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AbstractAn index structure is one of the access methods extensively utilized in the data-base area. It de�nes how access to the data stored in pages on disk is made by permit-ting the retrieval of stored objects through a de�ned key, that is an attribute of theobject. A multi-dimensional (dD) index de�nes several attributes non-concatenatedas its key. This work is devoted to the study of a range of multi-dimensional ac-cess methods that could solve the problem of retrieving spatio-temporal objects inobject-oriented database applications. The study of some performance parametersand the comparison of �ve extensions to the selected index method is also included.After presenting a comparison between several dD indexing methods, the R treestructure was selected to index spatio-temporal objects by treating homogeneouslyboth spatial and temporal dimensions. An object-oriented development techniquenamed TDSO was utilized to specify and design the RTree class extensions and theOTree class, which were implemented in C++.A novel approach to building dD indexes which attempts to improve the hit ratioby accommodating spatio-temporal search operators within the indexing mechanismis the �rst contribution. The development of a family of methods for indexing intodD spatio-temporal data together with preliminary testing of these techniques is thesecond contribution of the work. We also show a substantial improvement in termsof reduction in wasted space through a redistribution policy and the achievement ofbetter hit ratios and fewer disk accesses in some range searches. In general, we haveprovided support for the usefulness of the TDSO and object-oriented techniques,which led to a very exible schemewhereby the indexing structure was easily adaptedto our problem.
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Chapter 1Introduction
An access method de�nes how the access to the data stored in pages on disk is made.Indexing is one of the access methods extensively used in the database area. Anindex permits the retrieval of objects stored in secondary memory through a de�nedkey which is an attribute of the object. A one-dimensional (1D) index de�nes akey that identi�es the object completely, called a primary key. A multi-dimensional(dD) index de�nes several attributes non-concatenated as its key. Each attribute iscalled a secondary key. Relational databases typically use the B tree or a variantcalled the B+ tree [BM72], [BU77], [Com79], [Bes84] data structure to index andcluster data within the tables supporting a particular database application. TheB tree structure is the more commonly used 1D index giving the best performancesin this category of indexes. This structure has also been utilised as a dD index whenseveral index attribute values are concatenated to have one only value as the indexkey for B tree indexing.The B tree index has many very good characteristics, that are very desirable ina multi-dimensional index [Fre93], such as :1. the tree is always balanced;2. worst-case single-object search, insertion (excluding overow) and deletion (exclud-ing underow) require no more disk access than the height of the tree. Thus, theaccess time for a single object is constant and predictable, for a given tree size;3. overow (split) and underow (merge) propagate only upwards in the tree;1



Chapter 1 2 Introduction4. high average leaf and branch node occupancies, more than 67%;5. worst-case node occupancy near 50%;6. the index size is always directly proportional to the quantity of indexed objects;7. the method is fully dynamic, no reorganizations are required.Object-oriented databases have been developed using B trees to index their ob-jects with a number of di�erent strategies [BK89], [MS90], i.e. the hierarchical indexwhich indexes objects by using their object identi�er concatenated with their classnumber in the system.We are interested in the study of a diversity of dD access methods that couldful�ll B tree's main characteristics and could solve the problem of retrieving spatio-temporal objects in object-oriented database applications.1.1 Motivation and research objectivesOriginally, we were looking for a good index method to index multimedia, object-oriented, and spatial objects to be used in the D/K model proposed by a colleaguein his PhD thesis [Mon93]. By studying the D/K model we realise that it speci�esspatial classes such as topological classes (SpChain, SpNode, and SpPolygon), spatialobject classes (SpatialObject, SpatialRepresentation, SpWindow, and Map), spatialgraph classes (directed and undirected), etc. Figures 1.1 and 1.2 show a summaryof this model, where the SpatialObject class has one attribute called representationsthat refer to another class named SpatialRepresentation class. This means thatany spatial object in the system has to be reachable from the SpatialObject classand has to have several representations based on scales, geometry, and positionattributes. This model was proposed to manage two spatial dimensions and it alsosupports graphical objects. A graphical object has attributes as coordinates (asequence of points), a bounding box (mbr), and drawingDot (a drawing pattern).The relationship between spatial and graphical objects is made by the geometryde�ned for the SpatialObject class. This geometry is speci�ed by a set of objects ofthe GraphicalObject class. Thus, any spatial object has a point representation aswell as an mbr representation in the D/K model. In our approach, we take thesetwo representations as a base to develop our work where the spatial object shapeis approximated by a minimum bounding box, and the index structure does notexactly evaluate a query, but only yields a set of candidates, that may ful�ll thequery condition.



Chapter 1 3 IntroductionBasic classesMagnitude classes Collection GraphicalCharacter ArrayOf[X] Form (Image)Date String / Text PointTime SetOf[X] RectangleInteger ListOf[X] ParagraphFloat Dictionary[X,Y]Association OrderedCollectionOf[X]D/K multimedia classesTextual Graphical Image HypermediaText GraphicalPoint Image UnitParagraph Line LinkPolygon ButtonWindow HyperNetworkFigure 1.1: Basic and multimedia classes of the D/K model.
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Chapter 1 4 IntroductionResearchers working on graphic and on geographic applications have createdmany dD index structures to be used in their research areas. One of them is thequadtree [SW88], [Sam89], [FB74], that was specially created to manage raster datain two dimensions (2D) with good performance. However, the D/K model supportsvector instead of raster representation and we focus our attention in spatial indexingfor vector data.At the same time, researchers in the database area, working on non-standarddatabase applications as Geographic Information Systems (GIS), Computer AidedDesign (CAD) or Computer Aided Manufacturing (CAM), among others, have pro-posed other index structures, such as : the R tree [Gut84], the R+ tree [SRF87],the cell tree [Gun89], [GB91], the grid �le [NHS84], etc. These data structures werecataloged as dD access methods and they work mainly on vector data. They arenamed multi-dimensional because they use several non concatenated index keys toindex and cluster data. These several index keys are data attributes pertaining toreal space or not depending on the application. In the case of pertaining to realspace, i. e. geographic coordinates, the index structure is normally called a spatialindex [SW93], otherwise it is named a multi-criteria index.Multi-dimensional access methods can be divided into multi-dimensional pointaccess methods (MPAM), and spatial access methods (SAM). MPAM works withdD points that are indexed by regions of points where each region is stored in thesame data page. Example index structures representing MPAM are K-D-B tree, grid�le, and buddy tree. On the other hand, SAM organises spatial objects according tospatial position and extension, normally indexed by the minimal bounding rectangle(mbr). The spatial dimensions are basically space coordinates, 2D or 3D. ExampleSAM structures are the spatial k-d tree, the R tree, R+ tree, and cell tree.Non standard database applications may include a temporal domain togetherwith a spatial one. Spatio-temporal databases can be used for these kind of applica-tions, and each time more people realise the advantages of having temporal data inthe database. Actually, CAD/CAM software includes a kind of temporal manage-ment in its version manager. To deal with this combination of spatial and temporaldata, it is desirable to have speci�c access methods to obtain better system perfor-mance. These access methods are called spatio-temporal, and two of them are theRT tree [XHL90] and the TR* tree [SK92]. A spatio-temporal object may changeits spatial location and/or shape at di�erent time intervals. Therefore, the objectremains the same but its spatio-temporal state changes.The two methods mentioned above are both based on the R tree index. It is



Chapter 1 5 Introductioninteresting because the R tree is a generalization of the B tree to higher dimensions.Therefore, the R tree is a dD access method which has the majority of the goodcharacteristics already de�ned for the B tree. The only one that R tree does notmaintain is that mentioned in point 2, where it requires more disk accesses than theheight of the tree for worst-case single-object search, insertion (without overow),and deletion (without underow). This last characteristic is due to the presence ofoverlapping regions in the non leaf nodes of the R tree.The approach of the work by X. Xu et al. in [XHL90] is to include temporalattributes in the index key along with the spatial attributes. This is the approachadopted in the thesis.Databases and indexing are two areas narrowly related because the �rst onemainly uses index structures to manage objects stored on disk. Object-orienteddatabases (OODB) integrate concepts from the object-oriented approach with data-base capabilities. To manage objects in OODB, an identi�er is assigned to eachobject in the database, named ObjId which is used as the indexing key. There areseveral kind of indexes in this area, but all of them are based on the B tree. TheObjId is the primary key and requires a 1D index structure, although it is possibleto use a dD index if keys other than the ObjId are included.Spatial databases contain spatial objects and de�ne spatial object location as itsindex key, but this key is composed of many values normally representing X and Ycoordinate values. Therefore by nature, the spatial key is multi-dimensional and allof the spatial indexes that use this index key are multi-dimensional too.In the case of temporal databases, temporal objects have at least one temporalattribute. If several time dimensions are considered like valid time and transactiontime, then a dD index is required to manage these dimensions separately. But ifonly one time dimension, then the B tree is the best 1D index method.We are interested in the study of a diversity of dD access methods to decideon a method which permits spatial, temporal, and spatio-temporal retrieval andoperations of spatial, temporal or spatio-temporal objects managed by following theobject-oriented approach as our �rst objective in this work.After choosing the R tree structure, we were interested to explore and test possi-ble index class extensions to try to obtain better performances in retrieving spatial,temporal, and spatio-temporal objects as our second objective.



Chapter 1 6 Introduction1.2 Problems and proposed solutionsIn this section, we describe some problems related to spatio-temporal indexing. Firstof all, we focus on the spatial object retrieval by an index method which attemptsto avoid the extra geometric calculus due to object shape. Secondly, we study thespatio-temporal indexing problem by using a dD structure and treating both metricshomogeneously. Finally, we deal with the problem of testing some of the solutionswe propose in this work.1.2.1 Spatial indexing without extra geometric calculusThe spatial access methods present the general problem of retrieving spatial objectsyet avoiding the extra geometric calculus due to object shape. This problem is im-possible to solve without object partitioning which we wish to avoid, because objectpartitioning divides spatial objects into several pieces that are indexed separately.For retrieving one or several spatial objects, more index searches must be performedthan those needed without object partitioning, with a corresponding larger searchtime. Additionally, there is not a �xed number of pieces for partitioning a speci�cspatial object making it impossible to calculate an average search time for spatialobjects.We propose a new index structure named the O tree, which de�nes two containersto index spatial objects. One of them is the mbr and the other one is another mbrbuilt rotated 45 degrees in relation to the X-Y axes. These two containers forman irregular octagon that better de�nes the object shape in case of polygons, andpermits less extra geometric calculus in spatial queries. But, the original problempersists because object shapes can take any a variety of forms. A good approach totry to solve this problem is the TR* tree where objects are partitioned in severaltrapezoids and each of them are indexed separately. We do not follow up thissolution because of object partitioning.1.2.2 Spatio-temporal indexingWe de�ne a spatio-temporal object as an object that has at least one spatial andone temporal property. It can be represented by a four tuple containing (ObjId,spatialAtt, temporalAtt, att), where ObjId is the object identi�er, spatialAtt is thespatial location and/or shape, temporalAtt is the temporal property, and att repre-sents other properties di�erent from those spatial and temporal.



Chapter 1 7 IntroductionThe problem of indexing spatio-temporal objects is then a problem of de�ninga dD index, because both spatial and temporal metrics of the object are multi-dimensional. We propose the object-oriented R tree extended with spatial, tem-poral, and spatio-temporal search operators. In this extension, we consider threegroups of relationships among objects, namely: spatio-temporal, spatial, and tem-poral. In spatio-temporal, we only consider the topological relationships among ddimensional rectangles, where spatial and temporal dimensions are treated homo-geneously. The d dimensions de�ned for these objects are internally representedby using a unique format unifying data representation for homogeneous treatment.We also consider multiple combinations of the de�ned search operators �nding aminimal set of them. A brief summary of this work is presented in [BR97b].To implement the R tree index, we choose the object-oriented approach buildingthe RTree class in C++. This class was formally speci�ed and designed obtaining�ve extensions, where each extension di�ers from the other in some aspect to theimplementation. These extensions were made to test which one performs best aftera comparison of its results. Because of the facilities of the object-oriented approach,we built the O tree, which is our proposed index method based also on the R tree.We call it the sixth extension, where we only modify some functions of the R treeoriginal class, and delete all temporal and spatio- temporal functions only conservingthe spatial ones.In order to solve the problem of choosing the best extension that we have, exper-iments based on four di�erent kind of data were designed. Real data was obtainedfrom some institutions, but we did not �nd appropriate data to run and test some ofthe extensions. The real data available was preprocessed obtaining a compacted dataset, but was insu�ciently demanding in terms of the quantity required to test theextension fully. Therefore, we generated datasets for points uniformly distributedin 2D and 3D space and in space-time, respectively. Several important parameterswere de�ned, in order to compare the extensions and make conclusions about whichis the best extension we had.1.2.3 D/K spatio-temporal objects indexingWe extend the original D/K model to support two more classes of objects, temporaland spatio-temporal, respectively. The original proposition about an integratedindex structure [Bes93], which supports multimedia, spatial, and object-orientedinformation systems was changed to one supporting spatio-temporal objects too.



Chapter 1 8 IntroductionThus, each spatial object has several representations based on scales, geometry, andposition attributes. This latter attribute is represented by a point. It suggests theneed of a MPAM for indexing spatial objects in the D/K model. Nevertheless, thismodel uses graphical objects too containing an mbr attribute used to represent thegeometry of the associated spatial object. As we say before, any spatial objecthas a point representation as well as an mbr representation in the D/K model. Inconclusion, the choice of an indexing method was not trivial, but it had to be amethod that can support both point and spatial indexing. We found in the R treea solution because its entries are written as coordinate intervals where a coordinatepoint can be represented by an interval of zero length.As we mentioned before, the D/K model follows the object-oriented approach,therefore an index method is needed to treat object identi�ers and another indexto support spatio-temporal objects. It suggests the use of an access method thatseparates the spatio-temporal index itself from the data object �le. Thus, the celltree cannot be used without modifying its conception, and the R tree may be useddue to its good characteristics and its adequacy to this problem.1.3 Organisation of the thesisThe rest of this work is presented as follows: Chapter 2 describes the principalmulti-dimensional access methods, highlighting the importance of object indexingand discussing the main characteristics of each of the presented index structures. Itbegins with some multi-dimensional point access methods, followed by those meth-ods called spatial access methods, and �nishing in a summary of both types ofmulti-dimensional indexing methods, shown in a comparative table. It also includestwo spatio-temporal indexing methods, both based on the R tree structure. A briefsummary of these structures is included in [BR97a].The main spatio-temporal concepts used in spatio-temporal object-oriented data-bases is speci�ed in chapter 3. These concepts are presented beginning with themore general object-oriented concepts related to objects, relationships, and object-oriented databases. After that, is described spatial objects, and temporal ones.Finishing with spatio-temporal objects, relationships, and indexing characteristics.We also mention the approach to extending of the D/K model to support spatio-temporal objects that will be appear in [BM98].Chapter 4 presents an object-oriented formal model of the R tree structure. Atthe beginning, we include some design characteristics to better explain the bases of



Chapter 1 9 Introductionour formal model, and we �nalize with the presentations of the requirements for theRTree class extensions.An object-oriented R tree design and implementation is explained in chapter 5.It contains the speci�cation and implementation of the RTree class by using theObject System Development Technique (TDSO) [Bes95]. It also speci�es R treeextensions based on the original one which is extension 1, and we discuss in detail theseveral possible spatio-temporal operators to support spatio-temporal relationships.A paper where is presented the �rst four extensions is reported in [BMR96].Chapter 6 contains a description of the kind of data that we use to test theR tree extensions, the experimental design, and a discussion of the results obtained.The conclusions and future work of this thesis are described in chapter 7. Abrief summary of the main characteristics of some Object-Oriented Database Man-agement Systems is presented in appendix A, including a comparative table. Ap-pendix B contains the rest of the TDSO implementations corresponding to eachextension of the tree. Finally, some results obtained from the experiments, and adescription of the kind of �les used to test extension 6, are included in appendix C.



Chapter 2Multi-dimensional access methods
Access methods are data structures that determine how the access to the data storedin pages on disk is made. One of these access methods is named indexing. In thisthesis we are concerned with data access based on multidimensional search criteria,such as multidimensional point access methods (MPAM) and spatial access methods(SAM). A MPAM partitions the data space into regions, such that all records in oneregion are stored in the same data page. A SAM organises spatial objects accordingto spatial position indexed by their minimal bounding rectangles (mbr). The mainstructures that represent MPAM are K-D-B tree, grid �le, and buddy tree; thoserepresenting SAM are spatial k-d tree, R tree, R+ tree, and cell tree. We summarizethe main characteristics of each access method and we present a table comparing themain structures in terms of several properties such as nodes of the structures, order,spatial technique, spatial object, insertion and deletion of data objects, handling ofobjects, fragmentation.An index permits the retrieval of objects stored in secondary memory througha de�ned key which is an attribute of the object. This key may be either oneattribute that identi�es the object completely (called the primary key), or sev-eral attributes that, concatenated, form a primary key, or several attributes non-concatenated (taken separately). In the last case, each attribute is called a secondarykey of the object. In this chapter, we are interested in those access methods thatpermit object retrieval by secondary keys. These methods are known as multikey,multiattribute, or multidimensional access methods as well.10



Chapter 2 11 Multi-dimensional access methodsOur main objective is to study a variety of these methods to decide on a methodwhich permits spatial retrieval and operations on spatial and/or temporal objects.Following the object-oriented approach, a spatial object must belong to a class ofspatial objects which has as its instances the whole of the objects that contain spatialproperties. By spatial properties we refer to geometrical (shape, position, and size)and topological (adjacency, connectivity, and inclusion) properties, where we shallassume the topological properties can be derived from the geometrical ones1. Themain retrieval operation of spatial objects is made by location in space, and themajority of the spatial access methods take the position or some property related toposition, as the de�ned key. Some methods developed for indexing raster data (e.g.quadtrees) may also be applied to vector representation, but do not consider thesehere. We are also interested in temporal access methods for the mixed model, andmore speci�cally in methods that could treat objects varying in space and time. Wede�ne a temporal object class which contains all time varying objects with temporalattributes. These objects are mainly retrieved by the temporal attributes which areused to index them. Temporal is a generic term implying some type of time supportin the database.To build and present each access method, we use some real data shown in �g-ure 2.1. The �rst column named ObjId is the object identi�er, the second one isthe minimal bounding rectangle (mbr) which actually covers that object, the thirdone represents other data relevant to the application, and the last column indicatesthe object's centroid. This last column is needed to build only one of the indexingmethods mentioned below. Objects covered by mbr are parcels of land at Caroracity.Section 2.1 below gives a description of some multidimensional point access meth-ods basically summarized in terms of their main characteristics which are presentedin the cited bibliography of each method. Section 2.2 presents, in a similar manner,concepts and data structures used in spatial access methods. Section 2.3 summa-rizes in a comparative table the access methods named in the two previous sectionsincluding a brief description of each property that is mentioned in the table. Twomain spatio-temporal access methods are presented in section 2.4. Finally, somecomments and conclusions are included here as well as a tabular comparative anal-ysis.1This ignores the issue that topological relationships based on geometrical may change withgeometric scale.



Chapter 2 12 Multi-dimensional access methodsObjId mbr Other data CentroidO1 318,124:374,195 66 346,159.5O2 287,124:318,147 73 302.5,135.5O3 326,117:382,188 66 354,152.5O4 252,151:282,175 73 267,163O5 287,147:345,220 66 316,183.5O6 305,147:454,215 50 379.5,181O7 239,139:272,168 73 255.5,153.5O8 481,127:535,194 50 508,160.5O9 454,127:481,147 60 467.5,137O10 522,327:540,341 50 531,334O11 423,172:476,241 55 449.5,206.5O12 382,166:410,188 60 396,177O13 449,152:503,219 50 476,185.5O14 423,152:449,172 60 436,162O15 282,151:340,225 66 311,188O16 391,198:444,266 55 417.5,232O17 345,195:374,220 60 359.5,207.5O18 507,194:535,215 50 521,204.5O19 418,176:473,244 55 445.5,210O20 391,176:418,198 60 404.5,187Figure 2.1: Some real data of Carora city of Venezuela.2.1 Multidimensional point access methodsThe main characteristic of a multidimensional point access method (MPAM) is thatit partitions the data space into regions, such that all records in one region are storedin the same data page. The division of the whole space into disjoint subregions isnormally made depending on the number of points in each subregion. As pointedout by M. W. Freeston in [Fre89]:"(Grid �les)"`...adopt a direct geometric representation of the data: the tuples of ann-ary relation are represented as points in an n-dimensional hyperspace, thedimensions of which are the domains of the n attributes. The problem is howto allocate the tuples in this hyperspace to the set of disk blocks (or pages) inthe �le. In geometric terms the obvious thing to do is to divide up the dataspace into a set of hyper-rectangles or block regions, each of which correspondsto a disk page. However, in order to maximize the storage e�ciency of the�le, the number of such regions, and the positions of their boundaries, haveto be arranged so that each of the corresponding disk pages has a high dataoccupancy.'There are three important attributes for classifying MPAM according to T. Selliset al. in [SRF87], they are i) whether the position of the splitting hyperplane is



Chapter 2 13 Multi-dimensional access methods�xed or not, ii) the splitting dimensionality, which can be only 1-dimension or alld-dimensions as the quad/oct-trees, and iii) the locality of the hyperplane, whichcan a�ect all the regions in the given direction or solely inside the region to be split.2.1.1 K-D-B treeThis structure was presented by J. T. Robinson in [Rob81] as a large, dynamic,multikey index based on a combination of the k-d trees [Ben75], and the B trees.The k-d tree is a multidimensional binary tree, where each level corresponds to adimension that is chosen cyclically among of the de�ned dimensions of the binarytree.It does not mention any spatial technique, but it de�nes a point as a value xiin a set formed by the cartesian product of a list of domains, and a region as aset of all points (x0; x1; : : : ; xK�1) satisfying mini � xi < maxi; 0 � i � K � 1.The concept of mbr is not mentioned, but it is used in the structure by means ofregion pages. Thus, region pages contain a collection of entries of the form: (region,pageId), and point pages have entries of the form: (point, location), where pageIdis a page identi�er, and location is a record identi�er.There are no overlapping regions because regions in the page are disjoint, andtheir union is a region. The choice of the splitting dimension in a region pagedepends on the cycle of partitioning which is a concept taken from k-d trees [Ben75].In underow conditions (i.e. when a page has less than the half of the maximumnumber of entries), reorganization is not used in Robinson's paper [Rob81], althoughan outline algorithm for this purpose is given. There is no performance comparisonwith other methods because the K-D-B tree is the �rst multidimensional structureafter the k-d trees of Bentley.An example of this structure is presented in �gure 2.2. It was built by followingthe algorithms presented by J. T. Robinson, with a dimension of 2 (K=2), a regionpage capacity (c) of 5, and a point page capacity (b) of 4. Figure 2.2 also shows bothregion pages and point pages formats. Each page is identi�ed by a number followedby the height of this page, the current number of entries, a dimension identi�er forthe last split in this page, and the corresponding entries. Symbols L and H meanlowest and highest numbers in each dimension, respectively. When the page sizeis �xed, region pages have less capacity than point pages, because entries in regionpages are longer than entries in point pages. This example shows a percentage ofoccupancy per page of 76.71%
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Chapter 2 15 Multi-dimensional access methods2.1.2 Grid �leThe grid �le was �rst presented by J. Nievergelt et al. in [NHS84] as a multidi-mensional, symmetric, and adaptable �le structure for handling large amounts ofmultidimensional data. It partitions a k-dimensional data space into k unidimen-sional arrays called scales, each representing a single dimension. Scales are indicesof a k-dimensional dynamic array named the grid directory, and each element ofthis directory is a pointer to a disk block called a bucket. Several directory cellscan share a bucket, and the region de�ned in this way is called a bucket region,which has a rectangular shape. It supports the two-disk-access principle for singlepoint retrieval. Thus, an exact match search is made by searching in each scalefor the correct subindex for each dimension, without any disk accesses, after that,subindices determine the correct directory cell where the bucket address is located.A second access reads from disk the bucket containing the required information.An extension of this structure presented by D. Hern�andez in [Her90] shows a gridindex that follows the same principles for the scales and directory, but the bucketformat is di�erent. In this section, we use the grid index to show an example of agrid �le built from the data of �gure 2.1, where bucket entries comprise a deletionag for that entry, an entry point, and the object reference. A bucket is composed ofa bucket identi�er and a set of bucket entries. Buckets contain references to objectswhich are stored on other �le. This extension cannot support the two-disk-accessesprinciple, but it can be used as a multiattribute index method. Figure 2.3 shows theexample mentioned above. A grid �le was built in a similar manner to the previousstructure, but each point in the mbr of an object is indexed separately becausethe grid index is not spatial. A highest value (HV) is used for each scale to makealgorithm shorter. The percentage of bucket occupancy is 76.92%.2.1.3 Buddy treeThis structure was presented by B. Seeger and H. -P. Kriegel in [SK90] as a newmultidimensional access method supporting point as well as spatial data. It is acombination of the R tree and the grid �le. Its main characteristic being that itavoids the partitioning of empty data space. Its name was taken from its partitioningand reorganization strategies based on a generalization of the buddy system, whichis obtained when a page is partitioned in two forming two new subregions of theoriginal one. In a buddy system, each page and its region have a unique buddy fromwhich it is split o�.
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Chapter 2 17 Multi-dimensional access methodsInsertions and deletions are restricted to exactly one directory path. The direc-tory grows linearly with the number of �le records. The data space is partitionedinto mbrs of the actual data, and the rectangles in directory pages are disjoint.It does not allow overow pages and it is not dependent on the sequence of datainsertions.The nodes consist of a collection of entries where each entry is a tuple of Ri,which is a k-dimensional rectangle and pi which is a pointer referring to a subtree orto a data page. The rectangles in the directory nodes must be a regular B-partitionof the data space which is de�ned as follows: A B-rectangle of a k-dimensionalrectangle S is another k-dimensional rectangle R which is generated by successivehalving of S. For an arbitrary rectangle R � D, where D is the data space, thereexists a smallest B-rectangle of D such that R � B. The B-rectangle of R iscalled the B-region of R, in short B(R). Thus, a set of k-dimensional rectanglesfR1; : : : ; Rkg; k � 1, is called a B-partition of the data space D if and only ifB(Ri) \ B(Rj) =�8i; j 2 f1; : : : ; kg; i 6= j.For merging two pages in the buddy tree, the regions of the pages must bebuddies, which is formalized as follows,Let V = fR1; : : : ; Rkg be a B-partition, k > 1, and let S; T 2 V; S 6= T .The rectangles S; T are called buddies if and only ifB(S[T )\B(R) =�,8R 2 V n fS; Tg.That is, two rectangles are buddies provided the B-region enclosing them does notintersect with the B-region of any of two other rectangles.For splitting a directory page, the B-partition of the buddy tree has to be aregular B-partition. Thus, a B-partition V = fR1; : : : ; Rkg; k � 2 is called regular,if and only if all B-rectangles B(Ri); 1 � i � k can be represented as a kd-trie. Akd-trie is a binary digital tree where the internal nodes contain an axis and twosubtree pointers, and the leaves have the rectangles of a B-partition.The directory of the buddy tree is unbalanced and this property is the reasonwhy it guarantees a linear growth of the directory in the number of �le records. Abuddy tree built with two dimensions, 5 entries/directory pages, and 4 entries/datapages is shown in �gure 2.4. Directory pages are also shown in the �gure, whereeach page has a page identi�er, the actual number of entries in a page, and thenode height or page level. A directory page entry is composed of an mbr and a pagereference. Data pages are leaf nodes of the buddy tree. Figure 2.4 was obtainedthrough following the directions presented in the original paper describing the buddy



Chapter 2 18 Multi-dimensional access methodstree [SK90]. Surprisingly, each time we have to split a node, the paper indicatedthat the Y dimension should be used for splitting, so we probably obtained a specialcase that is not very representative of the buddy tree shape for space partitioning.The percentage of page occupancy is 69.41%.2.2 Spatial access methodsSpatial access methods (SAM) are access methods for organizing multidimensionalspatial objects, like rectangles, polygons, etc. They are also known as methodsfor rectangles too. According to T. Sellis et al. in [SRF87], we can classify thesemethods into three categories such asMethods that transform rectangles into points within a space of higher di-mensionality. Examples: the k-d trees, and the grid �le.Methods that use space �lling curves, to map a k-d space onto a 1-d space.The idea is to transform k-dimensional objects to line segments using the z-transformation.Methods that divide the original space into appropriate subregions (overlap-ping or disjoint). Examples: the R tree, the R+ tree, and the cell tree.2.2.1 Spatial k-d treeThe spatial k-d tree (sk-d tree) proposed by B. C. Ooi et al. in [OSDM91] is astructure based on k-dimensional binary trees (k-d tree) presented by J. L. Bentleyin [Ben75]. According to its authors its main characteristics are that it uses objectbounding as a spatial technique that avoids both object duplication and objectdivision. Thus, it uses mbrs for indexing spatial objects. An mbr is de�ned as anarray of a single dimension containing the centroid, and extensions in each of the kdirections. It supports both intersection and containment search.At each node, a discriminator value is chosen in one of the dimensions to partitiona k-dimensional space into two subspaces, the high (HISON) and the low (LOSON)subspaces. It has two types of nodes, the internal nodes are of the form:(discriminator;maxLOSON; disc� value; loson� ptr;minHISON ; hison� ptr),and leaf nodes are of the form:(bound;min� range;max� range; page� ptr),where



Chapter 2 19 Multi-dimensional access methods
P13

P11

P8

P20

P16

P19

P5

P17
P12

P14

P10

P1

P7

P4

P3

P15P9

P18

P2
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Chapter 2 20 Multi-dimensional access methodsdiscriminator indicates the dimension that is being partitioned.disc� value is the value that partitions the space.maxLOSON is the maximum range value of the LOSON subspace.minHISON is the minimum range value of the HISON subspace along the dimensionspeci�ed by discriminator.bound is the dimension.min� range is the minimum value of objects in the data page.max� range is the maximum values of objects in the data page.page� ptr is the address of a page in which mbr and identi�ers of the object are stored.This tree is stored in a page tree which is not a binary tree, as is shown in�gure 2.5. Pages contain a page identi�er, a page height indicator or level, and thecurrent number of entries in this page. Entries in index pages are both internal andleaf nodes of the sk-d tree. The s2-d nodes are indicated by a node identi�er, a nodeag to recognise if it is an internal or a leaf node, followed by either the internalnode format described above in the case of an internal node or the leaf node formatin the case of a leaf node ag. Data pages contain mbrs of each object and theobject reference. The page occupancy obtained was 79.49%.The page tree was built following the splitting algorithm included in Ooi's paper.To split a page, the sk-d subtree that approximately splits the page in the middleis chosen. The chosen sk-d subtree is moved to a new page and page entries areupdated. Thus, each page begins with an internal node as its root. It is verydi�cult to obtain a balanced tree in this manner, and paging a binary tree is asubject that requires research.2.2.2 R treeThis structure is based on the B tree and it was �rst presented by A. Guttmanin [Gut84] for fast retrieval of data objects by their spatial location. It has similarproperties to the B trees, speci�cally that the index is completely dynamic, balanced,growing upwards only, and each tuple has a unique identi�er. We summarise theB tree characteristics as follows:1. the tree is always balanced;2. worst-case single-object search, insertion (excluding overow) and deletion (exclud-ing underow) require no more disk access than the height of the tree. Thus, theaccess time for a single object is constant and predictable, for a given tree size;
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Chapter 2 22 Multi-dimensional access methods3. overow and underow (merge) propagate only upwards in the tree;4. high average leaf and branch node occupancies, more than 67%;5. worst-case node occupancy near 50%;6. the index size is always directly proportional to the quantity of indexed objects;7. the method is fully dynamic, no reorganizations are required.The main di�erent property of the R tree with the B tree is point 2, where theworst-case single-object search insertion (excluding overow) and deletion (excludingunderow) require several disk access because overlapping regions.The leaf nodes contain entries whose format is (R; tuple-identi�er) where R is thebounding box of the spatial object indexed R=(R1; : : : ; Rk) where k is the numberof dimensions and Rj is an interval [a,b] describing the extent of the object alongdimension j. When an object extends outward inde�nitely, either one of the intervalboundaries or both may be in�nity which is represented by a special character inthe tree. Non-leaf node entries have the format: (R; child-pointer) where the child-pointer is the address of a lower node in the tree, and R covers all the rectangles inthe subtree.Insertions and splitting are made as in the B tree. A new entry is inserted in thecorresponding leaf node after �nding it in the structure. The insertion algorithmcalls the splitting algorithm, when the leaf node is full. To split a full node normallythe middle of the node is chosen, leaving half of the entries in the original node, andstoring the rest of the entries in a new node, which is the brother on the right of theold split node. Deletions are handled by searching the existing entry, and �ndingthe leaf node corresponding to the entry to be deleted. The deletion algorithmcontains the call to the merging algorithm which is named condensed tree in theoriginal paper. The condensing is made by re-insertion because the conditions formerging nodes are di�erent from the ones of the B tree due to the spatial propertiesof the objects included in the mbrs. Re-insertion means the remaining entries in anode that underows must be inserted again in the tree by following the insertionalgorithm. Then, the empty node can be deleted.Finally, this structure uses the technique of overlapping regions in the non-leafnodes, and it only supports non-zero sized objects. An example is presented in�gure 2.6. Each node is stored in a page, that has a page identi�er, the actualnumber of entries, and the page level. Internal pages contain non-leaf node entriesand leaf pages store leaf node entries. The percentage of page occupancy obtained
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Chapter 2 24 Multi-dimensional access methodsa multidimensional index structure based on the storage and retrieval of rectanglessaved on pages in secondary storage. The mbr is used for handling more complexobjects such as circles, polygons, etc.A leaf node entry of the structure has the following form (oid;mbr), where oidis an object identi�er, and mbr is the minimal bounding rectangle that covers theobject identi�ed by oid. An intermediate node entry has a similar format which is(p;mbr ), where p is a pointer to a lower level node of the tree.The structure has similar properties to the R tree and the K-D-B tree in relationto the balance of the tree. It di�ers from the R tree in that two entries of anintermediate node cannot overlap. To search and insert an mbr in the structure,the R+ tree algorithm uses the same concepts used by B trees. The main di�erenceis referred to as the split propagation that is made upwards and downwards in thestructure. This latter splitting strategy has the disadvantage that it permits treedegeneration which enforces periodic reorganizations of the whole structure.The deletion algorithm follows the same strategy as for the R tree, but for theR+ tree the deletion of several mbrs from leaf nodes is sometimes necessary be-cause the insertion routine may introduce more than one copy for a newly insertedrectangle.The authors do not give in their paper details about the tree reorganization.They claim that the R+ tree improves search performance compared with the R tree,especially in the case of point queries. Because the R+ tree does not permit overlap-ping regions, it starts to split the �rst overowed leaf node by including the wholespace in the �rst internal node. This whole space is represented by special charactersnamed L and H. L means the lowest value in this dimension and H is the highestvalue in this dimension.Figure 2.7 shows an example that was built using the same data as previousstructures. Similarly to the R tree, internal pages contain internal node entries andleaf pages include leaf node entries. A page is identi�ed by a page indicator, andadditionally contains the actual number of entries and its height in the tree. Thestructure resulted in a 67.44 percentage of page occupancy in the example shown.2.2.4 Cell treeThe spatial access method more recently presented in the reviewed bibliography isthe cell tree which was created by O. G�unther and presented by him in [Gun89]. Acell is a convex set of points which is the representation of the data objects in the
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Chapter 2 26 Multi-dimensional access methodstree. Thus, the cell tree uses cells instead of mbrs. This is a balanced tree structurewhose leaves contain cells, and whose interior nodes contain convex polyhedra. Inthe author's �rst paper, he presented the cell tree as `an object-oriented dynamicindex structure for geometric databases'. Later on, in another article [GB91], hereferred to the structure as `a new dynamic access method for spatial databases'. Itseems to us that both a�rmations are right, and we take the cell tree as a SAM.The nonstandard database applications where the cell tree can be used are similarto those of the R+ tree. It is based on both the binary space partitioning (BSP)tree, which is a binary tree representing a recursive subdivision of a given space intosubspaces by means of (k-1)-dimensional hyperplanes, and on the R tree. The cellsare indexed based on its location in space. The tree is dynamic and it does not needperiodic reorganization.A leaf node entry represents a cell by a tuple, (G;D;A), where G is the geometryof the cell including the identi�er,D is the data object represented by a convex chain,and A is a set of all attributes of D that may be required to answer a query in thegiven application. An interior node contains entries of the form (cp; P;C) where cpis the address of the descendant node, P is a convex, not necessarily bounded, k-dimensional polyhedron called a partition, and C, named the container, is a convexsubset of P , which also contains each cell in the subtree.It is a balanced tree, each tree node corresponds to exactly one disk page, andhas an order m for specifying the minimum number of entries in an interior node.The clustering of the data objects depending on their location in space is an intrinsicproperty of the cell tree. The use of the clipping technique permits the partitioningof space into regions that do not overlap.Insertions are made in a similar manner to B trees because new cells are addedto the leaf nodes, that are split when they overow. The splitting strategy onlypropagates up the tree, but sometimes it is possible that there is no hyperplane thatsplits a leaf node. In this case, the leaf node is stored using overow nodes. Deletionsare treated like deletions in a B tree as well. Condensing the tree eliminates emptyleaves and it only propagates up the tree. A cell tree with m = 1 where partitionsand containers are mbr is a special case of the R+ tree.Pages are identi�ed by a page indicator, the current number of entries and thepage height. Additionally, leaf pages contain a page indicator to allow for overowpages, which are treated here as a single linked list of pages.Figure 2.8 presents an example where mbrs are used as containers, m=2, andpartitions are made in rectangular shapes. It can be seen that the cell tree fragments



Chapter 2 27 Multi-dimensional access methodsobjects. For example, the �gure shows that object 6 is fragmented eight times, sothe O6 reference appears in six di�erent leaf pages. It is important to highlight thatpage 3 has an overow page identi�ed by page eleven. This situation is attainedbecause the splitting algorithm fails to �nd a hyperplane to split the page. Theauthor claims that this situation seldom arises. The page occupancy reached by theexample is 73.91%.2.3 Properties of comparison and the compara-tive tableBefore presenting the comparative table between MPAM and SAM, we briey de-scribe each property of the table. Comments included in the table are taken fromeach author's paper for each structure. When a concept is not present in the re-viewed article, the message "not referenced" is written in the appropriate column.In table 2.1, under the property named general characteristics, we mention themost relevant property of the structure, generally, based on other known structuresas B trees or hash tables. Nodes mainly describe the types of nodes supported bythe hierarchical structure when relevant. These types are better shown in �gures,but we omit these �gures here because we do not consider this level of detail. Theorder is an important property because the majority of the proposed structuresfollow the B tree's principles, considered by people as the best properties that anaccess method should have [Fre93]. That is the reason why the majority of thestructures are based on the B tree. The order de�nes the minimal and maximalnumber of entries in a node. It is important to obtain node occupancy in averageand in worst-cases. An average node occupancy of more than 65% is consideredgood.In table 2.2, the next property is spatial object. It basically indicates the shapeused for treating the spatial object indexing. Rectilinear means the use of boundingboxes associated with regions and spatial objects themselves. The majority of thestructures usembrs parallel to the X-Y axes because this simplest shape of a possibleobject container, but other shapes may be used as well. The use of mbrs leads tominimumstorage space, but precludes speci�c object retrieval because many objectscan �t in the samembr. On the other hand, the use of a more complicated containershape needs more space in each node because entries are longer, but increases theprecision of retrievals because the container shape is near the object shape.
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Chapter 2 29 Multi-dimensional access methodsPropertiesGeneralstructures characteristics Nodes OrderK-D-B tree Combination of Similar to the m: upper andB tree and k-d B tree nodes. lower bound astree. in B tree.Grid �le Adaptable and sym- It is not a tree. The concept ismetric multikey �le The data buckets not present.structure based on contain objectshash tables. in the same griddirectory.buddy tree Combination of Each directory node m: upper andgrid �le and R tree. contains a collection lower bound asAvoid partitioning of mbr. in B tree.empty data space.sk-d tree Generalisation of Two types of nodes, The concept isk-d tree to spatial binary tree nodes not present.case. It is not and page treebalanced. nodes.R tree Generalisation of Each node corresponds m: upper andB tree to higher to a bounding box. lower bound fordimensions. Leaves contain the the number ofobjects covered by a descendants of anmbr. interior node.m:lower,M:upperm � M2R+ tree Improvement of See R tree. The concept isR tree with respect not present.to search operators.Cell tree Combination of Each node corresponds m: minimumBSP tree and to a cell. Leaves number ofR+ tree. Data contain the cells entries inobject is represented whose interior nodes an interioras unions of convex correspond to a hier- node.point sets (cells). archy of nestedconvex polyhedra.Table 2.1: Comparative table. Part 1.



