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ABSTRACT 

 

Statistical and Economic Implications Associated with Precision of Administering Weight-based 

Medication in Cattle.  (December 2010) 

Isaac Daniel Olvera, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Andy D. Herring 

 

Metaphylactic treatment of incoming feedlot cattle is a common preventative action 

against bovine respiratory disease (BRD).  Cattle are dosed based on estimated or actual lot 

average weights, rather than on an individual basis, to reduce initial processing time.  There has 

been limited research conducted on the effects of accurate weight- based dosing in feedlot cattle.  

The objective of this study was to evaluate the economic effects of precision weight- based 

dosing of cattle as compared to dosing the lot average or lot averages plus 50 lb and minus 50 lb.  

An economic model was created and stochastic simulations performed to evaluate potential 

outcomes of different dosing scenarios.  Economic analyses of the effects of precision weight-

based dosing were conducted using SIMETAR© to determine the stochastic dominance and 

economic effects of different dosing regimens.  

Data were obtained from a commercial feedlot for different lots of cattle where individual 

animal weights were available; for this analysis the minimum lot size was 30 animals, and the 

maximum lot size was 126 animals. Within lots, individual weight deviations were calculated 

from the lot mean, the lot mean was rounded up to the nearest 50 lb increment or down to the 

nearest 50 lb increment to represent mild overestimation and mild underestimation, respectively. 
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Tulathromycin (Draxxin®, Pfizer Animal Health, New York, NY), an antimicrobial commonly 

prescribed for treatment of bovine respiratory disease, was used to illustrate the impacts of 

uniform dosing versus exact dosing per body weight.  Based on the dilution space method used to 

evaluate time of drug effectiveness, it was estimated that Draxxin® administered at the 

recommended dosage to cattle weighing between 500 and 1000 lb should be provided with 191 

hours (7.96 days) of protection from pneumonia-causing bacteria.  Due to the pharmacokinetic 

properties of Draxxin®, an animal that is administered half the recommended dose is only 

protected from pneumonia-causing bacteria for 8 hours, which is 4.2% of the coverage time of the 

proper dose. This limits the effectiveness of the prescribed treatment to fully administer 

therapeutic treatment.  In all cases, the correct weight-based dosing strategy cost less than any 

other dosing technique.  Overall, dosing all cattle at the lot average weight costs $6.04 per animal 

more than dosing at the exact, correct dose.  Dosing all animals at the lot average weight plus 50 

lb costs $6.24 per animal more; dosing all animals at lot average minus 50 lb costs $4.01 per 

animal more.   

The use of individual animal weights to determine per head dosing of Draxxin® is more 

cost effective than using lot averages. This concept would appear to extend to all weight-based 

pharmaceutical products in general, and should be considered a necessary management strategy. 
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CHAPTER I 

INTRODUCTION 

 

 Metaphylactic treatment of incoming cattle in U.S. feedlots is a common method of 

preventative action against bovine respiratory disease (BRD), particularly with high risk cattle.  

With 98% of all feedlots already employing a vaccination protocol, drug efficacy needs to be 

heightened to combat the leading illness, BRD.  Upon initial processing cattle are typically dosed 

based on estimated or actual lot average weights, rather than on an individual basis, to aid in 

reduction of initial processing time. There are a multitude of drugs on the market for the use in 

metaphylactic treatments regimens; one of the newest drugs for the prevention of BRD is 

tulathromycin.  This new, unique, triamlide is thought to be far superior to many of the other 

previous drugs approved for metaphylactic treatment.  The heightened movement and dispersion, 

coupled with the lasting tissue cultures developed aid in making this drug far more efficient, 

when used properly.  There has been limited research done on the effects of accurate weight- 

based dosing in feedlot cattle and associated drug efficacy.     

The dilution space technique has been used to evaluate the amount of water with which a 

substance equilibrates within an animal’s body and used to predict body composition in nutrition 

research.  It appears that this technique is also appropriate to estimate medication dispersion in 

animals’ bodies following injection.   

 

 

This thesis follows the style of the Journal of Animal Science. 
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 Economic analyses that provide cattle producers tools for risk management are needed.  

Risk aversion coefficients in conjunction with stochastic models are effective ways to estimate 

the outcomes based on the probabilities of occurrence and the associated management decision 

based on risk levels. 

 The overall objective of this study was to evaluate the economic effects of precision, 

weight-based dosing in cattle with one specific medication as compared to dosing on the lot 

average weight or lot average weight plus 50 lb (22.7 kg), and lot average weight minus 50 lb to 

account for estimation or rounding errors when using lot average weights.  The urea dilution 

space technique was used as a model here to estimate the dispersion and protection time of 

tulathromycin in the body of live cattle. Based on the resulting estimated protection, an economic 

model was created and stochastic simulation was conducted to evaluate the potential outcomes of 

several different scenarios.  Economic analysis of the effects of precision weight-based dosing 

were conducted through simulation using SIMETAR© to determine the stochastic dominance and 

economic effects of different dosing regimens. 
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CHAPTER II 

REVIEW OF LITERATURE 

 

Introduction 

Background information will be discussed pertaining to the use of pharmaceuticals, 

Bovine Respiratory Disease and its associated management and economic effects in the U.S. 

cattle feeding industry. The practice of metaphylactic dosing of weight- based medications, the 

use of the antimicrobial, tulathromycin, as a metaphylactic and its associated pharmacokinetic 

properties and the concept of urea dilution space to predict pharmaceutical dispersion in the body 

will be investigated to create a predictive model of efficacy in dosing.  A discussion of risk and 

the use of stochastic models pertaining to economic analysis and the use of the simulation 

program SIMETAR© for economic analyses is also included. 

 

Pharmaceuticals 

The cattle industry is the largest single sector of production agriculture in the United 

States with cash receipts totaling more than $49.2 billion (Lawrence and Ibarburu, 2006), made 

up of approximately 980,000 ranches producing cattle, 85% of which funnel into roughly 2,200 

feedlot operations (Abidoye and Lawrence, 2006).  With so much influence of animal health on 

production and profitability in the cattle industry, it is obvious why livestock pharmaceuticals 

make up a majority of the animal health market. The livestock sector accounts for nearly 70% of 

all animal pharmaceutical sales, but generally remain steady with no growth (Ahmed and 

Kasraian, 2002). Despite the low growth in sales, the animal pharmaceutical industry is 
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consistently undergoing changes and innovations in the areas of drug delivery and the support of 

efficacy, usually aimed at: (1) enhancing consumer convenience and regulation compliance, (2) 

increased efficacy and pharmacokinetic properties of drugs, (3) product differentiation, and (4) 

assurance of target animal and consumer safety (Ahmed and Kasraian, 2002).  In 2007 it was 

estimated that the total added value attributed to pharmaceuticals used throughout the beef 

production cycle was as high as $524 per animal (Lawrence and Ibarburu, 2007).  Obviously in 

challenging economic times any pharmaceutical that increases production efficiency, weight gain 

or fights illnesses is highly desired by producers. 

