% 0%
20 -1% 1% -3% 0% 0% 0% -2% 0%Small 

50 40 -1% 0% -1% 0% 0% 0% -1% 0%
20 -1% 1% 2% 0% 1% 0% 1% -2%30 40 -1% 0% -1% 0% -1% 0% -1% 0%
20 -1% 1% -1% 0% 0% 0% 0% 0%

0.1 

Medium 
50 40 -1% 0% -1% 0% 0% 0% 0% -1%

20 -2% 0% -1% 0% 0% -1% -3% 0%30 40 0% 1% -1% 0% 0% 0% -2% 0%
20 -1% 1% -1% 0% 1% 0% 3% 0%Small 

50 40 -1% 0% -1% 0% -1% 0% 0% 0%
20 -2% 1% -1% -1% 2% -1% 24% -4%30 40 0% 1% 1% 0% 0% 0% 4% -2%
20 -1% 1% -3% 1% 1% 0% 9% 0%

50%: 50% 

0.2 

Medium 
50 40 -2% 0% 0% 0% 0% 0% 4% 0%

20 -2% 0% 0% 0% 0% 0% 0% 0%30 40 -1% 0% 0% 0% 0% 0% 0% 0%
20 -2% 0% -1% 0% 0% 0% -1% 0%Small 

50 40 -1% 0% 0% 0% 0% 0% 1% 0%
20 -3% 1% 0% 0% -1% 0% 2% 0%30 40 -2% 0% 2% 0% -1% 0% -1% 0%
20 -4% 0% -1% 0% -2% 0% -3% 0%

0.1 

Medium 
50 40 -1% 0% 0% 0% 0% 0% 0% 0%

20 -3% 0% 1% 0% -1% 0% 1% 0%30 40 -1% 0% -3% 0% 0% 0% -2% 0%
20 -2% 0% -3% 0% 0% 0% -9% 0%Small 

50 40 -1% 0% -2% 0% 0% 0% -2% 0%
20 -3% 0% 4% 0% 0% 0% 22% -1%30 40 -2% 0% -4% 0% -1% 0% -5% 0%
20 -3% 1% -2% 0% 0% 0% -3% 0%

25%: 75% 

0.2 

Medium 
50 40 -2% 0% 0% 0% 0% 0% 4% 0%

Note. I = Intercept, S = Slope; 
         1 = Latent Class 1 (Slow Growing Class), 2 = Latent Class 2 (Fast Growing Class).      
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Table 11 
Mean Relative Bias of Level-1 Residual Variance Estimates for True and False Models 

Conditions True Model Level-1 
Residual Variance Bias 

False Model Level-1 
Residual Variance Bias 

Mixing% ICC πτ  Cluster# Clus Size 2
1σ  2

2σ  2
3σ  2

4σ  2
1σ  2

2σ  2
3σ  2

4σ  
20 0% 0% 0% 1% 0% 0% 0% 1%30 40 0% 0% 0% 0% 0% 0% 0% 0%
20 0% 0% 0% 0% 0% 0% 0% 0%Small 

50 40 0% 0% 0% 0% 0% 0% 0% 0%
20 1% 0% 0% 1% 1% 0% 0% 0%30 40 0% 0% 0% 0% 0% 0% 0% 0%
20 0% 0% 0% 0% 0% 0% 0% 0%

0.1 

Medium 
50 40 0% 0% 0% 0% 0% 0% 0% 0%

20 -1% 0% 0% 0% -1% 0% 0% 0%30 40 0% 0% 0% 0% 0% 0% 0% 0%
20 0% 0% 0% 0% 0% 0% -1% 0%Small 

50 40 0% 0% 0% 0% 0% 0% 0% 0%
20 0% 0% 0% 0% 0% 0% 0% 0%30 40 0% 0% 0% 1% 0% 0% 0% 1%
20 0% 0% 0% 0% 0% 0% 0% 0%

