
  

 

 

 

LEARNING USABILITY ASSESSMENT MODELS FOR WEB SITES 

 

 

A Dissertation 

by 

PAUL ARNOLD DAVIS  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPY 

 

 

December 2010 

 

 

Major Subject: Computer Science 



  

 

 

 

LEARNING USABILITY ASSESSMENT MODELS FOR WEB SITES 

 

A Dissertation 

by 

PAUL ARNOLD DAVIS  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

Approved by: 

 
Co-Chairs of Committee,  Frank M. Shipman, III 
 Dick B. Simmons 
Committee Members, William M. Lively 
 Marietta J. Tretter 
Head of Department, Valerie E. Taylor 

 

December 2010 

 

Major Subject: Computer Science 



 iii 

ABSTRACT 

 

Learning Usability Assessment Models for Web Sites. 

 (December 2010) 

Paul Arnold Davis, B.S., The University of Texas at Austin; 

B.S., The University of Texas at Arlington; 

B.S., Texas A&M University; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Frank M. Shipman,  
                                                       Dr. Dick B. Simmons 

 

This research explores an approach to learning types of usability concerns 

considered useful for the management of Web sites and to identifying usability concerns 

based on these learned models.  By having one or more Web site managers rate a subset 

of pages in a site based on a number of usability criteria, the approach builds models that 

determine what automatically measurable characteristics are correlated to issues 

identified.  To test this, the approach collected usability assessments from twelve 

students pursuing advanced degrees in the area of computer-human interaction.  These 

students were divided into two groups and given different scenarios of use of a Web site. 

They assessed the usability of Web pages from the site, and their data was divided into a 

training set, used to find models, and a prediction set, used to evaluate the relative 

quality of models.  Results show that the learned models predicted remaining data for 

one scenario in more categories of usability than did the single model found under the 
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alternate scenario.  Results also show how systems may prioritize usability problems for 

Web site managers by probability of occurrence under context rather than by merely 

listing pages that break specific rules, as provided by some current tools. 
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CHAPTER I 

INTRODUCTION 

 

 The quality of experience that people have when visiting a Web site is a concern, 

and one challenge is to ensure the usability of the site.  Tools supporting identification of 

usability issues, such as the LIFT Machine by Usablenet, Inc. [NNG 2007], find 

exceptions to general rules about good usability.  These tools provide lists of potential 

problems to Web site managers who must then decide whether to change content or 

properties of pages. These approaches do not differentiate between the usability 

concerns of different sites – the list of usability issues is the same regardless of whether 

the site is used continuously by experts or occasionally by novices. While helpful, listing 

exceptions to rules may not convey their importance to those who manage or use the 

site. 

This paper describes a novel approach to identifying usability concerns for Web 

sites that takes into account the expected use of the site. The approach applies a machine 

learning technique to identify what characteristics of a site are important or unimportant 

for the expected context of use.  The approach extracts properties of Web pages that are 

indicative of usability issues.  The process begins by asking Web site administrators to 

rate the usability of a sample of pages according to a few criteria.  The sample of pages  

 
 
____________ 
This dissertation follows the style of ACM Transactions on Computer-Human 
Interaction. 
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is used as a training set, and the assessed ratings and quantitative measurements of  

properties are used to develop context-specific usability models.  Web site 

administrators may then apply a model to the remaining pages of the Web site.  The 

method identifies pages that are likely to have ratings for severity of issues with usability 

within ranges bounded by threshold values calculated with the prediction set.  The 

approach categorizes Web pages on the basis of their calculated severity of usability 

issues.  Predicted ratings for overall quality of usability are another kind of result. The 

method predicts ratings in five specific categories of usability.   

The system described in this study finds models by means of linear regression 

analysis with assessed ratings and measurements of properties.  Similar to the approach 

used by Ivory [Ivory and Hearst 2002; Ivory et al. 2000], the system quantitatively 

measures properties.  Examples of properties are number of words, number of hypertext 

links, and number of images.  The system architecture allows a wide range of properties 

to be measured. The current system, as described in this paper, applies the LIFT 

Machine and Ivory’s techniques [Ivory and Hearst 2002; Ivory, Sinha and Hearst 2000; 

Ivory et al. 2001] to extract and measure different properties.   

The method built into the system to learn usability models is independent of the 

quantitative properties used for prediction.  Web site managers may apply different 

quantitative tools to the analysis of Web pages of a site. This flexibility allows 

comparing probabilities of models resulting from properties measured by different tools. 

Our expectation is that different, expected contexts of use (e.g. middle school students 

vs. use domain experts) will be predicted by different sets of page properties.   
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Evaluation of this approach is based on the acquisition of Web page properties by 

applying multiple software tools to the analysis of pages from a single Web site.  The 

system applies the method with the objective of generating a list of pages ordered by 

estimated importance of usability problems.  The list serves to focus a Web site 

administrator’s attention first on those pages that most need it.  

This study contributes to previous work on techniques for automatically 

assessing the usability of Web sites [Ivory and Hearst 2002; Ivory, Sinha and Hearst 

2000; Ivory, Sinha and Hearst 2001] by considering examples of why people might use a 

Web site.  Participants in our study were given one of two scenarios of use. Each 

scenario is about a group of people who use the site to accomplish different goals.  The 

two groups of subjects then assess the usability of a set of Web pages.  Thus one 

research question is whether models generated based on a subset of the usability ratings 

under a specific scenario are better at predicting usability ratings for the remainder of the 

ratings collected for that scenario. 

 The next section provides additional details concerning our overall approach. 

This is followed by an overview of related work in the area of automated usability 

analysis of Web pages.  Chapter IV describes the system and its use.  Chapters V and VI 

cover guideline and experiments respectively.  Chapter VII presents results, and 

Chapters VIII and IX have the discussion and conclusions.  
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CHAPTER II 

APPROACH 

 

 As the number and size of sites grow [Gulli and Signorini 2005], so will the need 

for resources to assess the usability of sites, and automated tools have a role in meeting 

this need [Brajnik 2000a].  The approach for learning usability assessment models 

explores the potential for automating context-specific usability assessment at page level.  

Figure 1 is a diagram of the model generation process.  

 
 
 

 
 

Figure 1.  Model of development process. 
 
 
 

The current system uses two software tools to collect properties of Web pages.  

The first is developed for this study and computes properties described in Ivory et al. 

[Ivory, Sinha and Hearst 2000] to be correlated with rankings of quality.  The second 

software tool, the LIFT Machine by Usablenet, Inc. [NNG 2007], is commercially 
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available.  Among many capabilities, the LIFT Machine identifies properties associated 

with general usability [NNG 2007].  In practice, Web site managers would choose either 

of these tools, or both, in analysis of a site.  Future versions of the system would 

incorporate additional tools.  

A second data set consists of a limited number of human-generated assessments 

about the usability of Web pages from the Web site.  Human assessments are assumed to 

take into account expected tasks performed when accessing the Web site and anticipated 

communities of users.  To generate a model of value across the Web site, a sample of 

pages should include those that represent variety of activities, communities, and content 

of the site.  Currently, the approach assumes confirmation of variety by human assessors. 

Given these two data sets, linear regressions produce functions that map values 

of each property to effects on assessed usability.  This process determines which values 

of properties provide evidence of issues with usability and which have no evidential 

value when assessing usability. While the study uses techniques of linear regression, 

future work may explore other machine learning approaches [Bishop 2006]. 

This study builds models by testing for likelihoods that both predicted and 

assessed ratings, called a “pair,” are either both above or below a threshold or cut-off 

value.  This approach is a calculation of “precision.”  Precision as used in this study is 

simply a ratio and meant only for this study.  Although similar to other fields, such as 

information retrieval, the term as defined applies to this study.   

This study measures two kinds of precision.  Overall precision, or simply 

“precision,” is all relevant documents found among all retrieved documents in relation to 
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all retrieved documents [Baeza-Yates and Ribeiro 1999; Manning et al. 2008].  If a pair 

falls on the side (of a threshold) not under consideration, the pair is not counted as a 

successful match.  The second measurement of precision, called “precision at threshold” 

in this study, is the ratio of pairs on a side of a threshold to all retrieved documents that 

are also on that same side of the threshold.  As with overall precision, if the cut-off value 

comes between the predicted and assessed ratings of a pair, the pair is not counted as a 

successful match.  Predicted ratings are ordered sequentially.  The system builds models 

based on processed pages but does not adapt models as more pages are processed [Finlay 

and Dix 2002; Russell and Norvig 2003].  Figure 2 illustrates possible combinations of 

predicted and assessed ratings.  

Both kinds of precision are in terms of pairs that are either 1) above and at or 2) 

below a threshold.  A pair can be at a threshold as long as the cutoff does not separate 

the pair.  A page processed by the system will have measurements taken of properties as 

well as ratings assigned by heuristic assessment (“assessed rating”) and model 

(“predicted rating”.)  The approach may return all processed pages.  Alternatively, the 

approach returns a subset of all processed pages whose ordered, predicted ratings have 

either a floor or ceiling that is the threshold. 

As an example, in Figure 2, overall precision above the threshold is 2 pairs found 

to 5 pages retrieved, or 40%.  Precision at threshold above the cut-off is 2 pairs found to 

3 pages retrieved, or 67%.  For Web site managers, a precision of 40% means that 2 out 

of 5 pages may have issues with usability.  For developers fixing problems, precision at 

threshold of 67% means that 2 out of 3 pages may have issues.  The approach that 
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Figure 2.  Model of linear relationship and paired ratings. 
 
 
 
increases the number of successful pairs may reduce the time required to inspect and fix  

the designs of pages.  The approach seeks models offering highest precisions.   

The graph shows errors as Type I or Type II [Pallant 2007].  Type I errors are 

false positives.  A pair with predicted rating at or above threshold but assessed rating 

below is a false positive.  Type II errors are false negatives.  A pair with predicted rating 

below threshold but assessed rating at or above threshold is a false negative.  
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CHAPTER III 

RELATED WORK 

 

A variety of studies concern the creation and improvement of the usability of 

interfaces, and the literature offers a wealth of information about heuristics, guidelines, 

frameworks, critiques, and recommendations.  Published books in the field include work 

by Cooper [Cooper et al. 2007], Dix [Dix 1998], Nielsen [Nielsen 2000], Norman 

[Norman 2002], Shneiderman [Shneiderman and Plaisant 2010], and Tidwell [Tidwell 

2006].   

 

Heuristic Evaluation 

When evaluating a Web site for usability issues, usability inspection is an 

approach for evaluating the usability of user interfaces without those for whom the 

interface is designed being present [Nielsen 1994].  Usability inspection applies methods 

to assess usability in an inexpensive manner.  In general, there are four approaches to 

software inspection when assessing user interfaces:  automatic, empirical, formal, and 

informal.  Automatic assessment applies a program to a specification for an interface.  

Empirical methods have humans assess interfaces.  Two empirical approaches are 

heuristic evaluation and user testing.  Formal methods create or apply models to measure 

usability.  Informal methods rely on knowledge and skill of subjects to find issues by 

“rules of thumb.” [Nielsen 1992; Nielsen 1994]     
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Ideally, to test the usability of a product, people who actually use the product 

should participate in assessments [Ivory and Hearst 2001; Nielsen 1993].  If this is not 

feasible, others may stand in and perform usability inspections [Nielsen 1994].  Those 

who do participate may evaluate for conformance to a guideline, the contents of which 

may range from prescriptive statements to broad principles [Ivory and Hearst 2001].  If a 

goal is to generalize findings, then many measurements under different contexts of use 

with representatives of different types of users is a useful approach [ISO 1998].    

Heuristic evaluation is “a systematic inspection of a user interface design for 

usability” (p. 155) [Nielsen 1993].  With heuristic assessment, participants look for 

issues in design, development, production, and maintenance phases of the development 

process [Brajnik 2000b; Nielsen 1992; Nielsen 1994].  This kind of usability inspection 

has several characteristics.  A participant (called an “evaluator” by Nielsen [Nielsen 

1993]) works alone while evaluating a user interface.  Only after all participants have 

concluded assessments may they meet to review and consolidate their findings.  

Participants may record their observations in writing during assessments.  Another 

method is for an observer to write down their comments.  Capture of information by 

audio or video recordings is also possible [Nielsen 1993].   

Participants may explore as they wish and ideally revisit interfaces several times.  

This allows them to become familiar with the software and their interaction with 

elements of the interface.  They evaluate their experiences with regards to a list of 

heuristics, described as “general rules that seem to describe common properties of usable 

interfaces” (p. 158) [Nielsen 1993].  Other examples of heuristics related to usability and 
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accessibility are found those in Section 508 [ITAW 2010] and at W3C WAI [W3C 1999; 

W3C 2009; W3C 2010].  Nielsen described ten heuristics for usability for Web sites 

[Nielsen 2005]. 

During a heuristic evaluation, an observer should assist participants who 

encounter difficulties while using an interface.  Observers should answer questions about 

content as presented through user interfaces.  In contrast to user testing, observers do not 

have to record and interpret actions of those performing assessments.  Typically, each 

participant should have between one to two hours to complete a session [Nielsen 1993]. 

The products of heuristic evaluations are lists of issues found.  Participants 

should mark all heuristics for which violations were found.  Heuristic evaluation does 

not explain what must be done to eliminate issues.  However, by using the guideline in 

effect during assessments and list of issues discovered, it is possible to review the design 

of interfaces and apply improvements.  Heuristic evaluation after changes may reveal if 

issues are reduced or resolved [Nielsen 1993]. 

   

Usability and Context of Use 

Usability of software may differ under different contextual uses [ISO 1998; 

Nielsen 1993].  In the document ISO 9241-11:1998 regarding software metrics and 

quality [ISO 1998], a definition of context of use is:  “Users, tasks, equipment 

(hardware, software and materials), and the physical and social environments in which a 

product is used …” (p. 6) which contributes to a definition of usability, which is the “… 

extent to which a product may be used by specified users to achieve specified goals with 
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effectiveness, efficiency and satisfaction in a specified context of use” (p. 6.)   

Effectiveness, efficiency, and satisfaction are called components of usability [ISO 1998].  

This research includes flexibility and satisfaction among measurable attributes of 

usability.  

If testing usability by measuring attributes, the effect of context of use is 

meaningful.  Measurements of usability under one context of use may not apply in a 

different context.  If a goal is to generalize findings, taking many measurements under 

different contexts of use with representatives of different types of users is reasonable 

[ISO 1998].    

Requirements for usability of a product may vary [Brajnik 2004], and the 

expectations for usability may apply only under certain contexts of use [ISO 1998].  It is 

also possible that requirements are meant to apply in general and to all people [Brajnik 

2004].  During assessments, it is a matter of finding attributes of components of usability 

that contribute or detract from usability with regards to the guideline applied [ISO 1998]. 

 

Automated Usability Testing With Web Sites 

The life cycle of a Web site should include usability testing [Brajnik 2000b].  A number 

of authors have described practices used when designing Web sites, such as sketching 

designs, creating layouts of pages, and describing task completion steps for human 

interaction with software products [Ford and Boyarski 1997; Lynch and Horton 2008; 

Nielsen 2000; Shneiderman 1997; Troyer and Leune 1998].  Software development 

processes [Ivory 2003; Pressman 2005; Sharp et al. 2007] may include automated testing 
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for usability of Web sites during phases after design.  Testing by automated methods 

may take place during production, quality assurance, and maintenance phases [Ivory 

2003].  The intent of testing Web sites is to “exercise software with the intent of finding 

(and ultimately correcting) errors.” (p. 563) [Pressman 2005].   

 

Automated Assessment of Usability of Web Sites 

Automated assessment of the usability of Web sites is an underexplored area of 

research [Brajnik 2000a; Ivory and Chevalier 2002].  There are tools that test 

compliance with guidelines, such as Section 508 [ITAW 2010] and the W3C Web 

Accessibility Initiative [W3C 1999].  The LIFT Machine is an example of a tool with the 

capability for testing compliance with just Section 508 [ITAW 2010] and W3C WAI 

guidelines [NNG 2007].  To differentiate usability from accessibility, usability concerns 

interactions by people with Web sites whether or not they have disabilities.  

Accessibility addresses needs of those with disabilities and for whom assistive 

technologies may prove beneficial [W3C 2005].  If a Web site is to be usable by all, it 

should provide for those who require assistance in a manner that addresses limitations 

imposed by their disabilities [ITAW 2010; W3C 1999].  

If usability criteria are measurable, automation may allow analysis of usability.  

Decomposition of components of usability (effectiveness, efficiency, and satisfaction) 

allows counts of constituent attributes.  However, there may be no overall rule about 

what these attributes are or what they measure.  If values of an attribute contribute or 
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detract from use of a product in terms of a component, then measurements of those 

values may reveal potential issues. 

If testing usability by measuring attributes, the effect of context of use is 

meaningful [ISO 1998].  Measurements of usability under one context of use may not 

apply in a different context of use.  If a goal is to generalize findings, many 

measurements taken under different contexts of use with representatives of different 

types of users is a reasonable approach [ISO 1998].  

For example, the Web Content Accessibility Guidelines (WCAG) are useful to 

those who evaluate whether Web sites provide accessible content [W3C 2008].  The 

guidelines give guidance about implementation of requirements, such as use of 

alternative text for images in Web pages [W3C 2005].  Implementation of this 

requirement follows technical specifications, such as correct use of the ALT attribute in 

the HTML protocol [W3C 2005].  If the requirement is not implemented, it is possible to 

detect the exception.  For example, if all images are to have values for ALT, an 

automated method may detect those that do not.  However, even if the requirement is 

fulfilled, implementation may not produce a usable product.  An image may have a 

textual value for ALT, but the value may not be relevant to the content of the image.  

Consequently, automation may not correctly detect all issues.   