There are a multitude of products on the market for proper drug dispensing and more 

efficient drug delivery. Most common dispensing apparatuses include single dose syringes, 

multiple dose repeating volume syringes, oral applicators, gun style dispensers, and most 

recently, a novel, scale driven, automated weight based dose delivery syringe system (Animal 

Innovations, Inc., www.animalinnovations.com).  Drug delivery types, much like the dispensing 

products, are highly variable and depend mostly on the convenience and value optimization 

desired, sustainability and stability of drug release, and affected target tissues.  Sustained release 

boluses, oral pastes, pour- on formulas, injectable drugs, controlled internal drug release products 

(CIDRs), implants and ear tags, and feed premixes are all common types of drug delivery 

methods.  With specific regard to injectable drugs, they can be further classified as intramuscular 

(IM), intravenous (IV) or subcutaneous (SC).  Within the feedlot industry, the majority of drugs 

are now given via subcutaneous injection.  Due to the problem of wasted beef product associated 

with IM injections in food animals, the Beef Quality Assurance program made a major industry 

shift towards SC neck injections only in the early 1990’s.  By early 2000, a BQA audit showed 
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that 97.5% of top sirloin butts were free of injection site lesions as compared to 78.7% in 1991 

(Hilton, 2005).  The main animal health products administered to feedlot cattle are parasiticides, 

and vaccines and antimicrobials associated with Bovine Respiratory Disease complex.   

 

Bovine Respiratory Disease and Associated Management 

Bovine Respiratory Disease complex (BRD) is a very extensive disease that encompasses 

both bacterial and viral pathogens; there is much difficulty in differentiating the various entities, 

so the complex as a whole is commonly referred to as Undifferentiated Fever (UF) or simply 

BRD (Booker et al., 2007).  Mannheimia (formerly Pasteurella) haemolytica, Pasteurella 

multocida, Histophilus somni (formerly Haemophilus somnus), and Mycoplasma bovis are the 

primary bacterial pathogens that are threats and whose infections typically manifest themselves 

following viral infection.  The primary viral diseases that are associated with BRD include 

infectious bovine rhinotracheitis (IBR, caused by bovine herpesvirus type 1), bovine viral 

diarrhea (BVD), parainfluenza- 3 (PI3), and bovine respiratory synctial virus (BRSV) (Martin 

and Bohac, 1985). 

Since January of 1992 there have been significant increases in mortality rates within 

feedlots (Babcock et al., 2006).  With the many innovations in preventative medicines and 

medical treatments for cattle and producer education through BQA programs, this fact is 

astonishing.  The most common and costly disease in feedlot cattle, bovine respiratory disease 

(BRD), has shown to be a long plaguing issue within the cattle industry as a whole.  With BRD 

accounting for approximately 75% of feedlot morbidity and almost 50% of mortality (Edwards, 
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1996; Gardner et al., 1999), it is obvious that more in depth research is needed to aid in reduction 

of BRD related cases (Snowder et al., 2006).   

In a study over a six year period spanning from 1994 to 1999 it was shown, using 

collective NAHMS data, that there was  a 38% increase in mortality among feedlot cattle moving 

from 10.3 deaths per 1000 to 14.2 deaths per 1000 cattle; more than half of those deaths (57.1%) 

could be directly attributed to BRD (Loneragan et al., 2001).  Preventative methods to help 

decrease the incidence of BRD upon arrival at feedlots have been studied in depth.  It has been 

shown that preconditioning calves prior to arrival may aid in decreased feedlot morbidity by 6% 

and decrease mortality by 0.7% (Cole, 1985).  A study investigating the added value associated 

with calves prior to shipment from ranch of origin reported that calves weaned and 

preconditioned 45 days prior to shipment had lower incidents of BRD than calves transported 

from the same ranch immediately at weaning or calves assembled at auction markets, even when 

comingled at the preconditioning site (Step et al., 2008).  Furthermore, calves marketed through 

auction barns shipped immediately after weaning had almost double the risk of BRD morbidity 

incident rates than calves that were weaned prior to shipping (Roeber et al., 2001). 

 

Economic Effects of BRD on Feedlots 

The economic effects associated with incidents of BRD are staggering.  The economic 

impact of BRD alone has been reported to cost the cattle industry $800- $900 million annually 

(Griffin, 1997; Chairase and Greene, 2001).  Snowder et al. (2006) estimated that the individual 

treatment cost per animal was $13.90; therefore the total economic loss associated with BRD in 

1,000 feeder calves was approximately $13,895 not including the cost of feed prior to mortality, 
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labor costs, or associated handling. Research supports that for every 10% increase in feedlot 

morbidity linked with BRD, medicine cost increase $2 per head for all cattle that are finished 

(Edwards, 1996).  With 11.6 million cattle on feed in 2009 a simple $2 increase could cost the 

industry more than just increased production costs (NASS, 2010).  In markets that compete on 

costs any additional inputs needed have some corresponding price increase at the retail level.  The 

USDA has stated the own price elasticity of beef as -.621, meaning that for every observed 10% 

increase in price there is an associated 6.21% decrease in quantity demanded (USDA, 2008).  

Price fluctuations associated with cost management in the production sector have a larger impact 

on beef sales and marketability than just profitability of the individual producer, these cost carry 

through to the consumer level and directly affect the industry at the sales level. 

There has been extensive work done on the factors affecting profitability in cattle 

associated with BRD.  Gardner et al. (1999) specifically noted that the disease resulted in 

consistently lower average daily gains, lighter hot carcass weights, and lower marbling scores; 

furthermore, the presence of lung lesions associated with respiratory disease could be highly 

correlated to the reduction in performance.  Steers diagnosed with respiratory disease at slaughter, 

based on pulmonary lung lesions and active bronchial lymph nodes, returned $73.78 less than 

animals without lesions.   Approximately 21% of the deductions were attributed to the cost of 

treatments and medications, the remaining 79% were attributed to the reduction in hot carcass 

weight (8.4% less) as well as reduced quality grades (24.7% more US Standard carcasses in 

group with lesions) (Gardner et al., 1998).  It is not uncommon for the cost of morbidity to 

outweigh the cost of mortality, a death early in the production cycle can save on feed, 

medications and associated handling costs.  If the death occurs early enough in the production 
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cycle the only loss attributed to the animal is the purchase price.  The additional costs of lower 

average daily gains, lower carcass values and less desirable products can inflate the cost of 

morbidity to $92.26 for animals that were ill as compared to those that were not (McNeill et al., 

1996).  

 

Feedlot Metaphylactic Dosing 

In general, feedlots are one of the largest adopters of pharmaceutical technologies. 