Chapter 2 30 Multi-dimensional access methodsThe spatial technique shows the name of the known techniques used to ex-tend a point indexing structure to a multidimensional one. These techniques aretransformation, clipping, and overlapping regions. The transformation techniquetreats objects in a d-dimensional space as points in a 2-dimensional space. Thus,a bidimensional rectangle described by (X1; Y1;X2; Y2) is represented as a point in4D space. The second technique, clipping, partitions the d-dimensional data spaceinto pairwise disjoint subspaces. Thus, an object is partitioned into several disjointsmaller objects so each smaller object is totally included in a subspace. Finally,overlapping regions permit overlapping subspaces such that objects are totally in-cluded in one of the subspaces. The �rst technique has the disadvantage that thetransformation must be chosen to preserve the spatial properties, and the third onepresents the problem of multiple path searches for retrieving a needed object.The property named insertion and deletion of data objects summarizesbriey how an entry insertion or deletion is made in the structure, and which levelof the structure is a�ected. In hierarchical structures, the new entry is normallyinserted in a leaf page, but to choose the appropriate leaf page, a descending pathsearch has to be done. Similarly, to delete an existing entry, the descending pathsearch is made to choose the leaf node containing the entry to be deleted. In non-hierarchical structures, the place where the new entry must be inserted or wherethe existing entry is lying, is chosen by using a function that transforms the keyvalue normally into an address value. This last method used in non-hierarchicalstructures is better than the former one utilised in hierarchical structures, when thevalue obtained after a transformation is unique for each key value in the application.Table 2.3 shows the position of the splitting hyperplane that can be adapt-able, when the position of the splitting either may be chosen according to conditionson data values, or �xed when whatever values are present in the structure, the pointof splitting is always the same. The advantage of the �rst of these splitting strategiesis that it tends to lead to a more compact index structure. The dimensionalitywhich can be in only 1-dimension or in all d-dimensions, indicates that the splittingposition may be put in one of the de�ned dimension at a particular time, or in thede�ned d-dimension as whole. In the case of choosing 1-dimension, this selectionmay be made cyclically by following a sequence of dimensions, or acyclically by se-lecting the dimension based on some de�ned selection policy. The locality of thehyperplane can a�ect all the regions in the given direction (called global), or solelyinside the region to be split (named local). The local strategy is generally preferredbecause the e�ect of the splitting policy is restricted to the overowed node.



Chapter 2 31 Multi-dimensional access methodsPropertiesSpatial Insertion anddata deletion ofstructures object Technique data objectsK-D-B tree Rectilinear. Not referenced. Combination of theB tree and k-dtree algorithms.Grid �le Rectilinear. Transformation. Insert/deletean entry in adata bucket.buddy tree Rectilinear. It can be implemented Reorganization re-with either clipping, stricted to nodesoverlapping regions, in the search path.or transformation.sk-d tree Rectilinear. Overlapping regions. As in the k-d tree.R tree Rectilinear. Overlapping regions. Insertion/deletioninvolves one leafentry.R+ tree Rectilinear. Clipping. Insertion/deletion mayinvolve more than oneleaf entry.Cell tree Not rectilinear. Clipping. Insertion/deletioninvolve several leaves.Table 2.2: Comparative table. Part 2.PropertiesPosition of Localitythe splitting of thestructures hyperplane dimensionality hyperplaneK-D-B tree Adaptable. One dimension Local, called(Not �xed) chosen brickwallcyclically. methods.Grid �le Fixed. Always One dimension. Global, calledby halving. grid methods.buddy tree Fixed. One dimension. Local.sk-d tree Adaptable. One dimension Local.chosen cyclically.R tree Adaptable. d-dimensional. Local.R+ tree Adaptable. d-dimensional. Local.Cell tree Adaptable. d-dimensional. Local.Table 2.3: Comparative table. Part 3.



Chapter 2 32 Multi-dimensional access methodsIn table 2.4, the binary division indicates how the division into the nodes ofthe structure is made. A division is balanced if it divides the region into subregionswith a similar number of objects into each one. This division can be based on eithera criterion for choosing the dimension of splitting or a criterion for positioning thepartition boundary or splitting hyper-plane.The splits/merges propagation presents the direction followed when one ofthe splitting/merging operations occurs, and in some cases, the number of nodesinvolved in these operations. It is considered a good direction if only the fathernodes in the path from the root to a leaf node are involved, in the case of hierarchicalstructures. For non-hierarchical structures, the propagation should only involve thestructure placed between the bucket containing the object and the structure used totransform the key value. A propagation up and down a tree is normally consideredto be a poor propagation strategy.Clustering describes if the structure imposes object clustering on disk pages,and if so, how it does it. In this case, we are interested in clustering the objects byproximity because the indexed objects are all spatial objects. Those structures thatdo not cluster objects by proximity are generally considered no good for indexingspatial objects. There are two cases where this point is not clear, so we mention themas not referenced. Intrinsic means that the clustering is imposed by the indexingmethod.Another possible classi�cation is showed by Frank and Barrera in [FB89], andpresented in table 2.5. The type of geometric data indicates if the access methodrefers to isolated points or regions, so it de�nes if the method is a MPAM or aSAM. To index spatial objects, SAMs are preferred over MPAMs. The handlingof objects can be cataloged as fragmenting, if the access method divides the ob-ject assigning each fragment to a unique page, or non-fragmenting, if the structuremaintains the integrity of the objects and performs extra disk accesses. One ofthe special requirements to index spatial objects is the non fragmentation of them,because they are not spatially decomposable. As mentioned in [Fra91],. . . objects are non-atomics (i.e., complex in the object-oriented sense)but non spatially decomposable (in spatial pieces that still have the samemeaning).The retrieval method takes into account the implementation of the mapping be-tween spatial and disk spaces by following either a tree (hierarchical methods) or afunction (hashing methods). Both are normally seen as good access methods.



Chapter 2 33 Multi-dimensional access methodsPropertiesBinary Splits/Mergesstructures division propagation ClusteringK-D-B tree Balanced. Dimension Only up the tree. Based on the lexico-is �xed according to graphically order.node dimension. Not by proximity.Grid �le Balanced according to Up the directory Based ona de�ned binary and the scales. proximity.radix intervalbuddy tree Balanced and regular Only up the tree. Not referenced.(represented by ak-d trie)sk-d tree Balanced. Choosing the Down the binary Not referenced.dimension of the long- tree and up theest side of the subspace. page tree.R tree Strict. The partition Only up the tree. Not necessarily. Worstboundary always lies case (no clustering):halfway along the one disk access forpartition interval. each data object re-trieved. Best case:all data object whosedata intervals arestored in the same Ror R+ tree node.R+ tree Balanced. See Up and down the See R tree.cell tree. tree.Cell tree Balanced. The parti- Only up the tree. Intrinsic. Each leaftion boundary can be node corresponds topositioned anywhere, a convex partitionaccording to arbitrary in space and all thebalancing criteria. cells in that parti-tion are actuallystored on the corres-ponding disk pages.Table 2.4: Comparative table. Part 4.



Chapter 2 34 Multi-dimensional access methodsPropertiesType of geometric Handling Retrievalstructures data of objects methodK-D-B tree Point-oriented non-fragmenting hierarchicalGrid �le Point-oriented non-fragmenting directbuddy tree Point-oriented fragmenting hierarchicalsk-d tree Region-oriented non-fragmenting hierarchicalR tree Region-oriented non-fragmenting hierarchicalR+ tree Region-oriented fragmenting hierarchicalCell tree Region-oriented fragmenting hierarchicalTable 2.5: Comparative table. Part 5.Finally, table 2.6 presents the last three properties. Periodic reorganiza-tion indicates if the structure needs reorganization of its nodes due to the split-ting/merging strategies. The majority of the structures need not be reorganizedafter an insertion or deletion, and this property is considered very good for an ac-cess method, because that means a structure which preserves its properties amongentries insertions or deletions. The column labeled advantages shows the mainadvantages presented by the structure highlighted by either its author or by othersresearchers. In a similar manner, disadvantages presents the main disadvantagesreferenced by researchers in the area.2.4 Spatio-temporal access methodsThese access methods are presented outside the comparison table because they arenot comparable with the previous ones. We include two access methods that areproposed speci�cally to deal with spatio-temporal data objects. A spatio- temporaldata object is an object that may change its location and/or shape at di�erent timeintervals. We only include here the RT tree presented by X. Xu et al. in [XHL90]and the TR* tree proposed by R. Schneider and H. -P. Kriegel in [SK92].2.4.1 The RT treeThis structure is proposed to deal with a collection of entities contained in imagesand representing spatio-temporal data objects, which have spatial and temporalattributes. An RT tree of order M is a height balanced tree with the index dataobjects in its leaf nodes containing entries (MBR, T, R), where the MBR is theminimal bounding rectangle that completely covers the data object identifying its
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PropertiesPeriodicstructures reorganization Advantages DisadvantagesK-D-B tree Not required. Least complicated No cluster by proximity.of the MPAM.Grid �le Not required. Only two disk access The directory does not expandin exact match queries. at the same rate as the data.buddy tree Not required. Avoid the empty space It is not balanced.partitioning. It doesnot depend on the orderof data insertion.The best performancesin relation to othersMPAM and the R tree.sk-d tree Not required. E�cient searching in Complicated splitting strategycase of intersections. of the page tree.R tree Not required. Least complicated Object intersection introducesof the SAM. an ambiguity in its location.Several search paths aretraversed in point search.Fail in partitioning nestedobject covers. Updatingby reinsertion causingpossible deadlock.R+ tree It is required Fast computation Possible degeneration of thebecause the of search operators. structure. Storage utiliza-structure can Guarantees a short- tion may deteriorate. Inevi-degenerate. est path search. table overlapping. Traversalof unpredictable length dur-ing insertion and deletion.Nested object covers are notsupported. Fragmentation.Cell tree Not required. Less disk accesses More storage space and CPUthan the others. time, use overow records inPoint and range case of nested object covers,searches are e�cient. traversals of unpredictableGuarantees a short- length during insertion andest path search. deletion. Fragmentation.Table 2.6: Comparative table. Part 6.
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S1’:0,1 S1*:0,1 S2:0,1

S3:0,1 S4:0,1 S5’:0,1 S5*:0,1 S6*:0,1 S6’:0,1

S8:0,1 S9:0,1 S10:0,0

S11:0,1 S12:0,0 S13:0,1

S14:0,1 S16:1,1

S15:0,1 S16:0,0

S19:0,1 S12:1,1

S17:0,1 S18:1,1

S20:0,1 S21:0,1 S10:1,1

S7:0,1Figure 2.9: The RT tree. Example taken from X. Xu et al. reference.spatial location and/or shape, T indicates the time interval from time Ti to Ts whichis the interval when the data object is at MBR, and R is the object reference in thedatabase. The nonleaf nodes contain entries of the same format, but the MBR iscalculated to cover all the MBR in its child node, and R is a reference to its childnode. All the leaf nodes are in the same level, the last one, and they are chainedtogether to permit sequential search. This structure allows MBRs to overlap in thenonleaf nodes. Figure 2.9 presents an example of this structure. We do not presentthe example by using the data of the last structures because this data does notcontain temporal information.The insertion process is similar to the R tree for the �rst image at a particulartime interval. When a new image comes at a di�erent time interval, the insertionprocess searches �rst the leaf node where the new entry is to be placed by checkingwhether there is an entry with the same MBR and the same data. If there is one,the time interval is expanded to contain the new entry; otherwise, checks are madeas to whether this node has enough room for a new entry. If not, the leaf nodeis split following a splitting policy, otherwise the new entry is inserted there. Thedeletion process is not mentioned in the paper, but it considers a reorganizationprocess to maintain the tree. The splitting strategy can be either based on a spatialcoverage minimizing the area of the MBR, or a time interval including overlappingtime intervals within the child node, or a semantic coverage based on the semanticknowledge about the images. The �rst splitting strategy is normally preferred. Ittreats spatial and temporal data separately, and no symmetrically favouring spatialprocessing over the temporal one. This is basically, a spatial structure extended tosupport time intervals.2.4.2 The TR* treeTo index polygonal objects, R. Schneider and H. -P. Kriegel in [SK91] have proposeduse of the decomposition approach, which handles complex polygonal objects bydecomposing them into a set of simple components as trapezoids by using the planesweep technique. This technique sends out for each vertex of a polygon, one or
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Figure 2.10: Example of the plane sweep technique.two rays into the interior of the polygon to the �rst edge encountered, as shown in�gure 2.10. The set of trapezoids is indexed with an TR* tree, which is derived fromthe R tree. Each leaf node contains a set of entries of the form (Oid, trapezoid),where Oid is the object identi�er assigned to the trapezoid, and trapezoid is acomponent of the decomposed polygon identi�ed by Oid. A non leaf node containsa set of non leaf entries having the same format as the R tree, that is (R,mbr)where R is the reference of the child node, and mbr is the minimum boundingrectangle of all rectangles in that child node.This structure is extended by the authors in [SK92] to contain temporal informa-tion as well as spatial. Thus, a time stamp ti is added to the leaf entries, which nowhave the following form (Oid, trapezoid, ti). To search an object, �rst a spatialsearch is performed to �nd all the trapezoids that answer the spatial condition, andsecondly a temporal search is done over this set of trapezoids, to select a subset ofthem ful�lling the temporal conditions.Summarizing, this structure is similar to the R tree in the non leaf nodes, andchanges the format of the leaf nodes to manage a set of trapezoids representingdecomposed polygonal objects. Because of the mentioned similarity, we can use�gure 2.9 that represents such a tree referred to the internal pages, and changingthe time intervals for time stamps. The leaf pages change its format to contain eachone of the trapezoids of the decomposed objects, and putting time stamps insteadof time intervals. As the previous structure, it is basically a spatial index extendedto support time stamps associated with the spatial information.SummaryIn general, the position of the object in space is the main key in retrieval operations.Thus, SAMs are the more recently proposed access methods which emphasise the use



Chapter 2 38 Multi-dimensional access methodsof the location in space as the more important attribute in indexing objects. SAMsattack the root problem of spatial objects indexing instead of extending a PAM withspatial retrieval capacities. A large number of index structures have been proposedfor handling multidimensional point and spatial data. Quadtrees and octrees aremainly used for raster representation and they are not included here.Following the comparative table, the R tree can be viewed as the simplest SAMthat can be improved by changing search operators and supporting nested objectcovers by overow leaf pages. In relation to the simplicity of the index structure,the K-D-B tree is the simplest and cell tree is the more complicated. R tree andK-D-B trees are especially good because they maintain many advantages of B treessuch as balancing and dynamicity, but the K-D-B tree does not cluster objects byproximity. The cell tree can be very e�cient because it stores cells of arbitrary shapeinstead of mbrs and the rest of the attributes in its nodes without having the dataobjects stored in a �le apart from the index, but fragmentation and use of overowleaf pages may well deteriorate this e�ciency.The grid �le structure handles e�ciently a collection of d-dimensional datarecords (d<10) where each dimension has a large and linearly ordered domain ofvalues. It supports access for each dimension separately, for each combination ofthese dimensions taken from two, three, four, etc until d-dimensions, which meansthat all the previous indexes are packed in this structure. Its main disadvantage isthat the directory grows large when the data distribution is non-uniform, thus itsuse is highly recommended only for uniform data distribution.The rest of the structures, excepting the sk-d tree, have simpler concepts andthey permit less complicated implementations. Among the better MPAMs, thebuddy tree properties may be seen as better than others, emphasizing the avoidanceof empty space partitioning, and the possibility of the use of any of the spatialtechniques (clipping, overlapping, or transformation).In summary, structures based on grid �les can be used to retrieve objects havingmultiple keys, where each key value is a point. If distribution of values is uniformthen the scale-based grid �le is recommended, otherwise the buddy tree is good.For fast implementation, the K-D-B tree is recommended for point data and R treefor spatial data. If fast retrieval is needed because the number of disk accesses isa crucial factor, then R+ tree is recommended using mbrs or the cell tree may beadopted by using object containers of an arbitrary shape. To have the possibilityof retrieving using multiple keys separately, the scale-based grid �les are preferred.If a low level of maintenance is needed, all the structures can be chosen except



Chapter 2 39 Multi-dimensional access methodsR+ tree, due to possible structure degeneration. For avoiding fragmentation, it ispreferable to avoid grid �le, R+ tree, and cell tree. To have a structure designedfor paged memory, it is not recommended to choose those based on binary trees,like sk-d trees. Finally, if data objects contain nested object covers, it is possible totake buddy trees that can manage this type of objects without overow pages. Ifoverow pages do not matter, then sk-d trees or the cell tree can be used.To handle spatio-temporal data objects, it is possible to use any of the mentionedstructures, but it is preferred to choose those that may easily be extended to includetemporal time intervals. In such a case, the RT tree is preferred due to the simplic-ity of its concepts. In the case of having complex polygonal objects, the solutionproposed by Schneider and Kriegel violates the requirements exposed by Frank in[Fra91] referring to the non decomposition of spatial data objects, but it is a veryinteresting proposition. Furthermore, these two index structures support temporaldata but favouring spatial processing over the temporal one. We are interested inan access method that may treat both types of data symmetrically, and that canfavour one over the other when the application requires it. For reaching that goal,we consider that the structure must be created based on both types of data, andalso permits separated searches under di�erent application considerations. Thus,we choose the R tree where the R tree nodes will contain d-dimensional rectangles(hyper-rectangles), and searches will be supported by adding either d-dimensional,spatial, and temporal operators.



Chapter 3Spatio-temporal concepts inOODB
A spatio-temporal object is an abstraction of an entity having an identi�er, a spa-tial location and shape, a temporal property, and some other characteristics thatdescribe it. This chapter deals with the description of this type of objects by pre-senting a brief summary of the main concepts in object-oriented databases. Themain purpose of this chapter is to de�ne object-oriented general concepts, and in-troduce spatial, temporal, and spatio-temporal databases, including SQL extensions.The chapter is organised as follows: Section 3.1 presents object-oriented objects,their relationships, and their utilization in object-oriented databases (OODB). Sec-tion 3.2 describes spatial objects and spatial databases that support the use of theseobjects. Section 3.3 deals with temporal objects supported by temporal databases.Section 3.4 contains the main concepts to index and query a spatio-temporal data-base. Finally, section 3.5 summarizes a way ahead for indexing spatio-temporalobjects.3.1 Object-oriented objectsThe object-oriented approach is based on the concept of ontology [Bun77], wherei) the world is composed of things (entities)40



Chapter 3 41 Spatio-temporal concepts in OODBii) the forms are properties of thingsiii) things are grouped in systemsiv) each system, except the universe, interacts with other systems in at least one wayv) each thing changes and obeys laws.An object, in the Ontologic sense, is any thing that can be known or representedby a subject. An entity is a concrete object that has properties and behaviour,represented by the state and the change in the state of its properties, respectively.In this theory, the real world is an aggregation of objects thata. have properties (attributes)b. have relationships with one otherc. obey lawsd. have state which is transformable based on eventse. change.In Computer Science, the object-oriented approach captures a portion of the realworld named an application domain, in terms of entities and treats these entitiesor objects based on the concepts of encapsulation and extensibility. Encapsulationprovides a form of logical data independence by encapsulating both data (structure)and programs (behaviour) of the object, and only permitting access to the objectthroughout a de�ned object public interface, where is indicated their methods thatcan be invoked by message passing. Whilst extensibility refers to the ability to ex-tend an existing object by adding structure through inheritance and/or behaviour tothe original object interface. Extensibility can be reached in two ways: behaviouralextension and inheritance. The �rst way is supported by adding more programsto the object, and the second one, by including new is-a relationships which aredescribed in the next subsection.3.1.1 Object-oriented relationshipsThese are is-a and part-of relationships. The �rst one describes an object class whichis-a specialization of some other object class. The second one expresses an objectcomposed by other objects. According to Hughes in [Hug91], these two relation-ships are supported by �ve abstraction concepts, such as: classi�cation, identi�ca-tion, aggregation, generalization, and specialization. Classi�cation groups objects
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SpatialObject SpatialRelationshipFigure 3.1: Object relationships.with similar properties and behaviour into object types or classes. Identi�cation issupported by an identi�er associated to each object that identi�es uniquely each ofthem. Aggregation or composition represents the part-of relationship among objectsby a higher level aggregate object. Generalization represents a set of objects withsimilar properties by a generic object. Specialization describes a set of objects withsimilar characteristics by a particularised object. Both, generalization and special-ization support the is-a relationship, and object inheritance. Figure 3.1 illustratesthese two relationships among objects. Each spatial graph is a graph which is com-posed of spatial objects, and spatial relationships. Graph class is a generalizationof the SpatialGraph class.3.1.2 Object-oriented databasesAn object-oriented database (OODB) is a database that integrates essential conceptsfrom object-orientation with capabilities of databases. The main concepts that haveto be supported by OODBs have been speci�ed by M. Atkinson et al. in [ABD+89],namely:object identity (identi�cation),types or classes (classi�cation),inheritance (generalization/specialization),



Chapter 3 43 Spatio-temporal concepts in OODBBasic classesMagnitude classes Collection GraphicalCharacter ArrayOf[X] Form (Image)Date String / Text PointTime SetOf[X] RectangleInteger ListOf[X] ParagraphFloat Dictionary[X,Y]Association OrderedCollectionOf[X]D/K multimedia classesTextual Graphical Image HypermediaText GraphicalPoint Image UnitParagraph Line LinkPolygon ButtonWindow HyperNetworkFigure 3.2: Basic and multimedia classes of the D/K model.complex objects which are built from simpler ones by applying constructors to them,such as: tuples, sets, arrays, bags, lists;encapsulation that provides a form of data independence by treating structure andbehaviour of the objects by using their operations;overriding that permits the rede�nition of operations resulting in a single name de-noting a set of di�erent programs; andlate binding that solves the problem of identifying which program with the samename is needed at run-time.To the best of our knowledge, there is not a unique and accepted object modelfor representing object-oriented databases as in relational ones. Because of this,W. Kim in [Kim90] de�nes OODB in relation to an object-oriented data model,suggesting that this data model is de�ned before the system is designed.In this work, we especially consider the D/K data model proposed by J. Montilvain [Mon93], because one of the purposes is the de�nition of an indexing method thatcould be used for supporting recovery and secondary storage management. Thismodel is an integration of some OODB, multimedia, and knowledge models. Fig-ure 3.2 shows the basic and D/K multimedia classes of this model already explainedand de�ned by Montilva in his PhD thesis.To support our indexing method, de�ned in the next chapter, three basic classesthat extend the D/K model basic classes are presented in �gure 3.3. The HR classrefers to the hyper-rectangles used in the de�nition of the index entries. A hyper-rectangle is a �nite set of intervals, one for each de�ned dimension (DIM) in the



Chapter 3 44 Spatio-temporal concepts in OODBBasic classesMagnitude classes Collection GraphicalCharacter ArrayOf[X] Form (Image)Date String / Text MPointTime SetOf[X] HRInteger ListOf[X] ParagraphFloat Dictionary[X,Y]Association OrderedCollectionOf[X]Interval
HR

2−DIM 2−DIM2
Interval

MPoint

FloatFigure 3.3: Extension to the basic classes of the D/K model.tree. This class generalises the Rectangle class of the D/K model. The Intervalclass is a pair of real numbers that de�nes the minimum and maximum values ofthe object interval. Finally, the MPoint is a multi-dimensional point composed ofd real numbers, one for each of the d dimensions already de�ned. MPoint is ageneralization to many dimensions of the Point class of the original model.Querying an OODB depends on the data model used in the system. There aretwo main attempts to standardise object-oriented models. The �rst one correspondsto the Object Model Group (OMG), presented by W. Kim in [Kim95]. This exten-sion is a superset of the structured query language (SQL), which uses keywords addedto the SQL commands to describe an object-oriented query. The second one is calledthe ODMG-93 group that presents its standard model in [ADF+94]. Both groupsuse a di�erent extension of the standard commercial relational database languagenamed SQL. Querying command in SQL is as followsselect listOfAttributesfrom declarationOfRelationswhere predicatesgroupBy groupingSpeci�cationorderBy orderingSpeci�cationThe SQL extension of the OMG is named OSQL, and that of the ODMG-93is called OQL, each one is detailed in the given references. Both extensions are



Chapter 3 45 Spatio-temporal concepts in OODBdeclarative languages as well as SQL, but the structures that they manipulate aredi�erent from (and generally more complex) than the structures (i.e. tables) thatSQL manipulates. They have a SQL syntax including some special operators andkeywords to deal with object-oriented concepts not supported by SQL standard. Asexamples of these operators and keywords, we �nd in OSQL the keyword atomicmeaning a bag of values, and distinct indicating a set of values, both are optionallyset in the select clause. In OQL, the keyword distinct has the same meaning as inOSQL, and additionally, we �nd the keyword struct referring to the construction of atuple of attributes. In particular, OQL supports object identity, complex structuredobjects (sets, bags, lists, etc), subtype and supertype relationships, and the abilityto access operations (methods) as well as attributes by considering all of them (eventhe query itself) as expressions. This last point, the ability to invoke object methods,is particularly pertinent here because it permits the use of spatio-temporal operatorsto deal with spatio-temporal relationships, which will be de�ned later in this chapter.3.1.3 Indexing object-oriented objectsThe main proposed and commercialOODBMSs use B+ trees as the indexing method,as described in the following references [MS90], [WK90], [Kim90], [Deu90], [MS86],[BK89].The work that studies this problem extensively is that of E. Bertino and W.Kim in [BK89], where it is shown that B+ trees can be used for the three types ofindexes considered in ORION system. A class-hierarchy index provides access to allobjects within a class hierarchy via some attribute, at1, say. The indexed attribute(at1) will be inherited downwards at the class level by virtue of the specialisationhierarchy so that all object instances will have a value for this attribute. Figure 3.4illustrates a class-hierarchy index rooted at class A which has two subclasses. Anested-attribute index is maintained on a class-composition hierarchy. The indexedattribute, at2 say, is inherited upwards at the object level by virtue of composition.Each object instance will have a value for this attribute either directly or throughone of its components. A nested-attribute index on a composed attribute at2 isshown in �gure 3.5. Remembering that at2 is referenced by composition, so it isalso an attribute of class A and class B. Finally, the two-dimensional index is anested-attribute index augmented with a class-hierarchy index for each class in thesequence of classes between the class and the class to which the indexed attributebelongs. This situation is presented in �gure 3.6. E. Bertino and W. Kim have
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class BFigure 3.5: Nested-attribute index on attribute at2.studied performance levels for each type, and for queries as well as updates. Aparticular result of this performance comparison is that nested-attribute (nestedindex) is preferred over class-hierarchy (path index) or two-dimensional index (multi-index) for the majority of queries.It is clear that the indexing problem in OODBMS is to maintain primary indexesover the primary key of an object which is its ObjId. In our case, we need toconsider secondary keys de�ned by the spatial location of a spatial object, and/orby date in temporal objects. Not all objects in a OODB are spatial, temporal,and/or spatio-temporal, so a primary index is needed to locate, to retrieve, and tomaintain objects in the system. Additionally, it is possible to include special indexes
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ObjIdFigure 3.7: Primary and secondary indexes in an object base.to support spatio-temporal access. If the spatial key and/or the temporal one areconsidered secondary in a speci�c application, then objects cannot be clusteredby these keys because the main index clusters objects by class. That situation isshown in �gure 3.7. Conversely, if the spatio-temporal key is the primary key in theapplication, spatio-temporal objects are then clustered by their location in spaceand associated date. Clustering is a DB technique used to store a group of objectsphysical close together on disk permitting a fast and an e�cient retrieval operation.In the case of the D/K model, the object identi�er index is supported by usinga pre�x B+ tree [Ram94], which is a special case of the B tree that improves it forcases having large pre�xes within the keys. A pre�x is a string forming the �rstpart of a compound word, i. e. D-OKIM and D-OLAN have as a pre�x D-O. TheD/K model presents large pre�xes within its ObjId which is composed of the classnumber and the instance number of the objects within its class. Thus, all of theinstances of a class are clustered on disk and the pre�x stored on the index pagesof the B+ tree is the class number. Spatio-temporal keys will be treated in the nextsections.The 1D search operations use two functions called exact match and range. Theexact match permits the retrieval of an object which completely matches the key ofsearch. The range search permits the retrieval of all objects whose ObjId is in therange of search. Examples of these two searches are Find the object associated withthis ObjId (exact match), and Find the objects of class XX (range). These searchfunctions are used intensively by the query language of the OODBMS. A summaryof some OODBMS is included in appendix A where some interesting parameters arede�ned and presented as tables.



Chapter 3 48 Spatio-temporal concepts in OODB3.2 Spatial objectsThe term spatial refers to space or relations of objects in space including both twoand three dimensions. According to D. J. Peuquet in [Peu85] `the term spatial dataapplies to any data concerning phenomenon areally distributed in two-, three-, orN-dimensions'. These dimensions are orthogonal and homogeneous. Further, shepoints out, `geographic data, more speci�cally, are spatial data which normally referto data pertaining to the earth... the term "geographic" data may also apply todata pertaining to other planets and objects in space'. One of the main applicationthat uses spatial objects is geographic information systems (GIS), according to S.A. Roberts et al. in [RGHH91], `a geographic information system (GIS) is an in-formation system that stores spatially referenced data and that makes provision forthe spatial representation of data to be displayed graphically'. In GIS, space refersto geographic space where geographic objects are related.Spatial data can be categorized into several types. First, point data is the cate-gory where each data element is associated with a single location in 2D or 3D space,such as locations of cities in a map at appropriate scales. Second, line data is associ-ated with a string of spatial coordinates representing isolated lines, elements of treestructures, or elements of network structures. The third type is polygon data whichis associated with areas over a de�ned space. Polygons can be subdivided into: iso-lated polygons (no point common to two or more polygons), adjacent polygons (atleast one boundary segment shared by two polygons), and nested polygons (one ormore polygons are placed inside other polygons). Fourth, some mixture of the abovetypes includes di�erent line structures mixed with points or mixed with polygons.In general, spatial models are considered to be linear in each spatial dimen-sion, and space is regarded as discrete or continuous. Space can be bounded orunbounded, but in the majority of GISs, a bound as well as a range is assumed. Abound forms the boundaries or limits of a space. A range varies between this bound.Normally, it is assumed a bounded space where a spatial range applies. Space canalso be absolute or relative, e.g. 52.62o latitude, and 6.18o longitude as absolute coor-dinates, and -4o west as a relative coordinate. Space has a distance function, calledhere location distance (LD(x,y)), satisfying the following properties:i) LD(x,y)�0 8 x,yii) LD(x,x)=0 8 xiii) LD(x,y)=LD(y,x) 8 x,yiv) LD(x,y)� LD(x,z)+LD(z,y) 8 x,y,z
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B.coveredBy(A)Figure 3.8: Topological relationships among MBRs.As pointed out by R. Snodgrass in [Sno92] "Information that is spatially inde-terminate can be characterized as don't know exactly where information". Spatialinformation can be indeterminate depending on system granularity. The spatialsystem granularity can be set to one metre and all of the spatial location identi�ershave to be expressed in this unit. This system has both a physical and a logicalrepresentation. The physical representation is expressed via a set of bits and thelogical one is the meaning of each bit pattern. In the majority of the systems, themetre is the unit adopted, which is de�ned as the length of the path traveled by lightin vacuum during a time interval of 1/299,792,458 of a second [Sno92]. A physicalrepresentation of 32 bits/dimension permits a granularity of one decimeter for twodimensions and moving up to 64 bits reduces the granularity to a nanometer. Thisphysical representation is used to choose the type of the spatial location key forimplementation purposes, and we will use 32 bits per dimension.3.2.1 Spatial relationshipsSpatial entities are related by many relationships, such as: topological (disjointness,containment, overlapping, coverage), directional (above or north, below or south,left or east, right or west), and proximity (near, far, between).Topological relationships have been treated in many references by M. Egen-hofer [EF88], [Ege89], [EH90], [EF91]. The topological interactions are describedby Egenhofer and Herring in [EH90] and reproduced here in table 3.1, where theobject-oriented notation is used to call the operator or function, that represents theassociated relationship, i.e. if k.disjoint(m)=true, then objects k and m are disjoint.The symbol b means the border of the spatial object and i means its interior. Eachof these describes the intersection result cataloged as empty (;) or non-empty (:;).Intersections are done between boundaries (b\b), interiors (i\i), and its combina-tions. Figure 3.8 shows the graphic representation of these relationships.



Chapter 3 50 Spatio-temporal concepts in OODBRelationships b\b i\i b\i i\bk.disjoint(m) ; ; ; ;k.contain(m) ; :; ; :;k.inside(m) ; :; :; ;k.meet(m) :; ; ; ;k.equal(m) :; :; ; ;k.cover(m) :; :; ; :;k.coveredBy(m) :; :; :; ;k.overlap(m) :; :; :; :;Table 3.1: Topological relationships among intervals (1D) and MBRs (2D).Directional or positional relationships are mentioned by W. Kim, J. Garza, andA. Keskin in [KGK93]. This set of relationships is presented in table 3.2, where[xi,xs,yi,ys] represents the coordinates de�ning an mbr, and each part is referred toas object.part. An object k is above another object m if k's mbr intersects the bigmbr=[-1, 1, m.ys, 1]. Similar assumptions are made for left, right, and below.An object k is directly above another object m if k's mbr intersects the mbr=[m.xi,m.xs, m.ys, 1]. Directly on the left, on the right, and below are calculated ina similar manner. An object k is above and on the left of another object m ifk's mbr intersects the mbr=[m.xs, 1, m.ys, 1]. The rest of the relationships aredetermined in a related way. If we consider a bounded space, then1 is changed bythe maximum value and �1 by the minimum value in this dimension. Figure 3.9presents the graphic representation of each directional relationship.Relationships Calculationk.above(m) k:yi � m:ysk.left(m) k:xi � m:xsk.below(m) k:ys � m:yik.right(m) k:xs � m:xik.directAbove(m) k.above(m)^m.x.cover(k.x)k.directLeft(m) k.left(m)^m.y.cover(k.y)k.directBelow(m) k.below(m)^m.x.cover(k.x)k.directRight(m) k.right(m)^m.y.cover(k.y)k.aboveLeft(m) k.above(m)^k.left(m)k.belowLeft(m) k.below(m)^k.left(m)k.belowRight(m) k.below(m)^k.right(m)k.aboveRight(m) k.above(m)^k.right(m)Table 3.2: Directional relationships among MBRs (2D).Proximity relationships are also mentioned in [KGK93], and we only choose
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betweenFigure 3.10: Proximity relationships among MBRs.three of them, namely near, far, and between. The di�culty with these types ofspatial relationship is the de�nition of cuto� values that can be used for specifyingwhat is considered to be near and what is considered to be far. These relationshipsare presented in table 3.3, where we interpret proximity relationships in terms ofequivalent topological relationships and where � is the speci�ed unit to calculatewhether the mbr overlaps objects near to the search object. As a �rst approximation,we calculate the new mbr p for the between operator as the mbr of m and j, butthis mbr is too big and the de�nition will be re-examined in the next chapter. In�gure 3.10, these relationships are illustrated graphically.Relationships Calculation pk.near(m) k.overlap(p) (Xim-�,Xsm+�,Yim-�,Ysm+�)k.far(m) k.disjoint(p) (Xim-�,Xsm+�,Yim-�,Ysm+�)k.between(m,j) k.overlap(p) (Min(Xim,Xij), Max(Xsm,Xsj), Min(Yim,Yij), Max(Ysm,Ysj))Table 3.3: Proximity relationships among MBRs (2D).3.2.2 Spatial databasesA spatial database is the term used to distinguish databases that contain spatialdata and retrieval operations. A spatial system uses a spatial model to treat spatialobjects. The most expanded application using spatial data is a GIS, and we chooseit for developing this subsection.