If a Web manager is familiar with the Web site, it is possible to place a boundary 

around intended use of the site and choice of automation.  Use of automated tools is not 

indicated if analysis “requires interpretation (e.g. usage of natural and concise 

language)” of content or “… assessment of relevance (e.g. ALT text of an image is 
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equivalent to the image itself)” (p. 229) [Brajnik 2004].  In this case, a technology might 

not detect discrepancies in the planned use of a site.  In some situations, the use of 

automation may give confusing results, and human intervention may be needed to 

interpret what was the planned use of interfaces.  Even then, erroneous conclusions may 

result [Suchman 1987].   

 There is concern that automated methods cannot analyze Web sites as well as 

humans [Brajnik 2004; Nielsen 1993].  This concern would extend to assessments of 

Web sites under different contexts of use.  A tool like the LIFT Machine may process 

thousands of Web pages, analyzing each for properties associated with usability and 

doing so tirelessly.  However, it is possible that, “everything that has to do with human 

interpretation and context of use is likely to be poorly machine testable.” (p. 230) 

[Brajnik 2004].  This study explores how well a semi-automated process might combine 

human interpretations of usability with automated analysis under different contexts of 

use.   

 The approach of this study tests interfaces of existing Web sites to build models.  

This differentiates it from methodologies that build contextual adaptations into Web-

based applications.  These methodologies apply structural models about entities and 

relationships with the purpose of enabling interfaces to change in anticipation of 

contextual needs and preferences of users [Kapitsaki et al. 2009].  Approaches have used 

UML in studies such as WebML [Ceri et al. 2000] and a model-driven approach for 

mobile systems [Kapitsaki, Kateros, Prezerakos and Venieris 2009].  Object-oriented 

methods, such as OO-HDM [Schwabe and Rossi 1998], facilitate authoring of 
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navigation and interface elements that map onto various environments.  Instead, this 

study concerns analysis and evaluation of usability of interfaces to Web sites under 

contexts of use. 

 

Ivory’s Categories of Automated Evaluation 

Ivory [Ivory 2003; Ivory and Hearst 2001] proposed a taxonomy of six 

automated evaluation methods grouped into Method Classes.  This study continues with 

this taxonomy and contributes a new approach. 

The Method Classes are testing, inspection, inquiry, analytical modeling, and 

simulation.  The sixth Method Class was named for the Web TANGO project.  Each 

Method Class contains a Method Type, Automation Type, and Effort Level.  Within 

each Method Class is a Method Type that describes methods of evaluation, or “how an 

evaluation is performed” (p. 18) [Ivory 2003].  An Automation Type describes a level of 

automation by an evaluation method.  In Ivory’s classification, automation types are 

none, capture, analysis, and critique.  None means no automation performed.  Capture 

indicates automated recording of data, such as log data.  Analysis indicates an approach 

that predicts issues.  Critique describes automated suggestion of improvements.  By 

Ivory’s schema, Effort Level describes how much human intervention is a part of an 

evaluation method.  The levels are minimal (no human use of interface), model 

development (creation of interface by human is necessary), informal use (interaction to 

complete tasks is unrestricted), and formal use (interaction constrained to complete 

certain tasks.) [Ivory 2003]   
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The contribution of the approach and system described by this study is based on 

the Model Class called Web TANGO, which is an approach that applies statistical 

analysis to find models (“profiles”) [Ivory 2003] to predict rankings for a site or pages.  

In contribution, this study builds models at page-level only and under context of use of 

how people might actually use a site.  This study contributes the following:   

• Contribution to the Method Class, Web TANGO. 

• Examination at page-level by heuristic assessment [Ivory, Sinha and Hearst 

2001]. 

• Test if usability differs if different groups of people interact with the same site 

under different scenarios of contextual use. 

• Test if usability predicted by models differs if the models incorporate evaluations 

of interfaces by humans under different contexts of use.   

The next subsections list software tools and describe examples of tools by Model 

Class.  Following this, there is an examination of differences between the approach of 

the Web TANGO project and the contribution of this study. 

 

Usability Testing 

In usability testing, participants examine and collect data about how people use 

Web sites while completing tasks and then critique the usability of the sites [Ivory 2003].  

An automated approach may analyze log files, collect data generated during use, or 

measure activity at Web servers.  Examples of tools used to analyze log files are QUIP 

[Helfrich and Landay 1999], KALDI [Al-Qaimari and McRostie 1999], and WebQuilt 
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[Hong and Landay 2001].  Tools that measure usage are AWUSA [Tiedtke et al. 2002] 

and LumberJack [Chi et al. 2002].  There are commercial tools that monitor activity at 

Web servers.  Examples are SiteAngel (part of Performance Manager Express) from 

BMC Software [BMC 2010; Hulme 2000] and Resource Analyzer from IBM [IBM ; 

IBM 2010]. 

 

Usability Inspection 

Inspection techniques carried out by participants include heuristic assessment 

[Nielsen 1994] and cognitive walkthroughs [Blackmon et al. 2002].  Automated methods 

may apply a number of tools to count features associated with usability of Web sites.   

A-Prompt is an example of such a tool.  It tests the conformance of Web sites to 

W3C WAI Web Content Accessibility Guidelines 1.0 [W3C 1999] and Section 508 

[ITAW 2010].  The tool also attempts to correct properties of selected exceptions 

[ATRC 2010].  This tool is only one of many that test compliance with the W3C WAI 

and Section 508 guidelines.  The W3C WAI Web site lists the A-Prompt tool plus many 

others [W3C 2006]. 

 If a tool identifies Web pages as having attributes (properties) whose values are 

associated with usability problems, it is possible to inspect those pages more closely.  It 

is not always necessary to inspect all such Web pages.  For example, it is possible for a 

tool to disallow certain values for properties [Brajnik 2004].  Once disallowed, only 

corrections of other exceptions are required.  An example is an ALT attribute of an 

image that is blank instead of containing text that appropriately describes the image.  
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The same property might have values that reduce usability, for example, when content 

incorrectly describes an image.  Because the values are not disallowed, no attention is 

brought to correct the issue.   

 Knowledge-based Web Automatic Reconfigurable evaluation with guidelines 

optimization (KWARESMI) is an automated tool that uses encoded usability guidelines 

to test sites for issues.  It applies guidelines encoded as HTML elements in the analysis 

of Web pages, and it allows reconfiguration for different guidelines by testing different 

sets of HTML elements.  Encoding of the guideline is done by means of a Guideline 

Definition Language (GDL).  The approach allows selective application of guidelines, 

and this in turn expands the flexibility of the usefulness of the tool when analyzing 

different kinds of sites.  KWARESMI relies on humans to choose which guideline to 

apply.  The tool can generate reports and identify severity of issues [Beirekdar et al. 

2005; Beirekdar et al. 2002; Beirekdar et al. 2003]. 

 

Usability Inquiry 

 Questionnaires and surveys are tools used in Usability Inquiry.  Evaluation of 

results requires human intervention, and this is a field of automated usability analysis 

that requires more research.  An example of a tool that is useful for making 

questionnaires is NetRaker [NetRaker 2010].  It allows remote observation by a person 

of a display screen through which another person interacts by means of a computer.  The 

tool allows markup by both parties and is capable of recording test sessions.  
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Analytical Modeling 

 Analytical modeling allows prediction of usability issues by using models of how 

users interact with interfaces while completing tasks.  Examples of approaches in 

analytical modeling are GOMS [Card et al. 1983], GLEAN [Kieras et al. 1995], 

WUSAB [Atterer 2008; Atterer et al. 2006], and USAGE [Byrne et al. 1994].    

 GOMS (Goals, Operators, Methods, and Selection Rules) is a model that 

describes essential interactions that users have with a user interface while completing 

tasks to reach a goal [Card, Moran and Newell 1983].  A model consists of one or more 

methods that consist of operators (procedural acts) that users perform (such as pressing a 

key on a keyboard.)  Selection rules determine the method to be followed as a user 

interacts with an interface to complete steps [Card, Moran and Newell 1983].  There are 

a variety of GOMS models [John and Kieras 1996].  For example, the Keystroke-Level 

Model predicts time needed to complete a sequence of keystrokes to accomplish a task 

[Card et al. 1980].  GOMS requires knowing sequences of tasks and the resulting goals 

possible by task analysis.  Strength of the modeling approach is that it allows predictions 

of numbers and efficiencies of procedures to follow as a result of constraints placed on 

what users must do to reach goals.  USAGE was an approach to automate construction 

of formal GOMS models through use of interfaces [Byrne, Wood, Foley, Kieras and 

Sukaviriya 1994].  These models typically have limitations when users interact with 

interfaces that are not in a manner described by models [Kieras, Wood, Abotel and 

Hornof 1995]. 



 20 

 GLEAN is a system that automates application of GOMS models [Kieras, Wood, 

Abotel and Hornof 1995].  The system reads a Model as input.  The Model is written in 

the Natural GOMS Language (NGOMSL) [Kieras 1997] and predicts how long it will 

take users to perform steps and reach goals.  The study seeks to reduce the time needed 

to predict usability, provide an easy way to process scripts written with NGOMSL, and 

allow reuse of models.  However, a limitation of GOMS constrains the use of GLEAN.  

GOMS does not address the effects of context of use, and it does not address well any 

mistakes that humans make [John and Kieras 1996; Kieras 1997]. 

 There are approaches that use languages to describe interaction.  WUSAB is an 

approach that tests conformance of interfaces to Web pages with requirements [Atterer 

2008; Atterer, Schmidt and Hussman 2006].  It does so by adding models of context and 

users to integrated development environments.  Models written with UML describe page 

layouts for navigation and presentation as well as constraints, such as response time.  

The models describe users, the environment, and browser.  As development proceeds, a 

validator detects exceptions to models, and developers address exceptions found, such as 

corrections with presentation or navigation.  Models of users come from information 

collected about the group of people for whom the application is intended [Atterer 2008] 

[Atterer, Schmidt and Hussman 2006].   

 A method by Vanderdonckt and Beirekdar [Vanderdonckt and Beirekdar 2005] 

applies a Guideline Definition Language (GDL.)  A GDL describes a formal guideline.  

An evaluation engine parses Web pages and compares measurements of properties to the 

guideline.  The design of the system proposed in this study may also test different 
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guidelines but it does so through heuristic assessment.  Although use of GDL allows 

flexibility with the guideline applied, it does not evaluate people under context of use.   

 Analytical approaches have also tested whether features of Web sites correlate 

with measures of those sites in order to compute ratings of comprehensibility of content 

[Ma et al. 2007; Yan et al. 2007].  The approach used by Yan [Yan, Zhang and Garcia 

2007] collected data for 191 metrics from 800 sites, and four librarians evaluated 25 to 

50 sites for “Information Value, Information Credibility, Media Instructional Value, 

Affective Attention, Organization and Usability” (p. 194) [Yan, Zhang and Garcia 

2007].  After multiple regression, the resulting model had 81 features with an adjusted 

R2 of 0.437.  The study proposed an analytical method of computing ratings of Web site 

comprehensibility as might benefit those who must quickly decide whether to read 

content returned from searches of the Web.   

 

Simulation 

 Simulation is an approach that simulates how users interact with the Web by 

means of models.  Bloodhound [Chi et al. 2003] is an approach that models users by 

finding similarities about content across Web pages.  It associates content with log data 

and attempts to predict whether users will find information while navigating among 

pages.   Models represent users who move through the site and attempt to complete tasks 

and reach target pages.   

Bloodhound applies the concept of “Information Scent” [Chi et al. 2000].  

Content and other clues at a hypertext link may give information about content at the 
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distal end of the link.  Users decide whether to follow the hypertext link based on the 

content at the proximal end.  The approach simulates interaction and tests whether 

changes to information scent may improve overall experience.  

 

Web TANGO Method 

In a series of studies, Ivory et al. [Ivory and Hearst 2002; Ivory, Sinha and Hearst 

2000; Ivory, Sinha and Hearst 2001] proposed and tested automated methods that 

statistically predicted whether or not sites would rank highly for quality. They found that 

several measurements of properties of pages correlated with rankings of quality.  

Fundamental to Web TANGO was measurement of properties of elements that comprise 

interfaces to Web pages.  Later work by Ivory proposed design patterns arising from a 

longitudinal study of properties at sites receiving high rankings for quality [Ivory and 

Megraw 2005].   

 Web TANGO is an approach that applies statistical analysis to assess whether a 

site has characteristics that would rank it among those with “good” or “poor” quality.  

Web TANGO measures formats, compositions, and properties (such as count of words 

in body of page, count of hypertext links, size in bytes of Web page and images, number 

of images in a page, and so forth) of Web pages from hundreds of sites [Ivory and Hearst 

2002; Ivory, Sinha and Hearst 2001].    

Ivory et al. described quality as that which gives “value to users, content and 

design” in contribution to “popularity” of a product (p. 4) [Ivory, Sinha and Hearst 

2000].  They selected 463 informational sites and sources of review, one of which was 
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the Webby Awards [IADAS 2010]. They separated sites into categories of those 

receiving favorable rankings from those that were unranked. With Web TANGO, they 

measured properties of pages in both categories. As a result, they produced a linear 

regression model with multiple predictors that categorized sites through the use of un-

standardized coefficients of properties (Link Count, Reading Complexity, Text 

Positioning Count, Color Count, Page Size, and % Body Text.)  Their multivariate linear 

model had an F statistic of 4.369 (p < 0.001) [Ivory, Sinha and Hearst 2000]. 

Ivory et al. [Ivory and Hearst 2002] continued their work into automated analysis 

of Web sites by testing thresholds with ratings. They arbitrarily chose cut-offs of an 

upper 33% for top-ranked and a lower 33% for bottom ranked sites.  This partitioned the 

distribution of ratings into categories of good, average, and poor.  Their software tool, an 

expanded version of Web TANGO, collected 157 properties.  Using 333 sites evaluated 

in the 2000 Webby Awards [IADAS 2010], they processed sites into six different topical 

categories (education, community, living, health, services, and finance.)  They then 

applied a decision tree classifier and generated 144 rules based on properties that 

correlated significantly with rankings.  The classifier obtained an accuracy of 94% 

overall for correctly classifying sites [Ivory and Hearst 2002].   

To test the usefulness of their model to find issues so that they could be 

corrected, Ivory et al. [Ivory and Hearst 2002] applied the classifier against a small Web 

site to do page-level analysis.  It measured several properties and identified the site as 

having a low quality ranking.  They edited the properties identified by the classifier and 
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retested the pages.  This time the classifier ranked the site higher.  The site they had 

tested was small (9 pages) and in the contextual category of Yahoo! Education/Health.   

 

Context of Use 

A goal of this study is to support Web site managers.  Analysis of a site is at 

page-level only.  This requires finding models that rate pages for their potential for 

issues by category of usability.  The study includes Overall Usability in analyses.  

Second, the models are built under a scenario of contextual use.  This supports an 

expected use that Web site managers may have of their site.  This is in contrast to the 

approach used with Web TANGO, which built general models that ranked sites by non-

usability categorical topic [Ivory and Hearst 2002].  In this study, the approach is to 

analyze stylistic elements used in the design of pages with regards to intended audiences 

by heuristic assessments.   The approach is then to build models to predict ratings that 

might be given in heuristic assessments.  

 Other approaches have included context of use in analysis of Web sites.  

USIXML is an approach that encodes the design of Web pages into XML.  Likewise, 

USIXML stores information about context that includes properties of the environment, 

the intended users of the site, and computational equipment [Limbourg and 

Vanderdonckt 2004].  WebML (Web Modeling Language) also allows encoding of 

context of use.  Similar to USIXML, contextual information includes descriptions of the 

user, place of use, and device used.  WebML was described as not being useful for 

capturing information about goals of users [Ceri et al. 2007].   
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CHAPTER IV 

DESCRIPTION OF SYSTEM 

 

As described previously, building context-specific models relies on extracting 

page characteristics (properties) and collecting human assessments (ratings) for a set of 

Web pages (training set).  The section has descriptions of the details of this process and 

how results of the learned model are compared to human assessments by testing an 

additional set of Web pages (prediction set).  Figure 2 shows a design of the system. 

The approach is only partially automated.  The design of the system is modeled 

after a generic search engine [Croft et al. 2009].  The system contains modules that parse 

Web pages, and each module is called a Metric Collection Tool (MCT.)  In this study, 

the system applies two different MCTs in Metrics Processing.  Each collects data for 

non-intersecting sets of properties.  By statistical analysis, we find measurements and 

ratings that correlate (p < 0.05) and compute likelihoods and accuracy.  In the design, 

Rating & Ordering rates and orders pages for managers.  

The Web Page Metric Analyzer, or WPMA, is a MCT that parses Web pages for 

fifteen properties.  The fifteen include eleven selected for use by Ivory et al. [Ivory, 

Sinha and Hearst 2000] in their studies.  Inspection of pages found these fifteen 

properties amenable to quantitative analysis.  Implementation of the WPMA was 

specific to the Web site chosen; a more general parser would be needed to capture the 

same properties from other Web sites. The second MCT used is the commercial product 

called the LIFT Machine [NNG 2007].  Usablenet, Inc. had associated properties with a 
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guideline about good practices for general usability [NNG 2007].  The LIFT Machine 

tests for use of these properties.   

In this study, statistical analysis requires intervention by a practitioner.  SPSS v. 

15 is used in Statistical Analysis [SPSS 2006].  Although the models are simple, a 

practitioner applies models, built with a training set, to a prediction set and evaluates 

accuracy and precision.  Analysis of results referenced several sources for methods to 

test for correlations, t tests, normal distributions, and other statistical measures [De 

Veaux et al. 2008; George and Mallery 2008; Neter 1996; Neter and Wasserman 1974; 

Pallant 2007; Shannon and Davenport 2001; Tabachnick and Fidell 2007].   

 

Overview of the System 

Figure 3 is a data-centric view of the architecture of the system [Fowler 2004].  

This study used HTTrack [77].  All pages would be visually inspected, and those that 

were advertisements or simply files of Flash animations would not be used.  The study 

would only use files with an extension of .html.  With regards to the organization of the 

site, relationships found between assessed ratings and measurements of depth of path 

traveled would use a computed number of anticipated clicks [NNG 2007].  The study did 

not collect data about depth of path from symbolic representations, as might be 

displayed on pages as breadcrumb trails [Nielsen 2000].  The study would also not move 

files from their original locations within the structure of the site. 
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Figure 3.  Data-centric design of system. 
 
