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ABSTRACT 

 

A New, Iterative, Synchronous-Response Algorithm for Analyzing the Morton Effect. 

(December 2010) 

Rohit Saha, B.Tech., Institute of Technology, Banaras Hindu University 

Chair of Advisory Committee: Dr. Dara W Childs 

 

The present work proposes a new computational algorithm for analyzing Morton 

Effect using a Successive Iterative Synchronous Response Algorithm (SISRA). Previous 

studies on the Morton Effect were based on Eigen or Nyquist analysis for stability 

studies and predicted only an onset speed of instability. The outcome of SISRA is the 

convergence of response to a steady state orbit in a finite number of iterations. A 

progressive increase in the response with increasing running speed indicates the former 

instability. SISRA predicts both the synchronous response for the speed range of concern 

plus the speed where the response becomes divergent.  

SISRA is implemented in a Timochenko-beam-based finite-element 

rotordynamics software suite. SISRA analyzes the Morton Effect as a synchronous 

response problem with excitations from: (1) mechanical imbalance, (2) induced thermal 

bent shaft moments, and (3) mechanical imbalance that is induced by thermal bow. A 

general elliptical orbit can be decomposed into the sum of forward and backward 

circular orbits. As input, SISRA requires that, at a specified speed, equilibrium position, 
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and orbit: (1) the predicted maximum differential temperature, and (2) the angle between 

hot spot (position of maximum temperature) and position of minimum film thickness.  

Two examples from the published literature are considered. SISRA predicted 

higher vibration levels, even before the motion diverges due to Morton Effect. In some 

cases, the synchronous response of the system due to Morton Effect is orders of 

magnitude greater than the response due only to mechanical imbalance. The combined 

effects of: (1) mechanical imbalance with induced thermal bent shaft moments, and (2) 

mechanical imbalance with thermally induced mechanical imbalance are also studied. 

The impact of induced thermal bent shaft moments is found to be greater than the 

mechanical imbalance induced by thermal bow. 

A parametric investigation on the impact of the changes of (1) bearing length to 

diameter ratio, (2) reduced viscosity of the lubricant, (3) bearing radial clearance to 

radius ratio and (4) overhung mass magnitude is performed to consider their respective 

impacts on synchronous response. Based on the available input data and the cases 

considered, reducing viscosity and reducing the overhung mass are found to be the best 

remedies to alleviate problems arising from the Morton Effect. 
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CHAPTER I 

INTRODUCTION 

 
Synchronous1 rotor motion implies that the response frequency is at the running 

speed . Synchronous response due to shaft-bow/bent-shaft is common in 

turbomachinery. Shaft bow can occur due to gravity sag of horizontal rotors, static rotor 

misalignment [1], hot restart (restart of the machine before the end of thermal transient 

after the shutdown of machine in operating condition)[1,2], thermal bow, excessive 

loading and improper shrink fits[1,3]. Imbalance excitation is proportional to  while 

the bent-shaft excitation is independent of . Nicholas et al.[1] first examined the effect 

of residual shaft bow on the unbalance response of a single mass rotor on a rigid support. 

Using a transfer-matrix approach, Salamone and Gunter [3] revisited shaft bow 

synchronous excitation plus the effect of disk skew on the synchronous response of a 

multi-mass rotor in fluid-film bearing.  

          The Morton Effect phenomenon is related to differential heating across a 

hydrodynamic bearing due to a synchronous orbit. When a journal is executing a 

synchronous orbit around the hydrodynamic bearing center, one portion of the journal 

surface is at the minimum film thickness, while a diametrically opposite section of the 

journal surface is at the maximum film thickness. Tighter film thickness areas are 

generally associated with higher viscous shear stresses, which produce higher 

temperatures. As a result of this difference in film thickness, a temperature gradient 
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develops across the journal. This temperature gradient causes rotor bending, which 

creates a slope at the bearing (Figure 1). Equivalent bent shaft moments acting on the 

rotor at both ends of the bearing can be used to produce this slope. Figure 1 illustrates a 

bent-shaft due to a temperature difference across the right-hand-side bearing with an 

overhung mass of mass mgr with its body center at distance lgr to its right of the bearing’s 

center. βT is the slope created by the differential temperature. Bent shaft moment MT,-MT 

can be applied at ends of the bearing to produce T. These moments are speed 

independent and provide synchronous excitation to the rotor. Along with induced 

thermal bent shaft moments, overhung masses like coupling hubs and overhung 

impellers produce thermally induced mechanical imbalance excitation, due to T. 

Thermally induced mechanical imbalance is proportional to mgrlgrT. Thus, Morton 

Effect causes additional synchronous excitation in the form of bent shaft moments and 

thermally-induced mechanical imbalance along with the initial rotor mechanical 

imbalance. When the temperature gradients are large, the synchronous response is high. 

Sometimes, the response grows rapidly with increasing , leading to machine shutdown. 

Overhung compressors, integrally geared compressors and double-ended drive turbines 

are specially afflicted by this effect due to heavy overhung mass [4]. 
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Figure 1. Bent shaft with overhang mass at the right hand side of bearing 
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Figure 2. Stationary X,Y and rotor fixed x’,y’ reference system 

 
 
          As illustrated in Figure 2, the rotor executes a synchronous stationary elliptical 

orbit in the X,Y,Z reference system. The x’ and y’ axes lie along the ellipse principal 

axes. The angle  is the ellipse attitude angle with major axis a and minor axis b. As 

shown in Figure 3, the elliptical orbit is the sum of a forward and a backward precessing 

circular orbit. In this paper, positive rotation and positive precession of the rotor is 

anticlockwise in a forward precessing orbit [see Figure 4(a)]. In a backward precessing 

orbit, the precession direction of the rotor  is clockwise as shown in Figure 4(b).  
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Figure 3. Decomposition of elliptical orbit into forward and backward precession orbit 

 

 

 (a) 

 

 (b)  

Figure 4. Forward and backward precessing orbit 

 
       The Newkirk Effect arises due to rubbing of rotor and stator results in differential 

rotor heating, and also causes synchronous vibration. This effect was observed by 

Newkirk in 1926 [5] as vibrations arising due to rubbing at labyrinth seals. It was clearly 

modeled and explained by Dimoragonas [6]. Hence, both the Newkirk and Morton 

Effect produce elevated synchronous excitation due to temperature gradient and can 

have a spiral behavior; i.e., continuous phase and amplitude of vibration change at 

constant speed.  
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MINIMUM FILM THICKNESS 
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Figure 5. X,Y; X1,Y1 and x’, y’ coordinate systems 

 
        For a precessing rotor in a steady state, there exists a location when the journal is 

closest to the minimum film thickness. The location of the minimum film thickness is a 

function of forward and backward orbit amplitude F, B (see Figure 3), ellipse attitude 

angle (see Figure 2), and static eccentricity 0 and static attitude angle 0 (measured in 

anticlockwise direction from Y axis to the line joining the bearing center to the journal 

center in static equilibrium). In Figure 5, a coordinate system X1,Y1 is set up along the 

Cr0 at the angle 0 with respect to stationary coordinate system X,Y. as shown in Figure 

6, x’,y’ axes are oriented at |0| from the X1Y1 axes. 
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Figure 6. Elliptical orbit wrt to Cr0 and 0 

 
 

The location of the rotor center precessing elliptical orbit (MTx’,MTy’) in the x’,y’ 

coordinate system is 

 
'

'

cos cos

sin sin
x

y

MT F t B t

MT F t B t
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 

 
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 (1) 

The location of the rotor center (MTX1,MTY1) in the X1,Y1 coordinate system is 

 
   
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1 0 ' 0 ' 0

1 ' 0 ' 0
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sin cos
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    
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   
 (2) 

The film thickness is 2 2
1 1r X YC MT MT  . The film thickness is not constant, it’s a 

function of circumferential location on the journal. For minimum film thickness, 

2 2
1 1r X YC MT MT    should be maximum. After few simplifications, Cr can be 

expressed as 
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           (3) 

Substituting t  , and solve for maximum value of , to get the position of minimum 

film thickness ;  0







 

             f()=    0 0 0 02sin 2 cos cos 0r rC C

B F
                                 (4) 

f() is nonlinear function of  and cannot be solved analytically. Thus, bisection method 

is used to find out the roots of the solution and are the roots of the equation. 
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Figure 7. f() versus  for F/Cr=0.6, B/Cr=0.1 and 0 

        

  Figure 7 presents f()versus  ( varying from 1-360°) for F/Cr=0.6, B/Cr=0.1, 

and 0  i.e.; the minor  axis of the orbit is along the X1 axis for different 0 values. 