Chapter 3 52 Spatio-temporal concepts in OODBIn GIS, there are two types of representations for spatial data: vector and raster.The main characteristic of the spatial entity is its location in space, and the relation-ships between two spatial entities are generally very numerous and depend on ourperception of reality. Thus, the de�nitions of these entities and their relationshipstend to be inexact and context dependent. Nevertheless, there are several modelsfor representing geographic data as pointed out by R. Laurini and D. Thompson in[LT92]. First, the traditional method, a map, which provides a convenient methodof spatial data storage and management. Second, two models for storing imagedata in digital form; vector and tessellation models. Finally, the hybrid type whichcontains characteristics of both vector and tessellation data models. Between vec-tor data models we can �nd several other models as follows: spaghetti model (adirect translation of the paper map), topological model which retains some spatialrelationship), GBF/DIME (geographic base �le/dual independent map encoding),and POLYVRT (polygon converter). Tessellation models are: grid and other reg-ular tessellations (square, triangular and hexagonal meshes), nested tessellations(recursive tessellation of the plane, the main example being the quadtree), irregulartessellations (size, shape, and orientation of the cells is a reection of those of thedata elements), scan-line models (raster) is a special case of the square mesh andthis is a format commonly used by mass digitizing devices, and peano-scan which isa family of curves that permit the transformation from N-dimensional space to lineand vice versa. It is well known that both models can be used but we restrict ourwork to the vector model based on POLYVRT.We are interested in vector object-oriented models. One of these types is the D/Kmodel wherein is de�ned a group of classes that support spatial objects and spatialrelationships. Figure 3.11 shows the D/K spatial classes and �gure 3.12 presents theimplementation of the basic, graph, and spatial classes of the D/K model alreadyde�ned by Montilva. We need not extend these classes because this model containsall of the classes needed for supporting spatial objects. An application of this modelis presented by J. Montilva and I. Besembel in [MB96].Similar to the OODBMS, in spatial databases there are some extended versionsof SQL to support spatial queries. One version is referred by W. Kim in [Kim95].This extension emphasizes the use of two operations, the window operation andthe spatial join. A window operation combines a spatial selection with a nonspatialselection. A spatial join involves more than one spatial attribute.The data manipulation classi�es a predicate as spatial if the condition involves atleast one of the spatial attributes or a spatial operation. Spatial functions apply to
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Chapter 3 54 Spatio-temporal concepts in OODBspatial attributes such as: area, perimeter, centroid, object at, in circle, nearest to,length, adjacent to, intersect, in window. An example of a spatial query is Find allthe objects in window.There are some problems to extend the SQL to support spatial queries. Aspointed out by Kim, "The problem is that SQL is primarily a means to retrievefrom a tabular representation, while spatial applications often require retrieval froma graphical representation". Because of this di�culty, there is not a standard spatialextension to SQL equivalent to OSQL for object databases.3.2.3 Indexing spatial objectsThe main requirements for spatial access methods presented by A. Frank in [Fra91]are the following:� The topological relations do not form a hierarchical structure. In our particular case,we will support topological relationships throughout using topological operators, wedo not include these relationships in the access structure.� It must be based on a general spatial object. We use the SpatialObject class of theD/K model, which is general.� It must avoid the arbitrary division of any object. We shall not divide any spatialobject, but we will permit overlapping at the level of the index nodes.� Spatial objects are not spatially decomposable, and can have multiple representa-tions. The SpatialObject class aforementioned supports multiple representations fora given spatial object and it does not decompose it.� Versions and historic data are necessary in some GIS applications. This point willbe treated in the next section.In chapter 2, we studied several multi-dimensional access methods that can beused for indexing spatial objects. Following the requirements mentioned above andthe comparative table of chapter 2, we choose the R tree structure that will beimplemented based on the object-oriented approach. Taking advantage of this ap-proach, we will extend the spatial structure for supporting temporal access too, aswe mentioned in the �nal section of chapter 2. In summary, the object-orientedR tree will contain several spatial search functions, such as: topological, directional,and proximity. We will study in more detail these functions or operators in the nextchapter for implementation and optimization purposes.



Chapter 3 55 Spatio-temporal concepts in OODB3.3 Temporal objectsTime is associated with objects in the majority of Information Systems. Timemodels can be linear or branching. In the linear model, time passes from the pastto the future in an ordered manner as following a time line. Branching modelsconsider a time line from the past to the present, and several time lines from thepresent to the future. The density of this line de�nes two types of model, discreteor continuous. A discrete linear model considers the time line to be isomorphic tonatural numbers where each natural number is a unit of time (the smallest durationof time that can be represented in this model). In continuous linear models, thetime line is isomorphic to real numbers where each real number corresponds to apoint in time.Time can be bounded having a beginning and an end. As a metric, time has adistance function that has the same four properties mentioned before for the spacedomain, and it is called temporal distance (TD). Time may be absolute or relative,e.g. 10:55 a.m. March 5th, 1996 or 11:50 a.m., respectively. Generally, time isconsidered to have two dimensions, one for valid time and other for transactiontime. Valid time records the time a fact was true in reality, and transaction timerecords the time the fact was �rst recorded in the system. The user-de�ned timeis also de�ned, which indicates that its values are only known by the user and notconsidered by the system. The two �rst dimensions are not homogeneous and theyare considered to be orthogonal.As mentioned by R. Snodgrass in [Sno92] "Information that is historically in-determinate can be characterized as don't know exactly when information". Thisindeterminacy applies only to valid time because transaction time is always deter-minate. The granularity of the transaction time line is the smallest inter-transactiontime. For valid time, its time line granularity is set by the system. In the majorityof systems, the chosen unit is the second, which has many de�nitions as mentionedin [Sno92]. The physical representation depends on the resolution needed and thisimposes a granularity and a range, e.g. 8 bytes permits both a resolution of secondsand a range of 36 billion years, or a resolution of microseconds and a range of 17,400years. Temporal systems need to support several calendars and transformation func-tions between them. We will use a physical representation of 8 bytes for temporaldata.A temporal object is an object-oriented object that has associated at least onetemporal property which is represented as temporal data in one or more of the tem-



Chapter 3 56 Spatio-temporal concepts in OODBporal dimensions described above. For this kind of object, we study the relationshipsbetween them in the next section.3.3.1 Temporal relationshipsThe �rst reference to the use of some special temporal comparison operators is byJ. Allen in [All83], Navathe and Ahmed in [NA88] refer to these operators to beused in a language interface that they propose. These operators, combined withthose presented by R. Barrera and K. Al-Taha in [BAT90], are shown in table 3.4.As explained in previous tables, b indicates the border of the interval, and i repre-sents the interior. For the adjacent, follows, and precedes functions, it is necessaryto di�erentiate between inferior (bi), and superior border (bs). These temporalrelationships permit the representation of any relationship that may hold betweentwo intervals and they can be used as temporal operators or functions in temporalqueries. Figure 3.13 shows these relationships in a graphic manner.Relationships b\b i\i b\i i\b bi � � � bsq.before(t) ; ; ; ; q.bs <t.biq.after(t) ; ; ; ; q.bi >t.bsq.during(t) ; :; :; ;q.overlap(t) ; :; :; :;q.tMeet(t) :; ; ; ;q.equal(t) :; :; ; ;q.start(t) :; :; ; :;q.�nish(t) :; :; :; ;q.adjacent(t) ; ; ; ; t:bi � q:bs = TU [q:bi � t:bs = TUq.follow(t) ; ; ; ; q:bi � t:bs = TUq.precede(t) ; ; ; ; t:bi � q:bs = TUTable 3.4: Temporal relationships among intervals (1D). (TU: time unit)The implementation of these relationships as functions is more straightforwardthan for the corresponding spatial relationships, being one rather than two-dimensional.We take advantage of this by developing a temporal indexing extension of the R treeas a base for building further dimensions.3.3.2 Temporal databasesA temporal database models the dynamically changing world, tracing events and itsrelated data [Lan89]. An atemporal database is a snapshot of the lastest available
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TUFigure 3.13: Temporal relationships among intervals.data. Temporal databases have many domains of applications, such as: businessplanning, control processes, maintaining medical, sports and legal case histories,business activities, scienti�c experiments, policy analysis, census, and so on. Earlywork in this area mentioned some ideal requirements concerning historical objects,events, time-stamps, and the use of more than one temporal dimension [Lan89],[Ari87], [CR87].The two dimensions, valid time and transaction time, can be supported by tem-poral database management systems (TDBMS). As de�ned by Snodgrass in [Kim95],there are four database models:1. A snapshot database model supports neither valid or transaction time.2. A valid-time database model supports only valid time.3. A transaction-time model supports only transaction time.4. A bitemporal database model supports both valid and transaction time.Temporal databases correspond to this last model because they need both validand transaction time. For our case, we �rst consider the historical database model byproviding a dimension of the multi-dimensional access method to contain valid timevalues. In a second consideration, we include another dimension in the structureto support transaction time. The inclusion of user-de�ned time is considered andsupported by most of the commercial DBMSs by providing a date-time domain thatcan be associated with object attributes, which can be indexed explicitly by theuser.The temporal data models can be categorised as event-oriented or time-based.The event-oriented approach uses the concept of event as its fundamental informationfrom which any state of the database can be derived. It maintains an event databasethat can be queried for any particular time. The answer is generated by using speci�c



Chapter 3 58 Spatio-temporal concepts in OODBderivation rules which can obtain historical database states. One implementationof this approach is presented by S. Soukeras and P. King in [SK94]. They considerthis approach better than the state-oriented one, due to the exibility to expandthe view it provides at any time, by deriving states from events raising the semanticlevel of the database and making it more straightforward to manipulate.The time-based approach considers time as a separate dimension, similar to one-dimensional space. The di�erent models of this approach can be either point-based,interval-based, or a mixed approach, as presented by R. Barrera and K. Al-Taha in[BAT90]. Point-based models consider a dense, complete, unbounded, and real timeline. Points are used as its basic temporal objects. Each time interval consists ofan ordered pair of points. Interval-based models consider a linear and discrete timeline, and intervals are its primitives. It does not allow time points and it applies atemporal logic based on temporal intervals and �rst-order predicate calculus. Tem-poral logic operators allow speci�cation of the time of validity of a fact either in thepast or in the future [Val96].The third type of temporal model, which is the mixed model, allows both timepoints and intervals by considering time points as zero length intervals. This modelallows assertions over time intervals and it considers a linear and totally orderedtime. We choose this model to be used in our index method because we alreadyhave the Interval class that can support time intervals.According to Snodgrass in [Kim95], there are three approaches to incorporatetime-varying objects in an OODBMS. The �rst approach is to use the OO modeldirectly, and the user is charged with the task of managing the semantics of validtime, which is normally thought of as linear. The main advantage of this approachis that the user can specify the needed semantic of this time. The disadvantageis that the speci�cation of the schema and queries have no special tools to dealwith temporal information. The second approach is to tailor general features of theobject-oriented data model to support time. Finally, the third approach incorporatestime into the data model by providing special constructs to deal with time-varyingobjects. This last approach is mostly used in supporting histories through validtime, and versions through transaction time, as mentioned by L. Valet in [Val96].In order to support temporal characteristics in the D/K model, we choose thethird approach and present here an extension based on the de�nition of speci�c tem-poral objects, as illustrated in �gure 3.14. The TemporalObject class provides themain facilities to de�ne temporal characteristics to object structure and behaviour.The TemporalRepresentation class permits the use of several forms of the temporal



Chapter 3 59 Spatio-temporal concepts in OODBTemporal Temporal GraphTemporalObject TDigraph / TUndirGraphTemporalRepresentation TArc / TEdgeTPath / TChainFigure 3.14: Extension to the D/K classes to support temporal objects.data, corresponding to calendars and transformation functions. Finally, the TDi-graph class supports the concept of time map proposed by Dean and McDermottin 1987 and mentioned by R. Barrera and K. Al-Taha in [BAT90]. A time map"is a graph whose nodes refer to points or instances of time corresponding to thebeginning and ending of events". Arcs are labeled with a lower and upper boundof time, or time interval. A relation between any two points on the time map isrepresented by a path between them. We do not go deeper into the de�nitions ofthese classes because it is outside the objectives of this work.Actual TDBMSs use extensions of two of the main query languages, namely SQLand QUEL. The temporal SQL (TSQL) presented by S. Navathe and R. Ahmed in[NA88], is the �rst extension of the SQL language to permit temporal analysis andde�nition in temporal databases. A version called TOSQL is de�ned as the DMLfor the temporal oriented data model presented by G. Ariav in [Ari86]. It is basedon the notion of atomicity of events and it supports object and time selection.Over a dozen temporal object-oriented query languages have been proposed inthe bibliography as pointed out by Snodgrass in [Kim95]. The majority of themare based in relational query languages such as SQL. In particular, the TOSQL andTOOSQL are two representatives of SQL extensions that support temporal analysis.In TOOSQL, the when clause is added to the select instruction, which permits theuse of temporal references in the query. An example of that type of queries is Findall of the objects inserted in the database after dd-mm-yy (where 'after dd-mm-yy'is the 'when' clause).3.3.3 Object versioningIn OODB, there are two approaches for versioning, object versions and databaseversions. In the object versions approach, versions may be de�ned either for anobject or for an existing version of an object. According to A. Bj�ornerstedt and C.Hult�en in [KL92], "an object version represents an identi�able state of an object.Object versions are either totally ordered as a function of time, or partially orderedin terms of a successor function". Version control de�nes two types of relationships,



Chapter 3 60 Spatio-temporal concepts in OODBthe derived-from and the version-of. As pointed out by W. Kim in [Kim90], thederived-from relationship is between a new version and an old version of the objectfrom which the new version was derived. The version-of relationship is between eachversion of an object and an abstract object that represent the object. Versions of anobject form a digraph which represents the history of evolution of a versioned object.Any number of new versions may be derived from any version at any time. Generally,each version contains attributes that identify its version identi�er, number, type,time of creation, time of last modi�cation, and a list of references to the versionidenti�ers of all versions directly derived from it. Additionally, users decide whenthe new version of the object is needed and she/he decides if it is a new version ora new object. Surrogates are used to identify each object version. In this approach,some researchers consider two levels of version management: application-level, andsystem-level. These levels are associated with the two time semantics called validtime and transaction time, respectively.In supporting transaction time, two models of versioning can be used. Accordingto Snodgrass, the extension versioning indicates versioned objects or their versionedattributes, and schema versioning provides versioned de�nitions of the objects. Inthis latter model, several schemes are stored in the database at di�erent transactiontimes, and it can be viewed as the evolution of the database schema, where twotypes of management are possible. One of them permits all objects to be viewedin all of the schemes by performing the appropriate transformation. The other oneassociates objects with schemes allowing only objects de�ned in a particular schemato be present in this schema.In the database version approach, objects are not isolated in the database, anda change of an object modi�es the state of database. Additionally, the databaseintegrity must be maintained along the sequences of changes of states. A versionof an object is considered a modi�ed state of the database and consequently, thismodi�ed state is a version of the entire database, that is a database version. Aversion of a database is created by derivation. To avoid object duplication a systemof stamps is used to recognise object versions in each database version.In summary, the support for versions within databases immediately takes us onto consider temporality. A database that supports time is more general that onewhich supports versions, so we will develop the temporal management and use thislater for supporting versions.



Chapter 3 61 Spatio-temporal concepts in OODB3.3.4 Indexing temporal objectsIn this context, temporal indexes are involved. As pointed out by Snodgrass, themajority of temporal index methods are based on B+ tree, and he reports only twocases where R trees are used. In these cases, the R tree supports the two timedimensions, valid and transaction, and the temporal key is expressed as intervals.In our case, the access method will be used to index temporal objects by followingthe mixed approach. It is the more appropriate because the hyper-rectangles usedfor the index entries are de�ned as intervals. We also consider the point-basedapproach by considering a point as an interval of zero length. As an initial step, weonly considered one time dimension corresponding to valid time. In a second step,we include another dimension for transaction time. To use both dimensions, theuser or the query processor must use the same operator but including a parameterto indicate which dimension is queried. More details will be shown in the nextchapter.3.4 Spatio-temporal objectsBasically, we de�ne a spatio-temporal object as an object-oriented object that hasat least one spatial and one temporal property. These properties are represented byspatial and temporal data, respectively. It can be represented by a four-tuple (objId,mbr, t, att) where objId is the object-oriented identi�er assigned by the OODBMSto that object, mbr is the bounding rectangle that indicates the spatial locationand shape of that object, t is the description of the temporal characteristics of thatobject, and att is a set of other attributes that describes the object.Recalling, an mbr in 2D is represented by four values corresponding to the lowerleft corner of the rectangle speci�ed by the two �rst values and the upper rightcorner of the mbr formed by the two last values.Following the paper of Seger and Shoshani in [SS88], the temporal characteristicsidenti�ed by t are composed of: granularity which says if the representation is ordinalor calendar; life-span that contains two values represented as ordinal or calendar forthe start point and the end point; regularity that indicates a regular time sequence oran irregular one; and type which can be constant, continuous, discrete or user de�ned.However, only the life-span of t is considered, in our spatio-temporal index becauseit is the speci�c temporal value that we need to express time. A time sequence isde�ned by an ordered sequence formed by the temporal data values t corresponding



Chapter 3 62 Spatio-temporal concepts in OODBto a spatio-temporal object. Similarly to the time sequence, a spatial sequence canbe de�ned which is formed by the spatial component of the mbr corresponding toa spatio-temporal object. The relationship between time and spatial sequences willbe de�ned more carefully in chapter 4.As mentioned by R. Snodgrass in [Sno92], time and spatial models can be dis-crete, continuous or dense, and "in all three of these alternatives, two separatespace-�lling objects cannot be located in the same point in space and time".A distance function where both spatial-distance and time-distance are involvedcan be de�ned. For example, a spatio-temporal distance (LTD) can be de�nedto be used in near-far spatio-temporal queries. With the distance functions, bothcoincidence and neighbouring functions can be speci�ed including a su�ciently closeparameter which depends on the application context. The main disadvantage of thisview is the homogeneous treatment of both spatial and time dimensions.3.4.1 Spatio-temporal relationshipsWe consider three groups of relationships, namely: spatio-temporal, spatial, andtemporal. In the spatio-temporal, we only consider the topological relationshipsamong d-dimensional rectangles, called here hyper-rectangles, where spatial andtemporal dimensions are treated homogeneously. The d dimensions de�ned forspatio-temporal objects are internally represented by using a unique format uni-fying data representation for homogeneous treatment. Table 3.5 presents the samerelationships that have been shown in table 3.1, but here topological relationshipsare considered for dD mbrs (hyper-rectangles).Relationships b\b i\i b\i i\bk.disjoint(m) ; ; ; ;k.contain(m) ; :; ; :;k.inside(m) ; :; :; ;k.meet(m) :; ; ; ;k.equal(m) :; :; ; ;k.cover(m) :; :; ; :;k.coveredBy(m) :; :; :; ;k.overlap(m) :; :; :; :;Table 3.5: Topological relationships among minimum bounding hyper-rectangles(MBHR).Spatial and temporal relationships were already presented in the aforementionedsections. Spatial operators treat only spatial data and temporal operators are only



Chapter 3 63 Spatio-temporal concepts in OODBSpatio-temporal Objects Spatio-temporal GraphSTObject STDigraph / STUndirGraphSTArc / STEdgeSTPath / STChainFigure 3.15: Extension to the D/K classes to support spatio-temporal objects.applied on temporal data, respectively. It is possible to combine spatial and temporalrelationships to be used to answer spatio-temporal queries. These possibilities willbe treated in the next section.3.4.2 Extension proposition for the D/K model to supportspatio-temporal objectsWe follow the third approach mentioned by Snodgrass in [KGK93], to incorporatetime into the D/K model. We propose an extension that supports special constructsto deal with time-varying objects. Figure 3.15 shows two new groups of objectclasses or types, such as: spatio-temporal objects and graph. An object instance ofthe STObject inherits spatial and temporal representation, but internally is storedin a uniform manner by applying transformation functions to it. Thus, a STObjecthas a unique representation, which uni�es its representation. Figure 3.16 presentsthe summary of the D/K model extension proposal by using an OMT diagram.It indicates that a spatio-temporal graph is a graph composed of nodes which arespatio-temporal objects and arcs (edges) that are spatio-temporal relationships otherthan topological ones.The internal speci�cation of these new classes in the D/K model are outside thiswork. We only include this example of extension here for showing how the D/Kmodel should support spatio-temporal objects.3.4.3 Querying and indexing spatio-temporal objectsThe object-oriented spatio-temporal query language (OOSTSQL) is an extension ofSQL proposed by Cheng and Gadia, and mentioned by Snodgrass in [Kim95]. Thereis no other reference to a query language supporting spatio-temporal queries. In thislanguage, the select clause mentioned in sections 3.2.2 and 3.3.2 deals with spatialand temporal attributes. These temporal data can be either valid or transactiontime.Query processing of spatio-temporal objects consists of spatial query conditions
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1+Figure 3.16: Extension proposition of the D/K model to support temporal andspatio-temporal classes.and temporal query conditions, e.g. Which object overlaps a query region from timet1 to t2?. Because the R tree is an indexing method that can only retrieve objectidenti�ers, it is not possible to query it directly by the user. Thus, the operatorsincluded in the R tree class will only be used by the system through the queryoptimizer and processor, which has to decompose a user query into a query plan tobe executed by the processor.3.5 Concluding remarksThe de�nition of spatio-temporal objects takes us to a deeper study of the three kindof objects, namely: object oriented, spatial, and temporal. By understanding theircharacteristics and relationships, we realise that each kind can be treated alone or alltogether. For each kind of object, we de�ned operators that support its relationships,and we realised the multiple possibilities and advantages that the inclusion of theseoperators gives to the R tree class. However, it seems to us that there are too manyoperators for that inclusion, so we will present in the next chapter, a deeper analysisto try to get a minimal set of these operators.The objective of the inclusion of the spatio-temporal operators is to improvethe performances of the index method by increasing the hit ratio of the retrieval



Chapter 3 65 Spatio-temporal concepts in OODBoperations. In this context, the proposed RTree class will permit the main retrievalsneeded by the D/K query language, and will support spatial (topological, positional,and proximity), temporal, and spatio-temporal operators in the context of MBRs.The query processor of the DML may use these operators to retrieve a set of objectsthat contains the answer of a speci�c query. Since the R tree structure is built withmbhr, the set of retrieved objects should be greater than the set of answering objectsfor a given query. Special calculations are always needed, called computationalgeometry, to exactly determine the set of answering objects from the given set ofretrieved objects.Special attention was paid to the versioning of objects in OODB, because in bothof the mentioned approaches, time is chosen to order object versions. OODBMScan support versioning without temporal analysis by storing the creation time ofthe version. Additionally, users decide when the new version of the object is neededand she/he decides if it is a new version or it is a new object. Surrogates are usedto identify each object version and this surrogate does not take into account itscreation time. The support of creation time means that the system also supportstransaction time. The R tree index cannot support versioning without the indexingof transaction time, and even with that, the de�nition of the D/K model of versioningis needed. This model can be extension versioning or schema versioning. If theextension versioning model is chosen, then the schema versioning may or may not besupported. We think the support of both models of versioning is the best alternativefor the D/K model.The R tree class will support the two time dimensions that can be used in theversioning model. We do not go further into this point because we consider it isoutside of the objective of this work. We hope that the D/K query language wiselyuses the available operators to improve data retrieval times. The next chapter willpresent the minimal set of the operators to be included.



Chapter 4R tree formal model
Retrieving multidimensional data (spatial or multipoint) for supporting non-standarddatabase applications, such as Computer Aided Design (CAD)or Geographic Infor-mation Systems (GIS), among others, has been treated in many references as men-tioned in chapter 2. The R tree structure [Gut84] is a generalization of the B tree[BM72] to higher dimensions. This chapter presents an object-oriented formal modelof this structure. At the beginning, we include some design characteristics to betterexplain the bases of our formal model, and we �nalize with the presentations of therequirements for the RTree class extensions.This chapter is organised as follows: section 4.1 presents the main concepts ofthe R tree structure as it was proposed by A. Guttman in [Gut84]. Section 4.2shows the formal de�nitions to base the R tree spatio-temporal extensions. Anobject calculus based on those presented by D. Straube and M. Tamer in [ST90]is shown in section 4.3. The illustration of the R tree searches extended with thespatial, temporal, and spatio-temporal cases is treated in section 4.4. Based on thedescribed formal model, section 4.5 presents the requirements of the RTree classthat will be designed and implemented in the next chapter, and �nally, section 4.6contains some concluding remarks. 66



Chapter 4 67 R tree formal model4.1 The R tree structureAn R tree is a height-balanced tree whose leaf nodes contain pointers to data objects.The index is fully dynamic, where insertions and deletions may be intermixed withsearches without the need for periodic reorganization. According to A. Guttman in[Gut84], an R tree satis�es the following properties:(1) Every leaf node contains between m and M index records unless it is the root.(2) For each index record (I, tuple-identi�er) in a leaf node, I is the smallest rectanglethat spatially contains the n-dimensional data object represented by the indicatedtuple.(3) Every non-leaf node has between m and M children unless it is the root.(4) For each entry (I, child-pointer) in a non-leaf node, I is the smallest rectangle thatspatially contains the rectangles in the child node.(5) The root node has at least two children unless it is a leaf.(6) All leaves appear on the same level.In the above, M is the maximum number of entries in one node and m � dM=2especi�es the minimumnumber of entries in a node. As in the B tree, m is named theR tree order. Each R tree node is equivalent to a disk page called here a blob. M andm depend on the blob size (blobSize). For a given blobSize,M is equal to the blobSizedivided by the length of the entries (entLength), i.e. M = dblobSize=entlengthe.Figure 4.1 presents an R tree with its overlapping regions.Each leaf node contains a set of leaf entries, and branch nodes contain branchentries. Leaf and branch entries within nodes have the following format: [hr, bn]where hr is a d-dimensional bounding rectangle formed by d intervals of the form[inf, sup] describing the minimum and maximum value in each dimension, and bnis the blob identi�er that refers to either the blob which contains the tuple identi�edby hr, or the blob which contains a leaf or branch node of the R tree. The minimumbounding hyper-rectangle (mbhr) that covers the object is represented by hr. Anmbhr has its edges parallel to the axes of the data space. The di�erence betweena leaf and a branch node is indicated by an attribute value stored in the head of anode that is called level, because it indicates the height of a node de�ned by the pathlength from this node to a leaf node. Each node has a head and the rest of the node.The head contains the six attribute values, current blob number indicating wherethe node is stored (blobId), height of the node (level), current number of entries(entries), current length of the node in bytes (length), blob number of the anterior
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A two−dimensional R_treeFigure 4.1: An R tree structure.node (left), and blob number of the posterior node (right). The rest of a node iscomposed of a set of entries. Figure 4.2 illustrates the node format correspondingto either leaf or branch nodes.
blobId entries length left right

head rest

entry1 ..... entry

entry
j

hr bn

p
levelFigure 4.2: Leaf and branch nodes format.Both a node of the tree and an object in the object base are stored using thesame structure, that is the blob. We use this structure because the object base cancontain many di�erent types of objects, especially those corresponding to multimediaor image objects de�ned in the D/K model. The blob is managed in multimediasystems, and it normally has a �xed length between 2KB and 4KB. To manage andsupport blobs, the Blob class is used as an important class related to the RTreeclass. The format of a blob is almost the same as for R tree nodes. Figure 4.3 showsthe blob format used. A blob has a head and a tail. The head contains the followingattributes: the status of the blob (status), says if the blob is actually in use or not,



Chapter 4 69 R tree formal modelthe current number of objects (objNum), the current length in bytes (length), itsleft brother blob (left), and its right brother blob (right). The tail contains a �niteset of objects. The internal behaviour of this class should be de�ned in the objectmanager system, so we only use this class assuming that each indexed object has ablob number associated, and this number is retrieved by using the R tree index.
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status objNumFigure 4.3: The blob format.To insert a new entry in the R tree, two steps have to be made. The �rstis a search from the R tree root node to the corresponding leaf node storing thedescendent route of nodes into a stack without the need of using a reference to thefather node into each child node. The second step is insertion of the new entry intothe node if there is enough room in it, otherwise the splitting function is invoked,that moves half of the existing entries into a new node according to the splittingpolicy adopted. The original paper proposes three splitting policies. One of them isthat of the minimal covering area for the two groups of entries, those that remain inthe split node (old node) and those that will be put into a new node. We choose tomake the new node a right brother of the existing node. A new entry is generatedto cover all of the entries of the new node, and this has to be inserted into the fathernode of the old node which must, in turn, be split if already full. This process canreach the root node provoking the growth of the R tree, just as in the B tree.To delete an existing entry, it is also a two stage process. The �rst step is to�nd the entry in a leaf node. If this entry does not exist, the process is �nished,otherwise the second step is an entry deletion. After a deletion, it is checked if theleaf node is underowed or not. Underows are treated by re-insertion of the entriesremaining in the underowed node until that node is empty at which point it canbe deleted. The corresponding covering entry in its father node has to be deletedtoo by only following the second step. Obviously, this process can also reach theroot node provoking the shrinking of the R tree.These two main operations or functions of the R tree permit the dynamic main-tenance of the structure. To retrieve objects through this access method, at leasttwo other main functions are needed, the exact match search and the range searchfunctions. The �rst �nds the object reference of the target object that matches themultidimensional key given for searching. The second �nds a set of object references



Chapter 4 70 R tree formal modelthat corresponds to those target objects which are contained in the multidimensionalsearch region.In the following section, we present the R tree extensions that expand the rangesearch function for several more speci�c range search functions depending on topo-logical, directional, or proximity searches.4.2 Formal de�nitionsSpatio-temporal queries require the support of spatio-temporal relationships amongspatio-temporal objects. These queries are treated by the query processor thatanalyzes, optimises, and processes them. Normally, a query is transformed into aquery execution plan that contains a sequence of operations over a set of targetobjects. The main idea is to use the most convenient set of operators to restrain thesearch space of the target objects when the query processor executes a given queryplan. Thus, it is important that the index structure supports a set of speci�c searchoperators in order to accelerate objects retrieval. With this aim, we de�ne a formalmodel to clarify and state the set of operators that extend our R tree funcionalities.All de�nitions in our model are based on the model proposed by D. Straube andM. Tamer in [ST90], who de�ne the following sets:� a �nite set of basic domains D1; : : : ; Dn where D = Sni=1Di;� a countably in�nite set A of symbols, called attributes;� a countably in�nite set Oid of object identi�ers;� a �nite set CN de�ned by CN =fInterval, Hyper-rectangle, SpatialObject, Tempo-ralObject, and STObjectg class names;� a �nite set MN of method names.Straube and Tamer de�ne three types of values:De�nition 4.1 (Values:) There are three types of values:1. Every v 2 D is an atomic value for which there exists a textual representation2. Every �nite subset of Oid is a set value3. Every element in P(A)�P(D)�P(Oid)1 is a structural value1P (X) denotes the powerset of X.



Chapter 4 71 R tree formal modelWe restrict our initial work to atomic values.The symbol # denotes the set of all values, I denotes the set of all integer values,and < is the set of all real values.De�nition 4.2 (Objects:) An object is a triple o = (oid, cn, val) where oid 2OId, cn 2 CN, and val 2 #. O = OId � CN � # is the set of all objects. Thenotation o.oid, o.cn, and o.val, denotes the object identi�er, the class, and the valueof object o, respectively.De�nition 4.3 (Interval:) An interval is an object where o.cn=Interval and itcontains two atomic values 2 < denoted by inf and sup. It can be either open if itdoes not contain their borders, denoted by OpInt = (inf, sup); or closed if it containstheir borders, denoted by CloInt = [inf, sup]. For both type of intervals, inf � supalways. The notation o.inf and o.sup denote the inferior or minimum value and thesuperior or maximum value of the interval, respectively. Int � O is the set of allintervals.De�nition 4.4 (Hyper-rectangle:) A hyper-rectangle is an object where o.cn =Hyper-rectangle and it contains an array of d intervals de�ning a multidimensionalrectangular region in a multidimensional space (hr). The notation o(dim) denotesthe closed interval in dimension dim that contains the extent of the hyper-rectanglein this dimension with 0 � dim < d. HR � O is the set of all hyper-rectangles.De�nition 4.5 (Spatial objects:) A spatial object is an object where o.cn = Spa-tialObject and it contains the number of spatial dimensions, denoted by o.sd, and theminimum bounding hyper-rectangle in the spatial dimensions that de�nes its spatiallocation (o.sl). SO � O is the set of all spatial objects. The notation o.sl denotesthe minimum bounding hyper-rectangle formed in the spatial dimensions of o, ando.ds denotes the spatial unit used in proximity spatial searches.De�nition 4.6 (Temporal object:) A temporal object is an object where o.cn =TemporalObject and it contains the number of temporal dimensions (o.td), and theminimum bounding hyper-rectangle in the temporal dimensions that de�nes its lo-cation in time (o.tl). TO � O is the set of all temporal objects. The notation o.tldenotes the minimum bounding hyper-rectangle formed in the temporal dimensionsof o, and o.dt denotes the time unit used in proximity temporal searches.De�nition 4.7 (Spatio-temporal object:) A spatio-temporal object is an objectwhere o.cn=STObject and it contains the number of dimensions (o.d=sd+td), and



Chapter 4 72 R tree formal modelthe minimum bounding hyper-rectangle in the spatio-temporal dimensions that de-�nes its location in space and time (o.stl). STO � O is the set of all spatio-temporalobjects. The notation o.stl denotes the minimum bounding hyper-rectangle formedin the spatio-temporal dimensions of o.The symbols ST denotes STO [ SO [ TO, SR denotes the set of all spatialrelationships between spatial objects, TR denotes the set of all temporal relation-ships between temporal objects, and STR denotes the set of all spatio-temporalrelationships between spatio-temporal objects.We de�ne the following function mappings to be used on search operations.De�nition 4.8 (Boundary of an object:) Let p be a dD point represented byp = (p1; p2; : : : ; pd); p 2 <d, and an object oi 2 ST . The dD point p is in theboundary of oi, p 2 b(oi) if for some dimension �; 1 � � � d; p� = oi(�):inf or p� =oi(�):sup, and for all other dimensions "; 1 � " � d; " 6= �; oi("):inf � p" �oi("):sup.De�nition 4.9 (Interior of an object:) Let p be a dD point represented by p =(p1; p2; : : : ; pd); p 2 <d, and an object oi 2 ST . The dD point p is in the interior ofoi, p 2 i(oi) if for all dimension �; 1 � � � d; oi(�):inf < p� < oi(�):sup.De�nition 4.10 (Spatio-temporal mbhr:) The minimum bounding hyper-rectangleof a spatial and temporal object is a mapping mbhr from the set of spatial and tem-poral objects STO to HR such that for all oi 2 STO, mbhr(oi) is the hyper-rectanglethat completely covers the object oi in all d dimensions with oi:oid.De�nition 4.11 (Spatial mbhr:) The minimum bounding hyper-rectangle com-posed of spatial dimensions is a mapping mbr from the set of spatio-temporal objectsSTO to HR such that for all oi 2 STO, mbr(oi) is the hyper-rectangle that com-pletely covers the spatial dimensions of object oi in all sd dimensions with oi:oid.De�nition 4.12 (Temporal mbhr:) The minimum bounding hyper-rectangle com-posed of temporal dimensions is a mapping t from the set of spatio-temporal objectsSTO to HR such that for all oi 2 STO, t(oi) is the hyper-rectangle that completelycovers the temporal dimensions of object oi in all td dimensions with oi:oid.For clarity, we use the following notations:� The �rst and second dimensions representing spatial dimensions are denoted by Xand Y, respectively.