 
 

The Web Site 

The study selected an informational site about the NASA Hubble Space 

Telescope that is made available at http://hubblesite.org through the Space Telescope 

Science Institute (STScI) [STScI 2010]. The International Academy of Digital Arts and 

Sciences (IADAS) recognized the site as Best Science Website during the Webby 

Awards in 2007 [IADAS 2010].   

The crawler, HTTrack Website Copier, version 3.41-3 [Roche 2007], 

downloaded the Web site from hubblesite.org on August 20, 2007.  It copied all files to a 
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depth of three levels starting with the home page, and all files went to local storage.  The 

approach only analyzed Web pages with file extensions of .html.  Analysis was of static 

pages and did not count or analyze scripts or objects embedded in pages. 

 

Web Page Metric Analyzer 

The Web Page Metric Analyzer (WPMA) quantitatively measures certain properties 

of Web pages.  Examples of properties include counts of HTML elements (e.g. number 

of headings, links), number of words in the body of the page, and sizes of image files.  

WPMA measures the following fifteen properties.  An acronym follows a description of 

each test. 

1. Number of all words displayed on a Web page (TW) 

2. Number of words in body of Web page (BW) 

3. Number of words not in body of Web page (NBW) 

4. Number of words emphasized by bold face or italics (EW) 

5. Number of text areas with a non-white background, with borders, with horizontal 

rule, or in a list (CLU) 

6. Number of times blocks of text are not positioned flush left (NFL) 

7. Number of unique colors of fonts used for all words (FC). 

8. Number of internal and external hypertext links (LNK) 

9. Number of images embedded in a page (not in scripts, applets, or objects) (IMG) 

10. Percentage of Body words emphasized by bold face or italics (PEBW) 

11. Percentage of Non-body Words to Total Words (PNBW) 
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12. Total of sizes of files of images used in a Web page (TIFS) 

13. Total of Web Page File Size, Total of Image File Sizes, and size of file of 

Cascading Stylesheets for a Web page (TAMFS) 

14. Size of file of Web page only without including sizes of files of images or CSS 

(WPFS) 

15. Percent of Image File Size to Web Page File Size (PIWPFS) 

 

Although the WPMA tests for differently colored fonts by inline style and 

deprecated color tag, it does not test for change of font color by CSS files.  

Consequently, analysis did not include counts of font color.  The software tool tests 

properties associated with Web sites judged to exhibit good or poor quality [Ivory 2000].  

In addition, the design of the WPMA measures properties that are not collected by the 

LIFT Machine. 

 

The LIFT Machine 

The LIFT Machine contains rules to measure general usability as applicable to 

people with and without visual and mobility limitations [Ivory and Chevalier 2002; 

NNG 2007].  The software tool generates assessments about the usability of Web pages 

by applying 27 tests in five categories [NNG 2007].  The categories and rules are as 

follows: 
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Effectiveness 

1. Possible misspelled words detected 

2. Errors possible from incorrect parsing of HTML page 

3. Page should have only one BODY element 

4. Do not use IFRAME in Web page 

5. Do not use the MARQUEE element 

6. Do not use the SPACER element 

Flexibility 

1. Frames should allow resizing 

2. Make mail addresses explicitly stated 

Navigability 

1. Auto-loaded pages should have backward hypertext links duplicated 

2. Auto-redirected hypertext links pointing forward to a visited page should be 

duplicated 

3. No external hypertext links should be broken 

4. In each Web page make it possible to return directly to the home page 

5. Duplicate image map links in text 

6. Give each hypertext link a label 

7. Link to relative URL appears invalid 

8. No local hypertext links should be broken 

9. Display a logical path from the home page to the current Web page 

10. A Web page should not have a hypertext link pointing back to itself 
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11. Use standard colors for hypertext links 

12. Have appropriately targeted hypertext links in frames 

Satisfaction 

1. Check that the attributes of HEIGHT and WIDTH of a GIF image are the actual 

height and width of the image 

2. Do not use the BLINK element 

Efficiency 

1. Image element should have size attributes 

2. Do not put pages deeply within the site and away from the home page 

3. Do not have unused map elements 

4. Keep the size of the page small 

5. Keep the average number of clicks to reach all pages in the site low 

 

Descriptions of the Usability package, version 1.1, incorporated in the LIFT Machine, 

version 1.9, 2004-2005, by Usablenet, Inc. listed these tests and their descriptions [NNG 

2007]. 

 

Scenarios of Contextual Use 

 The study had two groups of subjects analyze the same pages of a Web site under 

two scenarios of contextual use.  Each scenario described people who require 

information from the site but for different purposes.  The following are descriptions used 
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in experiments with participants.  Scenario No. 1 presents the following description to 

one group of subjects. 

 

“Assess the Web site of the NASA Hubble Space Telescope for use by middle 

school students.  These students attend classes in physical science or environmental 

science.  They all study the exploration of space.  Their ages are between 12 and 15, 

and there are both boys and girls.  All are familiar with how to use a Web browser.” 

 

The other description, Scenario No. 2, presents the following situation to the second 

group. 

 

“Assess the Web site of the NASA Hubble Space Telescope for use by astronomers. 

These scientists search for information, photos, and illustrations regarding 

astronomical phenomena and scientific instruments.  They publish to scientific 

journals.  Their ages are between 25 and 65, and there are both men and women.  All 

are familiar with how to use a Web browser.  Their academic credentials include a 

Masters or Ph.D. in physics or astronomy.”      

 

Precision and Accuracy 

As described in the chapter “Approach,” there are two kinds of precision defined 

and applied in this study.  They are called “overall precision” and “precision at 

threshold.”  For both kinds, the numerator is the count of pages having both predicted 
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and assessed ratings, i.e. a “pair,” on the same side of a threshold.  For precision at 

threshold, the denominator is the count of all predicted ratings that fall on the same side 

of the threshold as those counted for the numerator.  Overall precision uses the total 

number of predicted ratings, which also equals the total number of pages tested.     

To demonstrate how the two kinds of precision might be used, a manager applies 

a model that predicts ratings for severity of issues with Effectiveness.  Developers are to 

inspect the use of the property (the predictor in the model) in all pages rating at or above 

the threshold.  For example, a manager might find overall precision to be 25% and 

instructs developers to investigate those pages placed above the threshold.  Examining 

only those pages with pairs at or above the threshold, developers find precision at 

threshold to be 75%.  This means that 3 of 4 pages may have usability issues, and the 

system provides a list with pages in descending order by predicted severity of issue.   

Accuracy is a measure of the mean of absolute values of residuals.  A residual is 

the absolute value of the difference between assessed and predicted ratings for a 

measurement of property.  If the mean of residuals is zero, the model is perfectly 

predictive [Badi et al. 2006; Neter 1996].  A perfectly predictive model would predict 

the assessed rating in the category correctly for every page tested.  If comparing two 

models in the same category, the one with a smaller mean has higher accuracy. 

The approach uses the mean of ratings predicted by a model as the threshold.  .  

The decision to use the mean of predicted ratings was arbitrary.  Consequently, two 

models might have different thresholds.  In this study, there is no interpretation of a Web 

page as having “good” or “poor” usability based on how many ratings fall above or 
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below a threshold.  The study proposes an approach that allows users, such as Web site 

managers, to set their own requirements for thresholds.  

This study tests if it is possible to find models in each category as well as for 

Overall Usability.  In this early study, this is done with a single predictor.  This study 

also tests whether it is possible to build multivariate models for Overall Usability.  

Practical application of the approach would test for other multivariate models in the 

categories of usability.  If more than one model appears in the same category, the study 

compares precision and accuracy.  Managers may choose which model to apply based on 

their needs for testing.     



 35 

CHAPTER V 

GUIDELINE 

 

 Subjects assessed Web pages from the selected site by identifying and rating 

severity of issues. They also rated pages for overall usability. They applied a guideline 

having five categories of usability, and the approach added a description for Overall 

Usability. Except for Overall Usability, the categories and their descriptions come from 

documentation available from the UsableNet Web site (http://www.usablenet.com), in 

the Describe Package under “Resources,” for the LIFT Machine, version 1.9, 2004-2005. 

(Access requires permission from UsableNet, Inc.).  Subjects give a comprehensive 

rating, called the “assessed rating,” in each category as well as Overall Usability for the 

Web page they review.  The following lists these and descriptions.         

1. Effectiveness – Persons visiting the site should be able to accomplish their goals, 

such as finding information. 

2. Flexibility – There should be more than one way to reach a goal.  This also 

means that people should be able to use the site if the page appears in browser 

windows of different sizes. 

3. Navigability – People should find it easy to learn where they are in a site as well 

as how to go elsewhere within the site.  They should be able to remember where 

a page is if they return to the site. 

4. Satisfaction – People should not tire or become upset when using a site.  They 

should find the experience satisfying and satisfactory. 



 36 

5. Visitor Efficiency – People should find that the ease of use and performance of 

the site are satisfactory.  This can include obtaining pages, determining if those 

pages are useful, and finding hypertext links to other pages. 

6. Overall Usability – the quality of usability of a Web page overall. 

 

For categories, subjects rate pages with a scale from 0 (no issues) to 5 (severe issues).  

They also rate Overall Usability with a scale from 1 (very worst) to 10 (very best).  
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CHAPTER VI 

EXPERIMENTS 

 

Experiments took place in the spring semester of 2009 at the Evans Library 

Annex on the campus of Texas A&M University.  To evaluate the approach, the study 

addressed the following questions: 

1. Do groups of people give different ratings for categorical usability and Overall 

Usability of Web pages under different scenarios of use? 

2. Do models have precision greater than 50% in categories of usability or for 

Overall Usability? 

3. Are precision and accuracy different for models in the same category or for 

Overall Usability under the same scenario of use? 

4. Are precision and accuracy different for models different in the same category or 

for Overall Usability under different scenarios of contextual use? 

 

Twelve participants were randomly divided into two groups of six.  The groups 

assessed the same downloaded version of HubbleSite [STScI 2007].  Each group 

performed assessments by applying different scenarios.  

All subjects were graduate students with the Department of Computer Science 

and Engineering. All had taken advanced coursework in computer science.  The first 

group assessed under a scenario for middle school students (ages 12 to 14, boys and 

girls) who sought information to use in a science report. This was Scenario No. 1, and 
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the group had four men and two women.  Of these subjects, one was between 18 and 25 

years old.  Two were between 25 and 30.  Two were between 30 and 34, and one was 

between 40 and 45.  

The second group assessing the usability of the site was given a scenario of 

astronomers and physicists (no age range, men and women) with graduate degrees in 

physics seeking information for scientific reports.  This was Scenario No. 2.  The second 

group had six men, of who four were between 25 and 30 years of age.  One person was 

between 30 and 34, and the sixth person was between 40 and 45. 

All subjects participated under controlled conditions.  Each sat alone in a room 

with table, chair, laptop computer, mouse, and keyboard. The computer, an Apple 

MacBook Pro [Apple 2010] was not joined to a network but had a copy of the 

downloaded Web site stored locally.  The computer was booted to Windows Vista to 

display an Internet Explorer v. 6 browser window [Microsoft 2010]. Each room had 

overhead lighting, central air conditioning, and no outside windows.  Each room had an 

observational window by a single door facing a hallway.  Subjects sat at the table and 

faced away from the door. All used paper forms to record their assessments and 

comments.  All subjects used Microsoft Internet Explorer version 6 on Microsoft 

Windows Vista.   

To prepare subjects for experiments, each received a written explanation about 

usability and was referred to Web sites about usability.  Half of each group reported to 

have reviewed these materials.  Only one reported to have visited HubbleSite but only to 

the level of home page.  A proctor sat outside the room and out of direct view of the 
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subject.  (The proctor was the Principal Investigator.)  Each experimental session lasted 

no more than two hours, and the proctor offered each subject at conclusion a gift card 

valued at $25.00.  The design of the experiment had received approval by the 

Institutional Review Board of Texas A&M University for participation of humans in 

experiments. 

Subjects could navigate the downloaded site freely but could only give 

assessments for certain pages.  The approach selected 102 out of a total of 2,017 Web 

pages and assigned each a unique number, called a PageID.  The number and name of 

page appeared in the title of the HTML heading and at the top of the browser window. 

There were no modifications to Web pages except for adding PageIDs and inactivating 

search capabilities built into pages.  Pages receiving a PageID were those reachable by 

top and side menus as well as hypertext links within the body of pages.  The home page 

also had a PageID.   

The structure of the site was like a hierarchy with a top-level home page and with 

pages at lower levels linking back home as well as to other pages at the higher, the same, 

and deeper levels.  When first encountering a page, subjects determined if it had a 

PageID.  If so, they recorded the number and their ratings on a paper form.   

During assessments, both groups used a list of ten questions to aid their 

exploration of the site.  They were free to mark the number of questions answered as 

well as write comments.  The following questions are taken from the list as examples: 

• What are the dimensions of the Hubble Space Telescope? 

• What is the latest news about the telescope and the project itself? 
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• Of what in space has the telescope taken images most recently?  

• Where can you listen for news about the project? 

• What is visible in tonight’s sky? 

• Where is the Space Science Education Resource Directory? 

• Where can you find calculators to find temperature, distance, and redshift? 
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CHAPTER VII 

RESULTS 

 

 This is an overview of results with details in subsections to follow.  Results 

confirmed that the approach builds models of usability for the categories tested as well 

as for Overall Usability, and that results indicate differences between ratings given under 

different contexts of use.  The P-value for all comparisons was 0.05.  The approach built 

and tested 15 bivariate models and two multivariate models for OU under Scenario 1.  In 

contrast, under Scenario 2 the approach built one bivariate model (NAV) and two 

models by multiple regressions for OU.  The approach also found that the means of 

ratings predicted by bivariate models for Navigability under the two scenarios of 

contextual use were not significantly different (independent samples t test.)  Likewise, 

assessed ratings for Navigability between scenarios were not different.  However, 

accuracies of bivariate models for Navigability between scenarios were significantly 

different.  Comparing between scenarios, the means of ratings predicted by multivariate 

models for Overall Usability were significantly different.  The means of assessed ratings 

for Overall Usability, as well as for Effectiveness, were also significantly different 

between scenarios.  Models produced different coefficients of determination, accuracies, 

and precisions within categories under the same scenario as well as between scenarios.   

 Web pages have interfaces for which interactions are planned.  If groups of 

people use interfaces for different purposes, the kinds and severities of issues may be 

different.  Different kinds and numbers of models may reflect this.  If models found 
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under different scenarios produce similar ratings, people may report experiencing a 

common problem, such as with Navigability.  If models rate issues with usability under 

one scenario but no model is found for that usability under a different scenario, it may be 

that one model does not identify issues experienced in common for those contextual 

uses.  In this case, one model that tests interactions planned in the design of a Web site 

may not adequately address how people actually use the site. 

 At conclusion of experiments, both groups of subjects had assessed 63 Web 

pages in common.  Selecting 32 of these pages randomly as the training set, the 

remaining 31 pages served as the prediction set.  Analysis found correlations under each 

scenario between predictors (measurements of properties) and response variables 

(assessed ratings), and this permitted identifying and testing models. 

 

Results for Assessments between Scenarios 

 Two groups under different scenarios of contextual use rated the same Web 

pages for five categories of usability and Overall Usability.  By independent samples t 

test (p < 0.05, N = 63), assessed ratings for Effectiveness (EFF) and Overall Usability 

(OU) were significantly different (see Appendix.)  The groups did not give significantly 

different ratings for Flexibility (FLX), Navigability (NAV), Satisfaction (SAT), and 

Efficiency (EFC.)  Participants had indicated that middle school children might find the 

severity of issues with Effectiveness of pages examined to be greater than might be 

reported by astronomers.  The mean of ratings for severity of issues with Effectiveness 

under Scenario 1 was higher than that reported under Scenario 2 (1.036 versus 0.691 
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respectively.)  If pages have more severe issues with Effectiveness, they might also be 

less usable overall.  Results with Overall Usability supported this proposition.  The mean 

of ratings for Overall Usability was lower under Scenario 1 than for Scenario 2 

(respectively 7.569 versus 8.087). 

    

Examination of Models 

 The subsections that follow describe the models that were built.  Each subsection 

either describes features or tests application of the models.  This chapter addresses 

objectives presented in the “Introduction” and “Experiments.”  The final subsection has 

illustrations of the concept of precisions, as described in “Approach.” 

 

Bivariate, Linear Models 

 In all, the approach found six models with the WPMA and nine with the LIFT 

Machine under Scenario 1.  Table 1 lists these models.  Model 4 has the best fit to data 

with an F statistic of 20.284 and p = 0.000. 

To understand variability of response variables accounted for by predictors, the 

approach calculated coefficients of determination (R2).  Adjusted R2 describes how well 

a model may generalize if more predictors are added to the model.  An indication that 

predictor(s) may be missing from a model is if R2 and adjusted R2 are significantly 

different [De Veaux, Velleman and Bock 2008].  Model 4 has the highest adjusted R2, 

while all other models showed lower coefficients of determination.   
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Table 1.   
Bivariate, linear models by WPMA,  

scenario 1, training set (N = 31, p < 0.05) 
Model Resp. Var. Pred. Coeff. Const. F Sig 

1 OU LNPNBW 0.227 6.827 4.688 0.038 

2 FLX EW -0.013 1.055 5.640 0.024 

3 FLX LNLNK -0.488 2.406 4.807 0.036 

4 NAV LNNBW -0.780 4.110 20.284 0.000 

5 NAV LNLNK -1.122 4.869 9.091 0.005 

6 SAT LNWPFS 1.130 -9.410 5.757 0.023 

 
 

 
A test for independence among predicted results (Durbin Watson) identifies 

equations showing first-order autocorrelation among consecutive predicted results.  

Autocorrelation indicates some dependence, not independence, among predicted results.  

A result outside a range of 1.5 to 2.5 is a sign of autocorrelation [Neter 1996].  The study 

did not use a model, bivariate or multivariate, if autocorrelation was indicated.   