Multiple roots can exist based on the value of the F/Cr, B/Cr, , 0, and 0.  
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Figure 8.  vs F/B ratios for different 0 angles 

 
           In Figure 8, is plotted versus F/B for different 0 values with 0=0.5. When 

F/B=1, the orbit is a straight line, 0, 0o. For B=0, represents a circular orbit, and 

0,  270o. Increasing F/B ratio shows the transition from straight line, to elliptical, 

to circular orbits. For different values of 0, for F/B>6,  does not change. 

  At , the minimum film thickness should always be greater than zero for the 

safe operation of the machine from Eq.(3) . In other words, max must be less than unity; 

i.e., the rotor must not hit the bearing.   
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NEWKIRK EFFECT AND MORTON EFFECT 

 

 

Figure 9. Spiral plot of Newkirk Effect[7] 

 

  Phuttipongsit [7] discussed how to distinguish between Newkirk and Morton 

Effect response from the spiral behavior of their polar plots. Rub is a nonlinear 

phenomenon that can alter the clearance permanently at the contact location, 

accompanied by non-repeatable changes of amplitude and phase from one oscillation to 

another. It may occur both at the bearings and seals. Figure 9 shows the nonlinearity and 

non-retraceable loops in polar plot of gas turbine response experiencing a light rub. By 

contrast, the spiral plots of Morton Effect have highly repeatable changes in amplitude 

and phase during each limit cycle as shown in Figure 10. 
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Figure 10. Spiral plot of Morton Effect [7] 

 

The position of highest temperature on the shaft (hot spot) and the position of 

minimum film thickness coincide in the Newkirk Effect [8]. In the Morton Effect, the 

hot spot does not coincide with the position of minimum film thickness [8,9,10]. Keogh 

and Morton [11] and De Jongh and Morton [9] predicted that the rotor could have a 

thermal instability speed zone and can re-stabilize at higher speeds. The Newkirk Effect 

is insensitive of changes in lubricant flow rate to the bearings and its viscosity, but the 

Morton Effect is very sensitive to these changes [8,12].  
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LITERATURE REVIEW 

 

The Morton Effect existed in machines like a disease for a long time, but was 

never diagnosed for the root cause. This effect was first observed by Paul Morton in the 

1970s [8,13,14] as spiral behavior of vibration in power generators with oil lubricated 

seals. Morton’s early experimental investigations on the Morton Effect were published 

in internal company reports but were not available in the public domain. Unexplained 

synchronous vibration problems resulting in failures were possibly due to the Morton 

Effect. An excellent literature overview and review of counter-active measures for the 

Morton Effect can be found in De Jongh [8]. 

 

 

Experiments on Morton Effect 

 

De Jongh and Morton [9] experimentally verified divergent synchronous 

vibration motion in a centrifugal compressor due to differential temperature across the 

journal in tilting-pad bearing by measuring rotor temperatures at the bearing in a test rig. 

Their data are the only published in-rotor temperature measurements for hydrodynamic 

bearings. The experiments were done with a lightly-loaded rotor with a circular forward 

precessing orbit. They reported temperature difference of 3°C for the orbit size of 8% of 

the bearing clearance at 10500 rpm. They reported an angle between the hot spot and 

position of minimum film thickness of 20°. They also found that repositioning the 
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unbalance mass by an angle of 180° in the rotor resulted in a change of the location of 

the hot spot of about the same angle. The in-rotor temperature measurements shown in 

Figure 11 was reported in subsequent publications by De Jongh [8,15,16]. However, the 

orbit amplitude, eccentricity, running speed, and bearing specifications were not reported 

for Figure 11. Note they measured angle between the imbalance and the hot spot.  

 

 

Figure 11. Measured in-rotor temperature [8,15,16] 

 
De Jongh and Morton [9] developed an algorithm based on the temperature 

measurements to predict synchronous instability. Their rotor model is shown in Figure 

12, where Mc is the concentrated overhung mass and l is the distance between the 

overhung mass and the bearing. The angle  is the change in the bend angle due to 

differential temperature at the bearing location. The algorithm is based on the following 

three transfer functions (refer Figure 13); (1). Mcl (overhung moment at the bearing), (2). 

IOB (“influence coefficient between the overhung and the bearing location”) and depends 

on the mode shape, system damping and proximity to critical speed  and (3). T(t,) 

(complex thermal gain) is a function  and time t and is obtained from  experimental 
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measurements. The scheme established (shown in Figure 13) defines the gain vector G 

as the product of three transfer functions. They state that Re(G) should be less than 1 for 

Morton Effect rotor stability. 
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Figure 12. Overhang model by De Jongh and Morton [9] 
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Figure 13. Scheme of instability phenomenon by De Jongh and Morton [9] 

 
 

In 2008, Morton [13] published some of the results on the differential 

temperature across the seal from his experiments during 1970s. The results demonstrated 

a linear trend between orbit size and differential temperature. He found the in-rotor 

phase angle between the hot spot and the minimum film thickness to be 60°. Note, this 

phase compares to a measured value of 20° from De Jongh and Morton [9] for tilting-

pad bearings. He reported the differential temperature of 16°C for an orbit size of 25% 

of the cold radial clearance. 
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Analytical Approaches on Morton Effect 

 

Kellenberger [17] analyzed spiral vibrations in oil lubricated, annular generator 

shaft seals assuming that the heat input to the shaft came from the rubbing friction, 

failing to recognize the heating due to shearing of the lubricant. He obtained linear 

equations by making some simplifying assumptions; e.g., the shaft thermal bow is 

linearly proportional to the shaft temperature. His model was kinematically incorrect; the 

correct version of the model was given by Childs [18]. Nonetheless, Kellenberger's 

model worked well for spiral vibration problems due to rubbing. In addition, he assumed 

that the ratio of the heat flow into the shaft to the heat flow out of the shaft determined 

the system stability; i.e., if this ratio was above some threshold curve, then the system 

would yield unstable spiral vibrations. 

Inspired by Kellenberger's work, Schmied [19] investigated spiral vibrations due 

to hot spots on shafts and gave theoretical evidence of change in rotordynamics behavior 

due to the bent shaft. He developed and solved a coupled eigenvalue problem of the 

rotordynamics and thermal equation based on Kellenberger’s model. He treated the heat 

input and the shaft vibration assuming that the heat input was separately proportional to: 

(i) shaft displacement, (ii) shaft velocity, and (iii) shaft acceleration. Schmied’s model 

has bent shaft excitation, obtained by multiplying the rotor free-free stiffness matrix 

times the bent-shaft vector, consisting of the displacements and rotations of the shaft 

with the bent profile. He was the first person to publicly propose spiral vibration as 

arising due to shearing of lubricant at a bearing. His hot-spot model was incorporated in 
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the rotordynamics software MADYN, which he later used to analyze a turbogenerator 

[20] and a turboexpander [21]. He applied the same hot-spot stability analysis for any 

rotor system with any heating mechanism (either due to rubbing or viscous shearing). He 

did not consider the effect of thermally-induced mechanical imbalance. 

  Based on Kellenberger’s [17] and Schmeid’s [19] work on spiral vibration, 

Liebich and Gasch [22] revisited the spiral vibration of the rotor rub problem using 

modal analysis of coupled thermal/structural equation based on the Kellenberger’s 

model. They suggested relationship between the mode shape and unstable regions from 

his analysis. 

The first analytical investigation of Morton Effect based on the bearing 

temperature calculation was by Keogh and Morton [14] in 1993. They solved the 

dynamic energy balance problem for an arbitrarily imposed elliptical orbit on the journal 

at a plain journal bearing. They used a short-bearing theory with an iso-viscous lubricant 

and predicted journal temperature for a plain journal bearing with a coolant flow. They 

showed that forward and backward orbits produce distinctive temperature distribution.   

Figure 14 illustrates the x,y,z rotor-fixed coordinate system. The angle  defines 

the circumferential location of a point on the rotor. Keogh and Morton predicted that a 

forward synchronous orbit produces a fixed temperature distribution with respect to the 

rotor; whereas, reverse precession also produces a temperature distribution fixed with 

respect to the rotor plus an additional reverse-precession temperature distribution that is 

precessing at twice running speed. They assumed that the rotor thermal rotor response 

could not respond to a twice running–speed excitation. They also assumed that the 
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thermal bend development would be much slower than the rotordynamic response. In-

rotor temperature distribution was calculated and incorporated in the rotordynamics 

model using a bent-shaft excitation similar to Schmied’s [19]; using the rotor free-free 

matrix. 