Lawrence and Ibarburu (2006) reported that at initial processing, approximately 98% of all 

feedlots vaccinated incoming cattle against respiratory disease. One of the more widely practiced 

time management strategies used in feedlots is metaphylactic treatments.  Metaphylaxis, also 

referred to as mass medication, is a preemptive strike against cattle that may be considered high 

risk for contracting or spreading illness; dosing all incoming cattle at initial processing with an 

approved antimicrobial.  When administering metaphylactic treatment, feedlots will often process 

hundreds of incoming cattle at a time so efficient time management is a necessity.  Many factors 

influence the decision to treat incoming cattle metaphylactically, including shipping distance, 

arrival weight, appearance, BRD incidence from cattle within the same region, source, season, 

age, etc.  With these factors considered, it was shown that larger feedlots, defined as 8,000 head 

or larger, were 54.4% more likely to employ the use of metaphylactic treatments aimed solely at 

combating BRD alone within their feedlot compared to smaller operations of 1,000 to 7,999 

animals (USDA, 2000).   

Upon arrival, cattle may be sectioned into one of two categories, high risk and low risk 

type cattle (Edwards, 1996).  Cattle deemed high risk generally include: calves recently weaned, 
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cattle that have been trailered long distances, groups of cattle that were purchased and grouped at 

auctions, cattle that are considered high stress when they arrive, and cattle that have had low 

exposure to unfamiliar other cattle.  Low-risk cattle include: single source cattle, pre- weaned 

calves, yearling cattle and cattle coming from preconditioning/ stocker operations (Booker et al., 

2007; Step et al., 2007; Sanderson et al., 2008).   

 

Tulathromycin as a Metaphylactic  

 Much research has been completed on the efficacy of metaphylactic treatments for cattle 

entering feedlots.  As stated earlier, 80.9% of large feedlots (54.4% more than smaller feedlots) 

employ the use of metaphylactic treatments to help prevent BRD outbreaks (USDA, 2000).  For 

the purpose of this research we focused on the use of tulathromycin (Draxxin Injectable Solution, 

Pfizer Animal Health) as the metaphylactic antimicrobial of choice.   

 Tulathromycin was developed for the prevention and treatment of respiratory disease in 

cattle and pigs (Booker, 2007).  Due to the pharmacokinetic properties of tulathromycin, 

compared to other similar macrolides (erythromycin, tylosin, spiramycin and tilmicosin), the long 

lasting effects and rapid dispersion and movement are thought to make it superior to most other 

metaphylactic antibiotics.  Despite the fact that Tulathromycin is two to three time more 

expensive than other macrolides, it may be more cost effective for the prevention of BRD.  In an 

economic study of metaphyactics, tulathromycin was shown to have an advantage of $16.43 and 

$3.67 per animal over oxytetracycline and tilmicosin when administered metaphylactically; this 

was due to the lower treatment and retreatment rates, lower mortality incidents, improved average 

daily gain and higher quality grades, despite higher dosing costs and lower yield grades observed 
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on both antibiotics, lower feed efficiency compared to tilmicosin (Booker et al., 2007).  Booker et 

al. (2007) concluded that through the use of tulathromycin fewer animals are at risk for incident 

of BRD. By reducing morbidity, the associated treatments are reduced, thus aiding in (1) reduced 

amount of antimicrobials administered in the beef production industry, (2) increased profit 

potential for producers, and (3) improved welfare of cattle with reduced handling, stress and 

isolation.  

 

Pharmacokinetic Properties of Tulathromycin 

 Tulathromycin was the first product classified as a tribasic macrocyclic antibiotic, now 

referred to as triamilides (Nowakowski et al., 2004).  Triamilides are semisynthetic derivatives of 

the natural product, erythromycin (commonly used in humans for respiratory ailments), and are 

characterized by the presence of three polar amine groups (tribasic) that differentiate them 

structurally from other macrolides (Letavic et al., 2002).  Tulathromycin is formulated in an 

equilibrated mixture of two macrocycles for subcutaneous or intravenous injection as a single 

dose to provide a full course of treatment against respiratory bacterial pathogens in cattle and 

swine.  It is thought that unique features of the triamlide class enhance penetration of gram-

negative bacterial pathogens, resulting in increased drug potency and effectiveness (Evans, 2005). 

Generally, antibiotics are classified as bacteriostatic, bactericidal or a both; but typically 

the macrolides are considered bacteriostatic.  This means they inhibit bacterial growth by 

preventing essential protein biosynthesis through selective binding to bacterial ribosomes and 

stimulate dissociation of peptidyl -tRNA from the ribosome during the translocation process 

(Vannuffel and Cocito, 1996), meaning they inhibit cell division and lead to cell death. 
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Tulathromycin is unique in that it exhibits both bacteriostatic and bactericidal features.  The 

minimum inhibitory concentration (MIC) for 70% (the minimum concentration of a drug 

necessary to inhibit 70 percent growth, associated with being bacteriostatic) was found to be the 

same as the minimum bactericidal concentration (MBC) for M. haemolytica and P. multocida 

(Evans, 2005).   So, along with preventing cell division, tulathromycin’s tribasic structure aids in 

penetrating the gram negative pathogens, the most common cause of BRD, aiding in attacking 

these pathogens. 

Aiding in the movement of tulathromycin and its associated efficacy is the ability of the 

drug to use phagocytic cells to help store and move the drug.  Data suggest that heightened 

concentrations in infected lungs can be attributed to tulathromycin moving with immune cells to 

affected areas and being secreted slowly into the extracellular area where it can be used to attack 

pathogens.  As well, evidence supports that the leukotoxins produced by the gram- negative 

organisms, such as M. haemolytica, induce lysis of the phagocytic cells carrying the drug (Evans, 

2005).   

  The ability of the tissue concentration of tulathromycin to remain high for an extended 

period of time is presumed to be the underlying reason behind the high efficacy rates observed; 

after tulathromycin is administered, the bioavailability is approximately 91% (Skogerboe et al., 

2005).  Tulathromycin is metabolized slowly, and a majority of the remaining drug is excreted in 

feces and urine.  Because tulathromycin is absorbed rapidly into the tissue, lung concentration is a 

better predictor of the pharmacodynamic properties than the use of plasma concentrations for 

efficacy models based on concentrations (Evans, 2005).  
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Urea Dilution Space 

 The urea dilution technique was developed in an effort to adequately and efficiently 

predict the body composition of cattle in vivo through estimating empty body water concentration 

as a calculation of a percent of total composition.  Because urea is inexpensive, and it is 

somewhat easy to analyze the plasma urea nitrogen content, the urea dilution technique is more 

readily applied in both research and industry where measurement of body composition during 

growth may be necessary (Rule et al., 1986).  It was the only method emerging that was time 

efficient and accurate.  Before then, methods included backfat measurement tools, ultrasonic 

probes, visual appraisal or use of titrated water or deuterium oxide (used in humans) as dilution 

constants (Bartel et al., 1983).  The other dilution constants often required several hours to 

adequately determine body composition, as well as including a factor known as turnover rate. The 

turnover rate estimated the body water dilution much the way the urea dilution technique does but 

required more time, especially during peak lactation and increased during gestation, and required 

the use of specialized equipment to calculate.   

