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ABSTRACT

Accurate and Reliable Cancer Classification Based on Pathway-Markers and

Subnetwork-Markers. (December 2010)

Junjie Su, B.E., Tsinghua University

Chair of Advisory Committee: Dr. Byung-Jun Yoon

Finding reliable gene markers for accurate disease classification is very challeng-

ing due to a number of reasons, including the small sample size of typical clinical data,

high noise in gene expression measurements, and the heterogeneity across patients.

In fact, gene markers identified in independent studies often do not coincide with each

other, suggesting that many of the predicted markers may have no biological signifi-

cance and may be simply artifacts of the analyzed dataset. To find more reliable and

reproducible diagnostic markers, several studies proposed to analyze the gene expres-

sion data at the level of groups of functionally related genes, such as pathways. Given

a set of known pathways, these methods estimate the activity level of each pathway

by summarizing the expression values of its member genes and using the pathway

activities for classification. One practical problem of the pathway-based approach is

the limited coverage of genes by currently known pathways. As a result, potentially

important genes that play critical roles in cancer development may be excluded. In

this thesis, we first propose a probabilistic model to infer pathway/subnetwork ac-

tivities. After that, we developed a novel method for identifying reliable subnetwork

markers in a human protein-protein interaction (PPI) network based on probabilistic

inference of subnetwork activities. We tested the proposed methods based on two in-

dependent breast cancer datasets. The proposed method can efficiently find reliable

subnetwork markers that outperform the gene-based and pathway-based markers in
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terms of discriminative power, reproducibility and classification performance. The

identified subnetwork markers are highly enriched in common GO terms, and they

can more accurately classify breast cancer metastasis compared to markers found by

a previous method.
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CHAPTER I

INTRODUCTION

The introduction of affordable microarray technologies for measuring genome-wide

expression proles has led to the development of numerous methods for discriminating

between different classes of a complex disease, such as cancer, through transcriptome

analysis [1, 2, 3, 4]. Especially, there have been signicant research efforts to identify

differentially expressed genes across different phenotypes [5, 6, 7, 8, 9], which can be

used as diagnostic markers for classifying the disease states or predicting the outcome

of medical treatments [1, 2, 3, 4, 10, 11, 12]. However, finding reliable gene markers

is a challenging problem, and several recent studies have questioned the reliability of

many classifiers based on individual gene markers [13, 14, 15, 16, 17, 18, 19]. The

small sample size of typical clinical data that are used to build a classier is one of the

major factors that make this problem difficult. We often have to search for a small

number of good marker genes among thousands of genes based on a limited number of

samples, which makes the performance of traditional feature selection methods quite

unpredictable [20]. The inherent measurement noise in high- throughput experimental

data and the heterogeneity across samples and patients make the problem even more

formidable.

One possible way to address this problem is to interpret the expression data

at the level of functional modules, such as signaling pathways and molecular com-

plexes, instead of at the level of individual genes. In fact, one of the weaknesses of

many gene-based classication methods is that the marker genes are often selected

independently, even though their functional products may interact with each other.

The journal model is IEEE Transactions on Automatic Control.
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Therefore, the selected gene markers may contain redundant information, and they

may not synergistically improve the overall classication performance. We can allevi-

ate this problem by jointly analyzing the expression levels of groups of functionally

related genes, which can be obtained based on transcriptome analysis [21, 22, 23],

GO annotations [24], or other sources. In fact, several studies [23, 25, 26, 27, 28] have

shown that pathway markers are more reproducible compared to single gene markers

and they can provide important biological insights into the underlying mechanisms

that lead to different disease phenotypes. Furthermore, pathway- based classiers of-

ten achieve comparable or better classication performance compared to traditional

gene-based classiers.

Pathway-based methods also have some shortcomings. First, currently known

pathways cover only a limited number of genes and may not include key genes with

significant expression changes across different phenotypes. Besides, many pathways

overlap with each other, hence the activity of such pathway markers may be highly

correlated.

To alleviate these problems, one way is to directly identify such markers in a

large protein-protein interaction (PPI) network. In a recently published paper [29],

Chuang et al. tried to identify subnetwork markers by overlaying gene expression data

on the corresponding proteins in a PPI network. They started from the so-called seed

proteins in the PPI network that have high discriminative power and greedily grew

subnetworks from them to maximize the mutual information between the subnet-

work activity score and the class label. They showed that subnetwork markers yield

more accurate classification results and have better reproducibility compared to gene

markers.
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CHAPTER II

ACCURATE AND RELIABLE CANCER CLASSIFICATION BASED ON

PROBABILISTIC INFERENCE OF PATHWAY ACTIVITY
∗

To use pathway-based markers in classification, we need a way to infer the activity

of a given pathway based on the expression levels of the constituent genes. Recently,

a number of pathway activity inference methods have been proposed for this purpose.

For example, Guo et al. [25] proposed to use the mean or median expression value of

the member genes to infer the pathway activity. Tomfohr et al. [28] and Bild et al. [23]

used the first principal component of the expression profile of the member genes to

estimate the activity of a given pathway. More recently, Lee et al. [26] proposed a

method that predicts the pathway activity using only a subset of genes in the pathway,

called the condition-responsive genes (CORGs), whose combined expression levels can

accurately discriminate the phenotypes of interest.

In this chapter, we propose a novel method for probabilistic inference of pathway

activities. For a given pathway, the proposed method estimates the log-likelihood

ratio between different phenotypes based on the expression level of each member gene.

The activity level of the pathway is then inferred by combining the log-likelihood ratios

of the genes that belong to the pathway. We apply our method to the classification

of breast cancer metastasis, and demonstrate that it can achieve higher accuracy

compared to several previous pathway-based approaches. Furthermore, we show that

the proposed pathway activity inference method can find more reproducible pathway

markers that retain the discriminative power across different datasets.

∗Reprinted with permission from “Accurate and Reliable Cancer Classification
based on Probabilistic Inference of Pathway Activity” by J. Su, B.J. Yoon and E.R.
Dougherty, PLOS ONE, vol. 4, pp. e8161, 2009. Copyright 2010 by PLOS ONE.
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A. Methods

1. Datasets

We obtained two independent breast cancer datasets from large-scale gene expression

studies by Wang et al. [11] (referred as the USA dataset in this work) and vant Veer et

al. [10] (referred as the Nether- lands dataset). Wang et al.s dataset [11] contains the

gene expression profiles of 286 breast cancer patients from the USA, where metastasis

was detected in 107 of them while the remaining 179 were metastasis-free. The other

dataset studied by vant Veer et al. [10] contains the gene expression profiles of 295

patients from the Netherlands, where 79 had metastasis and 216 were metastasis-free.

In this study, we did not consider the follow-up time or the occurrence of distant

metastasis.

To obtain the set of known biological pathways, we referred to the MSigDB

(Molecular Signatures Database) version 2.4 (updated April 7, 2008) [21]. We down-

loaded the canonical pathways in the C2 curated gene sets, which contains 639 gene

sets obtained from several pathway databases, including the KEGG (Kyoto Encyclo-

pedia of Genes and Genomes) database [30] and the GenMAPP [31]. These gene sets

are compiled by domain experts and they provide canonical representations of bio-

logical processes. The set of pathways obtained from the MSigDB covers more than

5,000 distinct genes, where 3,271 of them can be found in both microarray platforms

used by the two breast cancer gene expression studies in [10, 11].

2. Probabilistic Inference of Pathway Activity

For each pathway, we first identified the genes that were included in the expression

profiles in the two breast cancer datasets. The genes that were not included in these

datasets were removed from the gene set for the given pathway. Consider a pathway
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that contains n genes G = {g1, g2, ..., gn} after removing the genes whose expression

values were not available. Given a sample xj = (x1j , x
2
j , ..., x

n
j ) that contains the

expression levels of the member genes, we estimate the pathway activity aj as follows

aj =
n∑

i=1

λi(x
i
j), (2.1)

where λi(x
i
j) is the log-likelihood ratio (LLR) between the two phenotypes of interest

for the gene gi. The LLR λi(x
i
j) is given by

λi(x
i
j) = log[f 1

i (xij)/f
2
i (xij)], (2.2)

where f 1
i (x) is the conditional probability density function (PDF) of the expression

level of gene gi under phenotype 1, and f 2
i (x) is the conditional PDF under phenotype

2. The ratio λi(x
i
j) is a probabilistic indicator that tells us which phenotype is more

likely based on the expression level xij of the ith member gene gi. We combine

the evidence from all the member genes to infer the overall pathway activity aj =

∑n
i=1 λi(x

i
j). The pathway activity aj can serve as a discriminative score for classifying

the sample xj into different phenotypes based on the activation level of the given

pathway. Conceptually, we can view this approach as computing the relative support

for the two different phenotypes using a Naive Bayes model [31, 32] based on the gene

expression profile of the pathway.

In order to compute the LLR value λi(x
i
j), we need to estimate the PDF f ci (x)

for each phenotype c ∈ {1, 2}. We assume that the gene expression level of gene

gi under phenotype c follows a Gaussian distribution with mean µci and standard

deviation σci . These parameters were estimated based on all available samples xij that

correspond to the phenotype c. The estimated PDFs can then be used for computing

the log-likelihood ratios. In practical applications, we often do not have enough

training data for reliable estimation of the PDFs f 1
i (x) and f 2

i (x). This may make
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the computation of LLRs sensitive to small changes in the gene expression profile. To

avoid this problem, we normalize the λi(x
i
j) as follows

λ̂i(x
i
j) =

λi(x
i
j)− µ(λi)

σ(λi)
, (2.3)

where µ(λi) and σ(λi) are the mean and standard deviation of λi(x
i
j) across all sam-

ples, respectively. Figure 1 illustrates the overall procedure for inferring the activity

of a given pathway.

3. Discriminative Power of Pathway Markers

In order to compare the proposed pathway activity inference scheme with other ex-

isting methods, we performed the following experiments. In our first experiment, we

selected the top 50 differentially ex- pressed pathways using the method proposed by

Tian et al. [22]. To assess the ability of a given pathway in discriminating between

different phenotypes, Tian et al. computes the t-test statistics scores for all member

genes and take their average to compute an aggregated score T that can serve as an

indicator of the pathways discriminative power. After prescreening the top 50 path-

ways that have the largest absolute T values, we computed the activity score for each

of these pathways using the proposed inference method as well as other methods. The

obtained pathway activity scores were then used to compute the t-test statistics score

for each pathway marker. The t-test scores were used to assess the discriminative

power of pathway markers and to compare different inference methods.

In this work, we compared five different pathway activity inference methods: the

mean and the median methods [25], the PCA-based method [23, 28], the CORG-

based method [26], and the inference method proposed in this paper. For the mean,

median, and CORG-based methods, we computed the score T by averaging the t-test

scores of the expression values of the member genes. For the PCA-based method,
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Figure 1. Probabilistic inference of pathway activity. For each gene in the pathway, we estimate
the conditional probability density functions (PDFs) under different phenotypes. Based on the
estimated PDFs, we transform the expression values of the member genes into log-likelihood ratios
(LLRs) to obtain a LLR matrix from the gene expression matrix. The LLR matrix is then normalized,
and the pathway activity is inferred by combining the normalized LLRs of its member genes.

to small changes in the gene expression profile. To avoid this problem, we normalize the λi(x
i
j) as follows

λ̂i(x
i
j) =

λi(x
i
j)− µ(λi)

σ(λi)
, (3)

where µ(λi) and σ(λi) are the mean and standard deviation of λi(x
i
j) across all samples, respectively.

