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ABSTRACT

Detecting Networks Employing Algorithmically Generated Domain Names. (August

2010)

Ashwath Kumar Krishna Reddy, B.Tech, National Institute of Technology

Karnataka, India

Chair of Advisory Committee: Dr. Annapareddy Narasimha Reddy

Recent Botnets such as Conficker, Kraken and Torpig have used DNS based

“domain fluxing” for command-and-control, where each Bot queries for existence of a

series of domain names and the owner has to register only one such domain name. In

this report, we develop a methodology to detect such “domain fluxes” in DNS traffic

by looking for patterns inherent to domain names that are generated algorithmically,

in contrast to those generated by humans. In particular, we look at distribution

of alphanumeric characters as well as bigrams in all domains that are mapped to

the same set of IP-addresses. We present and compare the performance of several

distance metrics, including KL-distance and Edit distance. We train by using a good

data set of domains obtained via a crawl of domains mapped to all IPv4 address space

and modeling bad data sets based on behaviors seen so far and expected. We also

apply our methodology to packet traces collected at two Tier-1 ISPs and show we can

automatically detect domain fluxing as used by Conficker botnet with minimal false

positives. We are also able to detect new botnets and other malicious networks using

our method.
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CHAPTER I

INTRODUCTION

Botnets are posing a major security threat to most of the computers over the internet.

They are the major source of attacks like distributed denial of service attacks, phish-

ing, identity theft and spam. The botnets use IRC (Internet Relay Chat), HTTP

and Peer to Peer protocols as a command and control channel to infect the bots.

The botnets operate in a centralized manner where there is a centralized machine

which controls all the bots (zombie machines). The centralized machine is called the

Command and Control (C&C) server which controls the zombie infected machines

called the bots. These C&C servers use custom protocols to communicate and convey

information to the bots. The bots contact the servers on a regular basis to receive

updates from the C&C servers, by this all the bots would perform the same operation

at a given time. These C&C servers use bots to launch a coordinated group attack of

spreading malware, sending spam or launching a denial of service attack. The botnets

frequently change their signatures and the way they contact the C&C servers. The

signature of a C&C protocol would correspond to the interval of contact between the

C&C server and the bots, the pattern in which the bots would contact different C&C

servers etc. Most of the packets involved in the communication are encrypted and a

few bits maybe inserted in the middle of the fields to mislead the detection systems.

Recently botnets have started using the Peer to Peer model for communication where

every machine acts as a controller; it becomes very difficult for the detector to track

The journal model is IEEE/ACM Transactions on Networking.
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the activities of the botnet.

Now a days the C&C protocol runs over HTTP to evade detection. HTTP is a

very common protocol which is not blocked by most of the machines on the internet.

The detection with other protocols would be easier compared to HTTP. The bots

would contact the C&C server by querying a domain name. This domain name has

to be changed with time else the domain name would be blacklisted by the DNS

blacklists and the bots would not be able to establish the C&C channel. To overcome

this problem of blacklisting, the bot groups would need to change their domain names

on a regular basis. Most of the general/regularly used domain names would very likely

be registered. It is also very likely that most of the regular english dictionary names

would already be registered. To overcome these problems the C&C servers not being

able to register standard english dictionary domain names, they resort to generating

random domain names. The C&C servers generate domain names using a random

name generator and they register a few of these randomly generated domain names.

The bot and the C&C server would generate the same domain names since they would

have the same domain generation algorithm with the same seed. The bot would query

all the domain names generated by the random name generator and would successfully

contact the C&C server on the domain name/names registered by the C&C server.