Unlike the other dilution methods, the urea dilution technique was reported to work as 

quickly as 12 minutes and accurately report the body water percent (Bartel et al., 1983).  

Soberman et al. (1949) stated that substances to be used in body composition estimates as 

physiological tracers should “show an even and rapid distribution throughout the body water, 

should be nontoxic, not foreign to the body and not cause any physiological disturbances." As 

well, tracer substances should be “accurately and easily measured in either whole blood or plasma 

and they should not be selectively stored, secreted or metabolized.”  The urea dilution technique 

was validated by Bartle et al. (1987) for the estimation of body composition.  They concluded 
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that the technique met all the requirements of a proper tracer in cattle.  Urea space was defined by 

Kock and Preston (1979) as the volume of water with which urea equilibrates. They made the 

assumption that urea space is correlated with empty body water, therefore urea space 

measurements could be used as adequate predictors for estimating body composition in cattle. 

   

Risk 

Risk is defined as a part of the business decision out of the manager’s control 

(Richardson, 2010).  Hardaker et al. (2004) identified six specific areas of risk observed in 

agricultural production as a whole: (1) production risk (2) price risk (3) institutional risk (4) 

human/ personal risk (5) business risk and (6) financial risk; the following is a discussion of the 

areas regarding risk in agriculture. Production risk comes from the unpredictable nature of 

agriculture as a whole: weather, illness, livestock growth and performance, morbidity/ mortality 

rates in a given year and pasture quality or availability are all areas of concern in production risk. 

Additionally, production risk extends to the highly variable prices of farm inputs and outputs that 

usually aren’t certain at a given point in the future. Price risk associated with production usually 

includes risks associated with the high amounts of commodities needed in livestock production. 

Market volatility can often cause sudden price changes that a producer may not have accounted 

for, as well as, the variability in the supply and demand changes of product. Institutional risk is a 

risk that governing bodies introduce through the implementation of various rules and policies. 

Institutional risk can be further broken down into: political risk (risk of adverse policy changes), 

sovereign risk (risk that foreign governments will fail to uphold predetermined agreements and 

commitments), and relationship risk (risk from issues between partners or other organizations).  
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Fourth, there is the human/personal risk aspect.  This is a risk that develops within the 

management of the firm. Crises such as death or serious illness of integral team members may 

interfere with of the processes of normal daily operations.   

Business risk is the combination of production, market, institutional, and personal risk.  

Business risk impacts the firms’ business performance in terms of the net cash flow generated or 

net farm income earned.  Finally, financial risk results from financing options of the firm. Bank 

and loan issues or investor shortcomings are all common issues in financial risk. 

It has been stated “the purpose of simulation in risk analysis is to estimate distributions of 

economic returns… so the decision maker can make better management decisions” (Richardson, 

2010).  There are two types of simulation models to help analyze economics returns, 

deterministic models and stochastic models. Deterministic models do not take risk into account 

and only calculate outputs based on input variables. They are adequate for investigating the 

outcomes based on managerial changes, but do not assume a risk variable, and are therefore static 

compared to the business environment. 

 

Stochastic Models 

Stochastic models incorporate some sort of uncertainty or, an assigned risk variable.  

Incorporating risk into a model allows managers to create alternative scenarios and analyze the 

probabilistic outcomes of the model.  Once modeled, a manager must select the most appropriate 

economic option with the goals of the individual operation in mind.  Without assessing risk 

within a model the simulations for alternative scenarios will not be adequate to base decisions 

upon. If there was no risk in a business environment, the optimal strategy would simply be that 
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which has the greatest economic return. With a risk variable included, the decision becomes 

much more complex. Economic returns associated with the risk of losses may force the selection 

of a less profitable but more stable alternative based on the assumption of less risk resulting, in 

the long run, in a more stable economic environment (Hardaker et al., 2004).  

The main goal of simulating risky alternatives is to allow for accurate decisions to be 

made on economic issues that may be too large, complex, costly or lengthy to actually perform.  

Most models are quite easily adapted to changes within the firm’s business environment and can 

be used to train new management in procedures without exposing the business to actual risk. 

Although models can be an extremely effective tool for analyzing a given scenario, people will 

largely discredit the use of simulations based solely on human error, or they will put full faith in 

the model because “that’s just what they’re supposed to do” (Richardson, 2010). Models are only 

as good as they are built, and confined by the data used to create them. 

 

Simulation and Econometrics to Analyze Risk 

Simulation and Econometrics to Analyze Risk (SIMETAR©) is a front loaded Microsoft 

Excel based program developed by Richardson, Schumann and Feldman in the Department of 

Agricultural Economics, Texas A&M University (Gill et al., 2003).  It utilizes Visual Basic 

programming to work directly in Microsoft Excel.  SIMETAR©  was specifically written for 

analyzing data, simulating risky alternatives and presenting findings.  Of the more than 230 

functions in SIMETAR©, they can be categorized into seven groups: 1) simulating random 

variables 2) parameter estimation and statistical analysis 3) graphical analysis 4) ranking risky 
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alternatives 5) data manipulation and analysis 6) multiple regression and 7) probabilistic 

forecasting (Richardson, 2010).   

Monte Carlo simulations use random sampling of probability distribution functions as 

model inputs, the simulation process produces possible outcomes based on the stochastic inputs.  

The results show the probabilities of the occurrence of each outcome given the actual data set.  

SIMETAR©  gives the user the option to use one of two Monte Carlo simulation methods, Latin 

Hypercube and Monte Carlo distribution.  Richardson (2010) gives an adequate explanation of 

the two methods, cited in the following discussion. The Latin hypercube procedure is the 

preferred method of sampling probability distributions.  Latin hypercube breaks the distributions 

into N intervals and randomly selects at least one value from each interval.  The number of 

intervals, N, is the number of iterations used in the model.  By sampling from N intervals, the 

Latin hypercube method insures that all areas of the probability distribution are weighted within 

the simulation model, making fewer iterations necessary to produce an accurate replication of the 

data set.  The Monte Carlo procedure randomly selects values based on the probability 

distribution.  As a result, the Monte Carlo method samples a greater percentage of random values 

about the mean, therefore, under samples the areas in the tails.   A larger number of iterations 

must be used to more accurately account for all of the distribution area and minimize the effects 

of under sampling in the tails of the probability distribution. 