 

Figure 14.  x, y, z rotor-fixed coordinate system 

 

The rotor's orbit at the bearing (see figures 2 and 3) is defined by 
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where, Cr  is the radial clearance of the bearing. In Eq.(6), f  and b  are respectively, 

the ratio of forward and backward precession orbits to Cr. The major a and minor b 

ellipse axes (Figure 3) and attitude angle (Figure 2) are defined by  [23] 

0 0 0 0;a F B b F B                                                       (7) 
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where,      
1 1

2 2 2 2 2 2 2 2 2 22 2ˆ ˆ ˆ ˆ ˆˆ ˆ; ; / 2c c s sa A B C b A B C A x y x y          , 

 2 2 2 2ˆ / 2c c s sB x y x y    ; ˆ
c s c sC x x y y  . Keogh and Morton[14] began with a bent 

shaft excitation of statically bent rotor, and calculated the orbit at the bearing location. 

For specified f and b values, rotor fixed temperature distributions are calculated and 

given by 

   , ; ,f bT r T r                                                          (8) 

They assumed a linear radial variation of temperature; i.e.,  ,j jT r T   , 

 ,j jT r T     , (where subscript j is either  f or b, denoting forward and backward 

orbit, respectively). They calculated a bent shaft angle induced by the linear radial 

temperature gradient at the bearing using Dimoragonas’ [6] closed-form solution  

                   
22 / 2

0 0 0

, ,
2

L D
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Tk Tx Ty j
a

D
T r z e drd dz

I


          

    jj j                        (9) 

where, D and L are the diameter and length of the bearing, respectively. Further, T and 

Ia are the coefficient of thermal expansion and area moment of inertia of the journal 

cross section, respectively.  

As illustrated in Figure 1, the hot side of the shaft is at the top of the rotor, and 

the cold side is at the bottom. The maximum differential temperature lies on the axis 

oriented with respect to the x axis by T. The relative position of the x, y and xT, yT axes 

is shown in Figure 15. Keogh and Morton [14] expressed thermal bend as a function of 

both forward and backward orbit ratios and their respective temperature distributions. 
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The net bend angle Tk is the sum of the bent angle due to forward Tf and backward Tb 

components. Their initial 0k complex bent-shaft angle is due to a statically bent angle at 

the bearing. Gain G1 is defined in terms of the ratio of temperature induced Tk and 

initial 0k complex bent-shaft angles as 

1
0

Tk

k

G



                                                         (10) 

They suggested that Re(G1)>1 indicates unstable growth, and Re(G1)<1  indicates stable 

decay. Thermally-induced imbalance due to overhang was not considered.  

 

 

Figure 15. Relative positions of the rotor fixed x,y,z and xT,yT,z coordinate systems  

 
 

In 1994, Keogh and Morton [11] developed a new analysis starting with time-

varying bent-shaft angle components about the body-fixed x and y axes, instead of 

starting with forward and backward synchronous orbital precession results at the bearing 

in their earlier publication in 1993[14]. A time-dependent thermal bend was first 

calculated by combining the heat transfer equations with the dynamic equations of the 

rotor. This thermal bend was then transformed to the frequency domain where it was 

incorporated into a positive feedback loop. The stability characteristics of this loop were 
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then obtained by plotting Nyquist graphs at successive rotor speeds as shown in Figure 

16. They obtained a range of instability speeds for which the real part of the eigenvalues 

were positive.  

 

Figure 16. Stability analysis for rotor thermal bend development [11] 

 
 

Geormiciaga and Keogh [10] used CFD techniques to analyze the dynamic flow 

and heat transport in the lubricant film in a hydrodynamic bearing and reported that the 

differential temperature generally increases with speed and orbit size. 

Balbahadur and Kirk [24] developed a theoretical model for a synchronous 

thermal instability caused by differential viscous shearing in the bearings of overhung 

rotors. The circumferential temperature distribution of the bearing was determined by 

solving the thermal energy balance equation based on the heat generation rates occurring 

between the journal, lubricant and bearing.  The temperature distribution is used to 

calculate the thermally induced mechanical imbalance. They calculated the net 

imbalance as a vector sum of mechanical imbalance (taken as 10% of total weight of 

rotor divided by 2) and thermally induced mechanical imbalance. For stability, the net 
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imbalance should be less than the threshold imbalance (15% of the total rotor weight 

divided by 2). They assumed that the hot spot coincided with minimum film thickness, 

which contradicts experimental observation made by De Jongh and Morton [9], Morton 

[13] and predictions by Geomiciaga and Keogh [10]. They validated their approach with 

case studies for both plain journal and tilting-pad bearings. They did not consider 

induced bent-shaft excitation or separate contributions due to forward and backward 

orbits. Currently, some companies are using this method to evaluate Morton Effect in 

their machines. 

Murphy and Lorenz [25] proposed a simplified method for modeling the Morton 

Effect. They used the following vectors: (1) A (sensitivity of vibration due to mechanical 

imbalance), (2) B (temperature coefficient vector connecting hot spot on the shaft and 

position of minimum film thickness), and (3) C (bow coefficient vector, connecting the 

imbalance vector and the hot spot). For stability, they argue that [Re(ABC) ] should be 

less than 1. The temperature difference is found to be linearly proportional to the size of 

the shaft orbit. This approach calculated the steady state orbit in presence of Morton 

Effect. However, the input required for the analysis is the temperature profile of the 

lubricant.  
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Case Studies on Morton Effect 

 

Faulkner et al. [26] encountered the Morton Effect in operating a large 

turbocharger. The overhung turbine wheel caused a hot spot to develop within the 

turbine-end bearing. The problem was solved by undercutting the 3-axis groove bearing, 

thereby increasing the bearing operating eccentricity. The resulting eccentric orbits  may 

have reduced the thermal gradient. 

De Jongh and Der Hoeven [15] described the case history of a pipeline 

compressor with divergent synchronous rotor behavior; due to thermal bend 

development at one of the bearing journals along with heavy overhung parts. They 

encountered high synchronous vibration levels with a quick increase in speed. They 

concluded the root cause of instability was differential temperature across the shaft, 

generated by the differential shearing of the oil film. They designed a heat sleeve barrier 

(shown in Figure 17) to reduce the differential heat flow to the shaft and consequently 

reduce the thermal bending. Installation of the heat sleeve barrier eliminated rotor 

instability.  
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Figure 17. Heat sleeve barrier [15] 

 
 

Berot and Dourlens [27] suspected Morton Effect instead of Newkirk Effect 

spiral vibration in overhung centrifugal compressors because the annular seal clearances 

were too large for rubbing. A compressor was supported by two 5-pad, lightly loaded 

tilting pad bearings. Inboard bearing was observed to have centered circular orbit. They 

fixed the synchronous vibration problem by making the orbit elliptic and eccentric, by 

reducing the L/D ratio of the inboard bearing. Reducing L/D, increases the unit load on 

the bearing which increases the operating eccentricity. 

  Kocur and De Jongh [16] discussed two Morton Effect case studies involving: 

(1) Overhung pipeline compressor (single overhung) (2) 30,000 HP gas booster 

compressor with very heavy coupling. In case (1), a heat sleeve barrier (see Figure 17) 

was successfully installed, and the compressor ran with no vibration problems.  In case 

(2), a heat sleeve barrier was not applicable because of the high power input to the shaft 

and installation problems and the problem was fixed by reducing the coupling weight. 
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Marscher and Illis [12] reported high synchronous vibration level in an overhung 

compressor supported on tilting pad bearing due to Morton Effect. They observed with 

infrared thermography that the temperatures of the bearing pedestals, bearing pads and 

exit oil temperatures were cyclic. The temperature cycle peaks were not in-phase with 

each other, nor with the vibration. They fixed the problem by increasing the inlet bearing 

oil temperature which reduced the lubricant viscosity. 

Schmied et al. [21] analyzed a cryogenic turboexpander supported on tilting pad 

bearings using his hot spot stability analysis (based on [19]). It had a relatively stiff rotor 

supported on two tilting pad bearings with two overhung impellers. They found the 

bearings to be the source of hot spot. They fixed the Morton Effect problem by 

decreasing bearing L/D and reducing the lube oil viscosity. 

 

 

RESEARCH OBJECTIVE 

 

According to API 684 [4], “Synchronous thermal rotor instability due to Morton 

Effect fits the classical definition of an unstable system”. “Classical” rotor stability 

codes predicting eigen-values, are currently not used to predict its existence. There are 

also no API analysis requirements for this behavior.  

Being motivated by Keogh and Morton [14] and practical experiences from the 

case studies, the first objective is to develop a rotordynamics analysis that includes all 

known synchronous excitation. The analysis starts with the calculated temperature 
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distributions produced by forward and backward orbits due to mechanical imbalance. 