Examining coefficients of determination, of the two models found for Flexibility 

(FLX) and Navigability (NAV), the highest R2 and adjusted R2 were respectively 0.158 

and 0.130 for model 2 and 0.403 and 0.384 for model 4.  In other categories, the R2 and 

adjusted R2 of model 1 (OU) were 0.135 and 0.106.  For Satisfaction (SAT), the R2 and 

adjusted R2 of model 6 were 0.161 and 0.133.  Except for model 4 (38.4%), predictors of 

models from WPMA accounted for less than 20% of the variability of assessed ratings. 
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Models found with the LIFT Machine are in Table 2.  Like the WPMA, models 

appeared in three categories (NAV, OU, and SAT.)  For NAV, model 7 had a R2 and  

Table 2.   
Bivariate, linear models by LIFT Machine,  

scenario 1, training set (N = 31, p < 0.05) 

Model Resp. 
Var. Pred. Coeff. Const. F Sig 

7 NAV lnEFCimg 
WithSizeFail -0.497 1.119 9.722 0.004 

8 SAT NAVselfReferential 
PageFail -0.683 2.053 5.194 0.030 

9 SAT EFCimg 
WithSizeFail -0.104 1.585 7.808 0.009 

10 SAT lnEFCimg 
WithSizeFail -0.462 1.529 12.047 0.002 

11 OU NAVselfReferential 
PageFail 0.857 6.764 5.598 0.025 

12 OU EFCimg 
WithSizeFail 0.101 7.442 4.575 0.041 

13 LNOU NAVself 
ReferentialPageFail 0.116 1.903 5.534 0.025 

14 LNOU EFCimg 
WithSizeFail 0.013 1.996 4.273 0.047 

15 LNOU lnEFCimg 
WithSizeFail 0.066 2.000 8.107 0.008 

 
 
 
adjusted R2 of 0.245 and 0.220 respectively.  Of the three models (8, 9, and 10) for SAT, 

model 10 had the highest R2 and adjusted R2 with 0.287 and 0.263.  Of the five models 

for Overall Usability, model 15 had highest R2 and adjusted R2 with 0.213 and 0.186.  

Interpreting these results, except for model 4, the models found with the LIFT Machine 

could describe more of the variability than those made using the WPMA. 
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Table 3 shows the one model found under Scenario 2 (astronomers.)  The R2 and 

adjusted R2 for model 16 were 0.641 and 0.630, which were higher than those found 

with any model within the category (Navigability) under Scenario 1.  Under Scenario 2, 

no bivariate, linear models appeared with data measured with the WPMA.  

 
 
 

Table 3. 
Bivariate, linear models by LIFT Machine,  

scenario 2, training set (N = 31, p < 0.05) 

Model Resp. 
Var. Pred. Coeff. Const. F Sig 

16 NAV EFCimgWithSizePass 0.932 0.782 11.762 0.002 
 
 
 

With the LIFT Machine, predictors used in model 16 and model 7 are 

comparable.  In each model, the predictor is called EFCimgWithSize.  The LIFT 

Machine counts the number of image tags with attributes for height and width.  These 

attributes control the displayed dimensions of images.  A “Pass” is given if the image 

uses the attributes and a “Fail” if an image does not.  This similarity between bivariate, 

linear models for Navigability is highlighted because predicted ratings are not 

significantly different between scenarios.  These properties also appear as predictors in 

multivariate models. 

The system is designed to apply multiple software tools when testing properties 

of Web pages.  A research question was whether more than one model would appear 

under different contexts of use.  Another research question was whether, within a 

category of usability, a model may have a predictor that accounts for more of the 
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variability found in the response variable than is found with other models.  This study 

provides evidence that answers “yes” to both of these research questions.    

 

Comparing Predicted to Assessed Ratings for Each Model within Scenario 

Application of models listed in Tables 1 through 3 to the prediction set generated 

predicted ratings. The study found no significant difference (paired t test, p < 0.05) 

between predicted and assessed ratings for any model except for those for Overall 

Usability.  To test how interchangeable models are within the same category, the study 

found no significant difference (paired t test, p < 0.05) between mean predicted ratings 

for any combination of models in any category that was not Overall Usability.     

None of the bivariate models for Overall Usability were interchangeable.  

Combinations of models 11 and 13, 11 and 14, 11 and 15, 12 and 14, and 12 and 15 had 

significant differences (paired t test, p < 0.05) between means of predicted ratings.  (For 

models predicting the natural log of OU, statistical treatment used the inverse natural 

log.)  This meant that it is not possible to use these models interchangeably, as is 

possible with bivariate models for Navigability, under Scenario 1. 

 

Comparing Bivariate Models between Scenarios 

Navigability is the only category that had bivariate models under both scenarios 

of contextual use.  Comparing models for Navigability, assessed ratings between 

scenarios were not significantly different (independent samples t test, t = 0.855, sig. = 

0.394 at p < 0.05).  Likewise, by independent samples t test, model 4 (t = -0.043, sig. = 
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0.966,) model 5 (t = -1.215, sig. = 0.227,) and model 7 (t = -0.301, sig. = 0.764) for 

Navigability did not predict ratings under Scenario 1 that were significantly different (p 

< 0.05) from those generated by model 16 under Scenario 2.  This concurrence about 

severity of issues with Navigability allows models to be compared.  More information is 

available in the subsection, “Precision of All Models.”  

Models 7 and 16 for NAV used the presence or absence of width and height 

attributes in image tags as a measured property (EFCimgWithSize).  For model 7, as the 

number of pages containing images without size attributes (“Fail”) increased, the 

severity of issues with NAV decreased.  For model 16, as the number of pages with 

images that passed this test (“Pass”) increased, severity of issues with NAV increased.  

These results are different perspectives on the same issue, and the severity of the issue 

from the perspectives of both scenarios was not different (p < 0.05.)  However, it is 

worthwhile to note that comparing accuracies of models for Navigability between 

scenarios found significant differences.  More information is in the subsection about 

accuracies of models that appears later within this chapter. 

 

Models by Multiple Regressions 

The study tests for Overall Usability by using multiple predictors of severity of 

issues.  If predictors affecting the variability of a response variable are not included in 

the model, R2 and adjusted R2 may differ more.  If included, the additional predictors 

may improve the accuracy of predictions [George and Mallery 2008].  
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Regression analysis found three multivariate models of Overall Usability.  The 

study applied multiple regressions by the stepwise method of testing predictors 

successively against the response variable [Pallant 2007].  These models are in Table 4. 

In the stepwise method applied, the probability of F required for a predictor to enter the 

model is less than or equal to 0.05, and the F required to remove a predictor is greater 

than or equal to 0.10.

 
 
 
 

Table 4.   
Models built for Overall Usability by multiple regressions (N = 63) 

Model Scenario Equation 

M1 1 OU = 1.249 * LNTAMFS – 0.636*LNIMG – 4.557 

M2 1 
OU = -1.949*EFCimgWithSizePass – 

1.011*NAVbrokenLocalLinksFail + 7.975 

M3 2 OU = 0.233 * LNPNBW + 7.235 

M4 2 
OU = -1.682*EFCimgWithSizePass – 

0.618*NAVselfReferentialPageFail + 9.069 

 
 
 
 

Predictors should show independence from one another in a population that is 

normally distributed.  If predictors are described as showing multicollinearity, they are 

not independent but correlated with one another.  Tolerance and VIF (Variance Inflation 

Factor) are two tests of multicollinearity.  A value of 0.10 or less for Tolerance indicates 

that a predictor may be a combination of other predictors [George and Mallery 2008].  A 

VIF equal to or greater than 10 also indicates multicollinearity [Pallant 2007].  M1, M2, 

and M4 did not exhibit multicollinearity.  Because M3 is bivariate, multicollinearity was 

not tested. 
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As shown in Table 5, values of R2 (0.417) and adjusted R2 (0.397) for M1 are 

similar, and the predictors account for almost 40% of the variability of the response 

variable.  The predictors for M2 account for about 34.5% of the variability of ratings 

given for Overall Usability.  In contrast, the variability of the response variable 

accounted for by LNPNBW is only 14.5%.  Of the multivariate models, M4 has the 

lowest adjusted R2 at 29.9%. 

 
 
 

Table 5. 
Coefficients of determination (R2) by multivariate regressions 

(N = 63, p < 0.05, df = 62) 
 

Model R R2 Adj. R2 Std. Err. Est. F Sig. 

M1 0.646 0.417 0.397 1.00 21.435 0.000 

M2 0.605 0.366 0.345 1.04 17.348 0.000 

M3 0.399 0.159 0.145 1.01 11.541 0.001 

M4 0.567 0.321 0.299 0.92 14.192 0.000 
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Comparing Multivariate Models between Scenarios 

For Overall Usability, the adjusted R2 of M1 (0.397) and M2 (0.345) are higher 

than those of bivariate models under Scenario 1.  (Model 15 had the highest adjusted R2 

of the bivariate models at 0.186.)  In multivariate models, multiple predictors may 

account for more of the variability in assessed ratings than bivariate models are able. 

 Because multivariate models are found for each scenario, the approach tests for 

significant differences between combinations of predicted and assessed ratings for 

Overall Usability both within and between scenarios.  By independent samples t test, 

results (in Appendix) show that assessed ratings for Overall Usability are different (p < 

0.05) between scenarios.  Likewise, predicted ratings are different (p < 0.05) between 

scenarios.  As was observed with assessed ratings for Overall Usability, the mean of 

predicted ratings of Overall Usability was higher under Scenario 2 than Scenario 1.  This 

indicated that the evaluation determined that astronomers might find the site to be more 

usable overall than middle school children might under their scenario. 

In contrast, no significant difference (p < 0.05) appeared by paired t test between 

predicted and assessed ratings for Overall Usability (see Appendix) within each 

scenario.  Ratings predicted by M1 or M2 are comparable to assessed ratings under 

Scenario 1, and comparisons between M3 and M4 to assessed ratings under Scenario 2 

have the same result.  The means of predicted and assessed ratings within each scenario 

differed by no more than 0.01.   
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Precisions of All Models 

Table 6 lists results for both overall precision and precision at threshold for 

models found by simple linear regression.  The study tests for models with the highest  

 
 
 

Table 6. 
Precisions of bivariate models with prediction set (N = 31) 

 
Overall Precision 

Precision At  
Threshold 

Model Threshold 
Pairs At or 

Above 

Pairs 
Both 

Below 

Pairs At or 
Above 

Pairs  
Below 

OU 
1 7.554 *0.323 0.290 0.526 *0.750 
11 7.759 0.032 0.452 0.167 0.560 
12 7.680 0.129 *0.484 0.500 0.652 

LNOU 
13 2.038 0.032 0.452 0.167 0.560 
14 2.027 0.161 *0.484 *0.625 0.652 
15 2.019 0.258 0.355 0.533 0.688 

FLX 
2 0.670 0.258 0.258 0.500 0.533 
3 0.649 *0.355 *0.355 *0.688 *0.733 

NAV 
4 1.022 0.258 *0.452 0.667 *0.737 
5 0.830 0.290 0.355 0.563 0.733 
7 0.980 *0.419 0.258 *0.813 0.533 

SAT 
6 1.440 0.161 *0.419 0.500 0.619 

8 1.260 *0.516 0.129 *0.640 0.667 

9 1.340 0.419 0.226 0.565 *0.875 
10 1.400 0.290 0.323 0.563 0.667 

NAV (Scenario 2) 
16 *0.993 *0.226 *0.516 *1.000 *0.696 
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precision.  Bivariate models of Tables 1 through 3 are listed together.  For precision at 

threshold, ratios were generally higher than for overall precision, of which few were as 

high as 50%. 

As shown in Table 6, the kinds of precision used in this study varied across 

models.   If more than one model was built in a category, no one model had highest  

values for both kinds of precision.  In Table 6 and Table 7, an asterisk indicates highest 

value for the category and scenario.  Table 7 has precisions for multivariate models.  

These observations apply to the site tested, and testing of other sites might yield different 

results.  The double asterisk indicates a bivariate model in Table 7. 

 
 
 

Table 7.   
Precisions of models of Overall Usability by multiple regressions (N = 63) 

 
Overall Precision 

Precision At  
Threshold 

Model Threshold 
Pairs At or 

Above 

Pairs 
Both 

Below 

Pairs At or 
Above 

Pairs  
Below 

Scenario 1 
M1 7.560 0.365 *0.381 0.742 *0.750 
M2 6.558 *0.683 0.143 *0.896 0.600 

Scenario 2 
**M3 0.809 0.429 *0.270 *0.750 0.603 
M4 0.809 *0.460 0.222 0.707 *0.636 

 
 
 

Accuracies of All Models 

Accuracy is a measure of how well a model predicts actual values.  The closer 

the mean of absolute values for unstandardized residuals is to zero, the higher the 
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accuracy of the model [Badi, Bae, Moore, Meintanis, Zacchi, Hsieh, Shipman and 

Marshall 2006].  As shown in Table 8, of all models under Scenario 1, the most accurate 

was model 3 for Flexibility.  This model had a mean of 0.48190.  M1 was the most 

accurate among models for Overall Usability, but none of the models built for Overall 

Usability were more accurate than models found for other categories of usability.  The 

accuracy of M4 under Scenario 2 was higher than that of M1.  The accuracy of model 16 

for Navigability under Scenario 2 was much higher than that of the most accurate model 

for Navigability (model 4, mean of 0.73889) under Scenario 1.  In Table 8, asterisks 

indicate use of inverse natural log of absolute value of residuals.   

 
 
 

Table 8.   
Models with highest accuracies (N = 63) 

Unstd. Residuals Category of 
Usability Model Software 

Tool Mean Std.Dev. 

Scenario 1 
FLX 3 WPMA 0.48190 0.38866 
SAT 10 LIFT 0.71485 0.46273 
NAV 4 WPMA 0.73889 0.53761 
OU M1 WPMA *0.79143 *0.57619 

Scenario 2 
NAV 16 LIFT 0.42763 0.34002 
OU M4 LIFT *0.68513 *0.58191 

 
 
 

For Navigability, model 16 (0.42763) was more accurate than model 4 (0.73889).  

This meant that the LIFT Machine provided a more accurate model under Scenario 2 
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than did the WPMA under Scenario 1.  Table 8 lists the most accurate models by 

category in descending order of accuracy, e.g. the most accurate have the lowest means.    

Testing for significant differences between models within categories, analysis 

revealed several characteristics.  Using independent samples t-test, the mean accuracies 

of all models of Navigability under Scenario 1 were significantly different (p < 0.05) 

from that of model 16 under Scenario 2.  Within categories under the same scenario by 

paired t test with P-value of 0.05, 8 of 21 unique combinations of models for Overall 

Usability did not have mean accuracies that were significantly different.  Likewise, the 

accuracies of the one combination of two models found for Flexibility were different.  

 For Navigability, none of the accuracies from all combinations of three models 

were different.  Finally, six of ten combinations of models for Satisfaction did not have 

significantly different mean accuracies.  Under Scenario 2, the accuracies of M3 and M4 

were not different (p < 0.05.)  The consequence of these findings is that not all predictors 

in models for Overall Usability and Satisfaction will yield comparable accuracies within 

their categories.  While there was no significant difference between accuracies for 

Navigability within Scenario 1, there were significant differences within the category 

between scenarios. 

 

Principal Component Analysis 

Principle component analysis (PCA) is an approach to describe variability within 

a set of scalar data [Pallant 2007; Tabachnick and Fidell 2007].  The five categories of 

usability assessed had scalar ratings (0–5.)  Application of PCA did not include Overall 
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Usability.  Although assessed ratings for OU are scalar, ratings are on a scale (1–10) that 

is different from that of the categories.  Assessed ratings for OU are from very poor to 

very good while ratings in categories are from no detectable issues to very severe issues.  

The approach applied PCA to find a percentage of variability accounted for by the five 

categories.  Under Scenario 1, the one component found accounted for 67.46% of 

variability in assessed ratings of severity of issues.  Under Scenario 2, the approach 

again only found a single component, but it accounted for more, 72.43%, of the 

variability. 

 

Precisions Plotted 

Figures 4-6 illustrate bivariate models plotted against the prediction set. 

Selections of models apply to their category and show distributions of assessed and 

predicted ratings as well as thresholds.  Figure 4 is of a model with highest likelihood 

using overall precision.  Figure 5 is the plot of a model with highest likelihood using 

precision at threshold.  Figure 6 shows a model that had highest likelihoods on both 

sides of a threshold.  More figures are available in the Appendix. 
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Figure 4.  Highest overall precision above threshold for category SAT. 

 
 
 
 
 

 
Figure 5.  Highest precision at threshold above threshold for category NAV.  
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Figure 6.  Highest precisions on both sides of threshold for any category. 
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CHAPTER VIII 

DISCUSSION 

 

Results showed that the approach used with the semi-automated system could 

find models under different scenarios of contextual use.  The approach demonstrated 

advantages of using more than one software tool in analysis of user interfaces of 

informational HTML pages.  Under Scenario 1 (middle school children), models 

predicted ratings for severity of usability issues in categories of Flexibility, Navigability, 

and Satisfaction.  Under Scenario 2 (graduate-level astronomers,) the one model built 

predicted severity of issues with Navigability.  The study applied multiple regression to 

ratings of Overall Usability and build models for each scenario.  This study may benefit 

Web site managers who seek to identify Web pages that are likely to have (or not have) 

usability concerns above (or below) a threshold rating.  They may choose to use different 

models to test how people might use their site under different contexts of use.   

A question arose about how findings of usefulness of Web-based documents 

rated under document triage compared to results of the study.  Document triage “is the 

practice of quickly determining the merit and disposition of relevant documents” 

(p. 130) [Bae et al. 2005].  It appears that quickly assessing usefulness and predicting 

usability of Web pages are approaches with different objectives.  The former concerns 

content and the latter use of style.   

