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ABSTRACT

A Weighted Residual Framework for Formulation and Analysis of Direct

Transcription Methods for Optimal Control. (December 2010)

Baljeet Singh, B.Tech., Indian Institute of Technology, Bombay, India;

M.Tech., Indian Institute of Technology, Bombay, India

Chair of Advisory Committee: Dr. Raktim Bhattacharya

In the past three decades, numerous methods have been proposed to transcribe

optimal control problems (OCP) into nonlinear programming problems (NLP). In this

dissertation work, a unifying weighted residual framework is developed under which

most of the existing transcription methods can be derived by judiciously choosing test

and trial functions. This greatly simplifies the derivation of optimality conditions and

costate estimation results for direct transcription methods.

Under the same framework, three new transcription methods are devised which

are particularly suitable for implementation in an adaptive refinement setting. The

method of Hilbert space projection, the least square method for optimal control and

generalized moment method for optimal control are developed and their optimality

conditions are derived. It is shown that under a set of equivalence conditions, costates

can be estimated from the Lagrange multipliers of the associated NLP for all three

methods. Numerical implementation of these methods is described using B-Splines

and global interpolating polynomials as approximating functions.

It is shown that the existing pseudospectral methods for optimal control can be

formulated and analyzed under the proposed weighted residual framework. Perfor-

mance of Legendre, Gauss and Radau pseudospectral methods is compared with the

methods proposed in this research.

Based on the variational analysis of first-order optimality conditions for the op-
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timal control problem, an posteriori error estimation procedure is developed. Using

these error estimates, an h-adaptive scheme is outlined for the implementation of least

square method in an adaptive manner. A time-scaling technique is described to han-

dle problems with discontinuous control or multiple phases. Several real-life examples

were solved to show the efficacy of the h-adaptive and time-scaling algorithm.
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CHAPTER I

INTRODUCTION

Optimal control problems arise in a wide variety of applications areas of engineering,

economics and sciences. In the fields of aerospace and robotics, optimal control prob-

lems can be defined for atmospheric reentry guidance, orbital maneuvers, attitude

control, missile guidance, robot motion planning and many other applications. An

optimal control problem seeks to determine the control input which drives a given dy-

namical system in such a manner that a prescribed performance criterion is minimized

and the associated terminal and path constraints are satisfied. Optimal control the-

ory strives to address such problems, and we begin this chapter with a brief historical

account of major developments that has taken place in this field.

A. History of Developments in Optimal Control Theory

The origin of optimal control theory dates back to the 17th century with the emergence

the calculus of variations. It is believed that the calculus of variations started in 1662

when Pierre de Fermat (1601-1665) postulated his principle that the light rays follow

the minimum time path [1, 2]. In the late 17th century, Johann Bernoulli (1667-1748)

challenged [3] his colleagues to solve the famous “brachistochrone” problem originally

posed by Galileo Galilei (1629-1695) in 1638. This gave rise to further studies by a

number of outstanding mathematicians such as Newton, Bernoulli, Leibnitz, Euler,

Lagrange and Hamilton, marking the beginnings of optimal control theory.

Euler (1707-1783) and Lagrange (1736-1813) further developed the calculus of

variations and gave the first-order necessary conditions, known as Euler-Lagrange

The journal model is IEEE Transactions on Automatic Control.
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equations, for minimizing or maximizing a functional. Next, Legendre (1752-1833)

and later Clebsch (1833-1872) looked at the second variation and postulated another

condition for optimality known as the Legendre-Clebsch condition. Later Bolza (1857-

1942) and Bliss (1876-1951) gave the calculus of variations its present rigorous form.

Based on the Hamilton-Jacobi theory in analytical mechanics and Bellman’s

principle of optimality, a new approach known as dynamic programming was proposed

by Richard Bellman and his colleagues in the 1950’s leading to the Hamilton-Jacobi-

Bellman (HJB) equation [4]. The HJB equation is a partial differential equation

which relates the optimal feedback control to the optimal cost to go function defined

over the entire state space.

In the middle of 20th century, Pontryagin developed the maximum principle [5] to

extend the calculus of variations for handling control variable inequality constraints.

The maximum principle is inherent in dynamic programming since the HJB equation

includes finding the controls that minimize the Hamiltonian at each point in the state

space.

The advent of commercial computers in the 1950’s vitally transformed the field

by enabling efficient numerical solutions of the optimal control problems. In the

present day, there exist a variety of numerical methods for solving optimal control

problems varying greatly in their approach and complexity.

B. A Review of Numerical Optimal Control Methods

Available numerical methods to solve optimal control problems can largely be divided

into two categories: indirect methods and direct methods [6]. In an indirect method,

the optimal control problem (OCP) is dualized by adjoining with the costates, also

known as dual variables. The optimality conditions, also known as Euler-Lagrange
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(EL) equations, are derived using the calculus of variations and Pontryagin’s minimum

principle, leading to a two-point boundary-value problem (TPBVP) [7, 8, 9]. Various

numerical techniques are then used to solve the TPBVP [10]. In a direct method, the

optimal control problem is discretized by parameterizing the controls, and frequently

states as well, to transcribe the continuous time OCP into a finite-dimensional non-

linear programming problem (NLP) [11]. The NLP is then solved using numerical

optimizers such as ‘fmincon’ in MATLAB, SNOPT [12], or NPSOL [13].

Direct methods have gained wide popularity in the last decade for many reasons.

The foremost being that direct methods do not require analytical derivation of the

EL equations, making it easier to automate the direct transcription process inside

a software program. This has led to the development of many software tools, such

as OTIS [14], SOCS [15], DIRCOL [16], NTG [17], DIDO [18], DIRECT [19], OP-

TRAGEN [20] and GPOPS [21], for direct transcription. Furthermore, experience

has shown that direct methods have much larger radii of convergence than indirect

methods, thus are more robust with respect to the inaccurate initial guess. Also,

incorporating state and control constraints is much easier in direct methods. While

the indirect methods provide high accuracy solutions, these methods are not popular

in industry as the TPBVP has to be derived analytically and requires in-depth knowl-

edge of optimal control theory. Also, solving the TPBVP can be extremely difficult

due to its sensitivity to the unknown boundary conditions and the initial guess.

The direct methods can be further categorized as: 1) differentiation based (DB)

and 2) integration based (IB) methods [22]. The two types differ in the way state

dynamics ẋ = f(x, u) is imposed. The differentiation based methods approximate

the tangent bundle ẋ, while the integration based methods rely on approximating

the integral of the vector field f(x, u). The most popular among the DB meth-

ods are the pseudospectral (PS) methods [23, 24, 25, 26, 27]. The PS methods are
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based on expanding the state and control variables in terms of global polynomials,

which interpolate these functions at some specially chosen nodes. These nodes are

zeros of orthogonal polynomials (or their derivatives) such as Legendre polynomials

(Legendre–Gauss points) or Chebyshev polynomials (Chebyshev points). To deal with

the problems having switches and discontinuities, the pseudospectral methods use the

concept of PS knots [28] where the entire time interval is divided into a number of

subinterval and the standard PS methodology is employed in each interval. The dis-

continuities can be enforced by knotting constraints and the unknown knot locations

can be treated as parameters of optimization. The IB methods employ Runge-Kutta

integration schemes to approximate the state dynamics, and the concept of phases is

used to deal with non-smooth problems [6]. The phase boundary conditions define

the continuity properties across adjoining phases. Here too the phase lengths can be

made a part of the optimization process.

With regard to the satisfaction of optimality conditions, there is a fundamental

difference between direct and indirect methods. The indirect methods are based on

solving the necessary conditions derived by using the Minimum Principle, thus natu-

rally satisfying the conditions of optimality. Direct methods are based on satisfying

the Karush-Kuhn-Tucker (KKT) conditions associated with the NLP, which do not

necessarily correspond to the optimality conditions of the OCP. Therefore, a direct

method needs to be analyzed for the conditions under which such correspondence

exists. Further, in the absence of any direct information about the costates, a costate

estimation procedure needs to be derived for a direct method. The estimated costates

can then be used to numerically verify the optimality by using the Minimum Princi-

ple. Also, these costate estimates can serve as initial guess for more accurate indirect

methods.

The optimality verification and costate estimation results for most the direct
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methods are available in the literature. Hager [29] presented the convergence analysis

for Runge-Kutta based direct methods. It was noted that additional conditions on

the coefficients of the integration scheme were required for a complete commutation

between dualization and discretization. This discrepancy led Hager to design new

Runge-Kutta methods for control applications. Stryk and Blurisch [30] showed the

equivalence between the costates and the KKT multipliers of the NLP for the Hermite-

Simpson method. Later, Williams [31] generalized these results for HD methods. Ross

and Fahroo [32, 33] presented a similar result for Legendre pseudospectral method,

deriving a set of closure conditions under which the costates can be estimated from

the KKT multipliers. Williams [26] generalized the same result for the Jacobi pseu-

dospectral method. Benson et al. [27] have shown equivalence between the discrete

costates and the KKT multipliers for the Gauss pseudospectral method.

Adaptive mesh refinement algorithms have been reported in the optimal control

literature. Betts and Huffman [34] selects the new grid points by solving an integer

programming problem that minimizes the maximum discretization error by subdivid-

ing the current grid. The work of Binder et al. [35, 36] is based on using wavelet spaces

to discretize the OCP to an NLP. They use wavelet analysis of the control profile for

adaptive refinement. Jain and Tsiotras [37] presented a multi-resolution technique

for trajectory optimization where interpolative error coefficients were used for adap-

tive mesh refinement. In the pseudospectral knotting method, Ross and Fahroo [38]

introduce adaptivity using the concept of free knots, and by making them a part of

optimization process.
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C. Research Motivation and Objectives

This research work is motivated by the following two key considerations related to

the direct transcription methods:

1. To devise novel methods and techniques to solve optimal control problems in a

fast, efficient and robust manner.

2. To put forth a generalized mathematical framework for formulation and analysis

of direct transcription methods.

From the pervious discussion, we see that there is a large body of work on

the development and analysis of direct transcription methods. However, less work

has been done to make these algorithms efficient and robust with respect to the

complexity of a given problem. Optimal control problems in the fields of aerospace and

robotics often exhibit solutions with discontinuities or corners. Solving these problems

becomes difficult as the location of discontinuity or corner is not known before hand.

Therefore, to capture the solution well using a standard numerical method, one has to

approximate the unknown variables on a very high resolution grid, leading to higher

computational cost in terms of both CPU time and memory. A possible solution

is to locally refine the approximation in the regions of irregularities, requiring the

approximating functions to exhibit local support. Another desirable feature would

be the use of some special functions, like exponentials or sinusoids, that characterize

the known local behavior of the system as approximations. In the current body

of literature, most of the direct transcription methods use global approximations like

polynomials and harmonics, or B-Splines. Global approximating functions provide no

scope for local refinement. While B-Splines have local approximation property and

scope for h-refinement, there is no direct mechanism for local p-refinement or inclusion
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of any special functions as approximation. This motivates for the development of a

new class of direct methods which are based on a more generic framework using

function spaces.

As stated earlier, a systematic analysis of direct methods is required to obtain

the costate estimates. This analysis has been performed for most of the direct meth-

ods and the derivations are available in the literature. However, since most of these

derivations are quite involved and there are a variety of methods available, the corre-

sponding costate estimation results are very difficult to comprehend. This motivates

for the development of a single mathematical framework to analyze most of the direct

methods.

D. Dissertation Overview

• Chapter II introduces many mathematical concepts that are relevant in the

context of this dissertation work. First, a basic understanding of optimization

concepts is developed. Next, the optimal control problem under consideration is

formulated, and the associated first-order necessary conditions are derived. The

concept of direct transcription is introduced to the reader using Euler discretiza-

tion. Since the methods and techniques introduced in this dissertation make

use of a number of numerical approximation concepts, many such schemes are

discussed at length in this chapter. These topics include interpolating and or-

thogonal polynomials, B-Splines, partition of unity (PU) based approximations

and numerical quadrature.

• In Chapter III, a generic method based on the weighted residual formulation of

the trajectory constraints is considered for the direct transcription of optimal

control problems. All trajectory variables are approximated in a general basis
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expansion form. Analysis of primal-dual consistency is carried out by deriv-

ing the KKT conditions associated with the nonlinear programming problem

and comparing them with the approximated first-order optimality conditions of

the optimal control problem. A set of conditions are derived under which the

indirect and direct approaches are equivalent.

• In this Chapter IV, the method of Hilbert space projection (MHSP) is for-

mulated and analyzed. This method is a special case of the weighted residual

method (WRM) where the test functions are chosen to be same as the trial func-

tions approximating the state variables. A nonlinear programming problem is

formulated for the original optimal control problem and a set of equivalence

conditions are derived for costate estimation. Further, the numerical imple-

mentation of MHSP is described using B-Splines as approximating functions.

Numerical convergence of MHSP is demonstrated using example problems.

• A least square method (LSMoc) for direct transcription of optimal control prob-

lems is presented in Chapter V. This method is based on the L2-minimization of

the residual in state dynamics. The equivalence conditions for costate mapping

are derived and a relationship between the costates and the KKT multipliers

of the nonlinear programming problem is established. Further, numerical im-

plementation of LSMoc using B-Splines as approximating functions is described

in detail. It is also shown that the numerical quadrature does not change the

optimality and costate estimation results. Further, a polynomial version of

LSMoc, s-LSMoc is derived by using the global Lagrange polynomials as test

and trial functions. Example problems are solved to numerically demonstrate

the convergence properties of LSMoc and s-LSMoc.

• Another special case of weighted residual formulation, the generalized moment
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method for optimal control (GMMoc), is developed and analyzed in Chapter

VI. A polynomial version of GMMoc, s-GMMoc is derived by using the global

Lagrange polynomials as test and trial functions. Numerical convergence of

both GMMoc and s-GMMoc is demonstrated using example problems.

• Chapter VII investigates the relationship between many of the existing orthogo-

nal collocation based methods and the generic weighted residual method formu-

lated in Chapter III. While the primal approximation is straight forward, dual

approximation results for Legendre, Radau and Gauss pseudospectral methods

are derived under the unifying framework of WRM.

• Chapter VIII presents the performance comparison results for the existing and

the proposed direct transcription methods. Comparisons are made between

local and global methods as well as between different methods within each

category of local and global methods.

• In Chapter IX, an adaptive algorithm to solve optimal control problems is devel-

oped using partition of unity approximations. The least square method is used

as the underlying direct transcription method. An a posteriori error estimation

procedure based on the residual analysis of the EL equations is proposed to cap-

ture the regions of irregularities in the solution. Based on this error estimation,

an h-adaptive scheme is outlined for mesh refinement and a number of example

problems are solved to demonstrate its efficiency.

• In Chapter X, a direct optimization algorithm to solve problems with discontin-

uous control is developed based on LSMoc. To accommodate the discontinuities

and corners, time domain is divided into a number of subintervals, each defin-

ing a control phase. Depending upon the problem in hand, a control type is
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assigned to each phase. To deal with the unknown switching times, control

phases are mapped on a computational domain with equal intervals and the

state dynamics is appropriately scaled in each interval. The scaled problem is

then discretized using B-Splines and transcribed to a nonlinear programming

problem (NLP) using the LSMoc. The NLP is solved and the solution is mapped

back to the original time domain. A number of numerical examples are solved

at the end of this chapter.

• Finally, Chapter XI includes a summary of dissertation contribution and con-

cluding remarks.
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CHAPTER II

MATHEMATICAL BACKGROUND

This chapter introduces many mathematical concepts that are relevant in the context

of this dissertation work. First, a basic understanding of optimization concepts is

developed. Next, the optimal control problem under consideration is formulated,

and the associated first-order necessary conditions are derived. The concept of direct

transcription is introduced to the reader using Euler discretization. Since the methods

and techniques introduced in this dissertation make use of a number of numerical

approximation concepts, many such topics are discussed in this chapter including

interpolating and orthogonal polynomials, B-Splines, partition of unity (PU) based

approximations and numerical quadrature.

A. Parameter Optimization

Parameter optimization deals with the problem of minimizing a scalar function of

several variables subject to a number of equality or inequality constraints. In this

section, we derive optimality conditions for three types of parameter optimization

problems.

First, consider a multi-dimensional unconstrained minimization problem to find

x∗ ∈ Rn such that the value of cost function Ψ(x) : Rn → R is minimized. Applying

Taylor expansion we can write,

Ψ(x∗ + δx) = Ψ(x∗) +
∂Ψ(x)

∂x

∣∣∣∣
x∗
δx + δxT

∂2Ψ(x)

∂x2

∣∣∣∣
x∗
δx + ... higher order terms.

(2.1)

For the point x∗ to be a minima, Ψ(x∗ + δx) should be greater than Ψ(x∗) for all

possible values of variation δx. This observation along with Eqn. (2.1) lead to the
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following conditions for minima:

Ψx(x∗) = 0, Ψxx(x∗) > 0, (2.2)

where a subscript variable denotes the partial derivative with respect to it. The same

notation is used in all the subsequent treatment, i.e.

Fx ,
∂F
∂x

, Fxu ,
∂2F
∂x∂u

, (2.3)

where x and u are vector variables. First condition in Eqn. (2.2) provides n number

of equations which can theoretically solve for n number of unknown components of

x∗.

Next, we look at a constrained optimization problem in the form,

min
x
J = Ψ(x) : Rn → R, subject to ψ(x) = 0 ∈ Rm; m < n. (2.4)

This problem is solved by adjoining the equality constraint in Eqn. (2.4) to the cost

function with a set of Lagrange multipliers [39] Λ ∈ Rm, so that the modified problem

is,

min
{x,Λ}

J ′ = Ψ(x) + ΛTψ(x), subject to ψ(x) = 0. (2.5)

In a manner similar to the unconstrained case, the conditions for minima are obtained

by setting the partial derivatives of J ′ with respect to both x and Λ equal to zero.

So that,

J ′x = Ψx(x∗) + ψTx (x∗)Λ∗ = 0, J ′Λ = ψ(x∗) = 0. (2.6)

The conditions in Eqn. (2.6) represent n + m equations in terms of n + m number

of unknowns, thus making this system solvable for {x∗,Λ∗}. However, second-order
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conditions for minimality need to be checked, i.e.

δxTJ ′xxδx = δxT

(
Ψxx(x∗) +

m∑
i=1

λiψxx(x∗)

)
δx > 0 ∀ {δx | ψx(x∗)δx = 0}. (2.7)

We see that in Eqn. (2.7), positive-definiteness of J ′xx is only required in the directions

tangent to the constraint surface ψ(x) at point x∗.

Finally, we consider an optimization problem with inequality constraints as fol-

lowing:

min
x
J = Ψ(x) : Rn → R, subject to ψ(x) ≤ 0 ∈ Rm; m < n. (2.8)

For this problem, we derive the conditions for optimality using slack variables and

Lagrange multipliers. Slack variables are used to convert the inequality constraints

to equality constraints. With a set of slack variables s∈Rm and Lagrange multipliers

Λ ∈ Rm, the modified problem is defined as,

min
{x,Λ,s}

J ′ = Ψ(x) + ΛT (ψ(x) + s◦s) , subject to ψ(x) = 0. (2.9)

Here ‘◦’ denotes the Hadamard product of two vectors, i.e. for s=[s1 s2 ... sm]T ,

s◦s = [s2
1 s

2
2 ... s

2
m]T . Analogously to the previous cases, we set the partial derivatives

of J ′ with respect to x,Λ and s equal to zero. So that,

J ′x = Ψx(x∗) + ψTx (x∗)Λ∗ = 0, (2.10)

J ′Λ = ψ(x∗) + s∗ ◦ s∗ = 0, (2.11)

J ′s = 2s∗ ◦ Λ∗ = 0. (2.12)

The second-order condition is obtained as,

δxTJ ′xxδx + δsTJ ′ssδs > 0 ∀ {δx, δs | ψx(x∗)δx + 2s ◦ δs = 0}, (2.13)
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which implies,

⇒ δxT

(
Ψxx(x∗) +

m∑
i=1

λiψxx(x∗)

)
δx + 2δsTΛδs > 0. (2.14)

There are two interesting cases to be considered. First, when the minima lies inside

the constraint boundary. In this case, using Eqn. (2.12),

Λ = 0⇒

 Ψx(x∗) = 0

Ψxx(x∗) > 0
, (2.15)

which is equivalent to an unconstrained problem. In the second case, minima lies at

the boundary. Here,

s = 0⇒



Ψx(x∗) + ψTx (x∗)Λ∗ = 0

ψ(x∗) = 0

δxT [Ψxx(x∗) +
∑m

i=1 λiψxx(x∗)]δx > 0 ∀ {δx | ψx(x∗)δx = 0}

Λ > 0

(2.16)

The conditions in Eqn. (2.16) are equivalent to the conditions for an optimization

problem with an equality constraint as given in Eqn. (2.6) and Eqn. (2.7). The

additional requirement on the value of Lagrange multiplier, Λ > 0, signifies that

leaving the constraint boundary would increase the value of cost function.

B. Optimal Control Theory

Optimal control problems can be viewed as infinite-dimensional extension of param-

eter optimization problems. While the optimization variables in parameter optimiza-

tion problems are points, optimal control problems deal with continuous functions.

A standard optimal control problem consists of a dynamical system represented by

a set of differential equations, associated terminal and path constraints, and a scalar
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performance index. In the differential equations, the differentiated variables are called

states and the undifferentiated variables are called controls. The objective is to find

the control histories that drive the system from its initial state to the final state while

minimizing the performance index and satisfying the path constraints. Thus, the

unknowns for optimal control problems are curves and points.

Let us consider a fairly general optimal control problem stated in Bolza form as

following: Determine the state-control pair {X(τ) ∈ Rn,U(τ) ∈ Rm; τ ∈ [τ0, τf ]} and

time instances τ0 and τf , that minimize the cost,

J = Ψ(X(τ0),X(τf ), τ0, τf ) +

∫ τf

τ0

L(X(τ),U(τ), τ)dτ, (2.17)

subject to the state dynamics,

dX(τ)

dτ
= f(X(τ),U(τ), τ) ∈ Rn, (2.18)

end-point state equality constraints,

K0X(τ0) = x0 ∈ Ra, K1X(τf ) = xf ∈ Rn−a, (2.19)

ψ(X(τ0),X(τf ), τ0, τf ) = 0 ∈ Rp, (2.20)

and path inequality constraints,

h(X(τ),U(τ), τ) ≤ 0 ∈ Rq. (2.21)

Here K0 and K1 are constant matrices which split the boundary conditions between

initial and final times.

For notational simplicity, most work in this dissertation considers a modified

form of the above problem. We make the following observations for simplifications.

First, The integral argument L(X(τ),U(τ), τ) in the cost function can be treated
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a dynamic equation by appending the state vector X(τ) with an additional state

Z(τ) and setting Ż(τ) = L(X(τ),U(τ), τ). By doing so, the integral term in the

cost function is reduced to Z(τf ) − Z(τ0) which gets assimilated into the terminal

cost Ψ(X(τ0),X(τf ), τ0, τf ). Second, the time dependence in f(X(τ),U(τ), τ) and

L(X(τ),U(τ), τ) can be removed by further taking τ as an additional state and

setting τ̇ = 1. Lastly, the time domain τ ∈ [τ0, τf ] can be mapped to a computational

domain t ∈ [0, 1] by using the transformation,

τ(t) = (τf − τ0)t+ τ0. (2.22)

Using Eqn. (2.22), we can write,

dX(τ(t))

dτ
=

1

(τf − τ0)
ẋ(t), (2.23)

where an overdot denotes the derivative with respect to t. The computational interval

is chosen to be [0, 1] because methods presented in the subsequent chapters are based

on approximations defined on the interval [0, 1]. Following these observations, we

define the problem statement for this dissertation.

1. Optimal Control Problem Statement: M

Consider the following optimal control problem in Mayer form and denote it as Prob-

lem M: Find the state-control pair {x(t) ∈ Rn,u(t) ∈ Rm; t ∈ [0, 1]}, slack variable

functions s(t) ∈ Rq and time instances τ0 and τf , that minimize the cost,

J = Ψ(x(0),x(1), τ0, τf ), (2.24)

subject to the state dynamics,

ẋ(t) = (τf − τ0)f(x(t),u(t)), (2.25)
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end-point state equality constraints,

K0x(0) = x0 ∈ Ra, K1x(1) = xf ∈ Rn−a, ψ(x(0),x(1), τ0, τf ) = 0 ∈ Rp, (2.26)

and mixed path constraints,

h(x(t),u(t)) + s(t) ◦ s(t) = 0 ∈ Rq, (2.27)

where,

Ψ : Rn × Rn × R× R→ R, f : Rn × Rm → Rn,

ψ : Rn × Rn × R× R→ Rp, h : Rn × Rm → Rq.

are continuously differentiable with respect to their arguments. It is assumed that the

optimal solution to the above problem exists, and at any time t ∈ [0, 1], ∂h
∂u

has full

rank, where h is the active constraint set at time τ . Thus, the constraint qualifications

required to apply the first-order optimality conditions are implicitly assumed.

2. Indirect Solution Approach

A classical approach to solve Problem M is to apply the principles of calculus of

variations. In this setting, the minimization of a cost functional J(x(t)) is achieved

by requiring that the variation in cost vanishes for all possible first order variations

in x(t), so that,

δJ(x∗(t), δx(t)) = 0 ∀δx(t), (2.28)

where x∗(t) is the minimizing solution. Using this principle and the theory of Lagrange

multipliers for constrained optimization, a set of necessary first-order optimality con-

ditions are derived for problemM. This lead to a two-point boundary value problem



18

derived by using the augmented Hamiltonian H and the terminal cost C defined as,

H(x,u, λ, ξ, s) = λT (t)(τf − τ0)f(x,u) + ξT (t)[h(x,u) + s(t) ◦ s(t)],

C(x(τ0),x(τf ), τ0, τf , υ, κ0, κ1) = Ψ(x(0),x(1), τ0, τf ) + υTψ(x(0),x(1), τ0, τf )

+ κT0 [K0x(0)− x0] + κT1 [K1x(1)− xf ], (2.29)

where λ(t) ∈ Rn is the costate, and ξ(t) ∈ Rq, υ ∈ Rp and {κ0 ∈ Ra, κ1 ∈

Rn−a} are the lagrange multipliers. The time dependence of state and control tra-

jectories has been dropped for brevity. Problem M seeks to find the functions

{x(t),u(t), λ(t), ξ(t), s(t); t ∈ [0, 1]}, vectors υ, κ0, κ1 and time instances τ0 and τf

that satisfy the following conditions,

ẋ− (τf − τ0)f(x,u) = 0,

K0x(0)− x0 = 0,

K1x(1)− xf = 0,

λ̇+Hx = λ̇+ (τf − τ0)fTx λ+ hTxξ = 0,

{λ(t0), λ(tf )} = {−Cx(τ0),Cx(τf )},

Hu = (τf − τ0)fTu λ+ hTuξ = 0,

h(x,u) + s(t) ◦ s(t) = 0,

Hs = 2ξ(t) ◦ s(t) = 0, (2.30)

ψ(x(0),x(1), τ0, τf ) = 0,

{H|t=0,H|t=1} = {Cτ0 ,− Cτf}.