The algorithm calculates the steady state synchronous response of the rotor with 

synchronous excitation arising due to Morton Effect iteratively known as Successively 

Iterative Synchronous Response Algorithm (SISRA). The second objective is to 

implement the SISRA in XLTRC2 rotordynamics software, to provide a reliable and 

efficient tool to analyze Morton Effect.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 25

CHAPTER II 

BACKGROUND AND DEVELOPMENT OF ALGORITHM 

 

This chapter explains the background and development of the SISRA. This 

analysis is synchronous, not a stability analysis, as done by earlier investigators 

[9,11,19,24,25]. SISRA includes all the known sources of synchronous excitation arising 

due to the Morton Effect, namely: (1) Initial mechanical imbalance, (2) thermally-

induced bent shaft moments, and (3) thermally-induced mechanical imbalance due to 

overhang.  

Table 1 shows known Morton Effect aspects and prior analytical approaches that 

included them in chronological order. The SISRA approach is mostly similar to that of 

Keogh and Morton [14]. Keogh and Morton [14] and Schmied[19] did not consider 

thermally induced mechanical imbalance in their calculations. Keogh and Morton used 

G1 to establish system stability, which is a single-step calculation. The present analysis 

will iteratively calculate the synchronous response at the bearing near the overhang. 

Keogh and Morton [14] stated that, forward and backward orbits produce separate 

temperature distribution while Schmied did not consider the influence of forward and 

backward orbits. Keogh and Morton and Schmied used a bent-shaft excitation vector, 

that is obtained by multiplying the bent shaft vector (consisting of bent shaft 

displacements and rotation in x and y planes with the respective rotor free-free stiffness 

matrix). XLTRC2 has a bent-shaft feature (recently modified by the author) which 

calculates the synchronous response due to bent shaft forces and moments as well as 
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bent-shaft-induced imbalance. Balabahadur and Kirk [24] and Murphy and Lorenz [25] 

considered the effect of thermally induced mechanical imbalance.  

 

Table 1 Comparison of existing analytical approaches on Morton Effect 

 [11] [24] [25] Present 
Induced Thermal Imbalance N Y Y Y 
Bent Shaft Excitation Y N N Y 

Forward & Backward Orbits Y N N Y 
Phase lag angles between hot 
spot and minimum film 
thickness 

Y N Y  Y 

 

This algorithm requires as input either measured or calculated maximum 

differential temperatures with their respective angles between the minimum film 

thickness and hot spot for forward and backward circular orbits (see Table 2).  A parallel 

research program led by Dr. A. Palazzolo of Texas A&M University is developing a 

model and code to predict maximum differential temperature and phase angles for 

different forward and backward orbit amplitudes [28]. This approach is a 2D finite-

element program to numerically solve coupled variable-viscosity Reynolds, energy and 

time-transient-heat conduction equations in a fluid film journal bearing to study the 

transient response of the journal cross section within a revolution based on the principles 

proposed by [29-31]. Currently, this code is only developed for plain journal bearing. It 

will be extended for tilting-pad bearings.  

For a given equilibrium location of the rotor within a bearing at a specified 

speed, the table contents (Table 2, input table to XLTRC2 at specified speed, static 

eccentricity and attitude angle) are: (1) F/Cr and B/Cr are the ratios of forward and 
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backward amplitude to radial clearance respectively, (2) fT , bT  are the maximum 

differential temperature and (3) Tf , Tb  are the phase angles for the forward and 

backward orbits, respectively. fT  is the maximum differential temperature and Tf  is 

the phase difference  measured in anti-clockwise direction (in the direction of forward 

precession) between the position of minimum film thickness and the hot spot as shown 

in Figure 18(a) for the forward orbit. Similarly, bT  is the maximum differential 

temperature and Tb  is the phase difference  measured in clockwise direction (in the 

direction of backward precession) between the position of minimum film thickness and 

the hot spot as shown in Figure 18(b) for the backward orbit. The cold spot (position of 

minimum temperature) lies diametrically opposite to the hot spot i.e. the differential 

temperature varies linearly with radius. The location of minimum film thickness is 

already discussed in the Chapter I.   

 

Figure 18 Maximum differential temperature and phase angles for forward and backward orbits 
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Table 2 presents calculated differential temperature and phase angles for forward 

and backward orbits at = 7500 rpm at static eccentricity 0=0.667, static attitude angle 

0=41.20 of plain journal bearing with L=35mm, D=100mm, Cr=100m, =0.08 Pa-s. 

 

Table 2 Calculated differential temperature and phase angles for forward and backward orbit 

r

F

C
 fT  (oC) Tf  

r

B

C
 bT (oC) Tb  

0.05 0.7361 72 0.05 0.7898 -84 
0.10 0.9314 36 0.10 0.9058 -48 
0.20 2.0425 24 0.20 2.1279 -24 
0.25 8.5327 12 0.25 7.8965 -12 
0.30 13.785 36 0.30 12.6534 -54 
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Figure 19. Calculated Tf /Tb and Tf/Tb with different orbit amplitude at 7500 rpm at 0=0.667 from Table-
2 

   

Figure 19(a) and 19(b) show the variation of Tj and j for different forward 

and backward orbit amplitudes, respectively. Note: for small amplitudes, Tj behaves 

linearly (see F/Cr and B/Cr upto 0.2), but as the orbit size increases, the behavior is 

nonlinear. Tj shoots up as 0+ F/Cr approaches 1, i.e., motion approaching the 
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clearance. Note, Tf and Tb are approximately same, also predicted by Geormiciaga 

and Keogh[10] and contradicted by Keogh and Morton[14], where Tb is 40% less than 

Tf. 

From Dimoragonas’ [6] closed-form solution, the bent angle T due to linear 

radial temperature differential from Eq. (9) is 

                                                   
3

1 4 2
T

T
a

D
T L

I

     
 

                                                 (11)

where, T1 is the maximum  differential temperature. An applied moment M at the end 

of a cantilevered Euler beam produces the rotation angle / aML EI  . Hence, T can be 

produced by the following end moment  

                                
3

1 1/
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D
M L EI M E T B T
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                        (12) 

Note, MT is not a function of L. Euler Bernoulli and Timoshenko beam theories yield the 

same rotation angle. Applying MT  and -MT moments due to thermal gradient at the right 

and left hand ends of the bearing produces T  (see Figure 1). The signs of MT and -MT 

correspond to right-hand rotation directions about the yT axis (see Figure 15). With 

respect to the rotor model, MT and -MT are applied at stations i* and j* corresponding to 

the station on the left and right hand end of the right bearing, respectively.  

The portion of the rotor outside the right-hand side bearing has mass mrb, and its 

mass center lies the distance lgr to the right of the bearing center at station k* in the rotor 
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model. For small T , thermally induced mechanical imbalance magnitude occurs and 

has the magnitude given by grb r Tm l  1TC T         

SISRA application for Morton Effect with overhang on the right side for the 

bearing (refer Figure 1) at a particular speed is described below. The algorithm can also 

be implemented for overhang on the left side or on both ends. 

 Step 0a: Calculate the steady-state synchronous response at the bearing due to a 

positive unit moment at station i* and a negative unit moment at station j*; i.e., Mi*y=1 

and Mj*y=-1 with the remaining bent-shaft forces and moments set to zero.  Note: This 

approach uses the standard full rotor model versus rotor free-free matrices used by 

[14,19]. This step will produce the response vector  

    1 1

1 1
t t

f be e       j j
1R                    (13) 

Step 0b: Calculate the steady-state synchronous response at the bearing due to a unit 

imbalance at station k* (locating the center of mass of the overhung rotor segment); 

i.e.,  * * 1k k x
m a   with zero imbalance in the remaining locations.   0i i y

m a   and 

   0,0,0.........1,....0i i x
m a  .  This step will produce the response vector  

   2 2

2 2
t t

f be e       j j
2R                                         (14)          

Step.0 is the preliminary calculation step, these results are saved, and this step will not 

be repeated during the iterations at a fixed speed. 

Step 1: Calculate synchronous rotor response at the bearing due to the initially specified 

mechanical imbalance distribution given by 
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   
   

1 1 2 2

1 1 2 2

, .................,

, .................,

i i x x x x nx nxx

i i y y y y ny nyy

m a m a m a m a

m a m a m a m a




                             (15)     

Note: the algorithm could be readily executed to include product of inertia excitations. 

With the specified mechanical imbalance distribution, the following elliptical orbit at the 

bearing results 

   
       

0 0
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t t t t
r f r b

R R x t x t y t y t

F e B e C e C e       

   

      

     

   

0
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           (16) 

The major and minor ellipse axes a, b and the ellipse attitude angle α can be calculated 

using Eq. (6). 

The iterations will begin from step. 2.  