Recent botnets such as Conficker, Kraken and Torpig have brought in vogue a

new method for botnet operators to control their bots: DNS “domain fluxing”. In

this method, each bot algorithmically generates a large set of domain names and

queries each of them until one of them is resolved and then the bot contacts the

corresponding IP-address obtained that is typically used to host the command-and-

control (C&C) server. Besides for command-and-control, spammers also routinely

generate random domain names in order to avoid detection. For instance, spammers

advertise randomly generated domain names in their spam emails to avoid detection
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by regular expression based domain blacklists that maintain signatures for recently

‘spamvertised’ domain names. This is done to evade domain blacklists i.e., blacklists

of bad domain names that are hosting malware, spyware, etc.

This is in contrast to the more common practice of DNS “IP fast-fluxing” where

one domain name is mapped to a changing set of IP-addresses [1]. If a combination of

the two happen, then this would be even more difficult to detect. To detect Conficker’s

domain generation algorithm, scientists had to reverse engineer the domain generation

algorithm, something definitely not scalable for similar attacks in the future. We

design techniques to show how DNS domain fast fluxing can be automatically detected

without having to reverse engineer the domain generation algorithm itself.

The botnets that have used random domain name generation vary widely in the

random word generation algorithm as well as the way it is seeded. For instance,

Conficker-A [2] bots generate 250 domains every three hours while using the current

date and time at UTC as the seed, which in turn is obtained by sending empty HTTP

GET queries to a few legitimate sites such as google.com, baidu.com, answers.com,

etc. This way, all bots would generate the same domain names every day. In order

to make it harder for a security vendor to pre-register the domain names, the next

version, Conficker-C [3] increased the number of randomly generated domain names

per bot to 50K. Torpig [4], [5] bots employ an interesting trick where the seed for

the random string generator is based on one of the most popular trending topics in

Twitter. Kraken employs a much more sophisticated random word generator and con-

structs English-language alike words with properly matched vowels and consonants.

Moreover, the randomly generated word is combined with a suffix chosen randomly

from a pool of common English nouns, verbs, adjective and adverb suffixes, such as

-able, -dom, -hood, -ment, -ship, or -ly. Storm botnet uses english words with random

suffices as domain names. For example Conficker A uses a domain name generator
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250 domains every 3 hours. Their domain names are 5-11 characters long and the

randomization function they use is the date. Conficker B generates 200 domain names

every 2 hours and a different seed used for the randomization function. The set of

the 200 domain names are different. Conficker C generates 50000 domain names, so

the generation of domain names gets more complex.

From the point of view of botnet owner, the economics work out quite well.

They only have to register one or a few domains out of the several domains that each

bot would query every day. Whereas, security vendors would have to pre-register

all the domains that a bot queries every day, even before the botnet owner registers

them. In all the cases above, the security vendors had to reverse engineer the bot

executable to derive the exact algorithm being used for generating domain names.

In some cases, their algorithm would predict domains successfully until the botnet

owner would patch all his bots with a repurposed executable with a different domain

generation algorithm [4].

We argue that reverse engineering of botnet executables is resource- and time-

intensive and precious time may be lost before the domain generation algorithm is

cracked and consequently before such domain name queries generated by bots are

detected. In this regards, we raise the following question: can we detect algorith-

mically generated domain names while monitoring DNS traffic even when a reverse

engineered domain generation algorithm may not be available?

Hence, we propose a methodology that analyzes DNS traffic to detect if and

when domain names are being generated algorithmically as a line of first defense. In

this regards, our proposed methodology can point to the presence of bots within a

network and the network administrator can disconnect bots from their C&C server

by filtering out DNS queries to such algorithmically generated domain names.

Our proposed methodology is based on the following observation: current botnets



5

do not use well formed and pronounceable language words since the likelihood that

such a word is already registered at a domain registrar is very high; which could be

self-defeating as the botnet owner would then not be able to control his bots. In

turn this means that such algorithmically generated domain names can be expected

to exhibit characteristics vastly different from legitimate domain names. Hence, we

develop metrics using techniques from signal detection theory and statistical learning

which can detect algorithmically generated domain names that may be generated via

a myriad of techniques:

1. Those generated via pseudo-random string generation algorithms as well as

2. Dictionary-based generators, for instance the one used by Kraken[6], [7], [8] as

well as a publicly available tool, Kwyjibo [9] which can generate words that are

pronounceable yet not in the english dictionary.