Figure 1 illustrates the overall procedure for inferring the activity of a given pathway.

Fig. 1. Probabilistic inference of pathway activity.

For each gene in the pathway, we estimate the conditional probability density functions
(PDFs) under different phenotypes. Based on the estimated PDFs, we transform the ex-
pression values of the member genes into log-likelihood ratios (LLRs) to obtain a LLR
matrix from the gene expression matrix. The LLR matrix is then normalized, and the
pathway activity is inferred by combining the normalized LLRs of its member genes.
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we computed T by averaging the absolute t-test scores of the gene expression values,

since the PCA can naturally combine expression values regardless of whether they are

positively correlated or negatively correlated with the phenotype of interest. For our

proposed method, we computed T by averaging the t-test scores of the LLRs of the

member genes, since we estimated the pathway activity score based on LLRs instead

of the original expression values.

We also evaluated the robustness of each inference method in identifying good

pathway markers, by ranking the pathways using one of the two breast cancer datasets,

and then assessing the discriminative power of the pathways based on the other

dataset. Again, t-test statistics of the pathway activity scores were used to compare

different inference methods.

In our second experiment, we computed the t-test statistics scores for all 639

pathways without any prescreening, and compared the effectiveness of different path-

way activity inference methods based on the computed scores. As in the first experi-

ment, we also evaluated the robustness of each inference method for finding effective

pathway markers, by ranking the pathways according to the t-test scores estimated

using one of the datasets, and then evaluating their discriminative power on the other

dataset.

4. Evaluation of Classification Performance

In order to evaluate the classification performance of the proposed pathway activity

inference method, we performed the following cross-validation experiments.

For within-dataset experiments, the samples in a dataset were randomly divided

into five subsets of equal size, where the samples in four of these subsets were used

for training the classifier and the remaining subset was used for assessing the classi-

fication performance. This has been repeated by using each subset as the test set to
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obtain more reliable results. The training set was divided again into three equal-sized

subsets. Two thirds were used for ranking the pathway markers and building the

classifier (the marker-evaluation dataset), and one third of the training set was used

for feature selection (the feature-selection dataset). All samples in the training set

were used to estimate the PDFs of the gene expression values under different pheno-

types. To build the classifier, we evaluated each pathway based on the discriminative

power of its activity score to classify samples. The pathways were sorted in increasing

order of the p-value. After ranking the pathways, we built the classifier, either based

on logistic regression or LDA (linear discriminant analysis), as follows. Based on

the marker-evaluation dataset, we first constructed the classifier with only one fea-

ture, namely, the pathway marker with the lowest p-value. The performance of the

classifier was then measured by computing the AUC (Area Under ROC Curve) [32]

on the feature-selection dataset. Next, we enlarged the set of features by selecting

the pathway marker with the lowest p-value among the remaining pathways. A new

classifier was trained using the selected features on the marker-evaluation dataset

and its classification performance was again assessed on the feature-selection dataset.

The added pathway marker was kept in the feature set if the AUC increased, and

it was removed otherwise. We repeated the above process for all pathway markers

to optimize the classifier. The performance of the optimized classifier was evaluated

by computing the AUC on the test dataset. These experiments have been repeated

for 100 random partitions of the entire dataset. We report the AUC, averaged over

500 experiments, as the overall performance measure of the classification method at

hand. The overall process of the within-dataset experiment is illustrated in Fig. 2A.

In order to evaluate the reproducibility of the pathway markers across different

dataset, we performed cross-dataset experiments, where one dataset was used for se-

lecting the pathway markers, and the other dataset was used for building the classifier
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based on the selected markers and evaluating its performance. First, we selected the

optimal set of features (i.e., pathway markers) based on one dataset, by optimizing

the AUC metric. The process for selecting the feature set was similar to the one used

in the within-dataset experiments. The samples in the other dataset were divided into

five subsets of equal size. Four fifths of samples were used to train the classifier using

the selected features, and one fifth of samples were used to evaluate the performance

of the constructed classifier. We repeated this experiment by using each of the five

subsets as the test set and using the rest for training. The above experiment was re-

peated for 100 random partitions of the entire dataset, and the average AUC over the

500 experiments was reported as the performance measure. It is important to note

that feature selection is performed solely based on the rst dataset. During the cross-

validation experiments using the second dataset, the training set (that consists of four

fifths of samples in the same dataset) is simply used to build the classifier based on

the preselected set of features. The overall goal of these cross-dataset experiments is

to evaluate the reproducibility of the feature set, selected using the proposed pathway

activity inference scheme, across different datasets. Figure 2B illustrates the overall

process of the cross-dataset experiment.

To compare the proposed method with other existing methods, we performed the

described within-dataset experiments and the cross-dataset experiments using other

pathway activity inference methods (mean, median, PCA, andCORG). In addition,

we also evaluated the performance of a gene-based classifier that uses individual genes

as diagnostic markers, following a similar procedure. In this study, we included the

top 50 pathway markers in the initial marker set, which were selected according to

the method in Tian et al. [22] as elaborated in the previous subsection. For the

gene-based classifier, we included the top 50 gene markers with the lowest p-values

in the initial marker set, in order to keep the maximum number of features identical.
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Dataset 
Dataset 1 

Dataset 2 

Feature Selection 

Build the classifier 

Evaluate the classifier 

B 

Training Set 

Test Set 

Training Set 

Marker 
Evaluation 

Set 

Feature 
Selection 

Set 

Test Set 

Feature selection to 

maximize the AUC 

Build the classifier 

Evaluate the classifier 

Rank the pathways 

A 

Fig. 2. Illustration of the experimental set-up.

(A)In the within-dataset experiments, part of the training set, referred as the marker-
evaluation set, is used for ranking the pathway markers according to their discriminative
power and building the classifier. The optimal set of features are selected based on the
remainder of the training set, referred as the feature-selection set. The performance of the
resulting classifier is evaluated using the test dataset. (B) In the cross-dataset experiments,
one of the datasets is used to find the optimal set of features, and the other dataset is used
to build a classifier based on the preselected features and to evaluate the classifier.

5. Computing the Area Under ROC Curve

In this work, we evaluated the performance of a classifier based on the AUC (Area

Under ROC Curve). The AUC metric has been widely used for evaluating classifi-

cation methods, since it can provide a useful summary statistics of the classification

performance over the entire range of specificity and sensitivity values. To compute the

AUC, we adopted the method proposed in [32]. For a given classifier, let x1, x2, ..., xm

be the output of the classifier for positive samples, and let y1, y2, ..., yn be the output

for negative samples. Then, the AUC metric A for the classifier is given by:

A =
1

mn

m∑

i=1

n∑

j=1

I(xi > yj), (2.4)

where I(·) is the indicator function. The AUC is actually the empirical probability

that a randomly chosen positive sample is ranked higher than a randomly chosen

negative sample. It can be shown that the AUC measure is equivalent to the Mann-

Whitney U -test (also called the Wilcoxon rank-sum test) statistics.
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B. Results

1. Probabilistic Pathway Activity Inference Improves the Discriminative Power of

Pathway Markers

We evaluated the discriminative power of pathway markers, where the pathway activ-

ities were inferred using the proposed method as well as other inference methods. For

effective comparison of the proposed inference method with other existing methods,

we carried out similar experiments as those performed in [26] to assess the discrimi-

native power of pathway markers. For each breast cancer dataset, we first used the

method of Tian et al. [22] to select the top 50 pathways among the 639 pathways

obtained from the MSigDB [21] (see Methods). We computed the actual activity

scores of the top 50 pathways based on each pathway activity inference scheme, and

ranked the pathways according to their discriminative power. Figure 3 shows the

discriminative power of the top pathways, where the x-axis corresponds to the num-

ber k of top pathways that were considered, and the y-axis shows the mean absolute

t-score of the top k pathways. We compared five pathway activity inference meth-

ods, namely, the CORG- based method [26], PCA-based method [23, 28], mean and

median methods [25], and the LLR-based method proposed in this paper. For com-

parison, we also evaluated the discriminative power of the top 50 single gene markers,

which were chosen among the 3,271 genes covered by the 639 pathways used in this

study. The results obtained from the Netherlands breast cancer dataset [10] and the

USA breast cancer dataset [11] are shown in Fig. 3A and Fig. 3B, respectively. As

we can see from these results, the proposed pathway activity inference scheme, which

computes the pathway activity score by combining the log-likelihood ratios of the

member genes, significantly improved the power of pathway markers to discriminate

between metastatic samples and non-metastatic samples. Interestingly, the top gene
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markers often compared favorably to pathway markers. On the Netherlands dataset,

the expression levels of the top genes had larger discriminative power than the path-

way activity scores inferred by the CORG, PCA, mean, and median methods. Only

the pathway activity scores estimated by the proposed method were more discrimina-

tive than the gene expression values. On the USA dataset, gene markers were more

discriminative than pathway markers based on mean, median, and PCA methods,

but less discriminative compared to pathway markers based on the proposed method

and the CORG method.

To evaluate the reproducibility of pathway markers, we ranked the markers based

on one dataset and evaluated their mean absolute t-score using the other dataset. Fig-

ure 3C shows the result for ranking the markers based on the Netherlands dataset

and computing the mean absolute t-score of the top k markers using the USA dataset.

Similarly, Fig. 3D shows the result for ranking the markers based on the USA

dataset and computing the mean score of the top k pathways using the Nether-

lands dataset. These results clearly show that the pathway markers selected based on

the proposed inference method retain significantly large discriminative power across

different datasets. In fact, in both cross-dataset experiments, the pathway activity

scores computed by the LLR method were much more discriminative than the activ-

ity scores computed by other inference methods as well as the expression values of

the top gene markers. Altogether, these results imply that the proposed method can

find better diagnostic markers with higher reproducibility. Also note that the single

gene markers, which had considerably large discriminative power within a dataset

(see Figs. 3A and 3B), lost most of the discriminative power in a different dataset.

Next, we performed similar experiments for all 639 pathways and all 3,271 genes

covered by these pathways, without any prescreening (see Methods). The results

of these experiments are shown in Fig. 4, where the x-axis indicates the ratio P%
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Fig. 3. Discriminative power of prescreened pathway markers and single gene markers.

(A)Mean absolute t-score of the top k(= 10, 20, 30, 40, 50) markers for the Netherlands
breast cancer dataset. Pathway activities have been inferred using five different methods:
CORG, PCA, mean, median, and LLR (proposed method). The discriminative power of
the top gene markers was estimated for comparison (labeled as Gene). (B) Mean absolute
t-score of the top markers for the USA breast cancer dataset. (C) The markers were ranked
based on the Netherlands dataset and the mean absolute t-score of the top k markers was
computed based on the USA dataset. (D) The markers were ranked based on the USA
dataset and the mean absolute t-score of the top markers was computed based on the
Netherlands dataset.
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of the top pathways that were used to compute the mean absolute t-score, and the

y-axis corresponds to the estimated mean absolute t-score of the top P% pathways.