 

Summary 

 The economic effects associated with the use of precision dosing in metaphylactic 

treatments need much investigation. With more than 11 million cattle on feed, any amount of 
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monetary changes in the industry can cause a drastic change in economic returns within the 

industry as a whole.  Much work is needed to investigate what the social and economic effects 

directly associated with precision dosing of weight-based medications; therefore, the objective of 

this study was to evaluate the economic effects of precision weight-based dosing in cattle as 

compared to dosing on the lot average. The general concepts associated with the urea dilution 

space equation used to measure in vivo body composition were utilized to estimate antimicrobial 

concentrations in animal tissues. An economic model and stochastic simulation was constructed 

to evaluate the outcomes of exact weight dosing, lot average weight, lot average weight plus 50 lb 

and lot average weight minus 50 lb.  Economic and statistical analyses of the effects of precision 

weight based dosing were conducted to determine the outcome effects of different dosing 

regimens. 
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CHAPTER III 

STATISTICAL AND ECONOMIC IMPLICATIONS ASSOCIATED WITH PRECISION OF 

ADMINISTERING WEIGHT-BASED MEDICATION IN CATTLE 

 

Introduction 

The use of metaphylactics to treat incoming cattle in U.S. feedlots is a common method of 

preventative action against bovine respiratory disease (BRD).  Upon initial processing cattle are 

typically dosed based on estimated or actual lot average weights, rather than on an individual 

basis, to aid in reducing the initial processing time necessary. There are a multitude of drugs on 

the market approved for the use as metaphylactics; one of the newer drugs recently approved for 

the prevention of BRD is tulathromycin.  This new, unique, triamlide is thought to be far superior 

to many of the other drugs previous used in metaphylactic treatments.  There has been limited 

research done on the effects of accurate weight- based dosing in feedlot cattle and associated drug 

efficacy.   

The dilution space technique was has been used to evaluate the amount of water with 

which a substance equilibrates within an animal’s body.  This technique was used here to 

estimate the dispersion and coverage of tulathromycin. Based on the estimated coverage, an 

economic model and stochastic simulation were created to evaluate the potential outcomes of the 

different scenarios.  Economic analysis of the effects of precision weight based dosing were 

conducted using SIMETAR© to determine the stochastic dominance and economic effects of 

different dosing regimens. Risk aversion coefficients in conjunction with stochastic models are 
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effective ways to estimate the outcomes based on the probabilities of occurrence and the 

associated management decision based on risk levels. 

 

Materials and Methods 

Data were obtained from a commercial feedlot for different lots of cattle that were 

delivered from 2007 to 2009 where the feedlot had individual animal weights upon arrival (all 

weights herein are denoted in common U.S. industry standard notations i.e. 50 lb, 100 lb and 

1000 lb increments). This is not the case for most commercial U.S. feedlots. For this analysis, the 

minimum lot size considered was 30 animals, and the maximum lot size evaluated was 126 

animals. Summary statistics of each lot are shown in Table 3.1. Skewness (the relative inequality 

of weighting in the tails of the distribution) and kurtosis (a measure of the pattern of dispersion) 

were calculated.  The percent of animals falling within ten percent of the lot mean also were 

calculated to examine the relative average lot dispersion. Within lots, individual weight 

deviations were calculated from the lot mean for each animal. Additionally, because mean lot 

weights are often estimated at arrival rather than calculated overtly, the lot mean weight was 

rounded to the nearest 50 lb increment to represent mild overestimation and mild 

underestimation, respectively. For example, if the lot mean weight was 642 lb, then the 

overestimated mean was projected at 650 lb and the underestimated mean was projected at 600 

lb, etc.  

Tulathromycin (Draxxin®, Pfizer Animal Health, New York, NY), an antimicrobial 

commonly prescribed for treatment of respiratory disease, and also often applied en masse for 

control therapy strategies, was used to illustrate the impacts of uniform dosing versus exact  
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Table 3.1 Summary statistics of lot weight, variation, and distribution in regard to normal distribution assumptions and weight-
based medication efficacy. 

 Lot 

 A B C D E F G H I J 

Mean, lb 1006.97 639.395 661.658 631.285 329.3 973.636 584.602 470.185 1128.90 475.710 

St.Dev., lb 104.796 68.5685 75.8332 40.7709 57.6237 112.848 77.0361 103.564 112.674 87.5241 

95 % LCI 979.295 621.995 646.333 615.145 304.476 934.155 563.19 441.831 1093.55 451.566 

95 % UCI 1034.65 656.794 676.984 647.425 354.124 1013.11 606.015 498.540 1164.26 499.853 

CV 10.4070 10.7239 11.4610 6.45839 17.4988 11.5903 13.1775 22.0263 9.98088 18.3986 

Min 804 490 472 540 245 820 360 310 920 300 

Median 1000 640 670 630 320 936.5 578.5 460 1118 460 

Max 1350 775 825 740 500 1315 800 790 1425 740 

Skewness 0.69420 -0.0706 -0.19031 0.51703 1.11306 1.03767 0.12527 1.11230 0.55927 0.73142 

Kurtosis 0.93274 -0.5829 -0.32885 1.29276 1.78500 0.87316 0.99925 1.35153 -0.10762 0.84060 

10% of mean 0.66338 0.6484 0.61752 0.87803 0.43212 0.59083 0.55259 0.34993 0.68354 0.41355 

Count 75 81 126 35 30 44 68 70 54 69 
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dosing per body weight on product usage and cost overruns in arriving feedlot cattle.  Other drugs 

were examined for use as metaphylactics in this study, but tulathromycin offered the most 

complete label information.  It has become widely used in the industry as a metaphylactic and is 

the most cost influential medication based on price per mL of the labeled dose. Table 3.2 shows 

the break down of the various BRD treatment medications investigated.  The labeled dosage for 

tulathromycin is 1.1 ml per 100 lb BW, and per unit product cost was set at $4.43 per ml. Product 

prices reflect reported retail prices from January 2009. 

 

 

Table 3.2. Similar medications investigated for use as metaphylactics in feedlots.1 
 

Chemical            

Name Product 

 

Company          Price 

Price/ 

mL Dose Rate MIC90 (µg/mL) 

       ceftiofur 
crystalline free 

acid 
Excede Pfizer $163.95/100mL $1.64 1.5mL/100lb 

M. haemolytica 
.025 
P. multocida 0.004 

tulathromycin Draxxin Pfizer $2213.60/500mL $4.43 1.1mL/100lb 
M. haemolytica 2 
P. multocida 1 

enrofloxacin Baytril Bayer $194.95/250mL $0.78 3.4 - 5.7 mL/100 
lb 

M. haemolytica .06 
P. multocida .03 

oxytetracycline Tetradure Merial $125.00/500mL $0.25 13.6mg/lb (300mg/mL) 

tilmicosin 
phoshate Micotil Elanco 339.95/250mL $1.36 1.5mL/100lb M. haemolytica 

3.12 
1 Prices relative to January 2009. 
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 Three specific methods were employed to evaluate the effectiveness of administering the 

weight-based product: (1) estimation of product dispersion through the animal’s body in order to 

provide protection against pneumonia-causing bacteria using the dilution space evaluation, (2) 

estimation of the level of protection against illness provided to animals that receive varying 

percentages of recommended dose of weight-based , and (3) estimation of changes in expected 

illness and correlated costs associated with dosing animals at varying levels of their 

recommended weight-based dose.  These are described individually below. 