Chapter 4 73 R tree formal model� The �rst and second dimensions representing temporal dimensions are denoted byT and TT, respectively.Example 4.1 � o(X).inf denotes the minimum value of the �rst interval represent-ing X coordinate corresponding to the �rst spatial dimension.� o(Y).sup denotes the maximum value of the second interval representing Y coordi-nate corresponding to the second spatial dimension.� o(T) denotes the �rst interval representing valid time corresponding to the �rsttemporal dimension.� If oi 2 SO and oi:sd = 2, thenmbr(oi) = ([oi:sl(X):inf; oi:sl(X):sup]; [oi:sl(Y ):inf; oi:sl(Y ):sup]) withoi:sl(X):inf � oi:sl(X):sup, and oi:sl(Y ):inf � oi:sl(Y ):sup.� If oi 2 TO and oi:td = 1,t(oi) = ([oi:tl(T ):inf; oi:tl(T ):sup]) with oi:tl(X):inf � oi:tl(T ):sup.� If oi 2 STO and oi:sd = 2; oi:td = 1; oi:d = td+ sd = 3, thenmbhr(oi) = (oi:stl(T ); oi:stl(X); oi:stl(Y )),mbr(oi) = (oi:stl(X); oi:stl(Y )), andt(oi) = oi:stl(T ).The model presented by M. Egenhofer de�nes sixteen binary topological relation-ships, that are complete and are the result of the comparison of two objects in termsof their boundaries and interiors. The set of these relationships among intervals inone-dimensional space and among mbhrs in 2D was shown in the last chapter.We can now establish the relationship between one object oi and another oj ,or one object oi and a rectangle mbhr(oi); or a rectangle mbhr(oi) and anothermbhr(oj).For each spatio-temporal relationship already shown in table 3.5, we de�ne thefollowing: Let k, m be two spatio-temporal objects 2 STO.� k.disjoint(m): Returns true if k and m are disjoint, otherwise returns false. k andm are disjoint ifb(k)\ b(m) = ;; i(k) \ i(m) = ;;b(k)\ i(m) = ;; i(k) \ b(m) = ;� k.contain(m): Returns true if k contains m, otherwise returns false. k contains m ifb(k)\ b(m) = ;; i(k) \ i(m) = :;;b(k)\ i(m) = ;; i(k) \ b(m) = :;� k.inside(m): Returns true if k is inside m, otherwise returns false. k is inside m ifb(k)\ b(m) = ;; i(k) \ i(m) = :;;b(k)\ i(m) = :;; i(k)\ b(m) = ;



Chapter 4 74 R tree formal model� k.meet(m): Returns true if k meets m, otherwise returns false. k meets m ifb(k)\ b(m) = :;; i(k)\ i(m) = ;;b(k)\ i(m) = ;; i(k) \ b(m) = ;� k.equal(m): Returns true if k is equal to m, otherwise returns false. k is equal to mifb(k)\ b(m) = :;; i(k)\ i(m) = :;;b(k)\ i(m) = ;; i(k) \ b(m) = ;� k.cover(m): Returns true if k covers m, otherwise returns false. k covers m ifb(k)\ b(m) = :;; i(k)\ i(m) = :;;b(k)\ i(m) = ;; i(k) \ b(m) = :;� k.coveredBy(m): Returns true if k is covered by m, otherwise returns false. k iscovered by m ifb(k)\ b(m) = :;; i(k)\ i(m) = :;;b(k)\ i(m) = :;; i(k)\ b(m) = ;� k.overlap(m): Returns true if k overlaps m, otherwise returns false. k overlaps m ifb(k)\ b(m) = :;; i(k)\ i(m) = :;;b(k)\ i(m) = :;; i(k)\ b(m) = :;For spatial objects so 2 SO, we de�ne the topological relationships alreadypresented in table 3.1 with the pre�x sl. Let k, m be two so 2 SO then� k.slDisjoint(m): Returns true if k and m are disjoint, otherwise returns false. k andm are spatially disjoint ifb(k)\ b(m) = ;; i(k) \ i(m) = ;;b(k)\ i(m) = ;; i(k) \ b(m) = ;� k.slContain(m): Returns true if k contains m, otherwise returns false. k spatiallycontains m ifb(k)\ b(m) = ;; i(k) \ i(m) = :;;b(k)\ i(m) = ;; i(k) \ b(m) = :;� and similarly for the other topological operators.Others spatial relationships are the positional or directional relationships pre-sented in table 3.2, and we de�ne them as follows:� k.above(m): Returns true if k is above m, otherwise returns false. k is above m ifk:sl(Y ):inf � m:sl(Y ):sup� k.left(m): Returns true if k is on the left side of m, otherwise returns false. k is onthe left side of m ifk:sl(X):inf � m:sl(X):sup� k.below(m): Returns true if k is below m, otherwise returns false. k is below m ifk:sl(Y ):sup � m:sl(Y ):inf



Chapter 4 75 R tree formal model� k.right(m): Returns true if k is on the right side of m, otherwise returns false. k ison the right side of m ifk:sl(X):sup � m:sl(X):inf� k.directAbove(m): Returns true if k is directly above m, otherwise returns false. kis directly above m ifk:above(m)^m:sl(X):cover(k:sl(X))� k.directLeft(m): Returns true if k is directly on the left of m, otherwise returns false.k is directly on the left side of m ifk:left(m) ^m:sl(Y ):cover(k:sl(Y ))� k.directBelow(m): Returns true if k is directly below m, otherwise returns false. kis directly below m ifk:below(m)^m:sl(X):cover(k:sl(X))� k.directRight(m): Returns true if k is directly on the right side of m, otherwisereturns false. k is directly on the right side of m ifk:right(m)^m:sl(Y ):cover(k:sl(Y ))� k.aboveLeft(m): Returns true if k is above and on the left side of m, otherwisereturns false. k is above and on the left side of m ifk:above(m)^ k:left(m)� k.belowLeft(m): Returns true if k is below and on the left side of m, otherwisereturns false. k is below and on the left side of m ifk:below(m)^ k:left(m)� k.belowRight(m): Returns true if k is below and on the right side of m, otherwisereturns false. k is below and on the right side of m ifk:below(m)^ k:right(m)� k.aboveRight(m): Returns true if k is above and on the right side of m, otherwisereturns false. k is above and on the right side of m ifk:above(m)^ k:right(m)Also included in the RTree class are the speci�cations of the two variables usedin proximity queries named �. Examples of use of these two types of spatial querieswere also shown in the last chapter. We do not include special operators to dealwith nearest and farthest queries. Operator between will be calculated based on thetwo given mbrs if they are disjoint. For two disjoint mbrs a new mbr is calculated,named p, which is the rectangular region between m and j as shown in �gure 4.4.The new between region depends on the position of the two given mbrs, �nding out�ve possibilities of m, j spatial location. The between function is based on thesepossibilities, all rotation or reection allowed.For spatial objects, we de�ne the spatial proximity relationships already shownin table 3.3. Let j, k, m be three objects in SO, then k.near(m), k.far(m), and
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  (5)Figure 4.4: New de�nition of between region.k.between(j, m) are calculated by using topological relationships k.slOverlap(p),k.slDisjoint(p), and k.slOverlap(p), respectively; where p is a new mbr calculated asfollow:� In case of near and far,p = ([m:sl(X):inf �m:ds;m:sl(X):sup+m:ds];[m:sl(Y ):inf �m:ds;m:sl(Y ):sup+m:ds])� In case of between, the new p depends on the directional relationship between mand j.We support temporal searches where more than one time dimension is involvedby applying topological operators to temporal objects in their temporal dimensions.We also include those cases corresponding to temporal searches, where only onedimension of an object is involved, and these relationships were already presentedin table 3.4. We de�ne the following temporal operators (top) to be applied to onlyone time dimension. Let q, t be two temporal objects (to) 2 TO, and gtd an integergtp 2 I, 0 < gtd � td, that speci�es the given time dimension,� q.before(t, gtd): Returns true if q is before t in that gtd temporal dimension, other-wise returns false. q is before t in gtd ifq:tl(gtd) < t:tl(gtd)� q.after(t, gtd)): Returns true if q is after t in that gtd temporal dimension, otherwisereturns false. q is after t in gtd ifq:tl(gtd) > t:tl(gtd)� q.during(t, gtd): Returns true if q is during t in the given temporal dimension,otherwise returns false. q is during t in gtd ifb(q:tl(gtd))\ b(t:tl(gtd)) = ;; i(q:tl(gtd))\ i(t:tl(gtd)) = :;;b(q:tl(gtd))\ i(t:tl(gtd)) = :;; i(q:tl(gtd))\ b(t:tl(gtd)) = ;� q.tMeet(t, gtd): Returns true if q meets t is the given temporal dimension, otherwisereturns false. q meets t in gtd ifb(q:tl(gtd))\ b(t:tl(gtd)) = :;; i(q:tl(gtd))\ i(t:tl(gtd)) = ;;b(q:tl(gtd))\ i(t:tl(gtd)) = ;; i(q:tl(gtd))\ b(t:tl(gtd)) = ;� q.tEqual(t, gtd): Returns true if q is equal to t in that gtd temporal dimension,otherwise returns false. q is equal to t in gtd ifb(q:tl(gtd))\ b(t:tl(gtd)) = :;; i(q:tl(gtd))\ i(t:tl(gtd)) = :;;b(q:tl(gtd))\ i(t:tl(gtd)) = ;; i(q:tl(gtd))\ b(t:tl(gtd)) = ;



Chapter 4 77 R tree formal model� q.start(t, gtd): Returns true if q and t start on the same point of gtd, otherwisereturns false. q and t start equally in gtd ifb(q:tl(gtd))\ b(t:tl(gtd)) = :;; i(q:tl(gtd))\ i(t:tl(gtd)) = :;;b(q:tl(gtd))\ i(t:tl(gtd)) = ;; i(q:tl(gtd))\ b(t:tl(gtd)) = :;� q.�nish(t, gtd): Returns true if q and t �nish on the same point of gtd, otherwisereturns false. q and t �nish equally in gtd ifb(q:tl(gtd))\ b(t:tl(gtd)) = :;; i(q:tl(gtd))\ i(t:tl(gtd)) = :;;b(q:tl(gtd))\ i(t:tl(gtd)) = :;; i(q:tl(gtd))\ b(t:tl(gtd)) = ;� q.adjacent(t, gtd): Returns true if q is adjacent to t in gtd, otherwise returns false.q is adjacent to t in gtd ift:tl(gtd):inf � q:tl(gtd):sup = o:dt [ q:tl(gtd):inf � t:tl(gtd):sup = o:dt� q.follow(t, gtd): Returns true if q is follows t in gtd, otherwise returns false. qfollows t in gtd ifq:tl(gtd):inf � t:tl(gtd):sup = o:dt� q.precede(t, gtd): Returns true if q is precedes t in gtd, otherwise returns false. qprecedes t in gtd ift:tl(gtd):inf � q:tl(gtd):sup = o:dt4.3 An object calculusWe also follow the object calculus proposed by M. Tamer, D. Straube, and R. Petersin [TSP93].A query is of the form fo  (o)g, where o is an object variable denotingsome object in the database and  is a formula built from atoms. Atomsrepresent the primitive query operations of the object model and return aBoolean result. The legal atoms are as follows:oi�oj where:{ oi and oj are object variables or denotes an operation of the form< o1 � � �on > :mlist where o1 � � �on are object variables, and <o1 � � �on > :mlist denotes a multioperation uses when the list ofmethod names is unimportant.{ � is one of the operators ==;2; or =fga�oi where:{ oi is an object variable or denotes an operation of the form <o1 � � �on > :mlist where o1 � � �on are object variables.{ a is the textual representation of an atomic value or a set of atomicvalues.{ � is one of the operators =;2; or =fg



Chapter 4 78 R tree formal modelFormulas depend on the notion of free and bound variables. A variableis said to be bound in a formula if it has been previously introduced usinga quanti�er such as 9 or 8. If the variable has not been introduced using aquanti�er it is free in the formula.Formulas are de�ned as follows:1. Every atom is a formula. All object variable in the atom are free in theformula.2. If  1 and  2 are formulas, then  1 ^  2,  1 _  2, and : 1 are alsoformulas. Object variables are free or bound in  1 ^  2,  1 _  2, and: 1 as they are free or bound in  1 or  2 depending on where theyoccur.3. If  is a formula, then (9 o)( ) is a formula. Free occurrences of o in  are bound to (9 o) in (9 o)( ).4. If  is a formula, then (8 o)( ) is a formula. Free occurrences of o in  are bound to (8 o) in (8 o)( ).5. Formulas may be enclosed in parenthesis. In the absence of parenthesis,the decreasing order of precedence is 2;=;=fg;==; 9; 8;:;^ and _, inthat order.A query is an object calculus expression of the form fo  (o)g where o isthe only free variable in  .We are interested in spatial and/or temporal queries which involve objects inST and contain at least one spatial, temporal, or spatio-temporal relationship. Thekind of queries we study are expressed in object calculus as follows: fo / o R rgwhere o 2 ST , r 2 HR, and R 2 STR. The query means Find all object o.oid suchthat o stands in relation R with some given hyper-rectangle r.In order to minimize the number of operators in theRTree class, a more detailedstudy must be done. That is, to improve retrieval performances, it is necessary toincrement the hit ratio in searches by decreasing the number of disk accesses. Thismeans that search operators must be chosen wisely. We consider the use of the mostappropriate relationships between the mbhrs as a constraint for reducing the searchspace when the query processor is required to execute a spatial and/or temporalquery. In the classical R tree, the only two spatial search operators are match andoverlap meaning equality and overlapping of object mbrs. For example, if we havethe query fo / o overlaps rg, then we exploit the fact that o overlaps x ) mbr(o)overlaps mbr(x) and rejecting any o such that :(mbr(o) overlaps mbr(x)). Thus, thecondition mbr(o) overlaps mbr(x) is necessary but not su�cient because it is onlya one way implication. Using this constraint reduces the number of spatial objectsthat have to be retrieved, but will nevertheless normally result in some false hits.



Chapter 4 79 R tree formal modelIn any other cases of range queries, the classical R tree only provides the overlapsearch operator.The R tree itself comprises a number of nodes such that if node P3 is a childof node P9, then the corresponding entry in P9 covers all of the entries containedin P3 as shown in �gure 4.1. To search throughout the tree, we begin the searchat the root node by knowing that (P9 cover P3) and (P3 cover x) ) (P9 cover x).We make use of this transitivity and a more speci�c operator in the following way.Assuming that we are trying to answer the query: fo / o cover xg then at some levelin the tree, if there is a node such that :((P9 overlaps x)^(P9 cover P3))) : (P3overlaps x), we know we need not search any of the descendants of P9.For each spatio-temporal operator, we classify as necessary or su�cient the corre-sponding operator for twombhrs, when the operation is needed for two d-dimensionalobjects. The necessary column means that the retrieved set of objects after the rec-ommended operation may contain some false hits, and the su�cient column saysthat the retrieved set of objects does not contain false hits. Table 4.1 shows thespeci�c operator to be called if the spatio-temporal, spatial, and/or temporal queryamong objects contains any of the operators mentioned above. In the case of spatialqueries, the operator used for two polygons is presented in the �rst column, and theoperator invoked for mbrs is shown on the right.The spatial operators support queries of di�erent types, such as region vs. region,region vs. line, region vs. point, line vs. line, line vs. point, and point vs. point.This support is based on the possibility of having the mbhr covering the di�erenttypes of geometrical objects mentioned before. That is, an mbhr can be a multi-dimensional point, if all of its d intervals are intervals of zero length, or a multi-dimensional line aligned with an axis, if one of its d intervals is an interval of lengthdi�erent from zero, and the others are intervals of zero size. Lines which do notalign with an axis must be represented by an mbhr.4.4 Extensions of the R tree searchesThe secondary storage access structure which we termRTree is intended to supportthe following operations for a set B of blobs that contains the set IO of indexedobjects, organised in a set E of entries composed of the mbhr(io) and bn(io), wherebn(io) is the blob number that contains io.� Multidimensional searches: stop(RTree(IO), a): Multidimensional queries are ofthe form: fio=io R ag where io 2 STO, a 2 HR, and R is a binary relationship 2
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d-dimensional mbhr (dD)object Necessary Su�cientdisjoint 6= disjointmeet :disjoint -= = -cover cover -inside inside -overlap :disjoint -MinSet dD=fdisjoint,:disjoint,=,cover,insidegmbr (2D)Polygons Necessary Su�cientdisjoint 6= disjointmeet :disjoint -= = -cover cover -inside inside -overlap :disjoint -above left in Y -below right in Y -left left in X -right right in X -dAbove left in Y ^ :disjoint in X -dBelow right in Y ^ :disjoint in X -dLeft left in X ^ :disjoint in Y -dRight right in X ^ :disjoint in Y -aboveLeft left in X ^ Y -belowLeft right in Y ^ left in X -aboveRight right in X ^ left in Y -belowRight right in X ^ Y -MinSet2D=fdisjoint,:disjoint,=,cover,inside,leftD,rightD,:disjointDgTime Interval (1D)interval Necessary Su�cientdisjoint - left ^ right in Tbefore - right in Tafter - left in Tmeet - meet= - =start - start�nish - �nishadjacent - adjacentprecede - precedefollow - followduring - duringoverlap - :disjoint in TMinSet1D=frightD,leftD,meet,=,start,�nish,adjacent,precede,follow,during,:disjointDgTable 4.1: Minimal set of operators for the R tree index.



Chapter 4 81 R tree formal modelSTR that contains the topological relationships. Using the information of table 4.1,this query is replaced with fio=mbhr(io) stop ag, where stop is the correspondingoperation in MinSet dD = fdisjoint, nDisjoint, match, cover, insideg. This queryreturns a list of blob numbers where each bn 2 B and io 2 IO and this list containsthe indexed objects that possibly answer the query.� Bidimensional searches: sop(RTree(IO), b): Bidimensional queries are of the form:fio=io R bg where io 2 SO, b 2 HR, and R is a binary relationship 2 SR that con-tains the topological, directional, and proximity relationships. Using the same ta-ble, this query is replaced with fio=mbhr(io) sop bg, where sop is the correspondingoperation in MinSet2D=fslDisjoint, slnDisjoint, slMatch, slCover, slInside, leftD,rightD, nDisjointDg, and mbhr(io) is de�ned only in 2D. This query returns the listof blob numbers that contains the indexed objects which possibly answer the query.� Unidimensional searches: top(RTree(IO), c): Unidimensional queries are of theform: fio=io R cg where io 2 TO, c 2 Int, and R is a binary relationship 2TR that contains the temporal relationships. Using the same table, this queryis replaced with fio=mbhr(io) top cg, where top is the corresponding operation inMinSet1D=frightD, leftD, meet, tMatch, start, �nish, adjacent, precede, follow,during, nDisjointDg, and mbhr(io) is de�ned only in 1D. This query also returnsthe list of blob numbers that contains the indexed objects which possibly answerthe query.� Insert(RTree(IO), e): Add e to whether the set of entries E, and the result isRTree(IO [ fiog).� Delete(RTree(IO), e): Delete e to the set of entries E, if e is in E and the result isRTree(IO - fiog); otherwise RTree remains the same.At the query language level, a given spatial and/or temporal query can be com-plex in the sense that it can contain several parts and each of these parts can becatalogued in one of the three kind of query de�ned above. A given query that callseither a spatio-temporal operator or both spatial and temporal operators is named aspatio-temporal query. To help in this task, we present in table 4.2 our suggested so-lutions of operator uses. To simplify column identi�ers, we use Xi to denote X.inf, Xsto denote X.sup, and so on. The description of the proposed solution to each combi-nation of spatial and temporal operators is joined with the classi�cation of necessaryor su�cient, corresponding to the retrieved objects entirely satisfy the given queryor not. Spatio-temporal queries are either multidimensional query or a combina-tion of a bidimensional and unidimensional queries. For example, fo=o disjoint a^o precede bg ) fo=mbhr(o) slDisjoint mbhr(a) ^ o:tl(T ) precede b:tl(t)g whereo 2 IO, a 2 SO, and b 2 TO. This spatio-temporal query can be answered by us-ing one multidimensional query as the form: fo=mbhr(o) disjoint mbhr(c)g, wherembhr(c) = ([b:tl(T ):inf;HT ];mbhr(a)).



Chapter 4 82 R tree formal modelThree proximity operators are also considered in this work as mentioned in thelast section. These three operators can be transformed into two of the topologicaloperators. Table 4.3 presents this transformation. The proximity measures, coinci-dence and neighboring, treated by Roberts in [Rob95] will not be provided by theindex.Combinations of topological, directional, proximity, and temporal operators arepossible. To combine directional and proximity, �rst the proximal operators aretransformed to topological, and the result combined with the directional operator.The combination of directional and temporal operators cannot be solved by use ofa unique operator, thus it has to be solved separately, and then intersecting the listof retrieved objects. Table 4.4 illustrates the other two cases of combination.There must exist a query language and a query optimizer to translate user queriesto RTree class operators. In the following is presented some types of queries thatcan be formulated by users, together with the RTree class operator(s), which can beused to answer those queries, after the intervention of the query optimizer.1. Queries when it is known exactly where and when� Which objects are located at spatial location (sl) in this time interval (w)?Expressed as: fio / mbhr(io) slMatch sl ^ io.tl(T) = wg ) fio / mbhr(io) =mbhr(c)g, where sl 2 HR with 2D, w 2 Int, io 2 IO, c 2 HR, andc = ([w:inf; w:sup]; [sl:hr(X):inf; sl:hr(X):sup]; [sl:hr(Y ):inf; sl:hr(Y ):sup]).The RTree operator match is used for this query. Given an instance, rt, of theRTree class and an instance, c, of the HR (i.e. hyper-rectangle) class, thenquery is executed by calling rt.match(c). If the de�ned time dimension is zero,then c is as stated above. If the de�ned time dimension is 2, and the spatialdimensions are zero and one, thenc = [sl:hr(X):inf; sl:hr(X):sup]; [sl:hr(Y ):inf; sl:hr(Y ):sup]; [w:inf; w:sup]).� Which objects do not meet sl in this w? or Which objects are located outsidesl in this w?Query: fio / mbhr(io) slDisjoint sl ^ io.tl(T) = wg ) fio / mbhr(io) disjointc _ mbhr(io) disjoint dg, where sl 2 HR with 2D, w 2 Int, io 2 IO, c 2 HR,and c = ([w:inf � io:dt;HT ];[sl:hr(X):inf; sl:hr(X):sup]; [sl:hr(Y ):inf; sl:hr(Y ):sup]), andd = ([LT;w:sup+ io:dt]; [sl:hr(X):inf; sl:hr(X):sup];[sl:hr(Y ):inf; sl:hr(Y ):sup]).Answer will be in: rt.disjoint(c)^ rt.disjoint(d).� Which objects meet sl in this w?Query: fio / mbhr(io) slNDisjoint sl ^ io.tl(T) = wg ) fio / mbhr(io) nDis-joint cg, where sl 2 HR with 2D, w 2 Int, io 2 IO, c 2 HR, andc = ([w:inf; w:sup]; [sl:hr(X):inf; sl:hr(X):sup]; [sl:hr(Y ):inf; sl:hr(Y ):sup]).Answer will be in: rt.nDisjoint(c).



Chapter 4 83 R tree formal model([Xi,Xs],[Yi,Ys]) [Ti,Ts] (S): su�cientmbr t (N): necessarydisjoint disjoint mbhr=([Ti,Ts],mbr) (S)before disjoint mbhr=([Ti,HT],mbr) (S)after disjoint mbhr=([LT,Ts],mbr) (S)meet disjoint mbhr=([Ti+�T,Ts-�T],mbr) (N)= disjoint mbhr=([Ti-�T,HT],mbr) _ mbhr=([LT,Ts+�T],mbr) (N)start disjoint mbhr=([LT,Ti],mbr) (N)disjoint �nish disjoint mbhr=([Ts,HT],mbr) (N)adjacent disjoint mbhr=([Ti,Ts],mbr) (N)precede disjoint mbhr=([Ti,HT],mbr) (N)follow disjoint mbhr=([LT,Ts],mbr) (N)during disjoint mbhr=([LT,Ti-�T],mbr) _ mbhr=([Ts+�T,HT],mbr) (N)overlap slDisjoint mbr (N)disjoint slnDisjoint mbr (N)before :disjoint mbhr=([LT,Ti],mbr) (N)after :disjoint mbhr=([Ts,HT],mbr) (N)meet :disjoint mbhr=([Ti,Ts],mbr) (N)= :disjoint mbhr=([Ti,Ts],mbr) (N)start :disjoint mbhr=([Ti,Ti],mbr) (N):disjoint �nish :disjoint mbhr=([Ts,Ts],mbr) (N)adjacent :disjoint mbhr=([Ti,Ts],mbr) (N)precede :disjoint mbhr=([LT,Ti-�T],mbr) (N)follow :disjoint mbhr=([Ts+�T,HT],mbr) (N)during :disjoint mbhr=([Ti,Ts],mbr) (N)overlap :disjoint mbhr=([Ti,Ts],mbr) (S)disjoint slMatch mbr (N)before slMatch mbr (N)after slMatch mbr (N)meet slMatch mbr (N)= = mbhr=([Ti,Ts],mbr) (S)start slMatch mbr (N)= �nish slMatch mbr (N)adjacent slMatch mbr (N)precede slMatch mbr (N)follow slMatch mbr (N)during slMatch mbr (N)overlap slMatch mbr (N)disjoint slCover mbr (N)before cover mbhr=([Ti,Ti],mbr) (N)after cover mbhr=([Ts,Ts],mbr) (N)meet slCover mbr (N)= = mbhr=([Ti,Ts],mbr) (N)start cover mbhr=([Ti,Ts],mbr) (N)cover �nish cover mbhr=([Ts,Ts],mbr) (N)adjacent cover mbhr=([Ti-�T,Ti-�T],mbr) _ mbhr=([Ts+�T,Ts+�T],mbr) (N)precede cover mbhr=([Ti-�T,Ti-�T],mbr) (N)follow cover mbhr=([Ts+�T,Ts+�T],mbr) (N)during cover mbhr=([Ti,Ts],mbr) (S)overlap slCover mbr (N)disjoint slInside mbr (N)before inside mbhr=([LT,Ti+�T],mbr) (S)after inside mbhr=([Ts-�T,HT],mbr) (S)meet slInside mbr (N)= inside mbhr=([Ti-�T,Ts+�T],mbr) (N)start inside mbhr=([Ti-�T,HT],mbr) (N)inside �nish inside mbhr=([LT,Ts+�T],mbr) (N)adjacent slInside mbr (N)precede inside mbhr=([LT,Ti],mbr) (N)follow inside mbhr=([Ts,HT],mbr) (N)during inside mbhr=([Ti-�T,Ts+�T],mbr) (S)overlap slInside mbr (N)LT=lowest time value, HT=highest time value, and �T=time unitTable 4.2: Combination of topological 2D and temporal 1D operators.



Chapter 4 84 R tree formal model([Xi,Xs],[Yi,Ys])mbr (N): necessarynear :disjoint mbr=(Xi-�, Xs+�, Yi-�, Ys+�) (N)far disjoint mbr=(Xi-�, Xs+�, Yi-�, Ys+�) (N)between :disjoint mbr=selon rede�nition aforementioned (N)� is the spatial unitTable 4.3: Transformation of proximity to topological operators.([Xi,Xs],[Yi,Ys])mbr (N): necessaryabove above mbr (N)below below mbr (N)left left mbr (N)right right mbr (N)dAbove dAbove mbr (N)disjoint or dBelow dBelow mbr (N):disjoint dLeft dLeft mbr (N)dRight dRight mbr (N)aboveLeft aboveLeft mbr (N)belowLeft belowLeft mbr (N)aboveRight aboveRight mbr (N)belowRight belowRight mbr (N)Any other combination has not any senseCombination of topological and directional operators.([Xi,Xs],[Yi,Ys]) [Ti,Ts]mbr tdisjoint After transformingbefore proximity operatorsafter to the corresponding= topological ones,start it is applied thenear �nish same table forfar adjacent the combinationbetween precede of topologicalfollow and temporalduring operators.overlapCombination of proximity and temporal operators.Table 4.4: Combination of topological, directional, proximity (2D), and temporal1D operators.



Chapter 4 85 R tree formal model� Which objects cover sl during w? or Is sl covered by which objects during w?Query: fio / mbhr(io) slCover sl ^ io.tl(T) during wg ) fio / mbhr(io) covercg, where sl 2 HR with 2D, w 2 Int, io 2 IO, c 2 HR, andc = ([w:inf; w:sup]; [sl:hr(X):inf; sl:hr(X):sup]; [sl:hr(Y ):inf; sl:hr(Y ):sup]).Answer will be in: rt.cover(c).� Which objects are inside sl in this w? or Which objects are contained in sl inthis w?Query: fio / mbhr(io) slInside sl ^ io.tl(T) = wg ) fio / mbhr(io) inside cg,where sl 2 HR with 2D, w 2 Int, io 2 IO, c 2 HR, andc = ([w:inf � dt; w:sup+ dt]; [sl:hr(X):inf; sl:hr(X):sup];[sl:hr(Y ):inf; sl:hr(Y ):sup]).Answer will be in: rt.inside(c).� Which objects overlap sl in this w? or Which objects intersect sl in this w?Query: fio / mbhr(io) slNDisjoint sl ^ io.tl(T) = wg ) fio / mbhr(io) nDis-joint cg, where sl 2 HR with 2D, w 2 Int, io 2 IO, c 2 HR, andc = ([w:inf; w:sup]; [sl:hr(X):inf; sl:hr(X):sup]; [sl:hr(Y ):inf; sl:hr(Y ):sup]).Answer will be in: rt.nDisjoint(c).� Which objects were located at sl in 1996? Before use the operator, it must bebuilt the time interval, w=[19960101,19961231].Query: fio=mbhr(io) slMatch sl ^ io:tl(T ) = wg ) fio=mbhr(io)match cg,where sl 2 HR with 2D, w 2 Int, io 2 IO, c 2 HR, andc = ([w:inf; w:sup]; [sl:hr(X):inf; sl:hr(X):sup];[sl:hr(y):inf; sl:hr(Y ):sup]).Answer will be in: rt.match(c).� The operators mentioned above can be used to restrict the object base to aspeci�c year. Which objects do not meet sl in 19XX? or Which objects arelocated outside sl during 19XX? or Which objects meet sl after 19XX? orWhich objects are covered by sl in 19XX?, and so on.� The operators can also be used to ask a larger period, for example Whichobjects were located at sl from 1994 to today? In this case the time intervalmust be built before any operator is used, for example, w=(19940101,today)if the time granularity is days.� Temporal operators can also be used. Which objects were located at sl before1994? In this case, w=[19931231,19931231] if the time granularity is days.Query: fio=mbhr(io) slInside sl ^ io:tl(T ) before wg )fio=mbhr(io) inside cg, where sl 2 HR with 2D, w 2 Int, io 2 IO, c 2 HR,andc = ([LT;w:sup+ dt]; [sl:hr(X):inf; sl:hr(X):sup];[sl:hr(Y ):inf; sl:hr(Y ):sup]), where LT is the minimum time value in the tem-poral domain of the attribute.Answer will be in: rt.inside(c).� Direction operators can also be used. Which objects were located above slafter 1994? Here, w=[19950101, today] if the time granularity is days.Query: fio=mbhr(io) above sl ^ io:tl(T ) during wg )fio=mbhr(io) rightD c(Y ) ^ t(io) during c(T )g, where sl 2 HR with 2D,



Chapter 4 86 R tree formal modelw 2 Int, io 2 IO, c 2 HR, andc = ([w:inf; w:sup]; [sl:hr(X):inf; sl:hr(X):sup]; [sl:hr(Y ):inf; sl:hr(Y ):sup]).Answer will be in: rt.rightD(c, Y) and rt.rightD(c, T).2. Queries when it is known exactly where. Spatial queries answered by using bidi-mensional search.� Which objects are located at sl? or Which objects are located at sl now?Query: fio=mbr(io) = slg ) fio=mbr(io) = slg, where sl 2 HR with 2D,io 2 IO.Answer will be in: rt.slMatch(sl) and it must be choose the retrieved objectswith the largest time.� For what date is the most recent object located at sl?Query: fio=mbr(io) = slg ) fio=mbr(io) = slg, where sl 2 HR with 2D,io 2 IO.Answer will be in: rt.slMatch(sl) and it must be choose the retrieved objectswith the smallest time.� It can be used the aforementioned operators to ask the object base for anspeci�c location. Which objects are contained in sl now? or Which objectshave been contained in sl? or Which objects meet sl now? or Which objectsare covered by sl?, and so on.� Direction operators can also be used. Which objects were located below of sl?Query: fio=mbr(io) below slg ) fio=mbr(io) leftD sl(X)g, where sl 2 HRwith 2D, io 2 IO.Answer will be in: rt.leftD(sl, X).� It may be de�ned two length for expressing near distances and use them toask the object base. For example, � is used to de�ne mbhr=(w, Xi-�, Xs+�,Yi-�, Ys+�) to answer, Which objects are located near sl?Query: fio=mbr(io) near slg ) fio=mbr(io) slNDisjoint dg, where sl; d 2HR with 2D, io 2 IO, andd = ([sl(X):inf � ds; sl(X):sup+ ds]; [sl(Y ):inf � ds; sl(Y ):sup+ ds]).Answer will be in: rt.slNDisjoint(d).� With the same d, it is possible to ask Which objects are located far away ofsl? rt.slDisjoint(d)3. Queries when it is known exactly when. Temporal queries answered by using unidi-mensional search.� Which are the existing objects at w?Query: fio=t(io) = wg ) fio=t(io) = wg, where io 2 IO, and w 2 Int.Answer will be: rt.equal(w).� Which are the existing objects before w?Query: fio=t(io) before wg ) fio=t(io) leftDc(T )g, where io 2 IO, c 2 HR,w 2 Int,c = ([w:inf; w:sup]; [LS;HS]; [LS;HS]), and LS, HS are the minimum andthe maximum space value in the spatial domain of the attribute, respectively.Answer will be in: rt.leftD(c, T).



Chapter 4 87 R tree formal model� It can be used other unidimensional operators. For example, rt.rigthD(c, T).� Which objects have been created at the beginning of w?Query: fio=t(io) start wg ) fio=t(io) start wg, where io 2 IO, and w 2 Int.Answer: rt.start(w).4.5 R tree class requirementsPresented below are the main requirements imposed by the spatio-temporal appli-cations to the index structure. With each requirement, is included whether theimplementations can support it or not.1. Spatial objects are characterized by a geometric component that determines shapeand position of the object in space. Temporal objects are those objects that includeat least one temporal domain assigned to an attribute.2. An object's operation may be geometrical such as computation of distance or in-tersection of polygons; or non-geometrical such as computation of the area of apolygon, insertions, deletions, and so on.3. The type of expected queries are spatial, temporal, and spatio-temporal.4. Spatial objects are associated with rectangular regions (mbhr) through their geo-metric attributes such as location in space.5. Objects should be saved in large binary blocks named blobs of long �xed size for anobject base, but blob size may vary from an object base to another.6. The blob minimum occupancy should be guaranteed to be 50%, that is half of theblob must be full.7. The maximum update time for the insertion or deletion of a single object has to belogarithmic or better in the total number of indexed blobs.8. If the full key of any individual object is speci�ed, the object can always be accessedvia direct path from directory to data blobs. The access time for one blob should beconstant and predictable for a given dimension in the index.9. The index structure should be balanced, multikey, data determined and spatial.10. All of the index properties have to be preserved under insertion-deletion. It shouldbe fully dynamic.11. The maximum size of the index should be directly proportional to the quantity ofthe data.12. The global order should be preserved. By clustering strategy, objects in nearbyblobs should be close in space. By bu�ering strategy, objects can be prefetchedbefore they are needed by exploiting knowledge about structural, positional andinheritance relationships.



Chapter 4 88 R tree formal model13. The spatial distribution of the index regions at each level of the tree should corre-spond as closely as possible to the spatial distribution at the next lower level, andto that of the blobs.14. The index structure should respect the spatial proximity of objects by distributingobjects physically on disk according to their location in space.15. The representation of empty space should be minimized.16. The index grows if new objects are inserted in the object base (OB). Growing ondemand. The insertion of a new object in a blob may cause an blob overow. Blobsare selected for splitting when they overow, thus it is necessary for a new blob tobe used for selected objects belonging to the overowing blob.17. Splitting policies have to achieve symmetry in the d dimensions. Each key shouldbe treated as a secondary key. It should use an order partitioning di�erent fromcyclic partitioning, which is a blind policy of partitioning that does not take intoaccount the particularities of the current indexed data.18. The index shrinks if existing objects are deleted in the OB and the percentage ofdeleted objects is great than a given percentage and the object base manager (OBM)decides to do it. In other words shrinking is performed on demand.19. Blobs are selected for merging when each one of the following conditions holds: twoof them are close, one of them underows, and the sum of the objects in both blobsis less or equal than the maximum number of objects in a blob.20. Merging policies have to maintain index properties, and it should be done when thepercentage of occupancy in two close blobs permit them to be merged.Some parameters of e�ciency can be used for performance study. They are thefollowing:ex number of external storage accessesro number of retrieved objects (retrieved by the index as a possible answeringobject)ao number of answering objects (objects that really answer the query)n number of objectsm number of blobs1. A parameter proposed by Robinson [Rob81]. 0 � aonexm < 12. A second parameter used by Nievergelt [NHS84]. 0 � aoro < 13. The last parameter presented by Seeger [KSSS89] and called the hit ratio= aoc:ex ,where c is a constant de�ned in the mentioned reference.



Chapter 4 89 R tree formal model4.6 Concluding remarksThe presentation of an object calculus to de�ne the extensions of the R tree structureis one of the main contribution of this work.We realize that the object-oriented approach allows us to have an extensibleR tree class, which may contain whatever operator or function the applicationsneed, to improve the retrieval performances in a speci�c domain.We have also demonstrated that mbrs are useful for de�ning a set of retrievedobjects containing the set of answering objects as a �rst step of object retrieval. Weshow how to reduce the size of this set of retrieved objects, i.e. augment the hitratio, by focusing on the use of more speci�c search operators instead of using amore complicated object shape container.Finally, the presentation and formal de�nition of the minimal set of spatial,temporal, and spatio-temporal operators, is the second main contribution of thiswork.



Chapter 5R tree design and implementation
This chapter presents the object-oriented design and several implementations of thisstructure. The design of theRTree class is made based on the T�ecnica de Desarrollode Sistemas de Objetos (TDSO) technique [Bes95], and the implementations weredone in the C++ language under the operating system Irix version 5.3 running ona standalone Silicon Graphics machine.TDSO is an object-oriented technique that integrates the concepts of the deduc-tive method (MEDEE) [Duf88] and the object modeling technique (OMT) [RBP+91].TDSO contains the main concepts to develop object-oriented software following astep-by-step approach. It permits a formal speci�cation of abstract data types(ADT) and a structured design of software systems. The most important conceptin TDSO is the inclusion in the design step of the test cases speci�cation. For that,the function speci�cation forms of TDSO contain the algorithm of the function, andits test cases, both accompanied by the documentation needed for each variable,function, and test case.This chapter is organised as follows: Section 5.1 shows the principal forms ofTDSO and how they are used to specify the RTree class and its basic classes. The�ve extensions made of the R tree structure that expand the range search functionfor several more speci�c range search functions depending on topological, directional,or proximity searches, and a new structure called O tree are described in section 5.2,and �nally, section 5.3 contains some concluding remarks.90



Chapter 5 91 R tree design and implementation5.1 Speci�cation of the R tree classesThe speci�cation of the object-oriented classes utilized to implement the R tree in-dex structure is presented in this section by following the TDSO technique presentedby the author of this thesis in [Bes95]. TDSO is a new technique to develop object-oriented software. This technique supports data abstraction and object-orientedconcepts. It is based on the deductive method (MEDEE) proposed by J. Dufourdin [Duf88], its extension proposed by I. Besembel in [Bes94], and the methodologyOMT proposed by Rumbaugh et al. in [RBP+91]. It uses algebraic speci�cation pro-posed by Guttag in [Gut77] and [GHM78], for each abstract data type (ADT). Thespeci�cation of an ADT is composed of syntactic speci�cation that de�nes names,domains, and ranges of each operation or function de�ned for this ADT; and samplesemantics that contain a non complete set of axioms specifying the behaviour ofa function in extreme or bounded cases. A correct implementation of an ADT mustsatisfy its speci�cation, but it can contain a larger set of operations than those speci-�ed for the ADT. An ADT can be implemented in several ways, each implementationis composed of a structure and algorithms. The structure de�nes its data structure,and the algorithms state how this data structure will be used and manipulated.In TDSO, the class hierarchy associated to the is-a relationship is represented bydouble arrows, and the composition hierarchy associated to the part-of relationshipis represented by single arrows. Figure 5.1 shows the composition hierarchy of theR tree index.
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Figure 5.1: TDSO diagram of the composition hierarchy of the R tree index.The speci�cation of classes of a system in TDSO is presented in a form named theUniverse of the system, this speci�cation is described in �gure 5.2, corresponding to



Chapter 5 92 R tree design and implementationthe R tree system. It contains all types and classes used in the system in question.The universe form shows a numeration of types and classes, and each of them isdocumented in the third column of the form.The R tree structure can be formally speci�ed as an ADT and implemented asan object-oriented class. Figure 5.3 shows the seventeenth class of the universe,the RTree class that has seven basic operations which are self documented in theTDSO speci�cation form. This form contains the date of the speci�cation, thenumber associated with the class, the set of related classes, and three columnscontaining the list of each part of the speci�cation, the speci�cation itself, and thedocumentation of each ADT operation. These operations conform to the minimalset of operations needed to de�ne the ADT. In the ADT implementation, this set canbe expanded depending on the language used, and on the needs of the application.According to L. Valet in [Val96], object-oriented operations are categorized asconstructors, mutators, observers, and destructors. A constructor function createsand initiates objects of that class. Mutators change the values stored in the objectpromoting a change of the state of the object. Observers simply display or return thevalue(s) stored in the object without changing any value at all. Finally, a destructordestroys the object. Each documentation made in a TDSO speci�cation form followsthis categorization for operations.The rest of the classes mentioned in the universe of the R tree index are presentedin the following �gures.Figure 5.4 shows the speci�cation of the Interval class, which is the twelfthclass in the R tree index universe. This class contains six basic operations, whichsupport the minimal set of operations for an ADT. Each valid interval object hastwo values and the superior value has to be greater than or equal to the inferior one.An emptyInterval is one whose two values are the same.Figure 5.5 presents the HR (hyper-rectangle) class, the thirteenth class in theR tree index universe. This class is composed of an array of objects of the Intervalclass. The size of the array depends on the number of dimensions de�ned in theR tree index. The dimensions used in these classes are assumed to be homogeneous.Figure 5.6 describes the ninetieth class of the universe, the ListOf class, which isa parameterized class because its elements can be of any type already de�ned in thesystem. A parameterized class is a special kind of class that is de�ned to managea class of any other class or type of object. The required class is passed to theparameterized class instead of the generic type T. This class will be implementedusing a C++ template. In the C++ language, a template permits de�nition of



Chapter 5 93 R tree design and implementationApr.96 Universe R tree index1 Character -Character: Type: Basic type.2 Integer -Integer: Type: Basic type.3 Float -Float: Type: Basic type.4 Pointer -Pointer: Type: Basic type.5 Cardinal: Integer+ -Cardinal: Type: Subset of Integer,6 String: ArrayOf Character only positive values. Basic type.7 ListNode: struct -String: Type: Basic type.item: Pointer -ListNode: Class: Generic list node.to Character -List: Class: List descriptor.prior: Pointer -ListOf[T]: Parameterized class:to Character De�ne a list of elements ofnext: Pointer any type already de�ned.to Character -DKOMError: Class: Simple class toendstruct manage errors in the index.8 List: struct -EleType: Class: Simple class ton: Cardinal de�ne the elements of a list ofpos: Cardinal RTreeNode numbers and its positionlength: Cardinal into the RTreeNode father. Ithead: Pointer simulate a stack containing theto Character descending path of the tree.ListOf[T] tail: Pointer -Interval: Class: De�ne a boundedto Character interval of real numbers.actual: Pointer -HR: Class: De�ne a hyper-rectangleto Character of d-dimensions as an ArrayOf Interval.endstruct -Blob: Class: Management of10 DKOMError: struct blobs that can contain objects of anyc: Cardinal class. It is used to store or retrieveendstruct the R tree nodes and the information11 EleType: struct of the R tree object on disk.pn: Cardinal -Entry: Class: De�ne the entriespo: Integer of the R tree nodes.endstruct -RTreeNode: Class: De�ne the nodes12 Interval that conform an R tree index.13 HR -RTree: Class: De�ne the R tree index.14 Blob -MPoint: Class: De�ne a15 Entry multi-dimensional point used16 RTreeNode in the multipoint R tree.17 RTree -LeafEntry: Class: De�ne18 MPoint the leaf entries contained19 LeafEntry in leaf nodes.(multipoint only)Figure 5.2: Universe of the R tree index.