The conditions in Eqn. (2.30), also known as Euler-Lagrange (EL) equations, consti-

tute problem Mλ.

For some problems, the control solution can not be obtained form EL equations

alone. For such problems, Pontryagin’s minimum principle is used which is based on

minimizing the Hamiltonian H(t) globally by proper selection of admissible control

u(t). Thus, if U is the set of admissible controls, then Pontryagin’s minimum principle

states that the optimal control u∗(t) ∈ U is such that,

H(x∗,u∗, λ∗, ξ∗, s∗) ≤ H(x∗,u, λ∗, ξ∗, s∗), ∀u(t) ∈ U . (2.31)
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3. Direct Transcription Approach

Another approach to solve problem M is to directly derive its finite-dimensional

approximation in the form of an associated nonlinear programming problem Mφ.

This is achieved by first approximating the state and control variables is a finite

dimensional function space. Next, the integral constraints in M are approximated

using numerical quadrature and the state dynamics is approximated by using some

differentiation or integration based scheme.

In this section, an example of Euler discretization of problem M is presented

to enforce the understanding of direct transcription process. In Euler transcription,

the time domain t ∈ [0, 1] is divided into a set of N intervals defined by the node

points 0 = t1 < t2 < .. < tN = 1. The interval lengths are {hi := ti+1 − ti}N−1
i=1 . All

trajectory variables are discretized at the node points so that,

x(ti) = xi, u(ti) = ui, s(ti) = si; i = 1, .., N − 1. (2.32)

The state dynamics is approximated using the Euler formula,

ẋ(ti) ≈
xi+1 − xi

hi
= (τf − τ0)f(xi,ui); i = 1, .., N − 1. (2.33)

The boundary and path constraints in problem M are approximated as,

K0x1 = x0, K1xN = xf , ψ(x1,xN , τ0, τf ) = 0, (2.34)

h(xi,ui) + si ◦ si = 0; i = 1, .., N − 1. (2.35)

Similarly, the approximate cost is defined as,

J ≈ Ψ(x1,xN , τ0, τf ). (2.36)

Eqns. (2.32)-(2.36) transcribe problemM to a nonlinear programming problemMφ
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defined as following: Determine {xk ∈ Rn,uk ∈ Rm, sk ∈ Rq}N−1
k=1 , ν0 ∈ Ra, ν1 ∈ Rn−a

and time instances τ0 and τf , that minimize the cost,

Ĵ = Ψ(x1,xN , τ0, τf ), (2.37)

subject to the constraints,

xi+1 − xi
hi

= (τf − τ0)f(xi,ui), (2.38)

K0x1 = x0, K1xN = xf , ψ(x1,xN , τ0, τf ) = 0, (2.39)

h(xi,ui) + si ◦ si = 0, (2.40)

where i = 1, .., N−1. Eqns. (2.37)-(2.40) define the direct approach to solve problem

M.

4. Mapping between Indirect and Direct Approaches

As seen in the previous sections, the indirect and direct approaches differ in the order

in which approximation and dualization of the optimal control problem is carried out.

In the indirect approach, the optimal control problem is dualized first and then the

EL equations are approximated to find a numerical solution. In the direct approach

the optimal control problem is approximated first and then the dualization is done in

the process of solving the nonlinear programming problem (see Figure (1)). Further,

in the direct approach, the costates are not the explicit variables of the problem.

However, lagrange multipliers from the nonlinear programming problem are available

in direct approach. Therefore, it is natural to investigate any possible relationship

between the Lagrange multipliers of the nonlinear programming problem and the

costates of the original optimal control problem. This relationship can be derived by

analyzing the KKT conditions associated with the nonlinear programming problem
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in the direct approach. We shall see in Chapter III that under certain conditions,

complete mapping exists between direct and indirect solutions and costates can be

estimated from the Lagrange multipliers of the nonlinear programming problem.

Fig. 1. Direct vs. indirect approach.

C. Numerical Approximation

1. Lagrange Interpolating Polynomials

A polynomial is a mathematical expression representing a weighted sum of powers

in one or more variables. A polynomial in one variable with constant coefficients

(weights) is given by,

P (t) = ant
n + an−1t

n−1 + an−2t
n−2...+ a0. (2.41)

The individual powers of t, {tn, tn−1, ..., 1}, are called monomials. The highest power

in a polynomial is called its order, or sometimes its degree.
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Polynomials can be used for parametric approximation of more complicated

curves and functions. Of particular interest is data interpolation, where polyno-

mials are used to find interpolated values between discrete data points. Polynomial

interpolation also forms the basis for algorithms in numerical quadrature, numerical

ordinary differential equations and numerical optimal control methods.

Interpolation polynomials are based on the fact that given a set of N distinct

data-points {(ti, xi)}Ni=1, there exists a unique polynomial PN(t) of order N − 1 such

that,

PN(ti) = xi; i = 1, 2, .., N. (2.42)

The polynomial PN(t) can be written in the basis form,

PN(t) =
N∑
i=1

xiLi(t), (2.43)

where Li are known as the Lagrange interpolation polynomials [40]. These polyno-

mials can be expressed as,

Li(t) =
N∏

j=1,j 6=i

(t− tj)
(ti − tj)

(2.44)

From Eqn. (2.44) we see that,

Li(tj) = δij =

 0 i 6= j

1 i = j
(2.45)

Figure (2) shows Lagrange interpolating polynomials for a uniform grid of five

points.

In the context of function approximation, polynomials are convenient to work

with because they can be readily differentiated and integrated. Further, they ap-
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Fig. 2. Lagrange interpolating polynomials.

proximate continuous functions to any desired accuracy. That is, for any contin-

uous function f(t) : [ti, tf ] → R, there exists a polynomial Pn(t) of sufficiently

high order n such that ‖f(t) − Pn(t)‖ < ε ∀ t ∈ R. Here ε is a pre-selected

error bound. The proof comes from the famous Weierstrass approximation theo-

rem [41]. In function approximation setting, a set of distinct node points are selected

as [ti = t0, t1, t2, ..., tn = tf ], and Pn(t) defines a polynomial which passes through the

corresponding points {f(t0), f(t1), f(t2), ..., f(tn)}.

One might expect the quality of function approximation to increase with in-

creasing order n of the polynomials used. However, it is observed that the relative

distribution of the node points effects the approximation quality to a great extent. In

particular, when equidistant node points are selected and the order n increases, the

quality of polynomial approximation drops significantly at the boundaries resulting

from large oscillations in those regions. This phenomenon is also known as Runge

phenomenon. Fortunately, there exist sets of non-uniform node points that eliminate
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the Runge phenomenon and can guarantee that the polynomial approximation error

monotonically decreases as their number is increased. These node points are based

on the roots of Legendre and Chebyshev polynomials and have the characteristic

that the spacing between the support points is denser at the boundaries. Figure (3)

demonstrates the Runge phenomenon and the effect of node distribution for polyno-

mial approximations to the function f(t) = 1
(1+15t2)

using 20 node points. It clearly

shows that the approximation using equidistant node points is quite poor near the

boundaries, while the use of Chebyshev nodes mitigates this problem.
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Fig. 3. Demonstration of Runge’s phenomenon for 20 nodes.

2. Orthogonal Polynomials

The construction of an orthogonal family of polynomials first requires the definition

of an inner product. Given a real interval [t1, t2], functions f(t), g(t) : [t1, t2]→ R and

a weight function W (t) : [t1, t2] → R;W (t) ≥ 0, let an inner product 〈�, �〉 is defined



25

as,

〈f(t), g(t)〉 =

∫ t2

t1

f(t)W (t)g(t)dt. (2.46)

Then, a sequence {Pi(t)}Ni=0 is a sequence of orthogonal polynomials if,

1. Pi(t) is a polynomial of degree i.

2. 〈Pi(t), Pj(t)〉 = δij (Kronecker Delta).

In numerical approximation, most commonly used orthogonal polynomial families are

defined on interval [−1, 1] and they differ in choice of weight function W (t). Legendre

polynomials , for example, use the standard L2 inner product,

〈f(t), g(t)〉 =

∫ 1

−1

f(t)g(t)dt; W (t) = 1. (2.47)

Chebyshev polynomials of first kind are based on the inner product,

〈f(t), g(t)〉 =

∫ 1

−1

f(t)g(t)√
1− t2

dt; W (t) =
1√

1− t2
. (2.48)

All orthogonal polynomial sequences have a number of elegant and fascinating prop-

erties. One of them is the existence of a recurrence formula relating any three con-

secutive polynomials in the sequence. This facilitates the construction of the whole

family from its first two members. For Legendre polynomials (Lj(t)) and Chebyshev

polynomials of first kind (Tj(t)), the recurrence relationships are,

(n+ 1)Ln+1(t) = (2n+ 1) · t · Ln(t)− n · Ln−1(t); L0(t) = 1, L1(t) = t. (2.49)

Tn+1(t) = 2 · t · Tn(t)− Tn−1; T0(t) = 1, T1(t) = t. (2.50)

Figures 4(a) and 4(b) show first five members each from the family of Legendre and

Chebyshev polynomials.
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Fig. 4. (a) Legendre polynomials, (b) Chebyshev polynomials of first kind.

3. Numerical Quadrature

In numerical analysis, a quadrature rule is an approximation of the definite inte-

gral of a function, usually stated as a weighted sum of function values at specified

points within the domain of integration. The basic problem considered by numerical

integration is to compute an approximate solution to a definite integral in the form,∫ tf

ti

f(t)dt ≈
N∑
k=1

wkf(tk); ti ≤ t1 < t2 < .. < tN ≤ tf , (2.51)

where wk’s are called quadrature weights. If f(t) is a smooth well-behaved function

and the limits of integration are bounded, there are many methods of approximating

the integral with arbitrary precision.

For an arbitrary set of unique points {tk}Nk=1, the exact quadrature approximation

for polynomials of degree N − 1 or less can be obtained by integrating Eqn. (2.43)
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and using Eqn. (2.42), ∫ tf

ti

PN(t) =
N∑
k=1

PN(tk)

∫ tf

ti

Lk(t), (2.52)

Eqn. (2.52) implies,

wk =

∫ tf

ti

Lk(t), (2.53)

The accuracy of the quadrature can be improved greatly by appropriately select-

ing the quadrature points. In interval (−1, 1), one such selection is Gauss quadrature

where N quadrature points are the Legendre-Gauss (LG) points, defined as the roots

of the N th-degree Legendre polynomial, LN(t) where,

LN(t) =
1

2NN !

dN

dtN
[(t2 − 1)N ]. (2.54)

The corresponding Gauss quadrature weights are then found by the formula,

wk|Nk=1 =
2

(1− t2k)[L̇N(tk)]2
(2.55)

where L̇N is the derivative of theN th-degree Legendre polynomial. The Gauss quadra-

ture is exact for all polynomials of degree 2N − 1 or less.

Another set of points are Legendre-Gauss-Radau (LGR) points, which lie on the

interval [−1, 1). LGR quadrature is accurate upto 2N − 2 degree polynomials, one

less than the LG points as one of the points is forced to lie at the boundary. The N

LGR points are defined as the roots of LN(t) + LN−1(t). The corresponding weights

are,

w1 =
2

N2
, wk|Nk=2 =

1

(1− t2k)[L̇N−1(tk)]2
(2.56)

A third set of points are Legendre-Gauss-Lobatto (LGL) points, which lie on the
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interval [−1, 1]. As two of the points are forced to lie at both boundaries, the LGL

quadrature scheme is accurate upto 2N − 3 degree polynomials. The N LGL points

are the roots of (1− t2)L̇N−1(t). The corresponding weights for the LGL points are,

wk|Nk=1 =
2

N(N − 1)[LN−1(tk)]2
(2.57)

An example of various quadrature nodes and corresponding weights for N = 10 is

shown in Figure (5).
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Fig. 5. Distribution of nodes and corresponding weights for LG, LGL, LGR and uni-

form nodes.



29

4. B-Splines

A B-Spline is a function defined on the interval [t0, tf ] of the real line, composed of

segments of polynomials that are stitched at predefined break points, satisfying a

given degree of smoothness. The break points are a strictly increasing set of points

{ti}Ni=0 such that t0 = t0 < t1 < ... < tN = tf . The number of continuous derivatives

across the breakpoints defines the order of smoothness. An order of smoothness si at

a breakpoint ti implies that the curve is Csi−1 continuously differentiable at ti. Given

the number of subintervals (N), the order of each polynomial segment (r) and the

order of smoothness (s) at the breakpoints, a B-Spline curve y(t) is represented in

the basis form as,

y(t) =
Nc∑
k=1

αkB
k,r(t),

where αk are the free parameters, Nc = N(r− s) + s is the number of free parameters

or the degrees of freedom of y(t). To construct the basis functions Bk,r(t), we define

a knot vector. A knot vector Γ is a non-decreasing sequence containing breakpoints

with a multiplicity of (r − s) at the interior breakpoints. The multiplicity of end

points {t0, tN} is r,

Γ = [c1, .., c(Nc+r)] = [

r−times︷ ︸︸ ︷
t0, .., t0 ...

(r−s)−times︷ ︸︸ ︷
ti, .., ti ...

r−times︷ ︸︸ ︷
tN , .., tN ].

The basis functions Bk,r(t) are defined by a recurrence relationship [42],

Bk,0(t) =

 1, if ck ≤ t < ck+1

0, otherwise

Bk,r(t) =
t− ck

ck+r+1 − ck
Bk,r−1(t) +

ck+r − t
ck+r − ck+1

Bk+1,r−1(t). (2.58)
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The B-Spline basis functions defined by Eqn. (2.58) are continuous to a specified

degree, have local support, and are linearly independent. A comprehensive list of

B-Spline properties can be found in Ref. [42]. Figure (6) provides an example of a B-

Spline and its basis functions withN = 4, r = 4, s = 3.

����� ��� �	��
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Fig. 6. Spline curve as a combination of B-Splines.

5. The Partition of Unity Paradigm

Partition of unity is a paradigm in which local approximations can be blended together

to form a global approximation with a specified order or continuity. The global domain

[0, 1] is partitioned into overlapping subdomains {Ωi}ni=1, each having a compactly

supported weight function Wi(t) which is strictly zero outside Ωi and has the property,

n∑
i=1

Wi(t) = 1, t ∈ [0, 1]. (2.59)
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Each subdomain Ωi centers a corresponding node i and a local approximating function

fi(t). The global approximation is obtained as,

ẑ(t) =
n∑
i=1

fi(t)Wi(t). (2.60)

When the local approximation fi(t) is constructed from a set of basis functions, known

as extrinsic basis, we get,

fi(t) =

ni∑
j=1

ψij(t)aij, (2.61)

ẑ(t) =
n∑
i=1

ni∑
j=1

ψij(t)Wi(t)aij. (2.62)

PU spaces can be constructed using any of the following three major frameworks,

(i) kernel approximation, (ii) moving least square approximation (MLS) and (iii)

GLO-MAP (global local orthogonal polynomial mapping). The kernel approximation

and the MLS approximation methods are based on mesh-free construction while the

GLO-MAP is constructed using a mesh.

The first kernel approximation appeared in the smooth particle hydrodynamics

(SPH) method [43, 44], and through improvements lead to the development of re-

producing kernel particle method (RKPM) [45]. The idea of moving least squares

(MLS)[46] was first presented by Shepard [46]. Duarte and Oden [47], and later

Babuška and Melenek [48] introduced the partition of unity (PU) based approxima-

tions.
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a. Reproducing Kernel Particle Method

Kernel approximation methods are based on convolution of a window function with

the original function. So that on a domain t ∈ [0, 1],

ẑ(t) =

∫ 1

0

w(τ − t)z(τ)dτ (2.63)

The window function w(t) is essentially an approximation of the dirac-delta function.

When the continuous time convolution is replaced with a numerical quadrature, we

obtain a particle method. This idea becomes apparent in the following development

of reproducing kernel particle method from the continuous time reproducing kernel

method.

The RKPM is derived based on Eqn. (2.63) by introducing a correction function

to impose reproducibility conditions on the approximation. By reproducibility we

mean that the approximation can exactly represent a set of predefined functions

called the intrinsic basis. Let p(t) be the intrinsic basis so that,

ẑ(t) = z(t) = p(t)Ta; ∀z(t) ∈ p(t), (2.64)

p(t) =

[
1, t, t2, ... sin(t), cos(t), ... , etc.

]T
. (2.65)

The coefficient vector a is determined form the reproducibility conditions. From Eqn.

(2.64) we can write,∫ 1

0

p(τ)w(τ − t)z(τ)dτ =

[∫ 1

0

p(τ)w(τ − t)pT (τ)dτ

]
a. (2.66)

Substituting the value of a form Eqn. (2.66) into ẑ(t) = p(t)Ta, we get,

ẑ(t) =

∫ 1

0

C(t, τ)w(τ − t)z(τ)dτ, (2.67)
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where,

C(t, τ) = pT (t)

[∫ 1

0

p(τ)w(τ − t)pT (τ)dτ

]−1

p(τ). (2.68)

Using numerical quadrature to evaluate integrals in Eqn. (2.67) yields the particle

form,

ẑ(t) =
n∑
i=1

C(t, ti)w(ti − t)z(ti)ωi, (2.69)

where ωi are the quadrature weights, and C(t, ti) is computed as,

C(t, ti) = pT (t)

[
n∑
i=1

p(ti)w(ti − t)pT (ti)ωi

]−1

p(ti). (2.70)

Form Eqn. (2.69), ẑ(t) can be written in a basis form with Kronecker-delta property

as following,

ẑ(t) =
n∑
i=1

φi(t)z(ti), φi(t) = C(t, ti)w(ti − t)ωi. (2.71)

The approximation defined by Eqn. (2.71) can exactly reproduce the members of the

intrinsic basis p(t).

b. Moving Least Square Approximations

The MLS approximation is based on constructing an approximation from a distribu-

tion of node points. Like RKPM, MLS also has an intrinsic basis p(t). The local

approximation around a point τ ∈ [0, 1] evaluated at a point t ∈ [0, 1] is given by,

ẑ(τ, t) = pT (t)a(τ), (2.72)

where p(t) has the same form as in Eqn. (2.65). The coefficient vector a(τ) is a

function of the “moving time” τ and is obtained by a locally weighted least square fit
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on the nodal values {zi = z(ti), ti ∈ [0, 1]}ni=1. Given a weight function w(t− τ) and

the inner-product defined as,

〈f(t), g(t)〉τ =
n∑
i=1

f(ti)g(ti)w(ti − τ), (2.73)

the minimum norm solution for a(τ) based on Eqn. (2.73) is obtained as,

a(τ) = M−1(τ)
n∑
i=1

zip(ti)w(ti − τ), (2.74)

where

M(τ) =
n∑
i=1

pT (ti)p(ti)w(ti − τ). (2.75)

Using Eqn. (2.72),

ẑ(t) = pT (t)a(t) = pT (t)M−1(t)
n∑
i=1

zip(ti)w(ti − t), (2.76)

=
n∑
i=1

pT (t)M−1(t)p(ti)w(ti − t)zi. (2.77)

Using Eqn. (2.77), ẑ(t) can be written as,

ẑ(t) =
n∑
i=1

φi(t)z(ti), (2.78)

φi(t) = pT (t)M−1(t)p(ti)w(ti − t). (2.79)

Interestingly, from Eqn. (2.68), Eqn. (2.71), Eqn. (2.75) and Eqn. (2.79) we see

that MLS approximation is equivalent to the RKPM if the quadrature weights in the

RKPM are unity.

The condition of partition of unity in Eqn. (2.59) is equivalent to the repro-

ducibility of constant function by MLS approximation. It can been seen from Eqn.
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(2.79),

p(t) = 1,
n∑
i=1

φi(t) =
n∑
i=1

w(ti − t)∑n
i=1 w(ti − τ)

= 1. (2.80)

Thus, we see that both RKPM and MLS approximations form a PU space. The

order of continuity of the global approximation in Eqn. (2.60) depends upon the

smoothness order of Wi(t), which in turn is defined by the smoothness order of w(t)

in Eqn. (2.79). The reproducing property of global approximation depends upon both

intrinsic and extrinsic basis chosen for Eqn. (2.79) and Eqn. (2.60) respectively.

c. Global Local Orthogonal Polynomial Mapping

A PU based global approximation can also be constructed from the ideas of GLO-

MAP (global local orthogonal polynomial mapping) presented in Refs. [49, 50]. Let

us assume,

A1 T = {t0, · · · , tn} is a uniform grid with spacing h and 0 < ti < ti+1 < 1.

Uniform grid is assumed for simplicity. It is not a limitation of the proposed

approach. Let us define interval Ii = [ti, ti+1], i = 0, 1, · · · , n− 1.

A2 F = {f0(t), · · · , fn(t)} is a set of continuous functions that approximates the

global function z(t) at points ti ∈ T .

A3 W is a set of continuous functions in the interval [−1, 1].

We define a non-dimensional local coordinate τi ∈ [−1, 1] as τi
∆
= (t− ti)/h, centered

on the ith vertex t = ti. Given F and weighting function W (τi) ∈ W , the weighted

average approximation is defined as,

z̄i(t) = W (τi)fi(t) +W (τi+1)fi+1(t), (2.81)



36

for 0 ≤ τi, τi+1 < 1 and t ∈ [ti, ti+1]. The weighting function W (τi) is used to blend

or average the two adjacent preliminary local approximations fi(t) and fi+1(t). The

global function is given by the expression,

ẑ(t) =
n∑
i=0

W (τi)fi(t); t ∈ [0, 1], τi ∈ [−1, 1]. (2.82)

The preliminary approximations fi(t) ∈ F are completely arbitrary, as long as they

are smooth and represents the local behavior of z(t) well. There exists a choice of

weighting function that will guarantee piecewise global continuity while leaving the

freedom to fit local data by any desired local functions. In Refs. [49, 50], it is shown

that if the weighting functions of Eqn. (2.81) satisfy the following boundary value

problem, then the weighted average approximation in Eqn. (2.81) form an mth-order

continuous globally valid model with complete freedom in the choice of the local

approximations in F . These conditions characterize the set W . That is,

W =


W (τ) :

W (0) = 1, W (1) = 0,

W (k)(0) = 0, W (k)(1) = 0, k = 0, · · · ,m

W (τ) +W (τ − 1) = 1, ∀ τ, −1 ≤ τ ≤ 1


where W (k) ∆

= dkW
dτk . The conditions can be summarized as follows.

1. The first derivative of the weighting function must have an mth-order osculation

with W (0) = 1 at the centroid of its respective local approximation.

2. The weighting function must have an (m+ 1)th-order zero at the centroid of its

neighboring local approximation.

3. The sum of two neighboring weighting functions must be unity over the entire

closed interval between their corresponding adjacent local functional approxi-

mations.
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Table I. GLOMAP weight functions for a given order of continuity

Continuity Weight Function: W (τ),∀τ ∈ {−1 ≤ τ ≤ 1}, η ∆
= |τ |

0 1− η

1 1− η2(3− 2η)

2 1− η3(10− 15η + 6η2)

3 1− η4(35− 84η + 70η2 − 20η3)

...
...

m 1− ηm+1

 (2m+1)!(−1)m

(m!)2

m∑
k=0

(−1)k

2m−k+1

 m

k

ηm−k


If the weighting function is assumed to be a polynomial in the independent variable

τ , then adopting the procedure listed in Ref. [50], the lowest order weight function

(for m = 1) can be shown to be

W (τ) =

 1− τ 2(3 + 2τ), − 1 ≤ τ < 0

1− τ 2(3− 2τ), 0 ≤ τ ≤ 1


= 1− τ 2(3− 2|τ |) (2.83)

The weighting functions obtained by solving the boundary value problem for increas-

ing value of m are listed in Table I, and are shown in Figure (7(a)). Figure (7(b))

shows the GLOMAP weighting functions for second-order continuity (m = 2) on a

uniform grid of four points.

D. The Method of Weighted Residuals

The method of weighted residuals (MWR) is a general mathematical framework to

solve a large class of ordinary and partial differential equations. The basic idea is to
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Fig. 7. GLOMAP weighting functions w(τi)

first approximate the unknown solution as a linear combination of a priory selected

basis functions, also known as trial functions. Then a weighted integral formulation is

used to transform the differential constraints into algebraic constraints, the solution

to which determine the unknown coefficients.

In a general setting, we look at the following problem:

ẋ(t)− f(x(t), t) = 0; x(t) ∈ Rn, b(x(0),x(tf )) = 0, t ∈ [0, tf ]. (2.84)

Here f(·) can be nonlinear. In MWR, a set of basis function {φi}Ni=1 is chosen to define

an approximating function space V := span{φ1, .., φN}, and x(t) is approximated as,

x̂(t) =
N∑
k=1

αkφk(t) ∈ V; αk ∈ Rn. (2.85)

Because x̂(t) is an approximation, residuals Ri(t) and Rb will be generated when
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x̂(t) is substituted for x(t) in Eqn. (2.84),

Ri(αk, φk(t)) = ˙̂x(t)− f(x̂(t), t); t ∈ [0, tf ], Rb = b(x̂(0), x̂(tf )). (2.86)

The interior residual Ri is forced to zero in a weighted average sense over an entire

domain. Mathematically, this condition can be expressed with the inner product,

〈Wj(t),Ri(αk, φk(t), t)〉 =

∫ tf

0

W T
j (t)Ri(αk, φk(t))dt = 0; j = 1, 2, .., N − 1. (2.87)

Here Wj(t) are a pre-selected set of mutually independent weighting, or testing func-

tions constituting a function space P := span{W1, ..,WN}. From the functional anal-

ysis perspective, Eqn. (2.87) represents the setting of the projection of residual Ri

on space V to zero. The boundary residual is set to zero as,

Rb = b(x̂(0), x̂(tf )) = 0. (2.88)

Eqns. (2.86) and (2.88) constitute N number of equations in N number of unknown

αk’s, hence the system is theoretically solvable.

The choice of trial functions differentiates finite-element and finite-difference

methods from spectral methods. Finite-element and finite-difference methods use

trial functions as local polynomials of low order, while spectral methods employ global

polynomials of high order. Similarly, choice of test functions and the way boundary

conditions are implemented define a number of special cases of MWR which are known

as separate methods in their own terms. We consider following four such methods

and describe the choice of test and trial functions for each method.