(1) Estimation of product dispersion in animal’s body from injection 

Below are the drug properties, assumptions and description of the methodology used to 

estimate the time associated with the effectiveness of the weight-based medication Draxxin®.   

  Concentration: 100 mg/mL 

  Dosing: 1.14 mL/cwt (1 mL/40 kg) 

Lung Capacity of Draxxin®  (from label description and Pfizer web site): 

Tmax (hours):  24 

Cmax (μg/mL):  4.1 

T1/2 (hours): 184 

MIC 90:  2 (μg/mL) 

The procedure used to estimate diffusion of the medication through the body in order to 

predict the concentration in the tissue is referred to as dilution space evaluation.  Kock and 

Preston (1979) used the urea dilution technique to estimate an animal’s body composition in vivo.  

In that study, urea was used as the chemical marker to determine how it diffused in the water of 

the animal’s body.  Urea space was defined by Kock and Preston (1979) as “the volume of water 
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with which the urea equilibrates.” The formula they used to determine the dilution space is 

provided below.  

 

Volume infused (mg) ÷ [Known Peak (mg/100mL) * LW(kg)] = Dilution Space (DS) 

 

This equation was used to estimate the area, as a percentage of body weight, that a drug is 

allowed to diffuse into. The peak concentration reported for Draxxin® was 4.1 μg/mL; therefore, 

concentration of the medication was assumed to be 0.41 mg/100 mL of product. 

 Volume infused and live weights were both calculated on an individual animal basis. 

The following weight classes of cattle were evaluated to derive a dilution space constant that 

could be used to predict medication concentration relative to recommended weight-based dosage:  

   

   1000 lb = 1140 mg/(.41 mg/100 mL*453.59 kg) = 6.1300 

   900 lb = 1020 mg/(.41 mg/100 mL*409.09 kg) = 6.0812 

   800 lb = 912 mg/(.41 mg/100 mL*363.64 kg) = 6.1170 

  700 lb= 798 mg/(.41 ml/100 mL*318.18 kg) =6.1171 

  600 lb= 684 mg/(.41 ml/100 mL*272.73 kg) =6.1170 

  500 lb= 570 mg/(.41 ml/100 mL*227.27 kg) =6.1182 

 

As a result, the dilution space constant of 6.1 can be used across all weight classes of cattle for 

tulathromycin.  The dilution space equation was modified to calculate the maximum tissue 

concentration. The equation below incorporated the dilution space value to estimate the 
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maximum concentration of the medication in the tissue when varying percentages of weight-

based medication were administered to a 1,000 lb animal. 

 

Volume infused (mg) ÷ [DS * Live Weight (kg)] = Max Concentration (N0) 

  

 Correct Dose = 1140 mg/ (6.1 *453.59 kg) = .41 

  10% reduction = 1026 mg/ (6.1*453.59) = .3708 

  20% reduction = 912 mg/ (6.1*453.59) = .3296 

30% reduction = 798 mg/ (6.1*453.59) = .2884 

40% reduction = 684 mg/ (6.1*453.59) = .2472 

50% reduction (half-dose) = 570 mg/(6.1*453.59) = .2060 

 

(2) Protection of animals receiving different levels of the weight-based recommended dose 

The equation: T1/2 = ln2 ÷ λ describes the half-life of a medication with a logarithmic 

decline in concentration; the half life of tulathromycin is reported to be 184 hours.  As a result:  

 184 = .693 ÷ λ  λ = Decay Constant = .003766 

 

And, the quantity remaining in the tissue at time t (Nt) can be estimated as: 

Nt = N0
-λt where 

 N0 = initial quantity to be decayed 

  λ = decay constant 

 t = time in hours 
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 As a result, the effective number of hours that animals would be protected from the 

correct weight-based dose of tulathromycin was calculated where the tissue MIC 90 value was 

maintained; the number of hours of protection were also calculated for animals receiving 90%, 

80%, 70%, 60% and 50% of the recommended weight-based dose.  The distribution is displayed 

in Figure 3.1. 

 

 

 
 
Figure 3.1.  The decrease in effectiveness of the medication Draxxin® through 368 hours 
following administration of a correct, weight-based dose and 90%, 80%, 70%, 60% and 50% of 
the correct, weight-based dose.  The dark blue horizontal line is the concentration of Draxxin® 
that provides tissue minimum inhibitatory concention of 90% (MIC 90) for M. haemolytica 
(causative bacteria of pnuemonia). 
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(3) Estimation of economic costs due to not using recommended weight-based dose 

The total economic loss associated with BRD in 1,000 feeder calves was estimated to be 

$13,895, not including feed prior to death, labor or handling costs (Snowder et al., 2006). With a 

stated morbidity rate of 14.4%, or 144 calves in the lot, the per incidence cost of sickness 

($13,895/ 144) came to $96.49 per sick animal; as a result $96.49 was the value assigned to 

represent the cost of a sick animal.  Cattle were assumed to be in processing chutes, presumably 

with a weigh scale in or directly attached to the head gate; the additional cost to collect the weight 

and dose the animal correctly would be minimal if any. Therefore, the costs to collect weight data 

were not associated with the total economic input cost.  

Based on the reported pharmacological values and morbidity rates for Draxxin®, the 

variation from individual animal weights from a commercial feedlot, and the described economic 

assumptions, a simulation model was developed that compared the costs associated with (i) exact, 

weight-based dosing, (ii) dosing where each animal received the dose associated with the average 

weight of the lot, (iii) dosing based on the lot average weight plus 50 lb, and (iv) dosing based on 

the lot average weight minus 50 lb. 

 Economic analyses utilized the actual weight distributions for the individual lots as well 

as an overall (all lots combined) distribution along with the previously described assumptions for 

costs and morbidity to randomly simulate 500 different lots of cattle with the same average and 

standard deviation of each individual lot.  The data analysis package Simulation and  

Econometrics to Analyze Risk (SIMETAR©) was used to create an economic simulation model 

 to evaluate the cost of the different dosing regimens. Each individual animal’s specific weight 

within the lots was created to be a stochastic variable, being empirically distributed between the 
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lot maximum and minimum, around the actual lot means and standard deviations.    The animals 

were assigned a uniformly distributed number, designated the sickness variable, to be the variable 

that would denote sickness at the end of the model.  An incoming sickness variable was assigned 

to designate cattle that were sick upon arrival to the feedlot, with the assumption that cattle that 

were not sick when they arrived and were treated initially would not become sick.  The coverage 

rate and adjusted coverage rate variables account for the amount of time the animal was covered 

from the given dose of Tulathromycin. Animals in the “Exact Dosing” lots were always assigned 

a perfect coverage rate of 1 or full coverage for their respective weight.  Animals that were 

overdosed were adjusted to a maximum of 1. It has not been shown that there is an additive effect 

of overdosing in coverage time. The morbidity index is the adjusted coverage rate multiplied by 

the sickness variable to account for the effects of drug on the animals.  The morbidity rate is the 

determinant of which animals remain sick after treatment within the lots.  For the purpose of this 

analysis, the morbidity rate was set at 0.25, in other words, if the morbidity index was below 0.25 

then the animal was determined to be sick.  The threshold value of 0.25 was based on estimated 

morbidity rates found by Pfizer in field studies of tulathromycin. It was considered to be an 

adequate assumption of morbidity based on other research estimates as well.  As discussed 

earlier, the cost of sickness was assigned a value of $96.49 per incident.  Each animal designated 

as sick was assessed the cost of sickness, and all animals were assigned treatment costs based on 

the amount of Tulathromycin administered.  Each lot was simulated 500 times using a Latin 