The results of this study differ and are similar to those of Bae et al [Bae, Badi, 

Meintanis, Moore, Zacchi, Hsieh, Marshall and Shipman 2005].  Stylistic properties 
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correlated with usability ratings in our study but did not appear to do so in theirs.  The 

approaches used to test for “usable” and “useful” are different.  It is worthwhile to note 

that the studies did not use the same set of documents or same groups of participants. 

Briefly, Bae et al [Bae, Badi, Meintanis, Moore, Zacchi, Hsieh, Marshall and 

Shipman 2005] noted a positive relationship (Pearson coefficient of 0.397,  

p < 0.05) between total word count and page count with ratings given to documents.  

They reported no significant correlations at p < 0.05 between scores and counts of 

hypertext links, images, or file sizes.  During interviews, two subjects reported that the 

length of documents influenced their scoring. 

Results from this study with Overall Usability show similarities to those of Bae 

et al [Bae, Badi, Meintanis, Moore, Zacchi, Hsieh, Marshall and Shipman 2005], but the 

differences are notable.  In our study, a positive association (Pearson coefficient of 

0.368, p < 0.05) appeared between Overall Usability and non-body words (LNPNBW) 

under Scenario 1.  However, no relationships appeared between assessed ratings and 

Total Words (TW) or Body Words (BW.)  During triage, users sought documents with 

useful content.  Participants in this study could seek pages with content that would 

answer questions presented at the start of experiments.  However, they did not have an 

option to rate the usefulness of content of pages for answering those questions.  In this 

study, participants did not associate amounts of textual content with usability issues for 

the site tested.  Visual inspection of pages showed that many contained images and few, 

such as a glossary, consisted mainly of textual content. 
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In the scenario applied by Bae et al [Bae, Badi, Meintanis, Moore, Zacchi, Hsieh, 

Marshall and Shipman 2005], no significant relationships (p < 0.05) appeared between 

non-textual properties (number of hypertext links, images, and sizes of files) and ratings 

of usefulness.  In contrast, this study found that counts of images 

(EFCimgWithSizePass) and broken links (NAVbrokenLocalLink under Scenario 1 and 

NAVselfReferentialPageFail under Scenario 2) correlated negatively with Overall 

Usability.  If such properties do not affect the usefulness of document, they could affect 

how usable it is.  However, the relationship between increasing numbers of images and 

declining ratings for Overall Usability and Navigability was unexpected until visual 

inspection of pages revealed that most pages contained images that linked to other pages.  

The multivariate models also showed a similar negative relationship between Overall 

Usability and number of images (EFCimgWithSizePass).   

Document triage and usability assessment may reflect two different viewpoints 

about what enhances or impedes productive interaction with documents (which includes 

Web pages.)  This study built models that were different in number, precision, and 

accuracy under different scenarios of contextual use.  Based on results from this early 

study, future research would test for other multivariate models, scenarios, and Web sites.   
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CHAPTER IX 

CONCLUSIONS 

 

Software tools are useful for finding exceptions to rules about the usability of 

Web sites.  Software professionals such as Web site managers may find these tools 

useful when deciding whether to change the amount of content or style of pages in order 

to improve experiences people have when visiting the sites.  As the number of Web 

pages grows ever larger in sites, those who must find Web pages that are less usable are 

likely to find tools that list exceptions to rules helpful.  However, concerns people have 

about usability of Web pages may differ.  Might one group find a page very difficult to 

use while another experiences no difficulty?  How well might automated analysis detect 

Web pages that are problematic to some groups but not to others on the basis of their 

informational needs?  This research approached these questions by finding models that 

represent relationships between usability concerns and measurements taken by 

automated tools.  Findings of this research support the concept that models may 

represent common as well as different concerns about usability by groups having 

different informational needs from a Web site. 

The approach of the study designed, built, and tested a system that found models 

by methods of statistical analysis. The system collects measurements taken with 

software tools about Web pages and uses the data to find relationships with ratings of 

usability issues given in usability assessments of those pages.  The current system 

requires human intervention to carry out assessments and statistical analysis.  The design 
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of the system accommodates automation by allowing use of different software tools to 

measure properties of Web pages.  Heuristic assessments were performed under 

controlled experimental conditions, and the study applied different scenarios of use.  

This study built models that were different in number, coefficients of determination, 

precision, and accuracy under different scenarios of contextual use.  Web site managers 

may find the approach beneficial when testing for Web pages that need inspection and 

possible rework for usability issues.  Future studies may apply the approach to test other 

Web sites, automate more of the system, and build other types of models. 
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Terminology 
 

Term Description 
(the) approach Application of the system in this study. 
heuristic “Involving or serving as an aid to learning, discovery, or 

problem-solving by experiments and especially trial-and-
error methods; also: of or relating to exploratory problem-
solving techniques that utilize self-educating techniques (as 
the evaluation of feedback) to improve performance.” 
[Merriam-Webster Inc. 2003] 

participant Person who performs evaluations of user interfaces.   
practitioner Person engaged as a designer, webmaster, usability engineer, 

and other professionals who design, build, or maintain Web 
sites [Ivory 2003]. 

rule of thumb “1 : a method of procedure based on experience and common 
sense.  2 : a general principle regarded as roughly correct but 
not intended to be scientifically accurate.” [Merriam-
Webster Inc. 2003] 

specification “A set of conditions and requirements of precise and limited 
application that provide a detailed description of a procedure, 
process, material, product, or service for use primarily in 
procurement and manufacturing.” [IEEE-SA 2008] 

UML™ Unified Modeling Language.   
The Unified Modeling Language through the Object 
Management Group (OMG) allows specification, 
visualization, and documentation of software systems [Arlow 
and Neustadt 2005; OMG 2010]. 

Web site manager Person who is a manager of practitioners and who may also 
at times be a practitioner. 

XML Extensible Markup Language. 
An Extensible Markup Language derived from SGML 
(Standard Generalized Markup Language) designed to 
provide flexibility in publishing as well as exchange of data, 
such as over the Web [Deitel 2001; W3C 2003].    
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Skewness of Assessed Ratings for Both Scenarios, N = 63 
Skewness 

Usability Min Max Mean Median 
Statistic Std. Error 

Scenario No. 1 

Effectiveness 0.0 2.5 1.036 1.000 0.240 0.302 

Flexibility 0.0 3.0 0.696 0.500 1.032 0.302 

Navigability 0.0 4.0 1.022 0.500 1.296 0.302 

Satisfaction 0.0 4.0 1.385 1.000 0.789 0.302 

Efficiency 0.0 4.0 1.200 1.000 0.793 0.302 

Overall Usability 4.0 10.0 7.569 7.500 -0.388 0.302 

Scenario No. 2 

Effectiveness 0.0 4.0 0.691 0.600 2.400 0.302 

Flexibility 0.0 4.0 0.809 0.600 1.820 0.302 

Navigability 0.0 2.5 0.871 0.750 0.614 0.302 

Satisfaction 0.0 4.5 1.235 1.000 1.651 0.302 

Efficiency 0.0 4.0 0.983 1.000 2.151 0.302 

Overall Usability 4.5 10.0 8.087 8.500 -1.060 1.291 
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Normality of Assessed Ratings, N = 63 

Kolmogorov-

Smirnov Test  

 
Usability Mean Median Std. Dev. Var. 

Statistic, 

df = 63 

Sig. 

(2-

tailed) 

Scenario No. 1 

Effectiveness 1.036 1.000 0.706 0.499 0.128 0.012 

Flexibility 0.696 0.500 0.693 0.480 0.158 0.001 

Navigability 1.022 0.500 1.221 1.491 0.212 0.000 

Satisfaction 1.385 1.000 1.012 1.023 0.172 0.000 

Efficiency 1.200 1.000 0.938 0.879 0.100 0.188 

Overall 

Usability 
7.569 7.500 1.288 1.659 0.099 0.199 

Scenario No. 2 

Effectiveness 0.691 0.600 0.645 0.416 0.157 0.001 

Flexibility 0.809 0.600 0.791 0.626 0.182 0.000 

Navigability 0.871 0.750 0.673 0.453 0.154 0.001 

Satisfaction 1.235 1.000 0.866 0.750 0.189 0.000 

Efficiency 0.983 1.000 0.759 0.576 0.205 0.000 

Overall 

Usability 
8.087 8.500 1.096 1.201 0.171 0.000 
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Skewness of Properties Measured by WPMA (N = 63) 

Property Min Max Mean Median Skewness Kurtosis 

TW 6 3157 297.490 208.000 5.206 33.154 

BW 0 2901 215.030 113.000 5.306 33.762 

NBW 6 284 82.460 60.000 1.353 1.658 

EW 0 98 30.190 31.000 1.079 2.945 

CLU 1 17 5.300 5.000 1.470 3.745 

NFL 0 24 2.350 0.000 3.312 12.717 

LNK 16 101 41.490 34.000 1.376 0.776 

IMG 1 66 24.030 13.000 0.640 -1.259 

PEBW 0 194.118 36.115 20.202 1.656 2.973 

PNBW 0 1188.235 105.451 50.732 4.713 28.673 

TIFS 670 154990 35819.950 23508.000 1.504 1.886 

TAMFS 17292 234776 70009.860 56858.000 1.622 4.174 

WPFS 7515 53760 14717.080 13554.000 3.219 16.353 

PIWPFS 0.036 0.923 0.594 0.635 -0.963 0.292 
 

Standard error for Skewness of all measured properties was 0.302.  Standard error for 
Kurtosis of all measured properties was 0.595. 
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Normality of Measurements of Properties Measured by WPMA (N = 63) 
Kolmogorov-

Smirnov Property Mean Median Std. 
Deviation Variance Statistic,  

df = 63 
Sig. (2-
tailed) 

TW 297.49 208.00 427.052 182373.3 0.247 0.000 

BW 215.00 113.00 399.637 159709.5 0.295 0.000 

NBW 82.46 60.00 62.527 3909.672 0.225 0.000 

EW 30.19 31.00 18.475 341.318 0.091 0.200* 

CLU 5.30 5.00 2.938 8.633 0.216 0.000 

NFL 2.35 0.00 4.393 19.295 0.296 0.000 

LNK 41.49 34.00 23.209 538.641 0.216 0.000 

IMG 24.03 13.00 22.099 488.386 0.209 0.000 

PEBW 36.12 20.20 39.510 1561.02 0.205 0.000 

PNBW 105.45 50.73 167.040 27901.52 0.264 0.000 

TIFS 35819.95 23508.00 35239.265 1E+009 0.235 0.000 

TCPS 19472.83 25709.00 14889.957 2E+008 0.244 0.000 

TAMFS 70009.86 56858.00 38600.099 1E+009 0.154 0.001 

WPFS 14717.08 13554.00 6837.920 5E+007 0.162 0.000 

PIWPFS 0.59 0.64 0.218 0.047 0.150 0.001 

 
An asterisk indicates a significance of at least 0.200. 
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Skewness in Effectiveness Measured by LIFT Machine (N = 63) 

Property Min Max Mean Median Skewness Kurtosis 

EFFspell_checkerFAIL 1 103 7.600 5.000 6.626 46.357 
 
The standard error for skewness was 0.302 and for kurtosis was 0.595. 
 
 
 

 

Normality of Measurements in Effectiveness, LIFT Machine (N = 63) 
Kolmogorov-

Smirnov Property Mean Median Std. 
Dev. Var. 

Statistic Sig (2-
tailed) 

EFFspell_checkerFAIL 7.600 5.000 13.012 169.308 0.314 0.000 
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Skewness in Navigability Measured by LIFT Machine (N = 63) 

Property Min Max Mean Median Skewness Kurtosis 

NAVbrokenExternalLinks 
PASS 0 1 0.90 1.00 -2.825 6.179 

NAVbrokenExternalLinks 
FAIL 0 14 0.30 0.00 7.661 59.925 

NAVemptyAnchorLinks 
PASS 0 1 0.90 1.00 -2.825 6.179 

NAVemptyAnchorLinks 
FAIL 0 7 0.24 0.00 5.680 35.940 

NAVbrokenLocalLinks 
PASS 0 1 0.90 1.00 -2.825 6.179 

NAVbrokenLocalLinks 
FAIL 0 1 0.10 0.00 2.825 6.179 

NAVmissingLogicalPath 
PASS 0 1 0.95 1.00 -4.353 17.502 

NAVmissingLogicalPath 
FAIL 0 1 0.05 0.00 4.353 17.502 

NAVselfReferentialPage 
PASS 0 1 0.05 0.00 4.353 17.502 

NAVselfReferentialPage 
FAIL 0 2 1.16 1.00 0.429 0.778 

NAVstdLinksFontAndColor 
PASS 0 1 0.86 1.00 -2.091 2.451 

NAVstdLinksFontAndColor 
FAIL 0 2 0.29 0.00 2.091 2.451 

 
 
The standard error of skewness was 0.302 and Kurtosis was 0.595. 
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Normality of Measurements in Navigability by LIFT Machine (N = 63) 

Kolmogorov-
Smirnov 

Property Mean Median Standard 
Deviation Var. 

Statistic 

Sig 
(2-

tailed
) 

NAVbrokenExternalLinks 
PASS 0.90 1.00 0.296 0.088 0.531 0.000 

NAVbrokenExternalLinks 
FAIL 0.30 0.00 1.775 3.150 0.472 0.000 

NAVemptyAnchorLinks 
PASS 0.90 1.00 0.296 0.088 0.531 0.000 

NAVemptyAnchorLinks 
FAIL 0.24 0.00 0.995 0.991 0.499 0.000 

NAVbrokenLocalLinks 
PASS 0.90 1.00 0.296 0.088 0.531 0.000 

NAVbrokenLocalLinks 
FAIL 0.10 0.00 0.296 0.088 0.531 0.000 

NAVmissingLogicalPath 
PASS 0.95 1.00 0.215 0.046 0.540 0.000 

NAVmissingLogicalPath 
FAIL 0.05 0.00 0.215 0.046 0.540 0.000 

NAVselfReferentialPage 
PASS 0.05 0.00 0.215 0.046 0.540 0.000 

NAVselfReferentialPage 
FAIL 1.16 1.00 0.482 0.232 0.423 0.000 

NAVstdLinksFontAndColor 
PASS 0.86 1.00 0.353 0.124 .514 0.000 

NAVstdLinksFontAndColor 
FAIL 0.29 0.00 0.705 0.498 0.514 0.000 
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Skewness in Satisfaction Measured by LIFT Machine (N = 63) 

Property Min Max Mean Median Skewness Kurtosis 

SATimgStretching 
PASS 0 1 0.98 1.00 -7.937 63.000 

SATimgStretching 
FAIL 0 1 0.02 0.00 7.937 63.000 

 
The standard error of skewness was 0.302 and Kurtosis was 0.595. 
 
 
 
 
 

Normality of Measurements in Satisfaction by LIFT Machine (N = 63) 
Kolmogorov-

Smirnov Property Mean Median Std. 
Dev. Var. 

Statistic Sig (2-
tailed) 

SATimgStretching 
PASS 0.98 1.00 0.126 0.016 0.534 0.000 

SATimgStretching 
FAIL 0.00 0.00 0.125 0.016 0.534 0.000 
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Skewness in Efficiency Measured by LIFT Machine (N = 63) 

Property Min Max Mean Median Skewness Kurtosis 

EFCimgWithSize 
PASS 0 1 0.16 0.00 1.914 1.716 

EFCimgWithSize 
FAIL 0 19 2.73 1.00 2.538 7.513 

EFCunvisibleImage 
MapsPASS 0 1 0.97 1.00 -5.473 28.867 

EFCunvisibleImage 
MapsFAIL 0 1 0.03 0.00 5.473 28.867 

EFCpageSizeSmall 
PASS 0 1 0.73 1.00 -1.063 -0.901 

EFCpageSizeSmall 
FAIL 0 1 0.27 0.00 1.063 -0.901 

 
 
The standard error of skewness was 0.302 and Kurtosis was 0.595. 
 
 
 

Normality of Measurements in Efficiency by LIFT Machine (N = 63) 
Kolmogorov-

Smirnov 
Property Mean Median Standard 

Deviation Var. 
Statistic 

Sig 
(2-

tailed) 
EFCimgWithSize 
PASS 0.16 0.00 0.368 0.1360 0.508 0.000 

EFCimgWithSize 
FAIL 2.73 1.00 3.530 12.458 0.296 0.000 

EFCunvisibleImage 
MapsPASS 0.97 1.00 0.177 0.031 0.540 0.000 

EFCunvisibleImage 
MapsFAIL 0.03 0.00 0.177 0.031 0.540 0.000 

EFCpageSizeSmall 
PASS 0.73 1.00 0.447 0.200 0.457 0.000 

EFCpageSizeSmall 
FAIL 0.27 0.00 0.447 0.200 0.457 0.000 
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Coefficients of Determination (R2) of Models With Data of Training Set (N = 32) 

Mod.  Scenario Resp. Var. Predictor R R2 Adj. R2 

1 1 OU LNPNBW 0.368 0.135 0.106 

2 1 FLX EW 0.398 0.158 0.130 

3 1 FLX LNLNK    

4 1 NAV LNNBW 0.635 0.403 0.384 

5 1 NAV LNLNK    

6 1 SAT LNWPFS 0.401 0.161 0.133 

7 1 NAV lnEFCimgWith 
SizeFail 

0.495 0.245 0.220 

8 1 SAT NAVselfReferential 
PageFail 

0.384 0.148 0.119 

9 1 SAT EFCimgWith 
SizeFail 

0.454 0.207 0.180 

10 1 SAT lnEFCimgWith 
SizeFail 

0.535 0.287 0.263 

11 1 OU NAVselfReferential 
PageFail 

0.397 0.157 0.129 

12 1 OU EFCimgWith 
SizeFail 

0.364 0.132 0.103 

13 1 LNOU NAVselfReferential 
PageFail 

0.395 0.156 0.128 

14 1 LNOU EFCimgWith 
SizeFail 

0.353 0.125 0.095 

15 1 LNOU lnEFCimgWith 
SizeFail 

0.461 0.213 0.186 

16 2 NAV EFCimgWith 
SizePass 

0.801 0.641 0.630 
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Correlations of All Models Found, Training Set (N = 32) 

Model Scen. Resp. Var. Predictor Corr. 
Sig  

(p < 0.05) 

1 1 OU LNPNBW 0.368 0.038 

2 1 FLX EW -0.398 0.024 

3 1 FLX LNLNK -0.372 0.036 

4 1 NAV LNNBW -0.635 0.000 

5 1 NAV LNLNK -0.482 0.005 

6 1 SAT LNWPFS 0.401 0.023 

7 1 NAV 
lnEFCimgWith 

SizeFail 
-0.495 0.004 

8 1 SAT 
NAVselfReferential 

PageFail 
-0.384 0.030 

9 1 SAT 
EFCimgWith 

SizeFail 
-0.454 0.009 

10 1 SAT 
lnEFCimgWith 

SizeFail 
-0.535 0.002 

11 1 OU 
NAVselfReferential 

PageFail 
0.397 0.025 

12 1 OU 
EFCimgWith 

SizeFail 
0.364 0.041 

13 1 LNOU 
NAVselfReferential 

PageFail 
0.395 0.025 

14 1 LNOU 
EFCimgWith 

SizeFail 
0.353 0.047 

15 1 LNOU 
lnEFCimgWith 

SizeFail 
0.461 0.008 

16 2 NAV EFCimgWithSizePass 0.650 0.000 

 



 87 

 
Independent Samples t-test of Assessed Ratings Between Scenarios (N = 63) 

Levene’s Test for 

Equality of Variances  

F sig. 

t sig. df 

Mean 

Diff., std 

err. 