Step 2: From Step 1, F0/Cr, B0/Cr, α0, , a0 and b0 are produced from the steady state 

response at the bearing due to the initial mechanical imbalance of Eq. (15).  must be 

calculated to calculate the effective rotor-fixed temperature distribution for every orbit 

(using Eq. (4)). Based on F0/Cr and B0/Cr as input for the Table 2, fT , bT , Tf , and 

Tb  are obtained by interpolation, from the input Table. 2. Using the interpolated values 

of fT , bT , Tf  and Tb , the rotor-fixed temperature distribution due to forward and 

backward orbit  temperature distribution is  

         1 cos * cos * sin * sin *f Tf b Tb f Tf b TbT e T T T T                   j j

          (17) 

The resultant maximum differential temperature T1 and its location T with respect to 

the x,y,z (refer Figure 20) is  
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                             (18) 

Note: when  270 2 * 90Tf Tb        the effect of the vector sum of the forward 

and backward temperature contribution on the effective temperature is subtractive. The 

minimum temperature is located at T  . The steps below must be updated to include 

forward and backward precession contributions and use T  to locate the peak 

temperature.  

                 

Figure 20. Maximum differential temperature and its location wrt different reference systems 

 

Step 3a: Calculated moment magnitudes related to 1T   
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 

       (19) 

The resulting synchronous excitation due to bent shaft moments MT,-MT in the 

rotor-fixed xT, yT and z coordinate system is  

         
 

   1
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T x
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M T B
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  
                                      (20) 

The bent-shaft moment components in the x,y,z system are: 

   

   
, 1

, 1

0,0,...... 1,0,1,... sin
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T y T T

M T B

M T B





  

  
                           (21)   

From Step 0a, the corresponding synchronous response at the bearing due to this 

bent-shaft moment distribution in stationary coordinate system X,Y,Z  is 

          1 1 1 1/ 2
1 1 1 1 1 1

T T Tt t t t
T f b T f bT B e e e T B e e                             

j j j j j      (22) 

Step 3b: Calculate the thermally-induced mechanical imbalance and resultant 

synchronous response due to 1T . The induced imbalance magnitude (mass times 

displacement) is 1TC T . In the rotor-fixed , ,
T T

x y z  coordinate system, the imbalance 

excitation vectors are 

                                     2
1, ,

0,0,.......1..... ; 0
T T

T T

TT x T yi i
f T C f   ,                        (23) 

where, the non-zero entry is at station k*, the station for the mass center of the overhung 

mass in Figure 1. The negative sign arises because (see Figure 1), the induced imbalance 
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vector is in the -xT direction. In the reference rotor fixed x,y,z system, the temperature-

induced-imbalance excitation vectors are given by  

   

   

2
, 1

2
, 1

0,0.......1,... cos

0,0.......1,... sin

T

T x T Ti

T

T y T Ti

f T C

f T C

 

 

 

 
                                 (24)    

From Step 0b, the synchronous response at the bearing due to unit induced imbalance 

distribution in stationary coordinate system X,Y,Z  is   

           2 2 2 2/ 22 2
1 2 2 1 2 2

T T Tt t t t
T f b T f bC T e e e C T e e                             j j j j -j

                                  (25) 

Step 5: Recalculate the synchronous response at bearing j by combining the calculated 

effects of: (i) The mechanical imbalance distribution, (ii) the induced bent shaft 

moments due to bent-shaft excitation, and (iii) the thermally induced mechanical 

imbalance vector due to bent-shaft excitation. Summing these results, the forward-

precessing synchronous response is  

       1 1 22
1 0 1 1 1 2

T Tt t t t
T f T fF e F e T B e C T e                    j j j j             (26) 

Similarly, the backward-precessing synchronous response is  

       1 1 22
1 0 1 1 1 2

T Tt t t t
T b T bB e B e T B e C T e                    -j -j -j -j            (27) 

This is end of 1st iteration.  

At the end of each iteration step, the total gain factor GaT  

1 1

i i
aT

i i

F B
G

F B 





                                                    (28) 

is calculated where, Fi and Bi are forward and backward amplitudes, respectively at the 

end of ith iteration. GaT is a real number, not complex. (GaT -1) is checked to see if it is 
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less than tolerance (0.001 in the code); if yes, the steady state converged solution is 

obtained. Otherwise, , , ,f b TfT T    and Tb are calculated from the input table using the 

new Fi/Cr and Bi/Cr at end of each iteration, and calculate new peak differential 

temperature 1T  and location T  from Eq. (8).  

Steps 2 to 4 are repeated until convergence or termination of the code. The code will 

terminate if location of rotor orbit crosses the clearance circle i.e., 

max=    
2 2

2

0 0 0 0 02
2 cos 2 * 2 sin * 2 sin *

r r r r r

F B FB F B

C C C C C
                 

    
         

<

1. max≥1, indicates the divergence of the motion due to Morton Effect, and the speed at 

which max exceeds 1, is the divergent Morton Effect speed.  
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CHAPTER III 

NUMERICAL EXAMPLE 

 

This chapter presents numerical examples for two example models from the 

published literature and discusses the results and some conventional practices that have 

been used to eliminate Morton Effect problem. 

 

MODEL-I, KEOGH AND MORTON (1994): SYMMETRIC ROTOR 

 

Figure 21. Rotordynamic model of Keogh and Morton [11], symmetric rotor 

 
 

The rotordynamics model shown in Figure 21 is a symmetric flexible rotor with 

end mounted discs (each with mass 20 kg), supported by two identical plain journal 

bearing from Keogh and Morton [11]. This model will be the base model of the study. 

The model is discretized into 44 beam elements. The bearings are at stations 5 and 41. 
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For the bearing, L=35 mm, D=100 mm, Cr=100 m and T=1.1e-5/0C. The steady state 

operating eccentricity, attitude angle, viscosity with running speed of the rotor bearing is 

given in Table. 3 from [11]. The stiffness and damping coefficients of the plain journal 

bearings are calculated using the short-bearing approximation [23] because the L/D ratio 

is 0.35. The rotor's first and second critical speed is around 4000 and 7000 rpm, 

respectively. The first forward damped mode is a cylindrical rigid-body mode (shown in 

Figure 22). Only right-bearing results are presented because of symmetry. Assuming, the 

maximum continuous operating speed is 6000 rpm; the maximum mechanical imbalance 

according to API 684[4] is approximately 50 gm-cm and is at the rotor’s mid-span. The 

differential and phase angles are given in Table A1 from [28]. 

 

Table 3 Bearing parameter variation with operating speed [11] 

Operating Speed Viscocity Eccentricity ratio Attitude Angle 
  (rad/s)  (N/m/s) 0  0  

4772.73 0.0893 0.709 38 
5727.27 0.0873 0.686 39.8 
6681.82 0.0824 0.672 40.9 
7636.36 0.0775 0.662 41.7 
8590.91 0.0716 0.655 42.2 
9545.46 0.0677 0.648 42.7 
10500.00 0.0638 0.642 43.2 
11454.55 0.0598 0.638 43.5 
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Figure 22. First forward critical mode shape  
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Figure 23. a/Cr versus iteration number at 9000 rpm at 0=0.659, 0=42.5 representing a steady state and 
converged solution  

 
 
            Figure 23 illustrates the convergence characteristic of a/Cr versus iteration 

numbers. For =9000 rpm with 0=0.659 and 0=42.5°, the algorithm converges to a 

steady state response in less than 20 iterations (200 is the maximum numbers of 

iterations in the code). The convergence characteristics of b/Cr, , and  versus 

iteration number are similar. 
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Figure 24. a/Cr versus iteration number at 11000 rpm at 0=0.64 and 0=43.3° representing divergent solution  

 
 

Figure 24 illustrates a case at =11000 rpm with 0 =0.64 and 0=43.3°, when 

the amplitude grows unboundedly indicating diverging behavior.  In this case, max will 

approach the 1. The convergence characteristic of b with iterations is similar. 
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Figure 25. Morton Effect response max with  of original model  
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Figure 25 presents max versus  for the original model with full Morton Effect 

and initial mechanical imbalance. Full Morton Effect has synchronous excitations from 

induced bent shaft moments and thermally-induced mechanical imbalance. At speeds 

beyond 10000 rpm, max exceeds the clearance circle, i.e., the response diverges. Below 

this speed, a steady state converged solution is obtained. The distinct peaks at 4000 and 

7000 rpm in the response are the first and the second critical speeds. Operation near a 

critical speed may not cause the response to diverge but it may produce higher levels of 

synchronous vibration. T increases with increases in orbit amplitude. Near a critical 

speed, the higher amplitudes result in higher Ts, which causes higher synchronous 

excitation due to Morton Effect.  