Our method of detection comprises of two parts. First, we propose several ways to

group together DNS queries:

1. Either by the Top Level Domain (TLD) they all correspond to or;

2. The IP-address that they are mapped to or;

3. the connected component that they belong to, as determined via connected

component analysis of the IP-domain bipartite graph.

Second, for each such group, we compute metrics that characterize the distri-

bution of the alphanumeric characters or bigrams (two consecutive alphanumeric

characters) within the set of domain names.

Our contribution is a methodology for detecting algorithmically generated strings

as used in URLs for the purpose of either command-and-control of Botnets or for
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hosting spammed products, e.g. sites which peddle products that are advertised via

spam. Our methodology is based on the observation that to generate strings algorith-

mically, current botnets use simple pseudo-random generators which may not preserve

the distribution of alphabets or bigrams (two consecutive alphabets) as usually occur

in legitimate domain name strings. In this regards, we propose several metrics to

classify a set of domain names as legitimate or malicious - by that are based on the

distribution of alphanumeric characters between legitimate domains and malicious

ones. In particular, we propose metrics that are based on the

1. Information entropy of the distribution of alphanumerics (unigrams and bi-

grams) within a group of domains;

2. Edit-distance which measures the number of character changes needed to con-

vert one domain name to another.

We apply our methodology to a variety of data sets. First, we obtain a set of

legitimate domain names via reverse DNS crawl of the entire IPv4 address space.

Next, we obtain a set of malicious domain names as generated by Conficker, Kraken

and Torpig as well as model a much more sophisticated domain name generation algo-

rithm: Kwyjibo [9]. Finally, we apply our methodology to one day of network traffic

from two Tier-1 ISPs from Asia and Brazil and show how we can detect Conficker as

well as a botnet hitherto unknown, which we call Mjuyh (details in Chapter V).

Our extensive experiments allow us to characterize the effectiveness of each met-

ric in detecting algorithmically generated domain names in different attack scenarios.

We model different attack intensities as number of domain names that an algorithm

generates. For instance, in the extreme scenario that a botnet generates 50 domains

mapped to the same TLD, we show that KL-divergence over unigrams achieves 100%

detection accuracy albeit at 15% false positive rate (legitimate domain groups clas-
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sified as algorithmic). We show how our detection improves significantly with much

lower false positives as the number of words generated per TLD increases, e.g., when

200 domains are generated per TLD, then Edit distance achieves 100% detection

accuracy with 8% false positives and when 500 domains are generated per TLD.

Finally, our methodology of grouping together domains via connected compo-

nents allows us to detect not only “domain fluxing” but also if it was used in combi-

nation with “IP fluxing”. Moreover, computing the metrics over components yields

better and faster detection than other grouping methods. Intuitively, even if botnets

were to generate random words and combine them with multiple TLDs in order to

spread the domain names thus generated (potentially to evade detection), as long

as they map these domains such that at least one IP-address is shared in common,

then they are revealing a group structure that can be exploited by our methodology

for quick detection. We show that per-component analysis detects 26.32% more IP

addresses than using per-IP analysis and 16.13% more hostnames than using per-

domain analysis when we applied our methodology to detect Conficker in a Tier-1

ISP trace.

Finally, we note that detecting malicious activity in a network by analyzing DNS

traffic serves the following additional benefits:

1. We need to analyze a much smaller amount of traffic, for example, for the ISP

trace we analyze in our work here, the DNS traffic volume is 0.35% smaller, 237

MB compared to 66 GB for the entire trace;

2. Works even if the rest of the traffic that is sent by a bot is encrypted, which

frequently occurs since after determining the C&C server to communicate with,

the bot may thereafter use HTTPS for further communication.