The discriminative power of the pathway markers and the single gene markers on

the Netherlands dataset is shown in Fig. 4A, and the discriminative power of the

markers on the USA dataset is shown in Fig. 4B. The results obtained from cross-

dataset experiments are summarized in Fig. 4C and 4D. In Fig. 4C, the markers were

ranked according to their discriminative power on the Netherlands set, and their mean

absolute t-scores were computed using the USA dataset. The results for ranking the

markers based on the USA dataset and computing the scores using the Netherlands

set are shown in Fig. 4D. All these experiments show that the pathway activity scores

measured by the proposed LLR method are much more discriminative than the scores

computed by other inference methods and also the expression values of individual

genes. Furthermore, we can see that the pathway markers that were chosen based on

the LLR-based pathway activity scores are more reproducible and their activity scores

retain significant amount of discriminative capability across independent datasets.

2. Proposed Pathway Activity Inference Scheme Leads to More Accurate and

Reliable Classifiers

We used the proposed pathway activity inference scheme for classification of breast

cancer metastasis, to evaluate its usefulness in discriminating different cancer phe-

notypes. For a fair and effective comparison with other inference schemes, we again

adopted a similar experimental set-up that was used in [26] to evaluate the per-

formance of the CORG-based method, a state-of-the-art pathway activity inference

scheme that uses only the condition-responsive genes in a given pathway. For each

breast cancer dataset, we performed five-fold cross-validation experiments, where four

fifths of samples were used for constructing the classifier and the remaining one fifth
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Fig. 4. Discriminative power of all pathway markers and gene markers.

(A)Mean absolute t-score of the top P% markers for the Netherlands dataset. (B) Mean
absolute t-score of the top markers for the USA dataset. (C) The markers were ranked
based on the Netherlands dataset and the mean absolute t-score of the top P% markers
was computed based on the USA dataset. (D)The markers were ranked based on the USA
dataset and the mean score of the top P% markers was computed based on the Netherlands
dataset.
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of samples were used for evaluating the classification performance (see Methods).

While constructing the classifier, we used the LLR-based pathway activity inference

method for assessing the discriminative power of each pathway marker and selecting

the optimal set of markers to be used in the classifier. The constructed classifier

also used the pathway activity scores computed by the proposed inference method to

distinguish metastatic breast cancer samples from non- metastatic samples. In our

experiments, we defined the initial set of pathway markers as the top 50 pathways

selected using the method by Tian et al. [22] (see Methods). We assessed the classifi-

cation performance using the AUC metric. We repeated the five-fold cross-validation

for 100 random partitions of the given dataset, and averaged the resulting 500 AUCs

to obtain a reliable performance measure of the classification method. To compare

the classification performance of different inference methods, we also repeated the

previous experiments using the CORG, PCA, mean, and median methods for infer-

ring the pathway activities. For comparison, we also evaluated the performance of

the gene-based classification method. We included the top 50 discriminative genes

in the initial marker set, to keep the maximum number of features identical for all

classification methods.

Figure 5 summarizes the results of the cross-validation experiments. In the first

set of experiments, we used logistic regression for classifying the samples. The classifi-

cation results of different approaches based on logistic regression are shown in Fig. 5A.

The two bar charts on the left of Fig. 5 correspond to the two within-dataset experi-

ments based on the USA breast cancer dataset (labeled as USA) and the Netherlands

dataset (labeled as Netherlands), respectively. In these within-dataset experiments,

the initial set of top 50 markers have been selected using the entire dataset, in order to

reduce the effect of sensitivity in marker selection when comparing different pathway-

based methods. The cross-validation experiments have been performed based on the
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selected initial set of markers (see Methods). As we can see in these bar charts, the

proposed method achieved the highest classification accuracy among all methods, in

both experiments. The CORG-based method compared favorably to other pathway-

based methods, though outperformed by the proposed method. We can also see that

the gene-based classifier performed very well in within dataset experiments, which is

not surprising if we consider the high discriminative power of the top gene markers

observed in Figs. 3A and 3B.

The results of the cross-dataset experiments are shown in the two bar charts

on the right of Fig. 5A. The chart labeled as USA-Netherlands shows the results

for selecting the features using the USA dataset, and training/evaluating the classi-

fier using the Netherlands dataset. Similarly, the chart labeled as Netherlands-USA

shows the classification performance for choosing the feature set using the Nether-

lands dataset, and training and evaluating the classifier based on the USA dataset. As

we can see, the proposed LLR-based method outperformed most of the other meth-

ods in both cross-dataset experiments. Only the mean-based approach showed better

performance than the proposed approach on the Netherlands-USA cross-dataset ex-

periment. These results show that the proposed pathway activity inference method

can find a better feature set that is more reproducible across datasets, compared to

other activity inference methods. Despite the good performance in within-dataset

experiments, gene- based classifiers performed typically worse than many pathway-

based classifiers, which shows the poor reproducibility of the feature sets based on

individual gene markers.

We also repeated the entire experiments using LDA (linear discriminant analysis),

instead of logistic regression, for building the classifiers. The results are shown in

Fig. 5B, where we can see similar trends as in Fig. 5A. The proposed classification

method yielded the highest classification accuracy in both within-dataset experiments,
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Fig. 5. Performance of different classification methods.

The bar charts show the average AUCs for different classification methods. Five pathway-
based methods that use distinct pathway activity inference schemes (LLR, CORG, PCA,
mean, and median) and a gene-based method were compared. (A) Classifiers were con-
structed based on logistic regression. Results of within-dataset experiments based on the
USA and Netherlands datasets are shown in the two charts on the left. The two charts
on the right show the results of the cross-dataset experiments. (B) The performance of
different classification methods based on LDA (linear discriminant analysis).
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Fig. 6. Performance of different classification methods.

The bar charts show the average AUCs of within-dataset experiments for five pathway-based
methods (LLR, CORG, PCA, mean, and median) and a gene-based method. In these exper-
iments, the top 50 pathways have been reselected in every experiment using the designated
training set. (A) Classification results based on logistic regression. (B)Classification results
based on LDA (linear discriminant analysis).

and it also outperformed other methods in cross-dataset experiments, with the only

exception of the mean-based inference method in one of the experiments.

Finally, in order to analyze the overall effect of preselecting the initial marker set,

we carried out another set of within-dataset experiments, where the initial markers

were reselected in every experiment using only the designated training data. The

classification results are shown in Fig. 6A and 6B for logistic regression and LDA,

respectively. As we can see from these figures, the preliminary marker selection step

has important influence on the overall classification results, where the sensitivity of

the selection method may adversely affect the performance of the resulting classifiers.

However, as we can see from Fig. 6, the relative performance between different

classification methods showed similar tendency as in the previous set of experiments

(see Fig. 5), and the proposed method consistently outperformed the other methods

in all experiments.
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3. Proposed Method Leads to Robust Classifiers that Yield Symmetric Results for

Dataset Inversion

Ultimately, we want to construct a robust classifier that yields accurate and consistent

classification results on independent gene expression datasets. Given two independent

datasets of similar size, where one dataset is used for training the classifier and the

other dataset is used for evaluation, a robust classification scheme would show consis-

tent classification performance if the training set were interchanged with the test set.

However, the USA breast cancer dataset [11] and the Netherlands dataset [10] had

been obtained from different microarray platforms and also preprocessed using dif-

ferent methods, which makes it practically difficult to evaluate the robustness of the

proposed classification method by training the classifier based on one of the datasets

and evaluating its performance on the other dataset. For this reason, we performed

the following two-fold cross-validation experiments to assess the robustness of the

proposed approach. First, we randomly divided a given dataset into two subsets of

equal size. One of the subsets was used to build an actual classifier based on LDA

with a classification threshold of λth = 0.5. The classifier was then used to classify the

samples in the other subset and the classification error rate was computed. Next, we

interchanged the training set and the test set and repeated the previous experiment.

In order to find out whether we can obtain consistent classification performance after

interchanging the training and test sets, we computed the absolute difference between

the two classification error rates. We repeated this experiment for 250 random par-

titions of each breast cancer dataset, and estimated the distribution of the absolute

error difference. For comparison, we carried out the above experiments using the

proposed pathway activity inference scheme as well as the CORG-based scheme [26].

The proposed classification scheme resulted in a relatively small average error dif-
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Figure 7. Robustness of the proposed classification scheme. To assess the robustness of the
proposed classification scheme, two-fold cross-validation experiments have been performed, where we
measured the change in classification error after interchanging the training and test sets. (A)
Cumulative distribution of the error difference for the USA dataset. (B) Cumulative distribution of the
error difference for the Netherlands dataset.

respective methods. These results indicate that both pathway-based classification schemes can lead to the

construction of robust classifiers that yield consistent results on different datasets, where the proposed

scheme compares favorably to the CORG-based scheme.

Discussion

In this paper, we have proposed a novel probabilistic pathway activity inference scheme that estimates the

activation level of a pathway based on the log-likelihood ratios (LLRs) of the member genes. The proposed

method can effectively address several shortcomings of the previous pathway activity inference methods,

thereby improving the discriminative power of the pathway markers. For example, the methods proposed

by Guo et al. [25] estimate the pathway activity by taking the mean or median of the gene expression

values of the member genes. These methods cannot effectively capture the coherent gene expression

patterns that may be present within a pathway. For example, suppose a member gene is positively

correlated with a phenotype of interest, while another gene in the same pathway is negatively correlated

with the given phenotype. In this case, we may lose much of the discriminative information contained

Fig. 7. Robustness of the proposed classification scheme.

To assess the robustness of the proposed classification scheme, two-fold cross-validation
experiments have been performed, where we measured the change in classification error
after interchanging the training and test sets. (A) Cumulative distribution of the error
difference for the USA dataset. (B)Cumulative distribution of the error difference for the
Netherlands dataset.

ference of 0.0414 on the USA dataset, and 0.0324 on the Netherlands dataset. The

CORG-based classification scheme yielded a slightly higher error difference, whose av-

erage was 0.0429 for the USA dataset and 0.0345 for the Netherlands dataset. Figure

7 shows the cumulative distribution of the classification error difference on the two

datasets for the respective methods. These results indicate that both pathway-based

classification schemes can lead to the construction of robust classifiers that yield con-

sistent results on different datasets, where the proposed scheme compares favorably

to the CORG-based scheme.

C. Discussion

In this chapter, we have proposed a novel probabilistic activity inference scheme that

estimates the activation level of a pathway based on the log-likelihood ratios(LLRs)
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of the member genes. The proposed method can effectively address several short-

comings of the previous pathway activity inference methods, thereby improving the

discriminative power of the pathway markers. For example, the methods proposed

by Guo et al. [25] estimate the pathway activity by taking the mean or median of

the gene expression values of the member genes. These methods cannot effectively

capture the coherent gene expression patterns that may be present within a pathway.