Hypercube simulation to observe the distributions and probabilities associated with each cost 

incidents.   Based on the simulation output, the 500 iterations run in SIMETAR© were graphed 

into cumulative distribution functions (CDF graphs) to show graphically the cumulative 
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probability of a specific price event occurring. A Stochastic Efficiency with Respect to a Function 

chart (SERF chart) was used rank the dosing options.  A relative risk neutral assumption was 

used when creating the SERF charts. Table 3.3 gives an example of the SIMETAR© simulation 

created to analyze the cost of sickness.  

 

Results and Discussion 

Based on the dilution space approach to evaluate time of drug effectiveness, it was 

estimated that Draxxin® administered at the recommended dosage to cattle weighing between 500 

lb and 1000 lb should be provided with 191 hours (7.96 days) of protection from pneumonia-

causing bacteria (where the lung tissue concentration should be above the MIC 90 level of 

protection).  Pfizer recommends that animals injected with Draxxin® should not be given another 

injection for 7 days, this recommendation supports the basis for the coverage time being 191 

hours.  Table 3.4 shows the estimated time of coverage that animals receive when dosed at 

various percentages (100% to 50% reduced in 10% increments) of the recommended weight-

based dose.  Due to the pharmacokinetic properties of Draxxin®, an animal that is administered a 

half-dose is only expected to be protected from pneumonia-causing bacteria for 8 hours, which is 

4.2% of the coverage time of the proper dose.  Therefore, it follows that there is a non- linear 

relationship between coverage time and dosing, and when using a dosing regimen accuracy can 

be a key factor in efficacy related problems. 
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Table 3.3. Example of model input parameters1 used to evaluate economic costs associated with weight-based medications.  

 

1This is the model of a lot with an average of 550 lbs. 
Weight - empirical distribution based on actual data and weight distributions from commercial feedlot 
Sickness variable - a uniformly distributed number used to adjust coverage rates and help add more variability or less 
consistency between like weights. 
Sick/not - 1 = sick, 0 = not sick. A 50% distribution based on Draxxin® studies showing approximately a 50% morbidity rate 
of a saline substitute.  
Coverage rate/Adjusted coverage rate - the coverage of the animals actual weight as a percent of the weight used in the 
evaluation (lot average, lot average +50 lb, lot average -50 lb) and, if over 1 it is adjusted to reflect only 1. It is unknown if 
additional dosing aids in prevention. 
Morbidity index - the morbidity index (between 0 and 1) is the adjusted coverage rate multiplied by the sickness variable to 
help account for the change in the percent coverage of the drug.  
Morbidity rate - this is a variable that determines what percentage of the morbidity index will be sick. It is currently set a 25%, 
or if the morbidity index is below .25 then the animal is determined to be sick in the simulation as seen in the first model. 
Morbidity cost - this is the cost associated with a sick animal set as a constant of $96.49. 
Dose cost - the amount of drug dosed by weight to the animal based on exact, average, average +50 or average -50. In this 
case, a lot average of 550 lbs 
Total cost - morbidity plus the dose cost.

Average(-50)  550 lbs         
Weight Sickness Var Sick/Not CovRate AdjCov Morb Index Morb Rate Morb Cost Dose Cost Total Cost 

600 0.255950 1 0.9192 0.919 0.2378 1 $ 96.49 $ 27.78 $124.27 
550 0.250885 0 1.0027 1 0 0 $         - $ 27.78 $ 27.78 
500 0.260620 1 1.103 1 0.2607 0 $         - $ 27.78 $ 27.78 
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Based on research by Evans (2005), pertaining specifically to the pharmacokinetic 

properties of tulathromycin, models using plasma concentration based time dependency 

(concentration duration above MIC) fail to adequately predict the observed efficacy due to the 

rapid dispersion rates of tulathromycin into tissue.   The time exposure to the pathogens in lung 

concentrations are a more adequate predictor of efficacy, but still does not capture the full 

advantages of the movement and targeting associated with the triamilide class of antibiotics. 

This model is based on the stated maximum lung concentrations related to the MIC 90 for M. 

haemolytica, and is therefore a conservative estimate of the actual full effective rate of 

tulathromycin. In a field trial the expected sickness should be less than that stated in the model 

overall, and much less for the exact dosing.  

 

 

Table 3.4.  Amounts of time cattle should be protected from pneumonia-causing bacteria (MIC 
90)1 when administered Draxxin® at recommended, weight-based dosage and varying deviations 
(90%, 80%, 70%, 60% and 50%) of dose.                                                                                             

% Max 
concentration 

reduction 

Time above 
MIC90 (hrs) 

% Coverage time 
vs. recommended 

% Less coverage 
time vs. 

recommended 

Hours of 
reduced 

protection vs. 
correct dose 

0 (100% dose) 191 100 0 0 
10 (90% dose) 164 85.86 14.12 27 
20 (80% dose) 133 69.63 30.37 58 
30 (70% dose) 98 51.31 48.69 93 
40 (60% dose) 57 29.84 70.16 134 
50 (half dose) 8 4.19 95.81 183 

 
1MIC 90 = Minimum inhibitory concentration to prevent 90% of bacterial proliferation. 
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Outputs from the economic simulations are presented in Figures 3.2 and 3.3.  This 

analysis indicates that the correct, weight-based dose cost less than any other dosing 

technique, showing the real economic incentive for more precise management.  The SERF 

value chart is a stochastic efficiency with respect to a function, or in this case, how much 

money would it take to match the next best alternative and make someone indifferent to the 

additional cost.  In this output, a reasonably risk neutral manager would always choose to dose 

at the exact weights, followed by the lot average weight minus 50 lb. The final two would be 

 

 

 
 
Figure 3.2. Cumulative Distribution Function (CDF) approximations from simulation study that 
show total costs associated with weight-based dosing scenarios using Draxxin® for exact weights, 
lot average weight, lot average weight plus 50 lb, and lot average weight minus 50 lb based on a 
group of 652 animals. 
 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

$25,000.00 $27,000.00 $29,000.00 $31,000.00 $33,000.00 

Exact Average Ave+50 Ave(50) 



 
 

 
 

32 

 

determined by the preferences of the individual manager since the lines intersect.   