Keogh and Morton [11] calculated an instability zone between 9769 rpm and 

10371 rpm. Balbahadur and Kirk [32] predicted the resultant imbalance exceeding 

threshold imbalance between 10001 rpm to 11521 rpm. SISRA predicts the diverging 

motion at speeds approximately near 11000 rpm and does not predict recovery at higher 

speeds. There may be zone of recovery depending on the system configuration. 

Recovery can happens when,  270 2 * 90Tf Tb       . In such cases, adding 

temperature contribution due to forward and backward orbits reduces the effective 

differential temperature. De Jongh and Morton [9] observed recovery in Morton Effect 

instability at higher speeds. 

Figure 26 presents a/Cr versus  with full Morton Effect and mechanical 

imbalance and without Morton Effect (only mechanical imbalance). Full Morton Effect 
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with mechanical imbalance response is significantly different from the synchronous 

response of the system due only to mechanical imbalance after 2000 rpm.  

This figure also shows synchronous response due to induced bent shaft moments 

and mechanical imbalance (i.e. full Morton Effect without thermally induced mechanical 

imbalance) is dominating the response. Response due to mechanical imbalance and 

thermally induced bent shaft moments causes the response to diverge at 11000 rpm.  
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Figure 26. a/Cr versus  with and without Morton Effect of original model 

 
 

This figure also compares synchronous response predictions with only thermally-

induced mechanical imbalance and mechanical imbalance. As discussed in Chapter II, 

the thermally induced mechanical imbalance acts at the mass center of the overhung part 

(refer Figure 1). The thermally-induced mechanical imbalance at the overhangs excites 

motion around the second critical speed. Balbahadur and Kirk [32] calculated only the 



 42

magnitude of induced imbalance, and also predicted that at threshold speed, magnitude 

of thermally-induced imbalance is less that the mechanical imbalance.  

Figure 27 shows GaT versus iteration numbers at =9000 rpm at 0=0.659 and 

0=42.5°. The dotted line shows a convergence GaT=1. This condition represents the 

steady state and convergent solution condition.  
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Figure 27. GaT verus iteration numbers at 9000 rpm at 0=0.659, 0=42.5° 

 

Figure 28 shows GaT versus iteration numbers at =11000 rpm at 0=0.64 and 

0=43.3°. This condition represents the divergent solution condition. The code 

terminated prior to convergence because response grows, and max exceeds 1. 

Hence, GaT may indicate divergent rotor motion due to the Morton Effect when 

there is no convergence. GaT is analogous to Re(G1)>1 by Keogh and Morton[14], 
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Re(G)>1 used by De Jongh and Morton [9] and the Re(ABC)>1 by Murphy and 

Lorenz[25]. Notice, the GaT is the ratio of amplitudes i.e., real number not complex. 
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Figure 28. GaT verus iteration numbers at 11000 rpm at 0=0.64 and 0=43.3° 

 
 

The bearing synchronous response calculation is linear; however, calculations of 

forward F amplitude and backward G amplitude, ellipse attitude angle  and the location 

of minimum film thickness from the bearing response are nonlinear. Addition of the in-

rotor temperatures due to forward and backward orbits is also nonlinear. The fact that the 

system converges after multiple steps (instead of one step) also suggests a nonlinear 

character for the calculation underlying the difference between the linear nature of 

analysis proposed by earlier investigators [9,11,14,24,25] and the present approach.  
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Figure 29. Morton Effect synchronous response with centered imbalance of 50 gm cm and 100 gm cm 

 
 

Figure 29 shows significant change in the Morton Effect synchronous response 

with different mechanical imbalance magnitudes at the mid-span at 0o in the rotor. 

Larger mechanical imbalance causes larger orbit amplitude which drives the larger 

differential temperature in the bearing, which in turn provides higher synchronous 

excitations due to Morton Effect. Divergent speeds due to Morton Effect are 7000 rpm 

for 100 gm cm and 11000 rpm for 50 gm cm. A significant change in initial mechanical 

imbalance magnitude is predicted to change the synchronous response and the divergent 

speeds due to Morton Effect. Recall that SISRA requires some mechanical imbalance to 

obtain an orbit to begin iterative calculations.   
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                                                (a)                                                                                        (b)  

Figure 30. Bearing reaction versus  with and without Morton Effect in X and Y planes 

 
 
            Figure 30(a) and 30(b) presents predicted bearing reaction magnitudes versus  

in both X and Y planes. Bearing reactions due to full Morton Effect and due to 

mechanical imbalance only are different beyond 3000 rpm. Bearing reaction at the 

divergent speed and at critical speeds due to Morton Effect are orders of magnitude 

greater with Morton Effect. The reactions are different in X and Y direction due to the 

orthotropic nature of loaded plain journal bearing.  

 

 

Influence of the Bearing L/D Ratios 

 

This section examines the influence of changing L/D from 0.35 to 0.5. Increasing 

L/D reduces bearing specific loading, which reduces its operating eccentricities. Table 
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A2 gives the operating eccentricity, attitude angle, and viscosity along with differential 

temperature and phase angles. 
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Figure 31. Morton Effect response-max versus  for different L/D ratios  

 
 

Figure 31 presents max versus  for two L/D ratios with full Morton Effect and 

initial mechanical imbalance. For L/D=0.5, max does not cross the clearance circle for 

speeds up to 11000 rpm, indicating no divergent motion in this speed range.  Operating 

static eccentricity with L/D=0.5 is less than L/D=0.35 as increasing the L/D ratio 

reduces the unit load. SISRA predicts increasing L/D ratio improves the synchronous 

response due to Morton Effect which conflicts with the experiences. Berot and 

Dourlens[31] and Schmeid et al.[21] solved Morton Effect instability problem  by 

reducing L/D for tilting-pad bearing. According to Schmeid et al.[21], “the thermal 

deflection per unit temperature rise in the bearing cross section is proportional to the 
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width of bearing”. Both the configurations in Figure 32, have eccentric static eccentricity 

of the order of 0.4-0.7 in contrast of the turbo-expander model discussed by Schmeid et 

al. [19] that have 0~0.05.  

Increasing L/D ratio, decreases the T (as shown in Figure 32), which makes the 

difference in the synchronous response. The code never fails to converge for model with 

L/D=0.5. 

 

Figure 32. Tf with F/Cr for L/D=0.35 and 0.5 at 7500 rpm 

 
 
 
Influence of the Bearing Cr/R Ratios 

 

This section examines the influence of changing Cr/R ratio from 0.002 to 0.001 

on the Morton Effect characteristics. Only Cr/R is changed in the original model. Table 

A3 gives the operating eccentricity, attitude angle, and viscosity along with differential 

temperature and phase angles.  
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Figure 33 demonstrates that cutting Cr/R from 0.002 to 0.001 causes the system 

to diverge due to Morton Effect after 7000 rpm. No recovery in response is predicted 

with increasing .  
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Figure 33. Morton Effect response max versus  for different Cr/R ratios 

 
 

From Pinkus and Sternlicht [33], the power dissipated by a centered plain journal 

bearing is inversely proportional to the radial clearance. As shown in Figure 34, the 

differential temperature increases approximately by a factor of 2 for Cr/R=0.001 with 

respect to differential temperature for Cr/R=0.002. Notice, for the differential 

temperature increases more or less linearly for Cr/R=0.001 whereas for Cr/R=0.002, the 

differential temperature rise linearly with increasing amplitude up-to F/Cr=0.2, beyond 

that temperature rise sharply with increase in orbit. This is because orbit amplitude 

approaches the clearance which causes higher shear viscous forces and larger differential 

temperature across the bearing. 
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Figure 34. Tf with F/Cr for Cr/R=0.001 and 0.002 at 7500 rpm 

 
 

Deliberately changing the clearances (either increase or decrease) has never been 

considered as an option to fix Morton Effect problem in the literature as changing the 

bearing clearance alters the load capacity, bearing stiffness, and damping significantly 

[8].  

 

 

Influence of the Overhang Mass 

 

This section investigates the influence of overhung mass magnitudes on Morton 

Effect characteristics. The overhung masses of the original model were replaced with 50 

kg in place of 20 kg. Table A4 gives the operating eccentricity, attitude angle, and 

viscosity along with differential temperature and phase angles.  
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Figure 35. Morton Effect response max versus  for different overhung masses 

 
 

Figure 35 compares max versus  for the two different overhung masses with full 

Morton Effect and initial mechanical imbalance. Synchronous response clearly increases 

due to an increase in overhung mass magnitude. Overhung mass increases both effective 

mass of the overhang (include concentrated overhung mass and mass of overhung part of 

rotor) and overhang effective length (refer Figure 1). The thermally induced mechanical 

imbalance is directly proportional to the product of an overhung mass and length. The 

increase in overhung mass is predicted to cause a sharp rise in response after 3000 rpm 

making the system response divergent. This calculation confirms that heavier overhung 

masses at higher operation are more subject to Morton Effect [4]. Kocur and De Jongh 

[16] reduced the mass of overhang parts to fix Morton Effect. Corcoran et al. [34] 

present the only contrary result where increasing the coupling weight significantly, 
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eliminated the Morton Effect problem. According to De Jongh [8], reducing the 

overhung mass is the best way to fix Morton Effect but not always feasible and practical.  