For example, suppose a member gene is positively correlated with a phenotypes of

interest, while another gene in the same pathway is negatively correlated with the

given phenotype. In this case, we may lose much of the discriminative information

contained in the respective gene expression values if we average them out. The PCA-

based inference method used in a number of studies [23, 28] can somewhat relieve

this problem. In the PCA approach, the first basis vector captures the average ex-

pression pattern of the member genes, and the first principal component can estimate

the presence and the strength of this pattern in a gene expression profile. However,

not all the member genes may alter their expression levels under different phenotypes

in a consistent manner. In fact, some genes may have expression changes that are

irrelevant to the phenotypic change of our interest. To address this problem, Lee et

al. [26] proposed a new pathway activity inference method that uses only a subset of

member genes, called CORGs (condition-responsive genes), whose combined expres-

sion levels are highly discriminative of the phenotypes. However, the CORG-method

may disregard member genes that have consistent, but not large, expression changes

under different phenotypes.

The proposed LLR-based method provides an effective solution to these prob-

lems. First of all, by using the LLR of a member gene, instead of directly using its

expression value, the proposed method can capture the consistent gene expression

changes that are related to the phenotypic change. More- over, since the LLR is
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computed based on the difference in distribution of the gene expression values under

different conditions, the direction and the amount of expression changes do not have

large effects on the overall discriminative power of the pathway marker. Furthermore,

the proposed method fully utilizes the available discriminative information in all the

member genes, not just some of them; and it naturally weights and combines the sup-

port from each member gene in a given pathway to increase the discriminative power

of the corresponding pathway marker. As we have demonstrated in this paper, the

LLR-based pathway activity inference scheme significantly improves the discrimina-

tive power of the pathway markers, increases the overall classification accuracy, and

finds reliable pathway markers that are more reproducible across different datasets.

Therefore, the proposed method may ultimately lead to the construction of more re-

producible classifiers. The two-fold cross-validation experiments, where we measured

the change in classification error that resulted from interchanging the training and

test sets, demonstrated the potential of the proposed scheme for building robust and

reproducible classifiers.

Currently, one limitation of the pathway-based classifiers is the limited coverage

of genes by known biological pathways. We believe that the classification performance

of the pathway-based methods will be considerably improved once we have a more

complete list of biological pathways. One possible way to overcome this problem is to

identify effective pathway (or subnetwork) markers by overlaying a protein- protein

interaction (PPI) network with gene expression data and searching for significantly

differentially expressed regions in the given network, as proposed in [29]. In this

work, we assumed that the expression values of a gene follows a Gaussian distribu-

tion. Although this has been shown to be a good approximation in our experiments,

using alternative distributions that better fit the expression data may further improve

the overall classification performance. For example, we may consider using gamma
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distributions as proposed by Efroni et al. [33].
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CHAPTER III

IDENTIFICATION OF DIAGNOSTIC SUBNETWORK MARKERS FOR

CANCER IN HUMAN PROTEIN-PROTEIN INTERACTION NETWORK
∗

In this chapter, we propose a new method for identifying effective subnetwork mark-

ers from a PPI network by performing a global search for differentially expressed

linear paths using dynamic programming. After finding the most discriminative lin-

ear paths, we combine overlapping paths into subnetworks through a greedy approach

and use those subnetworks as diagnostic markers for classifying breast cancer metas-

tasis. To test the effectiveness of our subnetwork markers, we perform cross validation

experiments based on two independent breast cancer datasets. We compare the per-

formance of our method with a gene-based method, a pathway-based method [34]

and a previously proposed subnetwork-based method [29]. The results show that

the proposed method finds reliable subnetwork markers that can accurately classify

breast cancer metastasis. We also perform an enrichment analysis and show that the

identified subnetwork markers are highly enriched with proteins that have common

GO terms.

A. Results and Discussion

1. Identification of Subnetwork Markers

We obtained two independent breast cancer datasets from the large-scale expression

studies in Wang et al. [11] (referred as the USA dataset) and van’t Veer et al. [10]

∗Reprinted with permission from “Identification of Diagnostic Subnetwork Mark-
ers for Cancer in Human Protein-Protein Interaction Network” by J. Su, B.J. Yoon
and E.R. Dougherty, BMC Bioinformatics 2010, 11(Suppl 6):S8. Copyright 2010 by
BMC Bioinformatics.
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(referred as the Netherlands dataset). The USA dataset contains 286 samples and

the Netherlands dataset contains 295 samples. Metastasis had been detected for 78

patients in the Netherlands dataset and 107 patients in the USA dataset during the

five-year follow-up visits after the surgery. The PPI network has been obtained from

Chuang et al. [29], which contains 57,235 interactions among 11,203 proteins. Since

not all proteins have corresponding genes in the microarray platforms used by the two

breast cancer studies, we used the induced network which contains 9,263 proteins and

49,054 interactions for the USA dataset, and 8,380 proteins and 31,201 interactions

for the Netherlands dataset.

Our proposed method integrates the gene expression data and the PPI data

by overlaying the expression value of each gene on its corresponding protein in the

PPI network. The subnetwork identification algorithm consists of the following three

major steps:

Step 1: Search for highly discriminative linear paths whose member

genes are closely correlated to each other

To find discriminative linear paths in the large PPI network, we define a scoring

scheme that incorporates both the t-test statistics scores of the member genes and

the correlation coefficient between their expression values. This scoring scheme takes

a weighted sum of the t-scores of the member genes within a given path. The weights

depend on the correlation between the member genes and the parameter θ, where θ is

introduced to control the trade off between the “discriminative power” of individual

genes and the “correlation” between the member genes (see Methods). Based on the

above scoring scheme, we developed an algorithm that searches for the top scoring

linear paths that have length ` and end at node gi.

Step 2: Combine top scoring linear paths into a subnetwork

We initialize the subnetwork using the path with the highest score. As long
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as there exists a high scoring path that overlaps with the current subnetwork, we

combine them and check if the discriminative power of the new subnetwork is larger

than that of the previous subnetwork. If the discriminative power improves, we keep

the new subnetwork. Otherwise, we keep the previous subnetwork and check the

next best path. To evaluate the discriminative power of subnetworks, we applied the

probabilistic pathway activity inference method proposed in [34] to infer the subnet-

work activity. The discriminative power of a subnetwork is assessed by computing

the t-test statistics score of the subnetwork activity.

Step 3: Update the PPI network

After identifying the discriminative subnetwork, we update the PPI network by

removing the proteins in the identified subnetwork from the current PPI network. In

order to find additional non-overlapping subnetworks, we repeat the search process

from Step 1.

In order to control the size of the identified subnetworks, we restricted the length

of the linear paths to be less than 8 . For a given ` and for every node gi in the network,

we identified the top 20 linear paths with the highest scores, whose length is ` and

end at the given node gi. To construct the subnetwork marker that can be used as

a diagnostic marker for breast cancer metastasis, we chose the top 100 scoring linear

paths whose length are within a given range 5 ≤ ` ≤ 8. The selected linear paths

were combined into a single subnetwork as described in Step 2. To find the best θ,

we repeated the experiment for six different values θ = 1, 2, 4, 8, 16 and ∞. For every

value of θ, we identified 50 subnetwork markers for each dataset using the proposed

method. The statistics of the identified subnetworks for the two datasets are shown

in Table I. We can see that the overlap between the subnetwork markers identified

on different datasets is around 25%, which is significantly larger than the overlap

reported in Chuang et al. (12.7%) [29].
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Table I. Statistics of the subnetwork markers identified by the proposed method.

θ Size Number of Number of genes

mean standard deviation genes in common

1 USA 16.8 10.17 840 213

Netherlands 14.62 8.69 731

2 USA 18.22 12.3 911 233

Netherlands 16 10.34 801

4 USA 18 12.8 901 202

Netherlands 17.28 11.4 864

8 USA 20.7 13.38 1035 252

Netherlands 19.52 12.57 976

16 USA 20.2 11.13 1010 201

Netherlands 16.64 10.89 832

∞ USA 22.32 14.86 1116 266

Netherlands 21.92 10.67 1096

For each θ, we show the mean and standard deviation of the subnetwork size as well as the
total number of genes covered by the identified subnetworks. We also show the number of
genes shared by the subnetworks identified using the respective breast cancer datasets.
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2. The Identified Subnetworks are Enriched with Proteins in Common GO Terms

We identified 50 discriminative subnetworks using the proposed method for both the

USA dataset and the Netherlands dataset (θ = 8). The identified subnetworks consist

of 1035 and 976 genes, respectively. Next, we analyzed the identified subnetworks

using FuncAssociate [35], which is a web application designed for characterizing large

collections of genes and proteins. It performs a Fisher’s Exact Test (FET) analysis

to identify Gene Ontology (GO) [24] attributes that are shared by a fraction of the

entries in a given set of genes or proteins. At a significance threshold of 0.01, 78% and

84% of the subnetworks that were respectively identified using the USA dataset and

the Netherlands dataset were enriched with proteins that share common GO terms.

These GO terms generally correspond to cell growth and death, cell proliferation and

replication, cell and tissue remodeling, circulation and coagulation, or metabolism.

Examples of the identified subnetworks are shown in Figure 8, where we can see

that the proposed method is capable of finding subnetwork markers that also include

genes that are oppositely regulated. The enrichment analysis results of the sample

subnetworks obtained using FuncAssociate are shown in Table II.

3. Subnetwork Markers Identified by the Proposed Method are More

Discriminative and Reproducible

We first evaluated the subnetwork markers identified using the proposed method.

For a given θ, we identified the subnetwork markers based on one dataset and es-

timated their discriminative power on the same dataset. The discriminative power

of the subnetwork marker was estimated as the absolute t-test statistics score of the

subnetwork activity. Subnetwork markers were then sorted in the decreasing order of

t-score. Next, to show the reproducibility of our subnetwork markers, we identified
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Figure 1: Sample subnetworks identified using the proposed method. (A),(B) are examples of subnetworks
identified using the USA dataset. (C),(D) are examples of subnetworks identified using the Netherlands
dataset. Red(Green) implies that the gene is up regulated(down regulated) in breast cancer samples with
metastasis.

levels. For pathway markers, we selected the top 50 pathways in the C2 curated gene sets in

MsigDB(Molecular Signatures Database) [17], which contains 639 known biological pathways, were

identified based on each dataset. We also obtained the subnetworks identified in Chuang et al. from the

Cell Circuits database [27](149 discriminative subnetworks for the Netherlands dataset and 243

subnetworks for the USA dataset). We chose the top 50 subnetworks out of 149 based on the Netherlands

dataset and the top 50 subnetworks out of 243 based on the USA dataset. Here, pathways or subnetworks

were ranked in the decreasing order of a score T proposed by Tian et al. [18]. For a given pathway or

subnetwork, T was computed as the average absolute t-test statistics score of all the member genes. For

8

Fig. 8. Sample subnetworks identified using the proposed method.

(A),(B) are examples of subnetworks identified using the USA dataset. (C),(D) are examples
of subnetworks identified using the Netherlands dataset. Red (green) implies that the gene
is upregulated (downregulated) in breast cancer samples with metastasis.
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Table II. Enrichment analysis results for the sample subnetworks shown in Figure 8.