The risk neutral manager in this case would rather dose at 50 lb below the lot average weight than 

50 lb over the lot average weight.  While surprising at first, this finding is logical when 

examining observed costs.  A manager in an attempt to reduce up front processing costs would 

under dose, seeing the initial observed costs of medications decrease.  The loss of value in 

sickness and quality may not be directly observable by the manager, therefore, is an overlooked 

loss value associated with the under dosing.   

 

 

 

Figure 3.3. Stochastic Efficiency with Respect to a Function (SERF) values associated with 
various weight-based dosing scenarios (exact weight, lot average weight, lot average weight plus 
50 lb, and lot average weight minus 50 lb) using an Absolute Risk Aversion Coefficient (ARAC) 
between 0 and 1 implying complete risk neutrality in decision management for a group of 652 
animals. 
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Table 3.5 shows the costs associated with dosing all animals at the lot average weight, 

dosing all animals at the lot average weight plus 50 lb, and the lot average weight minus 50 lb, as 

well as all animals together on a per animal basis.  These comparisons are made and interpreted 

most easily at the 50th percentile, and the results described below are differences at the 50th 

percentile.  Overall, dosing all cattle at the lot average weight costs $6.04 per animal more than  

dosing at the exact, correct dose. Dosing all animals at the lot average weight plus 50 lb costs 

$6.24 per animal more; dosing all animals at lot average minus 50 lb costs $4.01 per animal 

more.  These differences can be seen graphically at the 50th percentile on Figure 3.3 for the entire 

group of animals; the per animal values in Table 3.5 were determined by dividing the total lot 

costs by the respective number of animals.  It is observed, in certain instances, that dosing at a 50 

lb increment below the lot average weight can be cost beneficial.  The cost savings come from the 

high cost per mL of Draxxin®.  In lots E and F, the skewness aids in under dosing being the more 

cost efficient protocol.  The heightened concentration of animals around the mean in the under-

weight class is far outweighed by the large tail of animal weight distributions in the overweight 

class. 
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Table 3.5. Differences in cost from exact weight based dosing on (a) lot average weight, (b) lot average weight 
plus 50 lb, and (c) lot average weight minus 50 lb for Draxxin® on a per lot basis and a per head basis. 

   
 

Cost ($) per lot Cost ($) per animal 

Lot # 
Lot weight 
Ave, SD n Exact 

(a) 
Ave 

(b) 
Ave+50 

(c) 
Ave(50) Exact 

(a) 
Ave 

(b) 
Ave+50 

(c) 
Ave(50) 

A 1007, 105 75 -- 187.39   350.26  
         

257.37  --  2.50   4.67   3.43  

B 639, 69 81 -- 322.25 463.74  
           

66.23  --  3.98   5.73   0.82  

C 662, 76 126 -- 718.61   960.42  
         

642.25  --  5.70   7.62   5.10  

D 631, 41 35 --   13.81   141.68  
           

55.50  --  0.18   1.89   0.74  

E 329, 58 30 --  113.71   51.00  
           

70.35  --  3.79   1.70   2.35  

F 931, 113 47 --    39.76   178.47  
         

(29.12) --  0.85   3.80   (0.62) 

G 585, 77 68 --  211.73   263.24  
          

188.02  --  3.11   3.87   2.77  

H 470, 104 70 --  252.82  358.87  
  

(10.87) --  3.61  5.13  (0.16) 

I 1,129,113 54 --  122.35  276.11  
        

236.25  --  2.27   5.11   4.38  

J 476, 88 69 --  133.68  313.80  
         

139.57  --  1.94   4.55   2.02  

All 693, 242 652 -- 
     

3,938.81  
      

4,067.15  
      

2,613.77  --  6.04   6.24   4.01  
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Implications 

Producers many times assume that use of the average weight for a group of animals is 

good enough for administering weight-based medications.  However, whether or not it really is 

good enough depends upon how much variability exists in the group, and the associated risks 

from large deviations from the average.  Table 3.1 shows that even within small groups of cattle, 

substantial variation in weight exists, and use of exact weight is cost effective when administering 

weight-based products compared to other dosing schemes.  Under dosage of cattle limits the 

product effectiveness and increases the costs associated with morbidity.   

The differences in economic efficiency are directly related to the cost of the product, and 

the associated differences in effectiveness as well as the weight distribution.  Use of the product 

Draxxin® (a popular and expensive antimicrobial used in the U.S. cattle industry) at an exact, 

weight-based dose produced a cost savings of $6.04 per animal was predicted as compared to 

simply using the average lot weight for each animal’s dose.  Procedures employed here will work 

for any weight-based medication where the input parameters are known.   

The nature of this economic model is dynamic in that the input parameters can be altered to 

reflect any individual’s respective production setting, new antibiotic or optimal protocol given 

certain levels of variation.  Given known weights and distributions, and the parameters of the 

drug in question, this method could be used to determine at what point a given dosing protocol 

becomes interchangeable with respect to lot weights, standard deviations, or distributions.  

By reducing the associated costs of production, beef producers can potentially make their 

products more accessible to consumers. The own price elasticity of beef was said to be -.621, so 

any cost reductions observed can help to keep beef price relevant as compared to substitutes at 
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the retail level (USDA, 2008).  Producers can often get caught up in the added value of the 

marketing scheme while losing sight of the costs of production.  As with most commodity 

products, the beef industry is at the mercy of consumer demand.  Production costs need to be 

weighed just as heavily as added or retained value in production. 

In order for producers to evaluate and decrease costs of production, all potential impacts 

that stem from the use of weight-based products must be considered, not just simply cost of 

product and use of average weights of lots.  The use of individual animal weights to determine 

per head dosing of Draxxin® is more cost effective than using lot averages when there is typical 

weight variation, but especially when there is heightened variation.  This concept would appear to 

extend to all weight-based pharmaceutical products in general.     



 
 

 
 

37 

CHAPTER IV 

CONCLUSIONS 

 

 The amount of variation within groups of cattle is the main limiting factor  determining 

whether average dosing or deviations from the average is an appropriate dosing regimen.  Off 

label dosing potentially places limitations on the drugs’ efficacy, leading to additional costs 

associated with increased morbidity or heightens product waste and drives up production costs.  

The use of individual animal weights to determine per head dosing of Draxxin® is more cost 

effective than using lot averages when there is typical weight variation, but especially when there 

is heightened variation.   This concept would appear to be valid with the use of any weight-based 

pharmaceutical product.   

Using the least amount of any pharmaceutical in the most efficient manner in an effort to 

keep cattle healthy, while minimizing costs, is the ultimate goal in any production setting.  By 

reducing the associated costs of production, beef producers can potentially make their products 

more accessible to consumers.  Increased awareness of the additional benefits of precision dosing 

in weight- based medications is crucial to avoiding mandated action against producers.  
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