EFF 4.551 0.035 2.864 0.005 122.995 
0.3450, 

0.1205 

FLX 0.021 0.884 -0.852 0.396 124.000 
-0.1129, 

0.1325 

SAT 4.861 0.029 0.897 0.371 124.000 
0.1505, 

0.1678 

EFC 8.140 0.005 1.430 0.155 124.000 
0.2174, 

0.1520 

NAV 16.209 0.000 0.855 0.394 124.000 
0.1503, 

0.1757 

OU 2.001 0.160 -2.428 0.017 120.906 
-0.5174, 

0.2131 

 
Levene’s test for equality of variances is applied in F test.  If significance level of t is 
less than 0.05, equal variances are not assumed. 
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Paired t-test of Assessed Versus Predicted Ratings Within Category Within 

Scenario 1, Prediction Set (N = 31) 

Resp. 

Var. 

Paired With Predicted Resp. 

Var. 
Mean Std. Dev. 

Std. 

Error  

of Mean 

t 

sig.  

(2-

tailed) 

FLX_EW 0.07298 0.74577 0.13394 0.545 0.590 
FLX 

FLX_LNLNK 0.09359 0.68373 0.12280 0.762 0.452 

NAV_LNNBW 0.19332 1.00247 0.18005 1.074 0.292 

NAV_LNLNK 0.38529 1.09182 0.19610 1.965 0.059 NAV 

lnEFCimgWithSizeFail 0.23565 1.05425 0.18935 1.245 0.223 

SAT_LNWPFS 0.07111 1.12551 0.20215 0.352 0.727 

SAT_NAVselfReferential 

PageFail 
0.25091 1.13337 0.20356 1.233 0.227 

SAT_EFCimgWithSize 

Fail 
0.17066 1.03599 0.18607 0.917 0.366 

SAT 

SAT_lnEFCimgWithSize 

Fail 
0.11102 0.94078 0.16897 0.657 0.516 

NAVselfReferentialPage 

Fail 
-0.38181 1.56180 0.28051 -1.361 0.184 

OU 
EFCimgWithSize 

Fail 
-0.18187 1.44989 0.26041 -0.698 0.490 

NAVselfReferentialPage 

Fail 
-0.05938 0.22544 0.04049 -1.467 0.153 

EFCimgWithSizeFail -0.03277 0.21066 0.03784 -0.866 0.393 

LNO

U 

lnEFCimgWithSizeFail -0.04014 0.18935 0.03401 -1.180 0.247 
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Paired t-test of Assessed Versus Predicted Ratings Within Category Within 

Scenario 2, Prediction Set (N = 31) 

Resp. 
Var. 

Paired With Predicted 
Resp. Var. Mean Std. 

Dev. 

Std. 
Error  

of 
Mean 

t 
sig.  
(2-

tailed) 

NAV NAV_EFCimgWithSizePass -0.00002 0.62220 0.11175 0.000 1.000 
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Paired t-test Between Predicted Ratings Within Category of Usability Within 

Scenario 1 (N = 63) 
Paired 
Models Response Variables Mean Std. 

Dev. 

Std. 
Error  

of Mean 
t 

sig.  
(2-

tailed) 

2, 3 FLX_EW,  
FLX_LNLNK 

0.01278 0.22755 0.02867 0.446 0.657 

4, 5 NAV_LNNBW,  
NAV_LNLNK 

0.09457 0.65679 0.08275 1.143 0.258 

4, 7 
NAV_LNNBW,  

NAV_ lnEFCimg 
WithSizeFail 

0.02024 0.44003 0.05544 0.365 0.716 

5, 7 
NAV_LNLNK,  

NAV_lnEFCimg 
WithSizeFail 

-0.07432 0.66761 0.08411 -0.884 0.380 

6, 8 
SAT_LNWPFS, 

SAT_NAVselfReferential 
PageFail 

0.08935 0.55011 0.06931 1.289 0.202 

6, 9 
SAT_LNWPFS,  
SAT_EFCimg 
WithSizeFail 

0.04987 0.61788 0.07785 0.641 0.524 

6, 10 
SAT_LNWPFS,  
SAT_lnEFCimg 

WithSizeFail 

0.02052 0.71086 0.08956 0.229 0.820 

8, 9 
SAT_NAVselfReferential 
PageFail, SAT_EFCimg 

WithSizeFail 

-0.03948 0.30813 0.03882 -1.017 0.313 

8, 10 
SAT_NAVselfReferential 
PageFail, SAT_lnEFCimg 

WithSizeFail 

-0.06883 0.41687 0.05252 -1.311 0.195 

9, 10 SAT_EFCimgWithSizeFail, 
SAT_lnEFCimgWithSizeFail 

-0.02936 0.28376 0.03575 -0.821 0.415 

1, 11 
OU_LNPNBW, 

OU_NAVselfReferential 
PageFail 

-0.10101 0.52991 0.06676 -1.513 0.135 

1, 12 OU_LNPNBW,  
OU_EFCimgWithSizeFail 

-0.06172 0.47279 0.05957 -1.036 0.304 

1, 13 
OU_LNPNBW,  

LNOU_NAVselfReferential 
PageFail 

-0.02662 0.54221 0.06831 -0.390 0.698 

1, 14 OU_LNPNBW, 
LNOU_EFCimgWithSizeFail 

0.02236 0.48222 0.06075 0.368 0.714 

1, 15 OU_LNPNBW,  
LNOU_lnEFCimgWithSizeFail 

0.03438 0.52169 0.06573 0.523 0.603 
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Paired t-test Between Predicted Ratings Within Category of Usability Within 

Scenario 1 (N = 63) 

Paired 
Models Response Variables Mean Std. 

Dev. 

Std. 
Error  

of 
Mean 

t 
sig.  
(2-

tailed) 

11, 12 OU_NAVselfReferentialPage 
Fail, OU_EFCimgWithSizeFail 

0.03929 0.34230 0.04313 0.911 0.366 

11, 13 

OU_NAVselfReferentialPage 
Fail,  

LNOU_NAVselfReferential 
PageFail 

0.07439 0.02831 0.00357 20.856 0.000 

11, 14 OU_NAVselfReferentialPage, 
LNOU_EFCimgWifthSizeFail 

0.12337 0.35049 0.04416 2.794 0.007 

11, 15 

OU_NAVselfReferentialPage 
Fail,  

LNOU_lnEFCimgWithSize 
Fail 

0.13539 0.45649 0.05751 2.354 0.022 

12, 13 
OU_EFCimgWithSizeFail, 
LNOU_NAVselfReferential 

PageFail 

0.03510 0.35156 0.04429 0.792 0.431 

12, 14 OU_EFCimgWithSizeFail, 
LNOU_EFCimgWithSizeFail 

0.08408 0.02015 0.00254 33.119 0.000 

12, 15 
OU_EFCimgWithSizeFail, 

LNOU_lnEFCimg 
WithSizeFail 

0.09610 0.30848 0.03886 2.473 0.016 

13, 14 
LNOU_NAVselfReferential 

PageFail, 
LNOU_EFCimgWithSizeFail 

0.04898 0.35898 0.04523 1.083 0.283 

13, 15 
LNOU_NAVselfReferential 
PageFail, LNOU_lnEFCimg 

WithSizeFail 

0.06100 0.45984 0.05793 1.053 0.296 

14, 15 
LNOU_EFCimgWithSizeFail, 

LNOU_lnEFCimg 
WithSizeFail 

0.01203 0.31341 0.03949 0.305 0.762 

 
Models 13, 14, and 15 predict ratings of OU as their natural logs.  To compare these 
models to models yielding OU, the inverse natural log of LNOU is used. 
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Independent Samples t-test Using Predicted Ratings for Navigability Between 
Scenarios (N = 63) 

Paired 
Models Response Variables F, sig. t sig. Mean Diff, Std. 

Err. 

4, 16 
NAV_LNNBW,  

NAV_EFCimgWith 
SizePass 

12.785, 
0.000 -0.043 0.966 -0.0043,  

0.1013 

5, 16 
NAV_LNLNK, 

NAV_EFCimgWith 
SizePass 

12.723, 
0.001 -1.215 0.227 -0.0989,  

0.0814 

7, 16 

NAV_lnEFCimgWith 
SizeFail,  

NAV_EFCimgWith 
SizePass 

13.420, 
0.000 -0.301 0.764 -0.0246,  

0.0816 

 
 

 
 

Correlations of Paired Models By Category Within Scenario 1 (N = 63) 
Paired 
Models Response Variables Tested N Corr. Sig. 

2, 3 FLX_EW,  
FLX_LNLNK 63 0.547 0.000 

4, 5 NAV_LNLNK,  
NAV_LNNBW 63 0.499 0.000 

4, 7 
NAV_LNNBW,  

NAV_ lnEFCimg 
WithSizeFail 

63 0.797 0.000 

5, 7 
NAV_LNLNK,  

NAV_lnEFCimg 
WithSizeFail 

63 0.259 0.041 

6, 8 
SAT_LNWPFS,  

SAT_NAVselfReferential 
PageFail 

63 -0.087 0.499 

6, 9 SAT_LNWPFS,  
SAT_EFCimgWithSizeFail 63 -0.252 0.046 

6, 10 SAT_LNWPFS,  
SAT_lnEFCimgWithSizeFail 63 -0.175 0.170 

8, 9 
SAT_NAVselfReferential 

PageFail,  
SAT_EFCimgWithSizeFail 

63 0.613 0.000 

8, 10 
SAT_NAVselfReferential 

PageFail,  
SAT_lnEFCimgWithSizeFail 

63 0.581 0.000 
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Correlations of Paired Models By Category Within Scenario 1 (N = 63) 

Paired 
Models Response Variables Tested N Corr. Sig. 

9, 10 SAT_EFCimgWithSizeFail, 
SAT_lnEFCimgWithSizeFail 63 0.840 0.000 

1, 11 OU_LNPNBW,  
OU_NAVselfReferentialPageFail 63 0.202 0.113 

1, 12 OU_LNPNBW,  
OU_EFCimgWithSizeFail 63 0.279 0.027 

1, 13 
OU_LNPNBW,  

LNOU_NAVselfReferential 
PageFail 

63 0.206 0.105 

1, 14 OU_LNPNBW,  
LNOU_EFCimgWithSizeFail 63 0.273 0.030 

1, 15 OU_LNPNBW,  
LNOU_lnEFCimgWithSizeFail 63 0.463 0.000 

11, 12 OU_NAVselfReferentialPageFail,  
OU_EFCimgWithSizeFail 63 0.613 0.000 

11, 13 OU_NAVselfReferentialPageFail,  
LNOU_NAVselfReferentialPageFail 63 0.999 0.000 

11, 14 OU_NAVselfReferentialPage, 
LNOU_EFCimgWifthSizeFail 63 0.605 0.000 

11, 15 OU_NAVselfReferentialPageFail,  
LNOU_lnEFCimgWithSizeFail 63 0.593 0.000 

12, 13 OU_EFCimgWithSizeFail, LNOU_ 
NAVselfReferentialPageFail 63 0.622 0.000 

12, 14 OU_EFCimgWithSizeFail, 
LNOU_EFCimgWithSizeFail 63 0.999 0.000 

12, 15 OU_EFCimgWithSizeFail,  
LNOU_lnEFCimgWithSizeFail 63 0.863 0.000 

13, 14 LNOU_NAVselfReferentialPageFail,  
LNOU_EFCimgWithSizeFail 63 0.614 0.000 

13, 15 LNOU_NAVselfReferentialPageFail,  
LNOU_lnEFCimgWithSizeFail 63 0.595 0.000 

14, 15 LNOU_EFCimgWithSizeFail,  
LNOU_lnEFCimgWithSizeFail 63 0.847 0.000 

 
Models 13, 14, and 15 predict ratings of OU as their natural logs.  To compare these 
models to models yielding OU, the inverse natural log of LNOU is used. 
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Correlations of Paired Models for Navigability Between Scenarios 

(N = 63) 
Paired Models Response Variables N Corr. Sig. 

4, 16 
NAV_LNNBW,  

NAV_EFCimgWith 
SizePass 

63 0.797 0.000 

5, 16 
NAV_LNLNK, 

NAV_EFCimgWith 
SizePass 

63 0.562 0.000 

7, 16 

NAV_lnEFCimgWith 
SizeFail,  

NAV_EFCimgWith 
SizePass 

63 0.719 0.000 
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Unstandardized and Standardized Residuals, Scenario 1, WPMA (N = 63) 

Mod. 
Resp. 
Var. Resid. Min Max Mean Std 

Dev Var. Skew. Kurt. 

Unstd -3.23 2.43 -0.0867 1.17835 1.389 
1 OU 

Std. -2.67044 2.13405 0.00000 1.00000 1.00000 

-0.377, 
0.302 

0.467, 
0.595 

Unstd -0.86 2.21 0.033 0.65035 0.423 
2 FLX 

Std. -1.37353 3.33928 0.00000 1.00000 1.00000 

0.887, 
0.302 

0.907, 
0.595 

Unstd -0.88 1.98 0.0461 0.61997 0.384 
3 FLX 

Std. -1.48707 3.11393 0.00000 1.00000 1.00000 

0.800, 
0.302 

0.610, 
0.595 

Unstd -1.31 2.49 0.0960 0.91328 0.834 
4 NAV 

Std. -1.54477 2.62039 0.00000 1.00000 1.00000 

0.649, 
0.302 

-
0.053, 
0.595 

Unstd -1.35 2.65 0.1905 1.02448 1.050 
5 NAV 

Std. -1.50467 2.39975 0.00000 1.00000 1.00000 

0.770, 
0.302 

-
0.266, 
0.595 

Unstd -2.10 2.87 0.0340 0.98274 0.966 
6 SAT 

Std. -2.16974 2.88345 0.00000 1.00000 1.00000 

0.640, 
0.302 

0.649, 
0.595 

 
A comma separates values of Skewness and Kurtosis from their significance. 
Statistics in this table are not based on absolute values of residuals. 
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Unstandardized and Standardized Residuals, Scenario 1, LIFT (N = 63) 

Mod. Resp. 
Var Resid. Min Max Mean Std. 

Dev. Var. Skew. Kurt. 

Obs. -1.12 2.19 0.1162 0.99012 0.980 
7 NAV 

Std. -1.24753 2.09653 0.0000 1.0000 1.000 

0.522, 
0.302 

-0.664, 
0.595 

Obs. -1.37 3.31 0.1234 0.99732 0.995 
8 SAT 

Std. -1.49738 3.19818 0.0000 1.0000 1.000 

0.897, 
0.302 

0.691, 
0.595 

Obs. -1.48 2.42 0.0839 0.92690 0.859 
9 SAT 

Std. -1.68830 2.51494 0.0000 1.0000 1.000 

0.600, 
0.302 

-0.306, 
0.595 

Obs. -1.53 1.83 0.0545 0.85457 0.730 
10 SAT 

Std. -1.85302 2.07823 0.0000 1.0000 1.000 

0.442, 
0.302 

-0.744, 
0.595 

Obs. -3.98 2.38 -0.1877 1.31870 1.739 
11 SAT 

Std. -2.87429 1.94638 0.0000 1.0000 1.000 

-0.404, 
0.302 

0.619, 
0.595 

Obs. -3.44 2.46 -0.1484 1.24622 1.553 
12 OU 

Std. -2.64288 2.09065 0.0000 1.0000 1.000 

-0.221, 
0.302 

-0.048, 
0.595 

Obs. -3.96 2.47 -0.1133 1.32426 1.754 
13 OU 

Std. -2.90256 1.95015 0.0000 1.0000 1.000 

-0.409, 
0.302 

0.643, 
0.595 

Obs. -3.36 2.54 -0.0643 1.24855 1.559 
14 LNOU 

Std. -2.63925 2.08918 0.0000 1.0000 1.000 

-0.215, 
0.302 

-0.056, 
0.595 

Obs. -2.74 2.61 -0.0523 1.16726 1.363 
15 LNOU 

Std. -2.30514 2.28160 0.0000 1.0000 1.000 

-0.114, 
0.302 

-0.261, 
0.595 

 

For models 14 and 15, residuals are observed OU minus inverse log of predicted LNOU.  
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Statistics in this table are not based on absolute values of residuals. 
Unstandardized and Standardized Residuals, Scenario 2, LIFT (N = 63) 

Mod. Resp. 
Var. Resid. Min Max Mean Std. 

Dev. Var. Skew. Kurt. 