Subnetwork Attribute ID P -value Attribute name

A GO:0045165 0.024 cell fate commitment

GO:0012501 0.001 programmed cell death

GO:0008219 0.006 cell death

GO:0016265 0.006 death

GO:0006915 0.017 apoptosis

B GO:0000718 < 0.001 nucleotide-excision repair, DNA damage

removal

GO:0006308 0.046 DNA catabolic process

GO:0043566 0.040 structure-specific DNA binding

C GO:0051318 0.039 G1 phase

GO:0022403 < 0.001 cell cycle phase

GO:0005654 < 0.001 nucleoplasm

GO:0000280 0.009 nuclear division

GO:0007067 0.009 mitosis

GO:0048285 0.009 organelle fission

GO:0051301 0.001 cell division

GO:0022402 < 0.001 cell cycle process

GO:0007049 0.000 cell cycle

GO:0051726 0.008 regulation of cell cycle

GO:0044428 0.001 nuclear part

D GO:0005838 < 0.001 proteasome regulatory particle

GO:0000076 0.016 DNA replication checkpoint

GO:0032297 0.016 negative regulation of DNA replication ini-

tiation
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Table II. Continued.

Subnetwork Attribute ID P -value Attribute name

GO:0030174 0.030 regulation of DNA replication initiation

GO:0031145 < 0.001 anaphase-promoting complex-dependent

proteasomal ubiquitin-dependentprotein

catabolic process

GO:0051436 < 0.001 negative regulation of ubiquitin-protein lig-

ase activity during mitotic cell cycle

GO:0051352 < 0.001 negative regulation of ligase activity

GO:0051437 < 0.001 positive regulation of ubiquitin-protein lig-

ase activity during mitotic cell cycle

GO:0051444 < 0.001 negative regulation of ubiquitin-protein lig-

ase activity

GO:0051443 0.001 positive regulation of ubiquitin-protein lig-

ase activity

GO:0051439 0.001 regulation of ubiquitin-protein ligase activ-

ity during mitotic cell cycle

GO:0051351 0.001 positive regulation of ligase activity

GO:0051438 0.002 regulation of ubiquitin-protein ligase activ-

ity

GO:0051340 0.002 regulation of ligase activity

GO:0010498 0.007 proteasomal protein catabolic process

GO:0043161 0.007 proteasomal ubiquitin-dependent protein

catabolic process

GO:0022402 < 0.001 cell cycle process
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the top 50 markers based on one dataset and evaluated their discriminative power

on the other dataset. Again, subnetwork markers were sorted according to their dis-

criminative power. Figure 9 shows the discriminative power of subnetwork markers

identified using six different values of θ, where the x-axis corresponds to the top K

markers being considered, and the y-axis shows the mean absolute t-score of the top K

markers (K = 10, 20, 30, 40, 50). Figure 9A and Figure 9B show the results obtained

from the USA dataset and the Netherlands dataset, respectively. Figure 9C shows the

discriminative power of the subnetwork markers selected based on the Netherlands

dataset and evaluated using the USA dataset. Figure 9D shows the discriminative

power of the markers selected based on the USA dataset and evaluated using the

Netherlands dataset. As we can see from these results, the discriminative power of

the identified subnetwork markers is not very sensitive to the choice of θ. To further

compare the identified subnetwork markers with other markers, we used θ = 8 which

showed good performance in average.

Next, we compared the identified subnetwork markers with gene markers, path-

ways markers [34] and the subnetwork markers identified by Chuang et al. [29]. For

gene markers, we selected the top 50 genes based on the absolute t-score among all

genes covered by the 50 identified subnetworks. For pathway markers, we selected

the top 50 pathways among the 639 pathways in the C2 curated gene sets in MsigDB

(Molecular Signatures Database) [21]. We also obtained the subnetworks identified by

Chuang et al. [29] from the Cell Circuits database [36] (149 discriminative subnetworks

for the Netherlands dataset and 243 subnetworks for the USA dataset). We chose the

top 50 subnetworks out of 149 subnetworks based on the Netherlands dataset and the

top 50 subnetworks out of 243 subnetworks based on the USA dataset. The pathways

and subnetworks were ranked using the scheme proposed by Tian et al. [22], based on

the average absolute t-test statistics score of all the member genes. For subnetwork
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Fig. 9. Discriminative power of the subnetwork markers identified by the proposed method

using different θ.

We computed the mean absolute t-score of the top K = 10, 20, 30, 40, 50 subnetwork markers
for different values of θ (shown in different colors). (A), (B): Markers were identified using a
particular dataset and tested on the same dataset. (C), (D): Markers were identified using
the first dataset and evaluated on the second dataset.
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markers identified by Chuang et al., we computed the t-scores of their member genes

using the original expression values. For pathway markers, t-scores of the member

genes were computed using their log-likelihood ratios as in [34] (see Methods).

To assess the discriminative power of the subnetwork markers identified using the

proposed method, their activity score was inferred using the probabilistic inference

method proposed in [34]. For subnetwork markers identified by Chuang et al., we

inferred their activity score using the mean expression value of the member genes as

reported in their paper [29].

The discriminative power of these different markers are shown in Figure 10. As

we can see in Figure 10, subnetwork markers identified by our method are more

discriminative compared to other markers. Moreover, it can be seen that they also

retain higher discriminative power across different datasets.

4. Subnetwork Markers Identified by the Proposed Method Improves Classification

Performance

To evaluate the performance of the classifiers that are constructed using the subnet-

work markers identified by the proposed method, we performed the following within-

dataset and cross-dataset cross-validation experiments.

In the within-dataset experiments, the top 50 subnetwork markers identified us-

ing one of the two breast cancer datasets were used to build the classifier. The dataset

was divided into ten folds of equal size, one of them was withheld as the “test set”

and the remaining nine were used for training the classifier. In the training set, six

folds (referred as the “marker ranking set”) were used to rank the subnetwork mark-

ers according to their discriminative power and to build the classifier using logistic

regression. The other three folds (referred as the “feature selection set”) were used for

feature selection. We started with the top ranked subnetwork marker and enlarged
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Fig. 10. Discriminative power of different types of markers.

We evaluated the discriminative power of the subnetwork markers identified using the pro-
posed method, and compared them with gene markers, pathway markers[34], and the sub-
network markers identified by Chuang et al.[29]. Mean absolute t-score is shown for the top
K = 10, 20, 30, 40, 50 markers. (A), (B): Markers were identified using a particular dataset
and tested on the same dataset. (C), (D): Markers were identified using the first dataset
and evaluated based on the second dataset.
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the feature set by adding features sequentially. Every time we included a new subnet-

work marker into the feature set, a new classifier was built using the marker ranking

set and it was tested on the feature selection set. For all the samples in the feature

selection set, the classifier can compute the posterior probabilities of the class label

(metastasis versus metastasis-free), based on which we can estimate the AUC (Area

Under ROC Curve) [32]. The AUC metric provides a useful statistical summary of

the classification performance over the entire range of sensitivity and specificity. We

retained the new subnetwork marker if the AUC (estimated on the feature selection

set) increased; otherwise, we discarded the subnetwork marker and continued to test

the remaining ones. The above experiment was repeated 500 times based on 50 ran-

dom ten-fold splits. The average AUC was reported as the classification performance

measure.

To evaluate the reproducibility of the subnetwork markers, we performed the

following cross-dataset experiments. We first identified the top 50 subnetwork markers

based on one dataset and performed cross-validation experiments on the other dataset,

following a similar procedure that was used in the previously described within-dataset

experiments.

For comparison, we also performed similar within-dataset and cross-dataset ex-

periments using gene markers, pathway markers and the subnetwork markers identi-

fied by Chuang et al., respectively. For each method, we limited the feature set to the

top 50 markers for each dataset. Figure 11 shows the classification performance based

on the subnetwork markers identified by the proposed method for different values of

θ. We found that the AUC for both within-dataset and cross-dataset experiments

first increases with increasing θ and starts to drop after certain point. At θ = 8,

the AUC values for both cross-dataset experiments are relatively larger than those at

other values of θ. Also, the AUC values for both within-dataset experiments at θ = 8
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Fig. 11. Classification performance of the identified subnetwork markers for different θ.

The line plots show the average AUC for classifiers based on subnetwork markers identified
using θ = 1, 2, 4, 8, 16,∞. The legends USA, Netherlands denote the results of within-
dataset experiments based on the USA dataset and the Netherlands dataset, respectively.
The legends USA-Netherlands, Netherlands-USA denote the results of cross-dataset exper-
iments where markers were identified based on the first dataset and tested based on the
second dataset.

compare favorably with those at different θ, which implies that the trade off between

maximizing the discriminative power and increasing the correlations of the member

genes is well balanced.

To compare the classification performance of the identified subnetwork markers

with other types of markers, we set θ = 8. Based on this setting, we compared

our subnetwork markers with gene markers, pathway markers and the subnetwork

markers from Chuang et al. using the experimental designs described above. Figure 12

summarizes the classification performance of the proposed approach, in comparison

with the other methods. The two bar charts on the left of Figure 12 show the

AUC of the within-dataset experiments. As shown in Figure 12, classifiers based

on the subnetwork markers identified by the proposed method perform significantly
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Fig. 12. Classification performance of different types of markers.

The bar charts show the average AUC of different classifiers that use subnetwork markers
identified by the proposed method, gene markers, pathway markers, and subnetwork mark-
ers found by Chuang et al.’s method. Results of the within-dataset experiments based on
the USA and Netherlands dataset are shown in the two bar charts on the left. The two bar
charts on the right show the results of the cross-dataset experiments, where markers were
identified based on the first dataset and tested based on the second dataset.

better than the classifiers based on other types of markers. The results of the cross-

dataset experiments are shown in the two bar charts on the right of Figure 12. Again,

we can see that the classifiers built on the subnetwork markers predicted by our

method significantly outperform those based on other markers. This indicates that

the predicted subnetwork markers are more reproducible compared to other markers.

Figure 13 shows the classification error of the classifiers built using different

types of markers at different TPR (true positive rate). As shown in Figure 13, the

error curve that corresponds to the proposed markers always lies below others, which

implies that classifiers built on our subnetwork markers yield a lower error rate at

any fixed sensitivity level.
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Figure 1: Classification error at different TPR (true positive rate) for different types of markers. (A), (B)
show the results of the within-dataset experiments based on the USA dataset and the Netherlands dataset,
respectively. (C), (D) show the results of the cross-dataset experiments, where markers were identified using
the first dataset and tested based on the second dataset.

provides prior information about the relationship between proteins, hence the genes that code for these

proteins. Subnetworks identified by integrating the network structure and the gene expression data can

cluster proteins (or genes) that are functionally related to each other. By aggregating the expression values

of the member genes, subnetwork markers can avoid selecting single gene markers with redundant

information. Furthermore, the discriminative subnetworks identified by the proposed method can also

provide us with important clues about the biological mechanisms that lead to different disease phenotypes.

The proposed method finds top scoring linear paths using dynamic programming and combines them into a

subnetwork by greedily optimizing the discriminative power of the resulting subnetwork marker. We

developed a scoring scheme that is used by the search algorithm to find linear paths that consist of

9

Fig. 13. Classification error at different TPR (true positive rate) for different types of mark-

ers.