The rest of this thesis is organized as follows. In Chapter III we present our
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detection methodology and introduce the metrics we have developed. In Chapter IV

we present our connected component algorithm. In Chapter V we present results

with the component analysis. In Chapter II we compare our work against related

literature and in Chapter VII we conclude.

The work has been done in collaboration with Sandeep Yadav (Phd student

working under the guidance of Dr. A.L.Narasimha Reddy, Texas A & M University).

The code and the Per-IP, Per-Domain analysis for the metrics as shown in Chapter

III have been developed by Sandeep. Extraction and analysis of components and

application of these metrics on the components to detect other malicious components

in the ISP trace has been the major part of my work. This work has been submitted

to the Internet Measurement Conference, 2010 [10] and is in review.
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CHAPTER II

RELATED WORK

Characteristics, such as IP addresses, whois records and lexical features of phishing

and non-phishing URLs have been analyzed by McGrath and Gupta [11]. They

observed that the different URLs exhibited different alphabet distributions. Our work

builds on this earlier work and develops techniques for identifying domains employing

algorithmically generated names, potentially for “domain fluxing”. Ma, et al [12],

employ statistical learning techniques based on lexical features (length of domain

names, host names, number of dots in the URL etc.) and other features of URLs to

automatically determine if a URL is malicious, i.e., used for phishing or advertising

spam. While they classify each URL independently, our work is focused on classifying

a group of URLs as algorithmically generated or not, solely by making use of the

set of alphanumeric characters used. In addition, we experimentally compare against

their lexical features in Chapter V and show that our alphanumeric distribution based

features can detect algorithmically generated domain names with lower false positives

than lexical features. Overall, we consider our work as complimentary and synergistic

to the approach in [12]. Our work employs similar techniques in combination with

an analysis of DNS traffic to determine the malicious nature of domains.They [12]

have multiple lexical features like the number of dots in the URL, the length of the

domain name etc. Here the training database needs to be very good for an accurate

prediction.

With reference to the practice of “IP fast fluxing”, e.g., where the botnet owner

constantly keeps changing the IP-addresses mapped to a C&C server, [1] implements
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a detection mechanism based on passive DNS traffic analysis. In this work IP fast

fluxing is easily detected but the domain fluxing problem is not directly addressed.

So not all the botnet groups can be detected by this model. In our work, we present

a methodology to detect cases where botnet owners may use a combination of both

domain fluxing with IP fluxing, by having bots query a series of domain names and at

the same time map a few of those domain names to an evolving set of IP-addresses.

Also earlier papers [13], [14] have analyzed the inner-working of IP fast flux networks

for hiding spam and scam infrastructure. Here the bots in the same botnet exhibit

similar characteristics in terms of C&C communication and similar malicious activi-

ties. This assumption also holds for sub-botnets where a big botnet performs many

different malicious activities. With regards to botnet detection, [15], [16] perform

correlation of network activity in time and space at campus network edges. Our work

does not require to consider the complete network traffic as these authors and we

consider only the DNS traffic. Thereby we get a considerable reduction in both the

length of the trace to be analyzed and the complexity of the operation. Xie et al

in [17] focus on detecting spamming botnets by developing regular expression based

signatures from a dataset of spam URLs. This work is similar to our work, here the

model would be trained to detect a particular signature. In this work, a training for

each particular signature would be required to detect a given signature whereas our

work is generic.

We find that graph analysis of IP addresses and domain names embedded in DNS

queries and replies reveal interesting macro relationships between different entities and

enable identification of bot networks (Conficker) that seemed to span many domains

and TLDs. With reference to graph based analysis, [18] utilizes rapid changes in

user-user graphs structure to detect botnet accounts. They extract the relationships

and correlations among botnet activities by constructing large user-user graphs and
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then looking for strongly connected components.