Chapter 5 94 R tree design and implementationApr.96 Speci�cation f17gClass RTreeClasses: Boolean, Entry, HR, Integer, ListOf1 Syntactic: -createRTree():createRTree()!RTree, Constructor and initiator.insert(RTree,Entry)!RTree, Create an empty R tree.delete(RTree,Entry)!RTree, (emptyRTree).search(RTree,HR)!ListOf Integer, -insert(): Mutator.cleanRTree(RTree)!RTree, Insert a new entry.isEmpty(RTree)!Boolean, -delete(): Mutator.destroyRTree(RTree)!. Delete an existing entry.2 Variables: -search(): Observer.RTree: rt, emptyRTree Return a list of blobIdEntry: e corresponding to entriesHR: hr ListOf Integer: emptyList that answer the search.3 Sample semantics: -cleanRTree(): Mutator.isEmpty(createRTree())=True Returns an empty R tree.isEmpty(insertEnt(createRTree(),e))=False -isEmpty(): Observer.isEmpty(deleteEnt(createRTree(),e))=True Return true if the R treesearch(createRTree(),hr)=emptyList is empty, otherwise false.isEmpty(cleanRTree(rt))=True -destroyRTree(): De-search(cleanRTree(rt),hr)=emptyList structor. Destroy the treedelete(insert(createRTree(),e),e)=emptyRTree after writing it on disk.Figure 5.3: TDSO speci�cation of the RTree class.generic classes, which contain generalizable structure and behaviour for any type ofobject indicated by T. Because C++ is not a complete object-oriented language, themanner for supporting parameterized classes is by generation of code correspondingto a duplication of the de�ned code of type T, but now with the speci�c type passedas a template parameter.Figure 5.7 illustrates the fourteenth class of the R tree index universe, called theBlob class. The speci�cation required for the R tree index only supports facilities forreading and writing R tree nodes, and RTree objects on disk. Others functionalitiesof this class, such as package of objects for storage and retrieval, are not presentedhere. The complete speci�cation of this class is presented by M. Jorge in [Jor94], andit implements the �rst version of the object storage manager for the D/K model.Since the indexed objects, others than R tree nodes and R tree objects, can bepackaged into a blob (several indexed objects into a blob), the blob number (bn)associated with each leaf entry in the R tree index may be repeated. However, thebn in branch nodes must be unique.



Chapter 5 95 R tree design and implementationApr.96 Speci�cation f12gClass IntervalClasses: Float, Boolean, Cardinal1 Syntactic: -createInterval():createInterval()!Interval, Constructor e initiator.change(Interval,Float,Boolean)!Interval, Create an emptyInterval.retrieve(Interval,Boolean)!Float, -change(): Mutator.compare(Interval,Interval)!Boolean, If the second parameterassign(Interval,Interval)!Interval, is true, inferior is changed,extent(Interval)!Cardinal, otherwise superior changes.isAPoint(Interval)!Boolean, -assign(): Mutator. IntervalisEmpty(Interval)!Boolean, assignment.destroyInterval(Interval)!. -isEmpty(): Observer. Returns2 Variables: true if both values are null.Interval: i, emptyList -retrieve(): Observer. If para-Float: v meter is true, returns the inferior,Boolean: f otherwise the superior value.3 Sample semantics: -compare(): Observer.isAPoint(createInterval())=True Return true if both intervalsisAPoint(change(createInterval(),v,f))= satisfy the comparison operator.if(v=0) True; else False -isAPoint(): Observer.retrieve(createInterval(),f)=0 Returns true if the intervalassign(createInterval(),i)=i is a point, otherwise false.assign(i,createInterval())=emptyInterval -extent(): Observer. Returnsextent(createInterval())=0 the extent of the intervalretrieve(change(i,v,f),f)=v which is superior-inferior.isEmpty(createInterval())=True -destroyInterval():Destructor.Destroy the interval.Figure 5.4: TDSO speci�cation of the Interval class.Figure 5.8 presents the �fth class of the R tree index universe, named the Entryclass. It permits the de�nition of the structure and behaviour of the entries of theR tree node. In this speci�cation, only the minimal subset of the methods used toexpress the behaviour of the class is shown.Finally, the RTreeNode class, the sixteenth class of the R tree index universeis presented in �gure 5.9. This RTreeNode speci�cation is used for leaf and branchnodes. These nodes are read and written on disk by using blobs as containers andby calling readNode and writeNode methods.The corresponding TDSO forms of the implementations of each extension of theRTree class are presented in the following subsections. The TDSO implementationforms of the support classes of the R tree index are contained in appendix B.



Chapter 5 96 R tree design and implementationApr.96 Speci�cation f13gClass HRClasses: Boolean, Cardinal, Interval1 Syntactic: -createHR(): ConstructorcreateHR()!HR, and initiator. Create an emptychange(HR,Interval,Cardinal)!HR hyper-rectangle (emptyHR).retrieve(HR,Cardinal)!Interval, -change(): Mutator. Intervalassign(HR,HR)!HR, in the given dimensioncompare(HR,HR)!Boolean, is changed.volume(HR)!Cardinal, -assign(): Mutator. Hyper-isAPoint(HR)!Boolean, rectangle assignment.destroyHR(HR)!. -retrieve(): Observer. Return the2 Variables: interval of the speci�ed dimension.HR: h, emptyHR -compare(): Observer. ReturnInterval: i, emptyInterval true if both hyper-rectanglesCardinal: d satisfy the comparison3 Sample semantics: operator,otherwise false.isAPoint(createHR())=True -volume(): Observer. Return theisAPoint(change(createHR(),i,d))= volume of the hyper-rectangle.if(isEmpty(i)) True; else False Calculated as a 3D volume.retrieve(createHR(),d)=emptyInterval -isAPoint(): Observer. Returnvolume(createHR())=0 true if the hyper-rectangle isassign(createHR(),h)=h a point, otherwise false.assign(h,createHR())=emptyHR -destroyHR(): Destructor.retrieve(change(h,i,d),d)=i Destroy the hyper-rectangle.Figure 5.5: TDSO speci�cation of the HR (hyper-rectangle) class.5.2 The R tree extensionsAs a �rst step, we study and implement the R tree structure to augment our knowl-edge and we found that, in the Guttman's R tree, it was possible to make somechanges to improve its performance.The �rst change was the entry deletion problem, because Guttman's paper pro-poses use of reinsertion of some entries that were in the wrong place after an entrydeletion. Being in the wrong place means that these entries have to be moved toanother nodes according to the R tree de�nition, sometimes resulting in an underfullnode which is solved by the merge process, similar to the same process in B trees.The reinsertion alternative, in our view, is not a good alternative because it maycause a major restructuring of the tree followed by a larger entry deletion time. Thesecond change was the splitting policy, which we found possible to improve by de-laying node splitting by using the same redistribution policy used in entry deletion.



Chapter 5 97 R tree design and implementationThe third aspect was introduced after consideration as to whether it might be moreappropriate to use speci�c search operators rather than the very general operatorused by Guttman. We found an answer in Egenhofer's topological operators [Ege89],[EH90], [NHM92] and in the position operators. Finally, a new structure based onthe R tree and called the octagon tree (O tree) is described in the last subsection.All of these extensions were implemented based on the speci�cation done in the lastsection.5.2.1 The R tree extension 1As wementioned before, this is the �rst implementation undertaken following Guttman'spaper. It is basically the original R tree but avoiding the reinsertion of entries inthe tree after a deletion of a node. In the deletion algorithm, we realize that thepolicy of reinsertion proposed by the author provoked several possible insertions ofold R tree entries again. In order to avoid this situation, a deletion operation wasimplemented following a policy of redistribution of entries between the two possiblebrothers of an underfull R tree node. As a consequence of this, two references wereincluded in the head of a node, which are blobId of the anterior node (left brother)and blobId of the posterior one (right brother). This policy was maintained forthe rest of the extensions. To delete an entry, two functions are provided that re-distribute the entries between its left and/or right brother nodes. If the node hasonly one brother, the redistribution is made with that node and this function iscalled redistribution2. Otherwise, the redistribution function is invoked. Fig-ure 5.10 illustrates the situation when the redistribution is made with three nodes,and �gure 5.11 shows the situation with two nodes. Empty space within nodes isemphasized with hatching.The redistribution function is used when the number of entries in the under-owed node and those of its brother nodes divided by 3 is greater than m. Moreclearly, let nA be the number of entries of the underowed node, nB the number ofentries of the left brother node, and nCB the number of entries of the right brothernode. If d(nA + nB + nC)=3e � m, then the redistribution function is invokedfrom the condenseTree function, otherwise a test is made to see if a node deletionis required. If d(nA+ nB + nC)=2e < M , then the node deletion is done, otherwisea redistribution among two nodes is done (redistribution2). This means that anode deletion is done only in the case of the total number of entries among threenodes being insu�cient to satisfy the needs of having one of these nodes. After a



Chapter 5 98 R tree design and implementationredistribution of three nodes, the number of entries among these nodes is almostthe same. The consequences of a redistribution is the change of the mbhrs in thecorresponding entries of the father nodes.The deletion function empties the underfull node by putting its entries intoboth brother nodes, and then deletes this node changing the corresponding entriesin the father node. After a node deletion, the father node can be underfull and theprocess may be restarted again, sometimes until reaching the root. In the case of aroot deletion, the R tree shrinks in height and in width. Each time a node changesby one of these functions, the change is reected on disk, that is each changed nodeis written to disk.The redistribution2 function is called either when d(nA+ nB + nC)=2e �M ,or when the underowed node only has one brother node, that can be the left or theright one. After the redistribution2 function is executed, the number of entriesin the corresponding nodes is almost the same, and its corresponding entries in itsfather node are updated.If the underfull node only has one brother and d(nA + nb)=2e < M , then thedeletion2 function is called. This last function does the same basic operations asthe deletion function, but with only two nodes. It deletes the underowed nodeafter passing its entries to its brother, and updating the corresponding entries in thefather node. After a node deletion, the father node can be underfull and the processis repeated again at this level, with the possibility of reaching the root node.The implementation of the R tree extension 1 class is named RTreeExt1, andit uses the same basic classes already speci�ed in the above section. The implemen-tation of these classes are described in appendix B.5.2.2 The R tree extension 2Since a B tree has similar conditions concerning redistribution during insertion anddeletion, we decided to make a second R tree extension that supports these twotypes of redistribution. This extension is based on extension 1, and it supportsredistribution during entry deletion as well as during the insertion of a new entry.Thus, the main di�erence between both extensions is the insertion function, thatdelays as much as possible a node splitting. Extension 2 splits an overowed nodeonly if it is impossible to redistribute extra entries among brothers, and it mergesan underowed node under similar conditions. The consequence is the delay of bothsplit and merge operations in the structure. When a new entry must be inserted



Chapter 5 99 R tree design and implementationin the structure, the search is made for a leaf node where the insertion must bedone. If the leaf node is full, its brother nodes are read, if any. If its brother nodeshave enough space to hold new entries, then the redistribution process is done. Thisredistribution operation sums the number of the entries of the nodes involved inthe process, and this result is divided by the number of nodes involved, to give thenumber of the entries that each node involved will contain. Figure 5.12 shows adiagram of the situation where P is the parent node of nodes A, B, and C. Theoverowed node is A. If d(nA + nB + nC)=3e � m, then entries are redistributed,and the process is similar to those described to extension 1, except that instead ofcalling the deletion function, the splitNode function is called.If node A has only one brother, which is the case when A is the node on theextreme left or extreme right, then the calculation of the possible redistribution ismade with two nodes. This situation can be observed in �gure 5.13 where the emptyspace within each node is emphasized with small hatching.The corresponding TDSO form to implement this extension is the same as ex-tension 1, because the only di�erence is a new function, called overow, that isinvoked from the insertEnt function. This function is charged to verify the split-ting conditions, and its signature is overow(RTreeNode, ListOf[EleType]). If anode must be split, the splitNode function is called, otherwise the overowed nodeis passed to either redistribution or redistribution2 functions, according to the num-ber of brothers of this node. The implementations of its basic classes remain thesame as those shown in appendix B.5.2.3 The R tree extension 3The third implementation of the R tree index speci�cation is the RTreeExt3 class.This class is based on the RTreeExt1 class with the addition of the spatial andtemporal operators already described in chapter 3. The TDSO implementation formof this extension and the corresponding basic classes are presented in appendix B.This extension permits indexing of spatial objects with more than two dimen-sions by indicating at the beginning the number of coordinates in nCoord, andthe position of the �rst coordinate in xDim. It is assumed that the Y coordinateand the following ones, if any, are stored after xDim, that is the position of the Ycoordinate is xDim+1, the following is xDim+2, and so on.It is also possible to use the index with temporal objects by establishing thenumber of time dimensions in nTime, and the position of the �rst time dimension



Chapter 5 100 R tree design and implementationin timeDim. Once nTime and timeDim are �xed, it is also possible to set theunit of time needed in timeUnit.When these attributes are di�erent to the system default values, it is establishedthat the R tree index is a spatio-temporal index, and all the de�ned operatorsare available. Thus, spatio-temporal queries can use the set of spatio-temporaloperators (stop), i.e. stop=fdisjoint, nDisjoint, match, inside, coverg. Ifthe query is only spatial, then only the set of spatial operators (sop) are available,i.e. sop=fslDisjoint, slnDisjoint, slMatch, slInside, slCover, leftD, rightD,nDisjointDg. Finally, if the query is only temporal, then only the set of temporaloperators (top) may be used, i.e. top=fleftD, rightD, during, equal, adjacent,follow, precede, meet, start, �nish, nDisjointDg.5.2.4 The R tree extension 4This implementation is basically the same as extension 3, but it allows redistributionof entries in case of insertion. Thus, this extension delays node splitting, and nodedeletion processes as much as possible. The other operators provided are the sameas for extension 3.The TDSO implementation form is similar to those of extension 3, except for theinclusion of the overow function. The rest of the classes are kept. Appendix Bcontains the mentioned TDSO forms.5.2.5 The multi-point R treeThis implementation is based on extension 3, and permits a better use of the R treeleaf nodes when it is known that the application only treats multipoint data. Thatis, if the data contains spatial location and/or time expressed as point values. Thisis the case for the available REM data that will be explained in chapter 5.In this extension, the format of leaf and branch nodes are di�erent in the contentto the rest of the R tree nodes. Branch nodes have the same format as describedin section one and illustrated in �gure 4.2. The leaf node format is changed to thatshown in �gure 5.14.Both, leaf and branch nodes are stored in blobs, so the Blob class does notchange. The new TDSO diagram of the class and composition hierarchies is pre-sented in �gure 5.15, where three new classes are added. These classes support themanagement of data points. We keep the R tree index universe of �gure 5.2, whichde�nes the relevant classes, and the new speci�cation of the RTree class is shown



Chapter 5 101 R tree design and implementationin �gure 5.16. We called this extension the multi-point R tree (MRTree) class todi�erentiate it from the previous class which is more general.The TDSO speci�cation of the class MPoint is presented in �gure 5.17. This isthe eighteenth class of the R tree universe, and it is composed of an array of Floatvalues. The size of this array depends on the number of dimensions de�ned for theMRTree class. The MPoint class de�nes a point in d-dimensional space.Figure 5.18 presents the TDSO speci�cation of the LeafEntry class, which isthe nineteenth class of the R tree universe. This class is similar to the Entry class,except that the attribute hr is changed to mp pertaining to the MPoint class.Leaf entries are only used in leaf nodes, so the new RTreeNode class is speci�edin �gure 5.19. The temporal approach that is supported by this extension is thepoint model, where points in space and time are stored in leaf nodes. This extensionsupports the same operators as extension 3.For the implementation of the MRTree class, the insertion and deletion of in-dexed objects are rede�ned to insert and delete leaf entries, because hyper-rectanglesare only permitted in branch nodes. The TDSO implementation forms of theMRTree class and its basic classes, containing the structure and behaviour of theclass, and also a brief description of each variable and operation, are contained inappendix B.5.2.6 The O treeIn order to reduce the hit ratio of searches of the indexed polygonal objects, Robertsproposes a new spatial indexing method, called the O tree. This tree is an extensionof the R tree structure in 2D, where the mbr of the R tree entries are replaced bytwo mbrs, which together de�ne an 8-sided polygon (octagon).The �rst mbr is de�ned as normal; parallel to the X-Y axes. The second oneis de�ned parallel to the X-Y axes rotated through 45�. An O tree entry containsthese two mbrs de�ned as follows: let (X,Y)2P where P is the set of points de�ningthe polygonal object. The �rst mbr, mbr1 : [Xi;Xs; Y i; Y s], is calculated withXi = minP (X);Xs = maxP (X);Y i = minP (Y );Y s = maxP (Y )and the second one, mbr2 : [C1; C2; C3; C4] is calculated withC1 = minP (X + Y );C2 = maxP (X + Y );C3 = minP (Y �X);C4 = maxP (Y �X)Each Ci is the value where the sides of mbr2 (extended if necessary) intersect theY-axis.Figure 5.20 illustrates the two mbrs over a polygonal object, which is shown in



Chapter 5 102 R tree design and implementationgrey. The Ci values used to store mbr2 are also shown.The structure composed by these two mbrs is called a tight-bounding octagon(tbo) and they are included in an O tree entry with the blob number of the indexedobject. To calculate the new tbo that encloses two or more tbos, we use the sameformula utilized to calculate the mbr that encloses two or more mbrs. That is, giventwo tbos: tbo1 : [Xi1;Xs1; Y i1; Y s1; C11; C21; C31; C41], andtbo2 : [Xi2;Xs2; Y i2; Y s2; C12; C22; C32; C42]the tbo enclosing both tbos is given by:[min(Xi1;Xi2);max(Xs1;Xs2);min(Y i1; Y i2);max(Y s1; Y s2);min(C11; C12);max(C21; C22);min(C31; C32);max(C41; C42)]This formula is used to form a new tbo in branch nodes, when a new entry isinserted in the O tree. Also needed is a new condition to test if two tbos intersect,which is used in searches. Thus, two tbos intersect if both their pairs of mbrs overlap.In testing for coverage, as used in exact match queries, it is only needed to test the�rst mbr coverage, because the second mbr is superuous in this test.The OTree class is speci�ed similarly to the RTree class. We do not need tochange anything in the TDSO speci�cation, so �gure 5.3 describes it. The HR classis utilized with double the number of dimensions, and the rest of the basic classesremain the same, except for the RTreeNode class, where the maxHb function isreplaced by the maxTbo function.The TDSO implementation form of the OTree class is also similar to those ofthe RTreeExt3 class, that is described in appendix B.5.3 Concluding remarksThe design of object-oriented classes allows multiple implementations supporting anADT. Object-oriented languages are powerful tools that permit code reutilizationand system extensibility as their main advantages used in this work. The R treeimplementations reuse the basic classes such as Interval, HR, and Entry, andthese classes were extended over the course of the implementation to cover the needsof each new extension made.We have shown that the object-oriented approach allows us to have an extensibleR tree class, which may contain whatever operator or function the applications need,to improve the retrieval performances in a speci�c domain.Finally, the O tree uses an octagon container instead of a rectangle, but we can-



Chapter 5 103 R tree design and implementationnot avoid the use of the necessary computational geometry which is always neededto obtain the set of answering objects.
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Apr.96 Speci�cation f9gClass ListOf[T]Classes: Cardinal, T1 Syntactic: -createList(): Constructor.createList()!ListOf, Create an empty listinsert(ListOf,T)!ListOf, of element of type T.delete(ListOf)!ListOf, -insert(): Mutator. Insert a newactual(ListOf)!T, element before the actual element.next(ListOf)!T, -delete(): Mutator. Deleteprior(ListOf)!T, the actual element, if any;cleanList(ListOf)!ListOf, otherwise emptyList.numList(ListOf)!Cardinal, -actual(): Observer. ReturndestroyList(ListOf)!. the actual element, if any;2 Variables: otherwise emptyT.ListOf: l, emptyList -next(): Observer. ReturnT: t, emptyT the next element (after3 Sample semantics: the actual) and move actual tonumList(createList())=0 it, if any; otherwise emptyT.numList(insert(createList(),t))=1 -prior(): Observer. Returnactual(insert(createList(),t))=t the prior element (beforenext(insert(createList(),t))=emptyT the actual) and move actual toprior(insert(createList(),t))=emptyT it, if any; otherwise emptyT.actual(createList())=emptyT -cleanList(): Mutator.numList(cleanList(l))=0 Delete all nodes into thedelete(cleanList(l))= emptyList list and return emptyList.delete(insert(createList(),t))=emptyList -numList(): Observer.Return the current numberof elements into the list.An empty list has zero elements.-destroyList(): Destructor.Clean the list before destroying it.Figure 5.6: TDSO speci�cation of the ListOf class.



Chapter 5 105 R tree design and implementationApr.96 Speci�cation f14gClass BlobClasses: Character, Boolean, Cardinal, String1 Syntactic: -createBlob(): ConstructorcreateBlob()!Blob, and initiator. Create angetNew(Blob,Cardinal)!Cardinal, empty blob in mainassign(Blob,Blob)!Blob, memory (emptyBlob).readBlob(Blob,Cardinal,Cardinal)!Blob, -getNew(): Observer.writeBlob(Blob,Cardinal,Cardinal)!Boolean, Obtain a new blob numberstatus(Blob,Character)!Blob, from disk.objNum(Blob,Character)!Blob, -assign(): Mutator.length(Blob,Cardinal)!Blob, Change the �rst blobleft(Blob,Cardinal)!Blob, values.right(Blob,Cardinal)!Blob, -readBlob(): Mutator.tail(Blob,String)!Blob, Read the blobgStatus(Blob)!Character, content from disk.gObjNum(Blob)!Character, -writeBlob(): Mutator.gLength(Blob)!Cardinal, Write the blobgLeft(Blob)!Cardinal, content on disk.gRight(Blob)!Cardinal, -status(): Mutator. ChangegTail(Blob))!String, the status of the blob.destroyBlob(Blob)!. -objNum(): Mutator.2 Variables: Change its number of theBlob: b, emptyBlob; Character: ch, on contained objects.Cardinal: c, bId, l; String: s, emptyString -length(): Mutator. Change3 Sample semantics: its current length in bytes.gStatus(createBlob())=0 -left(): Mutator. ChangegObjNum(createBlob())=0 the blob number on its left.gLength(createBlob())=0 -right(): Mutator.gLeft(createBlob())=0 Change the blob numbergRight(createBlob())=0 on its right.gTail(createBlob())=emptyString -tail(): Mutator. ChangereadBlob(createBlob(),c,0)=emptyBlob the tail of the blob.writeBlob(createBlob(),c,0)=False -gStatus(),gObjNum(),gStatus(status(b,ch))=ch gLength(),gLeft(),gObjNum(objNum(b,on))=on gRight(),gTail():gLength(length(b,l))=l Observers. ReturngLeft(left(b,bId))=bId each value of thegRigth(right(b,bId))=bId attributes of a blob.gTail(tail(b,s))=s -destroyBlob():assign(createBlob(),b)=b Destructor. Destroy theassign(b,createBlob())=emptyBlob blob in main memory.Figure 5.7: TDSO speci�cation of the Blob class.
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Apr.96 Speci�cation f15gClass EntryClasses: Boolean, Cardinal, Interval, HR1 Syntactic: -createEntry(): Constructor.createEntry()!Entry, Create an empty entryhr(Entry,HR)!Entry, (emptyEntry).bn(Entry,Cardinal)!Entry, -hr(): Mutator. Change theassign(Entry,Entry)!Entry, value of the hyper-rectanglecompare(Entry,Entry)!Boolean, of the entry.compareHR(Entry,HR)!Cardinal, -bn(): Mutator. Change thecompareInt(Entry,Interval)!Cardinal, value of the blob number ofgHr(Entry)!HR, the entry.dBn(Entry)!Cardinal, -assign(): Mutator. Change thedestroyEntry(Entry)!. values of the �rst entry.2 Variables: -gHr(): Observer. ReturnEntry: e, emptyEntry the value of the hyper-rectangleHR: h, emptyHR of the entry.Cardinal: bId -compare(): Observer. Return3 Sample semantics: true if both entriesgHr(createEntry())=emptyHR satisfy the comparison.gBn(createEntry())=0 -compareHR(): Observer. ReturngHr(hr(e,h))=h the blob number if both hyper-gBn(bn(e,bId))=bId rectangles satisfy the comparison.assign(createEntry(),e)=e -compareInt(): Observer. Returnassign(e,createEntry())=emptyEntry the blob number if the interval indimension d satisfy the comparisonwith the given interval.-gBn(): Observer. Return theblob number of the entry.-destroyEntry(): Destructor.Figure 5.8: TDSO speci�cation of the Entry class.



Chapter 5 107 R tree design and implementationApr.96 Speci�cation f16gClass RTreeNodeClasses: Boolean, Cardinal, Character, HR, Entry1 Syntactic: -createRTreeNode():createRTreeNode()!RTreeNode, Constructor e initiator.insert(RTreeNode,Entry,Cardinal)!RTreeNode, Create an empty R treedelete(RTreeNode,Cardinal)!RTreeNode, node (emptyRTreeNode).maxHb(RTreeNode)!HR, -insert(): Mutator.assign(RTreeNode,RTreeNode)!RTreeNode, Insert a newreadNode(RTreeNode,Cardinal)!RTreeNode, entry in thewriteNode(RTreeNode)!RTreeNode, indicated position.destroyRTreeNode(RTreeNode)!. -delete(): Mutator.2 Variables: Delete the indicatedRTreeNode: rtn entry.HR: h -maxHb(): Observer.Entry: e ; Cardinal: p Return the hyper-3 Sample semantics: rectangle of all themaxHb(createRTreeNode())=emptyHR entries into the node.assign(createRTreeNode(),rtn)=rtn -assign(): Mutator.assign(rtn,createRTreeNode())=emptyRTreeNode Change the �rst nodereadNode(rtn,0)=emptyRTreeNode by the second one.writeNode(createRTreeNode())= -readNode(): Mutator.emptyRTreeNode Read from disk the nodedelete(insert(createRTreeNode(),e,p),p)= which is stored in theemptyRTreeNode indicated blob number,if its blobId6=0.-writeNode(): Mutator.Write the node on disk,if its blobId6=0.-destroyRTreeNode():Destructor. Write theR tree node on diskbefore destroying it.Figure 5.9: TDSO speci�cation of the RTreeNode class.
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MPointFigure 5.15: New TDSO diagram for the composition hierarchy.Apr.96 Speci�cation f17gClass MRTreeClasses: Boolean, Entry, HR, Integer, ListOf1 Syntactic: -createMRTree():createMRTree()!MRTree, Constructor and initiator.insert(MRTree,LeafEntry)!MRTree, Create an empty R tree.delete(MRTree,LeafEntry)!MRTree, -insert(): Mutator.match(MRTree,MPoint)!Integer, Insert a new leaf entry.search(MRTree,HR)!ListOf Integer, -delete(): Mutator.cleanMRTree(MRTree)!MRTree, Delete an existingisEmpty(MRTree)!Boolean, leaf entry.destroyMRTree(MRTree)!. -match(): Observer.2 Variables: Return the blob numberMRTree: mrt, emptyMRTree of this point.LeafEntry: e -search(): Observer.HR: hr ; MPoint: mp Return a list of blobId3 Sample semantics: corresponding to entriesisEmpty(createMRTree())=True that answer the search.isEmpty(insertEnt(createMRTree(),e))=False -cleanMRTree():isEmpty(deleteEnt(createMRTree(),e))=True Mutator. Returnssearch(createMRTree(),hr)=emptyList an empty R tree.isEmpty(cleanMRTree(mrt))=True -isEmpty(): Observer.search(cleanMRTree(mrt),hr)=emptyList Return true if the R treematch(cleanMRTree(mrt),mp)=0 is empty, otherwise false.match(createMRTree(),mp)=0 -destroyMRTree():delete(insert(createMRTree(),e),e)=emptyMRTree Destructor. Destroythe R tree.Figure 5.16: TDSO speci�cation of the MRTree class.
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Apr.96 Speci�cation f18gClass MPointClasses: Float, Boolean, Cardinal1 Syntactic: -createMPoint():createMPoint()!MPoint, Constructor. Create anchange(MPoint,Float,Cardinal)!MPoint, empty dD point.retrieve(MPoint,Cardinal)!Float, -change(): Mutator. Thecompare(MPoint,MPoint)!Boolean, oat value in the speci�edassign(MPoint,MPoint)!MPoint, dimension is changed.destroyMPoint(MPoint)!. -assign(): Mutator.2 Variables: Multi-point assignment.MPoint: i, emptyMPoint -retrieve(): Observer.Float: v Return the oat valueCardinal: d of the speci�ed dimension.3 Sample semantics: -compare(): Observer.retrieve(createMPoint(),d)=0 Return true if both dD pointsassign(createMPoint(),i)=i satisfy the comparison operator.assign(i,createMPoint())=emptyMPoint -destroyMPoint(): De-retrieve(change(i,v,d),d)=v structor. Destroy the interval.Figure 5.17: TDSO speci�cation of the MPoint class.
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Apr.96 Speci�cation f19gClass LeafEntryClasses: Boolean, Cardinal, MPoint1 Syntactic: -createLeafEntry():createLeafEntry()!LeafEntry, Constructor. Create anmp(LeafEntry,MPoint)!LeafEntry, empty leaf entry.bn(LeafEntry,Cardinal)!LeafEntry, -mp(): Mutator. Changeassign(LeafEntry,LeafEntry)!LeafEntry, the mpoint valuecompare(LeafEntry,LeafEntry)!Boolean, of the leaf entry.compareMp(LeafEntry,MPoint)!Cardinal, -bn(): Mutator. ChangegMp(LeafEntry)!MPoint, the blob numbergBn(LeafEntry)!Cardinal, of the leaf entry.destroyLeafEntry(LeafEntry)!. -assign(): Mutator.2 Variables: Leaf entry assignment.LeafEntry: le, emptyLeafEntry -compare(): Observer.MPoint: m, emptyMPoint Return true if both entriesCardinal: bId satisfy the comparison.3 Sample semantics: -compareMp(): Observer.gMp(createLeafEntry())=emptyMPoint Return the blob number ifgBn(createLeafEntry())=0 both multi-point valuesgMp(mp(le,m))=m satisfy the comparison.gBn(bn(le,bId))=bId -gMp(): Observer. Returnassign(createLeafEntry(),le)=le the multi-point value.assign(le,createLeafEntry())=emptyLeafEntry -gBn(): Observer.Return the blob number.-destroyLeafEntry():Destructor.Figure 5.18: TDSO speci�cation of the LeafEntry class.



Chapter 5 113 R tree design and implementationApr.96 Speci�cation f20gClass RTreeNodeClasses: Boolean, Cardinal, Character, MPoint, HR, LeafEntry, Entry1 Syntactic: -createRTreeNode():createRTreeNode()!RTreeNode, Constructor. CreateinsLeaf(RTreeNode,LeafEntry,Cardinal)! an empty node.RTreeNode, -insLeaf():insert(RTreeNode,Entry,Cardinal)!RTreeNode, Mutator.delete(RTreeNode,Cardinal)!RTreeNode, Insert a newmaxHb(RTreeNode)!HR, leaf entry in theassign(RTreeNode,RTreeNode)!RTreeNode, indicated position.readNode(RTreeNode,Cardinal)!RTreeNode, -insert(): Mutator.writeNode(RTreeNode)!RTreeNode, Insert a new entry indestroyRTreeNode(RTreeNode)!. the given position.2 Variables: -delete(): Mutator.RTreeNode: rtn, emptyRTreeNode Delete theHR: h, emptyHR indicated entry.Entry: e -maxHb(): Observer.3 Sample semantics: Return the mbhrmaxHb(createRTreeNode())=emptyHR of the RTreeNode.assign(createRTreeNode(),rtn)=rtn -assign(): Mutator.assign(rtn,createRTreeNode())=emptyRTreeNode RTreeNode assignment.writeNode(createRTreeNode())=emptyRTreeNode -readNode(): Mutator.readNode(rtn,0)=emptyRTreeNode Read from the nodewhich is stored in theindicated blob number,if its blobId6=0-writeNode():Mutator. Write thenode on disk.-destroyRTreeNode():Destructor. Writethe node on diskbefore destroying it.Figure 5.19: New TDSO speci�cation of the RTreeNode class.
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Chapter 6Test of the R tree extensions
In order to compare the R tree extensions, experiments based on four di�erent kindsof data were designed. The �rst dataset comprised randomly generated mbrs in 2D,uniformly distributed in space. For the second dataset, we used real data fromthe Radioactivity Environmental Monitoring (REM) database containing spatio-temporal points. The third dataset comprised polygonal real data containing thecounties of the UK and the wards of the West Yorkshire county. For the last dataset, spatio-temporal data uniformly distributed in space and time were generatedas mbhrs in 3D, but for lack of time, we only used this three times, once to testextension 1, second to test extension 3, and the other to test extension 4.The experiments were limited in a number of range, partly due to lack of realdatasets of su�cient size. Future work will extend the experiments by looking atclustering datasets and also spatio-temporal polygonal data. Most of the conclusionsin this chapter are based on simulated spatial data.This chapter describes the main characteristics of the data used, how they weregenerated (where appropriate), what sort of data they contain, how the experimentswere carried out, what kind of transformations were made to obtain the requireddata, and the analysis of the results obtained.115



Chapter 6 116 Test of the R tree extensions6.1 Spatial dataThis section describes the type of data that we used to test the R tree extensionsin 2D. The spatial data used was expressed either by the two coordinates of a mbror by the four coordinates of a tbo. The mbrs were utilised for the extensions 1 to4, and the tbos for the O tree.6.1.1 Data uniformly distributed in spaceThe �rst step for testing the extensions of the R tree structure required mbrs in 2D.Because the data of the Carora city (mentioned in chapter 2) was not available tous at that time, we decided to generate a �le containing mbrs for objects uniformlydistributed in space with their height and width also uniformly distributed. Wefollowed similar ideas as used in simulation to generate data, by using a uniformfunction that �rst generates a pseudo-random number uniformly distributed overthe interval [0, 1) and later transforms it into a numberthat follows a uniform distri-bution over a di�erent interval. In this case, we use a uniform distribution between0 and 800 for generating the centroid of the mbr, a uniform distribution between 1and 100 to generate the width of the rectangle, and �nally, a uniform distributionbetween 10 and 100 to generate the height of the rectangle.Figure 6.1 illustrates the TDSO form of the implementation of this program,called MBRCreation, and the uniform function that it uses. Each time the pro-gram is executed, it generates the same data because we do not use di�erent seedvalues and the uniform function uses the same pseudo-random number sequencegenerated by one of the available C++ library functions named drand48(). TheC++ library function returns a non- negative double-precision oating point valueuniformly distributed over the interval [0.0, 1.0) using the linear congruential algo-rithm and 48-bit integer arithmetic. The linear congruential formula gives Xn+1 =(wXn+c) mod m with n � 0, where m = 248; w = (273673163155)8 ; and c = (13)8.The value returned by drand48() is computed by �rst generating the next 48-bit Xin the sequence. Then the appropriate number of bits, according to the type ofdata item to be returned, are copied from the high-order (left most) bits of Xi andtransformed into the returned value. The program can be used for generating therequired number of mbrs uniformly distributed in the space described above. Anexample of the data obtained is also presented in this �gure.



Chapter 6 117 Test of the R tree extensionsMay.96 Implementation MBRCreationClasses: Float, Integer, Entry1 nrec=Read from the keyboard -nrec: Integer: Number of2 mbrFile=File mbr that will be generated.3 [ xc=uniform(0,800) -mbrFile: String: File whereyc=uniform(0,800) are stored the generated data.xa=uniform(1,100) -xc,yc: Float: Centroidyl=uniform(10,100) of a mbr.mbrRec=(xc-xa/2, yc-yl/2, xc+xa/2, -xa,yl: Float: Width andyc+yl/2,i+1) large of a mbr.Write mbrRec in mbrFile -mbrRec: Entry: mbr] i=0,nrec and number of the recordin the �le.1 nrec=2, mbrFile=`s2D.mbr' Create two mbrs followingmbrRec=(299.182 335.162 647.292 697.485 1) the de�ned distribution.mbrRec=(253.683 256.226 677.859 740.427 2)May.96 Implementation uniform(Float: a, b): FloatClasses: Float1 return (a+(b-a)*drand48()) -drand48(): C++ libraryfunction that generatespseudo-random numbersusing the linearcongruential algorithmand 48-bit integer arithmetic.Figure 6.1: TDSO implementation of the MBRCreation program.6.1.2 Polygonal dataIn order to test the e�cacy of the O tree described in the last chapter, some �lesfrom Manchester Computing Center were obtained: one containing the segments ofthe wards of the West Yorkshire county of the U.K. and the other containing thesegments of the counties of the U.K.These real data were stored following the format shown in �gure 6.2. Eachrecord �le contains the information about a segment, beginning with the names oftwo polygons, to identify the polygon on the left, and the polygon on the right ofthis segment. These names are codes de�ning each division of either a county orthe country. After that appears the �rst point of the segment given as an absolutevalue, and followed by a set of points expressed in relative coordinates, where each isassociated with its predecessor. To calculate a new absolute coordinate based on its



Chapter 6 118 Test of the R tree extensionspredecessor, the current absolute coordinate is added to the next relative coordinatevalue. In the example shown below, the second absolute coordinate is 39956 41295.An example of these records is the following, Z03BPAP Z08CZAU 39951 41301 6-6 10 -13 6 -8 5 -5 ... 5 -7 2 -3 2 -4 /. Polygons pertaining to the West Yorkshirecounty began with Z08, and the corresponding ascii �le is shown in appendix C.Left Right Absolute Set of relative coordinatessegment segment coordinates X and Y in relation toidenti�er identi�er X and Y its predecessor.Figure 6.2: Format of each segment of polygonal data �les.These �les were processed by a program called tbo that calculates the tightbounding octagon (tbo) of each polygon in the �le. A tbo contains the two coordi-nates used for the two mbrs, as mentioned in chapter 4. The corresponding TDSOimplementation of the tbo program is presented in �gure 6.3. The identi�cation ofeach polygon is made by its code (name), and it can appear several times in the�le. Files can have polygon names of other counties which are its neighbours, thoseneighbour polygons are not included in the output �les.6.2 Spatio-temporal dataThe term spatio-temporal data is used for data that includes time values related tothe 2D mbr. The implemented R tree extensions three, four, and �ve support manydimensions in space and time, however we have not tested it with more than twodimensions in geographic space and one dimension in time.6.2.1 Interval data uniformly distributed in space and timeDue to the lack of real spatio-temporal data expressed as intervals, we decided togenerate a set by using theMBHRCreation program that generates the �le namedst3D.mbhr. This program is basically the MBRCreation program shown in thelast section to generate spatial data. The spatio-temporal intervals generated by theprogram are uniformly distributed in space and time. It uses the same function anddistributions for generating mbrs, and generates time intervals between 01/01/1990and 31/12/1995. The extent of the time intervals is also uniformly distributed in[0,364]. Figure 6.4 presents the TDSO implementation of the program and oneexample of the generated minimum bounding hyper-rectangles (mbhrs).