(A), (B) show the results of the within-dataset experiments based on the USA dataset
and the Netherlands dataset, respectively. (C), (D) show the results of the cross-dataset
experiments, where markers were identified using the first dataset and tested based on the
second dataset.
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B. Conclusions

In this paper, we proposed a new method for identifying effective subnetwork markers

in a protein-protein interaction (PPI) network. As shown throughout this paper, inte-

grating the PPI network with microarray data can overcome some of the shortcomings

of the gene-based and pathway-based methods. First of all, using a genome-scale PPI

network provides a better coverage of the genes in the microarray studies compared to

using known pathways obtained from public databases. Second, the network topol-

ogy provides prior information about the relationship between proteins, hence the

genes that code for these proteins. Subnetworks identified by integrating the network

structure and the gene expression data can cluster proteins (or genes) that are func-

tionally related to each other. By aggregating the expression values of the member

genes, subnetwork markers can avoid selecting single gene markers with redundant

information. Furthermore, the discriminative subnetworks identified by the proposed

method can also provide us with important clues about the biological mechanisms

that lead to different disease phenotypes.

The proposed method finds top scoring linear paths using dynamic programming

and combines them into a subnetwork by greedily optimizing the discriminative power

of the resulting subnetwork marker. We developed a scoring scheme that is used by

the search algorithm to find linear paths that consist of discriminative genes that are

highly correlated to each other. The proposed algorithm allows us to control the trade

off between maximizing the discriminative power of the member genes within a given

linear path and increasing the correlation between the member genes, by choosing

the appropriate value for θ. As the subnetwork markers are constructed based on the

top scoring linear paths, instead of single genes, the proposed method is expected to

yield more robust subnetwork markers. Another important advantage of our method
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is that it can find non-overlapping subnetwork markers. This can reduce the overall

redundancy among the identified markers. In this paper, the activity of the identified

subnetwork markers were inferred using the probabilistic activity inference scheme

proposed in [34]. This allows us to find better subnetwork markers, since it can assess

their discriminative power more effectively.

As shown in this paper, the identified subnetwork markers consist of proteins that

share common GO terms. The classifiers based on the subnetwork markers identified

using the proposed method were shown to achieve higher classification accuracy in

both within-dataset and cross-dataset experiments compared to classifiers based on

other markers. These results suggest that the method proposed in this paper can

find effective subnetwork markers that can more accurately classify breast cancer

metastasis and are more reproducible across independent datasets.

C. Methods

1. Overview

Given a large PPI network, we want to find subnetwork markers whose activity is

highly indicative of the disease state of interest. For this purpose, we first need a

method for inferring the activity of a given subnetwork and evaluating its discrimi-

native power. There exist different ways for computing the activity score of a given

group of genes [34]. Recently, we proposed a probabilistic pathway activity inference

scheme, which was shown to outperform many other existing methods. Thus, we

adopt this activity inference scheme for finding subnetwork markers whose activity

scores are highly discriminative of the disease states. However, finding the subnet-

work markers with maximum discriminative power in a PPI network based on the

selected inference method is computationally infeasible. For this reason, we propose
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Fig. 14. Illustration of the proposed method.

an algorithm for identifying effective subnetwork markers which is motivated by a

simple scheme proposed in Tian et al. [22]. This scheme scores a pathway marker

by computing the average absolute t-score of its member genes. It has been shown

to be effective in evaluating the discriminative power of pathway markers in [34].

Since our goal is to find groups of genes that display coordinated expression patterns,

we modified Tian et al.’s scoring scheme to incorporate the correlation between the

genes within a given pathway. This new method scores a given pathway by taking

the weighted sum of the absolute t-scores of its member genes, where the weights are

computed using the correlation coefficients between the member genes.

The general outline of the proposed algorithm is as follows. Based on the above

scoring scheme, we first search for differentially expressed linear paths in the PPI

network. Then, the top paths that overlap with each other are greedily combined into

a subnetwork by maximizing the discriminative power of the resulting subnetwork,

evaluated by the method proposed in [34]. The identified subnetwork is removed from

the PPI network, and the above process is repeated to find multiple non-overlapping

subnetwork markers. The overall scheme is illustrated in Fig. reffigure.
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2. Probabilistic Inference of Subnetwork Activity

Here we provide a brief review of the probabilistic activity inference method proposed

in [34]. Suppose we have a subnetwork Gs that consists of n proteins which correspond

to n different genes {g1, g2, · · · , gn}. Assume that the expression level xi of a gene

gi follows the distribution fki (xi) under phenotype k = 1, 2. The log-likelihood ratio

(LLR) [34] between the two phenotypes is computed as follows

α(xi) = log(f 1
i (xi)/f

2
i (xi)).

In order to estimate the conditional probability density function fki (xi), we assume

that the gene expression level of gene gi under phenotype k follows a Gaussian dis-

tribution with mean µki and standard deviation σki . The parameters are empirically

estimated using the samples with phenotype k. Given the log-likelihood ratio of each

gene, the subnetwork activity AGs is defined as the sum of the log-likelihood ratios of

the member genes AGs =
∑n
i=1 α(xi).

3. Evaluating the Discriminative Power of Linear Paths in the PPI Network

A linear path λ = {g1, g2, · · · , gn} in a given PPI network G is defined as a group

of genes, where the proteins that correspond to gi and gi+1 are connected for i =

1, · · · , n− 1. To evaluate the discriminative power of a linear path, we first evaluate

the discriminative power of each gene gi by computing the t-test statistics score of the

log-likelihood ratio α(xi), denoted as tα(gi). Then, we compute the Pearson product-

moment correlation coefficient to measure the correlation between the log-likelihood
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ratios of ∀gi, gj ∈ λ. The correlation matrix is given by

Σ(λ) =




1 ρ12 · · · ρ1n

ρ21 1 · · · ρ2n
...

...
...

ρn1 ρn2 · · · 1




where ρij, i 6= j is the correlation coefficient between the log-likelihood ratios of gi

and gj. The score of the pathway λ is defined as following

S(λ) =
1

n2
[tα(g1), tα(g2), · · · · · · , tα(gn)] · Σ′(λ)

where Σ′(λ) = 1
1+θ

[
(Σ(λ)− I) + θ · I

]
and I is the identity matrix. We use a normal-

ization factor of
1

n2
to ensure that the overall score does not depend on the length of

the path. We use θ to control the trade off between maximizing the discriminative

power of the genes within the identified path and increasing the correlation between

its member genes. When θ = 0, the weight for the t-score of a given gene gi is deter-

mined by the average correlation between the log-likelihood ratios of gi and gj, where

j 6= i. As θ increases, we give more weight on the discriminative power of individual

genes than the correlation between member genes. Especially, when θ → ∞, we get

Σ′(λ) = I. In this case, the pathway score S(λ) is simply the average t-score of the

member genes in λ, and the proposed subnetwork marker identification method re-

duces to its preliminary version proposed in [37]. The above scoring scheme is used for

finding the top linear paths in the network G as we describe in the following section.

4. Searching for Discriminative Linear Paths

Let G = (E, V ) denote the PPI network, where V is the set of nodes (i.e., proteins),

E is the set of edges (i.e., protein interactions). Suppose there are N proteins in G.
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Then we can represent E as an N -dimensional binary matrix. For any protein pair

(va, vb),where va, vb ∈ V , we let E[va, vb] = 1, if va, vb are connected; E[va, vb] = 0,

otherwise. Based on the scoring scheme defined in the previous section, we search

for top discriminative linear paths using dynamic programming. We define λ(vi, `) as

the optimal linear path among all linear paths that have length ` and end at vi. The

score of this optimal path is defined as

s(vi, `) = tα[λ(vi, `)] · Σ′[λ(vi, `)].

Here, only paths with length ` ≤ L are considered. The algorithm is defined as

follows.

(i)Initialization: ` = 1, ∀vi ∈ V ,

s(vi, `) = |tα(vi)|.

(ii) Iteration:

for l = 2 to L,

for ∀vi ∈ V ,

s(vi, `) = max
vj
{t(λ(vj, `), vi) · Σ′(λ(vj, `), vi) + log(E[vi, vj])},

v∗j = arg max
vj
{t(λ(vj, `), vi) · Σ′(λ(vj, `), vi) + log(E[vi, vj])},

if s(vi, `) > 0, then

λ(vi, `) = λ(v∗j , `− 1) ∪ {vi}.

end

end

(iii) Termination:
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for ∀vi ∈ V, 1 ≤ ` ≤ L,

S(λ(vi, `)) = s(vi, `)/`
2. (3.1)

Although the above algorithm finds only the top path for every (vi, `), we can

easily modify it to find the top M discriminative paths. Increasing M allows us to

find better linear paths with higher discriminative power, but it will also increase the

computational complexity of the algorithm.

5. Combining Top Overlapping Paths into a Subnetwork

Based on (3.1), we choose the m top scoring paths Λ = {λ1, λ2, · · · , λm} whose length

is within a given range [Lmin, Lmax]. Next, the paths in Λ are combined into a sub-

network Gs so that its discriminative power R(Gs) is locally optimized. This process

is carried out as follows:

(i) Gs ← λi,Gtemp ← Gs, i = 1.

(ii) i = i+ 1; If λi ∩ Gs 6= ∅, Gtemp ← Gtemp ∪ λi.

(iii) If R(Gtemp) > (1 + ε)R(Gs), Gs ← Gtemp; else Gtemp ← Gs.

(iv) Go to (ii) if i < m; otherwise, terminate.

Here ε is set as 0.01 to avoid over-fitting to the expression data. We used the activity

inference method in [34] to computed the actual activity score of Gs. Then, R(Gs) is

computed as the t-test statistics of the subnetwork activity score.

After obtaining a subnetwork Gs, we removed it from the network G by setting

E[vs, vi] = E[vi, vs] = 0, ∀vs ∈ Gs, vi ∈ G. Then, the whole process was repeated

using the updated network to find additional subnetwork markers.
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CHAPTER IV

GENE CLUSTERING IN THE PPI NETWORK BASED ON A MESSAGE

PASSING ALGORITHM TOWARDS ACCURATE DISEASE CLASSIFICATION

In Chapter III, we proposed a subnetwork identification algorithm based on dynamic

programming. The proposed algorithm consists of three steps. First, the algorithm

performs a global search for differentially expressed linear paths whose member genes

are closely correlated with each other using dynamic programming. Secondly, it

combines top scoring linear paths into a subnetwork. Thirdly, it updates the PPI

network by removing the identified subnetwork. This algorithm finds non-overlapping

subnetwork markers by repeating the above procedures. It has been proved that the

identified subnetwork markers are more accurate and reliable compared to single gene

markers, pathway markers and subnetwork markers identified by an existing method.