1. Tau method

Tau method uses the test functions same as trial functions. The approximation
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x̂(t) does not satisfy the boundary condition explicitly, so that,

x̂(t) =
N∑
k=1

αkφk(t), b(x̂(0), x̂(tf )) = 0, (2.89)∫ tf

0

φj(t)Ri(αk, φk(t))dt = 0; j = 1, 2, .., N − 1. (2.90)

2. Galerkin method

In Galerkin method, test functions are chosen to be same as trial functions. Fur-

ther, trial functions are chosen in such a manner that the boundary conditions

are explicitly satisfied. So that,

x̂(t) = φ0(t) +
N∑
k=1

αkφk(t), b(φ0(0), φ0(tf )) = 0, (2.91)∫ tf

0

φj(t)Ri(αk, φk(t))dt = 0; j = 1, 2, .., N. (2.92)

3. Least-square method

In this method, test function are chosen as,

Wj =
∂Ri

∂αj
, (2.93)

and trial functions are chosen in such that the boundary conditions are explicitly

satisfied. So that,

x̂(t) = φ0(t) +
N∑
k=1

αkφk(t), b(φ0(0), φ0(tf )) = 0, (2.94)∫ tf

0

∂Ri

∂αj

T

Ri(αk, φk(t))dt = 0; j = 1, 2, .., N. (2.95)

4. Generalized moment method
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In this method, test function are chosen as the derivatives of trial functions [51],

x̂(t) =
N∑
k=1

αkφk(t), b(x̂(0), x̂(tf )) = 0, (2.96)∫ tf

0

φ̇j(t)Ri(αk, φk(t))dt = 0; j = 2, .., N. (2.97)

5. Subdomain method

In this method, the domain [0, tf ] is split into N subdomains (intervals) {Ωj}Nj=1

and the test functions are selected as,

Wj(t) =

 1 t ∈ Ωj

0 otherwise
(2.98)

The solution is obtained using,∫
Ωj

Ri(αk, φk(t))dt = 0; j = 1, 2, .., N. (2.99)

6. Collocation method

In collocation methods, the residual Ri is set to zero at a pre-defined set of

nodes {tj}Nj=1. The test functions in this case are,

Wj(t) = δ(t− tj), Ri(αk, φk(tj)) = 0. (2.100)



42

CHAPTER III

WEIGHTED RESIDUAL FORMULATION FOR DIRECT OPTIMAL CONTROL

Advancement in the numerical algorithms to solve complex nonlinear programming

problems and the availability of ever increasing computational power of modern-day

computers has made direct transcription technique extremely popular for solving

optimal control problems. In the past three decades, numerous methods have been

proposed to transcribe optimal control problems to nonlinear programming problems.

While the variety in these methods provide abundant techniques to cater for specific

classes of problems, it also poses difficulties in understanding the underlying mecha-

nism which differentiates these methods from one another and is responsible for their

unique properties. Therefore, it is highly desired to have a unifying mathematical

framework for the formulation and analysis of direct transcription methods.

In this direction, work has been done to generalize Hermite differentiation based

methods [31]. For a class of pseudospectral methods, a framework based on generic

Jacobi polynomials is proposed [52], with a further generalization using nonclassical

orthogonal and weighted polynomial interpolation [26].

In this chapter, a generic method for the direct transcription of optimal control

problems is considered. This method, denoted as WRM, is based on the weighted

residual formulation of the state dynamics and path constraints associated with an

optimal control problem. All trajectory variables are approximated in a general basis

expansion form. A higher level analysis of primal-dual consistency is carried out with-

out using any numerical quadrature scheme in the nonlinear programming problem

formulation. This amounts to the derivation of KKT conditions associated with the

nonlinear programming problem and their comparison with the approximated first-

order optimality conditions of the optimal control problem. Application of numerical
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quadrature changes the structure of the nonlinear programming problem, which is

taken into account in the subsequent chapters where special cases are considered for

the implementation of WRM.

We begin the formulation of WRM with a recap of the optimal control problem

defined in Chapter II Section B.1: Find the state-control pair {x(t) ∈ Rn,u(t) ∈

Rm; t ∈ [0, 1]}, slack variable functions s(t) ∈ Rq and time instances τ0 and τf , that

minimize the cost,

J = Ψ(x(0),x(1), τ0, τf ), (3.1)

subject to the state dynamics,

ẋ(t) = (τf − τ0)f(x(t),u(t)), (3.2)

end-point state equality constraints,

K0x(0) = x0 ∈ Ra, K1x(1) = xf ∈ Rn−a, ψ(x(0),x(1), τ0, τf ) = 0 ∈ Rp, (3.3)

and mixed path constraints,

h(x(t),u(t)) + s(t) ◦ s(t) = 0 ∈ Rq, (3.4)

where, Ψ : Rn×Rn×R×R→ R, f : Rn×Rm → Rn, ψ : Rn×Rn×R×R→ Rp, h :

Rn × Rm → Rq.

A. Direct Transcription Formulation

The first step in any direct transcription method is to define a finite dimensional

approximation for all the unknown trajectory variables. In WRM, state, control

and slack variable trajectories are approximated in finite-dimensional function spaces
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spanned by possibly different sets of a priory chosen basis functions. So that, for

t ∈ [0, 1],

Vx := span{φx
j (t)}Nx

j=1, Vu := span{φu
r (t)}Nu

r=1, Vs := span{φs
p(t)}Ns

p=1. (3.5)

Vx,Vu and Vs are equipped with an inner product,

〈p,q〉 =

∫ 1

0

pT (t)q(t)dt; p(t),q(t) ∈ Vx ∪ Vu ∪ Vs, (3.6)

and the state, control and slack variable trajectories are approximated as,

x(t) ≈ x̂(t) =
Nx∑
k=1

αkφ
x
k(t) ∈ Vx, (3.7)

˙̂x(t) =
Nx∑
k=1

αkφ̇
x
k(t), (3.8)

u(t) ≈ û(t) =
Nu∑
k=1

βkφ
u
k (t) ∈ Vu, (3.9)

s(t) ≈ ŝ(t) =
Ns∑
k=1

ςkφ
s
k(t) ∈ Vs, (3.10)

Having defined the approximations for the unknown variables, the next step is to

approximate the state dynamics and path constraints. Motivated by the formulation

presented in Chapter II Section D, the state dynamics is imposed as a weighted

residual form,∫ 1

0

W T
j (x̂(t), û(t))[(τf − τ0)f(x̂(t), û(t))− ˙̂x(t)]dt+

1

2
KT

0 ν0φ
x
j (0) +

1

2
KT

1 ν1φ
x
j (1) = 0;

j = 1, 2, .., Nx, (3.11)
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with the boundary constraints,

K0x̂(0)− x0 = 0, K1x̂(1)− xf = 0, (3.12)

ψ(x̂(0), x̂(1), τ0, τf ) = 0. (3.13)

Here Wj are the test functions spanning a projection space,

Px := span{W1, ..,WNx}. (3.14)

Notice that the state approximation as defined in Eqn. (3.7) does not satisfy the

boundary conditions explicitly. Therefore, Eqn. (3.12) represents a set of n equality

constraints in terms of the components of αk’s.

Approximation defined in Eqn. (3.11) is different form the one in Eqn. (2.87)

in two ways. First, two extra terms are introduced containing unknown variables ν0

and ν1. Second, the number of weighted residual constraints are Nx while boundary

conditions are not explicitly satisfied. At a first glance, it appears that this would

result in a over constrained system of equations. However, formulation presented here

is specifically for optimal control problems which are inherently under constrained.

Therefore, the degrees of freedom from the unknown control variables alow us to

impose Nx weighted integral constraints. The purpose of adding terms containing ν0

and ν1 will be clarified in the context of least-square method for optimal control. At

this stage, these terms are simply carried forward in all the analysis presented in this

chapter.

Path constraints in Eqn. (3.4) are also imposed in a weighted residual from as,∫ 1

0

V T
p [h(x̂(t), û(t)) + ŝ(t) ◦ ŝ(t)] = 0, p = 1, 2, .., Ns, (3.15)
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where, Vp’s are the associated test functions constituting a projection space,

Ps := span{V1, .., VNs}. (3.16)

Next, the approximations defined in section are used to transcribe problem M into

a nonlinear programming problem Mφ.

B. Nonlinear Programming Problem: Mφ

Function approximation of trajectory variables using Eqn. (3.7), Eqn. (3.9) and

Eqn. (3.10), combined with the weighted residual formulation as in Eqn. (3.11),

Eqn. (3.12), Eqn. (3.13) and Eqn. (3.15), transcribe problemM into a finite dimen-

sional nonlinear programming problem, denoted as ProblemMφ. For the subsequent

treatment, we denote the approximate state dynamics as,

f̂(αk, βk, φ
x
k(t), φu

k (t)) = f(x̂(t), û(t)).

Using similar notation for all other function expressions, ProblemMφ is to determine

{αk ∈ Rn}Nx
k=1, {βk ∈ Rm}Nu

k=1, {ςk ∈ Rq}Ns
k=1, ν0 ∈ Ra, ν1 ∈ Rn−a and time instances τ0

and τf , that minimize the cost,

Ĵ = Ψ̂(αk, φ
x
k(0), φx

k(1), τ0, τf ), (3.17)

subject to the constraints,∫ 1

0

[W T
j (αk, βk, φ

x
k , φ

u
k , τ0, τf )][(τf − τ0)f̂(αk, βk, φ

x
k , φ

u
k )−

Nx∑
k=1

αkφ̇
x
k ]dt

+
1

2
KT

0 ν0φ
x
j (0) +

1

2
KT

1 ν1φ
x
j (1) = 0, (3.18)
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K0

Nx∑
k=1

αkφ
x
k(0)− x0 = 0, K1

Nx∑
k=1

αkφ
x
k(1)− xf = 0, (3.19)

ψ̂(αk, φ
x
k(0), φx

k(1), τ0, τf ) = 0, (3.20)∫ 1

0

V T
p [ĥ(αk, βk, φ

x
k , φ

u
k ) +

Ns∑
k=1

ςkφ
s
k ◦

Ns∑
l=1

ςlφ
s
l ] = 0, (3.21)

where j = 1, .., Nx and p = 1, .., Ns. Problem Mφ constituting Eqns. (3.17) to

(3.21) needs to be further discretized for numerical implementation. All the integral

expressions inMφ need to be approximated using sone numerical quadrature scheme.

However, at this stage we keep problem Mφ in the integral form and follow through

the derivation of the associated KKT first-order necessary conditions.

C. Derivation of KKT Conditions: Mφλ

The solution to a nonlinear program satisfies a set of first-order optimality conditions

called the Karush-Kuhn-Tucker (KKT) conditions. The KKT conditions correspond-

ing to theMφ are obtained from the Lagrangian formed by adjoining the cost function

with the constraint equations. For brevity, we use f̂ to denote f̂(αk, βk, φ
x
k , φ

u
k ). Using

similar notation for all other variables, we write,

J ′ =
Nx∑
j=1

γTj

[∫ 1

0

W T
j [(τf − τ0)f̂ −

Nx∑
k=1

αkφ̇
x
k ]dt+

1

2
KT

0 ν0φ
x
j (0) +

1

2
KT

1 ν1φ
x
j (1)

]

+
Ns∑
p=1

ζTp

∫ 1

0

V T
p [ĥ +

Ns∑
k=1

ςkφ
s
k ◦

Ns∑
l=1

ςlφ
s
l ]dt

+ µT0 (K0

Nx∑
k=1

αkφ
x
k(0)− x0) + µT1 (K1

Nx∑
k=1

αkφ
x
k(0)− x0) + Ψ̂ + ηT ψ̂, (3.22)

where γj ∈ Rn, µ0 ∈ Ra, µ1 ∈ Rn−a, η ∈ Rp and ζj ∈ Rq are the KKT multipliers

associated with the constraints given by Eqn. (3.18), Eqn. (3.19) and Eqn. (3.21)

respectively. The KKT first-order necessary conditions are obtained by setting the
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derivatives of J ′ with respect to the unknowns {αi, βi, ςi, ν0, ν1, γi, µ0, µ1, η, ζi, τ0, τf}

equal to zero. We have for i = 1, .., Nx,

∂J ′

∂αi
=

∫ 1

0

Nx∑
j=1

[(τf − τ0)f̂TxWjφ
x
i −Wjφ̇

x
i ]γjdt

+ µ0K0φ
x
i (0) + µ1K1φ

x
i (1) +

∫ 1

0

Ns∑
p=1

ĥTxVpζpφ
x
i dt+

∫ 1

0

Nx∑
j=1

rTWxjφ
x
i γjdt

+ [Ψ̂x(0) + ψ̂Tx(0)η]φx
i (0) + [Ψ̂x(1) + ψ̂Tx(1)η]φx

i (1) = 0. (3.23)

Using integration by parts, we write,∫ 1

0

Wj(t)φ̇
x
i (t)dt = Wj(1)φx

i (1)−Wj(0)φx
i (0)−

∫ 1

0

Ẇj(t)φ
x
i (t)dt, (3.24)

Using Eqn. (3.23), Eqn. (3.24) and re-arranging, we get,

∂J ′

∂αi
=

∫ 1

0

Nx∑
j=1

[(τf − τ0)f̂TxWjφ
x
i + Ẇjφ

x
i ]γjdt−

Nx∑
j=1

[Wj(1)φx
i (1)−Wj(0)φx

i (0)]γj

+ µ0K0φ
x
i (0) + µ1K1φ

x
i (1) +

∫ 1

0

Ns∑
p=1

ĥTxVpζpφ
x
i dt+

∫ 1

0

Nx∑
j=1

rTWxjφ
x
i γjdt

+ [Ψ̂x(0) + ψ̂Tx(0)η]φx
i (0) + [Ψ̂x(1) + ψ̂Tx(1)η]φx

i (1) = 0. (3.25)

Re-arranging further,

∂J ′

∂αi
=

∫ 1

0

[(τf − τ0)f̂Tx

Nx∑
j=1

Wjγj +
Nx∑
j=1

Ẇjγj +
Ns∑
p=1

ĥTxVpζp]φ
x
i dt+

∫ 1

0

Nx∑
j=1

rTWxjφ
x
i γjdt

+ [Ψ̂x(0) + ψ̂Tx(0)η + µ0K0 +
Nx∑
j=1

Wj(0)γj]φ
x
i (0)

+ [Ψ̂x(1) + ψ̂Tx(1)η + µ1K1 −
Nx∑
j=1

Wj(1)γj]φ
x
i (1) = 0. (3.26)
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also,

∂J ′

∂µ0

= K0

Nx∑
k=1

αkφ
x
k(0)− x0 = 0, (3.27)

∂J ′

∂µ1

= K1

Nx∑
k=1

αkφ
x
k(1)− xf = 0, (3.28)

∂J ′

∂βr
=

∫ 1

0

[(τf − τ0)f̂Tu

Nx∑
j=1

Wjγj + ĥTu

Ns∑
p=1

Vpζp]φ
u
r dt+

∫ 1

0

Nx∑
j=1

rTWujφ
u
r γjdt = 0,

(3.29)

∂J ′

∂γi
=

∫ 1

0

W T
i [(τf − τ0)f̂ −

Nx∑
k=1

αkφ̇
x
k ]dt+

1

2
KT

0 ν0φ
x
i (0) +

1

2
KT

1 ν1φ
x
i (1) = 0, (3.30)

∂J ′

∂ςq
= 2

∫ 1

0

[
Ns∑
k=1

ςkφ
s
k ◦

Ns∑
p=1

Vpζp]φ
s
qdt = 0 (3.31)

∂J ′

∂ν0

= K0

Nx∑
j=1

γjφj(0) = 0, (3.32)

∂J ′

∂ν1

= K1

Nx∑
j=1

γjφj(1) = 0, (3.33)

∂J ′

∂η
= ψ̂ = 0, (3.34)

∂J ′

∂ζq
=

∫ 1

0

V T
q [ĥ +

Ns∑
k=1

ςkφ
s
k ◦

Ns∑
l=1

ςlφ
s
l ] = 0, (3.35)

∂J ′

∂τ0

= −
∫ 1

0

Nx∑
j=1

γTj W
T
j f̂dt+

∫ 1

0

Nx∑
j=1

γTj
∂Wj

∂τ0

rdt+ [Ψ̂τ0 + ηT ψ̂τ0 ] = 0, (3.36)

∂J ′

∂τf
=

∫ 1

0

Nx∑
j=1

γTj W
T
j f̂dt+

∫ 1

0

Nx∑
j=1

γTj
∂Wj

∂τf
rdt+ [Ψ̂τf + ηT ψ̂τf ] = 0, (3.37)

where i = 1, .., Nx, q = 1, .., Ns and r = 1, .., Nu. Eqn. (3.26) through Eqn. (3.37)

constitute the KKT conditions for Problem Mφ. Next, we derive the approximated

first-order optimality conditions for problem M, denoted as Mλφ.
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D. Weighted Residual Approximation of First-Order Optimality Conditions: Mλφ

This section describes in the weighted residual approximation of the first-order neces-

sary conditionsMλ derived in Chapter II Section B.2. This step is not necessary for

the implementation of a direct method, but provides a mean to compare the direct

and indirect solution of an optimal control problem. This comparison would results

in the derivation of costate estimation results.

Conditions in problem Mλ are reproduced here for a quick reference. For,

C =Ψ(x(0),x(1), τ0, τf ) + υTψ(x(0),x(1), τ0, τf )

+ κT0 [K0x(0)− x0] + κT1 [K1x(1)− xf ], (3.38)

the first-order optimality conditions are,

ẋ− (τf − τ0)f(x,u) = 0,

K0x(0)− x0 = 0,

K1x(1)− xf = 0,

λ̇+ (τf − τ0)fTx λ+ hTxξ = 0,

{λ(t0), λ(tf )} = {−Cx(τ0),Cx(τf )},

(τ{ − τ′)fTu λ+ hTuξ = 0,

h(x,u) + s(t) ◦ s(t) = 0,

2ξ(t) ◦ s(t) = 0, (3.39)

ψ(x(0),x(1), τ0, τf ) = 0,

{H|t=0,H|t=1} = {Cτ0 ,− Cτf},

Approximations for x̂(t), û(t) and ŝ(t) are defined in Eqns. (3.7), (3.9) and

(3.10) respectively. The costates λ(t) and Lagrange multiplier functions ξ(t) in Mλ

are approximated as,

λ̂(t) =
Nx∑
k=1

Wk(t)γ̃k ∈ Px, ξ̂(t) =
Ns∑
k=1

Vk(t)ζ̃k ∈ Ps, (3.40)

where γ̃k ∈ Rn and ζ̃k ∈ Rq.
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As in Eqn. (3.11), the approximate state dynamics is written as,∫ 1

0

W T
i

[
(τf − τ0)f̂ −

Nx∑
k=1

αkφ̇
x
k

]
dt+

1

2
KT

0 π0φ
x
i (0) +

1

2
KT

1 π1φ
x
i (1) = 0, (3.41)

K0

Nx∑
k=1

αkφ
x
k(0)− x0 = 0, K1

Nx∑
k=1

αkφ
x
k(1)− xf = 0, (3.42)

where π0 ∈ Ra and π1 ∈ Rn−a. For the rest of the trajectory conditions is Eqn.

(3.39), weighted residual approximations are defined by taking the test functions

same as the corresponding trial functions. This is done to establish mapping between

the KKT conditions and the approximated first-order optimality conditions. Using

approximations defined in Eqn. (3.40) we write,∫ 1

0

[
(τf − τ0)

Nx∑
k=1

Ẇkγ̃k + f̂Tx

Nx∑
k=1

Wkγ̃k + ĥTx

Ns∑
k=1

Vkζ̃k

]
φx
i dt = 0, (3.43)

Nx∑
k=1

Wk(0)γ̃k + [Ψ̂x(0) + ψ̂Tx(0)υ + κ0K0] = 0, (3.44)

Nx∑
k=1

Wk(1)γ̃k − [Ψ̂x(1) + ψ̂Tx(1)υ + κ1K1] = 0, (3.45)

∫ 1

0

[̂fTu

Nx∑
k=1

Wkγ̃k + ĥTu

Ns∑
k=1

Vkζ̃k]φ
u
r dt = 0, (3.46)

∫ 1

0

[ĥ +
Ns∑
k=1

ςkφ
s
k ◦

Ns∑
l=1

ςlφ
s
l ]φ

s
qdt = 0, (3.47)

2

∫ 1

0

[
Ns∑
k=1

ςkφ
s
k ◦

Ns∑
k=1

Vkζ̃k]φ
s
qdt = 0, (3.48)

ψ̂(αk, φ
x
k(0), φx

k(1), τ0, τf ) = 0, (3.49)

Nx∑
k=1

γ̃TkW
T
k f̂ |t=o + Ψ̂τ0 + υT ψ̂τ0 = 0, (3.50)

Nx∑
k=1

γ̃TkW
T
k f̂ |t=1 + Ψ̂τf + υT ψ̂τf = 0. (3.51)

where i = 1, .., Nx, q = 1, .., Ns, r = 1, .., Nu. Eqns. (3.41)-(3.51) represent the
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indirect method solution to problemM and is an approximation of the true optimal

solution in a weighted residual sense.

E. Primal-Dual Mapping Discrepancies

Having derived the KKT conditions and the approximated first-order optimality con-

ditions, the next step is to look for any discrepancies between the two and, if possible,

derive meaningful costate estimates form the KKT multipliers associated with Mφλ.

By comparingMφλ andMλφ, we find that a one-to-one mapping would exist between{
γj|Nx

j=1, ζp|
Ns
p=1, µ0, µ1, η

}
and

{
γ̃k|Nx

k=1, ζ̃p|
Ns
p=1, κ0, κ1, υ

}
if the following conditions are

satisfied,

[Ψ̂x(0) + ψ̂Tx(0)η + µ0K0 +
Nx∑
j=1

Wj(0)γj]φ
x
i (0) = 0; i = 1, 2, ..., Nx, (3.52)

[Ψ̂x(1) + ψ̂Tx(1)η + µ1K1 −
Nx∑
j=1

Wj(1)γj]φ
x
i (1) = 0; i = 1, 2, ..., Nx, (3.53)

and, ∫ 1

0

Nx∑
j=1

rTWxjφ
x
i γjdt = 0; j = 1, .., Nx (3.54)

∫ 1

0

Nx∑
j=1

rTWujφ
u
r γjdt = 0; r = 1, .., Nu (3.55)

∫ 1

0

Nx∑
j=1

γTj Wτ0jrdt = 0 (3.56)

∫ 1

0

Nx∑
j=1

γTj Wτf jrdt = 0. (3.57)

Further, the KKT system imposes two extra conditions as,

K0

Nx∑
j=1

γjφj(0) = 0, K1

Nx∑
j=1

γjφj(1) = 0, (3.58)
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which are not applicable for the case when ν0 = ν1 = 0, however, as we shall see in

Chapters V and VI, these conditions have an interesting implication in the case of

least-square method and the generalized moment method for optimal control.

Conditions given by Eqns. (3.52)-(3.57) are referred as equivalence conditions

because their satisfaction amounts to the complete equivalence of direct and indirect

solution of an optimal control problem (see Figure (8)).

Fig. 8. For a complete mapping to exist between Mφλ(Direct Method) and

Mλφ(Indirect Method), a set of equivalence conditions must be satisfied along

with the KKT conditions associated with Mφ.

F. Costate Approximation

Assuming that Eqns. (3.52)-(3.57) are satisfied and Eqn. (3.58) is appropriately

taken care of, the costates can be estimated from the KKT multipliers as,

λ̂(t) =
Nx∑
k=1

Wk(t)γk, (3.59)
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and the Lagrange multiplier functions can be constructed as,

ξ̂(t) =
Ns∑
k=1

Vk(t)ζk. (3.60)

Also,

κ0 = µ0, κ1 = µ1, υ = η. (3.61)

We make an interesting observation about the structure of the approximated costate

dynamics:

“If x̂(t) ∈ Vx, and the residual in state dynamics is set orthogonal to the space of test

functions Px, then under the equivalence conditions, the costate estimates λ̂(t) ∈ Px

and the residual in costate dynamics is orthogonal to the space Vx.”

This mapping relationship is depicted in Figure (9).

G. Conclusions

This chapter presented the formulation and optimality analysis of the weighted resid-

ual method for optimal control. The formulation was done in a generic manner

without making any particular choice for relevant approximation spaces or numerical

quadrature scheme. Comparison of KKT system with the approximated first-order

optimality conditions resulted in a set of equivalence conditions necessary for a map-

ping to exist between direct and indirect solutions of the optimal control problem.

When these equivalence conditions are satisfied, costates can be estimated form the

KKT multipliers associated with the state dynamics constraints in the nonlinear pro-

gramming problem.
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Fig. 9. Under the equivalence conditions, costates can be estimated in the projection

space Px and the residual in costate dynamics is orthogonal to the approximat-

ing space Vx.
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CHAPTER IV

THE METHOD OF HILBERT SPACE PROJECTION

In this chapter, we consider the first special case of WRM where the test functions are

chosen to be same as the trial functions approximating the trajectory variables. The

method of Hilbert space projection (MHSP) closely resembles tau-methods discussed

in Chapter II. In the optimal control literature tau-methods have been used with

global orthogonal approximating functions, such as Legendre[53], Chebyshev[54, 55],

or Fourier[56, 57] series expansions. The MHSP differs from the these methods as

the basis functions need only be linearly independent but not necessarily orthogonal.

This allows the use of more general class of basis functions such as B-Splines or

partition of unity based approximations for direct transcription of optimal control

problems. Depending upon the problem in hand, it can be advantageous to select

such basis functions to construct the approximation space. Further, the MHSP allows

the approximation of state and control variables in two different function spaces.

The formulation and analysis of MHSP is carried out in the framework of WRM as

presented in Chapter III. The first step is the formulation of a nonlinear programming

problem for the original optimal control problem M. Next, equivalence conditions

are derived and costate estimation results are presented for the MHSP. Further, the

implementation of MHSP is described using B-Splines as approximating functions and

a numerical quadrature scheme is outlined. Finally, a number of numerical examples

are solved using this method and numerical convergence is demonstrated through

simulations.
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A. Direct Transcription Formulation

For WRM, take the projection space to be same as the approximating space for both

state dynamics and path constraints, so that,

Wk(t) = φx
k(t); k = 1, .., Nx, (4.1)

Vk(t) = φs
k(t); k = 1, .., Ns. (4.2)

Also take,

ν0 = ν1 = 0. (4.3)

Further assume that φx
j ’s are continuous functions on [0, 1] so that the integration by

parts relationship in Eqn. (3.24) is valid.

B. Nonlinear Programming Problem

Using Eqns. (4.1) and (4.3), the nonlinear programming problem formulated in

Chapter III Section B takes the following form: Determine {αk ∈ Rn}Nx
k=1, {βk ∈

Rm}Nu
k=1, {ςk ∈ Rq}Ns

k=1, and time instances τ0 and τf , that minimize the cost,

Ĵ = Ψ̂(αk, φ
x
k(0), φx

k(1), τ0, τf ), (4.4)

subject to the constraints,∫ 1

0

[
(τf − τ0)f̂(αk, βk, φ

x
k , φ

u
k )−

Nx∑
k=1

αkφ̇
x
k

]
φx
j (t)dt = 0, (4.5)

K0

Nx∑
k=1

αkφ
x
k(0)− x0 = 0, K1

Nx∑
k=1

αkφ
x
k(1)− xf = 0, (4.6)
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ψ̂(αk, φ
x
k(0), φx

k(1), τ0, τf ) = 0, (4.7)∫ 1

0

[
ĥ(αk, βk, φ

x
k , φ

u
k ) +

Ns∑
k=1

ςkφ
s
k ◦

Ns∑
l=1

ςlφ
s
l

]
φs
p(t)dt = 0, (4.8)

where j = 1, .., Nx and p = 1, .., Ns. This approximation scheme as defined by Eqns.