50%: 
50% 

0.2 

Medium 
50 40 0% 0% 0% 0% 0% 0% 0% 0%

20 0% 0% 0% 0% 0% 0% 0% 0%30 40 0% 0% 0% 0% 0% 0% 0% 0%
20 0% 0% 0% 0% 0% 0% 0% 0%Small 

50 40 0% 0% 0% 0% 0% 0% 0% 0%
20 0% 0% 0% 1% 0% 0% 0% 1%30 40 0% 0% 0% 0% 0% 0% 0% 0%
20 -1% 0% 0% 0% -1% 0% 0% 0%

0.1 

Medium 
50 40 0% 0% 0% 0% 0% 0% 0% 0%

20 -1% 0% 0% 0% 0% 0% 0% 0%30 40 0% 0% 0% 0% 0% 0% 0% 1%
20 0% 0% 0% 0% 0% 0% 0% 0%Small 

50 40 0% 0% 0% 0% 0% 0% 0% 0%
20 0% 0% 0% 0% 0% 0% 1% 0%30 40 0% 0% 0% 0% 0% 0% 0% 0%
20 0% 0% 0% 0% 0% 0% 0% 0%

25%: 
75% 

0.2 

Medium 
50 40 0% 0% 0% 0% 0% 0% 0% 0%

Note. 2
1σ refers to the residual variance of y at Time 1; 

         Subscripts 1, 2, 3, and 4 refer to Time 1, 2, 3, and 4 respectively. 
 



 91

 
Table 12 
Mean Relative Bias of Level-2 Variance and Covariance Estimates for True and False Models 

Conditions True Model Level-2 
Variance Bias 

False Model Level-2 
Variance Bias 

Mixing% ICC πτ  Cluster# ClusSize 10πτ  00πτ  11πτ 10πτ  00πτ  11πτ  
20 -5% -2% -4% -1% 122% -7%30 40 -1% -2% -1% 3% 117% 0%
20 -3% -3% -2% -3% 115% -2%Small 

50 40 3% -2% 1% 4% 120% 1%
20 2% -3% -3% 15% 66% -3%30 40 -2% -2% -1% -1% 62% -1%
20 -3% -1% -2% 0% 67% -2%

0.1 

Medium 
50 40 1% -1% 1% 3% 64% 1%

20 -4% -5% -3% 10% 278% -6%30 40 2% -3% -1% 3% 260% -2%
20 -4% -5% -2% 8% 273% -3%Small 

50 40 -3% -3% 0% 2% 268% 1%
20 0% -4% -3% 28% 158% -6%30 40 0% -2% -2% 15% 148% -2%
20 -3% -3% -2% 16% 153% -2%

50%: 
50% 

0.2 

Medium 
50 40 -2% -2% 0% 5% 147% 0%

20 0% -4% -4% 2% 118% -4%30 40 -4% -3% -5% -5% 117% -5%
20 2% -3% -2% 2% 118% -3%Small 

50 40 1% -2% -2% 1% 121% -2%
20 0% -2% -2% 2% 64% -3%30 40 0% -3% -1% 1% 63% -2%
20 0% -2% -1% 0% 65% -1%

0.1 

Medium 
50 40 -2% -1% 0% -2% 66% -1%

20 -2% -3% -4% 0% 263% -5%30 40 -4% -2% -3% -4% 258% -4%
20 -4% -4% -2% -8% 267% -5%Small 

50 40 -1% -2% -1% -2% 265% -2%
20 2% -1% -4% 18% 146% -5%30 40 -2% -1% -1% 1% 142% -2%
20 -2% -3% -1% 4% 149% -1%

25%: 
75% 

0.2 

Medium 
50 40 -1% -2% 0% 3% 146% 0%

Note. 10πτ = Intercept Slope Covariance, 00πτ  = Intercept Variance, 11πτ  = Slope Variance.          
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Table 13 
Mean Relative Bias of Standard Errors of Fixed Effect Estimates for False Models 

Conditions False Model S.E. Bias 
Mixing% ICC πτ  Cluster# Clus Size 1ISE  2ISE  1SSE  2SSE  