Chapter 6 119 Test of the R tree extensions6.2.2 Point dataThe REM databank contains environmental monitoring data collected after thenuclear accident of Chernobyl city in the USSR. These data correspond to sev-eral readings of ground-deposited CS-137 at various spatial and temporal locations.Roberts presents in [Rob95] a preliminary analysis of the data that highlights itsmain characteristics.Firstly, the data is not uniformly distributed either in space or in time. Thisnon-uniformity is because some monitors are at �xed locations and provide readingsregularly spaced in time, and others are mobile and take readings at those locationsconsidered to be most signi�cant data at that time. Second, data values for locationare expressed in absolute coordinates as latitude and longitude. Third, some read-ings have a date where the data values were taken, and these values are expressed inabsolute time as day, month, and year. Finally, location-time data values correspondto spatio-temporal points.For this application, the spatio-temporal access method will take location andtime values as real numbers having a granularity of meters and microseconds, respec-tively. The problem of di�erent scales is left to the spatio-temporal query language,as is the problem of having only relative values. The index only supports absolutevalues.The data provided by this application is used to test the R tree extension 5 thatwas de�ned in the last chapter. This data has the format presented in �gure 6.5,a code determining the administrative district for Europe (NUTS code), the nameof the district (locality), the code of the sample type that describes how the samplewas obtained, a reference to the source of the data, the date of the sample on whichthe measurement was taken, the nuclide whose concentration is being measured(nuclide), the measurement value, the units of measurement, degrees latitude, anddegrees longitude. An example of the records is the following, 11, SCHLESWIG-HOLSTEIN, A112D, DWDO, 29-apr-1986, I-131, 0.000, BQ/M3, 54.434, 9.514.6.3 Experimental designEach of the �rst four extensions were prepared for execution on the same platformvarying the same experimental parameters, that is: blob size (512, 1024, and 2048)and number of objects (1000, 2770, 5000, and 10000). We choose 2770 because thisis the maximum �le size for the REM databank available for evaluating extension



Chapter 6 120 Test of the R tree extensions5. The multi-dimensional point R tree (extension 5) was tested with the same blobsizes, and the number of objects in (1000, 2770), due to the quantity of availabledata. The last extension, the O tree, was only tested with the polygonal data �leswhich were processed by the tbo program creating the .tbo testing �les. All of theextensions were implemented on C++ on a UNIX platform, and tested on the samestandalone Silicon Graphics machine.6.3.1 ParametersThe comparison was based on the parameters which measure the main characteristicsof a tree, called the measured parameters. These measured parameters are presentedin �gure 6.6.These parameters will be used to describe and compare the extensions in thesection of the results.6.3.2 Test programsThe test programs di�er in the number of the implemented operators depending onthe extension to be tested. Thus, the e1 program was used to test the extension 1, e2to test extension 2, and so on. Figure 6.7 shows the general TDSO implementationcorresponding to all the test programs. The rest of the TDSO implementations forfunctions called by a test program are presented in appendix C.Insertion and searching methods into the RTree class include some statementsto measure time. We use the timing function provided by C++ in UNIX sys-tems that is getrusage(). This function returns information describing the re-sources utilized by the current process, or all its terminated child processes. Weuse getrusage(RUSAGE SELF, time) for getting initial and �nal time of each op-erations that we need to measure. For each operation e.g. insert, retrieve, etc.,we transform the time obtained to seconds, and compute average and variance overall objects in the �le. These two calculated values were utilized to perform somestatistical tests mentioned in the next section. To be sure that time values were asaccurate as possible, we put initial time measure statement inside the function justbefore the beginning of the real work of it, and the �nal time measure statementjust after the real work �nished inside the function. After that instruction, we putother statements to calculate time in seconds, time cumulation, and other things.We also avoid the timing of initialization of variables.Each test program creates the structure by inserting one by one the object's mbr



Chapter 6 121 Test of the R tree extensionsand its reference. Each insertion gives an insertion time in seconds and the numberof disk accesses. After inserting the demanded number of objects (1000, 2770, 5000,and 10000), the parameters H, NB, NE, ES, AIT, IDA, and the variance of insertiontime are calculated.For retrieval operations in all of the extensions, the test scenario is as follows:1. AMST, MDA, MRO, and the variance of exact match time are calculated forexact match operations by searching for each object in turn.2. ARST, RDA, RRO, and the corresponding variance are calculated for rangeoperations. For every object in the dataset, the range operator is applied to�nd all the objects satisfying the range condition. This can be seen in tablesof the appendix C.3. For the rest of the retrieval operations, the same considerations apply.6.4 ResultsFirst of all, extension 1 is considered equivalent to the original R tree because ofthe only di�erence between them is the deletion algorithm, and we do not use thatmethod in any of our experiments. For this reason, in what follows, the results ofextension 1 will be taken to represent the original R tree and provide the referencepoint for evaluating the other extensions. Extensions 1 and 2 were tested with the2D spatial data uniformly distributed in space, that is the s2D.mbr �le generatedby MBRCreation program. Figure 6.8 presents the curves obtained for empty spacewithin nodes (ES) vs. database size. This �gure shows clearly the reduction inwasted space within nodes for the case of extension 2. The reason for that is theuse of the redistribution policy during insertions.Referring to the average insertion time (AIT), �gure 6.9 illustrates that there isno appreciable di�erence among the results obtained for both extensions. Extension2 gives better AIT when the database size is larger than 10.000 of objects. On theother hand, there is an important di�erence in the results for the average exactmatch time (AMST) for the two extensions as shown in �gure 6.10. It is clear thatextension 2 always gives a greater AMST value than extension 1. This is becauseof the redistribution of entries during insertions. Surprisingly, the curve for theaverage range search time (ARST) shown in �gure 6.11 illustrates no di�erences atall among the two extensions, that is redistribution during insertion does not a�ect



Chapter 6 122 Test of the R tree extensionsrange retrieval because the function utilised to search into the nonleaf nodes is thesame in both extensions (non disjoint).Figure 6.12 presents the curves for the hit ratio vs. database size among thetwo extensions. This hit ratio was calculated as the number of retrieved objectsdivided by the number of disk accesses, to account for false hits. Thus, for exactmatch searches, the hit ratio was calculated as MRO/MDA, and similarly for rangesearches where it is de�ned as RRO/RDA.A greater hit ratio means less disk accessesare needed to retrieve the required objects. It follows that extension 1 requires fewerdisk accesses than extension 2 for retrieving the same number of objects.The complete results obtained for several runs are shown tabularly in appendix C.These runs correspond to the parameters mentioned in section 6.3.Extensions 3 and 4 were tested with the same 2D spatial data used to testextensions 1 and 2. Figure 6.13 shows the reduction in waste space within nodes forthe case of extension 4 for all database sizes. The reason for this is that extension 4was built based on extension 2. Figure 6.14 presents lower average insertion timesfor extension 3, except for a database size of 5000, where they are equal. It meansthat redistribution in insertions have a cost in tree performances, when an insertionoperation is made. For retrieval times, �gure 6.15 clearly shows lower average exactmatch times for extension 3, because the sequential search within nodes is shorterthan those of extension 4. Similar results are shown in �gure 6.16 correspondingto a particular case of range retrieval, such as average not disjoint time (A!NT). Inthis particular point, we can observe a better time discrimination in extension 3 and4, compared with the obtained results of extensions 1 and 2, where we obtain nodi�erences at all in range searches.The curve of average disjoint time (ADT) is not included here, because it is notvery important in our comparison. A disjoint search means a complete scroll of treeleaf nodes and it normally retrieves all of the objects in the database, except theobject of the search.The calculated hit ratios for each case of extensions 3 and 4 are presented inthe next �gures. The hit ratio for exact match retrieval, MRO/MDA, is illustratedin �gure 6.17, where hit ratio for extension 4 is clearly lower than those resultsof extension 3. Similar results were obtained for not disjoint (!DRO/!DDA), in-side or contain (ICRO/ICDA), and not disjoint in one dimension (!D1RO/!D1DA)hit ratio curves. Conversely, the hit ratio for disjoint retrieval (DRO/DDA), left(L1RO/L1DA) and right (R1RO/R1DA) in one dimension hit ratios, are lower forextension 3 than for extension 4, except for a database size of 5,000. The redistri-



Chapter 6 123 Test of the R tree extensionsbution in insertion a�ects hit ratios in disjoint, and left and right in one dimensionretrievals. The cover or covered by hit ratio is not present because the nature of thedata is such that there will always be zero objects for CRO. The rest of the �guresfor each hit ratio type is presented in appendix C, and also four tables containingresults of each program test.For di�erent combinations of the results, we made statistical tests to reinforceour conclusions. An analysis of two factors applied to the �rst four extensions vs.the use of di�erent blob sizes gives a non signi�cative di�erence with a con�dencelevel of 95%, that is, blob size does not inuence the extensions' behaviour. Thecomparison of means between AMST of extensions 2 and 4, for all of the blob sizeand number of objects, concludes that the use of the covers operator in extension 4instead of the overlap of extension 2, decreases appreciably the AMST in successfulsearches. Figure 6.15 illustrates AMST for the �rst four extensions. Using the sametype of test with extensions 3 and 4, we obtain a better AMST in extension 3.This is due to the lack of redistribution during insertions, even if it uses the coversoperator. Example of this test:H0: Initial hypothesis. AMST of both extensions 4 and 3 are equal. (�1 = �2).H1: Alternative hypothesis. AMST of extension 4 is greater than AMST of exten-sion 3. (�1 > �2).where �1: population mean for exact match search time of extension 4, and �2:population mean for exact match search time of extension 3. For a con�dence levelof 99.8% and a blob size of 2K, we haveNumber of exact match CalculatedExtension searches in each case mean Variance3 n1=10000 X1 = 0:130 sec S21 = 0:113 sec4 n2=10000 X2 = 0:072 sec S22 = 0:664 secand we obtain the estimated Z = 6.614, which is greather that Z0:998 = 2:88and H0 is rejected. That means there is a signi�cant di�erence at 99.8% betweenextension 3 and 4 due to the use of redistribution in insertion. AMST is better inextension 3.On the other hand, a better AIT value was obtained by using covers operatorwithout redistribution in insertions (extension 3). AIT curves for extensions 1, 2,3, and 4 are shown in �gure 6.14. It can also be seen the exact match hit ratios forthese extensions in �gure 6.17 where extension 3 is clearly better that the others.Figure 6.18 presents the range hit ratios for these four extensions, extensions 1 and



Chapter 6 124 Test of the R tree extensions2 have this parameter, but it is not the case for extensions 3 and 4. In this particularcase, we consider the not disjoint hit ratio of these two extensions as equivalentto the range hit ratio of extensions 1 and 2, because the not disjoint operatoris used to calculate overlapping mbrs in extensions 3 and 4, and range is used tocalculate the same in the other two extensions.Two tests were made for extensions 3 and 4 using spatio-temporal data uniformlydistributed in space and time, but only in the case of 10.000 of objects. For lack oftime, we did not perform more tests, but in both cases the relationships between allmeasured results of extension 3 and 4 were maintained as for spatial tests. Resultsare included in appendix C in tabular form.The multipoint version of the R tree, that is extension 5, was tested with theREM data, but it could not be compared with other results because the lack ofsimilar data. Figure 6.19 illustrates the average insertion time obtained for 1.000and 2.770 of records of the preprocessed real data of REM.Extension 6 is not comparable with any of the former extensions because of thedi�erent conception and data that it manages. It was tested with real polygonaldata of the U.K. Unfortunately, after processing these two available data �les, onlya small number of records were obtained, 128 and 68 records, in the wards of WestYorkshire and the counties of the U.K., respectively. This quantity of records is sosmall that we decide to discard �gures of this extension. Appendix C contains someobtained results for the wards of West Yorkshire.6.5 Concluding remarksA substantial improvement in terms of reduction in wasted space through the redis-tribution policy is our �rst conclusion. This policy mainly a�ects the average exactmatch search time and the search hit ratio, but it permits to obtain a more compactindex structure.Secondly, we have obtained a better hit ratio and therefore fewer disk accessesby including a minimal set of more speci�c and specialized search operators thatwere de�ned in chapter 4.Third, we have shown that the object-oriented approach and the TDSO techniquelead to a very exible scheme whereby the indexing structure can be very easilyadapted to the problem at hand. As an example of that, we had developed quicklyand easily the O tree extension by only adding a few new methods to the extension 3class. This point is important because we are trying to accommodate requirements



Chapter 6 125 Test of the R tree extensionsthat appear at the query stage right down at the indexing level. Consequently,we can say that whatever requirements an application presents, the object-orientedcode can easily be adapted to meet them.The bene�ts of the comparison is to know which parameter values are appropriatefor better R tree performance. The outcome of the comparison is basically thatAIT is better in extension 3 due mainly to the use of the covers operator inside themajority of the internal range search routines of the Rtree class. AMST is alsobetter in extension 3. There is no appreciable di�erence in using a particular blobsize for any extension used, so the size of the blob is not an important performancefactor as we had thought at the beginning of this work. Height (H), number ofentries (NE), number of used blobs (NB), and empty space (ES) are reduced inthose extensions with redistribution during insertion, i.e., extensions 2 and 4. Thecost of having a compacted R tree index with better AIT is paid for in terms of thetime taken for retrieving a speci�c entry in the structure. In general, extension 3o�ers the best performances, except for disjoint, and left and right in one dimensionhit ratios. This is due to the overlapping regions in the higher nodes of the tree,where the left and right in one dimension routines have to examine almost all of thetree nodes.Comparing these four extensions together for the same data �le (s2D.mbr), wehave obtained the following results:� in terms of the reduction on wasted space within nodes, extension 4 is the bestfor all database sizes,� in terms of average insertion time, average exact match time, and exact matchhit ratio, extension 3 is the best,� if it is valid to compare range searches of extensions 1 and 2 with not disjointsearches, then we can say that{ in terms of average range time, extensions 1 and 2 are the best, and{ the range hit ratio was better in extension 3.Extensions 1 and 2 can not be compared directly with extensions 3 and 4 tohave some curves of the main parameters. Nevertheless, extensions 1 or 2 can beused to retrieve a set of objects with a poor hit ratio for those queries di�erent toexact match or not disjoint queries. For example if the question is Find all objectsthat cover object A and the standard R tree index of extension 1 is used, then it is



Chapter 6 126 Test of the R tree extensionsretrieved all objects that are not disjoint from A and then selected from those justthe ones that cover A. Whilst that the same query can be answered more quicklywith extension 3 or 4, because instead of using the not disjoint operator, it is usedthe cover operator which retrieve a smaller set of retrieved objects in the �rst phaseto answer that query.Extension 5 and 6, the multipoint R tree and the O tree, have acceptable perfor-mances, mainly because we used extension 3 as a base to build them. Extension 5has entries of smaller length in the leaf nodes than those of the O tree and even theother extensions. Extension 6 has the leaf node entries of largest length. Extension5 has the most compact index, and extension 6 is the largest index tree.The lack of appropriate real data to test the R tree extensions is a point thatwe can conclude. The generation of adequate data to each extension was madeeasily without major complications. The parameters for this generation were chosenrandomly. The use of the uniform distribution was selected as a �rst case of testing,having no available time to generate data following other distributions.
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Jun.96 Implementation tboClasses: Integer, String, SetOf, Polygon, File2 for each line in the �le of segments -line: String: Record of the �le[ endOrPolyId(line,pn1,pn2,pos1, of segments.pos2,xa,ya) -pn1,pn2: String: Names of thesearchPolyName(pn1,cnp,pol) polygons one and two.searchPolyName(pn2,cnp,pol) -pos1,pos2: Integer: Positionif(pos1) [ pos1=insNew(pn1,cnp,pol)] of each polygon inif(pos2) [ pos2=insNew(pn2,cnp,pol)] the set of polygons.if(xa and ya) [ initiates pol(pos1).tbo -xa,ya: Integer: Actual valuesand pol(pos2).tbo] of the absolute coordinates.for each relative coordinate -cnp: Integer: Polygon counter.[ update xa and ya -pol: SetOf Polygon: Containupdate pol(pos1).tbo and name and tbo of each polygon.pol(pos2).tbo] -ifTbo,ifTxt: File: Binary] and text �le containing3 nrf=writePoly(pol,ifTbo,ifTxt) the set of polygons.2 De�ne ifTbo and ifTxt -nrf: Integer: Polygon numberin this region.-endOrPolyId(),writePoly(),searchPolyName(),insNew():Functions de�ning new polygons,searching polygons in the set,inserting a new polygon inthe set, and writing the setof polygons in two �les.1 38820.00 45282.00 40283.00 45403.00 Record in the ifTxt �le containing81074.00 89464.00 -3974.00 4900.00 the tbo of the West Yorkshire3 Z08 county.Figure 6.3: TDSO implementation of the tbo program.



Chapter 6 128 Test of the R tree extensionsMay.96 Implementation MBHRCreationClasses: Float, Integer, String, Entry1 nrec=Read from the keyboard -nrec: Integer: Number of2 mbrFile=File mbhr that will be generated.3 [ xc=uniform(0,800) -mbrFile: String: File whereyc=uniform(0,800) are stored the generated data.xa=uniform(1,100) -xc,yc: Float: Centroidyl=uniform(10,100) of a mbr.y=uniform(1,6) -xa,yl: Float: Width andmo=uniform(1,12) large of a mbr.depending on y and mo di=uniform(1,31) -y,mo,di: Float: Year,ti=y/mo/di month, and day, respectively.ed=uniform(0,364) -ti,ts: Float: Low timedepending on mo ed=f1(ed,nd,di,mo,y) and high time of thets=y/mo/di interval.mbhrRec=(xc-xa/2, yc-yl/2,xc+xa/2, -ed: Float: Extent of theyc+yl/2, ti, ts, i+1) time interval in days.Write mbhrRec in mbrFile -mbhrRec: Entry: mbhr] i=0,nrec and number of the record inthe �le.1 nrec=2, mbrFile=`st3D.mbhr' Create two mbhrs followingmbr:(315.9 318.443 641.104 703.672 the de�ned distribution.19910510 19910704 1)mbr:(119.121 135.869 277.985 335.96119930128 19930204 2)Figure 6.4: TDSO implementation of the MBHRCreation program.Name Date Measure Units ofNUTS of the Sample of the ment measurecode district Type Reference sample Nuclide value ment Latitude LongitudeFigure 6.5: Format of each record of the REM data �le.



Chapter 6 129 Test of the R tree extensionsParameter MeaningH The height of the tree, which measures, in theory, how many disk accesses areneeded to �nd an entry in the tree.NB The total number of used blobs, that express the actual disk spaceused by the tree.NE The total number of entries, equivalent to the tree size.ES The percentage of empty space within blobs, which measures the spaceoccupancy of each blob.AIT The average insertion time, that shows how fast the structure isduring an insertion.AMST The average exact match search time, that shows how fast an exactmatch search is in the current tree.ARST The average range search time, which gives the average timing of arange search in the actual tree (extensions 1 and 2).ADT The average disjoint search time, that shows how fast a disjointsearch is in the actual tree (extensions 3 and 4).A!DT The average non disjoint search time, which gives the average timing of ameet or overlap operation (extensions 3 and 4).AICT The average inside or contain search time, that shows the averagetiming of a containment search (extensions 3 and 4).ACT The average cover or coveredBy search time (extensions 3 and 4).A!D1T The average non disjoint in one dimensionsearch time, which shows the average timing of a nondisjoint in a given dimension search (extensions 3 and 4).AL1T The average left in one dimension search time (extensions 3 and 4).AR1T The average right in one dimension search time (extensions 3 and 4).IDA The average number of disk accesses during an insertion, saying how manydisk accesses in average were made to insert a new entry in the tree.MDA The average number of disk accesses during an exact match search, that expresshow many disk accesses in average are required to search for an entry in the tree.RDA The average number of disk accesses during a range search. This measures how manydisk accesses in average are required to search all the tree entries which satisfythe condition of a speci�ed range operator for a given region or mbr(extensions 1 and 2).DDA The average number of disk accesses during a disjoint search (extensions 3 and 4).!DDA The average number of disk accesses during a non disjoint search (extensions 3 and 4).ICDA The average number of disk accesses during an inside orcontain search (extensions 3 and 4).CDA The average number of disk accesses during a coveror coveredBy search (extensions 3 and 4).!D1DA The average number of disk accesses during a nondisjoint in one dimension search (extensions 3 and 4).L1DA The average number of disk accesses during a leftin one dimension search (extensions 3 and 4).R1DA The average number of disk accesses during a rightin one dimension search (extensions 3 and 4).MRO The average number of retrieved objects during an exactmatch search. This number must be equal to 1 in all cases.RRO The average number of retrieved objects during arange search (extensions 1 and 2).DRO The average number of retrieved objects during adisjoint search, which is always equal to the totalnumber of objects less one (extensions 3 and 4).!DRO The average number of retrieved objects during anon disjoint search, that is for meet oroverlap(extensions 3 and 4).ICRO The average number of retrieved objects during aninside or contain search (extensions 3 and 4).CRO The average number of retrieved objects during acover or coveredBy search (extensions 3 and 4).!D1RO The average number of retrieved objects during anon disjoint in one dimension search (extensions 3 and 4).L1RO The average number of retrieved objects during aleft in one dimension search (extensions 3 and 4).R1RO The average number of retrieved objects during aright in one dimension search (extensions 3 and 4).Figure 6.6: The measured parameters.
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Jun.96 Implementation testProgramClasses: Integer, String1 argc=Read from the keyboard -argc: Integer: Number of calling2 argv=Read from the keyboard parameters.3 if(argc=5) -argv: String: Calling parameters.[ �le=Read from the keyboard -�le: String: Data �le name.recl=Read from the keyboard -recl: Integer: Number of bytesfs=Read from the keyboard of each �le record.op=Read from the keyboard -fs: Integer: Number of �le records.ent=Read from the keyboard -op: Integer: Operation number.from=Read from the keyboard -ent: Integer: Number of recordstop=Read from the keyboard to be tested.dop=Read from the keyboard -from: Integer: Record numberprox=Read from the keyboard from which begins thetep=Read from the keyboard records to be tested.hr1=Read from the keyboard -top, prox, dop, tep: Numberhr2=Read from the keyboard of the topological, proximity,] directional, and temporalif(argc=13 _ argc=26) operators, respectively.[ from=ent=op=top=dop=prox= -choices(): Function de�ningtep=�le=recl=fs=hr1=hr2=Substring the menu, respectively.of argv]choices(from, ent, op, top, prox,dop, tep, recl, �le, hr1,hr2)1 argc=2 Invalid argument3 argc=5 Using the test menu4 argc=13 Simulation runFigure 6.7: TDSO implementation of a testProgram program.
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Chapter 7Conclusions and future work
Indexing spatial objects by object position in space is well achieved by SAMs, butspatial objects have also a shape which combined with spatial location de�ne spatialobjects more accurately, chapter 2. It is hard to think about a particular object in2D or 3D geographical space that has not got any area or volume, respectively. Thisspace occupancy of an object de�nes its shape that has to be included into the keyof an index structure. Spatial objects whose position and shape change over timeare classed on spatio-temporal objects. Spatio-temporal access methods are actuallybased on spatial ones. The majority of the spatio-temporal indexing methods takethe R tree structure because it is the simplest access method which can index asmany dimensions as needed. If we take three dimensions for the spatial locationand shape, and two dimensions for the temporal data, then we can use the samestructure, the R tree, as we have two spatial dimensions and one time dimension. Weuse a multi-dimensional index structure to support whatever number of dimensionsthe application needs, and we add new dimensions to the index key to includetemporal data of a spatial object.In this work, we propose a novel approach to building multi-dimensional in-dexes which attempts to improve the hit ratio by accommodating spatio-temporalsearch operators within the indexing mechanism. Therefore, we have extended awell known SAM, the R tree, to support more speci�c range search operators whichare specialized on doing a more restricted task of search. This new approach avoidspartitioning of spatial objects. 137



Chapter 7 138 Conclusions and future workA second outcome of this work is the developing of a family of methods for index-ing into multi-dimensional spatio-temporal data and performing some preliminarytesting of these techniques. This result follows directly from our approach men-tioned before, that had been re�ned until obtaining a minimal set of range searchoperators (presented in chapter 4) to be used as a base to answer spatial, temporal,and spatio-temporal queries.We also have come to some initial conclusions in terms of the e�ciency of thesetechniques and the sensitivity to parameters such as blob size and the use of redis-tribution during insertion. These initial conclusions presented in chapter 6 are thesubstantial improvement in terms of reduction in wasted space through the redis-tribution policy, and the achievement of better hit ratios and consequently of fewerdisk accesses in some range searches.In general, we have provided support for the usefulness of the TDSO and object-oriented techniques, which are shown in chapters 5 and 6. This was permitted tolead to a very exible scheme whereby the indexing structure was easily adapted toour problem.The �rst problem we mentioned in chapter 1 focusses on avoiding extra geo-metric calculus when a system is solving a particular spatial query. The majorityof the proposed SAMs index objects by a general container like a mbr, which ap-proximates spatial shape and location of the object. But, a spatial query normallyneeds to answer which objects obey the particular conditions of the query, and anapproximation of the location and shape do not achieve these needs. For such cases,it is mandatory to include into the spatial query processor the mentioned geometriccalculus to provide the exact set of "answering" objects. We realize that SAMs donot retrieve this set, because of the approximation used as the index key. Thus, wepropose to use the R tree structure extended with specialized range search operatorsto reduce the cardinality of the set of "retrieved" objects, where will be extractedthe other set. We also propose the O tree that uses an octagon container which is abetter approximation of location and shape of a spatial object. The disadvantage ofthe O tree is the use of a larger index entry compared to those of the R tree, withoutful�lling the requirement of retrieving the needed set of "answering" objects.The problem of indexing spatial and temporal attributes using the same accessmethod is solved by treating both characteristics homogeneously. That means wede�ned some operators to manage both attributes together. However, a user mayquery a database by any of them separately, and some operators for each kind ofquery are needed. Thus, we propose spatial, temporal, and spatio-temporal opera-



Chapter 7 139 Conclusions and future worktors.A spatial query only uses spatial operators like topological, directional, or prox-imity operators. These spatial operators are referred to X-Y coordinates which areused to de�ne the approximation included into the index as its key. In our case, weuse the mbr.A temporal query only expresses the question based on temporal operators, whichuse one time dimension. Even if the application has several time dimensions, wede�ne temporal operators for only one of them in the query. We see that the useof the rectangular approximation (mbr) can be more appropriately applied to atemporal mbr than to a spatial mbr, if time inside each interval is continous, andvalid time and transaction time are considered orthogonal. With these assumptions,a temporal mbr de�nes completely the content of the temporal space permitting theright application of the topological, directional, and proximity operators, alreadyde�ned to spatial mbrs.A spatio-temporal query asks for particular conditions for space and time of theobject. In this case, we only propose to use topological operators applied to ourmulti-dimensional container named hyper-rectangle. Because of the location andshape approximation problem, spatio-temporal operators inherit the disadvantageof using hyper-rectangles to retrieve the set of answered objects.Taking this large set of operators, we realise that we may reduce its cardinalityby studying the relationships among them. We propose in chapter 4, a minimal setof operators that can be used as a base to build other operators. With an object-oriented R tree implementation, we could include the minimal set of operators intothe RTree class. We can also extend the class to support whatever behaviour weneed for that class in speci�c applications. Utilizing this object-oriented property,we decide to make six extensions with the minimal changes into the class verifyingthe advantages of the object-oriented approach.Our third problem was to search and to choose adequate data to test R treeextensions and the O tree proposition. The RTree class of each extension was testedwith a particular and reduced set of data objects. We solve this problem partially,due to the lack of available real data. Some particular data sets were generated byfollowing a uniform distribution of the hyper-rectangles in dD space. We realise thelack of an adequate test bed data set to be applied to the extensions.The generation of a test bed for all of the extensions with several distributionother than uniform is a subject for short term future work. Many of the SAMsreported in the bibliography su�er from the need for more test data because the



Chapter 7 140 Conclusions and future workbehaviour of SAMs depends on the distribution of the data to be indexed. Wementioned this point in chapter 2, e.g. the grid �le structure is highly recommendedonly for uniform data distribution, otherwise the buddy tree is good.The formal de�nition of the extension of the D/K model to support spatio-temporal objects is a mid term future work. We partially achieved this point in[BM98], but it remains to implement and test this extension in the implementationof the D/K model. In this extension, we are planning to include temporal operatorsfor more than one time dimension, conforming temporal hyper-rectangles.Finally, long term future work will involve the inclusion of the RTree class in amore general index to cover 1D and dD management. That is an index method likethe grid index where the �rst scale will be a pre�x B tree, the second scale an R treeextended with spatio-temporal facilities, and the other scales de�ned by the user.This structure will be a super index composed of one 1D index and two dD index,where the grid index (dD) contains the others two. We tested this possibility byimplementing a grid index where the �rst scale is a pre�x B tree, and it is presentedby E. Paredes in [Par97]. We foresee that this kind of big index will reliably retrievewhatever object is present in the system.
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Appendix AA comparative table of OODBMSThis appendix shows a comparative table between six database management systems(DBMS) which refer to themselves as object-oriented database management systems(OODBMS). This table was built based on the characteristics of OODBMS presentedby M. Atkinson et al. in [ABD+89] as the main features that a system must haveto qualify as an OODBMS.These characteristics can be categorized into three groups:Mandatory: the OODBMS must satisfy two types of facilities, those concernedwith DBMS and those due to object-oriented systems (OOS). These facilitiesare persistence, secondary storage management, concurrency, recovery, query,complex objects, object identity, encapsulation, types or classes, inheritance,overriding combined with late binding, extensibility, and computational com-pleteness.Optional: features to be added to the system for improving it. Multiple inheri-tance, type checking and type inferencing, distribution, design transactions,and versions.Open: features which may be included at the designers dicretion. These include:programming paradigm, representation system, type system, and uniformity.All of these features are well explained in the aforementioned manifesto and wetake it for building our comparative table in a more standard form. More clearly, themanifesto considers complex objects as objects which are built from simpler ones by149



Appendix A 150 A comparative table of OODBMSComplex Object Encapsula- Types andOODBMS objects identity tion classesORION Composite OID consists Classes whose Classes withobjects. of a class id instances are its extensionsInclude an instance id objects, en- can be ma-multimedia and eventually capsulate nipulat-objects. a site id. data and beha- ed atvior. run-time.Table A.1: Object and classes.applying constructors to them. Simple objects are integers, characters, bytes stringsof any length, booleans, and oats. Complex object constructors are tuples, sets,bags, lists, arrays, etc. Any constructor should apply to any object. The objectidentity must support object's existence independent of its value.Encapsulation provides a form of logical data independence, but in some casesit is not needed. In databases, an object encapsulates both data and program, inother words, structure and behavior. Types and classes are useful for representingreal objects and they help code sharing (reusability). Tables A.1 and A.2 illustratethese concepts for the chosen OODBMS.Overriding permits the rede�nition of operations resulting in a single name de-noting a set of di�erent programs, this is called overloading. The operation nameproblem is resolved at run-time, called late binding. The computational complete-ness express the requirements of the DML of the database system, which has too�er any computable function. Table A.3 shows the particularities of the chosenOODBMS.Extensibility means the posibility to de�ne new type or classes without any dis-tinction between system de�ned and user de�ned. Persistence of database objectsshould be orthogonal, each object is independent of its type. All of the secondarystorage management services are invisible to the user. These services are indexing,clustering, bu�ering, access path selection, and query optimization. Finally, thethree features as concurrency, recovery, and ad hoc query facilities are consideredindispensable, and in any case, they have to be supported at least as in the DBMS.Tables A.4 and A.5 show these properties of the chosen OODBMS. In database sys-tems, persistence is treated as a property of the elements in the database. Whena program opens a database, it supplies all the variables needed for containing thevalues obtained from the database. Thus, this program is normally written in someprogramming language (PL) which has embedded the sentences of the database



Appendix A 151 A comparative table of OODBMSComplex Object Encapsula- Type andOODBMS objects identity tion classesO2 Yes, regard- Yes, but re- Classes whose Types (ADT)less of trieval of instances are cannot bewhether objects is made objects and modi�edthey are by its name. which encapsu- at run-time.persistent The OID is late data and Concepts ofor not. the record behavior and `shadow class'Complex ob- identi�er RID types whose and class arejects man- in WiSS. instances are consideredager support Temporary OIDs values. separately.tuples, are generat- Methods canlists, ed for new be privatesets, and jects and they or public.multimedia are changedobjects. before commit.GemStone Complex Supported by Classes Classes withobjects like Smalltalk-80. encapsulate its extensionscomposite ob- structure can be ma-jects in ORION. and nipulated atSupported by behavior. run-time.Smalltalk-80.ONTOS Objects have Di�erent Objects Typesa set of identi�cation encapsulate (ADT)rutines and a between a properties cannotset of proper- C++ object and be modi�edties. Unstruc- and a DB behavior. at run-time.tured text object. Name It isand graphics. identi�cation stronglyis possible. typed.IRIS Primitive and Not Types are Typescomposite speci�ed. objects and cannotobjects are they encap- beclassi�ed as sulate data modi�edliteral and and behavior. atnon-literal. run-time.CACTIS Objects and Not Objects re- It does notrelationships speci�ed. encapsulate supportcalled mile- data and classesstone. behavior.Table A.2: Object and classes. (Continuation)



Appendix A 152 A comparative table of OODBMSInheritance. Overriding,Class or type overloading, and ComputationalOODBMS hierarchies. late binding. completeness ExtensibilityORION Single and All of them Supported by Supported bymultiple. A are present. C. schemaclass is the evolution.root class.O2 Single and Late binding Supported by Extensibilitymultiple. A is done in CO2 (C) of theclass called constant time. or system areObject is the Information BasicO2 preservedroot class. about the (Basic). by theinherited possiblemethod is du- schemaplicated down changes.the inheritancehierarchy.Support methodoverriding.GemStone Single. A class All of them Supported by Extensibilityis the database supported by Smalltalk-80, are preservedroot. Smalltalk-80. C, and C++. by dynamicschemamodi�cation.ONTOS Single. A class Supported by Supported by Notcalled Entity run-time C and C++. speci�ed.is the root invocableclass. functions.IRIS Single and Overloading. Not speci�ed, Supported bymultiple. but OSQL is extensibleembedded in types.Common LISP.CACTIS Single and These functions Supported by New objectsmultiple. are supported C, Pascal, or can be createdvia type rede- Fortran. and new�nition at attributerun-time. types too.Table A.3: Inheritance and extensibility.



Appendix A 153 A comparative table of OODBMSmanagement language (DML) of the database system. Sometimes, the program iswritten in an integrated database programming language (DBPL), but it also sup-plies the containers for values obtained from the database. These containers are inmain memory in a special space called workspace, where is written all the changesneeded to the persistent values which will be actually written to disk when thetransaction commits. Here, a transaction (T) is a set of actions -probably only oneaction- upon the values stored in the database, and it has the atomicity propertywhich is that T is completly executed or not executed at all. The relationship be-tween persistence and concurrency/security in the database area is very important,because this last assures the database consistency from a state change to another.The optional features include multiple inheritance, where a class can have sev-eral superclasses. Type checking and type inferencing are bene�cial in OODBMSbecause integrity constraints are very important. Distribution is very useful todayand ideally, the system has to be distributed. Following the comparative table,table A.6 presents these characteristics.About design transaction and versions, we consider them vital in CAD/CAM andCASE applications. Design transactions include long transactions or nested trans-actions. In open choices, programming paradigm as logic, functional, or imperativecan be used. The representation system is de�ned by the set of types or classes,which can be extended in di�erent ways. Type system is referred to encapsulationor some other system is used. Table A.7 presents these characteristics.Finally, uniformity is explained at three levels. First, at the implementationlevel, one must decide which information should be stored as objects or in other adhoc form. Secondly, at the programming language level, the problem is centered ontypes and classes. Finally, at the interface level, the key corresponds to a uniformview of types or classes, objects, and methods. We also include in our table fea-tures as: object interface type, the concept of attribute, data de�nition language,query processing and optimization, clustering, bu�ering, implementation language,attached predicates, work space, objects format, advantages, and disadvantages.Object interface type is referred to the form of communications between objects. Inattribute concept, we consider if the OODBMS contains or not this concept. Thename and some little things are included in the data de�nition language. Table A.8shows the values considered for these parameters.In query processing and optimization, we consider a little description of the moreimportant characteristics. Tables A.9 and A.10 present the corresponding values tothese characteristics.



Appendix A 154 A comparative table of OODBMSSecondarystorageOODBMS Persistence management Concurrency RecoveryORION Pages are the A storage ma- Lock the Only softbasic unit nager which descriptor crashesof manages disk objects. andpersistence. space and it Timestamp in user-A garbage implements longdata initiatedcollector. indexes for descriptor transactionBy associative object and abort.reachability. accesses to client pageobjects. bu�er pool.O2 Pages are the Task of the For "at" Crashbasic unit disk manager records, recoveryof persistence which is it is availableA circular WiSS provided for classesgarbage collector (Wisconsin by and methods.of unreferenced storage WiSS. Recoveryobjects. system). Concurrency may bePersistent on the switched onstructures are schema are or o�. Userecord-structured di�erent to savepoints.sequential �les, concurrencyunstructured on objects.�les, and long For objects,data items. a two-phaseBy reachability. lockingClasses with algorithm onextension are pages andpersistent. �les.GemStone By reachability Stone is Optimistic SoftA database built upon and pessimistic andpersistent the underly- techniques. Pes- hardroot. A gar- ing VMS simistic is used crashes.bage collector. �le when conictssystem. are high ortransactionsare so long.Table A.4: Persistence, concurrency, and recovery.



Appendix A 155 A comparative table of OODBMS
SecondarystorageOODBMS Persistence management Concurrency RecoveryONTOS By reachability An area is It is rudimen- Yes,Objects persist implemented tary and based butuntil the users in UNIX by a on locks. A it isexplicitly de- �le. Areas segment is the notlete them. decompose in unit of trans- speci�ed.Object root segments. fer betweencalled Entity. Objects(chunks) disk and theis the lowest server memory.level ofgranularity.IRIS It permits Based on Yes. All.explicit deletion relational Relational DB. Viaof persistent model. Via HP-SQL. HP-SQL.objects, butguarantee re-ferentialintegrity.CACTIS Not Not Timestamping Lack of aspeci�ed. speci�ed. at attribute rollback andlevel. recoveryPartial sorting. mechanism.Table A.5: Persistence, concurrency, and recovery. (Continuation)



Appendix A 156 A comparative table of OODBMSAd hoc Type checkingquery Multiple and typeOODBMS facility inheritance inferencing DistributionORION Yes. Yes. Objects are In ORION-2.It is loaded on It runs on asimilar demand. local area net-to the work. TCP/IPCrelational socketsdatabases. adopted.O2 Yes, it is Yes. Objects are Ethernet andpossible loaded on transport protocolsby the demand. are TCP/IP.database For each processprogramming running on alanguage workstation, there(DBPL). is a mirror processrunning on theserver. The locktable and thebu�er managed byWiSS are sharedby all process.GemStone Not speci�ed Yes, in the It is present Notbut it can new version but not sup- distributed.be supported of Smalltalk. ported byby OPAL. Smalltalk.ONTOS SQL Not Type checking Clientinterface. speci�ed. at compile servertime whenever architecture.possible. The Local areauser may op- network oftionally defer workstation.it to run timewhen necessary.IRIS OSQL. Yes. Yes. Not speci�ed.CACTIS Not speci�ed. Yes. Yes. Not distributed.Table A.6: Query and distribution.



