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ABSTRACT

High Resolution lon Mobility Spectrometry with Increased lon Transmission: Exploring
the Analytical Utility of Periodic-Focusing DC lon Guide Drift Cells. (December 2010)
Ryan Christopher Blase, B.S., Truman State University

Chair of Advisory Committee: Dr. David H. Russell

Drift tube ion mobility spectrometry (IMS) is a powerful, post-ionization
separation that yields structural information of ions through an ion-neutral collision cross
section. The ion-neutral collision cross section is governed by the collision frequency of
the ion with the neutral drift gas. Consequently, ions of different size will have different
collision frequencies with the gas and be separated in the drift cell. A significant
challenge for IMS, however, is to separate ions with very similar collision cross sections,
requiring higher resolution ion mobility spectrometers. Resolution in IMS is of utmost
importance for the separation of complex mixtures, e.g. crude oil samples, proteolytic
digests, positional isomers, and ion conformers. However, most methods employed to
increase mobility resolution significantly decrease ion transmission through the mobility
device.

Herein, a periodic-focusing DC ion guide drift cell (PDC IG) is presented to
display its potential capabilities for higher mobility resolution with increased ion
transmission. The PDC IG utilizes unique electrode geometry compared to the

conventional uniform field electrode design. Electrode geometry can be defined by the



electrode inner diameter (d), thickness (t), and spacing (s). Specifically, the ratio of
d:t:s isequal to, or very near, 1:1:1. The PDC IG electrode design creates a non-
uniform (fringing) electric field-especially near the electrode walls. The design also
causes variations in the radial electric field which provides an effective RF as ions move
through the device and a radially confining effective potential that improves ion
transmission through the device.

In this dissertation the analytical utility of the PDC IG drift cell for ion mobility
separations will be explored. The radial focusing properties of the device will be
presented along with studies of electrode geometry and its effect on ion mobility
resolution and ion transmission through the drift cell. PDC IG drift cell length is also
examined to determine its effect on mobility resolution and ion transmission. Finally,
the PDC IG drift cell device is coupled to an orthogonal-acceleration time-of-flight mass
spectrometer as well as a modular, PDC 1G drift cell being adapted to a commercial

gqTOF mass spectrometer for IM-MS experiments.
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NOMENCLATURE
Cl Chemical lonization
CID Collision-Induced Dissociation
d drift electrode inner diameter
DMA Differential Mobility Analyzer
DMS Differential Mobility Spectrometer
Eor Radial Electric Field Amplitude
Eo. Axial Electric Field Amplitude
E. Central Electric Field
Er Radial Electric Field
Ec(r) Radial electric field in the radial direction / Radial E-field as function of r
E:(2) Radial electric field in the axial direction / Radial E-field as function of z
E, Axial Electric Field
E.(r) Axial electric field in the radial direction / Axial E-field as function of r
E.(2) Axial electric field in the axial direction / Axial E-field as function of z
ECD Electron Capture Dissociation
El Electron lonization
ETD Electron Transfer Dissociation
FAIMS High-Field Asymmetric Waveform lon Mobility Spectrometry

FT-ICR MS  Fourier Transform lon-Cyclotron Resonance Mass Spectrometry

GC Gas Chromatography



viii

IMS lon Mobility Spectrometry

IM-MS lon Mobility-Mass Spectrometry

K lon mobility constant

Ko Reduced ion mobility constant

LIT Linear lon Trap

MALDI Matrix Assisted Laser Desorption/lonization
MCP Microchannel Plate

m/z mass-to-charge ratio

0a-TOF-MS orthogonal acceleration Time-of-Flight Mass Spectrometry

PD Photodissociation

PDC IG Periodic-Focusing DC lon Guide
QIT Quadrupole lon Trap

r radial position or displacement

S drift electrode spacing

SID Surface-Induced Dissociation

t drift electrode thickness

Teit Effective ion temperature

TDC Time-to-Digital Converter

TOF Time-of-Flight

TOF-MS Time-of-Flight Mass Spectrometry
TW IMS Traveling Wave lon Mobility Spectrometry

V*(r) Effective potential in the radial direction, often denoted simply as V*



Vg

\Z

drift velocity
lon axial velocity

Axial position or displacement
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similar mass to that of the drift gas. This value was calculated from

the Ar™ in He gas reduced ion mobility value from the literature. [149]..