Obs. -0.78 1.22 -0.0585 0.54601 0.298 
16 NAV 

Std. -1.3250 2.3379 0.0000 1.00000 1.0000 

0.692, 
0.302 

0.140, 
0.595 

 
Statistics in this table are not based on absolute values of residuals. 
 
 

Accuracy of Models (N = 63) 
Model Response 

Var. Mean Std. Dev. 

M1 OU 0.79143 0.57619 
M2 OU 0.85713 0.55200 
1 OU 0.91238 0.74225 

12 OU 1.02255 0.71501 
15 LNOU *1.13558 *1.11030 
14 LNOU *1.14881 *1.11815 
13 LNOU *1.15229 *1.13433 

    
3 FLX 0.48190 0.38866 
2 FLX 0.52714 0.37390 
    

4 NAV 0.73889 0.53761 
7 NAV 0.79661 0.59075 
5 NAV 0.79857 0.66158 
    

10 SAT 0.71485 0.46273 
6 SAT 0.75111 0.62850 
9 SAT 0.75866 0.52968 
8 SAT 0.77298 0.63445 

11 SAT 1.04670 0.81374 
    

16 NAV 0.42762 0.34002 
M4 OU 0.68513 0.58191 
M3 OU 0.73196 0.68328 

 
*Inverse natural log of mean rating.  Accuracy is the mean of absolute value of residuals. 
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Paired t test Comparison of Models Within Category Using  
Absolute Values of Residuals (N = 63) 

Pairs Pairs t Sig. (2-
tailed) 

M1-M2 -1.043 0.301 
M1-1 1.458 0.150 

M1-12 3.197 0.002 
M1-15 -5.604 0.000 
M1-14 -5.735 0.000 
M1-13 -5.875 0.000 
M2-1 0.818 0.417 

M2-12 2.271 0.027 
M2-15 -4.687 0.000 
M2-14 -4.847 0.000 
M2-13 -5.028 0.000 
1-12 -1.959 0.055 
1-15 -2.828 0.006 
1-14 -3.070 0.003 
1-13 -3.208 0.002 

12-15 -1.593 0.116 
12-14 -1.838 0.071 
12-13 -1.948 0.056 
15-14 2.332 0.023 
15-13 2.084 0.041 

OU 

14-13 0.848 0.400 
FLX 2-3 1.688 0.096 

4-7 -1.199 0.235 NAV 5-7 0.030 0.976 
10-6 0.503 0.617 
10-9 1.373 0.175 
10-8 1.229 0.224 

10-11 -3.374 0.001 
6-9 -0.129 0.898 
6-8 -0.353 0.725 

6-11 -3.354 0.001 
9-8 0.431 0.668 

9-11 -3.217 0.002 

SAT 

8-11 -3.153 0.002 
NAV 16 NA NA 
OU M3-M4 0.886 0.379 

 
Inverse natural log of absolute values used for residuals by models 13, 14, and 15. 
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Independent Samples t test Comparisons Between Absolute Values of Residuals for 
NAV Models Between Scenarios 1 and 2 (N = 63) 

Models t, sig F, sig 

4-16 3.884, 
0.000 

5.505,  
0.021 

5-16 3.958, 
0.000 

17.559, 
0.000 

7-16 4.297, 
0.000 

21.320, 
0.000 

 
 
 

Models Found for Overall Usability by Multiple Regressions (N = 63) 
Model Scenario Equation 

M1 1 OU = 1.249 * LNTAMFS – 0.636*LNIMG – 4.557 

M2 1 
OU = -1.949*EFCimgWithSizePass – 

1.011*NAVbrokenLocalLinksFail + 7.975 

M3 2 OU = 0.233 * LNPNBW + 7.235 

M4 2 
OU = -1.682*EFCimgWithSizePass – 

0.618*NAVselfReferentialPageFail + 9.069 
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Correlation Coefficients of Multivariate Regression (N = 63) 

Model Desc. Predictors R R2 Adj. 
R2 

Std. 
Err. of 

Est. 
df F Sig. 

M1 Scen.1, 
WPMA 

LNTAMFS, 
LNIMG 0.646 0.417 0.397 1.00 62 21.435 0.000 

M2 Scen.1, 
LIFT 

EFCimgWith 
SizePass, 

NAVbrokenLocal 
LinksFail 

0.605 0.366 0.345 1.04 62 17.348 0.000 

M3 Scen.2, 
WPMA LNPNBW 0.399 0.159 0.145 1.013 62 11.541 0.001 

M4 Scen.2, 
LIFT 

EFCimgWith 
SizePass, 

NAVselfReferential 
PageFail 

0.567 0.321 0.299 0.92 62 14.192 0.000 
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Models of Overall Usability Found by Multiple Regressions (N = 63) 

Multicoll. 
Mod. Desc. Pred. 

Coeff., 

sig. 

Const., 

sig. 

t test,  

sig Tol. VIF 

LNTAMFS 
1.249, 

0.262 

4.760, 

0.000 
0.884 1.131 

M1 

 

Scen. 1,  

WPMA 
LNIMG 

-0.636, 

0.109 

-4.557, 

2.812 -5.849, 

0.000 
0.884 1.131 

EFCimgWith 

SizePass 
-1.949 

-5.423, 

0.000 
1.000 1.000 

M2 
Scen. 1,  

LIFT NAVbroken 

LocalLinksFail 
-1.011 

6.964, 

0.430 -2.261,  

0.027 
1.000 1.000 

M3 
Scen. 2,  

WPMA 
LNPNBW 0.233 

7.235, 

0.281 
3.397 1.000 1.000 

EFCimgWith 

SizePass 

-1.682, 

0.326 

-5.165,  

0.000 
0.945 1.058 

M4 
Scen. 2,  

LIFT 
NAVself 

Referential 

PageFail 

-0.618, 

0.249 

9.069, 

0.326 -2.483,  

0.016 
0.945 1.058 
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Precisions of Bivariate Models with Prediction Set (N = 31) 

 
Overall Precision 

Precision At  
Threshold 

Mod. Threshold 
Pairs At or 

Above 

Pairs 
Both 

Below 

Pairs At or 
Above 

Pairs  
Below 

OU 
1 7.554 *0.323 0.290 *0.526 *0.750 
11 7.759 0.032 0.452 0.167 0.560 
12 7.680 0.129 *0.484 0.500 0.652 

LNOU 
13 2.038 0.032 0.452 0.167 0.560 
14 2.027 0.161 *0.484 *0.625 0.652 
15 2.019 *0.258 0.355 0.533 *0.688 

FLX 
2 0.670 0.258 0.258 0.500 0.533 
3 0.649 *0.355 *0.355 *0.688 *0.733 

NAV 
4 1.022 0.258 *0.484 *0.667 *0.789 
5 0.830 0.290 0.355 0.563 0.733 
7 0.980 *0.355 0.355 0.563 0.733 

SAT 
6 1.440 0.161 *0.419 0.500 0.619 

8 1.260 *0.516 0.129 *0.640 0.667 

9 1.340 0.419 0.226 0.565 *0.875 
10 1.400 0.290 0.355 0.563 0.733 

NAV (Scenario 2) 
16 *0.993 *0.226 *0.516 *1.000 *0.667 

 
* Asterisks denote highest values for category. 
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Precisions of Models by Multiple Regressions (N = 63) 

 

Overall Precision 

Precision At  

Threshold 

Mod. Threshold 
Pairs At or 

Above 

Pairs 

Both 

Below 

Pairs At or 

Above 

Pairs  

Below 

Scenario 1 

M1 7.560 0.365 0.381 0.742 0.750 

M2 6.558 0.683 0.143 0.896 0.600 

Scenario 2 

*M3 0.809 0.429 0.270 0.750 0.603 

M4 0.809 0.460 0.222 0.707 0.636 

 
* Bivariate model 
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Correlations and Independent Samples t test Between Scenarios 1 and 2 Using 
Multivariate Models for Overall Usability (N = 63, p < 0.05, df = 62) 

Comb. 
Means, 

std. dev. 

Correlation, 

2-tailed sig. 

t test, 

2-tailed sig. 
F, sig. df 

Mean Diff, 

Std. Err. 

M1 
7.5700, 

0.8311 

M3 
8.0859, 

0.4367 

0.510, 

0.000 

-4.361, 

0.000 

28.960, 

0.000 
93.802 

-0.5159, 

0.1183 

M1 
7.5700, 

0.8311 

M4 
8.0859, 

0.6212 

0.604, 

0.000 

-3.946, 

0.000 

6.711, 

0.011 
114.795 

-0.5159, 

0.1307 

M2 
7.5693, 

0.7797 

M3 
8.0859, 

0.4367 

0.668, 

0.000 

-4.588, 

0.000 

18.622, 

0.000 
97.407 

-0.5166, 

0.1126 

M2 
7.5693, 

0.7797 

M4 
8.0859, 

0.6212 

0.797, 

0.000 

-4.113, 

0.000 

2.686, 

0.104 
118.105 

-0.5166,  

0.1256 

 
Levene’s test for equality of variances is applied in F test.  If significance level of t is  
< 0.05, equal variances are not assumed. 
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Comparisons Between Assessed Overall Usability and Multivariate Models for 

Overall Usability by Paired Samples t Test (N = 63, p < 0.05, df = 62) 
Combinations Mean Correlation, 

2-tailed sig. 
t test, 

2-tailed sig. Different? 

Assessed 
Scenario 1 7.5693500 

M1 7.5700389 

0.646, 0.000 -0.006, 0.996 No 

Assessed 
Scenario 1 7.5693500 

M2 7.5693492 

0.605, 0.000 0.000, 1.000 No 

Assessed 
Scenario 2 8.0867725 

M3 8.0859377 

0.399, 0.001 0.007, 0.995 No 

Assessed 
Scenario 2 8.0867725 

M4 8.0859206 

0.567, 0.000 0.007, 0.994 No 
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Comparisons Between Multivariate Models for Overall Usability Within Scenario 

by Paired Samples t Test (N = 63, p < 0.05, df = 62) 

Combinations Mean Correlation, 
2-tailed sig. 

t test, 
2-tailed sig. Different? 

M1 7.5700389 

M2 7.5693492 
0.776, 0.000 0.010, 0.992 No 

M3 8.0859377 

M4 8.0859206 

0.608, 0.000 0.000, 1.000 No 
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For Multivariate Regression, Scenario 1, WPMA, by SPSS v. 15 [SPSS 2006]. 
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For Multivariate Regression, Scenario 1, WPMA, by SPSS v. 15 [SPSS 2006] 
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For Multivariate Regression, Scenario 1, WPMA, by linear regression, SPSS v. 15 

[SPSS 2006] 
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For Multivariate Regression, Scenario 1, LIFT Machine, by Linear Regression,  
SPSS v. 15   
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For Multivariate Regression, Scenario 1, LIFT Machine, by SPSS v. 15 
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For Multivariate Regression, Scenario 1, LIFT Machine, by Linear Regression,  
SPSS v. 15 
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For Multivariate Regression, Scenario 2, WPMA, by Linear Regression, SPSS v. 15  
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For Multivariate Regression, Scenario 2, WPMA, by Linear Regression using  
SPSS v. 15. 
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For Multivariate Regression, Scenario 2, WPMA, by Linear Regression, SPSS v. 15. 
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For Multivariate Regression, Scenario 2, LIFT Machine, by Linear Regression,  
SPSS v. 15. 
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For Multivariate Regression, Scenario, LIFT Machine, by Linear Regression with  
SPSS v. 15. 
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For Multivariate Regression, Scenario 2, LIFT Machine, by Linear Regression with 
SPSS v. 15. 
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Pages Not Processed by WPMA 

 

The WPMA miscounted properties for two pages (PageIDs 4 and 13): 

PageID 4 – 
C:\Experiment\Hubble2\Hubble\Dissertation\hubblesite.org\explore_astronomy\ 

hubbles_universe\index.html  
 
PageID 13 – 

C:\Experiment\Hubble2\Hubble\Dissertation\hubblesite.org\explore_astronomy\ 
skywatch\index.html 
 

The software tool did not measure the following properties correctly:  

1. Number of words not in body of Web page (NBW) 

2. Number of text areas with a non-white background, with borders, with a 

horizontal rule, or as a list (CLU) 

3. Number of times blocks of text were not positioned flush left (NFL) 

4. Number of internal and external hypertext links (LNK) 

5. Number of images embedded in a page (not in scripts, applets, or objects) (IMG) 

6. Percentage of Non-body Words to Total Words (PNBW) 

7. Total of sizes of all files of images of a Web page (TIFS) 

8. Percent of Image File Size to Web Page File Size (PIWPFS) 

The reason for the error with measurements was code for embedded video found in the 

two Web pages above.  
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Pages Not Processed by LIFT Machine 
 
 
The LIFT Machine did not analyze four Web pages (PageIDs 29, 31, 48, and 54) assessed by 
subjects in experiments. 
 
PageID 29 – 

hubblesite.org\newscenter\archive\browse\index.html.   
 
LIFT processed – 

hubblesite.org/newscenter/archive/releases/image_category/* 
hubblesite.org/newscenter/archive/releases/index/0 
hubblesite.org/newscenter/archive/releases/miscellaneous/* 
hubblesite.org/newscenter/archive/releases/nebula/* 
hubblesite.org/newscenter/archive/releases/news_nugget 
hubblesite.org/newscenter/archive/releases/solar-system/* 
hubblesite.org/newscenter/archive/releases/star/* 
hubblesite.org/newscenter/archive/releases/star-cluster/* 
hubblesite.org/newscenter/archive/releases/survey/* 
hubblesite.org/newscenter/archive/releases/video_category/* 
hubblesite.org/newscenter/archive/releases/ 

 
PageID 31 – 

hubblesite.org\newscenter\hubble_on_the_go\inbox_astronomy\index.html 
 
LIFT processed – 

hubblesite.org/newscenter/hubble_on_the_go/inbox_astronomy/help/ 
hubblesite.org/newscenter/hubble_on_the_go/inbox_astronomy/mailsample.html 

 
PageID 48 – 

hubblesite.org\reference_desk\glossary\index.html 
 
LIFT processed – 

hubblesite.org/reference_desk/glossary/index.php?range=c-d 
hubblesite.org/reference_desk/glossary/index.php?range=h-k 
hubblesite.org/reference_desk/glossary/index.php?range=o-p 
hubblesite.org/reference_desk/glossary/index.php?range=t-z 
hubblesite.org/reference_desk/glossary/index.php?topic=topic_astronomy 
hubblesite.org/reference_desk/glossary/index.php?topic=topic_galaxies 
hubblesite.org/reference_desk/glossary/index.php?topic=topic_light 
hubblesite.org/reference_desk/glossary/index.php?topic=topic_physics 
hubblesite.org/reference_desk/glossary/index.php?topic=topic_stars 

 
 
PageID 54 – 

hubblesite.org\gallery\movie_theater\index.html 
 
LIFT processed –None 
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Procedure for Converting Data for Statistical Processing 

 

Tests for regression use original values of predictors as well as their values 

transformed to natural logs [De Veaux, Velleman and Bock 2008].  Visual inspection of 

predictors plotted against response variables may suggest curved as well as linear 

patterns.  Some assessed ratings and measurement from the software tools have the value 

of zero.  In this case, tests that use the natural log of zero substitute 0.25 for zero.  For 

assessed ratings, 1x10-9 replaces zero if using the natural log of values.   
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Procedure for Making a Hubble Data File 

 

1. Open IE and navigate to the Web page to process. 

2. At command line in Paul/Documents/workspace/WebPageMetricAnalyzer/bin 

enter the following: 

java –classpath . 

webPageMetricAnalyzer.WebPageMetricAnalyzer <path and 

name of file> > hubble_<page_no>.dat 

3. Select <path and name of file> from the address line of IE.  Select Edit and Copy 

from the menu.  Click on the command window.  Select Command Prompt icon, 

Edit, and Paste.  Use the address of the page exactly as it appeared in the Address 

line of the browser. 

4. Using the number of the Hubble page, fill out hubble_<page_no>.dat 

5. Hit enter and let the program run. 

6. Open a text editor, navigate to the data file, and open it.  If image file names and 

sizes appear, then it’s good to use.  If they don’t, you’ll have to work with the 

address line as shown in the browser.  Be aware that the program is not written to 

parse the address line of some browsers, such as Safari earlier than version 5. 
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Web Page Metric Analyzer V. 1.1 Files, Source Lines of Code (SLOC), and 

Comments 
File Name SLOC and comments 

HTTPWebPage.java 4923 

FileCharacteristics.java 529 

WebMetrics.java 339 

WebPageMetricAnalyzer.java 236 

FileOps.java 133 

WebPage.java 102 

TagNode.java 46 

FileNode.java 41 

HTTPPageInterface.java 38 

ColorNode.java 31 

FontNode.java 21 

Total 6439 
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Thank you for volunteering for this research. 
 
There are three documents attached to this e-mail.  One is an information sheet that lists 
categories of usability.  The other is a Consent Form.  The third is the document you are 
reading. 
 
Before starting the experiment, you’ll need to do the following things: 

1.  Read these attached documents before coming to the experiment.   
2.  Practice identifying usability problems at sites listed at; 
http://www.webbyawards.com (examples of good design,) 
http://www.webpagesthatsuck.com/ (examples of poor design,) and 
http://www.useit.com (general information about usability.)   

 
If you agree to participate, please sign the document and bring it with you.  I’ll have 
extra copies available.  If you decline to participate, please let me know as soon as 
possible.  Please be sure to read about identifying usability problems and practice with 
the sites listed above. 
 
The procedure of the experiment is as follows: 

In a pre-survey interview, the Priniciple Investigator will collect your name, age 
within an age range, experience in years using Web browsers, academic major and 
classification, gender, and years of prior experience with designing Web sites. 