(4.4)-(4.8) represents the method of Hilbert space projection.

Next, we derive the equivalence conditions and costate estimation results for this

method.

C. Equivalence Conditions

For MHSP, the conditions defined by Eqns. (3.52)-(3.57) in Chapter III Section E

are trivially satisfied because,

∂φx
j

∂u
=
∂φx

j

∂τ0

=
∂φx

j

∂τf
= 0. (4.9)

Further, since not all basis functions φx
k |
Nx
k=1 are zero at the boundaries, the conditions

in Eqns. (3.52) and (3.53) are not explicitly satisfied. Therefore, the equivalence

conditions for MHSP take the form,

Ψ̂x(0) + ψ̂Tx(0)η + µ0K0 +
Nx∑
j=1

φx
j (0)γj = 0, (4.10)

Ψ̂x(1) + ψ̂Tx(1)η + µ1K1 −
Nx∑
j=1

φx
j (1)γj = 0. (4.11)

The extra conditions in Eqn. (3.58) are not applicable for MHSP as ν0 = ν1 = 0 in

this method.

Eqns. (4.10) and (4.11) when added to the KKT conditions, fill the “gap” be-

tween the direct and indirect method solutions of problemM. We see that the direct

method discretization of problemM does not explicitly impose the boundary condi-
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tions on the discrete costates. This loss of information is restored by the equivalence

conditions in Eqns. (4.10) and (4.11).

D. Costate Estimates

The equivalence conditions defined in the previous section establish the relationship

between KKT multipliers {γk}Nx
k=1 associated with the constraints in Eqn. (4.5), and

the costate approximation λ̂(t). Similarly, the Lagrange multiplier functions and

variables {ξ(t), µ0, µ1, η} inMλ can be obtained from the corresponding KKT multi-

pliers. The costate estimation results for MHSP can be summarized via the following

theorem:

Theorem D.1 (Costate Mapping Theorem for the MHSP) Assume that an op-

timal control problem is solved using the method of Hilbert space projection with the

state approximation x̂(t) ∈ Vx, and the equivalence conditions hold. Then, the esti-

mates of the costates λ̂(t) ∈ Vx, Lagrange multiplier functions ξ(t) associated with

the path constraints and the terminal covector (υ) can be obtained using the KKT

multipliers (γk, ζk, η) of the associated NLP as,

λ̂(t) =
Nx∑
k=1

γkφ
x
k(t) ∈ Vx, ξ̂(t) =

Ns∑
k=1

ζ̂kφ
s
k(t) ∈ Vs, η = υ. (4.12)

Proof The solution to ProblemMλφ exists by assumption. Since equivalence condi-

tions hold, the results in Chapter III Section F are valid.

E. MHSP Using B-Spline Approximation

There are a number of ways to select the basis functions for state and control ap-

proximations with MHSP. The basis functions for state approximations should be



60

linearly independent and continuous on the computational domain of the problem in

hand. This section describes the implementation of MHSP using B-Splines as approx-

imating functions. implementation of the MHSP, which requires that the integrals in

Eqns. (4.5) and (4.8) be evaluated numerically. This can be accomplished by using a

numerical quadrature scheme. Using numerical quadrature changes the structure of

the resulting NLP and in turn the KKT conditions. However, the results on costate

estimation and equivalence conditions can still be derived if the quadrature scheme

is chosen so that the integration by parts formula in Eqn. (3.24) holds. Here we take

a simple example to substantiate this claim in the case of B-Spline approximation.

A B-Spline is a piecewise polynomial function with a specified level of global

smoothness. Also, the B-Spline basis functions have local support, which means

that each basis function only influences a local region of the global trajectory. Local

support is a desirable property of basis functions for numerically stable algorithms. A

brief introduction to the construction and properties of B-Splines is given in Chapter II

Section C.4. For brevity, we consider a simplified form of problemM for mathematical

brevity. Problem A is to determine the state-control pair {x(t) ∈ Rn,u(t) ∈ Rm; t ∈

[0, 1]}, that minimizes,

J = Ψ(x(1)), (4.13)

subject to,

ẋ(t) = F (x(t),u(t)), (4.14)

ψ(x(0),x(1)) = 0, (4.15)

where,Ψ : Rn → R, F : Rn × Rm → Rn, ψ : Rn × Rn → Rp. To solve this problem

using the MHSP, we approximate the state and control trajectories as B-Splines. So
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that,

x(t) ≈ x̂(t) =
N∑
k=1

αkBk,r(t), u(t) ≈ û(t) =
N∑
k=1

βkBk,r(t), (4.16)

for some N, r, s and breakpoints 0 = t0 < t1 < .. < tN = 1. Let Ωi := [ti−1, ti]. For

each domain Ωi let {bij}Nq

j=0 be the number Nq of Legendre-Gauss (LG) quadrature

points with corresponding quadrature weights wij (see Figure (10)). Here we assume

that the weights wij have been appropriately scaled to transform the integration

domain [−1, 1] of the LGL points to Ωi. Then, the integral of a function f(t) over

interval Ωi can be approximated as,∫
Ωi

f(t)dt ≈
Nq∑
j=0

wijf(bij). (4.17)

Also, given Nq, the integral evaluation using LG rule is exact for polynomials of

Fig. 10. The arrangement of breakpoints and quadrature points in domain t ∈ [0, 1].

{ti}Ni=0 are the breakpoints. {bij}Nq

j=0 are the quadrature points for domain

Ωi = [ti−1, ti].
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degree 2Nq − 1 or less,

p(t) ∈ P 2Nq−1;

∫
Ωi

p(t)dt =

Nq∑
j=0

wijp(bij), (4.18)

where P n represents the space of all polynomials of degree less than or equal to n.

The B-spline basis functions are piecewise polynomials such that {Bk,r(t) ∈ P r−1; t ∈

Ωi}Nk=1 over domains {Ωi}Ni=1. We choose Nq ≥ r− 1, for which the following integra-

tion by parts formula holds,

N∑
i=1

Nq∑
j=0

wij

[
Ḃk,r(bij)Bl,r(bij) + Ḃl,r(bij)Bk,r(bij)

]
= [Bk,r(1)Bl,r(1)−Bk,r(0)Bl,r(0)].

(4.19)

A nonlinear programming problem AN is formulated based on Section B and by

using Eqn. (4.17) to approximate the integrals. The problem AN is to determine

{αk ∈ Rn, βk ∈ Rm}Nk=1 that minimize,

J = Ψ̂(αk, Bk,r(1)), (4.20)

subject to the constraints,

N∑
i=1

{
Nq∑
j=0

wij[F̂ (αk, βk, Bk,r(bij))−
N∑
k=1

αkḂk,r(bij)]Bl,r(bij)} = 0; l = 1, .., N, (4.21)

ψ̂(αk, Bk,r(0), Bk,r(1)) = 0. (4.22)

Next, we derive the KKT conditions for problem AN . The augmented cost is

defined as,

J ′ = Ψ̂(αk, Bk,r(1)) + νT ψ̂(αk, Bk,r(0), Bk,r(1))

+
N∑
l=1

γl

[
N∑
i=1

{
Nq∑
j=0

wij[F̂ (αk, βk, Bk,r(bij))−
N∑
k=1

αkḂk,r(bij)]Bl,r(bij)}

]
,
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where γl ∈ Rn and ν ∈ Rp are the KKT multipliers associated with the constraints

given by Eqns. (4.21) and (4.22) respectively. The KKT conditions denoted by ANλ

are derived by setting the partial derivatives of J ′ with respect to free variables equal

to zero. So that for m = 1, .., N ,

0 =
∂J ′

∂αm
=

N∑
l=1

γl

[
N∑
i=1

{
Nq∑
j=0

wij[F̂xBm,r(bij)Bl,r(bij)− Ḃm,r(bij)Bl,r(bij)]}

]
(4.23)

+ [Ψ̂x(1) + ψ̂x(1)ν]Bm,r(1) + ψ̂x(0)νBm,r(0). (4.24)

Using Eqn. (4.19), we get,

0 =
∂J ′

∂αm
=

N∑
l=1

γl

[
N∑
i=1

{
Nq∑
j=0

wij[F̂xBm,r(bij)Bl,r(bij) + Ḃl,r(bij)Bm,r(bij)]}

]

−
N∑
l=1

γl [Bm,r(1)Bl,r(1)−Bm,r(0)Bl,r(0)]

+ [Ψ̂x(1) + ψ̂x(1)ν]Bm,r(1) + ψ̂x(0)νBm,r(0). (4.25)

Re-arranging Eqn. (4.25),

0 =
∂J ′

∂αm
=

N∑
i=1

{
Nq∑
j=0

wij[F̂x

N∑
l=1

γlBl,r(bij) +
N∑
l=1

γlḂl,r(bij)]Bm,r(bij)}

+ [Ψ̂x(1) + ψ̂x(1)ν −
N∑
l=1

γlBl,r(1)]Bm,r(1)

+ [ψ̂x(0)ν +
N∑
l=1

γlBl,r(0)]Bm,r(0). (4.26)
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Also,

0 =
∂J ′

∂βm
=

N∑
i=1

{
Nq∑
j=0

wijF̂u[
N∑
l=1

γlBl,r(bij)]Bm,r(bij)}, (4.27)

0 =
∂J ′

∂γm
=

N∑
i=1

{
Nq∑
j=0

wij[F̂ (αk, βk, Bk,r(bij))−
N∑
k=1

αkḂk,r(bij)]Bm,r(bij)}, (4.28)

0 =
∂J ′

∂ν
= ψ̂(αk, Bk,r(0), Bk,r(1)). (4.29)

Thus, Eqns. (4.26) to (4.29) constitute the KKT conditions ANλ. Based on Chapter

III Section D and using Eqn. (4.17), the discretized first-order optimality conditions

AλN are,

N∑
i=1

{
Nq∑
j=0

wij[F̂ (αk, βk, Bk,r(bij))−
N∑
k=1

αkḂk,r(bij)]Bm,r(bij)} = 0,

N∑
i=1

{
Nq∑
j=0

wij[F̂x

N∑
l=1

γ̃lBl,r(bij) +
N∑
l=1

γ̃lḂl,r(bij)]Bm,r(bij)} = 0,

Ψ̂x(1) + ψ̂x(1)υ −
N∑
l=1

γ̃lBl,r(1) = 0,

ψ̂x(0)υ +
N∑
l=1

γ̃lBl,r(0) = 0,

ψ̂(αk, Bk,r(0), Bk,r(1)) = 0, (4.30)

for m = 1, .., N . Comparing ANλ and AλN , we see that the results form Section C

and D hold. The equivalence conditions are,

N∑
k=1

γkBk,r(0) = −ψ̂Tx(0)ν, (4.31)

N∑
k=1

γkBk,r(1) = [Ψ̂x(1) + ψ̂Tx(1)ν]. (4.32)
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The costates can be estimates as,

λ̂(t) =
N∑
k=1

γkBk,r(t). (4.33)

Thus, the analysis carried out in this section verifies the claim that the results on

costate estimation and equivalence conditions can be derived if the quadrature scheme

is chosen so that the integration by parts formula in Eqn. (3.24) holds.

F. Numerical Convergence Analysis

In this section, convergence properties of MHSP are demonstrated numerically by

solving four example problems which have known analytical solutions. The MHSP is

implemented using three types of approximation schemes and the effect of selecting

local/global basis functions is analyzed. The first two examples have smooth solutions,

while the third example has a discontinuity in one of the costates and corners in

the control solution. The fourth example has a discontinuous control solution and

one of the states has a corner. We expect that for the first two problems, global

approximating functions would have higher accuracy while for the problems with

discontinuities and corners, local approximating functions would perform better. All

the examples are programmed in MATLABr with SNOPT as the NLP solver with

10−9 as feasibility and optimality tolerances. The results are compared with the

available analytic solutions. The measure for accuracy is defined as the ∞-norm of

the error with respect to the analytic solution.

To implement MHSP, we define the following three types of approximation schemes:

1. B-Spline approximation with fixed order (r = 4) and smoothness (s = 3). The

order of approximation is increased by increasing the number of intervals Ni.

This can be seen as an h-refinement scheme and is denoted as SPL-34 for the
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subsequent treatment. For a given Ni, the number of unknown variables for

each trajectory is N = Ni + 3.

2. B-Spline approximation with fixed number of intervals (Ni = 5) and smoothness

(s = 3). The order of approximation is increased by increasing the spline order

(r). This can be seen as a p-refinement scheme and is denoted as SPL-3r. For a

given r, the number of unknown variables for each trajectory isN = Ni(r−3)+3.

3. A global approximation scheme using Legendre polynomials as basis functions.

The order of approximation is increased by increasing the number N of Legendre

basis functions. This approximation scheme is denoted as LEG.

Example problems defined in this section are used throughout this dissertation

for validating numerical convergence of various algorithms. For MHSP, each example

is solved by using the above three types of approximations, and N is increased from

8 to 48 with in the increments of 5.

1. Example 1: Nonlinear Plant with Terminal Cost

Minimize: J = −x(tf ) (4.34)

Subject to: ẋ(t) = x(t)u(t)− x(t)− u2(t) (4.35)

x(0) = 1; tf = 5 (4.36)

where {x(t), u(t)} is the state-control pair and tf is the final time. The analytic

solution given by Huntington[58] is,

x∗(t) =
4

1 + 3et

λ∗(t) =
−e(2ln(1+3et)−t)

(e−5 + 6 + 9e5)
(4.37)

u∗(t) = 0.5x∗(t)
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where λ∗(t) is the costate associated with the optimal solution. The analytic optimal

cost is J = −0.009.
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Fig. 11. MHSP solution of Example 1 using SPL3r approximation with N = 38.

This example is solved using MHSP with SPL-34, SPL-3r and LEG approxima-

tions. Figure (11) shows the analytical and numerical solutions for N = 38 with

SPL-3r approximation. It is seen that the costates are not very well approximated.

Convergence results are depicted in Figure (12). We see that for this example, overall

performance of SPL-3r approximation is the best. All three approximations do a

poor job in estimating the costates. However, SPL-3r costate estimation is relatively

better for high N .
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Fig. 12. Convergence of MHSP solution for Example 1.

2. Example 2: Two-state Nonlinear Plant with Terminal Constraint

Minimize: J = x2(tf ) (4.38)

Subject to: ẋ1 = 0.5x1 + u (4.39)

ẋ2 = x2
1 + 0.5u2 (4.40)

x1(0) = 1, x1(tf ) = 0.5, x2(0) = 0, (4.41)

where {[x1(t), x2(t)], u(t)} is the state-control pair and tf = 5 is the final time. The
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analytic solution given by Huntington [58] is,

x∗1(t) = a1e
3
2
t + a2e

− 3
2
t; x∗2(t) = a3(e

3
2
t)2 + a4(e−

3
2
t)2 + c1, (4.42)

λ∗1(t) = a5e
3
2
t + a6e

− 3
2
t; λ∗2(t) = 1 (4.43)

u∗(t) = −λ∗1(t), (4.44)

where,

a1 =
1
2
− e− 15

2

e
15
2 − e− 15

2

, a2 =
e

15
2 − 1

2

e
15
2 − e− 15

2

, (4.45)

a3 =
1

2
a2

1, a4 = a2
2 c1 = a2

2 −
1

2
a2

1, a5 = −a1, a6 = −2a2. (4.46)

MHSP solution obtained by using SPL-3r approximation and with N = 38 is com-
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Fig. 13. MHSP solution of Example 2 using SPL3r approximation with N = 38.

pared with the true solution in Figure (13). Convergence results for this example

are shown in Figure (14). It is clearly seen that SPL-3r approximation gives best

performance for all the trajectory variables. Slight upward increase of error curves

for SPL-3r is due to fixed number of quadrature nodes. As the spline order is in-
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creased, the number of quadrature points should also be increased. However, in the

present implementation, the number of quadrature nodes are fixed for a given inter-

val. Since the number of intervals in SPL-3r approximation remain the same, there is

some drop in accuracy as the spline order is increased. LEG approximation performs

poorly in all the cases, which is due to bad approximation of the trajectory variables

at boundaries.
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Fig. 14. Convergence of MHSP solution for Example 2.
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3. Example 3: Linear Plant with State Inequality Constraint

Minimize: J =
1

2

∫ 1

0

u2dt

Subject to: ẋ1 = x2 (4.47)

ẋ2 = u (4.48)

x1(0) = 0, x1(1) = 0, x2(0) = 1, x2(1) = −1 (4.49)

x1(t) ≤ l = 0.1 (4.50)

In the literature[10], this problem is known as the Breakwell problem. We use this

problem to demonstrate the applicability of the MHSP in the presence of pure state

inequality constraints, which were not considered in our problem formulation for

simplicity. The Breakwell problem has a second-order state inequality constraint.

The analytic solution to this problem is given in Ref.[10]. The optimal cost is J =

4
9l

= 4.4444. The optimal switching structure for this problem is free-constrained-

free, and the costate λ1(t) has jump discontinuities at times t1 = 3l = 0.3 and

t2 = 1 − 3l = 0.7. Figure (15) shows the comparison of numerical solution of the

Breakwell problem with the true solution. The numerical solution is obtained by

using SPL-34 approximation and N = 38. We see that the jump discontinuity in

costate λ1(t) is captured by the numerical solution. However, the approximation of

λ1(t) exhibits Gibb’s like phenomenon.
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Fig. 15. Comparison of MHSP results with the analytical solution for Example 3.

SPL-34 approximation with N = 38.

Convergence results for this problem are shown in Figure (16). It is clearly seen

that the global approximation scheme SPL-3r performs poorly in this case compared

to the SPL-34 approximations. This is due to the presence of discontinuities and

corners in the solution.
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Fig. 16. Convergence of MHSP solution for Example 3.
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4. Example 4: Minimum Time Problem with Bounded Control

Minimize: J = tf (4.51)

Subject to: ẋ1(t) = x2(t) (4.52)

ẋ2(t) = u(t) (4.53)

x1(0) = 3, x1(tf ) = 0, x2(0) = 2 x2(tf ) = 0 (4.54)

|u(t)| ≤ 1. (4.55)

The analytic solution given by Benson [59] is,

t0 = 2 +
√

5, tf = 2(1 +
√

5) (4.56)

x∗1(t) =

 −t
2 1

2
+ 2t+ 3 t ∈ [0, t0]

t2 1
2
− tf t+

t2f
2

t ∈ [t0, tf ]
, (4.57)

x∗2(t) =

 −t+ 2 t ∈ [0, t0],

t− tf t ∈ [t0, tf ]
, (4.58)

u∗1(t) =

 −1 t ∈ [0, t0],

1 t ∈ [t0, tf ]
, (4.59)

λ∗1(t) = − 1

t0 − tf
, λ∗2(t) =

1

t0 − tf
t− t0

t0 − tf
. (4.60)

For this problem, numerical solution obtained by using SPL-3r approximation

and with N = 38 is compared with the true solution in Figure (17). It is seen that

the costates do not converge for this problem, while the state and control trajectories

are approximated well by SPL-34 scheme. The reason for the non-convergence of

costates is that the equivalence conditions are not satisfied in this case.
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Fig. 17. Comparison of MHSP results with the analytical solution for Example 4.

SPL-34 approximation with N = 38.

Convergence results for this problem are depicted in Figure (18). We see that

SPL-3r approximation performs poorly compared to the SPL-34 approximation. This

is again due to the discontinuity in the control solution.

G. Conclusions

This chapter introduced the formulation of the method of Hilbert space projection.

This method is flexible with respect to the choice of approximating functions for

trajectory variables, where both local and global functions can be employed. The

costates can be estimated from the KKT multipliers if a set of equivalence conditions

are satisfied. Convergence of MHSP is demonstrated numerically as the order of

approximation increases. It is observed that the choice of approximating functions

effects the MHSP solution. For problems with smooth solution, global approximating

functions or higher order B-Splines give accurate results. However, for problems

having discontinuities and corners in their solutions, local approximating low order

B-Splines work best. There are some cases where equivalence conditions are not
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Fig. 18. Convergence of MHSP solution for Example 4.

satisfied by the nonlinear program in which case costates do not converge to the true

solution. We shall see in the next chapter that this limitation does not exist with the

least square method for optimal control.
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CHAPTER V

THE LEAST SQUARE METHOD FOR OPTIMAL CONTROL

The method of Hilbert space projection presented in the previous chapter sets the

trajectory residuals to zero in an average sense. For linear systems, it can be shown

that MHSP minimizes the L2-norm of trajectory residuals. However, this is not true

for the nonlinear systems. In this chapter, a least square method (LSMoc) for di-

rect transcription of optimal control problems is presented which is based on the

L2-minimization of the residual in state dynamics. We develop this method in the

framework of WRM so that the optimality analysis presented in Chapter III di-

rectly applies. The equivalence conditions are derived and the relationship between

the costates and the KKT multipliers of the nonlinear programming problem is estab-

lished. Further, numerical implementation of LSMoc using B-Splines as approximating

functions is described in detail. A global polynomial version of LSMoc is developed by

taking the trial functions as Lagrange interpolating polynomials. Examples problems

are solved using LSMoc transcription and numerical convergence is demonstrated as

the order of approximation increases.

A. Direct Transcription Formulation

In LSMoc, the state dynamics is approximated based on the following theorem,

Theorem A.1 Consider an initial value problem (IVP),

r(t) = g(z(t))− ż(t) = 0, t ∈ [0, 1]; z(0) = a.

Let H be an ∞-dimensional Hilbert space equipped with a norm ‖ · ‖H and an inner-

product 〈·, ·〉H, spanned by a set of linearly independent basis functions {φj(t), t ∈
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[0, 1]}∞j=1. If z(t) =
∑∞

j=1 αjφj(t) ∈ H, then z(t) is the stationary solution of the

functional,

J =‖ r‖2
H + ν(z(0)− a), (5.1)

where ν is a Lagrange multiplier.

Proof The stationary conditions are given by,

〈r, ∂r
∂αj
〉H +

1

2
νφj(0) = 0, j = 1, ..,∞, (5.2)

z(0) = a, (5.3)

which are trivially satisfied with ν = 0.

In the framework of WRM, conditions given in Eqn. (5.2) are applied by truncating

the infinite terms to a finite number Nx and selecting the test functions as,

Wj(t) =
∂r(t)

∂αj
. (5.4)

Here r(t) is the residual in state dynamics defined as,

r(t) = (τf − τ0)f(x̂(t), û(t))− ˙̂x(t), (5.5)

so that,

Wj(t) =
∂r(t)

∂αj
= [(τf − τ0)fx(x̂(t), û(t))φx

j (t)− Iφ̇x
j (t)]. (5.6)

B. Nonlinear Programming Problem

Using Eqn. (5.6), the nonlinear programming problem defined in Chapter III Section

B takes the form: Determine {αk ∈ Rn}Nx
k=1, {βk ∈ Rm}Nu

k=1, {ςk ∈ Rq}Ns
k=1, ν0 ∈ Ra,
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ν1 ∈ Rn−a and time instances τ0 and τf , that minimize the cost,

Ĵ = Ψ̂(αk, φ
x
k(0), φx

k(1), τ0, τf ), (5.7)

subject to the constraints,∫ 1

0

[(τf − τ0)f̂Tx (αk, βk, φ
x
k , φ

u
k )φx

j − Iφ̇x
j ][(τf − τ0)f̂(αk, βk, φ

x
k , φ

u
k )−

Nx∑
k=1

αkφ̇
x
k ]dt

+
1

2
KT

0 ν0φ
x
j (0) +

1

2
KT

1 ν1φ
x
j (1) = 0, (5.8)

K0

Nx∑
k=1

αkφ
x
k(0)− x0 = 0, K1

Nx∑
k=1

αkφ
x
k(1)− xf = 0, (5.9)

ψ̂(αk, φ
x
k(0), φx

k(1), τ0, τf ) = 0, (5.10)∫ 1

0

[ĥ(αk, βk, φ
x
k , φ

u
k ) +

Ns∑
k=1

ςkφ
s
k ◦

Ns∑
l=1

ςlφ
s
l ]φ

s
p = 0, (5.11)

where j = 1, .., Nx and p = 1, .., Ns. This approximation scheme as defined by Eqns.

(5.7)-(5.11) represents the least square method for optimal control.

Next, we derive the equivalence conditions and costate estimation results for this

method.

C. Equivalence Conditions

With regard to the equivalence conditions for LSMoc, we make the following obser-

vations form Chapter III Section E:

1. Conditions in Eqns. (3.54)-(3.57) are satisfied in the limit because because the

residual r(t)→ 0 as the order of approximation increases.

2. Since not all basis functions φx
k |
Nx
k=1 are zero at the boundaries, the conditions
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in Eqns. (3.52) and (3.53) require the following to be satisfied,

Nx∑
j=1

Wj(0)γj = (τf − τ0)f̂x

Nx∑
j=1

γjφ
x
j (0)−

Nx∑
j=1

γjφ̇
x
j (0) = −[Ψ̂x(0) + ψ̂Tx(0)η + µ0K0],

(5.12)

Nx∑
j=1

Wj(1)γj = (τf − τ0)f̂x

Nx∑
j=1

γjφ
x
j (1)−

Nx∑
j=1

γjφ̇
x
j (1) = [Ψ̂x(1) + ψ̂Tx(1)η + µ1K1].

(5.13)

3. Since ν0 and ν1 are unknowns in the LSMoc formulation, conditions in Eqn.

(3.58) need special attention. To understand their significance, consider the

Eqn. 5.6 and write,

Nx∑
j=1

Wj γ̃j = (τf − τ0)fx

Nx∑
j=1

γ̃jφ
x
j −

Nx∑
j=1

γ̃jφ̇
x
j (5.14)

Let
∑Nx

j=1 γ̃jφ
x
j (t) = ρ̂(t). Then Eqn. (5.14) represents an approximation of the

following differential equation,

(τf − τ0)fxρ(t)− ρ̇(t) = λ(t), (5.15)

where ρ(t) is referred as “auxiliary costates”. However, notice that the above

differential equation lacks boundary conditions. These boundary conditions are

supplied by the extra conditions found in the KKT system, i.e.,

K0

Nx∑
j=1

γ̃jφ
x
j (0) = 0, K1

Nx∑
j=1

γ̃jφ
x
j (1) = 0. (5.16)

Thus, we see that the conditions in Eqn. (3.58) do not introduce any incon-

sistency in the KKT system of LSMoc formulation. They are absorbed in the

definition of auxiliary costates and do not form a part of equivalence conditions

for LSMoc.
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D. Costate Estimates

The equivalence conditions defined in Eqns. (5.12) and (5.13) provide the mapping

between KKT multipliers {γk}, and the costate approximation λ̂(t). Similarly, a

mapping exists between {ξ(t), µ0, µ1, η} and the corresponding KKT multipliers. We

summarize the costate estimation results for the LSMoc via the following theorem:

Theorem D.1 (Costate Mapping Theorem for the LSMoc ) Assume that an

optimal control problem is solved using the LSMoc and the equivalence conditions

hold. Then, the estimates of the costates λ̂(t), and the Lagrange multiplier functions

ξ̂(t) can be obtained from the KKT multipliers (γk, ζk) of the associated NLP as,

λ̂(t) = (τf − τ0)f̂x

Nx∑
k=1

γkφ
x
k(t)−

Nx∑
k=1

γkφ̇
x
k(t)

ξ̂(t) =
Ns∑
k=1

ζkφ
s
k(t). (5.17)

Proof The solution to ProblemMλφ exists by assumption. Since equivalence condi-

tions hold, the results in Chapter III Section F are valid.