Statistical and learning techniques have been employed by various studies for

prediction [19], [20], [21]. Spam filtering [19] is discussed using adaptive statistical

data compression models. New features in the payload are extracted [20] feature

clustering for text classification. The automated abuse of chat programs [21] by the

chat bots are tackled. All the statistical learning techniques [19], [20], [21] would

detect the bot network it has been trained to detect. These techniques would require

additional training to detect any new bot network. However our model would not

require any additional training for a new bot network. We employed results from

detection theory in designing our strategies for classification [22], [23].

Several studies have looked at understanding and reverse-engineering the inner

workings of botnets [6], [7], [8], [24], [4], [25], [26]. Botlab has carried out an extensive

analysis of several bot networks through active participation [27] and provided us with

many example datasets for malicious domains. The authors [27] analyze spam-based

botnets where they collect the spam based data from all the botnets and they later

use this data to predict many botnets like Storm, Conficker, Kraken, Mega-D.
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CHAPTER III

DETECTION METRICS

In this Chapter, we present our detection methodology that is based on computing

the distribution of alphanumeric characters for groups of domains. First, we moti-

vate our metrics by showing how algorithmically generated domain names differ from

legitimate ones in terms of distribution of alphanumeric characters. Next, we present

our two metrics, namely Kullback-Leibler (KL) distance and Edit distance. Finally,

in Section IV we present the methodology to group domain names.

3.1 Motivation

Our detection methodology is based on the observation that algorithmically gener-

ated domains differ significantly from legitimate (human) generated ones in terms of

the distribution of alphanumeric characters. Figure 1 shows the distribution of al-

phanumeric characters, defined as the set of English alphabets (a-z) and digits (0-9)

for the legitimate domains and the Figure 2 shows the distribution for the malicious

domains1.

The explanation of the data sets used is given below:

1. Non-malicious ISP Dataset: We use network traffic trace collected from

across 100+ router links at a Tier-1 ISP in Asia. The trace is one day long and

provides details of DNS requests and corresponding replies. There are about

270,000 DNS name server replies.

1Even though domain names may contain characters such as ‘-’, we currently limit
our study to alphanumeric characters only.
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2. Non-malicious DNS Dataset: We performed a reverse DNS crawl of the

entire IPv4 address space and then filtered out the legitimate domain names to

obtain a list of domain names and their corresponding IP-addresses. We further

divided this data set in to several parts, each comprising of domains which had

500, 200, 100 and 50 sub-domains.

3. Malicious datasets: We obtained the list of domain names that were known

to have been generated by recent Botnets: Conficker [2], [3], Torpig [4] and

Kraken [6], [7]. As described earlier in the Introduction, Kraken exhibits the

most sophisticated domain generator by carefully matching the frequency of

occurrence of vowels and consonants as well as concatenating the resulting word

with common suffixes in the end such as -able, -dom, etc.

4. Kwyjibo: We model a much more sophisticated algorithmic domain name gen-

eration algorithm by using a publicly available tool, Kwyjibo [9] which generates

domain names that are pronounceable yet not in the English language dictio-

nary and hence much more likely to be available for registration at a domain

registrar. The algorithm uses a syllable generator, where they first learn the

frequency of one syllable following another in words in English dictionary and

then automatically generate pronounceable words by modeling it as a Markov

process.

Later we derive the following points:

1. First, note that both the non-malicious data sets exhibit a non-uniform fre-

quency distribution, e.g., letters ‘m’ and ‘o’ appear most frequently in the non-

malicious ISP data set whereas the letter ‘s’ appears most frequently in the

non-malicious DNS data set.
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2. Even the most sophisticated algorithmic domain generator seen in the wild for

Kraken botnet has a fairly uniform distribution, albeit with higher frequencies

at the vowels: ‘a’, ‘e’ and ‘i’.