 
The experiment is performed under controlled conditions.  The location will be 

the Evans Library Annex.  If a place in Evans Annex is not available, the H.R. Bright 
Building at 3112 TAMU or Evans Library itself are other locations.  If the experiment 
takes place in a closed room, the PI will sit outside the room.  If you allow, the 
experiment will be recorded.  If carried out at another location, the subject might sit in a 
study area.  In either case, with the PI available nearby.  Each participant will sit at a 
desk before a computer, view a sequence of web pages, and answer questions on paper 
forms, called data forms. The forms have check or option boxes as well as text areas.  
The questions are about the kind and severity of usability issues they might find in the 
web pages they review.  Each may verbalize or write observations at any time as well.   

 
The survey ends when the person has finished analyzing all web pages or when 

time runs out.  Time limit is two hours.  There will be a post-survey interview, which 
may be declined.  The offer of the gift card is at completion of the survey. 
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A Brief Introduction To Usability and Web Pages 
Paul A. Davis, January 16, 2008 

 
Usability has several definitions.  Basically, it is about making a product that people find to be 
easy, enjoyable, and effective to use [1].  Here are some characteristics of a usable Web site: 
 

1. Effective 
Persons visiting a Web site should accomplish their goals, such as finding information or 
performing an online transaction. 
 

2. Flexible 
The Web site should allow a person to reach a goal both quickly and easily.  It should 
give people more than one way to reach their goals.  New users might want more 
guidance, while expert users might want less. 
 

3. Navigable 
People should find it easy to know where they are in a Web site.  For example, they 
should find it easy to click on hyperlinks and go where they want to. 
 

4. Satisfactory 
A Web site should not make people tired or angry.  Instead, they should find it satisfying 
to use. 
 

5. Searchable 
A Web page should provide information about its content to search engines so that they 
can index it.  To do this, the coding of the page should have page descriptions, 
keywords, and lists of important words for both page and Web site. 
 

6. Efficient 
People should find the ease of use and performance of the site to be satisfactory.  For 
example, they should be able to find pages, determine if those pages are useful for them, 
and find other pages in a manner that they find satisfactory. 

 
There are many other ways to define usability.  The above list of six has just a few of many 
possible characteristics. 
 
If you would like to learn more about usability, see the following: 
 
1.  Rogers, Y., Preece, J., Sharp, H.  Interaction Design, 2nd ed.  John Wiley & Sons, Ltd.  
Chichester, England.  2007. 
 
2.  Nielsen, J. Usability Engineering.  Academic Press, Inc.  Boston, Massachusetts.  1993. 
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The ID number of the Web page is _______. 

 
Web Page Usability Assessment Form 

 

Describe the usability problem.    
 
 
 
Select a category and rate the problem in that category.   
   

       Effectiveness – Persons visiting the site should be able to accomplish their goals, such as finding 
information. 

___1 ___2 ___3 ___4 ___5 
 
       Flexibility – There should be more than one way to reach a goal.  This also means that people should 
be able to use the site if the page appears in browser windows of different sizes. 

___1 ___2 ___3 ___4 ___5 
 
       Navigability – People should find it easy to learn where they are in a site as well as how to go 
elsewhere within the site.  They should be able to remember where a page is if they return to the site. 

___1 ___2 ___3 ___4 ___5 
 
       Satisfaction – People should not tire or become upset when using a site.  They should find the 
experience satisfying and satisfactory. 

___1 ___2 ___3 ___4 ___5 
 
       Visitor efficiency – People should find that the ease of use and performance of the site are 
satisfactory.  This can include obtaining pages, determining if those pages are useful, and finding 
hypertext links to other pages. 

___1 ___2 ___3 ___4 ___5 
 
Rate of the overall usability of the Web page.   

___1 ___2 ___3 ___4 ___5 ___6 ___7 ___8 ___9 ___10 
 
Optional comments.   
 
 

Note:  Please analyze one problem at a time per form.  Write one check mark by one rating.  A rating of 
“1” means a very weak problem.  A rating of “5” means a very strong problem.  You may select more than 
one category but be sure to select only one rating in each category chosen.  For overall usability, the scale 
is “1” as lowest and “10” as highest. 
Note:  the PI instructed volunteers to write “0” in categories if they detected no issues. 
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SCENARIO 
You have been hired as a contractor to assess the usability of a Web site.  The purpose of 
your contract is to find usability issues within a particular context.  Do not assess the 
performance of the site but only the usability of its Web pages.  Each page has an 
identifying number in the title of its header. 
 
NAME AND PURPOSE OF PRODUCT 
This is the Web site for the NASA Hubble Space Telescope.  The purpose of the Web 
site is to provide information to the public. 
 
CONTEXT OF USE 
Assess the Web site of the NASA Hubble Space Telescope for use by middle school 
students.  These students attend classes in physical science or environmental science.  
They all study the exploration of space.  Their ages are between 12 and 15, and there are 
both boys and girls.  All are familiar with how to use a Web browser. 
 
INSTRUCTIONS 
Base your assessment on five categories of usability:  efficiency, navigability, flexibility, 
satisfaction, and effectiveness.  In your assessment, always record the number of the 
Web page at the top of the form.  As you discover issues (in a particular category of 
usability) with a Web page, rate the severity of the issue in that category.  A rating of 1 
means a very minor issue, whereas a rating of 5 is a severe issue.  If there is no issue in a 
category, write a zero.   
 
Also remember to always rate a page for the overall quality of usability.  A rating of 1 is 
given to pages with very lowest quality, and a rating of 10 is for pages with very highest 
quality. 
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SCENARIO 
You have been hired as a contractor to assess the usability of a Web site.  The purpose of 
your contract is to find usability issues within a particular context.  Do not assess the 
performance of the site but only the usability of its Web pages.  Each page has an 
identifying number in the title of its header. 
 
NAME AND PURPOSE OF PRODUCT 
This is the Web site for the NASA Hubble Space Telescope.  The purpose of the Web 
site is to provide information to the public. 
 
CONTEXT OF USE 
Assess the Web site of the NASA Hubble Space Telescope for use by astronomers.  
These scientists search for information, photos, and illustrations regarding astronomical 
phenomena and scientific instruments.  They publish to scientific journals.  Their ages 
are between 25 and 65, and there are both men and women.  All are familiar with how to 
use a Web browser.  Their academic credentials include a Masters or Ph.D. in physics or 
astronomy. 
 
INSTRUCTIONS 
Base your assessment on five categories of usability:  efficiency, navigability, flexibility, 
satisfaction, and effectiveness.  In your assessment, always record the number of the 
Web page at the top of the form.  As you discover issues (in a particular category of 
usability) with a Web page, rate the severity of the issue in that category.  A rating of 1 
means a very minor issue, whereas a rating of 5 is a severe issue.  If there is no issue in a 
category, write a zero.   
 
Also remember to always rate a page for the overall quality of usability.  A rating of 1 is 
given to pages with very lowest quality, and a rating of 10 is for pages with very highest 
quality. 
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 1  
CONSENT FORM  
Objectives Methods of Applying Subjective Analyses to Usability  
Testing of Web Sites  
  
Introduction  
The purpose of this form is to provide you information that may affect your decision as to  
whether or not to participate in this research study. If you decide to participate in this  
study, this form will also be used to record your consent.  
  
You have been asked to participate in a research project that is a study into identifying  
usability problems in Web sites. The purpose of this study is to determine if it is possible  
to match measurements about characteristics of Web pages to what people say are  
usability problems with those pages. You were selected to be a possible participant  
because you have indicated that you have knowledge of using or evaluating Web sites.  
  
What will I be asked to do?  
If you agree to participate in this study, you will be asked to do the following tasks. There  
is a pre-survey interview where demographic information is collected. This means  
recording your age within an age range, your gender, your major, years of secondary  
education, and years of experience with browsers. If you have experience designing,  
making, or evaluating Web sites, it is recorded as well.  Then you will sit at a desk before  
a computer monitor, view a sequence of Web pages, and answer questions on paper  
forms. The forms have check boxes as well as text areas. The questions are about the kind  
and importance of usability issues that you might find in these Web pages. You may  
write down your own observations or comments at any time as well. The study ends  
when you have analyzed all Web pages or when time runs out. There will be a post-study  
interview, which you may decline. The time needed in the study is no more than two  
hours.  If you wish, you may return for a second survey of Web pages, but this is  
optional.  The procedure of this second survey is identical to the first except for the Web  
pages to review.  Your participation may be audio or video recorded.  
  
What are the risks involved in this study?  
The risks associated in this study are minimal, and are not greater than risks ordinarily  
encountered in daily life.  
  
What are the possible benefits of this study?  
You will receive a one-time offer of a gift card valued at $25.00 (U.S.) for participating  
in this study.  You will receive no additional offer of a gift card even if you participate  
again.  If the study determines that it is possible to identify pages with a higher likelihood  
of usability problems, a benefit to software professionals and companies is reduced time  
to finding such problems in Web sites.  
  
Do I have to participate?  
No. Your participation is voluntary. You may decide not to participate or to withdraw at  
any time without your current or future relations with Texas A&M University being  
affected.  
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2 
Who will know about my participation in this research study?  
This study is confidential. The records of this study will be kept private. No identifiers  
linking you to this study will be included in any sort of report that might be published.  
Research records will be stored securely and only Paul A. Davis will have access to the  
records.  If you choose to participate in this study, you may choose to be audio [/video]  
recorded. Any audio [/video] recordings will be stored securely and only Paul A. Davis or  
Frank Shipman will have access to the recordings. Any recordings will be kept for no  
more than two years and then erased.  
  
Is there anything else I should consider?  
You may withdraw from the study at any time.  
  
Whom do I contact with questions about the research?  
If you have questions regarding this study, you may contact the Principal Investigator  
Paul A. Davis at 979-574-6244 or p-davis@tamu.edu or, alternatively, Frank Shipman at  
979-862-3216 or shipman@cs.tamu.edu.  
  
Whom do I contact about my rights as a research participant?  
This research study has been reviewed by the Human Subjects’ Protection Program  
and/or the Institutional Review Board at Texas A&M University. For research-related  
problems or questions regarding your rights as a research participant, you can contact  
these offices at (979)458-4067 or irb@tamu.edu.  
  
Signature  
Please be sure you have read the above information, asked questions and received  
answers to your satisfaction. You will be given a copy of the consent form for your  
records. By signing this document, you consent to participate in this study.  
______ I agree to be audio [/video] recorded.  
______ I do not want to be audio [/video] recorded.  
  
Signature of Participant: ____________________________________   
Date: ______________  
  
Printed Name:  
_________________________________________________________________  
  
Signature of Person Obtaining Consent: ________________________  
Date: ______________  
  
Printed Name:  
_________________________________________________________________  
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What are the dimensions of the Hubble Space Telescope? 
  
 
  
What is the latest news about the telescope and the project itself? 
  
 
  
Of what in space has the telescope taken images most recently? 
  
 
  
Where can you listen for news about the project? 
  
 
  
What is visible in tonight’s sky? 
  
 
  
Where is the Space Science Education Resource Directory? 
  
 
  
Where can news agencies and the press find information about the telescope? 
  
 
  
Where can you find calculators to find temperature, distance, and redshift? 
  
 
  
Where can you find the latest news from NASA? 
  
 
  
How do you go about building your own Hubble telescope? 
  
 
 
 



 160 

 

 

 

 

 

 

 

 

 

 

APPENDIX J 

 
 
 
 



 161 

/** 
 * Program started:   5/16/08. 
 * Program completed:  9/22/08. 
 * Preliminary tests with atest suite:  9/26/2008 
 * Program tested with 30 file mtest suite:  9/30/2008 
 * Added check for CSS files by @import:  11/12/2008 
 * This program is written to parse hubblesite.org, dated August 20, 2007. 
 * It does not use DOM.  A copy was made available to Frank M. Shipman, 
 * Professor, Dept. of Computer Science and Engineering, Texas A&M University. 
 *  
 * Designer & Programmer:  Paul A. Davis 
 * Purpose:  Web Page Metric Analyzer tool for research for dissertation. 
 *   
 *  History: 
 *  10/28/08.  Added flag to track elements not used in measurements. 
 *   
 *   
 * This version of the webPageMetricAnalyzer was created in 05/16/08. A previous version 
 * was called webmetric and was created 11/5/2007. 
 *  
 *  
 * 1. 06/10/08. Word count -- count of total number of words on a page, which 
 * includes headers in cells of tables, so include contents of tables. 
 *   06/10/08 Exclude scripts. 
 *  
 *   NOTE:  characters formatted by tags but not separated by spaces are counted 
 * as separate words even if they are adjacent and _appear_ as one word. 
 *  
 * 2. 09/10/08 Body text % -- percent of words in non-body versus body words. 
 *  
 * 3. 05/16/08. Emphasized body text. 
 *   a. Exclamation point 
 *   b. Words with all characters capitalized but not consisting of all digits 
 *   c. Words capitalized by an inline style uppercase but not consisting of all digits 
 *   d. Words in strong or bold face 
 *  
 * 4. 05/25/08. Emphasized body text % -- count of words in bold, capitalized, 
 * or adjacent to '!' versus count of body text 
 *  
 * 5. 04/27/08. Count words made bold by deprecated tag. 
 * Count worlds in all caps and bold by deprecated symbol "<b>". 
 *  
 * 6. 09/06/08. Text positioning count -- count of number of times that text position 
 * wasn't flush left with the margin in body. 
 *   a.  Do not count text appearing in a table cell.  This is counted in text cluster count. 
 *   b.  Text wrapped to right and around an image.  This is not done until to do so is found 
 *    in documentation about the Ivory and Hearst, 2001 tool. 
 *   c.  Blocks of text.  BLOCKQUOTE, PRE. 
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 *   e.  Code.  1) attribute/value of "align=center" and "align=right" for non-style and  
 *      2) inline-style "text-align:center" and "text-align:right" 
 *  
 * 7. 09/05/08. Text cluster count -- "Text areas highlighted with color, bordered regions, 
 *  rules or lists." 
 *   To do this, count of number of times of change in text color, 
 *   number of horizontal rules, and number of lists.  A region is a part of the 
 *   page with a background colored differently from the rest of the page.  Within 
 *   this region, text must appear. 
 *   Specifics, all of which are arbitrary and made by Paul A. Davis: 
 *    a. Text with a different color of background than rest of document. 
 *     1)  08/20/08, by default. Exclude bgcolor in <BODY> because this attribute 
changes the 
 *      background color of all of the page. 
 *     2)  08/20/08.  Inline style of "background-color" works.  Exclude attributes 
"bgcolor" and 
 *      "background-color" in other elements.   See line 830 
 *     3)  08/20/08, by default.  Exclude background color of table cells. 
 *    b. Text surrounded by border includes the following: 
 *     1)  08/25/08.  For inline style, "border" will draw a line around text. 
 *     2)  09/04/08. Text within a TABLE 
 *      a) Ignore "border". 
 *      b) Ignore "bgcolor". 
 *      c) Ignore "frame" which is considered for whole documents and not text 
within  
 *       the same document. 
 *      d) Ignore "rules" because rules applies between cells.  
 *      e) Consider any table with any number of cells. 
 *      f) Count a cluster of text as three or more words in the same cell 
 *       and at most one of the words is a number. 
 *       NOTE: this does not consider text separated by titles or more than one 
 *       blank line within the same cell. 
 *    c. 09/05/08. Horizontal rule <HR> or <HR /> 
 *    d. 09/05/08. Any block starting with <UL>, <OL>, or <DL> 
 *  
 * 8. 05/18/08. Link count -- count of all hypertext links on page. 
 *  
 * 9. 08/15/08. Page, i.e. file, size -- total bytes for the page as well as for images. 
 *          Include CSS file sizes in total if those files can be read. 
 *   08/11/08.  Class FileCharacteristics.java creates linked list of FileNode objects, 
 *   and these have path and name of image files.  Successful test of storing names 
 *   of image files and calling a method to sum their file sizes.   
 *   NEXT.  Include path and name of HTTP page.  Create method to sum file sizes 
 *   of HTTP and image files together and a different method for image files only.  
 *  
 *   9/22/08 - CSS files included in total count.  This includes those files stored 
 *    locally as well as URLs to those CSS files.  The fact that the CSS file is 
 *    at a URL is noted.  The program doesn't try to retrieve it but will report 
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 *    the size as 0. 
 *  
 * 10. 08/14/08. Graphic % -- percent of bytes of graphic images to page size. 
 *   Method made to calculate percentage of file size of image files to sum of sizes  
 *   of image and HTTP files. 
 *   10/156/08.  In test against NASA Hubble site, some image files were found to have 
 *   "file:///" as prefix.  Modified readWord() to continue reading characters 
 *   from the input buffer if the image flag is set and a colon is encountered. 
 *  
 * 11. 05/25/08. Graphics count -- count of number of images on a page. 
 *  
 * 12. 08/06/08. Color count -- count of total number of colors used in fonts. 
 * This is not a count of the number of words in that color. 
 *  
 * ASSUMPTION.  The program will count only one color as default for a hypertext link. 
 * Process the page with Private Data and History cleared in the browser so that visual inspection 
 * of hypertext links appear as they would before a person had visited them. 
 * Also, if the program encounters a hypertext link, it will add the default color 
 * to the list of text colors.  It will also mark that color as different from  
 * any other color that might the program might find in the page. 
 *  
 * 13. 05/31/08 Deprecated font -- color of font as set in style element. 
 *  
 * Color of hypertext link does not supercede color set by enclosing style or deprecated tag. 
 * It can supercede color as set in body tag. 
 *  
 *  
 * 14. 09/21/08 Font count -- count of total number of font face and size  
 * combinations used. 
 *  
 * Approach:  set global flags for font-face and size, just as was done with color. 
 * When font face is found, store in nested tag node.  Same for font size. 
 * Report results from contents of nested tag node list.  Use bFontFace and bFontSize 
 * as the global flags. 
 *   
 * 15. 06/09/08 Javadoc. Converting comment headings of methods into 
 * Javadoc. 
 *  
 * A method prefixed by "test" checks if flags are set and does not inspect the 
 * word itself. If flags are set, it signals increment of a counter. 
 *  
 * A method prefixed by "check" detects if chars of the word match a pattern, 
 * and, if it does, signals increment of a counter. 
 * 
 *      
 */ 
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