Figure 36 shows a/Cr versus  for two different overhang masses. Notice, the 

sharp increasing in amplitude after 3000 rpm for overhung mass of 50 kg.  

2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

a/
C

r  

Speed (rpm)

 Overhung mass=20 kg
  Overhung mass=50 kg

 

Figure 36. Morton Effect synchronous response a/Cr versus for different overhung masses 

 
 
 
 Influence of the Reduced Lubricant Viscosity 

 

This section investigates the influence of lubricant viscosity on the Morton Effect 

characteristics. The viscosity of Keogh and Morton’s [11] model is given in Table 3 and 

the modified model have 70% of the original viscosity. The remaining parameters are 

the same. Table A5 gives the operating eccentricity, attitude angle, and viscosity along 

with differential temperature and phase angles. 
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Figure 37. Morton Effect response max versus  for different viscosities 

 

Figure 37 presents the influence of reduced viscosity on Morton Effect response 

max versus with full Morton Effect and initial mechanical imbalance. Reduced 

viscosity increases the operating eccentricity but decreases the heat input into the shaft. 

No divergent motion is predicted for reduced viscosity within 12000 rpm. Schmeid et al. 

[21] and Marscher and Illis[12] (increased the supply temperature to reduce viscosity) 

made changes in lubricant viscosity to fix Morton Effect problem.  

 
 
MODEL-II, SCHMIED ET AL. (2008): TURBOEXPANDER 

 

For the second example, a double overhung turboexpander [21] supported on 5 -

pad, load-on pad, tilting-pad bearings is studied. The initial design of this unit exhibited 

diverging Morton effect behavior starting at a speed near 18,000 rpm. The first forward 
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critical speed is 29000 rpm. This rotor shown in Figure 38, has a very stiff shaft, and its 

rotordynamic model is shown in Figure 39. The bearing details are given in Table 4. The 

first forward damped critical mode shape (Figure 40) has maximum deflection at the two 

impellers. Since differential heating in either bearing will cause the nearby impeller to 

go out of balance, the mode can be sensitive to differential heating at either bearings. 

The compressor-end impeller is the larger and heavier than the expander-end impeller. 

Vibration at the compressor end bearing exhibited a divergent spiral at 18,000 rpm as 

shown in Figure 41 [21]. 

 

Figure 38. Real cross section of the turbo-expander [21] 

 

 

Figure 39. XLTRC2 model of the turbo-expander 
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        Table 4 Tilting pad bearing parameters [25] 

Shaft diameter  90mm 
Bearing outer diameter 117mm 
Bearing axial length 55mm 
Pad arc 52° 
Pad pivot offset 0.5 
Pad preload 0.35 
Assembled diametric clearance 185 mm 
Oil inlet temperature 43° C 
Oil properties ISO46 
Oil supply flow rate 23.6 liter/min 
Bearing outer heat transfer coefficient 50 W/m2/C   

 

 

Figure 40. First forward damped critical mode shape of turbo-expander 

 

 

Figure 41. Unstable divergent behavior of spiral plot at 18000 rpm [21] 
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Table A6 gives the speed, eccentricities, attitude angle, radial clearances, 

viscosity, length and diameter of the bearing, calculated differential temperature and 

phase angles. Calculated differential temperature and phase lag angles are not available 

for tilting-pad bearings; hence, predictions will be used for plain journal bearing; 

whereas, eccentricities and attitude angle are calculated using a tilting-pad bearing code. 

The study seeks an idea of the machine response due to Morton Effect.  

Figure 42 presents max versus  for compressor and expander end bearings with 

full Morton Effect and initial mechanical imbalance. Compressor end bearing diverges at 

13000 rpm, and expander end does not diverge until 15000 rpm, according to the SISRA 

predictions. Divergent speed due to Morton Effect is lower than the first forward critical 

speed (29000 rpm) for this model. Murphy and Lorenz [27] predicted Morton Effect 

instability from 21500 rpm onwards.  
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Figure 42. Morton Effect response max versus  for the compressor and expander end bearings 
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CHAPTER IV 

DISCUSSION AND CONCLUSIONS 

 

             This thesis looks into the characteristics of the Morton Effect and also underlines 

a new computational algorithm to analyze the synchronous response for the rotor-

bearing system with Morton Effect. This work also provides a method and a design tool 

to determine the synchronous response and divergent speed due to the Morton Effect. 

This chapter recalls the results and recommends open issues for further research. 

Based on the studies made on Morton Effect following conclusions can be made: 

 Above a certain speed, synchronous response due to Morton Effect can be 

different that the synchronous response due to mechanical imbalance 

only. 

 Mechanical imbalance magnitude has significant impact on the response 

due to Morton Effect. A very small amount of mechanical imbalance is 

required to begin calculations. 

 Impacts of induced bent shaft moments are dominant.  

 Output of the algorithm is very sensitive on the input differential 

temperature, phase and running speed. 

 Operation in the critical speed range can enlarge Morton Effect response.  

 Reducing the magnitude of overhung mass and lubricant viscosity are the 

most effective fixes for the Morton Effect problem.  
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         SISRA requires the input of differential temperature and phases from either test 

program or bearing codes. This is important because it calculates the synchronous 

response and also suggests the divergent speed with Morton Effect. All the currently 

used algorithms give only an onset speed of Morton Effect instability. This work also 

introduces a more direct and simplified approach to treat bent shaft excitation versus the 

traditional approach of obtaining bent-shaft excitation vectors using the rotor’s free-free 

stiffness matrix. Convergence in a finite number of iterations of the synchronous 

response suggests a non-linear nature of the Morton Effect. This thesis casts the Morton 

Effect phenomenon as a synchronous response problem instead of a thermal stability 

problem.  

 

CAPABILITIES OF XLMORTON FEATURE IN XLTRC2 

 

The following are the features of Morton Effect subroutine in XLTRC2
: 

 It can handle both forward and backward orbit temperature distribution. 

 It can handle the non-linear nature of temperature differential with speed 

and amplitude. 

 It can handle rotors with single and double overhang. 

 It can handle any kind of bearing for which calculated or measured 

differential temperature and phase lag angles are provided. 

 Code is setup to predict the synchronous response in the presence of the 

Morton Effect also in the presence of initial bent profile of the shaft. 
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DIRECTION FOR FUTURE RESEARCH 

 

SISRA needs to be validated with the more models. Lack of published data on 

differential temperature and phase lag angles of tilting-pad and other kind of bearings, 

makes a test program essentially need to be carried out to verify the predictive capability 

of the SISRA as well as the Dr. A. Palazzolo's bearing code [28].  Based on the results of 

the test program, the importance of eccentricities, preloading, rate of change of rotor 

speed and mechanical imbalance on the Morton Effect stability characteristics needs to 

be addressed. The stability of the orbits needs to be established. 