E. LSMoc Using B-Spline Approximation

In this section, we describe the implementation details of LSMoc using B-Splines

as approximating functions. The integrals in Eqns. (5.8) and (5.11) are evaluated

numerically by using a numerical quadrature scheme which changes the structure of

the resulting NLP and in turn the KKT conditions. However, it is shown that the

results on costate estimation and equivalence conditions can still be derived.

Consider an optimal control problem A, to determine the state-control pair
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{x(t) ∈ Rn,u(t) ∈ Rm; t ∈ [0, 1]}, that minimizes,

J = Ψ(x(1)),

subject to,

ẋ(t) = F (x(t),u(t)), x(0) = x0,

ψ(x(1)) = 0,

where,Ψ : Rn → R, F : Rn × Rm → Rn, ψ : Rn × Rn → Rp. To solve this problem

using the LSMoc, we approximate the state and control trajectories as B-Splines. So

that,

x̂(t) =
Nc∑
k=1

αkB
k,r(t), û(t) =

Nc∑
k=1

βkB
k,r(t),

for some N, r, s,Nc = N(r − s) + s, and breakpoints 0 = T0 < T1 < .. < TN = 1

with Ωi := [Ti−1, Ti]. We define Nq number of LG points {tij}Nq

j=1 with corresponding

quadrature weights {wij} suitably mapped over each domain {Ωi}Ni=1(see figure on

page 61 in Chapter IV). A nonlinear programming problem AN is formulated based

on Section B in this chapter and using LG quadrature scheme for integration. The

problem AN is to determine {αk ∈ Rn, βk ∈ Rm}Nk=1 that minimize,

J = Ψ̂(αk, B
k,r(1)),

subject to the constraints,

N∑
i=1

Nq∑
j=1

wij[(F̂
T
x B

l,r)ij − IḂl,r
ij ][F̂ij −

Nc∑
k=1

αkḂ
k,r
ij ] +

1

2
νBl,r

0 = 0, (5.18)

Nc∑
k=1

αkB
k,r
0 − x0 = 0, ψ̂ = 0, (5.19)



83

where l = 1, 2, .., Nc. Here (·)ij denotes the evaluation of the underlying expression at

time tij. Similarly, Bk,r
0 , Bk,r

1 denote Bk,r(0), Bk,r(1) respectively. For the prescribed

approximation scheme the following lemmas hold,

Lemma E.0.1 If P n represents the space of all polynomials of degree less than or

equal to n, then for i = 1, .., N ,∫ Ti

Ti−1

p(t)dt =

Nq∑
j=1

wijp(tij), ∀p(t) ∈ P 2Nq−1.

Lemma E.0.2 For i = 1, .., N , let f : [Ti−1, Ti]→ R be a continuous function. Then,

for every δ > 0, there exists Nf such that ∀Nq > Nf ,∣∣∣∣∣
∫ Ti

Ti−1

f(t)dt−
Nq∑
j=1

wijp(tij)

∣∣∣∣∣ ≤ δ.

Proof Let ∆Ti = Ti − Ti−1. Using Kreyszig.1989 approximation theorem, every

δ > 0, there exists Np such that ∀n > Np,

|f(t)− pn(t)| ≤ 1

∆Ti
δ,

where pn is a polynomial of order n. Integrating both sides and using Lemma E.0.1,

we have Nq ≥ Np+1

2
.

Theorem E.1 For every δ > 0, Nq can be chosen such that,

N∑
i=1

Nq∑
j=1

wij

[
Ḃk,r
ij Ḃ

l,r
ij + B̈l,r

ij B
k,r
ij

]
= (Bk,rḂl,r)|10, (5.20)

∣∣∣∣∣
N∑
i=1

Nq∑
j=1

wij

{
(τf F̂xB

l,r)ijḂ
k,r
ij +

˙
(τf F̂xBl,r)ijB

k,r
ij

}
− (τf F̂xB

l,rBk,r)|10

∣∣∣∣∣ ≤ δ. (5.21)
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Proof Using integration by parts,∫ 1

0

(Ḃk,rḂl,r + B̈l,rBk,r)dt = (Bk,rḂl,r)|10 (5.22)∫ 1

0

{(τf F̂xB
l,r)Ḃk,r +

˙
(τf F̂xBl,r)Bk,r}dt = (τf F̂xB

l,rBk,r)|10. (5.23)

By definition, {Ḃk,rḂl,r, B̈l,rBk,r ∈ P 2(r−2); t ∈ Ωi}Nc
k=1 over domains {Ωi}Ni=1. Using

Eqn. (5.22) and Lemma E.0.1, Eqn. (5.20) holds for Nq > r. From Eqn. (5.23) and

Lemma (E.0.2), there exists some Nf such that Eqn. (5.21) holds for Nq ≥ Nf . Thus

we can choose Nq = max.{r,Nf}.

Next, we derive the KKT conditions for problem AN . The augmented cost is defined

as,

J ′ =
Nc∑
l=1

γTl

[
N∑
i=1

{
Nq∑
j=1

wij[(F̂
T
x B

l,r)ij − IḂl,r
ij ][F̂ −

Nc∑
k=1

αkḂ
k,r
ij ]

}]

+
Nc∑
l=1

γTl

[
1

2
νBl,r

0

]
+ µT (

Nc∑
k=1

αkB
k,r
0 − x0) + Ψ̂ + ηT ψ̂, (5.24)

where γl ∈ Rn, µ ∈ Rn and η ∈ Rp are the KKT multipliers associated with the

constraints given by Eqn. Eqn. (5.18), Eqn. (5.19). The KKT conditions ANλ are

derived by setting the partial derivatives of J ′ with respect to free variables equal to

zero. Since the NLP is solved numerically, the KKT conditions are satisfied within a

specified tolerance δ. So that for m = 1, .., N ,∣∣∣∣ ∂J ′∂αm

∣∣∣∣ =

∣∣∣∣∣
Nc∑
l=1

[
N∑
i=1

Nq∑
j=1

wij{Ḃm,r
ij Ḃl,r

ij − τf (F̂ T
x )ijB

m,r
ij Ḃl,r

ij − τf (F̂x)ijB
l,r
ij Ḃ

m,r
ij

+τ 2
f (F̂ T

x F̂x)ijB
m,r
ij Bl,r

ij }
]
γl

+
Nc∑
l=1

N∑
i=1

Nq∑
j=1

wij[τf (r
T F̂xx)ijB

m,r
ij Bl,r

ij ]γl + µBm,r
0 + [Ψ̂x(1) + ψ̂Tx(1)η]Bm,r

1

∣∣∣∣∣ ≤ δ.

(5.25)
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Using Eqns. (5.20), (5.21) and re-arranging, we get,∣∣∣∣∣
Nc∑
l=1

N∑
i=1

Nq∑
j=1

wij[−B̈l,r
ij γl − τf (F̂ T

x )ijḂ
l,r
ij γl +

˙
(τf F̂xBl,r)ijγl + τ 2

f (F̂ T
x F̂x)ijB

l,r
ij γl]B

m,r
ij

+
Nc∑
l=1

N∑
i=1

Nq∑
j=1

wij[(τfr
T F̂xx)ijB

l,r
ij γl]B

m,r
ij + [Ψ̂x(1) + ψ̂Tx(1)η]Bm,r

1

− [τf (F̂x)1

Nc∑
l=1

γlB
l,r
1 −

Nc∑
l=1

γlḂ
l,r
1 ]Bm,r

1 + µBm,r
0 (5.26)

+[τf (F̂x)0

Nc∑
l=1

γlB
l,r
0 −

Nc∑
l=1

γlḂ
l,r
0 ]Bm,r

0

∣∣∣∣∣ ≤ δ. (5.27)

also,∣∣∣∣∂J ′∂µ

∣∣∣∣ =

∣∣∣∣∣
Nc∑
k=1

αkB
k,r
0 − x0

∣∣∣∣∣ ≤ δ, (5.28)

∣∣∣∣ ∂J ′∂βm

∣∣∣∣ =

∣∣∣∣∣
Nc∑
l=1

N∑
i=1

Nq∑
j=1

wijτf [τf (F̂
T
u F̂x)ijγlB

l,r
ij − (F̂ T

u )ijγlḂ
l,r
ij ]Bm,r

ij

+
Nc∑
l=1

N∑
i=1

Nq∑
j=1

wij[τf (r
T F̂xu)ijγlB

l,r
ij ]Bm,r

ij

∣∣∣∣∣ ≤ δ, (5.29)

∣∣∣∣ ∂J ′∂γm

∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

{
Nq∑
j=1

wij[(F̂
T
x B

m,r)ij − IḂm,r
ij ][F̂ −

Nc∑
k=1

αkḂ
k,r
ij ]}+

1

2
νBm,r

0

∣∣∣∣∣ ≤ δ, (5.30)

∣∣∣∣∂J ′∂ν

∣∣∣∣ =

∣∣∣∣∣
Nc∑
l=1

γlB
l,r
0

∣∣∣∣∣ ≤ δ,

∣∣∣∣∂J ′∂η

∣∣∣∣ =
∣∣∣ψ̂∣∣∣ ≤ δ. (5.31)

Thus, Eqns. (5.26)-(5.31) constitute the KKT conditions ANλ. Based on Chapter

III Section D and using numerical quadrature, the discretized first-order optimality
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conditions AλN are,∣∣∣∣∣
N∑
i=1

{
Nq∑
j=1

wij[(F̂
T
x B

l,r)ij − IḂl,r
ij ][F̂ −

Nc∑
k=1

αkḂ
k,r
ij ]}+

1

2
πBl,r

0

∣∣∣∣∣ ≤ δ,∣∣∣∣∣
Nc∑
k=1

αkB
k,r
0 − x0

∣∣∣∣∣ ≤ δ,∣∣∣∣∣
Nc∑
l=1

N∑
i=1

Nq∑
j=1

wij[−γ̃lB̈l,r
ij − τf (F̂ T

x )ij γ̃lḂ
l,r
ij +

˙
(τf F̂xγ̃lB

l,r
ij ) + τ 2

f (F̂ T
x F̂x)ij γ̃lB

l,r
ij ]Bm,r

ij

∣∣∣∣∣ ≤ δ,

∣∣∣∣∣
Nc∑
l=1

N∑
i=1

Nq∑
j=1

wijτf [τf (F̂
T
u F̂x)ij γ̃lB

l,r
ij − (F̂ T

u )ij γ̃lḂ
l,r
ij ]Bm,r

ij

∣∣∣∣∣ ≤ δ,

∣∣∣ψ̂∣∣∣ ≤ δ,

∣∣∣∣∣
Nc∑
k=1

γ̃kB
k,r
0

∣∣∣∣∣ ≤ δ,∣∣∣∣∣τf (F̂x)0

Nc∑
l=1

γ̃lB
l,r
0 −

Nc∑
l=1

γ̃lḂ
l,r
0 + κ

∣∣∣∣∣ ≤ δ,∣∣∣∣∣τf (F̂x)1

Nc∑
l=1

γlB
l,r
1 −

Nc∑
l=1

γlḂ
l,r
1 − [Ψx(1) + υTψx(1)]

∣∣∣∣∣ ≤ δ. (5.32)

for m = 1, .., N . Comparing ANλ and AλN , we see that the results from Section B

and C hold. The equivalence conditions are,∣∣∣∣∣τf (F̂x)0

Nc∑
l=1

γlB
l,r
0 −

Nc∑
l=1

γlḂ
l,r
0 + µ

∣∣∣∣∣ ≤ δ, (5.33)∣∣∣∣∣τf (F̂x)1

Nc∑
l=1

γlB
l,r
1 −

Nc∑
l=1

γlḂ
l,r
1 − [Ψ̂x(1) + ψ̂Tx(1)η]

∣∣∣∣∣ ≤ δ. (5.34)

The costates can be estimates as,

λ̂(t) = τf F̂x

Nc∑
l=1

γlB
l,r(t)−

Nc∑
l=1

γlḂ
l,r(t). (5.35)
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F. LSMoc Using Global Interpolating Polynomials: s-LSMoc

In this section we formulate the LSMoc using global interpolating Lagrange poly-

nomials. Further, we choose the quadrature nodes to be same as the interpolation

nodes. As we shall see later in this chapter, use of global polynomials as test and

trial functions results in achieving “spectral accuracy”, i.e. very high rates of conver-

gence, with LSMocfor smooth problems. Therefore, we name this version of LSMoc as

spectral-LSMoc, denoted as s-LSMoc.

Let us take the interpolation/quadrature nodes to be N number of LGL points

{tk}Nk=1 suitably mapped on the interval [0, 1] with corresponding quadrature weights

{wk}Nk=1. The corresponding Lagrange interpolation basis is {Li(t)}Ni=1. All trajectory

variables are approximated using the Lagrange basis. So that,

φx
i (t) = φu

i (t) = φs
i (t) = Li(t); t ∈ [−1, 1]. (5.36)

Using the Kronecker delta property of Lagrange polynomials Lj(tk) = δjk, we get for

i = 1, 2, .., N ,

xi = x̂(ti) =
N∑
k=1

αkLk(ti) = αi, ui = û(ti) =
N∑
k=1

βkLk(ti) = βi, (5.37)

si = ŝ(ti) =
N∑
k=1

ςkLk(ti) = ςi. (5.38)

Further, a differentiation matrix D is defined as,

Dij = L̇j(ti), (5.39)

so that,

˙̂x(ti) = ẋi =
N∑
j=1

Dijxj; i = 1, .., N. (5.40)
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Using Eqns. (5.36)-(5.40) with the NLP formulation given in section B of this

chapter, the s-LSMoc transcription of an optimal control problem is defined as follow-

ing: Determine {xk ∈ Rn}Nk=1, {uk ∈ Rm}Nk=1, {sk ∈ Rq}Nk=1, ν0 ∈ Ra, ν1 ∈ Rn−a and

time instances τ0 and τf , that minimize the cost,

Ĵ = Ψ̂(x1,xN , τ0, τf ), (5.41)

subject to the constraints,

f̂Tx (x1,u1)R1 −
N∑
k=1

wkRkDk1 +
1

2
KT

0 ν0 = 0, (5.42)

f̂Tx (xN ,uN)RN −
N∑
k=1

wkRkDkN +
1

2
KT

1 ν1 = 0, (5.43)

f̂Tx (xi,ui)Ri −
N∑
k=1

wkRkDki = 0; i = 2, .., N − 1, (5.44)

K0x1 − x0 = 0, K1xN − xf = 0, (5.45)

ψ̂(x1,xN , τ0, τf ) = 0, (5.46)

ĥ(xj,uj) + s2
j = 0; j = 1, .., N, (5.47)

where,

Rk = f̂(xk,uk)−
N∑
l=1

Dklxl; k = 1, .., N. (5.48)

Eqns. (5.41)-(5.47) represent the s-LSMoc discretization of the original optimal control

problem. It can be easily shown that for the given quadrature scheme, the integration
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by parts operation is valid. Therefore, the equivalence conditions for s-LSMoc are,

τf f̂x(X1,u1)γ1 −
N∑
k=1

D1kγk = −[Ψ̂x(0) + ψ̂Tx(0)η + µ0K0], (5.49)

τf f̂x(XN ,uN)γN −
N∑
k=1

DNkγk = [Ψ̂x(1) + ψ̂Tx(1)η + µ1K1], (5.50)

where γ1, γN , {γj}N−1
j=2 are the KKT multipliers associated with the constraints in

Eqns. (5.42), (5.43) and (5.44) respectively. Under the equivalence conditions, the

costates can be estimated as,

λ̂(tj) = τf f̂x(xj,uj)γj −
N∑
k=1

Djkγk. (5.51)

G. Numerical Convergence Analysis

In this section, we numerically demonstrate the convergence properties of LSMoc.

Four example problems are taken from Chapter IV and results are generated using

the same methodology as presented in Chapter IV Section F.

1. Convergence Results for LSMoc

• Example 1: Convergence results for Example 1 are shown in Figure (19). It

is seen that higher polynomial order approximation scheme SPL-3r performs

better than the low order scheme SPL-34. Further, LEG scheme does not

converge for many cases and performs worst.
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Fig. 19. Convergence of LSMoc solution for Example 1.



91

• Example 2: Convergence results for Example 2 are shown in Figure (20). All

the test cases converge and it is very well seen that the SPL-3r approximation

works best for this example.
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Fig. 20. Convergence of LSMoc solution for Example 2.
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• Example 3: This problem is solved using SPL-34 and SPL-3r approximations

and the convergence results are depicted in Figure (21). This example shows

that the local approximation scheme SPL-34 performs better than the global

SPL-3r scheme. This is due to the presence of discontinuities and corners in the

solution of this example.
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Fig. 21. Convergence of LSMoc solution for Example 3.
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• Example 4: Example 4 has a discontinuous control solution. Convergence re-

sults in Figure (22) show that SPL-34 gives better solutions than SPL-3r. Also,

LSMoc gives quite accurate costate estimates for this example. It was noted

in Chapter IV that the MHSP failed to provide accurate costate estimates for

this example. This demonstrates that LSMoc has better dual-convergence than

MHSP.
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Fig. 22. Convergence of LSMoc solution for Example 4.
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2. Convergence Results for s-LSMoc

• Example 1: Convergence results for Example 1 are shown in Figure (23). Very

high convergence rates are achieved as N goes from 8 to 28. It will be shown

in Chapter VIII that these convergence rates are comparable to the existing

pseudospectral methods.

10 15 20 25 30 35 40 45

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

����� �����	�
������
����������

 

 ������� �
�	� ��!#"�$�

Fig. 23. Convergence of s-LSMoc solution for Example 1.
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• Example 2: Convergence results for Example 2 are shown in Figure (24).
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Fig. 24. Convergence of s-LSMoc solution for Example 2.



96

• Example 3: This problem converges at a slower rate due to the irregularities

in its solution. Still, convergence is achieved to a reasonable accuracy using

s-LSMoc. Results are shown in Figure (25).
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Fig. 25. Convergence of s-LSMoc solution for Example 3.
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• Example 4: Example 4 also has a slower but smooth convergence. Results are

depicted in Figure (26).
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Fig. 26. Convergence of s-LSMoc solution for Example 4.

H. Conclusions

A least-square method for direct transcription of optimal control problems was pre-

sented in this chapter. A set of equivalence conditions were derived under which

indirect-direct mapping exists and costates can be estimated form the Lagrange mul-

tipliers of the nonlinear programming problem. LSMoc was implemented using both
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local (B-Splines) and global (Lagrange polynomials) basis functions. Numerical con-

vergence was demonstrated by solving example problems. It was shown that for

smooth problems, the global polynomial version of LSMoc, s-LSMoc, exhibits very

high rates of convergence.
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CHAPTER VI

GENERALIZED MOMENT METHOD FOR OPTIMAL CONTROL

In this chapter, another variation of the WRM is developed by selecting the test

functions as the derivatives of the trial functions. This formulation corresponds to

the generalized moment method used to solve boundary value problems [51]. We

shall see that GMMoc closely resembles LSMoc in its formulation. Its advantage over

LSMoc is the ease of implementation. GMMoc method is developed in the framework

of WRM so that the optimality analysis presented in Chapter III directly applies.

The equivalence conditions are derived and the relationship between the costates and

the KKT multipliers of the nonlinear programming problem is established. Exam-

ples problems are solved using GMMoc transcription and numerical convergence is

demonstrated as the order of approximation increases.

A. Formulation of Nonlinear Programming Problem

In GMMoc, test functions are chosen to be derivatives of the trial functions. So that

in the framework of WRM,

Wj(t) = φ̇x
j (t). (6.1)

Using Eqn. (6.1), the nonlinear programming problem defined in Chapter III Section

B takes the form: Determine {αk ∈ Rn}Nx
k=1, {βk ∈ Rm}Nu

k=1, {ςk ∈ Rq}Ns
k=1, ν0 ∈ Ra,

ν1 ∈ Rn−a and time instances τ0 and τf , that minimize the cost,

Ĵ = Ψ̂(αk, φ
x
k(0), φx

k(1), τ0, τf ), (6.2)
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subject to the constraints,∫ 1

0

[τf f̂(αk, βk, φ
x
k , φ

u
k )−

Nx∑
k=1

αkφ̇
x
k ]φ̇x

j (t)dt+
1

2
KT

0 ν0φ
x
j (0) +

1

2
KT

1 ν1φ
x
j (1) = 0, (6.3)

K0

Nx∑
k=1

αkφ
x
k(0)− x0 = 0, K1

Nx∑
k=1

αkφ
x
k(1)− xf = 0, (6.4)

ψ̂(αk, φ
x
k(0), φx

k(1), τ0, τf ) = 0, (6.5)∫ 1

0

[ĥ(αk, βk, φ
x
k , φ

u
k ) +

Ns∑
k=1

ςkφ
s
k ◦

Ns∑
l=1

ςlφ
s
l ]φ

s
p = 0, (6.6)

where j = 1, .., Nx and p = 1, .., Ns. This approximation scheme as defined by Eqns.

(6.2)-(6.6) represents the generalized moment method for optimal control.

Next, we derive the equivalence conditions and costate estimation results for this

method.

B. Equivalence Conditions

In the context of GMMoc, we make the following observations form Chapter III Section

E:

1. Conditions in Eqns. (3.54)-(3.57) are trivially satisfied because,

∂φ̇x
j

∂u
=
∂φ̇x

j

∂τ0

=
∂φ̇x

j

∂τf
= 0. (6.7)

2. Since not all basis functions φx
k |
Nx
k=1 are zero at the boundaries, the conditions

in Eqns. (3.52) and (3.53) require the following to be satisfied,

Nx∑
j=1

Wj(0)γj =
Nx∑
j=1

γjφ̇
x
j (0) = −[Ψ̂x(0) + ψ̂Tx(0)η + µ0K0], (6.8)

Nx∑
j=1

Wj(1)γj =
Nx∑
j=1

γjφ̇
x
j (1) = [Ψ̂x(1) + ψ̂Tx(1)η + µ1K1]. (6.9)

3. Since ν0 and ν1 are unknowns in the LSMoc formulation, conditions in Eqn.
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(3.58) supply the boundary conditions for the “auxiliary costates” ρ(t) defined

by the differential equation,

ρ̇(t) = λ(t). (6.10)

Let
∑Nx

j=1 γ̃jφ
x
j (t) = ρ̂(t). Then the boundary conditions for Eqn.(6.10) are

given by the extra conditions found in the KKT system, i.e.,

K0ρ̂(0) = 0, K1ρ̂(1) = 0. (6.11)

Thus, the conditions in Eqn. (3.58) do not introduce any inconsistency in the

KKT system of GMMoc formulation.

C. Costate Estimates

The equivalence conditions defined in Eqns. (6.8) and (6.9) provide the mapping

between KKT multipliers {γk}, and the costate approximation λ̂(t). Similarly, a

mapping exists between {ξ(t), µ0, µ1, η} and the corresponding KKT multipliers. We

summarize the costate estimation results for the GMMoc via the following theorem:

Theorem C.1 (Costate Mapping Theorem for the GMMoc ) Assume that an

optimal control problem is solved using the GMMoc and the equivalence conditions

hold. Then, the estimates of the costates λ̂(t), and the Lagrange multiplier functions

ξ̂(t) can be obtained from the KKT multipliers (γk, ζk) of the associated NLP as,

λ̂(t) =
Nx∑
k=1

γkφ̇
x
k(t)

ξ̂(t) =
Ns∑
k=1

ζkφ
s
k(t). (6.12)
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Proof The solution to ProblemMλφ exists by assumption. Since equivalence condi-

tions hold, the results in Chapter III Section F are valid.

D. GMMoc Using B-Spline Approximation

Numerical implementation of GMMoc using B-Spline basis functions is on the same

lines as presented for LSMoc in the previous chapter. It can be shown that a valid

numerical quadrature can be used for GMMoc for which the results for equivalence

conditions and costate estimation hold. For brevity, the details are skipped and the

reader is referred to Chapter V Section E.

E. GMMoc Using Global Interpolating Polynomials: s-GMMoc

In this section we formulate the spectral version of GMMoc on the same lines as s-

LSMoc was developed in the previous chapter. The trial functions are chosen to be

the global interpolating Lagrange polynomials. Also, the quadrature nodes are taken

to be the same as the interpolation nodes.