Appendix A 157 A comparative table of OODBMSDesign Representation TypeOODBMS transactions Versions system systemORION Transactions Transient and Class Encap-are seriali- working hierarchy sulation.zable. The versions. A containslock manager version is a primitivemantains a lock speci�c classes.table and a instance ofblocked trans- versionedaction table. object.O2 Support trans- Not Types appear Encap-action modes speci�ed. as components sulation.which adapt of classes.system to Types areexecution mode constructedor development recursivelymode. using theatomic types.GemStone Transactions Not All on the Encap-are seriali- speci�ed. system are sulation.zable. objects.ONTOS Atomics and Versions of Types are Encap-bounded by objects and constructed sulation.starting and general recursivelyeither commit- version using theting or aborting con�gura- atomic types.a transaction. tions.Nested andshared trans-actions.IRIS Not Not By types. Encap-speci�ed. speci�ed. sulation.CACTIS Not Not By types. Encap-speci�ed. speci�ed. sulation.Table A.7: Transactions, versions, and system type.



Appendix A 158 A comparative table of OODBMSObject inter- Attribute Data de�nitionOODBMS Uniformity face type concept languageORION Methods By De�ned. Lisp Statice,are messages. extensionobjects. to LISP.O2 Methods are By Yes, it is Schemaprocedures messages. present in commandattached to Message the tuple interpreter,the objects. passing type. CO2Classes, manager. compiler,types, and BasicO2values are compiler,not objects. and OOPE.GemStone Not By Set-valued OPAL.speci�ed. messages. attributes. Alltalk,It can be extension toheterogeneous. Smalltalk.ONTOS Di�erences By Supported by Extensionbetween functions. the abstract to Cobjects, class called calledtypes, and association. Typefunctions. De�nitionLanguage(TDL) andC Objectprocessor(COP).IRIS Not By It is called OSQLspeci�ed. functions. functions and embeddedmay be in C.single-valuedor multi-valued withheterogeneousobjects.CACTIS Not By values. De�ned and Notuniform. derived speci�ed,by means but it isof an evalu- compiledation rule. usingClassi�ed subqueries.as importantor not.Table A.8: Implementation characteristics.



Appendix A 159 A comparative table of OODBMSQuery proces-sing and ImplementationOODBMS optimization Clustering Bu�ering languageORION Similar to Simple. By A page bu�er Two systems.the rela- class. pool and an ORION1tional data- Object object bu�er single user,base,but with directory pool with its multitaskmore complex with managers. system.statistics. extendible Dual-bu�er ORION1X,Algorithm is hashing. evaluation ORION2similar to schema. network.nested loop Commonalgorithm in LISP.relational C underdatabases. UNIX.O2 A query A cluster A bu�er man- C underreturns manager ager takes UNIX.an object based on care of trans- (SunOS4.0)or a value. information lating OIDThe query given by into memorylanguage is the DBA. The addressesa subset of clustering Dual bu�erthe program- algorithm managementming lan- operates schema.guage, func- at commit A pagetional, and time on both, bu�er (disk�rst order. new and format), andold objects. an objectNot composite bu�er poolobjects like (memoryORION. format).GemStone A single- Under DBA Not Smalltalk-80target query responsabi- speci�ed. and C.along a lity.class-composi-tion hier-archy. Queryoptimizationis notsupported.Table A.9: Query processing, clustering, and bu�ering.



Appendix A 160 A comparative table of OODBMS
Query proces-sing and ImplementationOODBMS optimization Clustering Bu�ering languageONTOS Query mech- Controlled Controlled C++.anism for by byidentifying programmers. programmers.a group oflogicallyrelatedobjects.IRIS Queries Yes. Yes. C underexpressed Relational By record. UNIX.in a tree Databases.structurecalledF tree.CACTIS High priority Dynamic, Not C underqueue without based on speci�ed. UNIX.disk accesses. objectProcesses are statisticsdivided in about thepieces which actualare treated amount ofindependently disk I/O.in a priority Object pastqueue. behavior.Table A.10: Query processing, clustering, and bu�ering. (Continuation)



Appendix A 161 A comparative table of OODBMSAttach Work Objects SpaceOODBMS predicates space format overheadORION Not Not Two, a disk Minimum.speci�ed. speci�ed. format and an No duplica-in-memory tion.O2 Yes, as A workspace format. Notmethods. is an Distinction speci�ed.object whose betweentype is a set objects andof objects. values. Ob-It can be ject OIDs arepersistent. di�erent tovalue OIDs.GemStone Possible. One per user Not Minimum.session. speci�ed.ONTOS Supported by Notion of Two, a DB Notmeans of working format and a speci�ed.triggers. directory. C++ format.IRIS Yes, as Not Two, a disk Mediumfunctions. speci�ed. format and an respect toConjunctives, in-memory ORION.disjunctive, format.and non-recursiverules.CACTIS Yes, con- Not Not Notstraints on speci�ed. speci�ed. speci�ed.attributes.Table A.11: Predicates, format, and space.We consider too, if the system contains attach predicates or not, how it managesthe work space and how is objects format. Additionally, we include four characteris-tics presented by Willshire and Kim in [WK90], which are space overhead, instancemodi�cation, indexing, and schema changes or evolution. Space overhead means thequantity of memory needed for storing data. Table A.11 illustrates the mentionedparameters.Instance modi�cation explains how is done instances updating in the system.The main strategy of indexing is shown as indexing, and schema evolution presentshow the schema is updated following classes or methods modi�cation. Table A.12presents these characteristics.Finally, table A.13 shows our opinion in some advantages and disadvantages.



Appendix A 162 A comparative table of OODBMSInstance Schema changesOODBMS modi�cation Indexing or evolutionORION At most one B+ tree Use the deferredwrite to larger update approach.the DB for class- Dynamic schemathe three hierarchy. modi�cation.operation May require moving(insertion, instance without adeletion and databasemodi�cation. reorganization.O2 Possible, but Based on Changes dealingit is not complex ob- with the structurespaci�ed. jects and of a class areinheritance. disallowed.Class hier- Methods canarchy index- be added, dropped,ing with a rede�ned, and classesmodi�cation may be re�ned intowhich permit subclasses. A classretrieve all is deleted only ifobjects of a 1. it hassubclass in a no instances, andsingle block. 2. no other classesdepend on it.GemStone Not B+ tree index Use the immediatespeci�ed. on a collection update approach.of objects. Dynamic schemaEquality or modi�cation.or identityindexes.ONTOS Add a new �eld B trees and Superclassto a class de�ni- linear change ortion with existing hashing. changing theinstances is data typepossible, but it is of a �eldnot dynamically incompatible.supported.IRIS Updating require Yes. By tuple.only one write. Relational Dynamic schemaThe other require DBMS. modi�cation.several writes.CACTIS Not Not Littlespeci�ed. speci�ed. exibility.Table A.12: Instances, indexing, and changes.



Appendix A 163 A comparative table of OODBMSOODBMS Advantages. Disadvantages.ORION Support versions and Objects cannot migrate tochanges noti�cation. another class.Transient and Transformation of formats.working versions. It does not support eitherObject identi�ers recovery from disk crashes,generated general triggers, andby the system. multiple applicationprogramming languages.O2 Two versions. The workstation When it operate underversion is single-user memory- execution mode, thebased, while the server version schema is frozen.is multiuser, disk based. It is not possibleArchitecture in layers. changes on it.WiSS bypasses the OS �lesystem. Crash recovery aredirectly available for classesand methods. Lists or insertablearrays are represented by orderedtrees which are very e�cient.GemStone Indexing and concurrency control It supports only singleare unique. Client/server inheritance in old versionsarchitecture. and not allow objects tobe explicitly deleted.ONTOS Client/server architecture. It does not support classIt support parameterized types attibutes or metatypes.through an aggregate type. Objects can be activatedUsers can customize both types or deactivated by users.and properties of types.IRIS Support rules, long OSQL does not support�elds and versioning. either GROUP BYIt is built on top of and HAVING clauses ona conventional relational SELECT.storage manager (DBMS). It does notData model has a strongly support recursivefunctional style. Objects function de�nitions.may have more than one type.CACTIS Integrity constraints It is not reallyare very important object-oriented.in the data model. InterrelationThey are represented between objectsby attach predicates through relationshipand maintaned with two typesby a trigger of connectors.mechanism of out- It does not support recoveryof-date attributes. mechanism, dynamic schemachanges, authorization, andsecurity facilities.Table A.13: Advantages and disadvantages.



Appendix BClass implementationsThis appendix includes all of the class implementations utilized in the R tree exten-sions. These class implementations are speci�ed unsing the TDSO technique thatwas described in chapter 4. They are described by their order number already shownin the R tree universe in the same chapter. Classes (7) ListNode and (8) List onlyhave structure and they were already de�ned in 4.
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Appendix B 165 Class implementationsMar.97 Implementation f9gClass ListOf[T]Classes: T, Integer, void1 Superclasses: -descriptor: List head.2 Structure: -List(): Constructors.descriptor: List -�List(): Destructor.3 Functions: -=(): Mutator. Assignment.List():ListOf[T] -object(): Observer. Return the actual object.�List() -insObjList(), ordInsList(): Mutators. Insert=(ListOf[T]):ListOf[T] a new element before the actual and ordered,object(): T respectively.insObjList(T): T -delObjList(): Mutator. Delete thedelObjList(): T actual element, otherwise empty list.objList(): T -objList(): Observer. Return the actual object.headList(): T -headList(): Observer. Return the headlastObjList(): T object and move actual to the head node.headObjList(): T -lastObjList(): Observer. Move actualnextList(): T to the last node.priorList(): T -headObjList(): Observer.nextObjList(): T Return the head object.priorObjList(): T -nextList(): Mutator. Return the objectcleanList(): T in the next node moving actual to it.actualPosList(void): T -priorList(): Mutator. Return the objectwhichSens(Integer, in the anterior node moving actual to it.Integer): Integer -nextObjList(): Observer.iPosList(Integer): T Return the next object.antItemList(void): T -priorObjList(): Observer.postItemList(void): T Return the prior object.searchList(T): T -cleanList(): Mutator. Clean the list.numList(): Integer -actualPosList(): Mutator. Move actual toordInsList(T):ListOf[T] the node that contains the searched element.push(T):ListOf[T] -whichSens(): Observer. Sense calculation.-iPosList(): Mutator. Move actual i timesbeginning in actual and return the actual object.-antItemList(): Observer.Return the prior object.-postItemList(): Observer.Return the next object.-searchList(): Observer. Search the object inthe list moving actual to it.-numList(): Observer. Return the actualnumber of nodes in the list.-ordInsList(): Mutator. Ordered insertion.-push(): Mutator. Stack insertion.Figure B.1: TDSO implementation of the ListOf[T] class.



Appendix B 166 Class implementationsMar.97 Implementation f10gClass DKOMErrorClasses: Cardinal, Char, Float1 Superclasses: -c: Error number.2 Structure: -DKOMError(): Constructors.c: Cardinal -errorMessage(): Observer.3 Functions: Display the error message.DKOMError():DKOMError -warningMessage(): Observer.DKOMError(Cardinal):DKOMError Display the warning message.errorMessage(Char)warningMessage(Char)warningMessage(Char, Char)warningMessage(Char, Float)tail(Char, Cardinal)Figure B.2: TDSO implementation of the DKOMError class.
Mar.97 Implementation f11gClass EleTypeClasses: Cardinal, Integer, ostream1 Superclasses: -pn, pi: Element 1 is2 Structure: associated to element 2pn: Cardinal in a node list.pi: Integer -noDef(): Observer. De�ne3 Functions: an unde�ned element type.noDef():EleType -<<(): Observer. Display<<(ostream, EleType): ostream on screen an eletype object.Figure B.3: TDSO implementation of the EleType class.



Appendix B 167 Class implementationsMar.97 Implementation f12gClass IntervalClasses: Float, Integer, ostream, istream1 Superclasses: -inf, sup: Inferior and superior2 Structure: bounds of an interval.inf, sup: Float -Interval(): Constructors.3 Functions: -=(): Mutator. Assignment.Interval(): Interval -==(): Observer. Return one ifInterval(Float, Float): Interval both Interval are equal in value.Interval(Float): Interval -! =(): Observer. Return one if=(Interval): Interval both Interval are di�erent in value.==(Interval): Integer -<(): Observer. Return one if one! =(Interval): Integer Interval is less than the second one.<(Interval): Integer -<=(): Observer. Return 1 if one Interval<=(Interval): Integer is less or equal than the second one.>(Interval): Integer ->(): Observer. Return 1 if one>=(Interval): Integer Interval is greater than the second one.disjoint(Interval): Integer ->=(): Observer. Return 1 if one Intervalmeet(Interval): Integer is greater or equal than the second one.inside(Interval): Integer -disjoint(): Observer. Disjointness.coveredBy(Interval): Integer -meet(): Observer. Meeting.contain(Interval): Integer -inside(): Observer. Interval 1 iscoverg(Interval): Integer inside of Interval 2.overlap(Interval): Integer -coveredBy(): Observer. Coverage.left(Interval): Integer -contain(): Observer. Containment.right(Interval): Integer -coverg(): Observer. General coverage.start(Interval): Integer -overlap(): Observer. Overlapping.�nish(Interval): Integer -left(),right(): Observer. Interval 1 isadjacent(Interval): Integer on the left or on the right of Interval 2.follow(Interval): Integer -start(),�nish(): Observer. Interval 1precede(Interval): Integer starts or �nishes on theintersection(Interval): Interval same value of Interval 2.display() -adjacent(),follow(),precede():displayAsInt() Observers. Interval 1 is adjacent, follows,<<(ostream, Interval): ostream or precedes Interval 2.>>(istream, Interval): istream -intersection(): Observer. Calculate theInterval that is the intersection.-display(),displayAsInt(),<<():Observers. Display a Interval.->>(): Mutator. Interval input.Figure B.4: TDSO implementation of the Interval class.



Appendix B 168 Class implementationsMar.97 Implementation f13gClass HRClasses: Interval, Integer, Double, ostream1 Superclasses: -hreg: Variable array of2 Structure: intervals. One per dimension.hreg: Array[DIM]Of -putInt(): Mutator. Put theInterval interval in the speci�ed dimension.3 Functions: -=(): Mutator. Assignment.putInt(Integer, both Interval are equal in value.Interval): Integer -==(): Observer. Return one if=(HR): Integer both hyper-rectangles are equal in value.==(HR): Integer -! =(): Observer. Return one if! =(HR): Integer one hyper-rectangles are di�erent in value.<(HR): Integer -<(): Observer. Return 1 if one<=(HR): Integer hyper-rectangle is less than the second one.disjoint(HR): Integer -<=(): Observer. Return 1 if one hyper-inside(HR): Integer rectangle is less or equal than the second one.coveredBy(HR): Integer -disjoint(): Observer. Disjointness.coverg(HR): Integer -inside(): Observer. Hyper-rectangle 1overlap(HR): Integer is inside of hyper-rectangle 2.slDisjoint(HR): Integer -coveredBy(): Observer. Coverage.slMatch(HR): Integer -coverg(): Observer. General coverage.slCoverg(HR): Integer -overlap(): Observer. Overlapping.slInside(HR): Integer -slDisjoint(): Observer. Spatial disjointness.slCoveredBy(HR): Integer -slMatch(): Observer. Spatial matching.slOverlap(HR): Integer -slCoverg(): Observer. General spatial coverage.equal(Interval): Integer -slInside(): Observer. Spatial inside.adjacent(Interval): Integer -slCoveredBy(): Observer. Spatial coverage.precede(Interval): Integer -slOverlap(): Observer. Spatail Overlapping.follow(Interval): Integer -equal(): Observer. Temporal equality.during(Interval): Integer -adjacent(): Observer. Temporal adjacency.intersection(HR): HR -follow(): Observer. Follow in time dimension.hRec(HR): HR -precede(): Observer. Temporal precedence.isAPoint(): Interval -during(): Observer. Temporal inclusion.volume(): Double -intersection(): Observer. Calculate thedisplay() hyper-rectangle that is the intersection.<<(ostream, HR): ostream -hRec(): Observer. Calculate the hyper-rectangle that cover both hyper-rectangles.-isAPoint(): Observer. Return one if thehyper-rectangle is a point.-volume(): Observer. Return the hyper-area.-display(),<<(): Observers. HR display.Figure B.5: TDSO implementation of the HR class.



Appendix B 169 Class implementationsMar.97 Implementation f14gClass BlobClasses: Char, Cardinal, Integer, ostream1 Superclasses: -status: One if it is actually2 Structure: in use.status, objNum: Char -objNum: Current numberlength: Cardinal of object in it.left, right: Cardinal -length: Current length in bytes.tail: Array[TailSize]Of Char -left: Left brother blob number.3 Functions: -right: Right brother blob number.Blob():Blob -tail: Blob content.Blob(Blob):Blob -Blob(): Constructors.Status():Char -Status(), ObjNum(), Length(),ObjNum():Char -Left(), Right(): Observers.Length():Cardinal Return the current valueLeft():Cardinal for each blob attribute.Right():Cardinal -Tail(): Observer. Return theTail(Integer):Char required character of the blob tail.getNew(Integer):Cardinal -getNew(): Observer. Returndisplay() a new blob.�leName(Cardinal): Char -display(): Observer. DisplayStatus(Char): Integer a blob.ObjNum(Char): Integer -�leName(): Observer. ReturnLength(Cardinal): Integer the corresponding �leLeft(Cardinal): Integer name for a given class.Right(Cardinal): Integer -Status(), ObjNum(), Length(),Tail(Char, Cardinal): Integer -Left(),Right(): Mutators.readBlob(Cardinal, Cardinal): Integer Change the current value in eachwriteBlob(Cardinal, Cardinal): Integer one of the blob attributes.=(Blob): Blob -Tail(): Mutator. Change the<<(ostream, Blob): ostream current value in the requiredcharacter of the tail.-readBlob(): Observer. Fetchthe required blob from thecorresponding �le on disk.-writeBlob(): Mutator. Writeon disk the speci�ed blob.-=(): Mutator. Assignment.-<<(): Observer. Display a blob.Figure B.6: TDSO implementation of the Blob class.



Appendix B 170 Class implementationsMar.97 Implementation f15gClass EntryClasses: HR, Cardinal, Integer, Char, MPoint, Interval, ostream1 Superclasses: -hr: Entry's hyper-rectangle.2 Structure: -bn: Blob number associated.hr: HR -Entry(): Constructors.bn: Cardinal -Hr(), Bn(): Observers. Return the3 Functions: current values of the entry attributes.Entry():Entry -==(): Observer. Return 1 if bothEntry(HR, Cardinal):Entry entries are equal in value.Entry(Entry):Entry -! =(): Observer. Return 1 if bothEntry(Char):Entry entries are di�erent in value.Hr():HR -disjoint(): Observer. Return theBn():Cardinal blob number if the entry's==(Entry):Integer hyper-rectangle is disjoint.! =(Entry):Integer -match(): Observer. Return the blobdisjoint(HR):Cardinal number if entry's hyper-rectangle is equal.match(HR):Cardinal -inside(): Observer. Return theinside(HR): Cardinal blob number if the entry'scover(HR): Cardinal hyper-rectangle is inside.coverg(HR): Cardinal -cover(): Observer. Return the blobcovers(MPoint): Cardinal number if the entry's hyper-rectangleoverlap(HR): Cardinal is covered, but it is not inside.overlap(MPoint): Cardinal -coverg(): Observer. Return theslDisjoint(HR): Cardinal blob number if the entry'sslMatch(HR): Cardinal hyper-rectangle is covered.slCoverg(HR): Cardinal -covers(): Observer. Return theslInside(HR): Cardinal blob number if the entry'sslOverlap(HR):Cardinal hyper-rectangle covers the point.slCover(HR):Cardinal -overlap(): Observer. Return theoverlapD(HR, Cardinal):Cardinal blob number if the entry'sleftD(HR, Cardinal):Cardinal hyper-rectangle overlaps.rightD(HR, Cardinal):Cardinal -overlap(): Observer. Return theleftOverlap(HR, Cardinal):Cardinal blob number if the entry'srightOverlap(HR, Cardinal):Cardinal hyper-rectangle overlaps the point.tMeet(HR, Cardinal):Cardinal -slDisjoint(): Observer. Spatial disjoint-equal(HR, Cardinal):Cardinal ness. Return the blob number if the spatialstart(HR, Cardinal):Cardinal hyper-rectangle of the entry is disjoint.�nish(HR, Cardinal):Cardinal -slMatch(): Observer. Spatial equality.adjacent(HR, Cardinal):Cardinal -slCoverg(): Observer. Spatial coverage.precede(HR, Cardinal):Cardinal -slInside(): Observer. Spatial containment.follow(HR, Cardinal):Cardinal -slOverlap(): Observer. Spatial overlapping.during(HR, Cardinal):Cardinal -slCover(): Observer. Spatial coverage only.Figure B.7: TDSO implementation of the Entry class.



Appendix B 171 Class implementationsImplementation f15gClass Entryduring(Interval):Cardinal -overlapD(): Observer. OverlappingtOverlap(MPoint):Cardinal in the given dimension,display() returning the blob number.=(Entry): Entry -leftD(): Observer. Return theHr(HR) blob number if the hyper-rectangle'sBn(Cardinal) dimension is on the left.<<(ostream, Entry): ostream -rightD(): Observer. Return theblob number if the hyper-rectangle'sdimension is on the right.-leftOverlap(): Observer. Return theblob number if the hyper-rectangle'sdimension overlaps on the left.-rightOverlap(): Observer. Return theblob number if the hyper-rectangle'sdimension overlaps on the right.-tMeet(): Observer. Return the blobnumber if the hyper-rectangle'stime dimension meets.-equal(): Observer. Return the blobnumber if the hyper-rectangle'stime dimension is equal.-start(): Observer. Return the blobnumber if the hyper-rectangle's timedimension starts at the same point.-�nish(): Observer. Return the blobnumber if the hyper-rectangle's timedimension �nishes at the same point.-adjacent(): Observer. Time adjacency.-precede(): Observer. Time precedence.-follow(): Observer. Time consequence.-during(): Observer. Time containment.-tOverlap(): Observer. Time overlapping.-display(): Observer. Display the entry.-=(): Mutator. Assignment.-Hr(), Bn(): Mutators. Change the actualvalues of the entry's attributes.-<<(): Observer. Display a blob.Figure B.8: TDSO implementation of the Entry class. (Continuation)



Appendix B 172 Class implementations
Mar.97 Implementation f16gClass RTreeNodeClasses: Cardinal, Char, Entry, Integer, ostream1 Superclasses: -blobId: Blob identi�er.2 Structure: -level: Node high in the tree.blobId: Cardinal -entries: Current number of entries.level, entries: Char -length: Current length in bytes.length: Cardinal -left: Left brother node number.left, right: Cardinal -right: Right brother node number.rest: Array[MaxEntryMem]Of Entry -rest: Node's entries.3 Functions: -RTreeNode(): Constructors.RTreeNode(): RTreeNode -maxHb(): Observer. Return theRTreeNode(Cardinal, Char, Char, hyper-rectangle that covers all(Cardinal, Cardinal, Cardinal): of the current hyper-rectangles.RTreeNode -=(): Mutator. Assignment.RTreeNode(Cardinal):RTreeNode -insNewEntry(): Mutator. InsertRTreeNode(RTreeNode):RTreeNode a new entry into the node.maxHb():HR -delExEntry(): Mutator. Delete=(RTreeNode):RTreeNode an existing entry into the node.insNewEntry(Entry, Cardinal):Integer -writeNodeOnDisk(): Mutator.delExEntry(Cardinal):Integer Write on disk the modi�ed node.writeNodeOnDisk(Cardinal): Integer -readNodeFromDisk(): Mutator.readNodeFromDisk(Cardinal, Cardinal): Read from disk the speci�ed node.Integer -cleanR(): Mutator. Clean all ofcleanR(Cardinal, Cardinal) the node of the R tree.Figure B.9: TDSO implementation of the RTreeNode class.



Appendix B 173 Class implementationsApr.96 Implementation f17gClass RTreeExt1Classes: Char, Cardinal, Float, RTreeNode, Integer, HR, ListOf[T], Entry, EleType1 Superclasses: -dim,height,entLength,xDim,nCoord:2 Structure: Dimension, current height, length of eachdim,height,entLength, entry in bytes, position of X coordinatexDim,nCoord: Char and number of coordinates, respectively.entNum,blobRoot,blobNum,bnf, -entNum,blobRoot,blobNum,bnf,blobSize,insNum,delNum, blobSize,insNum,delNum,maQNum,maQNum,raQNum: Cardinal raQNum: Actual number of entries, rootemptyPer,tInsTime,tDelTime, blob number, actual number of blobs in use,tMaQTime,tRaQTime: Float actual number of assigned blobs, blob sizeroot: RTreeNode in bytes, actual number of insertions,3 Functions: actual number of deletions, actual numberRTreeExt1(): RTreeExt1 of exact match and range queries, resp.RTreeExt1(Cardinal): RTreeExt1 -emptyPer,tInsTime,tDelTime,�RTreeExt1() tMaQTime,tRaQTime: CurrentDim(),Height(),EntLength(),XDim(), average of empty space within nodes,NCoord(): Char total insertion time, total deletionEntNum(),BlobNum(),Bnf(), time, total exact match query time,BlobSize(),InsNum(),DelNum(), total range query time, respectively.MaQNum(),RaQNum(): Cardinal -root: R tree's root in main memory.EmptyPer(),avgInsTime(), -RTreeExt1(): Constructors.avgDelTime(),avgMaQTime(), -�RTreeExt1(): Destructor.avgRaQTime(): Float -Dim(),Height(),EntLength(),XDim(),isMultidim(): Integer NCoord(),EntNum(),BlobNum(),Bnf(),match(HR,ListOf[Cardinal],Cardinal, BlobSize(),InsNum(),DelNum(),Cardinal): Float MaQNum(),RaQNum(),EmptyPer(),range(HR,ListOf[Cardinal],Cardinal, avgInsTime(),avgDelTime(),Cardinal): Float avgMaQTime(),avgRaQTime():insertEnt(Entry,Float,Cardinal): Observers. Each function permits to seeRTreeExt1 the value stored in each R tree attribute.deletEnt(Entry,Float,Cardinal): -isMultidim(): Observer. Return 1 ifRTreeExt1 the R tree has many dimensions.cleanRTree(Cardinal): RTreeExt1 -match(): Observer. Execute an exactchooseLeaf(RTreeNode,Entry, match query returning the number of diskListOf[EleType],Cardinal) accesses, the number of retrieved objects,linearPickSeeds(RTreeNode,Cardinal) and the time used to answer the query.splitNode(RTreeNode,RTreeNode) -range(): Observer. Execute a rangeadjustTree(RTreeNode,RTreeNode, query returning the number of diskListOf[EleType],Cardinal) accesses, retrieved objects, and time.Figure B.10: TDSO implementation of the RTreeExt1 class.



Appendix B 174 Class implementations
Implementation f17gClass RTreeExt1�ndLeaf(RTreeNode,RTreeNode,Entry, -insertEnt(): Mutator. Insert aCardinal,ListOf[EleType],Cardinal) new entry returning the time used.condenseTree(RTreeNode, -deletEnt(): Mutator. Delete an exist-ListOf[EleType],Cardinal) ing entry returning the time used.redistribution(RTreeNode,RTreeNode, -cleanRTree(): Mutator. Delete allRTreeNode,RTreeNode,Integer) of the objects and nodes of the R tree.redistribution2(RTreeNode,RTreeNode, -chooseLeaf(): Observer. Choose aRTreeNode,Integer,Cardinal) leaf to store the new entry.deletion(RTreeNode,RTreeNode, -linearPickSeeds(): Observer. Pick upRTreeNode,RTreeNode,Integer, the splitting point of a node.Cardinal) -splitNode(): Mutator. Split a nodedeletion2(RTreeNode,RTreeNode, following the splitting policy.RTreeNode,Integer,Cardinal, -adjustTree(): Mutator. Change theCardinal) hyper-rectangle of the needed entries.<<(ostream,RTree) -�ndLeaf(): Observer. Find the leafdisplayNode(Cardinal) where is the entry that will be deleted.-condenseTree(): Mutator. Change hyper-rectangles and delete nodes if needed.-redistribution(): Mutator.Redistribute entries among three nodes.-redistribution2(): Mutator. Re-distribute entries among two nodes.-deletion(): Mutator. Delete a nodewhen it has two brother nodes.-deletion2(): Mutator. Delete a nodewhen it has only one brother node.-<<(): Observer. Display on screenan RTreeExt1 object.-displayNode(): Observer. Display onscreen the demanded node.Figure B.11: TDSO implementation of the RTreeExt1 class. (Continuation)



Appendix B 175 Class implementationsApr.96 Implementation f17gClass RTreeExt3Classes: Character, Float, Integer, Cardinal, EleType, ListOf,Interval, Entry, RTreeNode1 Superclasses: -dim: Number of dimensions.2 Structure: -height: Current height.dim,height,entLength,xDim, -entLength: Length of each entry.timeDim,nTime,nCoord: -xDim: X coordinate position.Character -timeDim: Time position.entNum,blobRoot,blobNum, -nTime: Number of time dimensions.bnf,blobSize,insNum,delNum, -nCoord: Number of coordinates.diQNum,nDQNum,maQNum, -entNum: Current entries number.inQNum,coQNum,slDiQNum, -blobRoot: Blob root number.slMaQNum,slInQNum, -blobNum: Current number of blobs in use.slCoQNum,nDDQNum,lDQNum, -bnf: Current number of assigned blobs.rDQNum,tmQNum,eqQNum, -blobSize: Current blob size.stQNum,�QNum,adQNum, -insNum: Actual number of insertions.preQNum,foQNum,duQNum: -delNum: Actual number of deletions.Cardinal -diQNum,nDQNum,maQNum,inQNum,emptyPer,deltaTime,delta, coQNum: Actual number oftInsTime,tDelTime,tDiQTime, disjoint, not disjoint, exacttNDQTime,tMaQTime,tInQTime, match, inside, and cover dim-tCoQTime,tSlDiQTime, dimensional queries.tSlMaQTime,tSlInQTime, -slDiQNum,slMaQNum,slInQNum,tSlCoQTime,tNDDQTime, slCoQNum: Current number oftLDQTime,tRDQTime,tTmQTime, disjoint, exact match, inside, andtEqQTime,tStQTime,tFiQTime, cover queries (Spatial).tAdQTime,tPreQTime, -nDDQNum,lDQNum,rDQNum:tFoQTime,tDuQTime: Float Actual number of not disjointroot: RTreeNode in dimension, left in dimension,3 Functions: right in dimension queries (1D).RTreeExt3():RTreeExt3 -tmQNum,eqQNum,stQNum,RTreeExt3(Cardinal): �QNum,adQNum,preQNum,RTreeExt3 foQNum,duQNum: Current number�RTreeExt3() of temporal meeting, equal, start,Dim(),Height(),EntLength(), �nish, adjacent, precede, follow,XDim(),TimeDim(),NTime(), and during temporal queries.NCoord(): Character -emptyPer,deltaTime,delta:EntNum(),BlobNum(),Bnf(), Actual percentage of emptyBlobSize(),InsNum(), space within nodes, unit ofDelNum(),DiQNum(),NDQNum(), time to be used in temporalMaQNum(),InQNum(),CoQNum(), queries, and unit of space toSlDiQNum(),SlMaQNum(), be used in near/far queries.Figure B.12: TDSO implementation of the RTreeExt3 class.



Appendix B 176 Class implementationsImplementation f17gClass RTreeExt3SlInQNum(),SlCoQNum(), -tInsTime,tDelTime,tDiQTime,NDDQNum(),LDQNum(), tNDQTime,tMaQTime,tInQTime,RDQNum(),TmQNum(),EqQNum(), tCoQTime: Current cumulativeStQNum(),FiQNum(),AdQNum(), insertion, deletion, disjoint, notPreQNum(),FoQNum(), disjoint, exact match, inside, andDuQNum(): Cardinal cover query time.isMultidim():Integer -tSlDiQTime,tSlMaQTime,EmptyPer(),DeltaTime(), tSlInQTime,tSlCoQTime:Delta(),avgInsTime(), Current cumulative spatial disjoint,avgDelTime(),avgDiQtime(), exact match, inside, and coveravgNDQTime(),avgMaQTime(), query time.avgInQTime(),avgCoQTime(), -tNDDQTime,tLDQTime,avgSlDQTime(),avgSlMaQTime(), tRDQTime:Current cumulativeavgSlInQTime(), 1D not disjoint in dimension, leftavgSlCoQTime(), in dimension, and right inavgNDDQTime(),avgLDQTime(), dimension query time.avgRDQTime(),avgTmQTime(), -tTmQTime,tEqQTime,tStQTime,avgEqQTime(),avgStQTime(), tFiQTime,tAdQTime,tPreQTime,avgFiQTime(),avgAdQTime(), tFoQTime,tDuQTime: CurrentavgPreQTime(),avgFoQTime(), cumulative temporal meeting, equal,avgDuQTime():Float start, �nish, adjacent, precede,disjoint(HR,ListOf[Cardinal], follow, and during query time.Cardinal,Cardinal):Float -root: The R tree root isnDisjoint(HR,ListOf[Cardinal], always in main memory.Cardinal,Cardinal):Float -RTreeExt3(): Constructors.match(HR,ListOf[Cardinal], -�RTreeExt3(): Destructor.Cardinal,Cardinal):Float -Dim(),Height(),EntLength(),inside(HR,ListOf[Cardinal], XDim(),TimeDim(),NTime(),Cardinal,Cardinal):Float NCoord(),EntNum(),BlobNum(),cover(HR,ListOf[Cardinal], Bnf(),BlobSize(),InsNum(),Cardinal,Cardinal):Float DelNum(),DiQNum(),NDQNum(),slDisjoint(HR,ListOf[Cardinal], MaQNum(),InQNum(),CoQNum(),Cardinal,Cardinal):Float SlDiQNum(),SlNDiNum(),slNDisjoint(HR,ListOf[Cardinal], SlMaQNum(),SlInQNum(),Cardinal,Cardinal):Float SlCoQNum(),NDDQNum(),slMatch(HR,ListOf[Cardinal], LDQNum(),RDQNum(),TmQNum(),Cardinal,Cardinal):Float EqQNum(),StQNum(),FiQNum(),slInside(HR,ListOf[Cardinal], AdQNum(),PreQNum(),FoQNum(),Cardinal,Cardinal):Float DuQNum(): Observers.slCover(HR,ListOf[Cardinal], Each function returns the currentCardinal,Cardinal):Float value stored in the attribute.Figure B.13: TDSO implementation of the RTreeExt3 class. (Continuation)



Appendix B 177 Class implementations
Implementation 17 Class RTreeExt3nDisjointD(HR,ListOf[Cardinal], -isMultidim(): Observer. Return 1Cardinal,Cardinal,Cardinal):Float if the R tree has many dimensions.leftD(HR,ListOf[Cardinal],Cardinal, -EmptyPer(),DeltaTime(),Delta(),Cardinal,Cardinal):Float avgInsTime(),avgDelTime(),avgDiQtime(),rightD(HR,ListOf[Cardinal], avgNDQTime(),avgMaQTime(),Cardinal,Cardinal,Cardinal):Float avgInQTime(),avgCoQTime(),tMeet(Interval,ListOf[Cardinal], avgSlDQTime(),avgSlMaQTime(),Cardinal,Cardinal):Float avgSlInQTime(),avgSlCoQTime(),equal(Interval,ListOf[Cardinal], avgNDDQTime(),avgLDQTime(),Cardinal,Cardinal):Float avgRDQTime(),avgTmQTime(),start(Interval,ListOf[Cardinal], avgEqQTime(),avgStQTime(),Cardinal,Cardinal):Float avgFiQTime(),avgAdQTime(),�nish(Interval,ListOf[Cardinal], avgPreQTime(),avgFoQTime(),Cardinal,Cardinal):Float avgDuQTime(): Observers. Each functionadjacent(Interval,ListOf[Cardinal], returns the corresponding attribute value.Cardinal,Cardinal):Float -disjoint(),nDisjoint(),match(),precede(Interval,ListOf[Cardinal], inside(),cover(),slDisjoint(),Cardinal,Cardinal):Float slMatch(),slInside(),slCover(),follow(Interval,ListOf[Cardinal], nDisjointD(),leftD(),rightD(),Cardinal,Cardinal):Float tMeet(),equal(),start(),�nish(),during(Interval,ListOf[Cardinal], adjacent(),precede(),follow(),Cardinal,Cardinal):Float during(): Observers. Each functioninsertEnt(Entry,Float,Cardinal): execute a named query returning theRTreeExt3 number of disk accesses, number ofdeletEnt(Entry,Float,Cardinal): retrieved objects, and time.RTreeExt3 -insertEnt(): Mutator. Insert acleanRTree(Cardinal,Cardinal): new entry returning the time used.RTreeExt3 -deletEnt(): Mutator. Delete an exist-chooseLeaf(RTreeNode,Entry, ing entry returning the time used.ListOf[EleType],Cardinal) -cleanRTree(): Mutator. Delete alllinearPickSeeds(RTreeNode,Cardinal) of the objects and nodes of the R tree.splitNode(RTreeNode,RTreeNode) -chooseLeaf(): Observer. Choose aadjustTree(RTreeNode,RTreeNode, leaf to store the new entry.ListOf[EleType],Cardinal) -linearPickSeeds(): Observer. Pick up�ndLeaf(RTreeNode,RTreeNode,Entry, the splitting point of a node.Cardinal,ListOf[EleType],Cardinal) -splitNode(): Mutator. Split a nodecondenseTree(RTreeNode, following the splitting policy.ListOf[EleType],Cardinal) -adjustTree(): Mutator. Change theredistribution(RTreeNode,RTreeNode, hyper-rectangle of the needed entries.RTreeNode,RTreeNode,Integer) -�ndLeaf(): Observer. Find the leafFigure B.14: TDSO implementation of the RTreeExt3 class. (Continuation)



Appendix B 178 Class implementationsImplementation f17gClass RTreeExt3redistribution2(RTreeNode,RTreeNode, where is the entry that will be deleted.RTreeNode,Integer,Cardinal) -condenseTree(): Mutator. Change hyper-deletion(RTreeNode,RTreeNode, rectangles and delete nodes if needed.RTreeNode,RTreeNode,Integer, -redistribution(): Mutator.Cardinal) Redistribute entries among three nodes.deletion2(RTreeNode,RTreeNode, -redistribution2(): Mutator. Re-RTreeNode,Integer,Cardinal, distribute entries among two nodes.Cardinal) -deletion(): Mutator. Delete a node<<(ostream,RTree) when it has two brother nodes.displayNode(Cardinal) -deletion2(): Mutator. Delete a nodewhen it has only one brother node.-<<(): Observer. Display on screenan RTreeExt1 object.-displayNode(): Observer. Display onscreen the demanded node.Figure B.15: TDSO implementation of the RTreeExt3 class. (Continuation)Mar.97 Implementation f18gClass MPointClasses: Float, Integer, HR, Interval, ostream1 Superclasses: -p: Variable array of2 Structure: oat. One per dimension.p: Array[DIM]Of Float -=(): Mutator. Assignment.3 Functions: -==(): Observer. Return one if=(MPoint): MPoint both hyper-points are equal in value.==(MPoint): Integer -! =(): Observer. Return one if! =(MPoint): Integer one hyper-points are di�erent in value.<(MPoint): Integer -<(): Observer. Return 1 if one multi-<=(MPoint): Integer dimensional point is less than the second one.>(MPoint):Integer -<=(): Observer. Return 1 if one multi->=(MPoint):Integer dimensional point is less or equal than the other.disjoint(HR): Integer ->(): Observer. Return 1 if one multi-meet(HR):Integer dimensional point is greater than the second one.inside(HR): Integer ->=(): Observer. Return 1 if one multi-coveredBy(HR): Integer dimensional point is greater or equal than the other.slDisjoint(HR): Integer -disjoint(): Observer. Disjointness.slOverlap(HR): Integer -meet(): Observer. Meeting.slInside(HR): Integer -inside(): Observer. Multi-dimensional pointslMeet(HR): Integer is inside of hyper-rectangle .Figure B.16: TDSO implementation of the HR class.