 

 

 

 

 

 

 

 

 

 

 



 59

NOMENCLATURE 

 

a,b Major, minor ellipse axes m 

Cr Radial clearances m 

D Diameter of bearing m 

T1 Maximum effective differential temperature 0C 

Tf, Tb Maximum differential temperature of forward and 

backward orbit 

0C 

F,B Forward , backward orbit amplitude m 

G Gain vector used by De Jongh and Morton [9]  

G1 Gain used by Keogh and Morton [14]  

GaT Total gain factor  

Ia Moment of inertia of  rotor m4 

IOB Influence coefficient between the overhang and  

bearing location 

 

L Distance between overhang mass and bearing M 

L Length of bearing M 

lgr Distance between mass center and right bearing M 

Mc Concentrated overhang mass kg 

mgr Overhang mass of the right hand side of the rotor kg 

MT Bent shaft moment Nm 
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MTX1,MTY1 Location rotor center in X1, Y1 coordinate system  

MYx’,MTy’ Location rotor center in x’, y’ coordinate system  

T Time s 

T Complex thermal gain  

X,Y,Z Stationary Coordinate System  

x,y,z Rotor fixed coordinate system  

X1,Y1,Z Stationary Coordinate System along static 

eccentricity and attitude angle 

 

xT,yT,z Rotor fixed coordinate system along the resultant hot 

spot 

 

 Ellipse attitude angle  

 Location of min film thickness in rotor fixed 

coordinate system 

 

T Bent slope angle due to temperature gradient  

0 Eccentricity ratio  

f, b Ratio of forward and backward amplitude to radial 

clearance 

 

T Coefficient of thermal expansion C-1 

 Circumferential location on the journal  

T Location of maximum effective differential 

temperature wrt to x,y,z 
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Tf,Tb Phase angle between the hot spot and position of 

minimum film thickness for forward and backward 

orbit 

 

 Viscosity Pa-s 

 Change in bend angle at the bearing  

max Maximum amplitude of  rotor at the position of min 

film thickness 

 

 Running Speed rpm 

0 Attitude angle  

SISRA Successive Iterative Synchronous Response Algorithm  
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APPENDIX A 

 

CALCULATED DIFFERENTIAL TEMPERATURE AND PHASE 

ANGLES FOR PLAIN JOURNAL BEARING AT VARIOUS SPEEDS 

 
 

Table A1 Calculated differential temperature and phase angles for L=0.035m, D=0.1m, Cr=100 m  

 
 
 
 
 
 
 
 
 
 
 
 

Speeds    F/Cr Tf Tf B/Cr Tb Tb 
(rpm)  (Pa-s) (0)  (oC) (o)  (oC) (o) 

    0.05 0.6328 48 0.05 0.6437 -48 
5000 0.709 0.091 38.0 0.10 0.9121 36 0.10 0.9589 -36 

    0.20 2.1881 24 0.20 2.1879 -24 
    0.25 18.345 24 0.25 18.56 -24 
    0.05 0.7361 72 0.05 0.7898 -84 
    0.10 0.9314 36 0.10 0.9058 -48 

7500 0.667 0.081 41.2 0.20 2.0425 24 0.20 2.1279 -24 
    0.25 8.5327 12 0.25 7.8965 -12 
    0.30 13.785 36 0.30 12.6534 -54 
    0.05 0.7855 84 0.05 0.7884 -72 
    0.10 0.9136 48 0.10 0.8841 -60 

9000 0.655 0.073 42.2 0.20 1.7729 24 0.20 1.7673 -24 
    0.25 8.3993 12 0.25 8.3612 -12 
    0.30 12.7643 24 0.30 13.564 -36 
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Table A2 Calculated differential temperature and phase angles for L=0.05m, D=0.1m, Cr=100 m  

Speeds    F/Cr Tf Tf B/Cr Tb Tb 
(rpm)  (Pa-s) (0)  (oC) (o)  (oC) (o) 

    0.05 0.37 60.00 0.05 0.2971 -48 
    0.10 0.3679 36 0.10 0.4034 -48 

5000 0.524 0.091 51.9 0.20 0.632 36 0.20 0.6565 -24 
    0.30 1.9543 12 0.30 1.986 -24 
    0.40 3.394 24 0.40 3.356 -12 
    0.05 0.5223 96 0.05 0.5018 -84 
    0.10 0.4652 108 0.10 0.5287 -96 

7500 0.467 0.080 56.1 0.20 0.5369 48 0.20 0.4774 -72 
    0.30 1.6543 24 0.30 1.765 -12 
    0.40 2.6311 12 0.40 2.5412 -36 
    0.05 0.65 108 0.05 0.5885 -96 
    0.10 0.608 108 0.10 0.606 -108 

9000 0.453 0.071 57.1 0.20 0.6511 96 0.20 0.6825 -108 
    0.30 1.812 36 0.30 1.876 -12 
    0.40 2.356 12 0.40 2.493 -24 

 

Table A3 Calculated differential temperature and phase angles for L=0.035m, D=0.1m, Cr=50 m 

Speeds    F/Cr Tf Tf B/Cr Tb Tb 
(rpm)  (Pa-s) (0)  (oC) (o)  (oC) (o) 

    0.05 0.6561 36 0.05 0.576 -108 
    0.10 1.0437 36 0.10 1.0187 -24 

5000 0.459 0.091 56.7 0.20 1.935 24 0.20 2.0162 -36 
    0.30 3.141 24 0.30 3.245 -24 
    0.40 4.368 24 0.40 4.982 -24 
    0.05 0.9953 36 0.05 0.9916 -36 
    0.10 1.8152 36 0.10 1.7824 -24 

7500 0.400 0.080 60.94 0.20 3.4613 24 0.20 3.508 -24 
    0.30 4.567 24 0.30 4.876 -24 
    0.40 5.369 24 0.40 5.479 -24 
    0.05 1.1456 36 0.05 1.1957 -36 
    0.10 2.1215 36 0.10 2.1535 -36 

9000 0.385 0.071 62.03 0.20 4.0371 24 0.20 4.0623 -24 
    0.30 6.7841 24 0.30 6.4321 -24 
    0.40 8.3421 24 0.40 8.241 -24 
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Table A4 Calculated differential temperature and phase angles for L=0.035m, D=0.1m, Cr=100 m with 
overhung mass of 50 kg  

Speeds    F/Cr Tf Tf B/Cr Tb Tb 
(rpm)  (Pa-s) (0)  (oC) (o)  (oC) (o) 

    0.05 0.6561 36 0.05 0.576 -108 
5000 0.73 0.091 36.57 0.10 1.0437 36 0.10 1.0187 -24 

    0.20 1.935 24 0.20 2.0162 -36 
    0.25 9.865 24 0.25 9.564 -24 
    0.05 0.8333 60 0.05 0.7938 -48 

7500 0.69 0.080 39.48 0.10 1.12235 48 0.10 1.1028 -36 
    0.20 3.2789 24 0.20 2.83 -12 
    0.30 13.55 24 0.30 13.568 -24 
    0.05 0.8515 60 0.05 0.7994 -60 

9000 0.68 0.071 40.26 0.10 1.0724 60 0.10 1.0787 -48 
    0.20 2.6941 24 0.20 2.5313 -24 
    0.30 17.17 24 0.30 15.76 -24 

 

 
 
 
 

Table A5  Calculated differential temperature and phase angles for L=0.035m, D=0.1m, Cr=100 m with 
reduced viscosity  

Speeds    F/Cr Tf Tf B/Cr Tb Tb 
(rpm)  (Pa-s) (0)  (oC) (o)  (oC) (o) 

    0.05 0.54 36 0.05 0.491143 -24 
5000 0.749 0.063 34.7903 0.10 0.8677 24 0.10 0.8571 -24 

    0.20 2.5667 24 0.20 2.5456 -24 
    0.24 4.664 24 0.24 6.8675 -48 
    0.05 0.6269 72 0.05 0.6371 -48 

7500 0.714 0.056 37.602 0.10 0.9696 36 0.10 0.9598 -36 
    0.20 2.7047 12 0.20 2.8241 -12 
    0.25 5.738 24 0.25 5.7065 -24 
    0.05 0.6556 60 0.05 0.6844 -60 

9000 0.704 0.05 38.3903 0.10 0.935373 48 0.10 0.9272 -48 
    0.20 2.6173 12 0.20 2.5879 -12 
    0.25 4.664 12 0.25 4.564 -24 
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Table A6  Calculated differential temperature and phase angles for L=0.055m, D=0.09m, Cr=92.5 m  

Speeds    F/Cr Tf Tf B/Cr Tb Tb 
(rpm)  (Pa-s) (0)  (oC) (o)  (oC) (o) 

    0.05 0.1605 24 0.05 0.2069 -48 
    0.10 0.2362 48 0.10 0.2314 -36 
    0.20 0.1469 24 0.20 0.071 -156 

5000 0.0635 0.035 0 0.40 0.0711 36 0.40 0.1083 -48 
    0.60 0.1505 36 0.60 0.1642 -36 
    0.80 0.5189 24 0.80 0.5326 -24 
    0.05 0.7629 24 0.05 0.7069 -24 
    0.10 0.6396 24 0.10 0.66 -24 
    0.20 0.4149 48 0.20 0.4069 -48 

10000 0.0491 0.035 0 0.40 0.2642 108 0.40 0.2741 -96 
    0.60 0.4241 84 0.60 0.4000 -84 
    0.80 1.1781 36 0.80 1.1065 -36 
    0.05 1.9067 24 0.05 1.8269 -24 
    0.10 1.667 24 0.10 1.6798 -24 
    0.20 0.5818 60 0.20 0.6357 -48 

15000 0.0434 0.035 0 0.40 0.6617 132 0.40 0.6612 -132 
    0.60 0.7665 108 0.60 0.8449 -108 
    0.80 1.5315 36 0.80 1.4957 -36 
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