Table for determining the baseline shift through an RC circuit with
parameters of TOF frequency, TOF pulse width, duty cycle, and TOF
pulse amplitude to calculate a baseline shift correction voltage. The
parameters used for the TOF extraction in this experiment are shown

Table showing the applied voltages to electrodes in the ALILTLVS
injection energy experiments. The defined injection energy (in volts)
is calculated from the voltage drop between the ion mobility exit, IM2,
and the Qo quadrupole DC rod bias. Another important parameter for
the injection energy experiments are the pressures in the ion funnel
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Table 6. Injection energy conditions for standard peptide Angiotensin | (sequence
= DRVYIHPFHL). The potentials defining the injection energy into
the Qo quadrupole are depicted in red teXt........ccccvevieiveeiie e 174



1. INTRODUCTION: BACKGROUND OF ION MOBIILTY SPECTROMETRY

AND MASS SPECTROMETRY

1.1 lon Mobility Spectrometry

lon Mobility Spectrometry (IMS) is a gas-phase separation technique that
separates ions in terms of their size, specifically their ion-neutral collision cross section
[1]. Drift tube IMS uses the accelerating force of an electric field, E, to accelerate ions
while a neutral drift gas acts as an opposing force to the resulting ion motion. lons are

then separated by their collisional frequency with the neutral drift gas molecules.

Drift Cell

® lon2

NI LN

.' « " . e * .° * . — * Neutral Drift gas
. . - - L - * - L - ¢ L

e

Drift electrodes
(guard rings)

Figure 1. The basic operation of a drift tube ion mobility spectrometer.

This dissertation follows the style of the International Journal of Mass Spectrometry.



For ions of the same m/z, larger ions (ion 1 in Figure 1) have a greater collision
frequency and therefore experience longer drift times while small ions (ion 2 in Figure
1) have a lower collision frequency resulting in shorter drift times. The time it takes an
ion to traverse the drift cell until detection is referred to as the ion drift time, tq. This
time can be converted to a drift velocity, vq, as the ion drift time is measured and drift
cell length, L4, is known from construction of the apparatus. The drift velocity is used to
determine the ion mobility which is defined by the equation

v, =K=*E (1.1-1)
where K is the ion mobility and E is the applied electric field. The earliest
measurements of drift velocities in gases, the first ion mobility experiments, were done
by Rutherford and Thomson [2] followed by Zeleny [3].

The ion mobility, K, is dependent on the identity of the drift gas in which the
separation takes place [4]. Thus, an ion’s mobility will be different in He, Ar, N, etc. It
is also important to note that mobilities are converted to reduced mobilities for direct
comparison of results taken under different experimental conditions. The reduced
mobility is defined by the equation

K =k PT

0 (1.1-2)
Po

—||o

where p is the experimental drift gas pressure, T is experimental drift gas temperature,
and T, and p, are standard temperature and pressure. lon mobility data taken from
different ion mobility spectrometers and different laboratories can be compared when

reduced mobility values in the same drift gas are used.



1.2 Measurement of the lon-Neutral Collision Cross Section

The mobility of an ion can be used to obtain important ion structural information.
The ion mobility is inversely proportional to the ion-neutral collision cross section (K a
1/Q).  Specifically, the Mason-Schamp equation (1.2-1) illustrates this inverse

relationship [1].

1/2
QT:%{ 27 J (ij (1.2-1)
T, ) (K

In the above equation, z and e are number of charges and elementary charge, N is
number gas density, W is reduced mass, kg is Boltzmann’s constant, T is the effective
temperature of the ion, and K is the ion mobility. Notice that the ion-ne