Appendix B 179 Class implementationsMar.97 Implementation 18 Class MPointduring(Interval): Integer -coveredBy(): Observer. Coverage.equivalent(Interval): Integer -slDisjoint(): Observer. Spatial disjointness.adjacent(Interval): Integer -slOverlap(): Observer. Spatial overlapping.follow(Interval): Integer -slInside(): Observer. Spatial inside.precede(Interval): Integer -slMeet(): Observer. Spatial meeting.tOverlap(HR): Integer -during(): Observer. Temporal inclusion.start(Interval): Integer -equivalent(): Observer. Temporal equality.�nish(Interval): Integer -adjacent(): Observer. Temporal adjacency.hRec(HR): HR -follow(): Observer. Temporal consequence.hrfmp(): HR -precede(): Observer. Temporal precedence.display() -tOverlap(): Observer. Temporal overlapping.<<(ostream, MPoint): ostream -start(): Observer. Time starts on the same point.-�nish(): Observer. Time �nishes on the same point.-hRec(): Observer. Calculate the hyper-rectangle that includes the point.-hrfmp(): Observer. Return the hyper-rectangle that is built from the point.-display(),<<(): Observers. HR display.Figure B.17: TDSO implementation of the HR class. (Continuation)
Mar.97 Implementation 19 Class LeafEntryClasses: MPoint, Cardinal, Char, Integer, HR, Interval, ostream1 Superclasses: -mp: Multi-dimensional point.2 Structure: -bn: Blob number.mp: MPoint -LeafEntry(): Constructors.bn:Cardinal -Mp(), Bn(): Observers. Return the values3 Functions: of the leaf entry attributes.LeafEntry():LeafEntry -=(): Mutator. Assignment.LeafEntry(MPoint, Cardinal):LeafEntry -==(): Observer. Return one ifLeafEntry(LeafEntry):LeafEntry both leaf entries are equal in value.LeafEntry(Char):LeafEntry -! =(): Observer. Return one ifMp():MPoint both leaf entries are di�erent in value.Bn():Cardinal -disjoint(): Observer. Disjointness.=(LeafEntry): LeafEntry -match(): Observer. Equality.==(LeafEntry): Integer -inside(): Observer. Multi-dimensional point! =(LeafEntry): Integer is inside of the hyper-rectangle.disjoint(HR): Cardinal -coveredBy(): Observer. Coverage.Figure B.18: TDSO implementation of the LeafEntry class.



Appendix B 180 Class implementations
Mar.97 Implementation f19gClass LeafEntrymatch(MPoint):Cardinal -overlap(): Observer. Overlapping.inside(HR): Cardinal -slDisjoint(): Observer. Spatial disjointness.coveredBy(HR): Cardinal -slMatch(): Observer. Spatial matching.overlap(HR): Cardinal -slCoverg(): Observer. General spatialslDisjoint(HR): Cardinal coverage.slMatch(MPoint): Cardinal -slInside(): Observer. Spatial inside.slCoverg(HR): Cardinal -slOverlap(): Observer. Spatial overlapping.slInside(HR): Cardinal -slCover(): Observer. Spatial coverage.slOverlap(HR): Cardinal -overlapD(): Observer. Overlapping in 1D.slCover(HR): Cardinal -leftD(): Observer. On the left in 1D.overlapD(HR, Cardinal): Cardinal -rightD(): Observer. On the right in 1D.leftD(HR, Cardinal): Cardinal -leftOverlap(): Observer.rightD(HR, Cardinal): Cardinal Overlapping on the left.leftOverlap(HR, Cardinal): Cardinal -rightOverlap(): Observer.rightOverlap(HR, Cardinal): Cardinal Overlapping on the right.tMeet(HR, Cardinal):Cardinal -tMeet(): Observer. Temporal meeting.equal(MPoint, Cardinal):Cardinal -equal(): Observer. Temporal equality.start(HR, Cardinal):Cardinal -start(): Observer. Time start equality.�nish(HR, Cardinal):Cardinal -�nish(): Observer. Time �nish equality.adjacent(HR, Cardinal):Cardinal -adjacent(): Observer. Temporal adjacency.precede(HR, Cardinal):Cardinal -precede(): Observer. Temporal precedence.follow(HR, Cardinal):Cardinal -follow(): Observer. Temporal consequence.during(HR, Cardinal):Cardinal -during(): Observer. Temporal inclusion.during(Interval):Cardinal -equal(): Observer. Multi-dimensionalequal(MPoint):Cardinal point equality.Mp(MPoint) -Mp(), Bn(): Mutators. Change the valuesBn(Cardinal) of the leaf entry attributes.display() -display(),<<(): Observers. Leaf<<(ostream, LeafEntry): ostream entry display.Figure B.19: TDSO implementation of the LeafEntry class. (Continuation)



Appendix B 181 Class implementationsApr.96 Implementation f17gClass MRTreeClasses: Character, Float, Integer, Cardinal, EleType, ListOf,MPoint, Interval, HR, Entry, LeafEntry, RTreeNode1 Superclasses: -dim,height: Dimension and actual height.2 Structure: -entLength,leafEntLen: Length of indexdim,height,entLength, and leaf entries, respectively.leafEntLen,xDim,timeDim, -xDim: X coordinate position.nTime,nCoord:Character -timeDim: Time position.entNum,blobRoot,blobNum, -nTime: Number of time dimensions.leafNum,bnf,blobSize, -nCoord: Number of coordinates.insNum,delNum,diQNum, -entNum: Current entries number.nDQNum,maQNum,inQNum, -blobRoot: Blob root number.coQNum,slDiQNum,slMaQNum, -blobNum,leafNum,bnf: ActualslInQNum,slCoQNum, number of index, leaf blobs in use,nDDQNum,lDQNum,rDQNum, and assigned blobs.tmQNum,eqQNum,stQNum, -blobSize: Current blob size.�QNum,adQNum,preQNum, -insNum: Actual number of insertions.foQNum,duQNum:Cardinal -delNum: Actual number of deletions.emptyPer,deltaTime,delta, -diQNum,nDQNum,maQNum,inQNum,tInsTime,tDelTime,tDiQTime, coQNum:Actual number of disjoint, nottNDQTime,tMaQTime,tInQTime, disjoint, exact match, inside, andtCoQTime,tSlDiQTime, cover dim-dimensional queries.tSlMaQTime,tSlInQTime, -slDiQNum,slMaQNum,slInQNum,tSlCoQTime,tNDDQTime, slCoQNum: Current number oftLDQTime,tRDQTime,tTmQTime, disjoint, exact match, inside, andtEqQTime,tStQTime,tFiQTime, cover queries (Spatial).tAdQTime,tPreQTime, -nDDQNum,lDQNum,rDQNum: ActualtFoQTime,tDuQTime: Float number of not disjoint in dimension,root: RTreeNode left in dimension, right in3 Functions: dimension queries (1D).MRTree():MRTree -tmQNum,eqQNum,stQNum,�QNum,MRTree(Cardinal): adQNum,preQNum,foQNum,duQNum:MRTree Current number of temporal meeting,�MRTree() equal, start, �nish, adjacent,Dim(),Height(),EntLength(), precede, follow, and duringLeafEntNum(),XDim(),TimeDim(), temporal queries.NTime(),NCoord(): Character -emptyPer,deltaTime,delta:EntNum(),BlobNum(),LeafNum(), Actual percentage of empty spaceBnf(),BlobSize(),InsNum(), within nodes, unit of time to beDelNum(),DiQNum(),NDQNum(), used in temporal queries, and unitMaQNum(),InQNum(),CoQNum(), of space used in near/far queries.SlDiQNum(),SlMaQNum(), -tInsTime,tDelTime,tDiQTime,Figure B.20: TDSO implementation of the MRTree class.



Appendix B 182 Class implementations
Apr.96 Implementation 17 Class MRTreeSlInQNum(),SlCoQNum(), tNDQTime,tMaQTime,tInQTime,NDDQNum(),LDQNum(), tCoQTime:Current cumulativeRDQNum(),TmQNum(),EqQNum(), insertion, deletion, disjoint, notStQNum(),FiQNum(),AdQNum(), disjoint, exact match, inside, andPreQNum(),FoQNum(), cover query time.DuQNum(): Cardinal -tSlDiQTime,tSlMaQTime,tSlInQTime,isMultidim():Integer tSlCoQTime: Current cumulativeEmptyPer(),DeltaTime(), spatial disjoint, exact match,Delta(),avgInsTime(), inside, and cover query time.avgDelTime(),avgDiQtime(), -tNDDQTime,tLDQTime,tRDQTime:avgNDQTime(),avgMaQTime Current cumulative 1-dimensionalavgInQTime(),avgCoQTime(), not disjoint, left, and right inavgSlDQTime(),avgSlMaQTime(), dimension query time.avgSlInQTime(), -tTmQTime,tEqQTime,tStQTime,avgSlCoQTime(), tFiQTime,tAdQTime,tPreQTime,avgNDDQTime(),avgLDQTime(), tFoQTime,tDuQTime: CurrentavgRDQTime(),avgTmQTime(), cumulative temporal meeting, equal,avgEqQTime(),avgStQTime(), start, �nish, adjacent, precede,avgFiQTime(),avgAdQTime(), follow, and during query time.avgPreQTime(),avgFoQTime -root: The R tree root in main memory.avgDuQTime():Float -MRTree(): Constructors.disjoint(HR,ListOf[Cardinal], -�MRTree(): Destructor.Cardinal,Cardinal):Float -Dim(),Height(),EntLength(),nDisjoint(HR,ListOf[Cardinal], LeafEntLen(),XDim(),TimeDim(),Cardinal,Cardinal):Float NTime(),NCoord(),EntNum(),BlobNum(),match(MPoint,ListOf[Cardinal], LeafNum(),Bnf(),BlobSize(),Cardinal,Cardinal):Float InsNum(),DelNum(),DiQNum(),inside(HR,ListOf[Cardinal], NDQNum(),MaQNum(),InQNum(),Cardinal,Cardinal):Float CoQNum(),SlDiQNum(),SlMaQNum(),cover(HR,ListOf[Cardinal], SlInQNum(),SlCoQNum(),NDDQNum(),Cardinal,Cardinal):Float LDQNum(),RDQNum(),TmQNum(),slDisjoint(HR,ListOf[Cardinal], EqQNum(),StQNum(),FiQNum(),Cardinal,Cardinal):Float AdQNum(),PreQNum(),FoQNum(),slMatch(HR,ListOf[Cardinal], DuQNum(): Observers. Each functionCardinal,Cardinal):Float returns the current attribute's value.slInside(HR,ListOf[Cardinal], -isMultidim(): Observer. Return 1Cardinal,Cardinal):Float if the R tree has many dimensions.slCover(HR,ListOf[Cardinal], -EmptyPer(),DeltaTime(),Delta(),Cardinal,Cardinal):Float avgInsTime(),avgDelTime(),nDisjointD(HR,ListOf[Cardinal], avgDiQtime(),avgNDQTime(),Cardinal,Cardinal,Cardinal):Float avgMaQTime(),avgInQTime(),Figure B.21: TDSO implementation of the MRTree class. (Continuation)



Appendix B 183 Class implementationsApr.96 Implementation f17gClass MRTreeleftD(HR,ListOf[Cardinal],Cardinal, avgCoQTime(),avgSlDQTime(),Cardinal,Cardinal):Float avgSlMaQTime(),avgSlInQTime(),rightD(HR,ListOf[Cardinal], avgSlCoQTime(),avgNDDQTime(),Cardinal,Cardinal,Cardinal):Float avgLDQTime(),avgRDQTime(),tMeet(Interval,ListOf[Cardinal], avgTmQTime(),avgEqQTime(),Cardinal,Cardinal):Float avgStQTime(),avgFiQTime(),equal(Interval,ListOf[Cardinal], avgAdQTime(),avgPreQTime(),Cardinal,Cardinal):Float avgFoQTime(),avgDuQTime():start(Interval,ListOf[Cardinal], Observers. Each function returnsCardinal,Cardinal):Float the corresponding attribute value.�nish(Interval,ListOf[Cardinal], -disjoint(),nDisjoint(),match(),Cardinal,Cardinal):Float inside(),cover(),slDisjoint(),slMatch(),adjacent(Interval,ListOf[Cardinal], slInside(),slCover(),nDisjointD(),Cardinal,Cardinal):Float leftD(),rightD(),tMeet(),equal(),precede(Interval,ListOf[Cardinal], start(),�nish(),adjacent(),Cardinal,Cardinal):Float precede(),follow(),during(): Observers.follow(Interval,ListOf[Cardinal], Each function executes a named query re-Cardinal,Cardinal):Float turning the number of disk accesses,during(Interval,ListOf[Cardinal], number of retrieved objects, and timeCardinal,Cardinal):Float -insertEnt(): Mutator. Insert ainsertEnt(LeafEntry,Float, new entry returning the time used.Cardinal):MRTree -deletEnt(): Mutator. Delete an exist-deletEnt(LeafEntry,Float, ing entry returning the time used.Cardinal):MRTree -cleanRTree(): Mutator. DeletecleanRTree(Cardinal,Cardinal): all of the nodes of the R tree.MRTree -chooseLeaf(): Observer. Choose achooseLeaf(RTreeNode,Entry, leaf to store the new entry.ListOf[EleType],Cardinal) -linearPickSeeds(): Observer. PicklinearPickSeeds(RTreeNode,Cardinal) up the splitting point of a node.splitNode(RTreeNode,RTreeNode) -splitNode(): Mutator. Split a nodeadjustTree(RTreeNode,RTreeNode, following the splitting policy.ListOf[EleType],Cardinal) -adjustTree(): Mutator. Change the�ndLeaf(RTreeNode,RTreeNode,Entry, hyper-rectangle of the needed entries.Cardinal,ListOf[EleType],Cardinal) -�ndLeaf(): Observer. Find the leafcondenseTree(RTreeNode, where is the entry that will be deleted.ListOf[EleType],Cardinal) -condenseTree(): Mutator. Changeredistribution(RTreeNode,RTreeNode, rectangles and delete nodes if needed.RTreeNode,RTreeNode,Integer) -hyperRecFromLeaves(): Observer.Figure B.22: TDSO implementation of the MRTree class. (Continuation)
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Apr.96 Implementation f17gClass MRTreeredistribution2(RTreeNode,RTreeNode, Prepare the hyper-rectangle of a leaf node.RTreeNode,Integer,Cardinal) -overow(): Mutator. Decide over todeletion(RTreeNode,RTreeNode, redistribute or split an overow node.RTreeNode,RTreeNode,Integer, -redistribution(): Mutator.Cardinal) Redistribute entries among three nodes.deletion2(RTreeNode,RTreeNode, -redistribution2(): Mutator. Re-RTreeNode,Integer,Cardinal, distribute entries among two nodes.Cardinal) -deletion(): Mutator. Delete a node<<(ostream,RTree) when it has two brother nodes.displayNode(Cardinal) -deletion2(): Mutator. Delete a nodehyperRecFromLeaves(RTreeNode,HR, when it has only one brother node.HR,Integer):Integer -<<(): Observer. Display on screenoverow(RTreeNode,ListOf[EleType]) an MRTree object.-displayNode(): Observer. Display onscreen the demanded node.Figure B.23: TDSO implementation of the MRTree class. (Continuation)



Appendix CTest functions and results.This appendix presents the TDSO implementations of the test functions called bythe test program mentioned in chapter 5, the obtained results after running theR tree extensions, and the polygons of West Yorkshire.C.1 Test functionsThe rest of the functions used in the test program are not included here as TDSOimplementations. These functions are implemented in the code of each extension.C.2 ResultsThe results are shown in tables. Tables contain R tree parameters, such as: blobsize(BS), R tree height(H), total number of used blobs(NB), total number of en-tries(NE), percentage of empty space within blobs(ES), average insertion time(AIT),average exact match searching time(AMST), average range searching time(ARST),average number of disk accesses during an insertion(IDA), average number of diskaccesses during an exact match search (MDA), average number of disk accesses dur-ing a range search(RDA), and average number of retrieved objects during a rangesearch(RRO). Additionally, results for extensions 3 and 4 include more parametersbecause range searches are particularised by spatio-temporal operators describedin chapter 4. These new parameters are average disjoint time(ADT), average nondisjoint time(A!DT), average inside or contain time(AICT), average cover or cov-185



Appendix C 186 Test functions and results.Jun.96Implementation choices(from, ent, fd, op, top, prox, dop, tep, recl:Integer,hr1:HR, �le:String)Classes: Integer, String, HR1 case op = -from, ent, fd, op, top,1 createRTree(ent, recl, �le) prox, dop, tep, recl,2 insertRTree(hr1, recl, �le) hr1, �le: Already3 deleteRTree(from, ent, recl, �le) de�ned in testProgram.4 if(top2f1..8g ^ prox2 -dim, dim1: Integer:....f1, 2, 3g) then spatialQuery(fd, from, Dimension indicator................. ent, top, prox, recl, �le) -rt: RTree: An RTree... endif instance.... if(dop2f1..4g) then unoDQuery( -yes: Stop displaying............. from, ent, dim, dop, recl, �le) -createRTree(): Create the... endif desired RTree.... if(dop2f5..12g) then -insertRTree(): Insert.....double1DQuery(from, ent, dim, dim1, a new entry in the...................... dop, recl, �le) RTree already created.... endif -deleteRTree(): Delete one o... if(tep2f1, 2, 4g) then more entries of the RTree......unoDQuery(from, ent, dim, tep, -spatialQuery(): Search in.................. recl, �le) the RTree the blob number... endif of the corresponding entries... if(tep2f3, 5..11g) then following top or prox operators......temporalQuery(from, ent, tep, -unoDQuery(): Search all the...................... recl, �le) blob numbers of the... endif corresponding entries following... if(tep = 12) then dim and dop or tep parameters......double1DQuery(from, ent, dim, -double1DQuery(): Search all the................ dim1, tep, recl, �le) blob numbers of the corresponding... endif entries following dim, dim1,5 rt.display() and dop or tep parameters.6 if(fd) then -temporalQuery(): Search all..... [rt.displayNode(i)] i=1, rt.Bnf() the blob numbers of the. .else [i=Read from the keyboard corresponding entries following........ if(i>0 ^ i�rt.Bnf()) then the tep parameter............ rt.displayNode(i) -display(), displayNode(), Bnf():........ endif RTree operations already de�ned........ yes=Read from the keyboard] in the RTree class........ (yes6=1)... endifendcase Figure C.1: TDSO implementation of choices function.



Appendix C 187 Test functions and results.Jun.96Implementation choices(from, ent, fd, op, top, prox, dop, tep, recl:Integer, hr1:HR, �le:String)1 op=1 RTree creation.2 op=2 Entry insertion.3 op=3 Entry deletions4 op=4 RTree search.5 op=5 Display RTree instance.6 op=6 Diaplay one or more RTree nodes.Figure C.2: TDSO implementation of choices function. Test cases.Jun.96 Implementation createRTree(ent, recl:Integer, �le:String)Classes: Integer, String1 [rec=record j of the �le -rec: String: File record that contain. e=Entry(rec) an entry.. rt.insertEnt(e, tim(j), da) -j: Integer: Counter.. dac=dac+da ] (j=1, ent) -rt: RTree: An RTree instance.2 if(ent>0) then -e: Entry: RTree entry containing the record...... display dac, dac/ent -tim: Array[ent]Of Real: Time container.endif -da, dac: Integer: Number of disk accesses andaccumulate disk accesses, respectively.-Entry(): Entry constructor.-insertEnt(): RTree operation.1 ent=0, da=0, dac=0 No RTree creation.2 ent=1, da=1, dac=1 Create the RTree with one entry.Figure C.3: TDSO implementation of createRTree function.Jun.96Implementation insertRTree(ahr:HR, recl:Integer, �le:String)Classes: HR, Integer, String1 p=position of the end-of-�le -p: Integer: Total number of bytes on the �le.2 a=p/recl -a: Integer: Number of the actual last blob.3 e.Bn(a) -e: Entry: RTree new entry.4 e.Hr(ahr) -rt: RTree: An RTree instance.5 rt.insertEnt(e, tim, da) -tim: Real: Time container.6 dac=dac+da -da, dac: Integer: Number of disk accesses and7 write record p on the �le accumulate disk accesses, respectively.8 display dac, da -Bn(), Hr(): Entry operations.-insertEnt(): RTree operation.1 ahr=NullHR, da=0, dac=0 No RTree insertion.2 ahr=ValidHR, da=1, dac=1 Insert the new RTree entry.Figure C.4: TDSO implementation of insertRTree function.



Appendix C 188 Test functions and results.Jun.96Implementation deleteRTree(from, ent, recl:Integer, �le:String)Classes: Integer, String1 j=from -j: Integer: Counter.2 (j<(from+ent)) [rec=record j of the �le -rec: String: File record...................... e=Entry(rec) containing an entry....................... rt.deletEnt(e, tim(j), da) -e: Entry: RTree entry....................... dac, j=dac+da, j+1 -rt: RTree: An RTree instance....................... ] -tim: Array[ent-from]Of Real:3 if(ent>0) then Time container..... display dac, da/ent -da, dac: Integer: Number ofendif disk accesses and accumulatedisk accesses, respectively.-Entry(): Entry constructor.-deletEnt(): RTree operation.1 from=0, ent=0, da=0, dac=0 No RTree deletion.2 from=0, ent=1, da=1, dac=1 Delete one RTree entry.Figure C.5: TDSO implementation of deletRTree function.ered by time(ACT), average non disjoint in one dimension time(A!D1T), averageon the left in one dimension time(AL1T), average on the right in one dimensiontime(AR1T), average number of disk accesses during a disjoint search(DDA), aver-age number of disk accesses during a non disjoint search(!DDA), average numberof disk accesses during an inside or contain search(ICDA), average number of diskaccesses during a cover or covered by search(CDA), average number of disk accessesduring a non disjoint in one dimension search(!D1DA), average number of disk ac-cesses during a left in one dimension search(L1DA), average number of disk accessesduring a right in one dimension search(R1DA), average number of retrieved objectsduring a disjoint search(DRO), average number of retrieved objects during a nondisjoint search(!DRO), average number of retrieved objects during an inside or con-tain search(ICRO), average number of retrieved objects during a cover or coveredby search(CRO), average number of retrieved objects during a non disjoint in onedimension search(!D1RO), average number of retrieved objects during a left in onedimension search(L1RO), and average number of retrieved objects during a right inone dimension search(R1RO).The average number of retrieved objects during a match search is not includedin tables, because it is always equal to one. The others not included parametersare DRO, and CRO, because they are always equal to Database size - 1, and zero,respectively.



Appendix C 189 Test functions and results.Data- Ex- MDAbase ten- AIT AMST ARST andsize BS sion H NB NE ES [ms] [ms] [ms] IDA RDA RRO512 1 2 57 1056 25.90 2.00 10.00 8.00 4 18 162 2 48 1047 12.75 3.00 17.00 8.00 4 25 161K 1 1 26 1025 21.15 3.00 14.00 8.00 3 14 161000 2 1 22 1021 7.18 3.00 12.00 8.00 3 12 162K 1 1 13 1012 22.93 4.00 11.00 8.00 2 6 162 1 12 1011 16.58 5.00 16.00 8.00 2 100 16512 1 2 157 2926 25.45 3.61 31.77 11.55 5 53 432 2 133 2902 12.72 3.61 44.04 46.21 5 70 431K 1 2 75 2844 24.16 3.61 32.85 11.55 3 35 432770 2 2 64 2833 11.47 3.97 37.19 11.55 3 39 432K 1 1 37 2806 24.91 5.05 27.44 11.55 2 19 432 1 31 2800 10.57 5.42 44.40 11.55 3 26 43512 1 2 277 5276 23.81 3.60 57.00 25.60 5 93 792 2 241 5240 13.03 3.80 80.20 25.60 5 126 791K 1 2 136 5135 24.49 4.20 57.20 25.60 4 64 795000 2 2 113 5112 9.52 4.60 75.40 25.60 4 77 792K 1 1 65 5064 22.86 5.40 47.80 25.60 3 31 792 1 54 5053 7.35 5.60 75.60 25.60 3 44 79512 1 3 560 10559 24.58 4.10 114.00 51.20 5 188 1572 3 483 10482 13.19 4.30 170.40 51.20 5 255 1581K 1 2 263 10262 21.96 4.80 101.70 51.20 4 111 15810000 2 2 226 10225 9.51 4.60 141.40 51.20 4 145 1582K 1 2 132 10131 24.01 6.00 94.70 51.20 3 63 1582 2 107 10106 6.49 5.80 146.00 51.20 3 87 158Table C.1: Results for objects uniformly distributed in a space of two dimensions.Extensions 1 and 2.Figures C.6, and C.7 correspond to average inside or contain time (AICT), andaverage cover or covered by time (ACT).Figures C.8, C.9 and C.10 show disjoint, left and right in one dimension hit ratiocurves, respectively.Not disjoint, inside or contain, and not disjoint in one dimension hit ratio curvesare presented in �gures C.11, C.12, and C.13, respectively.C.3 Polygons of West YorkshireWe include an example of the obtained data for the polygons of West Yorkshire.Similar information was obtained for the polygons of England counties, which arenot included because of lack of space.SEGMENTSZ03BPAP Z08CZAU 39951 41301 6 -6 10 -13 6 -8 5 -5 4 -5 5 -5 8 -8 7 -6 7 -7 3 -4 6 -4 1 -2 4 3 3 3 2 3 2 6 1 31 3 3 2 3 2 0 0 4 -5 2 -4 3 -4 5 -6 3 -4 -6 -5 -5 -5 -4 -5 -4 -4 -3 -1 3 -7 6 -10 5 -10 3 -7 4 -6 5 -6 4 -9 6 -11 6 -12 5 -9 7-15 5 -8 5 -11 5 -11 5 -9 4 -8 4 -6 4 -7 2 -4 4 -6 2 -3 4 -4 5 -6 5 -5 4 -5 4 -4 4 -4 3 -4 6 -5 8 -5 6 -4 7 -4 4 -2 2 -2 4 -33 -3 5 -7 2 -3 2 -4 /Z03BQAJ Z08CYAM 39673 42034 -6 -6 -6 -5 -5 -5 -2 -5 -3 -6 -1 -5 -2 -7 1 -9 0 -5 1 -12 1 -4 2 -11 2 -9 2 -10 3-6 2 -6 2 -2 6 -3 6 -3 4 -3 5 -4 4 -5 4 -8 4 -4 3 -3 5 -3 4 -3 7 -7 6 -6 6 -4 6 -5 7 -3 4 -3 6 -4 3 -3 3 -3 7 -10 5 -10 1 -7 2-8 1 -7 0 -7 0 -8 -1 -7 -1 -7 -1 -4 -3 -7 -3 -7 -6 -10 -6 -10 -2 -3 -5 -9 -1 -2 -1 -3 -1 -5 1 -5 0 -4 2 -3 2 -4 0 -2 -1 -3 -1 -1-3 -3 -4 0 1 -4 0 -5 -3 -13 -2 -8 -1 -9 -1 -7 1 -7 0 -5 1 -9 2 -7 3 -7 2 -5 3 -6 5 -5 6 -7 8 -6 8 -7 3 -2 6 -3 5 -3 6 -2 6 -2 5-2 6 -3 3 -3 1 -3 3 -7 0 -6 1 -8 1 -7 -1 -10 -1 -8 -1 -8 -2 -6 -3 -6 -2 -5 -1 -3 /Z03BQAQ Z08CYAM 39806 41474 0 -6 1 -6 1 -5 5 -7 5 -9 5 -11 3 -7 4 -9 3 -9 2 -7 1 -7 1 -8 1 -7 1 -7 1 -5 1 -3 3-6 1 -7 2 -6 6 -13 2 -5 1 -1 8 1 12 1 5 1 3 0 4 -1 7 -4 5 -2 4 -1 5 -1 2 1 9 3 9 5 5 3 6 2 2 1 /Z03BQAQ Z08CZAU 39942 41332 8 -15 1 -3 4 -8 2 -3 -6 -2 /



Appendix C 190 Test functions and results.Data- Ex-base ten- AIT ADT A!DT AMST AICTsize BS sion H NB NE ES [ms] [ms] [ms] [ms] [ms]512 3 2 57 1056 25.90 2.00 403.29 11.00 8.00 5.504 2 48 1047 12.75 2.00 283.00 16.00 12.00 16.001K 3 1 26 1025 21.15 2.00 340.00 14.00 11.00 13.991000 4 1 22 1021 7.18 3.00 308.00 13.00 11.00 13.002K 3 1 14 1013 28.36 3.99 344.00 11.00 9.00 11.004 1 12 1011 16.58 4.00 303.00 18.00 16.00 17.00512 3 2 157 2926 25.45 2.53 3153.58 32.37 21.66 15.344 2 133 2902 12.72 2.89 1659.20 45.49 33.57 43.681K 3 2 75 2844 24.16 3.25 2148.74 34.30 24.91 32.852770 4 3 64 2833 11.47 2.53 2388.81 40.07 32.13 38.992K 3 2 36 2805 22.86 4.33 3355.23 29.24 22.74 28.884 1 31 2800 10.57 4.70 4084.12 46.57 41.52 45.85512 3 2 227 5276 23.81 2.60 9777.40 58.60 37.40 54.804 2 241 5240 13.03 3.20 7788.40 82.00 59.40 78.001K 3 2 134 5133 23.39 3.60 8225.20 58.40 41.20 55.205000 4 2 113 5112 9.52 3.80 5397.00 81.20 64.20 77.602K 3 1 65 5064 22.86 4.60 11580.60 54.40 40.40 51.604 1 54 5053 7.35 4.60 9620.00 80.80 70.40 79.00512 3 3 560 10559 24.58 3.10 72974.60 118.90 73.70 109.304 3 483 10482 13.19 2.87 62940.50 157.80 129.40 177.501K 3 2 263 10262 21.96 4.00 34272.50 115.70 74.70 102.5010000 4 2 226 10225 9.51 4.70 29450.00 153.80 137.20 163.802K 3 2 132 10131 24.01 4.80 17201.20 107.60 74.30 97.204 2 107 10106 6.49 5.10 13943.40 164.20 135.80 154.40Table C.2: Results for objects uniformly distributed in a space of two dimensions.Extensions 3 and 4.Data- Ex-base ten- ACT A!D1T AL1T AR1Tsize BS sion [ms] [ms] [ms] [ms] !DRO ICRO !D1RO L1RO R1RO512 3 5.50 71.25 182.47 148.764 17.00 23.00 135.00 137.001K 3 13.00 23.00 127.00 117.001000 4 14.00 20.00 123.00 116.00 16 0 120 439 4392K 3 11.00 19.00 94.99 123.004 19.00 23.00 120.00 128.00512 3 15.70 478.06 1664.12 1237.444 46.21 115.52 1389.53 1377.621K 3 34.30 92.42 1020.58 1036.102770 4 41.16 85.20 984.84 981.23 43 1 332 1218 12182K 3 31.05 68.95 608.66 889.904 49.46 68.23 429.24 605.78512 3 28.30 245.99 3587.80 3955.204 81.80 298.80 4709.80 4741.001K 3 58.60 241.40 3518.60 3851.605000 4 82.60 261.20 3659.00 4423.40 79 1 603 2198 21982K 3 55.40 178.20 2123.40 3238.204 84.80 142.40 1288.60 2056.80512 3 114.20 979.10 10159.60 10772.704 197.40 997.30 10893.20 10920.101K 3 108.50 912.00 16945.90 19584.3010000 4 172.60 973.20 17282.30 21778.20 158 3 1200 4399 43992K 3 103.80 747.50 14960.80 15875.304 165.90 654.90 12763.70 11459.20Table C.3: Results for objects uniformly distributed in a space of two dimensions.Extensions 3 and 4. (Continuation)



Appendix C 191 Test functions and results.Data- Ex-base ten-size BS sion IDA DDA !DDA MDA ICDA CDA !D1DA L1DA R1DA512 3 4 53 18 13 18 18 38 43 424 44 25 20 25 25 30 39 371K 3 3 25 14 11 14 14 19 21 221000 4 21 12 10 12 12 14 17 182K 3 2 13 7 5 7 7 9 11 114 11 10 9 10 10 10 10 10512 3 5 148 53 36 53 53 107 120 1214 124 70 54 70 70 85 111 1051K 3 3 72 35 27 35 35 52 64 622770 4 61 39 32 39 39 43 54 522K 3 2 35 18 14 18 18 24 30 294 3 30 26 24 26 26 28 29 28512 3 5 262 93 64 93 93 152 214 2144 225 126 96 126 126 154 203 1901K 3 4 129 59 44 59 59 89 112 1095000 4 108 77 64 77 77 86 102 952K 3 3 64 33 25 33 33 44 54 544 59 44 39 44 44 46 49 49512 3 5 346 188 126 188 188 274 434 4374 319 255 194 255 255 270 415 4101K 3 4 254 111 80 111 111 176 221 21710000 4 218 145 119 145 145 154 201 1982K 3 3 154 63 48 63 63 89 110 1104 128 87 77 87 87 82 98 98Table C.4: Results for objects uniformly distributed in a space of two dimensions.Extensions 3 and 4. (Continuation)Data- MDAbase AIT AMST ARST andsize H NB NE ES [ms] [ms] [ms] IDA RDA RRO1000 40 1039 27.85 3.00 14.00 8.00 3 14 12770 2 106 2875 24.66 4.33 29.96 11.55 4 31 25000 192 5191 24.90 5.00 56.00 25.60 4 59 310000 374 10373 22.96 4.90 145.80 51.20 5 162 31Table C.5: Results for objects uniformly distributed in two spatial dimensions andin one time dimension. Extension 1 (BS=1K)Ex-ten- AIT A!DT AMST AICT A!D1T AL1T AR1Tsion H NB NE ES [ms] [ms] [ms] [ms] [ms] [ms] [ms]3 2 184 10183 23.14 5.80 163.80 136.40 160.70 480.20 13.68 13.894 2 152 10151 7.25 5.80 194.90 166.70 189.10 598.70 20.16 19.87L1RO!DRO ICRO !D1RO R1RO IDA !DDA MDA ICDA !D1DA L1DA R1DA3 87 5 84 45 4 10 91 10 14 16 164 87 5 84 45 4 11 99 11 12 14 13Table C.6: Results for objects uniformly distributed in two spatial dimensions andin one time dimension. (BS=2K, Database size=10.000)



Appendix C 192 Test functions and results.
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Figure C.6: AICT vs. data set size for extensions 3 and 4. (File: s2D.mbr, blobsize=2KB)
Ext. 3

Ext. 4

Database size1,000 2,770 5,000 10,000

50

100

150

ACT[ms]

Figure C.7: ACT vs. data set size for extensions 3 and 4. (File: s2D.mbr, blobsize=2KB)
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75Figure C.8: The disjoint hit ratio vs. data set size for extensions 3 and 4. (File:s2D.mbr, blob size=2KB)
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Figure C.9: The left in one dimension hit ratio vs. data set size for extensions 3 and4. (File: s2D.mbr, blob size=2KB)
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Figure C.10: The right in one dimension hit ratio vs. data set size for extensions 3and 4. (File: s2D.mbr, blob size=2KB)
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Figure C.11: The not disjoint hit ratio vs. data set size for extensions 3 and 4. (File:s2D.mbr, blob size=2KB)
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Figure C.12: The inside or contain hit ratio vs. data set size for extensions 3 and4. (File: s2D.mbr, blob size=2KB)
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14Figure C.13: The not disjoint in one dimension hit ratio vs. data set size forextensions 3 and 4. (File: s2D.mbr, blob size=2KB)



Appendix C 195 Test functions and results.xmin xmax ymin ymax Min(x+y) Max(x+y) Min(y-x) Max(y-x) Polygon name39850.00 41093.00 40631.00 41762.00 81115.00 82431.00 -36.00 1466.00 Z08CZAU40471.00 41969.00 40283.00 41015.00 81074.00 82767.00 -1257.00 169.00 Z08CZAY38959.00 40279.00 41927.00 43660.00 81085.00 83482.00 2060.00 4252.00 Z08CYAB39429.00 40927.00 41222.00 42545.00 81180.00 83096.00 1147.00 2522.00 Z08CYAMTable C.7: Example of the octagon points obtained and their associated polygonname.Z05CEAP Z08DBAU 44570 40907 8 -3 9 -6 7 -1 3 -1 2 4 8 5 8 4 12 2 21 10 16 6 9 5 4 3 3 4 2 3 4 3 12 0 5 2 1411 14 12 10 8 7 5 5 0 5 0 5 7 10 5 4 6 1 5 -1 4 2 3 4 1 2 0 0 7 -4 10 -5 8 9 13 8 11 6 -3 5 0 7 3 5 1 15 -1 22 0 11 0 4 32 6 5 4 5 4 4 -6 3 2 5 4 8 -1 6 3 6 2 8 8 4 6 -4 13 -1 10 2 3 9 5 12 8 8 8 -4 6 -9 -6 -2 -2 -9 11 -1 0 8 8 -2 4 -8 -3 -7 -4 310 4 6 2 3 14 4 19 6 9 4 3 -7 -10 -6 3 -6 14 10 8 4 -5 8 -2 5 -8 10 -2 3 -4 14 -6 19 -2 7 5 4 9 1 13 4 11 1 4 0 5 3 -3 10-2 14 -4 8 0 6 -2 15 0 9 -2 16 -2 13 0 5 11 4 12 1 10 3 15 6 19 10 8 5 3 3 / ENDAfter processing the �le that contains records shown before, we obtain a �leready to be read for extension 6. A sample of this �le in ASCII form is presented intable C.7. The �rst eight points conform the octagon corresponding to the polygonname presented at the �nal of the line.