20 -15% -15% 14% 18%30 40 -37% -37% 11% 16%
20 -18% -20% 14% 15%Small 

50 40 -40% -38% 19% 26%
20 3% -6% 22% 26%30 40 -26% -28% 21% 26%
20 -8% -10% 25% 24%

0.1 

Medium 
50 40 -30% -27% 13% 21%

20 -11% -16% 54% 48%30 40 -40% -40% 43% 37%
20 -20% -19% 48% 38%Small 

50 40 -42% -42% 38% 37%
20 -7% 7% 23% 30%30 40 -17% -20% 71% 70%
20 0% 1% 51% 41%

50%: 50% 

0.2 

Medium 
50 40 -30% -27% 48% 48%

20 -1% -34% 16% 12%30 40 -11% -47% 17% 12%
20 1% -30% 12% 15%Small 

50 40 -16% -47% 16% 10%
20 11% -15% 18% 12%30 40 -2% -34% 22% 14%
20 6% -20% 13% 16%

0.1 

Medium 
50 40 -7% -35% 22% 17%

20 10% -31% 29% 37%30 40 -19% -53% 41% 30%
20 17% -29% 37% 39%Small 

50 40 -19% -53% 41% 25%
20 23% -19% 9% 8%30 40 -2% -38% 43% 38%
20 32% -14% 46% 44%

25%: 75% 

0.2 

Medium 
50 40 4% -35% 37% 33%

Note. I = Intercept, S = Slope; 
         1 = Latent Class 1 (Slow Growing Class), 2 = Latent Class 2 (Fast Growing Class).          
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Table 14 
Mean Power to Detect Significant Level-2 Variance and Covariance for True and False Models 

Conditions True Model Power False Model Power 

Mixing% ICC πτ  Cluster# Clus Size 10πτ 00πτ 11πτ  10πτ  00πτ 11πτ  

20 20% 86% 55% 12% 100% 46%30 
40 36% 100% 89% 25% 100% 81%
20 27% 99% 80% 19% 100% 73%

Small 
50 

40 61% 100% 99% 43% 100% 97%
20 35% 100% 94% 25% 99% 85%30 
40 65% 100% 100% 49% 100% 98%
20 54% 100% 99% 39% 100% 96%

0.1 

Medium 
50 

40 90% 100% 100% 77% 100% 100%
20 18% 88% 60% 8% 100% 44%30 
40 38% 100% 88% 17% 100% 71%
20 28% 98% 80% 14% 100% 61%

Small 
50 

40 53% 100% 98% 27% 100% 94%
20 34% 100% 93% 21% 100% 76%30 
40 69% 100% 100% 37% 100% 93%
20 56% 100% 99% 30% 100% 93%

50%: 50% 

0.2 

Medium 
50 

40 88% 100% 100% 57% 100% 99%
20 21% 90% 64% 14% 100% 55%30 
40 41% 100% 91% 29% 100% 86%
20 36% 100% 83% 26% 100% 78%

Small 
50 

40 63% 100% 99% 47% 100% 98%
20 44% 100% 96% 33% 100% 89%30 
40 77% 100% 100% 62% 100% 100%
20 66% 100% 100% 55% 100% 98%

0.1 

Medium 
50 

40 92% 100% 100% 83% 100% 100%
20 24% 90% 62% 10% 99% 48%30 
40 41% 100% 92% 17% 100% 79%
20 33% 99% 85% 15% 100% 69%

Small 
50 

40 63% 100% 100% 33% 100% 96%
20 46% 100% 95% 29% 99% 86%30 
40 75% 100% 100% 45% 100% 99%
20 65% 100% 100% 38% 100% 97%

25%: 75% 

0.2 

Medium 
50 

40 92% 100% 100% 71% 100% 100%
Note 10πτ = Intercept Slope Covariance, 00πτ  = Intercept Variance, 11πτ  = Slope Variance.          
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Table 15 