Let us take the interpolation/quadrature nodes to be N number of LGL points

{tk}Nk=1 suitably mapped on the interval [0, 1] with corresponding quadrature weights

{wk}Nk=1. The corresponding Lagrange interpolation basis is {Li(t)}Ni=1. All trajectory

variables are approximated using the Lagrange basis. So that,

φx
i (t) = φu

i (t) = φs
i (t) = Li(t); t ∈ [0, 1]. (6.13)

Using the Kronecker delta property of Lagrange polynomials Lj(tk) = δjk, we get for



103

i = 1, 2, .., N ,

xi = x̂(ti) =
N∑
k=1

αkLk(ti) = αi, ui = û(ti) =
N∑
k=1

βkLk(ti) = βi, (6.14)

si = ŝ(ti) =
N∑
k=1

ςkLk(ti) = ςi. (6.15)

Further, a differentiation matrix D is defined as,

Dij = L̇j(ti), (6.16)

so that,

˙̂x(ti) = ẋi =
N∑
j=1

Dijxj; i = 1, .., N. (6.17)

Using Eqns. (6.13)-(6.17) with the NLP formulation given in section A of this

chapter, the s-GMMoc transcription of an optimal control problem is defined as fol-

lowing: Determine {xk ∈ Rn}Nk=1, {uk ∈ Rm}Nk=1, {sk ∈ Rq}Nk=1, ν0 ∈ Ra, ν1 ∈ Rn−a

and time instances τ0 and τf , that minimize the cost,

Ĵ = Ψ̂(x1,xN , τ0, τf ), (6.18)

subject to the constraints,

N∑
k=1

wkRkDk1 +
1

2
KT

0 ν0 = 0, (6.19)

N∑
k=1

wkRkDkN +
1

2
KT

1 ν1 = 0, (6.20)

N∑
k=1

wkRkDki = 0; i = 2, .., N − 1, (6.21)
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K0x1 − x0 = 0, K1xN − xf = 0, (6.22)

ψ̂(x1,xN , τ0, τf ) = 0, (6.23)

ĥ(xj,uj) + s2
j = 0; j = 1, .., N, (6.24)

where,

Rk = f̂(xk,uk)−
N∑
l=1

Dklxl; k = 1, .., N. (6.25)

Eqns. (6.18)-(6.24) represent the s-GMMoc discretization of the original optimal

control problem. It can be easily shown that for the given quadrature scheme, the

integration by parts operation is valid. Therefore, the equivalence conditions for

s-GMMoc are,

τf

N∑
k=1

D1kγk = −[Ψ̂x(0) + ψ̂Tx(0)η + µ0K0], (6.26)

τf

N∑
k=1

DNkγk = [Ψ̂x(1) + ψ̂Tx(1)η + µ1K1], (6.27)

where γ1, γN , {γj}N−1
j=2 are the KKT multipliers associated with the constraints in

Eqns. (5.42), (5.43) and (5.44) respectively. Under the equivalence conditions, the

costates can be estimated as,

λ̂(tj) =
N∑
k=1

Djkγk. (6.28)

F. Numerical Convergence Analysis

Convergence properties of GMMoc are numerically demonstrated in this section. Four

example problems are taken from Chapter IV and results are generated using the same

methodology as presented in Chapter IV Section F.
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1. Convergence Results for LSMoc

• Example 1: Convergence results for Example 1 are shown in Figure (27). It

is seen that higher polynomial order approximation scheme SPL-3r performs

better than the low order scheme SPL-34. Further, LEG scheme does not

converge for many cases.
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Fig. 27. Convergence of GMMoc solution for Example 1.
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• Example 2: Convergence results for Example 2 are shown in Figure (28). All

the test cases converge and it is very well seen that the SPL-3r approximation

works best for this example.
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Fig. 28. Convergence of GMMoc solution for Example 2.
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• Example 3: Example 3 is solved using SPL-34 and SPL-3r approximations and

the convergence results are depicted in Figure (29). This example shows that

the local approximation scheme SPL-34 performs better than the global SPL-3r

scheme. This is due to the presence of discontinuities and corners in the solution

of this example.
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Fig. 29. Convergence of GMMoc solution for Example 3.
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• Example 4: Example 4 has a discontinuous control solution. Convergence re-

sults in Figure (30) show that SPL-34 gives better solutions than SPL-3r. Also,

GMMoc gives quite accurate costate estimates for this example.
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Fig. 30. Convergence of GMMoc solution for Example 4.
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2. Convergence Results for s-GMMoc

• Example 1: Convergence results for Example 1 are shown in Figure (31). Very

high convergence rates are achieved as N goes from 8 to 28. It will be shown

in Chapter VIII that these convergence rates are comparable to the existing

pseudospectral methods.
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Fig. 31. Convergence of s-GMMoc solution for Example 1.
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• Example 2: Convergence results for Example 2 are shown in Figure (32).
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Fig. 32. Convergence of s-GMMoc solution for Example 2.
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• Example 3: Example 3 convergence rates are slower due to the irregularities

in its solution. Still, convergence is achieved to a reasonable accuracy using

s-GMMoc. Results are shown in Figure (33).
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Fig. 33. Convergence of s-GMMoc solution for Example 3.
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• Example 4: Example 4 also has a slower but smooth convergence. Results are

depicted in Figure (34).
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Fig. 34. Convergence of s-GMMoc solution for Example 4.

G. Conclusions

This chapter presented the development of GMMoc for direct transcription of optimal

control problems. Equivalence conditions were derived for indirect-direct mapping

and costate estimates were obtained from the Lagrange multipliers of the nonlinear

programming problem. GMMoc was implemented with both local and global ba-
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sis functions. A spectral version of GMMoc was derived using global interpolating

polynomials as approximating functions. Convergence properties of GMMoc were

demonstrated through numerical examples.
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CHAPTER VII

PSEUDOSPECTRAL METHODS IN THE FRAMEWORK OF WEIGHTED

RESIDUAL APPROXIMATION

In recent years, pseudospectral methods have gained wide popularity for direct tran-

scription of optimal control problems. In a pseudospectral method, state and control

trajectories are approximated as global interpolating polynomials at a set of interpo-

lation points. The interpolation points are also the collocation sites where the state

dynamics is imposed. Further, the interpolation/collocation points are chosen as the

roots of an orthogonal polynomial from Jacobi family such as Legendre or Cheby-

shev polynomials. That is why pseudospectral methods are also known as orthogonal

collocation methods. Pseudospecral methods exhibit very fast convergence rates for

smooth problems, a property known as “spectral accuracy”.

A number of pseudospectral methods have been proposed in the literature. In

this chapter, we show that some of the most popular pseudospectral methods, Leg-

endre, Radau and Gauss pseudospectral method, can be derived from the proposed

weighted residual formulation by proper selection of test/trial functions and an as-

sociated quadrature scheme. We shall see that orthogonal collocation actually rep-

resents a Galerkin/Tau type approach where test functions are selected from the set

of trial functions. The already established costate approximation results for these

pseudospectral methods will also be derived under the unifying weighted residual

framework.

A. Legendre Pseudospectral Method (LPS)

For WRM, take the computational domain as t ∈ [−1, 1] containing a set of N number

of LGL node points {tk}Nk=1 with corresponding weights {wk}Nk=1. Let Lk be the kth
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Lagrange interpolation basis corresponding to node tk. Assume that {Lk}Nk=1 define

the trial functions for all the trajectory variables in the optimal control problem, i.e.,

φx
k(t) = φu

k (t) = φs
k(t) = Lk(t) =

N∏
j=1,j 6=k

(t− tj)
(tk − tj)

, (7.1)

and the test functions are taken as,

Wk = Vk =
Lk
wk
. (7.2)

with,

ν0 = ν1 = 0. (7.3)

Use the property of Lagrange interpolating basis Lj(tk) = δjk to obtain for i =

1, 2, .., N ,

xi = x̂(ti) =
N∑
k=1

αkLk(ti) = αi, ui = û(ti) =
N∑
k=1

βkLk(ti) = βi, (7.4)

si = ŝ(ti) =
N∑
k=1

ςkLk(ti) = ςi. (7.5)

Then, from Eqns. (3.18) and (3.21), the weighted residual approximation of state

dynamics and path constraints has the form,∫ 1

−1

[
(τf − τ0)

2
f̂(xk,uk, Lk(t))−

N∑
k=1

xkL̇k(t)

]
Lj(t)

wj
dt = 0 (7.6)

∫ 1

−1

[ĥ(xk,uk, Lk(t)) +
N∑
k=1

skLk ◦
N∑
l=1

slLl]
Lj(t)

wj
dt = 0, (7.7)
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where j = 1, .., N . Using Gauss quadrature for evaluating the integral expressions in

Eqns. (7.6) and (7.7) results in the conditions,

(τf − τ0)

2
f̂(xj,uj)−

N∑
k=1

xkL̇k(tj) = 0 (7.8)

ĥ(xj,uj) + sj · sj = 0. (7.9)

Based on the formulation given in Chapter III Section A and using the above sub-

stitutions, the nonlinear programming problem is to determine {xk ∈ Rn}Nk=1, {uk ∈

Rm}Nk=1, {sk ∈ Rq}Nk=1, ν0 ∈ Ra, ν1 ∈ Rn−a and time instances τ0 and τf , that minimize

the cost,

Ĵ = Ψ̂(x1,xN , τ0, τf ), (7.10)

subject to the constraints,

(τf − τ0)

2
f̂(xj,uj)−

N∑
k=1

xkL̇k(tj) = 0 (7.11)

K0x1 − x0 = 0, K1xN − xf = 0 (7.12)

ψ̂(x1,xN , τ0, τf ) = 0, (7.13)

ĥ(xj,uj) + sj · sj = 0. (7.14)

where j = 1, .., N . The NLP defined by Eqns. (7.10)-(7.14) represents the Leg-

endre pseudospectral discretization of M. Thus, under the conditions defined in

Eqns. (7.1),(7.2) and (7.3), the WRM is equivalent to the Legendre pseudospectral

method [25, 60].

Next step is to derive costate mapping results for Legendre pseudospectral method

based on Section D of Chapter III. Conditions given in Eqns. (3.54)-(3.57) are trivially
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satisfied as,

∂Wj

∂x
=
∂Wj

∂u
=
∂Wj

∂τ0

=
∂Wj

∂τf
= 0. (7.15)

The extra conditions in Eqn. (3.58) are not applicable as ν0 = ν1 = 0. Eqns. (3.52)

and (3.53) are not satisfied explicitly for the value of i = 1 and N respectively. There-

fore, for the complete mapping to exist between the KKT system and the discretized

first-order optimality conditions for Legendre pseudospectral method, the following

conditions, also known as closure conditions, are required to be satisfied:

Ψ̂x(0) + ψ̂Tx(0)η + µ0K0 + γ1 = 0, (7.16)

Ψ̂x(1) + ψ̂Tx(1)η + µ1K1 − γN = 0. (7.17)

Assuming that the closure conditions are satisfied, the costates can be approximated

using Eqn. (3.59) as,

λ̂(t) =
N∑
j=1

γj
Lj(t)

wj
, and λ̂k = λ̂(tk) =

N∑
j=1

γj
δjk
wj

=
γk
wk
. (7.18)

B. Radau Pseudospectral Method (RPS)

For WRM, take the computational domain as t ∈ [−1, 1] containing a set of N number

of node points {tk}Nk=1 such that,

t1 = −1, w1 = 0, {tk}Nk=2 : (N − 2) Number of LGR points ∈ (−1, 1], (7.19)

with corresponding weights {wk}Nk=2. Let Lk be the kth Lagrange interpolation basis

corresponding to node tk. Assume that the trial functions for the trajectory variables
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in the optimal control problem are,

φx
k(t) = Lk(t) : (k = 1, .., N) (7.20)

φs
k(t) = φu

k (t) = Lk(t) : (k = 2, .., N), φs
1(t) = φu

1 (t) = 0, (7.21)

and the test functions are taken as,

W1 = 0, Wk =
Lk
wk

: (k = 2, .., N), (7.22)

with,

ν0 = ν1 = 0. (7.23)

Using the property of Lagrange interpolating basis Lj(tk) = δjk, for i = 1, 2, .., N ,

xi = x̂(ti) = αi, ui = û(ti) = βi, si = ŝ(ti) = ςi. (7.24)

Then, from Eqns. (3.18) and (3.21), the weighted residual approximation of state

dynamics and path constraints has the form,∫ 1

−1

[
(τf − τ0)

2
f̂(xk,uk, Lk(t))−

N∑
k=1

xkL̇k(t)

]
Lj(t)

wj
dt = 0; j = 2, .., N, (7.25)

∫ 1

−1

[ĥ(xk,uk, Lk(t)) +
N∑
k=1

skLk ◦
N∑
l=1

slLl]
Lj(t)

wj
dt = 0; j = 2, .., N, (7.26)

Using Gauss quadrature for evaluating the integral expressions in Eqns. (7.6) and

(7.7) results in the conditions,

(τf − τ0)

2
f̂(xj,uj)−

N∑
k=1

xkL̇k(tj) = 0; j = 2, .., N (7.27)

ĥ(xj,uj) + sj · sj = 0; j = 2, .., N. (7.28)
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Notice that the trajectory constraints are not collocated at the initial point t1 = −1.

Based on the formulation given in Chapter III Section A and using the above sub-

stitutions, the nonlinear programming problem is to determine {xk ∈ Rn}Nk=1, {uk ∈

Rm}Nk=1, {sk ∈ Rq}Nk=1, ν0 ∈ Ra, ν1 ∈ Rn−a and time instances τ0 and τf , that minimize

the cost,

Ĵ = Ψ̂(x1xN , τ0, τf ), (7.29)

subject to the constraints,

(τf − τ0)

2
f̂(xj,uj)−

N∑
k=1

xkL̇k(tj) = 0; j = 1, .., N (7.30)

ψ̂(x1,xN , τ0, τf ) = 0, (7.31)

ĥ(xj,uj) + sj · sj = 0; j = 1, .., N. (7.32)

The NLP defined by Eqns. (7.29)-(7.32) represents the Radau pseudospectral dis-

cretization of M. Thus, under the conditions defined in Eqns. (7.20),(7.21),(7.22)

and (7.23), the WRM is equivalent to the Radau pseudospectral method [61].

Next step is to derive costate mapping results for Radau pseudospectral method

based on Section D of Chapter III. Conditions given in Eqns. (3.54)-(3.57) are trivially

satisfied as,

∂Wj

∂x
=
∂Wj

∂u
=
∂Wj

∂τ0

=
∂Wj

∂τf
= 0. (7.33)

The extra conditions in Eqn. (3.58) are not applicable as ν0 = ν1 = 0. Eqns. (3.52)
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and (3.53) are explicitly satisfied except for i = 1, i.e.

[Ψ̂x(0) + ψ̂Tx(0)η + µ0K0 +
Nx∑
j=1

Wj(0)γj]φ
x
i (0) = 0; i = 2, .., N, (explicitly),

(7.34)

[Ψ̂x(1) + ψ̂Tx(1)η + µ1K1 −
Nx∑
j=1

Wj(1)γj]φ
x
i (1) = 0; i = 1, .., N − 1, (explicitly).

(7.35)

For the first point, i = 1 Eqn. (3.52) is given by,

[Ψ̂x(0) + ψ̂Tx(0)η + µ0K0 +
Nx∑
j=1

Wj(0)γj]

= −
∫ 1

0

[
(τf − τ0)

2
f̂Tx

N∑
j=1

Wjγj +
N∑
j=1

Ẇjγj +
N∑
p=1

ĥTxVpζp

]
L1(t)dt,

= −
N∑
i=1

[
(τf − τ0)

2
f̂Tx

N∑
j=1

Wj(ti)γj +
N∑
j=1

Ẇj(ti)γj +
N∑
p=1

ĥTxVp(ti)ζp

]
wiL1(ti)

= −

[
(τf − τ0)

2
f̂Tx

N∑
j=1

Wj(0)γj +
N∑
j=1

Ẇj(0)γj +
N∑
p=1

ĥTxVp(0)ζp

]
w1

= 0; (explicitly). (7.36)

However, for the last point i = N , Eqn. (3.53) is not explicitly satisfied. Therefore,

for the complete mapping to exist between the KKT system and the discretized first-

order optimality conditions for Radau pseudospectral method, the following condition

is required to be satisfied:

[Ψ̂x(1) + ψ̂Tx(1)η + µ1K1 −
Nx∑
j=1

Wj(1)γj] = 0. (7.37)

Assuming that Eqn. (7.37) is satisfied, the costates can be approximated using Eqn.
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(3.59) as,

λ̂(t) =
N∑
j=1

γjWj =
N∑
j=2

γj
Lj(t)

wj
, (7.38)

λ̂k = λ̂(tk) =
N∑
j=2

γj
δjk
wj

=
γk
wk

; k = 2, .., N. (7.39)

λ1 is obtained from the boundary condition,

Ψ̂x(0) + ψ̂Tx(0)η + µ0K0 + γ1 = 0. (7.40)

C. Gauss Pseudospectral Method (GPS)

For WRM, take the computational domain as t ∈ [−1, 1] containing a set of N number

of node points {tk}Nk=1 such that,

t1 = −1, tN = 1, {tk}N−1
k=2 : (N − 2) Number of LG points ∈ (−1, 1), (7.41)

with corresponding weights {wk}N−1
k=2 . Let Lk be the kth Lagrange interpolation basis

corresponding to node tk. Assume that the trial functions for the trajectory variables

in the optimal control problem are,

φx
k(t) = Lk(t) : (k = 1, .., N − 1), φx

N(t) = 0, (7.42)

φs
k(t) = φu

k (t) = Lk(t) : (k = 2, .., N − 1), φs
1(t) = φu

1 (t) = φs
N(t) = φu

N(t) = 0,

(7.43)

and the test functions are taken as,

W1 = 0, Wk =
Lk
wk

: (k = 2, .., N − 1), WN = 1, (7.44)
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with,

ν0 = ν1 = 0. (7.45)

Use the property of Lagrange interpolating basis Lj(tk) = δjk to obtain for i =

1, 2, .., N ,

xi = x̂(ti) = αi, ui = û(ti) = βi, si = ŝ(ti) = ςi. (7.46)

Then, from Eqns. (3.18) and (3.21), the weighted residual approximation of state

dynamics and path constraints has the form,∫ 1

−1

[
(τf − τ0)

2
f̂(xk,uk, Lk(t))−

N∑
k=1

xkL̇k(t)

]
Lj(t)

wj
dt = 0; j = 2, .., N − 1, (7.47)

∫ 1

−1

[
(τf − τ0)

2
f̂(xk,uk, Lk(t))−

N∑
k=1

xkL̇k(t)

]
dt = 0 (7.48)

∫ 1

−1

[ĥ(xk,uk, Lk(t)) +
N∑
k=1

skLk ◦
N∑
l=1

slLl]
Lj(t)

wj
dt = 0, (7.49)

Using Gauss quadrature for evaluating the integral expressions in Eqns. (7.48) and

(7.49) results in the conditions,

(τf − τ0)

2
f̂(xj,uj)−

N∑
k=1

xkL̇k(tj) = 0; j = 2, .., N − 1 (7.50)

(τf − τ0)

2

N−1∑
i=2

wif̂(xi,ui)− xN + x1 = 0 (7.51)

ĥ(xj,uj) + sj · sj = 0. (7.52)

Based on the formulation given in Chapter III Section A and using the above sub-

stitutions, the nonlinear programming problem is to determine {xk ∈ Rn}Nk=1, {uk ∈

Rm}Nk=1, {sk ∈ Rq}Nk=1, ν0 ∈ Ra, ν1 ∈ Rn−a and time instances τ0 and τf , that minimize
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the cost,

Ĵ = Ψ̂(x1,xN , τ0, τf ), (7.53)

subject to the constraints,

(τf − τ0)

2
f̂(xj,uj)−

N∑
k=1

xkL̇k(tj) = 0; j = 2, .., N − 1, (7.54)

(τf − τ0)

2

N−1∑
i=2

wif̂(xi,ui)− xN + x1 = 0 (7.55)

K0x1 − x0 = 0, K1xN − xf = 0 (7.56)

ψ̂(x1,xN , τ0, τf ) = 0, (7.57)

ĥ(xj,uj) + sj · sj = 0. (7.58)

The NLP defined by Eqns. (7.53)-(7.58) represents the Gauss pseudospectral dis-

cretization of M. Thus, under the conditions defined in Eqns. (7.42),(7.43),(7.44)

and (7.45), the WRM is equivalent to the Gauss pseudospectral method [27].

Next step is to derive costate mapping results for Gauss pseudospectral method

based on Section D of Chapter III. Conditions given in Eqns. (3.54)-(3.57) are trivially

satisfied as,

∂Wj

∂x
=
∂Wj

∂u
=
∂Wj

∂τ0

=
∂Wj

∂τf
= 0. (7.59)

The extra conditions in Eqn. (3.58) are not applicable as ν0 = ν1 = 0. Eqns. (3.52)

and (3.53) are explicitly satisfied as following,

[Ψ̂x(0) + ψ̂Tx(0)η + µ0K0 +
Nx∑
j=1

Wj(0)γj]φ
x
i (0) = 0; i = 2, .., N, (explicitly), (7.60)

[Ψ̂x(1) + ψ̂Tx(1)η + µ1K1 −
Nx∑
j=1

Wj(1)γj]φ
x
i (1) = 0; i = 1, .., N, (explicitly). (7.61)
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for i = 1, Eqn. (3.52) becomes,

[Ψ̂x(0) + ψ̂Tx(0)η + µ0K0 +
Nx∑
j=1

Wj(0)γj]

= −
∫ 1

0

[
(τf − τ0)

2
f̂Tx

N∑
j=1

Wjγj +
N∑
j=1

Ẇjγj +
N∑
p=1

ĥTxVpζp

]
L1(t)dt,

= −
N∑
i=1

[
(τf − τ0)

2
f̂Tx

N∑
j=1

Wj(ti)γj +
N∑
j=1

Ẇj(ti)γj +
N∑
p=1

ĥTxVp(ti)ζp

]
wiL1(ti)

= −

[
(τf − τ0)

2
f̂Tx

N∑
j=1

Wj(0)γj +
N∑
j=1

Ẇj(0)γj +
N∑
p=1

ĥTxVp(0)ζp

]
w1

= 0; (explicitly). (7.62)

Thus, for the Gauss pseudospecral method, all the closure conditions are explicitly

satisfied. The costates can always be approximated using Eqn. (3.59) as,

λ̂(t) =
N∑
j=1

γjWj =
N−1∑
j=2

γj
Lj(t)

wj
+ γN , (7.63)

λ̂k = λ̂(tk) =
N−1∑
j=2

γj
δjk
wj

+ γN =
γk
wk

+ γN ; k = 2, .., N − 1, (7.64)

λ̂N = λ̂(tN) = γN . (7.65)

λ1 is obtained from the boundary condition,

Ψ̂x(0) + ψ̂Tx(0)η + µ0K0 + γ1 = 0. (7.66)

D. Conclusions

It was shown that the pseudospectral methods can be formulated as a special case of

weighted residual method presented in Chapter III. Already established costate esti-

mation results for pseudospectral methods were also derived in the weighted residual

framework.
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CHAPTER VIII

PERFORMANCE COMPARISON RESULTS FOR DIRECT TRANSCRIPTION

METHODS

This chapter presents the hierarchical relationship between various direct transcrip-

tion methods discussed so far in this dissertation and compares their performance

with respect to one another. The comparison is done at three levels. First, MHSP,

LSMoc, and GMMoc are compared with each other using spline approximations SPL-

34 and SPL-3r for example problems defined in Chapter IV. Next, spectral methods

s-LSMoc and s-GMMoc are compared with the existing methods in the same category,

i.e. LPS, GPS and RPS. Finally, performance of local approximation methods is com-

pared with the spectral methods for a number of non-smooth application problems.

A. Hierarchy of Direct Transcription Methods

In past four chapters, three new transcription methods and the existing pseudospec-

tral methods were derived under a unifying framework of weighted residual formula-

tion. The hierarchical relationship between all the methods discussed in the previous

chapters is shown in Figure (35). There are two broad categories of these methods. In

the first category, both local and global approximating functions can be employed and

the number of quadrature nodes are independent from the number of approximating

basis functions. This category includes MHSP, LSMoc and GMMoc. In the second

category, global interpolating polynomials are used as approximating functions and

the quadrature scheme is derived from the interpolation nodes. This category includes

all the pseudospectral methods along with s-LSMoc and s-GMMoc.
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Fig. 35. Hierarchy of direct methods under weighted residual framework.

B. Comparison between MHSP, LSMoc and GMMoc

In this section, we compare the relative performance of MHSP, LSMoc and GMMoc in

solving four example problems defined in Chapter IV. For the first two examples,

SPL-3r approximation is used, while SPL-34 approximation is used for examples 3

and 4.

Comparison results for Example 1 are shown in Figure (36). It is seen that MHSP

performs poorly compared to LSMoc and GMMoc. The performance of LSMoc and
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GMMoc is comparable to each other.
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Fig. 36. Example 1: Comparison of results for MHSP, LSMoc and GMMoc.
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Figure (37) shows the results for Example 2. For this example, it is seen that

GMMoc performs better than MHSP and LSMoc for lower orders of approximation.

At higher levels of approximation, all three methods are equally good.
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Fig. 37. Example 2: Comparison of results for MHSP, LSMoc and GMMoc.
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Results for Example 3 are depicted in Figure (38). For this problem, overall

performance of all three methods is comparable to each other. Example 4 results are

shown in Figure (39). It is seen that primal convergence is comparable for all three

methods, but MHSP costates do not converge.
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Fig. 38. Example 3: Comparison of results for MHSP, LSMoc and GMMoc.

C. Comparison between s-LSMoc, s-GMMoc and PS Methods

In this section, performance of all spectral methods is compared for the example

problems. Five different methods are implemented under the same computational
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Fig. 39. Example 4: Comparison of results for MHSP, LSMoc and GMMoc.

environment using the same initial guess. These methods are: s-LSMoc, s-GMMoc,

LPS, GPS and RPS. Two of these methods, s-LSMoc and s-GMMoc, are developed in

this dissertation while the other three are well established methods in the literature.

Results form Example 1 are shown in Figure (40). It is seen that primal conver-

gence is comparable for all five methods. However, LPS does not perform very well

in estimating the costates.



131

  

���������	��
 �����
��� ��
�� ������� ������� �������

10 20 30 40
10

−15

10
−10

10
−5

����� �����	�
���
�����������

 

 ���

10 20 30 40
10

−12

10
−10

10
−8

10
−6

10
−4

����� �����	�
���
�����������

 

 ���

10 20 30 40

10
−10

10
−5

����� �����	�
���
�����������

 

 ���

10 20 30 40

10
−5

10
−4

����� �����
	��
�������������
�����

 

 �����
	�

Fig. 40. Example 1: Comparison of results for s-LSMoc, s-GMMoc, GPS, RPS and

LPS.
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Figure (41) shows the results for Example 2. Performance of all five methods is

comparable while s-GMMoc performs relatively better for lower order of approxima-

tions.
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Fig. 41. Example 2: Comparison of results for s-LSMoc, s-GMMoc, GPS, RPS and

LPS.
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Results for Example 3 are depicted in Figure (42). For this example, all five

methods perform comparably. Example 4 results are shown in Figure (43). In this

example, we see that LPS consistently lags in performance compared to other four

methods and at the same time costates for LPS do not converge.
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Fig. 42. Example 3: Comparison of results for s-LSMoc, s-GMMoc, GPS, RPS and

LPS.
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Fig. 43. Example 4: Comparison of results for s-LSMoc, s-GMMoc, GPS, RPS and

LPS.

D. Comparison between Global and Local Methods

From the previous discussion, it seems that GMMoc is the best choice for imple-

mentation with local basis. Also, amongst the existing spectral methods, GPS and

RPS demonstrate higher accuracy. In this section, we compare the performance of

GMMoc with SPL-34 approximation and the spectral methods. First, results are

compared for Example 2. We see that spectral methods exhibit very high accuracy

compared to GMMoc for this example. The results for this example are depicted in
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Figure (44).
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Fig. 44. Example 2: Comparison of results for GMMoc and GPS.
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Next, we take a non-smooth problem defined in Ref. [62]. Since no analytical

solution exists for this problem, the indirect solution given in Ref. [62] is taken as the

true solution for comparisons. The optimal control problem is to find the history of

T and β which drive a spacecraft form its initial state to the final, while maximizing

the final mass of the spacecraft.