However, the proposed algorithm also has some possible defects for the following

reasons. One main problem is that this algorithm finds non-overlapping subnetworks

by removing the identified ones and repeating the whole procedure, which actually

assumes that the identified subnetworks are all better than the following ones and

therefore they have no need to join the following competitions. This may not be true

because the previous subnetworks were identified by combining top scoring linear

paths via a greedy approach. The heuristic used here

To address this problem, we will apply a clustering algorithm, named ”Affinity

Propagation”, to identify gene clusters based on the PPI network. Affinity propa-

gation takes the real-valued measures of similarity between data points as input. It

considers all data points as potential exemplars simultaneously and makes the deci-

sion by exchanging two types of messages between data points which represents two

different kinds of competitions. To apply affinity propagation to clustering genes, we
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first define the similarity between genes that are connected within a given number

of steps, then the preferences are set to be a common value for all the genes in the

network. The identified clusters with highest discriminative powers are used to clas-

sify the samples in two independent breast cancer datasets. The result shows that

the identified gene cluster achieve better classification performance compared to the

subnetworks identified using the method proposed in Chapter III. We also compared

the identified clusters with the previously identified subnetworks. The result shows

that affinity propagation is more likely to find the right combinations of genes which

yield better classification results based on the PPI network.

A. Methods

1. Affinity Propagation

Affinity propagation [38] is a clustering algorithm that exchanges real-valued messages

between data points recursively until a good set of exemplars and corresponding

clusters emerges. The input of affinity propagation is the similarities between pairs

of data points. For data points with index i and k, the similarity s(i, k) measures

how well data point k is suited to be the exemplar for data point i. In stead of

specifying the number of clusters prior to the algorithm, affinity propagation requires

a real number input s(k, k) for each data point which is referred to as ”preference”.

Data points with larger preferences are more likely to be chosen as exemplars. There

are two types of messages passing between data points, called “responsibility” and

“availability”. The responsibility r(i, k) is sent from data point i to data point k,

which measures how well the data point k is suitable to be exemplar for data point i

considering competition from the other potential exemplars(Fig 1). The availability

a(i, k) is sent from data point i to data point k, which measures how appropriate it
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would be for data point i to choose data point k as its exemplar, taking into account

the support information from other data points who should choose data point k. The

definition of r(i, k) and a(i, k) are as follows:

r(i, k)← s(i, k)− max
k′s.t.k′ 6=k

{a(i, k′) + s(i, k′)} (4.1)

a(i, k)← min{0, r(k, k) + Σi′s.t.i′ 6∈{i,k}max{0, r(i′, k)}} (4.2)

The ”self-availability” a(k, k) is updated in a different way,

a(k, k)←
∑

i′s.t.i′ 6=k
max{0, r(i′, k)} (4.3)

The availability a(i, k) is initially set to be 0, the two types of messages are updated

recursively in the later iterations. Decisions can be made at any point during affinity

propagation. The data point k that maximize a(i, k) + r(i, k) is chosen to be the

exemplar for point i if k 6= i. If k = i, it indicates that i is an exemplar. The

algorithm converges if the set of exemplars doesn’t not change for a given number of

iterations.

2. Computing the Similarities between Genes

To apply Affinity Propagation to cluster genes based on the PPI network, we first

need to compute the similarities between genes. Since the identified clusters will be

used for classification, the similarity should consider the following: 1. The genes

within the same cluster should be related to each other; 2. The genes should be

discriminative by themselves; 3. The discriminative power should be increased by

combining the LLRs of the genes within the same cluster. So we define the similarity
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between genes gi and gk as follows:

s(i, k) =





tk + min{tik − ti, tik − tk} − α · |ti − tk|, d(i, k) ≤ 2

−Inf, d(i, k) > 2
(4.4)

where tk and ti are the t-scores of the LLRs [34] of the two genes, tik is the t-score

of the combined LLRs of gi and gk, i.e. the activity score of the subnetwork consists

of only gi and gk. d(i, k) is the length of the shortest path between gi and gk. So

we only consider the first-order and second-order neighbors for each gene in the PPI

network. When d(i, k) < 2, the similarity s(i, k) consists of three terms. The first

term of the similarity s(i, k) is simply the discriminative power of gk. The second

term, min{tik − ti, tik − tk}, measures the improvement in discriminative power by

combining gi and gk. Since we only prefer the situation that the discriminative power

of the combined LLRs tik is larger than both ti and tk, therefore the smaller one

between tik − ti and tik − tk is chosen. The third term indicates penalty from the

difference between the discriminative power of gi and gk. The parameter α, 0 ≤ α ≤ 1,

is used to control the magnitude of this penalty term.

By using the above definition of the similarity between genes, the input similarity

matrix is asymmetric. The only difference between s(i, k) and s(k, i) is on the first

term, which means that for a pair of genes in the PPI network, the one has high

discriminative power is more likely to be the exemplar.

The second input is the preference s(k, k) for each gene gk. In this application,

we set the preferences to a common value c such that only 1% of the similarities

between genes are larger than c. The identical value for all the preferences means

that all the genes are initially equally suitable as exemplars and the set of exemplar

emerges purely through competition. However, even if the preference for each gene

is set to be a common value c, we can still affect the number clusters by changing c.
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As shown in [38], larger c will lead to more clusters since all the data points tend to

become exemplars.

B. Results and Discussion

1. The Identified Gene Clusters Improve Classification Performance Significantly

We identified the gene clusters for each dataset based on three different values of α,

α = 0.2, 0.5, and 0.8. For each α, we first compute the similarities between genes

(See Methods). The preference s(k, k) for each gene in the network to a common

value which is only smaller than 1% of the similarities between genes. Only the 50

clusters with highest discriminative powers are chosen for each dataset. The size of

the identified gene clusters are very sensitive to the value of α. Recall the definition

of the similarity between two genes, the third term α · |ti − tk| is used to penalize

the different of discriminative power between two genes. When α increases, only the

genes with very close t-score are likely to fall into the same cluster, therefore the size

of the identified cluster will decrease. Table III shows the average size of the 50 gene

clusters for each dataset identified using different α. For comparison, the average size

of subnetworks identified using the method proposed in Chapter III is also shown in

Table III

Then, we perform the same within-dataset experiments and cross-dataset ex-

periments as in Chapter III. The final performance is reported as the average AUC

over 100 iterations of 10-fold cross-validation experiments. Figure 15 shows the perfor-

mance of gene clusters identified using different α as well as the subnetworks identified

using the method proposed in Chapter III with θ = 8. When α = 0.5, the identified

clusters have moderate size with an average around 13 for the USA dataset and 14

for the Netherlands dataset. The performance of the identified clusters are signifi-
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Table III. Average size of the identified gene clusters.

α = 0.2 α = 0.5 α = 0.8 Dynamic Programming

USA 30.64 12.72 8.48 20.7

Netherlands 34 14.42 9.48 19.52

cantly better than the subnetworks identified based on dynamic programming in both

within-dataset and cross-dataset experiment. When α = 0.2, the magnitude of the

penalty term will be smaller, which allows genes with different t-scores to gather. So,

the average size of the gene clusters are much bigger than α = 0.5 and 0.8. The identi-

fied gene clusters achieve extremely good performance in within-dataset experiments

and cross-dataset experiments labeled ”Netherlands-USA”, and only the performance

of the cross-dataset experiment labeled ”USA-Netherlands” is a little bit lower than

the performance of the subnetworks. When α = 0.8, the penalty term in the definition

gets very big, therefore the identified clusters only contain genes with very similar

t-scores, which leads to reduced cluster sizes compared to α = 0.2 and 0.5. The

performance of the identified gene clusters is only slightly better than subnetworks

in the within-dataset experiment based on the USA dataset and the cross-dataset

experiment labeled ”USA-Netherlands”. For the other two experiments, subnetworks

identified using the method proposed in Chapter III achieve better performance. A

possible reason is, genes with significant discriminative power, which should be in-

clude in a certain cluster, may be excluded because of the heavy penalty from the

difference of t-scores.

In order to show the impact of α on the identified clusters, we compared the

50 clusters identified based on each dataset using α = 0.2, 0.5 and 0.8. Figure 16

shows the statistics of the identified gene clusters, including the total numbers of
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Fig. 15. Classification performance of gene clusters identified using different α.

The bar charts show the average AUC of different classifiers based on the gene clusters
identified using α = 0.2, 0.5, 0.8 and subnetwork markers found by the method proposed in
Chapter III. Results of the within-dataset experiments based on the USA and Netherlands
dataset are shown in the two bar charts on the left. The two bar charts on the right show
the results of the cross-dataset experiments, where markers were identified based on the
first dataset and tested based on the second dataset.
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Fig. 16. Statistics of the gene clusters identified using different α.

Figure A, B show the statistics of the gene clusters identified based on the USA dataset.
Figure C, D show the statistics of the gene clusters identified based on the Netherlands
dataset.

genes included, the overlap between the identified gene clusters using different α, the

overlap between identified exemplars. For both datasets, the number of genes included

in the identified clusters decreases as α increases. Over 95% of the genes included in

the identified clusters using a smaller α are also found in the clusters identified using

larger α. Besides, there are significant overlaps (around 60%) between the sets of

exemplars for different α, which usually contain powerful representative genes. When

α gets bigger, similarities between genes will decrease generally. Therefore, more

and more genes are removed from the clusters centered at those representative genes

because of the decreased similarities.
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2. Affinity Propagation Finds Better Combination of Genes

We further compared the identified gene clusters with the subnetworks that identified

using the method proposed in Chapter III in terms of their discriminative power and

the genes included.

Figure 17 shows the discriminative power of the 50 gene clusters identified using

α = 0.5 and the subnetworks identified using θ = 8. It seems that the discriminative

power of the gene clusters is lower than that of the subnetworks. Interestingly, the

classification performance shown in Figure 15 supports that the identified gene clus-

ters are better diagnostic markers compared to subnetworks. Although subnetworks

identified using the method proposed in Chapter III have higher discriminative power

than gene clusters found using affinity propagation individually, it doesn’t necessarily

mean that the classification performance based on the cooperation of a group of such

subnetworks is better that the performance of a group of such gene clusters.

Table IV shows the statistics of genes included in the 50 subnetworks and the 50

gene clusters. For both datasets, there are significant overlaps between the diagnostic

markers that found using two different methods. Around 70% of the genes included

in the gene clusters identified using affinity propagation are found in the subnetworks

using the previous method. Besides, we noticed that over 85% of the genes in the top

10 subnetworks for both datasets can be found in the 50 gene clusters.

C. Conclusions

In this chapter, we proposed to use a clustering algorithm, named affinity propaga-

tion, to cluster genes based on the protein-protein interaction(PPI) network. This

algorithm takes the input as the measures of similarity between pairs of data points,

and makes decision by exchanging messages between data points. Based on our def-
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Fig. 17. Discriminative power of the identified gene clusters and subnetworks.

Figure A, B show the within-dataset experiment results. Figure C, D show the cross-dataset
experiment results.

Table IV. Statistics of the gene clusters identified using affinity propagation and the

subnetworks identified using the method proposed in Chapter III.