012 .≥η Values from 5-Way ANOVA for True and False Models 

 Model Parameter Mixing% ICC πτ  Cluster# Clus 
Size Interaction 

True  0.232 0.462   
False  0.157 0.118 0.141   Hit Rate 

Difference  0.031 0.175   

True I1/I2/ 
S1/S2 No 012 .≥η  Fixed 

Effects 
Relative 

Bias False I1/I2/ 
S1/S2 No 012 .≥η  

True 
2
1σ / 2

2σ / 
2
3σ / 2

4σ  
No 012 .≥η  Level-1 

Residual 
Variance 
Relative 

Bias False 
2
1σ / 2

2σ / 
2
3σ / 2

4σ  
No 012 .≥η  

10πτ  

00πτ  True 

11πτ  

No 012 .≥η  

10πτ  No 012 .≥η  

00πτ  0.370 0.202   ICC* πτ (.028)

Level-2 
Variance-

Covariance 
Estimates 
Relative 

Bias False 

11πτ  No 012 .≥η  

1ISE  0.048 0.016  0.046 

2ISE  0.015 0.021  0.042 

1SSE  0.024   
False Model SE Bias 

2SSE  0.011   

10πτ  0.077 0.032 0.075 

00πτ  0.015 0.012 0.016 

#*size(.011) 
#* πτ  (.011) 

size* πτ (.015)True 

11πτ  0.073 0.024 0.051 
#* πτ (.012) 

size* πτ (.031)

10πτ  0.013 0.067 0.026 0.047 

00πτ  No 012 .≥η  

Power to 
Detect 

Significant 
Variance-

Covariance 

False 

11πτ  0.081 0.032 0.064 size* πτ (.018)
Note. Naming conventions follow those from Table 9-15 
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Figure 1. Diagram illustrating relationships between models. 
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Figure 2. Linear latent growth curve model with four repeated measures and one covariate. 
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Figure 3. Linear growth mixture model with four repeated measures and one covariate 
predicting both growth factors and latent class. 
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Figure 4. Interaction effect between ICC and 2R for estimated mean hit rate difference 
between true and false models. 
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Figure 5. Interaction effect between ICC and 2R for estimated mean relative bias for level-
1 variance estimate under false model. 
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Figure 6. Interaction effect between imbalance type and 2R  for estimated mean hit rate 
difference under true and false models. 



 102

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

0.1 0.3 0.5

R2

Es
tim

at
ed

 M
ea

n 
Re

la
tiv

e 
Bi

as

Imbalance 1
Imbalance 2

 
Figure 7. Interaction effect between imbalance type and 2R  for estimated mean relative 
bias for Class 1 under true model. 
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Figure 8. Interaction effect between imbalance type and 2R  for estimated mean relative 
bias for Class 2 under true model. 
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Figure 9. Interaction effect between imbalance type and 2R  for estimated mean relative 
bias for Class 1 under false model. 



 105

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

0.1 0.3 0.5

R2

Es
tim

at
ed

 M
ea

n 
Re

la
tiv

e 
Bi

as

Imbalance 1
Imbalance 2

 
Figure 10. Interaction effect between imbalance type and 2R  for estimated mean relative 
bias for Class 2 under false model. 



 106

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

0.1 0.3 0.5

R2

E
st

im
at

ed
 M

ea
n 

R
el

at
iv

e 
B

ia
s

Imbalance 1
Imbalance 2

 
Figure 11. Interaction effect between imbalance type and 2R  for estimated mean relative 
bias for Class 1 level-1 variance under true model. 
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Figure 12. Interaction effect between imbalance type and 2R  for estimated mean relative 
bias for Class 2 level-1 variance under true model. 
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Figure 13. Interaction effect between imbalance type and 2R  for estimated mean relative 
bias for Class 1 level-1 variance under false model. 
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Figure 14. Interaction effect between imbalance type and 2R  for estimated mean relative 
bias for Class 2 level-1 variance under false model. 
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Figure 15. Interaction effect between ICC and πτ for estimated mean relative bias of 
intercept variance under false model. 
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