Maximize: m(tf ) (8.1)

Subject to: ṙ = u, θ̇ =
v

r
(8.2)

u̇ =
v2

r
− µ

r2
+
T

m
sin(β), v̇ = −uv

r
+
T

m
cos(β) (8.3)

ṁ = − T

g0Isp
, 0 ≤ T ≤ Tmax, tf = 4.1285. (8.4)

Values of all constants are taken from Ref. [62] with initial and final conditions spec-

ified as,

r(0) 1 r(tf ) 1.05242919219003

θ(0) 0 θ(tf ) 3.99191781862267

u(0) 0 u(tf ) 0

v(0) 1 v(tf ) 0.97477314754443

m(0) 1 m(tf ) maximum

The results for this example are shown in Figure (45). It is seen that GMMoc ex-

hibits smooth convergence towards the true solution, while GPS convergence is highly

irregular. Also, even at high values of N , GPS and LPS solutions do not converge

well to the benchmark solution.
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Fig. 45. Rendezvous Problem: Comparison of results for GMMoc



138

The evolution of control profile is depicted in Figure (46). The smooth con-

vergence of solution for GMMoc demonstrates its potential of implementation in an

h-adaptive setting.
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Fig. 46. Rendezvous Problem: Evolution of control profile with increasing N

E. Conclusions

We draw the following conclusions from the observations in this chapter:

1. For B-Spline approximation, GMMoc is the best of choice.
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2. s-LSMoc and s-GMMoc perform comparably with the existing pseudospectral

methods. Their performance is significantly better than LPS for all the test

examples. Further, s-LSMoc and s-GMMoc do not suffer from any boundary

defects like in GPS and RPS where extrapolations are required to find control

values at boundary points.

3. For non-smooth problems, GMMoc is quite stable and has higher convergence

rates than the spectral methods.

4. GMM formulation turn out to be the best choice for both local and global

implementations. It does not suffer from any boundary defects, provides ex-

cellent costate results, can be implemented in an h-adaptive refinement setting

using B-Splines and can be implemented in global polynomial form for spectral

accuracy.
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CHAPTER IX

A-POSTERIORI ERROR ESTIMATION AND H-ADAPTIVE GRID

REFINEMENT

Most of the differentiation based direct methods reported in the literature either

use global approximations, like polynomials and harmonics, or B-Splines. Global

approximating functions should work well for problems which have smooth solutions

without large local variations in time. To approximate solutions having localized

irregular features such as corners and discontinuities, the approximating space should

have local refinement capability. Another desirable feature would be the inclusion of

some special functions, such as exponentials or sinusoids, that characterize the known

local behavior of the system, into the basis. While B-Splines have local approximation

property, there is no direct mechanism of local p-refinement or inclusion of any special

functions into the basis.

In this chapter, we describe the use of partition of unity based approximations

for nonlinear optimal control using the LSMoc. The advantages of using PU approxi-

mations in the present setting are, (i) local support, (ii) hp adaptivity, (iii) ability to

incorporate any local approximations and (iv) control over local smoothness.

A. Numerical Implementation of LSMoc

To implement PU approximations in the LSMoc, let x(t) be approximated using Eqn.

(2.62) as,

x̂(t) =
N∑
i=1

ni∑
j=1

ψij(t)Wi(t)α̃ij, (9.1)
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where N and ni are defined based on the discussion in Section IV-A. By defining an

index transformation we can write,

φx
k = ψijWi

∣∣∣
k=
∑(i−1)

l=1 nl+j
, αk = α̃ij

∣∣∣
k=
∑(i−1)

l=1 nl+j
, (9.2)

which implies,

x̂(t) =
Nx∑
k=1

αkφ
x
k ; Nx =

N∑
l=1

nl. (9.3)

Eqn. (9.3) and Eqn. (3.7) are in the same form. Similarly, we can parameterize

u(t) and s(t) as PU approximations and write them in the same form as in Eqn.

(3.9) and Eqn. (3.10). Thus, a nonlinear programming problem can be formulated

based on Chapter V Section B. To numerically evaluate the integral expressions in

Eqn. (5.8) and Eqn. (5.11), we present two alternatives. First approach is to use

a large number of points to form a uniform grid in [0,1], and evaluate the integral

expressions using trapezoid rule. In the second approach, we may adopt a numerical

quadrature scheme where quadrature nodes are filled between the nodes used for the

approximation. Since there are three types of approximations, Vx, Vu and Vs, nodes

used in each approximation are superimposed onto the interval [0,1]. The quadrature

nodes are then filled in between the points of the superimposed grid. This results

in the higher quadrature nodes density in the areas of low regularity. We use

the Legendre-Gauss (LG) scheme to place the quadrature nodes and to evaluate the

corresponding weights. The arrangement of quadrature nodes on a typical grid is

shown in Figure (47). Let {tm}Nq

m=1 be the quadrature nodes with corresponding

weights wm. The NLP is formulated based on Section III-A as following. Determine

{αk ∈ Rn}Nx
k=1, {βk ∈ Rm}Nu

k=1, {ςk ∈ Rq}Ns
k=1, ν ∈ Rn and time instance τf , that

minimize the cost,

Ĵ = Ψ̂(αk, φ
x
k(1), τf ), (9.4)
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Fig. 47. Arrangement of quadrature nodes for a nonuniform grid in domain [0,1].

subject to the constraints,

Nq∑
m=1

[τf f̂
T
x (tm)φx

j (tm)− Iφ̇x
j (tm)][τf f̂(tm)−

Nx∑
k=1

αkφ̇
x
k(tm)]wm +

1

2
νφx

j (0) = 0;

j = 1, .., Nx, (9.5)

Nx∑
k=1

αkφ
x
k(0)− x0 = 0, ψ̂(αk, φ

x
k(1), τf ) = 0, (9.6)

Nq∑
m=1

[ĥ(tm) +
Ns∑
k=1

ςkφ
s
k(tm) ◦

Ns∑
l=1

ςlφ
s
l (tm)]φs

j(tm)wm = 0; j = 1, .., Ns, (9.7)

were f̂Tx (tm) = f̂Tx (αk, βk, φ
x
k(tm), φu

k (tm)), and ĥ(tm) = ĥ(αk, βk, φ
x
k(tm), φu

k (tm)). The

nonlinear programming problem defined here can be solved using any of the available

optimization software like ‘fmincon’ in MATLAB, SNOPT [12], or NPSOL [13].
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B. A Posteriori Error Estimation

To obtain high accuracy solutions, it is computationally inefficient to employ a high

order approximation uniformly over the whole domain as it results in over killing

the problem in the areas of low variability. Since the true solution is not known, it

is desirable to estimate the error in the computed solution, and have an adaptive

strategy to improve the local approximability of the function space selectively in the

regions having large errors.

This section presents an a posteriori error estimation method for optimal control

problems, which takes into account the errors in both feasibility and optimality of the

solution. This method is based on the variational analysis of the trajectory residuals

of EL equations. Let y(t) represents all the trajectory variables associated with

Mλ. Then at any time instant t, define the error e(t) to be the variations of all the

trajectory variables from the true solution. So that,

y(t) =



x(t)

u(t)

λ(t)

ξ(t)

s(t)

ẋ(t)

λ̇(t)



, e(t) = δy(t) =



δx(t)

δu(t)

δλ(t)

δξ(t)

δs(t)

δẋ(t)

δλ̇(t)



. (9.8)



144

The residuals associated with all the trajectory constraints inMλ can be written as,

R(y(t)) =



ẋ(t)− τf f(x,u)

τf f
T
u (x,u)λ(t) + hTu(x,u)ξ(t)

λ̇(t) + τf f
T
x (x,u)λ(t) + hTx (x,u)ξ(t)

h(x,u) + s(t) ◦ s(t)

2ξ(t) ◦ s(t)


.

Let y∗(t) be the true solution of the optimal control problem, and ŷ(t) = y∗(t)+δy(t).

Taking the first variation of R(y(t)) we get,

R(y∗) = R(ŷ − δy) = R(ŷ)− ∂R(y)

∂y

∣∣∣∣
y=ŷ

δy. (9.9)

Since R(y∗) = 0, we get,

R(ŷ) =
∂R(y)

∂y

∣∣∣∣
y=ŷ

δy,

RT (ŷ)R(ŷ) = eT (t)RT
y (ŷ)Ry(ŷ)e(t).

From the theory of spectral decomposition,

RT (ŷ)R(ŷ)

eT (t)e(t)
≤ λmax(t)(R

T
y (ŷ)Ry(ŷ)) = σ2

max(t)(Ry(ŷ)), (9.10)

where σ2
max(t) is the maximum singular value of the matrix Ry(ŷ) evaluated at time

t. Re-arranging Eqn. (9.10) we get,

eT (t)e(t) ≥ RT (ŷ)R(ŷ)

σ2
max(Ry(ŷ))

= ‖e(t)‖2. (9.11)

The quantity in the right hand side of Eqn. (9.11), denoted as ‖e(t)‖2, gives us a

lower bound on the error norm ‖e(t)‖2. Although ‖e(t)‖2 does not represent a rigorous

estimate of the true error in the solution at time t, in the present treatment we adopt

a heuristic approach by assuming that the true error lies at its lower bound. So that
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‖e(t)‖2 can be used as a measure for adaptive grid refinement. Numerical results

demonstrate that the heuristic approach used here performs quite satisfactorily for

the example problems presented in this chapter.

C. h-Adaptive Local Refinement Algorithm

Depending upon the type of approximation used, particle based or element based, an

h-adaptive algorithm locally increases the particle density or element density in the

regions where refinement is required. To identify these regions, the global domain

[0,1] is partitioned into a set of subdomains {Sk}Nk=1 such that,

Sk := [Tk−1, Tk]; 0 = T0 < T1 < .. < TN = 1.

Note that when element based approximations are used, such as B-Splines, Sk’s rep-

resent the element mesh itself. When using a particle based approximation, Sk’s can

be constructed by taking Tk’s as particle locations.

Next, we define a refinement function R : {Sk} → R such that,

RSk
= ∆k

∫
Sk

‖e(t)‖2dt, (9.12)

where ∆i := (Ti− Ti−1). Based on the value of refinement function, a set of rules are

defined to refine the element mesh or to insert new particles. We bisect r number of

particular subdomains corresponding to the r largest values of refinement function.

LetR∗ = {↓ R}[1,2,..,r] be the first r number of elements in the set formed by arranging

RSk
in descending order. Then the subdomains which are bisected are found as,

S∗ = {Sk|RSk
∈ R∗}, (9.13)

The overall algorithm can be summarized in the following steps:
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1. Compute the solution using current approximation.

2. Evaluate the refinement function for each subdomain Sk using Eqn. (9.12).

3. Using Eqn. (9.13), select r number of subdomains for bisection. Construct

approximation based on the new set of particles or elements.

4. If RT (ŷ)R(ŷ) < ε, where ε is a pre-selected error bound, exit. Otherwise, go to

step 1.

D. Numerical Examples

In this section, a number of example problems are solved to demonstrate the work-

ing of our method outlined in the previous sections. Problems are selected from

the literature which have discontinuities or corners in their solutions. The solutions

are obtained using SNOPT as the optimizer in MATLAB environment. A direct

transcription MATLAB-toolbox named OPTRAGEN-3 has been developed. It takes

user-friendly inputs and generates all the required numerical setup for solving the

NLP.

1. Example 1: Brachistochrone Problem

Minimize: J = tf

Subject to: ẋ = V cos(θ)

ẏ = V sin(θ)

V̇ = 10 sin(θ)

x(0) = 0, y(0) = 0, V (0) = 0,

x(tf ) = 1, y − 0.5x− 0.1 ≤ 0.
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This is a problem with a first-order state variable inequality constraint. The analyt-

ical solution for this problem can be found in Ref. [10]. We solve this problem by

approximating the state variables as B-Splines with 4th order piece-wise polynomials

having 3rd order smoothness. The control variable θ(t) is approximated as a B-Spline

with 3rd order piece-wise polynomials having 2nd order smoothness. The algorithm

starts with a uniform grid of 4 elements and performs 15 refinement iterations. The

results are shown in Figure (48). We compare the obtained results with the analyti-
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Fig. 48. Results for Brachistochrone problem.

cal solution. The L2-norm of errors in all the trajectory variables are listed in Table

II. We see that adaptive algorithm rightly captures the corner regions in θ(t), and
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the final grid density is relatively higher in those regions. Also, we obtain excellent

costate estimates. The value of jumps in the costates λx and λy are 0.152344 and

-0.304315 respectively which match with the true solution to the 3rd decimal place.

This problem demonstrates the applicability of the our algorithm in the presence of

state inequality constraints.

Table II. Results for Brachistochrone problem

Quantity of interest Value

L2 error in x(t) 7.01e-008

L2 error in y(t) 1.97e-007

L2 error in θ(t) 2.25e-006

EqvI, EqvII


2.74e-003 2.10e-003

-1.74e-003 2.62e-005

5.87e-004 2.63e-005


‖H(t)‖2 3.33e-007

Optimal cost 0.580058
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2. Example 2: Robot Path Planning

Minimize: J = tf

Subject to: ẋ = 2 cos(θ)

ẏ = 2 sin(θ)

θ̇ = ω

ω̇ = u

x(0) = 0, y(0) = 0, θ(0) =
π

2
, ω(0) = 0,

y(tf ) = 0, θ(tf ) = 0, ω(tf ) = 0,

|u| ≤ π

2
.

This problem represents a ground robot moving in the x-y plane with a constant

velocity of 2 m/s. The applied control is in the form of angular acceleration and is

bounded with maximum possible magnitude of π
2

rad/sec2. The initial heading angle is

π
2

and the goal is to align the robot along x-axis in minimum time. The solution to this

Table III. Results for robot path planning problem

Quantity of interest Value

EqvI, EqvII



2.26e-003 -4.16e-006

-1.56e-002 -1.17e-002

-3.11e-002 3.24e-002

-3.44e-002 -1.78e-002


‖H(t)‖2 2.47e-003

Optimal cost 3.94593
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problem has bang-bang structure. We solve this problem by approximating the states

as B-Splines with 5th order piece-wise polynomials having 4th order smoothness. The

control u is approximated using the 1st order GLOMAP weight functions as defined

in Eqn. (2.83). The algorithm starts with a uniform grid of 5 elements and performs

12 refinement iterations. The trajectories are plotted in Figure (49). We see that the

adaptive algorithm makes the grid points to concentrate near the discontinuity in u,

while x4 has a corner at the same time location. Also, the switching structure in u is

well captured by the GLOMAP functions. The results are presented in Table III.
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Fig. 49. Results for robot path planning problem.
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3. Example 3: Moonlanding Problem

We consider the moonlanding problem as defined in Ref. [63],

Minimize: J = −m(tf )

Subject to: ḣ = v

v̇ = −1 +
T

m

ṁ = − T

2.3

h(0) = 1, v(0) = −0.783, m(0) = 1,

h(tf ) = 0, v(tf ) = 0, 0 ≤ T ≤ 1.1

Here the state variables h, v and m are altitude, velocity, and mass respectively. T

is the thrust magnitude. The final time tf is free. We solve this problem by ap-

proximating the state trajectories as B-Splines with 3rd order piece-wise polynomials

having 2nd order smoothness. Control T is approximated by using 1st order GLOMAP

functions. The algorithm starts with a uniform grid of 4 elements and performs 10 re-

finement iterations. The solution for this problem has a switching in control which is

well captured by our algorithm. The states exhibit corners at the same time location

as seen in Figure (50(a)).
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Fig. 50. Results for moonlanding problem.

Our solution matches well with the one given in Ref. [63], where the optimal cost

m(tf ) = 0.3751 agrees to 4 decimal places. The results are summarized in Table IV

and shown in Figure (50).

4. Example 4: Maximum Radius Orbit Transfer

This problem has been discussed in Refs.[10, 32]. The objective is to find the control

that maximizes the final orbital radius of a rocket starting form a given initial orbit.

The state variables are the orbital radius r, the true anomaly θ, the radial component

of velocity u, and the tangential component of velocity v. The control variable is the
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Table IV. Results for moon-landing problem

Quantity of interest Value

EqvI, EqvII


1.19e-004 -1.69e-003

1.11e-004 -8.15e-003

1.80e-004 3.67e-003


‖H(t)‖2 1.10e-005

Optimal cost 0.375122

thrust steering angle β measured from the local horizontal. The transfer time tf is

fixed. The optimal control problem is,

Minimize: J = −r(tf )

Subject to: ṙ = u

θ̇ =
v

r

u̇ =
v2

r
− 1

r2
+
T

m
sin(β)

v̇ = −uv
r

+
T

m
cos(β)

ṁ = −0.0749

r(0) = 1.1, θ(0) = 0, u(0) = 0,

v(0) = 1/
√

1.1, m(0) = 1,

u(tf ) = 0, v(tf ) =
√

1/r(tf ),

0 ≤ T ≤ 1.1

The thrust magnitude T = 0.1405 and tf = 3.32.
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We solve this problem by approximating the state trajectories as B-Splines with

5th order piece-wise polynomials having 4th order smoothness. Control T is approxi-

mated by using 3rd order B-Splines with 0th order smoothness. The results are shown

in Figure (51). Our solution matches well with the results given in Ref. [32]. The dis-

continuity in β is captured adaptively as the grid is refined. We start the refinement

algorithm with 6 intervals and perform 10 iterations to obtain the present results.

The optimal cost r(tf ) = 1.525 obtained by us matches with Ref. [32].
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Fig. 51. Results for maximum radius orbit transfer problem.
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The results for Example 4 are summarized in Table V. This example demon-

strates the applicability of the present method for real-life applications.

Table V. Results for maximum range orbit transfer problem

Quantity of interest Value

EqvI, EqvII



1.10e-002 8.29e-003

-1.23e-004 5.99e-004

5.60e-003 -7.79e-003

1.17e-002 8.95e-003

-3.38e-003 -9.36e-005


‖Ḣ(t)‖2 4.21e-002

Optimal cost 1.5251

E. Conclusions

This chapter proposed an h-adaptive algorithm for solving optimal control problems

by using local approximating functions like B-Splines and PU based approximations.

An a posteriori error estimation procedure was developed, and was used for adaptive

grid refinement. Through a number of numerical examples, the efficiency of this

approach was demonstrated.
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CHAPTER X

TIME-SCALING METHOD FOR NON-SMOOTH PROBLEMS WITH

MULTIPLE PHASES

Many real life optimal control problems have solutions with discontinuities and cor-

ners. Such problems typically arise when the control is constrained and appears

linearly in both the state dynamics and the cost function, which happens frequently

in robotics and aerospace applications. The discontinuous control may also be in-

trinsic to the problem formulation, for example in the case where the actuators are

of “on/off” type. When the control is discontinuous, some of the states may possess

corners where state derivatives are not continuous. Direct optimization based nu-

merical methods are quite efficient for solving smooth optimal control problems, but

perform poorly with the problems having non-smooth solutions. This is because the

locations of discontinuities are not known before hand. In this paper, our focus is

on developing a direct optimization based methodology to solve non-smooth optimal

control problems.

In this chapter, a direct optimization algorithm is developed to solve problems

with discontinuous control based on the least square method for optimal control

(LSMoc) [64]. LSMoc is flexible with respect to the choice of approximating functions,

and provides costate estimation and optimality verification results. To accommodate

the discontinuities and corners, we divide the time domain into a number of subinter-

vals. Each subinterval defines a control phase. Depending upon the problem in hand,

a control type is assigned to each phase. For example, for a problem having bang-

bang solution, the control type is constant at either its maximum or minimum value.

To deal with the unknown switching times, we map the control phases on a compu-

tational domain with equal intervals. The state dynamics is appropriately scaled in
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each interval. The scaled problem is then discretized using B-Splines and transcribed

to an NLP using the LSMoc. The NLP is solved and the solution is mapped back to

the original time domain.

There are several advantages of using the present approach. First, being a di-

rect method, it is robust with respect to the deviation of the initial guess from the

true solution. Second, the NLP formulation is based on a weighted residual formula-

tion, which results in a smaller problem size compared to collocation based methods.

Further, using B-Splines, the state continuity conditions at switching times can be

imposed by construction itself. This eliminates the need of extra knotting conditions

or phase boundary conditions in the NLP. Finally, the LSMoc allows us to obtain

costate estimates from the Karush Kuhn Tucker multipliers of the NLP, which are

crucial for optimality verification of the obtained solution. In this chapter, we con-

sider an optimal control problem in Bolza form. The objective is to determine the

state-control pair {X(τ) ∈ Rn,U(τ) ∈ Rm; τ ∈ [0, τf ]} and time instance τf , that

minimize the cost,

J =

∫ τf

0

L(X(τ),U(τ))dτ + Ψ(X(0),X(τf ), 0, τf ), (10.1)

subject to the state dynamics,

dX(

dτ
τ) = F (X(τ),U(τ)), (10.2)

end-point state equality constraints,

X(0) = x0, ψ(X(0),X(τf ), 0, τf ) = 0, (10.3)

and control limits,

umin ≤ U(τ) ≤ umax, (10.4)
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were L : Rn × Rm → R, Ψ : Rn × R → R, F : Rn × Rm → Rn and ψ : Rn × R → Rp

are continuously differentiable with respect to their arguments. It is assumed that

the optimal solution to the above problem exists and the constraint qualifications

required to apply the first-order optimality conditions are met.

A. Time-Scaling Methodology

1. Control Specifications

At any given time instance τ , the control U(τ) either lies on the constraints boundary

{umin, umax} or has its value in the interval (umin, umax). For some problems, the

control may be “turned-off”, which means that U(τ) may be zero. Thus, we can

define four distinct control types: (1) constant at zero, (2) constant at the minimum

value, (3) constant at the maximum value and (4) varying in a bounded interval.

Assuming that the control maintains a particular type for a finite duration, we

introduce the concept of a control phase. A control phase is defined as a finite

interval of time over which the control is continuous and maintains its type. From

the discussion above, there are four types of control phases, one for each control type.

A number of control phases can be joined in a sequence to represent the con-

trol trajectory. As stated earlier, the control is continuous over a particular phase,

however, it can be discontinuous at the junction point of adjacent phases, termed

as switching times. The switching times alow us to place the discontinuities in the

control trajectory. Since the locations of discontinuities are not known, switching

times are the unknowns of the problem.

Depending upon the problem in hand, the control type in each phase is assigned

based on some preliminary analysis or an intelligent guess. For some problems for

example, it is known that the optimal control is of “bang-bang” or “bang-zero-bang”
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type. This information is used to decide the number of phases and the control type

in each phase.

Let {τj}Nj=1 be the unknown switching times such that,

0 = τ0 ≤ τ1 ≤ ... ≤ τN = τf , (10.5)

with Ωj := [τj−1, τj]. Then the jth phase of ith control variable is defined as,

Ui,j(τ) = Ui(τ)|τ∈Ωj
; i = 1, ..,m, (10.6)

with the associated phase domain Ωj and phase length Tj = (τj − τj−1). The control

type in each phase is pre-assigned, so that Ui,j(τ) takes one of the following form:

1. Ui,j(τ) = 0, denoted as “0”,

2. Ui,j(τ) = umini , denoted as “−”,

3. Ui,j(τ) = umaxi , denoted as “+”,

4. umini ≤ Ui,j(τ) ≤ umaxi , denoted as “±” or “free”,

for i = 1, ..,m and j = 1, .., N .

For a given N , the control structure is defined as a sequence of N control types

in order. For example, Ui : (−,+,±, 0) represents the control structure (mini-

mum,maximum,free,zero).

2. Control Sequencing and Modified Bolza Problem Bc

The control variables of the original optimal control problem are assigned a specific

structure. The controls are represented as a sequence of a fixed number of phases,

and a control type is assigned for each phase. By doing so, the control value in some

of the phases is fixed and thus is no longer an optimization variable. However, the
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phase lengths defined by the switching times become an additional set of unknowns

introduced into the problem. In this section, we first define a systematic procedure

to incorporate a control structure into the problem. Subsequently, we transform the

original optimal control problem with free final time and unknown switching times,

to a problem on a fixed computational domain with switching times incorporated as

parameters of optimization in the state dynamics via a scaling factor.

To incorporate a pre-defined control structure into problem B, we replace the

original control variables U(τ) with a new set Uc(τ) defined as,

Uc(τ) = C1(τ) + C2(τ)U(τ), (10.7)

where C1(τ), C2(τ) ∈ Rm are introduced as two auxiliary input variables. The values

of C1(τ) and C2(τ) in each phase determine the control type of Uc(τ) in that partic-

ular phase. For example, the ith control variable Uc
i(τ) can be fixed to its maximum

value in the jth phase by selecting C1
i,j(τ) = umaxi and C2

i,j(τ) = 0. Similarly, we can

enforce any control type in a given phase by selecting the values of C1(τ) and C2(τ)

as per Table VI.

Table VI. Auxiliary inputs to implement a given control structure

C1
i,j(τ) C2

i,j(τ) Uc
i,j(τ) Control type

0 0 0 0

umini 0 umini −

umaxi 0 umaxi +

0 1 free ±
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The concept of auxiliary inputs and the working of Table VI can be better un-

derstood in Figure (52), where an example case of four control phases is shown. The

control structure Uc
i(τ) : (−,+,±, 0) is derived using (10.7) by selecting the values

of C1(τ) and C2(τ) from Table VI. Next, we replace the control variable U(τ) in
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Fig. 52. Control sequencing, Uc
i : (−,+,±, 0), with corresponding auxiliary inputs.

problem B by Uc(τ) and re-define the associated function expressions. Using Eqns.

(10.1), (10.2) and (10.7) we write,

L(X(τ),U(τ)) = L(X(τ),Uc(τ)) = L(X(τ),U(τ), C1(τ), C2(τ)), (10.8)

F (X(τ),U(τ)) = F (X(τ),Uc(τ)) = F(X(τ),U(τ), C1(τ), C2(τ)). (10.9)

The modified optimal control problem Bc is to find {X(τ),U(τ); τ ∈ [0, τf ]} and

{τj}Nj=1 which minimize the cost,

J =

∫ τf

0

L(X(τ),U(τ), C1(τ), C2(τ))dτ + Ψ(X(0),X(τf ), 0, τf ), (10.10)
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subject to,

dX(

dτ
τ) = F(X(τ),U(τ), C1(τ), C2(τ)), (10.11)

X(0) = x0, ψ(X(0),X(τf ), 0, τf ) = 0, (10.12)

umin ≤ U(τ) ≤ umax, (10.13)

where C1(τ) and C2(τ) are constant inputs.

3. Time Scaling and Mapping to Bolza Problem BN

To deal with the unknown switching times {τj}Nj=1 in problem Bc, a time scaling tech-

nique is outlined where the time domain of each phase is mapped to a computational

domain of fixed length. The state dynamics is appropriately scaled by a factor which

contains the phase length as an unknown parameter.