Dataset Number of genes Size of overlaps

USA Gene clusters 636 438

Subnetworks 1035

Netherlands Gene clusters 721 474

Subnetworks 976

The 50 gene clusters are identified using α = 0.5 for both datasets. The 50 subnetworks are
identified with θ = 8.
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inition of similarity between pairs of genes that are connected in the network, this

algorithm finds the set of exemplars as well as the their corresponding clusters, which

can be used for disease classification. One main advantage of the proposed method

compared to the previous methods is that there is no pre-selection procedures included

in this algorithm. Affinity propagation considers all the genes in the network as ex-

emplars initially. The set of representative genes emerges gradually in the process of

affinity propagation. Moreover, affinity propagation finds non-overlapping gene clus-

ters simultaneously rather than removing the identified subnetworks from the whole

network. Therefore, affinity propagation is more likely to find the appropriate combi-

nation of genes, which can sever as better diagnostic markers for classification. The

cross-validation results based on two independent breast cancer datasets show that

the gene clusters identified using affinity propagation can yield more accurate and

reliable classification performance compared to the subnetworks identified in Chap-

ter III.
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CHAPTER V

CONCLUSION

In this thesis, we first proposed a probabilistic model for pathway and subnetwork

activity in chapter II. The simulation results based on two independent breast can-

cer datasets show that the proposed inference method is more efficient compared to

the previous inference methods. In chapter III and chapter IV, we introduced two

methods for identifying subnetworks or gene clusters based on a large protein-protein

interaction network. The identified subnetworks and gene clusters were tested based

on the same breast cancer datasets used in chapter II. The results show that subnet-

works and gene clusters can server as diagnostic markers that yield better classifica-

tion performance compared to single gene makers, pathway markers and subnetwork

markers identified using a previous method.



61

REFERENCES

[1] A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, J. C.

Boldrick, H. Sabet, T. Tran, X. Yu, J. I. Powell, L. Yang, G. E. Marti, T. Moore,

J. Hudson, L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock, W. C. Chan, T. C.

Greiner, D. D. Weisenburger, J. O. Armitage, R. Warnke, R. Levy, W. Wilson,

M. R. Grever, J. C. Byrd, D. Botstein, P. O. Brown, and L. M. Staudt, “Distinct

types of diffuse large B-cell lymphoma identified by gene expression profiling,”

Nature, vol. 403, pp. 503–511, Feb 2000.

[2] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,

H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S.

Lander, “Molecular classification of cancer: class discovery and class prediction

by gene expression monitoring,” Science, vol. 286, pp. 531–537, Oct 1999.

[3] A. Perez-Diez, A. Morgun, and N. Shulzhenko, “Microarrays for cancer diagnosis

and classification,” Adv. Exp. Med. Biol., vol. 593, pp. 74–85, 2007.

[4] S. Ramaswamy, K. N. Ross, E. S. Lander, and T. R. Golub, “A molecular

signature of metastasis in primary solid tumors,” Nat. Genet., vol. 33, pp. 49–

54, Jan 2003.

[5] B. Efron and R. Tibshirani, “Empirical bayes methods and false discovery rates

for microarrays,” Genet. Epidemiol., vol. 23, pp. 70–86, Jun 2002.

[6] P. Baldi and A. D. Long, “A Bayesian framework for the analysis of microarray

expression data: regularized t -test and statistical inferences of gene changes,”

Bioinformatics, vol. 17, pp. 509–519, Jun 2001.



62

[7] T. B. Kepler, L. Crosby, and K. T. Morgan, “Normalization and analysis of

DNA microarray data by self-consistency and local regression,” Genome Biol.,

vol. 3, pp. RESEARCH0037, Jun 2002.

[8] T. Ideker, V. Thorsson, A. F. Siegel, and L. E. Hood, “Testing for differentially-

expressed genes by maximum-likelihood analysis of microarray data,” J. Com-

put. Biol., vol. 7, pp. 805–817, 2000.

[9] Y. Chen, E. R. Dougherty, and M. L. Bittner, “Ratio-based decisions and the

quantitative analysis of cdna microarray images,” Journal of Biomedical Optics,

vol. 2, pp. 364–374, 1997.

[10] L. J. van ’t Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. Hart, M. Mao,

H. L. Peterse, K. van der Kooy, M. J. Marton, A. T. Witteveen, G. J. Schreiber,

R. M. Kerkhoven, C. Roberts, P. S. Linsley, R. Bernards, and S. H. Friend,

“Gene expression profiling predicts clinical outcome of breast cancer,” Nature,

vol. 415, pp. 530–536, Jan 2002.

[11] Y. Wang, J. G. Klijn, Y. Zhang, A. M. Sieuwerts, M. P. Look, F. Yang, D. Ta-

lantov, M. Timmermans, M. E. Meijer-van Gelder, J. Yu, T. Jatkoe, E. M.

Berns, D. Atkins, and J. A. Foekens, “Gene-expression profiles to predict dis-

tant metastasis of lymph-node-negative primary breast cancer,” Lancet, vol.

365, pp. 671–679, 2005.

[12] M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan,

J. A. Olson, J. R. Marks, and J. R. Nevins, “Predicting the clinical status of

human breast cancer by using gene expression profiles,” Proc. Natl. Acad. Sci.

U.S.A., Sep 2001, vol. 98, pp. 11462–11467.



63

[13] U. M. Braga-Neto and E. R. Dougherty, “Is cross-validation valid for small-

sample microarray classification?,” Bioinformatics, vol. 20, pp. 374–380, Feb

2004.

[14] U. M. Braga-Neto, “Fads and fallacies in the name of small-sample microarray

classification.,” IEEE Signal Processing Magazine, vol. 20, pp. 91, 2007.

[15] E. R. Dougherty, “Small sample issues for microarray-based classification,”

Comp. Funct. Genomics, vol. 2, pp. 28–34, 2001.

[16] A. Dupuy and R. M. Simon, “Critical review of published microarray studies for

cancer outcome and guidelines on statistical analysis and reporting,” J. Natl.

Cancer Inst., vol. 99, pp. 147–157, Jan 2007.

[17] L. Ein-Dor, O. Zuk, and E. Domany, “Thousands of samples are needed to

generate a robust gene list for predicting outcome in cancer,” Proc. Natl. Acad.

Sci. U.S.A., Apr 2006, vol. 103, pp. 5923–5928.

[18] S. Michiels, S. Koscielny, and C. Hill, “Prediction of cancer outcome with mi-

croarrays: a multiple random validation strategy,” Lancet, vol. 365, pp. 488–492,

2005.

[19] E. E. Ntzani and J. P. Ioannidis, “Predictive ability of DNA microarrays for

cancer outcomes and correlates: an empirical assessment,” Lancet, vol. 362, pp.

1439–1444, Nov 2003.

[20] Dougherty ER Hua J, Tembe WD, “P erformance of feature-selection methods

in the classification of high-dimension data,” Pattern Recognition, vol. 42, pp.

409–424, 2008.



64

[21] A. Subramanian, P. Tamayo, V. K. feature, S. Mukherjee, B. L. Ebert, M. A.

Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P.

Mesirov, “Gene set enrichment analysis: a knowledge-based approach for in-

terpreting genome-wide expression profiles,” Proc. Natl. Acad. Sci. U.S.A., Oct

2005, vol. 102, pp. 15545–15550.

[22] L. Tian, S. A. Greenberg, S. W. Kong, J. Altschuler, I. S. Kohane, and P. J. Park,

“Discovering statistically significant pathways in expression profiling studies,”

Proc. Natl. Acad. Sci. U.S.A., Sep 2005, vol. 102, pp. 13544–13549.

[23] A. H. Bild, G. Yao, J. T. Chang, Q. Wang, A. Potti, D. Chasse, M. B. Joshi,

D. Harpole, J. M. Lancaster, A. Berchuck, J. A. Olson, J. R. Marks, H. K.

Dressman, M. West, and J. R. Nevins, “Oncogenic pathway signatures in human

cancers as a guide to targeted therapies,” Nature, vol. 439, pp. 353–357, Jan

2006.

[24] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.

Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-

Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald,

G. M. Rubin, and G. Sherlock, “Gene ontology: tool for the unification of

biology. The Gene Ontology Consortium,” Nat. Genet., vol. 25, pp. 25–29, May

2000.

[25] Z. Guo, T. Zhang, X. Li, Q. Wang, J. Xu, H. Yu, J. Zhu, H. Wang, C. Wang,

E. J. Topol, Q. Wang, and S. Rao, “Towards precise classification of cancers

based on robust gene functional expression profiles,” BMC Bioinformatics, vol.

6, pp. 58, 2005.

[26] E. Lee, H. Y. Chuang, J. W. Kim, T. Ideker, and D. Lee, “Inferring pathway



65

activity toward precise disease classification,” PLoS Comput. Biol., vol. 4, pp.

e1000217, Nov 2008.

[27] F. Rapaport, A. Zinovyev, M. Dutreix, E. Barillot, and J. P. Vert, “Classification

of microarray data using gene networks,” BMC Bioinformatics, vol. 8, pp. 35,

2007.

[28] J. Tomfohr, J. Lu, and T. B. Kepler, “Pathway level analysis of gene expression

using singular value decomposition,” BMC Bioinformatics, vol. 6, pp. 225, 2005.

[29] H. Y. Chuang, E. Lee, Y. T. Liu, D. Lee, and T. Ideker, “Network-based classi-

fication of breast cancer metastasis,” Mol. Syst. Biol., vol. 3, pp. 140, 2007.

[30] M. Kanehisa, S. Goto, S. Kawashima, and A. Nakaya, “The KEGG databases

at GenomeNet,” Nucleic Acids Res., vol. 30, pp. 42–46, Jan 2002.

[31] K. D. Dahlquist, N. Salomonis, K. Vranizan, S. C. Lawlor, and B. R. Conklin,

“GenMAPP, a new tool for viewing and analyzing microarray data on biological

pathways,” Nat. Genet., vol. 31, pp. 19–20, May 2002.

[32] T. Fawcett, “An introduction to ROC analysis,” Patt Recog Letters, vol. 27,

pp. 861–874, Jun 2006.

[33] S. Efroni, C. F. Schaefer, and K. H. Buetow, “Identification of key processes

underlying cancer phenotypes using biologic pathway analysis,” PLoS ONE,

vol. 2, pp. e425, 2007.

[34] J. Su, B. J. Yoon, and E. R. Dougherty, “Accurate and reliable cancer classifi-

cation based on probabilistic inference of pathway activity,” PLoS ONE, vol. 4,

pp. e8161, 2009.



66

[35] G. F. Berriz, J. E. Beaver, C. Cenik, M. Tasan, and F. P. Roth, “Next generation

software for functional trend analysis,” Bioinformatics, vol. 25, pp. 3043–3044,

Nov 2009.

[36] H. C. Mak, M. Daly, B. Gruebel, and T. Ideker, “CellCircuits: a database of

protein network models,” Nucleic Acids Res., vol. 35, pp. D538–545, Jan 2007.

[37] J. Su and B.-J. Yoon, “Identifying reliable subnetwork markers in protein-protein

interaction network for classification of breast cancer metastasis,” in IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),

2010.

[38] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,”

Science, vol. 315, pp. 972–976, Feb 2007.



67

VITA

Junjie Su received his B.Eng. degree in automation from Tsinghua University,

China, in 2008. He graduated with his M.S. in electrical engineering from Texas

A&M University in December 2010. His research interests include systems biology

and statistical pattern recognition.

Junjie Su may be reached at 214 Zachry Engineering Center, TAMU 3128, College

Station, TX, 77843-3128. His email is tracysjj@gmail.com.

The typist for this thesis was Junjie Su.