Consider a computational domain t ∈ [0, 1] and divide it into N number of equal

subintervals ∆j|Nj=1 := [ (j−1)
N

, (j)
N

]. For a given phase j with domain Ωj and phase

length Tj = τj − τj−1, define a mapping from Ωj to ∆j via the following scaling

relationship,

τ − τj−1

Tj
=
t− (j−1)

N
1
N

; τ ∈ Ωj, t ∈ ∆j. (10.14)

The mapping process is depicted in Figure (53). By differentiating (10.14) with

respect to t we get,

dτ

dt

∣∣∣∣
t∈∆j

= NTj. (10.15)

The derivative dτ
dt

in (10.15) is constant over each phase, and can be written in a
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Fig. 53. Time-scaling and mapping of domain (τ) to domain (t).

trajectory form as following,

dτ

dt
=

N∑
j=1

NTj uj (t); t ∈ [0, 1]. (10.16)

where uj(t) is a rectangular function defined as,

uj(t) =

 1 if t ∈ ∆j

0 if t /∈ ∆j

. (10.17)

By integrating (10.16) and using τ(0) = 0, we can represent τ as a function of t as

following,

τ(t) =

∫ t

0

N∑
j=1

NTj uj (z)dz, (10.18)

also,

τf = τ(1) =

∫ 1

0

N∑
j=1

NTj uj (z)dz =
N∑
j=1

Tj. (10.19)
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Next, map the state, control and auxiliary input trajectories to domain t as,

x(t) = X(τ(t)), u(t) = U(τ(t)) (10.20)

c1(t) = C1(τ(t)) c2(t) = C2(τ(t)). (10.21)

Using (10.16), we introduce (x∗(t),u∗(t)) as an additional state-control pair satisfying,

x∗(t) = τ(t), ẋ∗(t) = u∗(t) =
N∑
j=1

NTj uj (t). (10.22)

For the state derivatives we have,

dX(τ)

dτ
=

1(
dτ
dt

) ẋ(t) =
1

u∗(t)
ẋ(t) (10.23)

Using (10.2) and (10.23), the state dynamics can be written as,

ẋ(t) = u∗(t)F(x(t),u(t), c1(t), c2(t)). (10.24)

Similarly we map all the function expressions in problem BN to the domain t and de-

fine the mapped optimal control problem BN as following. Find {x(t),x∗(t),u(t),u∗(t)}

that minimize,

J =

∫ 1

0

u∗(t)L(x(t),u(t), c1(t), c2(t))dt+ Ψ(x(1),x∗(1)), (10.25)

subject to,  ẋ(t)

ẋ∗(t)

 =

 u∗(t)F(x(t),u(t), c1(t), c2(t))

u∗(t)

 , (10.26)

x(0) = x0, x∗(0) = 0, ψ(x(1),x∗(1)) = 0, (10.27)

umin ≤ u(t) ≤ umax. (10.28)
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B. Direct Transcription Process

A direct method to solve an optimal control problem typically consists of two steps.

First, state and control trajectories are approximated as a linear combinations of

a priori selected basis functions with the corresponding coefficients as unknowns.

Second, the cost function and the state dynamics is appropriately transformed into a

set of algebraic equations in terms of the unknown coefficients. This transcribes an

optimal control problem to a nonlinear programming problem.

To select appropriate approximating functions for {x(t),x∗(t),u(t),u∗(t)}, we

make the following observations:

1. u∗(t) is a piecewise constant trajectory with only C0 continuity at switching

points tj := j
N
, j = 1..N .

2. ẋ(t) = u∗(t) is C0 continuous at switching times which implies that x(t) is only

C1 continuous at {tj}Nj=1.

3. x∗(t) is piecewise linear and C1 continuous at {tj}Nj=1.

Therefore the approximation scheme used to parameterize the state and control tra-

jectories must only be C1 continuous at the switching times and should have higher

smoothness order in between. This makes the use of B-Splines a natural choice to pa-

rameterize {x(t),x∗(t),u(t)}, as the B-Splines can satisfy the continuity requirements

by construction.

A B-Spline function defined on the interval [0, 1] is composed of segments of

polynomials that are stitched at predefined break points, satisfying a given degree of

smoothness. The number of continuous derivatives across the breakpoints defines the

order of smoothness. An order of smoothness si at a breakpoint ti implies that the

curve is Csi−1 times continuously differentiable at ti. Given the number of subintervals
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(N), the order of each polynomial segment (r) and the order of smoothness (s) at the

breakpoints, a B-Spline curve y(t) is represented in the basis form as,

y(t) =
Nc∑
k=1

αkB
k,r(t),

where αk are the free parameters and Nc = N(r − s) + s is the number of free

parameters or the degrees of freedom of y(t). In the present scenario, the break points

are { i
N
}Ni=0 and the smoothness order is 1, i.e. si|Ni=0 = 1. For some polynomial orders

rx and ru, we approximate {x(t),u(t)} as,

x(t) ≈ x̂(t) =
Nx∑
k=1

αkB
k,rx(t), (10.29)

u(t) ≈ û(t) =
Nu∑
k=1

βkB
k,ru(t), (10.30)

where αk ∈ Rn, βk ∈ Rm, Nx = N(rx − 1) + 1 and Nu = N(ru − 1) + 1. Since x∗(t)

is piecewise linear,

x∗(t) ≈ x̂∗(t) =
N+1∑
k=1

α∗kB
k,2(t), α∗k ∈ R. (10.31)

Using Eqns. (10.29), (10.30), (10.31) and (10.22), we have αk|Nx
k=1, βk|Nu

k=1, α∗k|N+1
k=1 and

Tk|Nk=1 as unknowns to be determined.

1. Least Square Method for Optimal Control

The next step in the transcription of problem BN to a nonlinear programming problem

is to transform the integral cost and the state dynamics into a set of algebraic cost

and constraints. We use least square method for direct optimal control as described

Chapter V. In this method, the state dynamics is approximated as a weighted integral

formulation derived from the least square method to solve initial value problems.

Using Eqns. (10.29), (10.30) and (10.31), we denote the approximate state dynamics
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as,

F̂(αk, βk, Tk, B
k,rx , Bk,ru) =

N∑
k=1

NTk uk F(x̂, û, c1, c2).

Using similar notation for all other functionals the transcribed problem is to determine

αk|Nx
k=1, βk|Nu

k=1, α∗k|N+1
k=1 , Tk|Nk=1, ν ∈ Rn and ν∗ ∈ R that minimize the cost,

Ĵ =

∫ 1

0

N∑
i=1

NTi ui L̂(αk, βk, B
k,rx , Bk,ru)dt+ Ψ̂(αk, α

∗
k, B

k,rx(1), Bk,2(1)), (10.32)

subject to the constraints,∫ 1

0

(F̂TxBj,rx − IḂj,rx)(F̂ −
Nx∑
k=1

αkḂ
k,rx)dt+

1

2
νBj,rx(0) = 0 (10.33)

∫ 1

0

Ḃp,2(
N∑
k=1

NTk uk −
N+1∑
k=1

α∗kḂ
k,2)dt− 1

2
ν∗Bp,2(0) = 0 (10.34)

Nx∑
k=1

αkB
k,rx(0)− x0 = 0, (10.35)

N+1∑
k=1

α∗kB
k,2(0) = 0, (10.36)

ψ̂(αk, B
k,rx(1), α∗k, B

k,2(1)) = 0 (10.37)

where j = 1, .., Nx and p = 1, .., N + 1. The subscript argument denotes the partial

derivative, i.e. Fx = ∂F
∂x

. The integral expressions in Eqns. (10.33) and (10.37) need

to be evaluated numerically by using some quadrature scheme, which will complete

the transcription of problem BN to a nonlinear programming problem.

2. Equivalence Conditions and Costate Estimates

The solution of problem Mφ is based on satisfying a set of first order optimality

conditions for a nonlinear program, also known as Karush-Kuhn-Tucker (KKT) con-

ditions. To derive the KKT conditions, the augmented cost function for ProblemMφ

is formed by adjoining the original cost function with the constraint equations. So
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that,

J ′ =
Nx∑
j=1

γTj

[∫ 1

0

(F̂TxBj,rx − IḂj,rx)(F̂ −
Nx∑
k=1

αkḂ
k,rx)dt+

1

2
νBj,rx(0)

]

+
N+1∑
p=1

γ∗Tp

[∫ 1

0

Ḃp,2(
N∑
k=1

NTk uk −
N+1∑
k=1

α∗kḂ
k,2)dt− 1

2
ν∗Bp,2(0)

]

+ µT (
Nx∑
k=1

αkB
k,rx(0)− x0) + µ∗T

N+1∑
k=1

α∗kB
k,2(0) + Ψ̂ + ηT ψ̂, (10.38)

where γj ∈ Rn, µ ∈ Rn, η ∈ Rp, γ∗p ∈ R and µ∗ ∈ R are the KKT multipliers

associated with the constraints (10.33)-(10.37). The KKT first-order necessary con-

ditions are then obtained by setting the derivatives of J ′ with respect to the unknowns

{αi, βi, ςi, ν, γi, µ, η, ζi, τf} equal to zero. By comparing the KKT conditions with the

discretized EL equations, we can derive a set of equivalence conditions under which

the costates can be estimated from the KKT multipliers. The detailed proof can be

found in Ref. [64], and is skipped here for brevity. The equivalence conditions for the

LSMoc are,

(
Nx∑
j=1

γjF̂xB
j,rx −

Nx∑
j=1

γjḂ
j,rx)

∣∣∣∣∣
t=0

= −µ, (10.39)

(
Nx∑
j=1

γjF̂xB
j,rx −

Nx∑
j=1

γjḂ
j,rx)

∣∣∣∣∣
t=1

= Ψ̂x(1) + ψ̂Tx(1)η (10.40)

(
N+1∑
p=1

γ∗pḂ
p,2)

∣∣∣∣∣
t=0

= µ∗, (10.41)

(
N+1∑
p=1

γ∗pḂ
p,2)

∣∣∣∣∣
t=1

= −(Ψ̂x∗(1) + ψ̂Tx∗(1)η). (10.42)

When the equivalence conditions (10.39) and (10.40) are satisfied, the estimates of

the costates λ̂(t) and the lagrange multipliers (ξ̂(t), υ, κ) can be estimated from the
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KKT multipliers as following,

λ̂(t) =
Nx∑
j=1

γjF̂xB
j,rx(t)−

Nx∑
j=1

γjḂ
j,rx(t), (10.43)

λ̂∗(t) =
N+1∑
p=1

γ∗pḂ
p,2. (10.44)

Form the estimates of the costates, the Hamiltonian is evaluated as,

Ĥ(t) =
N∑
k=1

NTk uk (L̂+ λ̂T F̂ + λ̂∗). (10.45)

3. Numerical Integration

The numerical solution of the problem defined in Section 1 requires the integral

expressions in (10.32)-(10.34) be evaluated numerically. This is accomplished by

using a numerical quadrature scheme. In this section, we describe the quadrature

scheme and derive the nonlinear programming problem to be solved.

In the computational domain (t), we define Nq number of LGL points {bij}Nq

j=1

with corresponding quadrature weights {wij} suitably mapped over each domain

{∆i}Ni=1(see Figure (54)). Then, the integral of a function f(t) over interval ∆i can

be approximated as, ∫
∆i

f(t)dt ≈
Nq∑
j=0

wijf(bij). (10.46)

Next, we formulate a nonlinear programming problem BNφ based on Section 1 and

using (10.46).
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Breakpoints
Quadrature points

Fig. 54. The arrangement of breakpoints and quadrature points in domain t ∈ [0, 1].

{ti}Ni=0 are the breakpoints. {bij}Nq

j=1 are the quadrature points for domain

∆i = [ti−1, ti].

4. Nonlinear Programming Problem BNφ

The problem BNφ is to determine αk|Nx
k=1, βk|Nu

k=1, α∗k|N+1
k=1 , Tk|Nk=1, ν and ν∗ that mini-

mize,

J =
N∑
i=1

Nq∑
j=1

wijNTi ui (bij)L̂(αk, βk, B
k,rx
ij , Bk,ru

ij ) + Ψ̂(αk, α
∗
k, B

k,rx(1), Bk,2(1)),

subject to the constraints,

N∑
i=1

Nq∑
j=1

wij[(F̂TxBl,rx)ij − IḂl,rx
ij ][F̂ij −

Nx∑
k=1

αkḂ
k,rx
ij ] +

1

2
νBl,rx

0 = 0, (10.47)

N∑
i=1

Nq∑
j=1

wijḂ
p,2
ij [

Ti
N
ui (bij)−

N+1∑
k=1

α∗kḂ
k,2
ij ]dt− 1

2
ν∗Bp,2(0) = 0 (10.48)

Nx∑
k=1

αkB
k,rx
0 − x0 = 0, (10.49)

N+1∑
k=1

α∗kB
k,2
0 = 0, (10.50)

ψ̂ = 0, (10.51)
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where l = 1, 2, .., Nx and p = 1, .., N + 1. Here (·)ij denotes the evaluation of the

underlying expression at time bij. Similarly, Bk,r
0 , Bk,r

1 denote Bk,r(0), Bk,r(1) respec-

tively.

5. Numerical Solution

The nonlinear programming problem defined in the previous section can be solved us-

ing any of the available optimization software like ‘fmincon’ in MATLAB, SNOPT [12],

or NPSOL [13]. For the example problems solved in this paper, we use SNOPT as the

optimizer in MATLAB environment. A direct transcription MATLAB-toolbox named

OPTRAGEN-3 has been developed. It takes user-friendly inputs and generates all

the required numerical setup for solving the NLP.

C. Application Examples

In this section, we solve real-life problems using the methodology presented in the pre-

vious sections. We select three problems, one each from the following fields: aerospace,

robotics and motion planning. The results are compared with the solutions found in

the literature.

1. Example 1: Orbit Rendezvous Problem

In this example problem, a spacecraft is to rendezvous an asteroid in a fixed time.

The spacecraft is initially in a circular orbit, and in a given time it has to match

the position and velocity of a target asteroid traveling in another circular orbit. This

problem has been solved by Bai.Turner.2009 et. al. in Ref [62], and we use the same

problem setup here. The spacecraft dynamics is modeled as a planar motion of a

point mass acted upon by the gravitational force from the Sun. The spacecraft has
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a mass m, and its position is defined as a solar-centric polar coordinates (r, θ). r is

the distance of the spacecraft from the Sun and θ is the phase angle with respect

to some inertial axis. The radial and tangential velocities are denoted by u and v

respectively. The angle between the thrust direction and the local tangent is β. The

dynamic equations for the spacecraft are,

ṙ = u, (10.52)

θ̇ =
v

r
(10.53)

u̇ =
v2

r
− µ

r2
+
T

m
sin(β), (10.54)

v̇ = −uv
r

+
T

m
cos(β) (10.55)

ṁ = − T

g0Isp
. (10.56)

The thrust magnitude is bounded as,

0 ≤ T ≤ Tmax. (10.57)

The problem is non-dimensionalized in distance by 1AU = 1.495978706910000 ×

1011m, in time by 1TU = 5.022642890912782 × 106sec and in mass by the initial

spacecraft mass of 1500kg. The scaled values of relevant parameters are,

Tmax = 0.01517685201253, g0Isp = 0.98775. (10.58)

The optimal control problem is to find the history of T and β which drive the

spacecraft form its initial state to the final, while maximizing the final mass of the

spacecraft. The transfer time if tf = 4.1285. The initial and final conditions are

specified as,
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r(0) 1 r(tf ) 1.05242919219003

θ(0) 0 θ(tf ) 3.99191781862267

u(0) 0 u(tf ) 0

v(0) 1 v(tf ) 0.97477314754443

m(0) 1 m(tf ) maximum

The thrust magnitude T appears linearly in the state dynamics. Therefore, the

optimal thrust profile is of “bang-bang” type. To solve this problem using the time-

scaling technique, we divide the control profile into four phases having the thrust

sequence T : (−,+,−,+). The thrust direction β is free in all phases. Note that if we

choose more than four phases, the optimization process will automatically “collapse”

the extra phases within some numerical tolerance. The states are approximated as

6th degree polynomials while thrust direction β is assumed to be a quadratic in each

phase. 40 LGL nodes are used for numerical integration in each phase. The control

histories are shown in Figure (55) and state trajectories in Figure (56).
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(a) Thrust magnitude.
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(b) Thrust direction in degrees.

Fig. 55. Optimal control histories for orbit rendezvous problem.
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(a) State trajectories r and v.
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(b) State trajectories θ and u.

Fig. 56. State trajectories of orbit rendezvous problem.
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The spacecraft trajectory in (r − θ) plane is shown in Figure (57(b)). Figure

(57(a)) shows the costates. The solution is obtained in t domain and is mapped to

the original problem domain τ . The results are shown in both t and τ domain.
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Fig. 57. (a) Costates and Hamiltonian for rendezvous problem(b) Spacecraft trajec-

tory.

Comparing the results with Ref. [62], we find that the switching times (τ1, τ2, τ3, τ4)

and the optimal cost m(tf ) in our solution match with the reported values to the 4th

decimal place. Considering that the solution in Ref. [62] has been obtained by using

an indirect approach, the present results are quite promising. We summarize the

results in Table VII.
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Table VII. Input-output data for rendezvous problem

Input Data

No. of phases 4

Switching structure T : (−,+,−,+)

β : (±,±,±,±)

Polynomial order States : 6, β : 3

Results

Switching times



0.184408

1.02836

3.25066

4.12865



EqvI, EqvII



2.49e-003 9.07e-003

8.62e-002 8.62e-002

-1.59e-003 -3.77e-003

4.52e-003 8.35e-003

4.98e-003 5.14e-003


‖H(t)‖2 1.65e-008

Optimal cost -0.973545
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2. Example 2: Caltech MVWT Vehicle Trajectory Optimization

The Caltech Multi-Vehicle Wireless Testbed (MVWT) is a platform for testing control

methodologies for multiple vehicle coordination and formation stabilization Ref. [65].

The testbed consists of eight mobile vehicles. The MVWT vehicle rests on three

low-friction, omni-directional casters and is powered by two high-performance ducted

fans. Each fan is capable of producing up to 4.5 N of continuous thrust. The vehicle

is underactuated and exhibits nonlinear second-order dynamics.

We solve a minimum-time trajectory optimization problem for the MTWV vehi-

cle using the prescribed time-scaling technique. We assume that only the on/off type

of control is available for the fans, and the motor transients can be ignored to approx-

imate a “bang-bang” type of control structure. In this setting, the control structure

is imposed by the problem definition itself and is not an outcome of applying the

optimality conditions. In the (x-y) plane, the vehicle is initially at rest and is aligned

with the x-axis. The problem is to find the optimal thrusting sequence of two fans

so as to align the vehicle with y-axis in minimum time. The vehicle dynamics and

associated data is taken from Ref. [65].

The problem is to minimize,

J = tf +W [1− v(tf )]
2, (10.59)

subject to the state dynamics,

ẋ = u, u̇ = − η

m
u+

(Fl + Fr)

m
cos(θ), (10.60)

ẏ = v, v̇ = − η

m
v +

(Fl + Fr)

m
sin(θ), (10.61)

θ̇ = ω, ω̇ = −ψ
J
ω +

(Fr − Fl)
J

d, (10.62)

where W = 100, rotational inertia J = 0.050 kg-m2, the coefficient of viscous friction
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η = 5.5 kg/s and the coefficient of rotational friction ψ = 0.084 kg m2/s. The initial

and final conditions are specified as,

x(0) 0 x(tf ) 0

y(0) 0 y(tf ) –

θ(0) 0 θ(tf ) π/2

u(0) 0 u(tf ) 0

v(0) 0 v(tf ) –

ω(0) 0 ω(tf ) 0

.

The thrust inputs are on/off type with thrust magnitude of 1N,

Fl, Fr ∈ {0, 1 N} (10.63)

Two control inputs makes this problem more challenging as all possible control

combinations need to considered for defining a control sequence. To get an idea of

the optimal switching structure, we first solve the problem using a standard direct

method, like the least square method described in Ref. [64], with a coarse approx-

imation. The obtained solution is not very accurate, yet provides insight into the

underlying control structure. The regions where the control structure is ambiguous,

we take all possible combinations. As we shall see in the results, any redundant con-

trol phases are eliminated in the optimization process. For the current problem, we

start with 7 control phases and approximate the states as 5th order polynomials. The

problem is discretized using 40 LGL nodes in each phase.
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The results are shown in Figures (58) and (59). We see that the 7th control

phase is redundant and gets “collapsed” in the final solution.
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(a) Control trajectories Fl and Fr.
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(b) State trajectories x and u.
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(c) State trajectories y and v.
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(d) State trajectories θ and ω.

Fig. 58. Control and state trajectories of MVWT vehicle.
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Fig. 59. (a) Costates for the MVWT vehicle problem. (b) Path of MVWT vehicle in

(x-y) plane. The central line is the robot path. The solid lines on its right

and left side depict the “on” state of the right and left fan respectively.

Since there are no results available in the literature for this problem, the met-

rics of optimality are the equivalence conditions (≈ O−4) and the L2-norm of the

Hamiltonian (≈ O−4). The values are summarized in Table VIII.
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Table VIII. Input-output data for MVWT vehicle problem

Input Data

No. of phases 7

Switching structure Fr : (+,+,−,+,+,+,−)

Fl : (−,+,+,+,−,+,+)

Polynomial order States : 5 Controls : fixed

Results

Switching times



1.62076

2.43693

3.0336

5.07631

5.11894

6.6259

6.62839



EqvI, EqvII



3.20e-005 -1.12e-004

-8.84e-006 -2.29e-007

1.18e-004 5.22e-004

-9.61e-005 1.83e-003

7.78e-005 2.94e-003

9.48e-005 -2.32e-004


‖H(t)‖2 1.13e-006

Optimal cost 0.478894
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3. Example 3: Assembly Robot Motion Planning

An industrial robot performing assembly tasks typically exhibits point to point mo-

tion. Time optimality of robot motion is crucial for productivity. Therefore, there has

been a considerable interest in the literature for studying and solving time optimal

motions of assembly robots.

In the present example, we use the time-scaling method to compute the time

optimal trajectories of a horizontal two-link robot. The numerical data is of IBM

7535 B 04 robot taken from Ref. [66]. The angular rotation of the inner link is

θ and φ is the rotation angle of the outer link. The rotation angles θ, φ and the

corresponding angular velocities define the robot states as,

x1 = θ, x2 = θ̇, x3 = φ, x4 = φ̇. (10.64)

The links are driven by torques Mθ and Mφ, which serve as the control variables,

u1 = Mθ, u2 = Mφ. (10.65)

The controls are bounded as,

−25 Nm ≤ u1 ≤ 25 Nm, −9 Nm ≤ u2 ≤ 9 Nm. (10.66)

The nonlinear state equations are,

ẋ1 = x2, (10.67)

ẋ2 =

[J7{u1 − u2 + J6(x2 + x4)2 sin(x3)}

− J6{u2 − J6x
2
2 sin(x3)} cos(x3)]

[J7J5 − J2
6 cos2(x3)]

, (10.68)
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ẋ3 = x4, (10.69)

ẋ4 =

[(J5 + J6 cos(x3)){u2 − J6x
2
2 sin(x3)} − sin(x3)

.(J7 + J6 cos(x3)){u1 − u2 + J6(x2 + x4)2}]
[J7J5 − J2

6 cos2(x3)]
. (10.70)

where,

J1 = 1.600 kg m2 J2 = 0.430 kg m2, J3 = 0.010 kg m2,

J4 = 0.805 kg m2, J5 = 4.960 kg m2, J6 = 1.350 kg m2,

J7 = 0.815 kg m2.

Starting at time t = 0, the optimal control problem is to find the control inputs u1

and u2 which drive the robot from its initial state to a prescribed final state while

minimizing the final time tf . The initial and final conditions are specified as,

x1(0) 0 x1(tf ) 0.95

x2(0) 0 x2(tf ) 0

x3(0) 0 x3(tf ) 0

x4(0) 0 x4(tf ) 0

.
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The control structure of this problem has been studied in a greater detail in

Ref [66]. We solve this problem using 4 control phases. The states are approximated

as 14th degree polynomials in each phase. We use 40 LGL nodes in each phase. The

results are shown in Figures (60), (61) and (62).

−32.50

−16.25

0.00

16.25

32.50

−32.50

−16.25

0.00

16.25

32.50

0.00 0.25 0.50 0.75 1.00

0.00 0.09 0.540.59 1.09

���������

��	
����� 

 �
�
�
�

(a)

0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

�������

�	��
 �����

�	�
� �����

� �
�������

� �
�������

���������

(b)

Fig. 60. (a) Optimal torques Mθ and Mφ for the robot. (b) Costates.
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(a) States θ and θ̇.
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(b) State φ and φ̇.

Fig. 61. State trajectories for the robot motion planning problem.
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Fig. 62. Stroboscopic picture of the robot motion. The solid inner arc represents the

“+” (blue) and “−” (green) state of Mθ. The solid outer arc show the “+”

(blue) and “−” (green) state of Mφ

Comparing the results in Table IX with Ref. [66], we find that the switching

times and the final time in our solution match with the reported values to the 3rd

decimal place.
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Table IX. Input-output data for robot problem

Input Data

No. of phases 4

Switching structure Mθ : (+,+,−,−)

Mφ : (−,+,+,−)

Polynomial order States : 14 Controls : fixed

Results

Switching times



0.0877954

0.542835

0.588056

1.0857



EqvI, EqvII



5.61e-003 5.63e-003

3.68e-003 -3.40e-003

1.15e-003 2.10e-003

9.15e-004 -2.36e-004


‖H(t)‖2 2.69e-006

Optimal cost 1.0857
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D. Conclusions

A time-scaling technique is presented for solving optimal control problems having

discontinuous control solutions. The problem is divided into a number of phases and

their lengths are treated as parameters of optimization. The least square method for

optimal control is used as the underlying direct transcription method. Application

problems are solved in MATLAB using SNOPT as the optimizer. The example prob-

lems demonstrate that the method performs well in solving the unknown switching

times and control histories for real-life problems.
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CHAPTER XI

CONCLUSIONS

This dissertation presented three novel methods for direct transcription of optimal

control problems. The method of Hilbert space projection (MHSP), the least square

method for optimal control (LSMoc) and the generalized moment method for optimal

control (GMMoc) were derived in a unifying framework based on the weighted residual

approximation of the state dynamics. These methods are flexible with respect to

the choice of basis functions as both local and global approximating functions can

be employed. Optimality analysis for all proposed methods was carried out and

conditions were specified under which the costate variables can be estimated.

The weighted residual formulation of an optimal control problem provides a

generic framework of analysis, under which three existing pseudospectral methods

were formulated and analyzed. It was shown that Legendre, Radau and Gauss pseu-

dospectral methods can be derived from WRM by judiciously choosing test and trial

functions along with an associated numerical quadrature scheme. Further, spectral

versions of LSMoc and GMMoc were derived by using global interpolating polynomials

as approximating functions.

Numerical results were presented to demonstrate the accuracy and convergence

of all three methods. It was seen that GMMoc transcription performs very well for

both local and global basis functions. The convergence rates of spectral GMMoc are

comparable to the existing pseudospectral methods like Gauss or Radau pseudospec-

tral methods. s-GMMoc has advantage over these methods because it does not suffer

from any boundary defects.

Based on the variational analysis of first-order optimality conditions for the opti-

mal control problem, an posteriori error estimation procedure was developed. Using
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these error estimates, an h-adaptive scheme was outlined for the implementation of

LSMoc in an adaptive manner. Several real-life examples were solved to show the

efficacy of the h-adaptive algorithm.

A time-scaling technique was described to handle problems with discontinuous

control, multiple phases or known control structure. A number of real-life examples

were solved to demonstrate the applicability of this technique.
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