3. If botnets of future were to evolve and construct words that are pronounceable

yet not in the dictionary, then they would not exhibit a uniform distribution

as expected. For instance, Kwyjibo exhibits higher frequencies at alphabets,

‘e’, ‘g’, ‘i’, ‘l’, ‘n’, etc. In this regards, techniques that are based on only the

distribution of unigrams (single alphanumeric characters) may not be sufficient,

as we will show through the rest of this section.
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The terminology used in this and the following Chapters is as follows. For a

hostname such as physics.university.edu, we refer to university as the first-level sub-

domain, edu as the top-level domain, and university.edu as the first-level domain.

Similarly, physics.university.edu is referred to as the second-level domain and physics

is the second-level sub-domain.

3.2 Metrics for anomaly detection

The K-L(Kullback-Leibler) divergence metric is a non-symmetric measure of ”dis-

tance“ between two probability distributions. The divergence (or distance) between

two discretized distributions P and Q is given by:
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DKL(P ||Q) =
∑n

i=1 P (i)log P (i)
Q(i)

.

where n is the number of possible values for a discrete random variable. The

probability distribution P represents the test distribution and the distribution Q

represents the base distribution from which the metric is computed.

Since the K-L measure is asymmetric, we use a symmetric form of the metric,

which helps us deal with the possibility of singular probabilities in either distribution.

The modified K-L metric is computed using the formula:

Dsym(PQ) = 1
2
(DKL(P ||Q) +DKL(Q||P )).

Given a test distribution q computed for the domain to be tested, and non-

malicious and malicious probability distribution over the alphanumerics as g and b

respectively, we characterize the distribution as malicious or not via the following

optimal classifier. For the test distribution q to be classified as non-malicious, we

expect Dsym(qg) to be less than Dsym(qb). However, if Dsym(qg) is greater than

Dsym(qb), the distribution is classified as malicious.

3.2.1 Measuring K-L divergence with unigrams

The first metric we design measures the KL-divergence of unigrams by considering

all domain names that belong to the same group, e.g. all domains that map to the

same IP-address or those that belong to the same top-level domain. We postpone

discussion of groups to Section IV. Given a group of domains for which we want

to establish whether they were generated algorithmically or not, we first compute

the distribution of alphanumeric characters to obtain the test distribution. Next, we

compute the KL-divergence with a good distribution obtained from the non-malicious

data sets (ISP or DNS crawl) and a malicious distribution obtained by modeling a

botnet that generates alphanumerics uniformly. As expected, a simple unigram based
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technique may not suffice, especially to detect Kraken or Kwyjibo generated domains.

Hence, we consider bigrams in our next metric.

3.2.2 Measuring K-L divergence with bigrams

A simple obfuscation technique that can be employed by algorithmically generated

malicious domain names could be to generate domain names by using the same dis-

tribution of alphanumerics as commonly seen for legitimate domains.
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Hence, in our next metric, we consider distribution of bigrams, i.e., two consecu-

tive characters. We argue that it would be harder for an algorithm to generate domain

names that exactly preserve a bigram distribution similar to legitimate domains since
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the algorithm would need to consider the previous character already generated while

generating the current character. The choices for the current character will be hence

more restrictive than when choosing characters based on unigram distributions.

Analogous to the case above, given a group of domains, we extract the set of

bigrams present in it to form a bigram distribution. Note that for the set of alphanu-

meric characters that we consider [a-z, 0-9], the total number of bigrams possible are

36x36, i.e., 1,296. The probability distribution of bigrams for both the legitimate

and malicious domains are shown in Figure 3. Our improved hypothesis now involves

validating a given test bigram distribution against the bigram distribution of non-

malicious and malicious sub-domains. We use the database of non-malicious words

to determine a non-malicious probability distribution. For a sample malicious distri-

bution, we generate bigrams randomly. Here as well, we use KL-divergence over the

bigram distribution to determine if a test distribution is malicious or legitimate.

3.2.3 Edit distance

Note that the two metrics described earlier, rely on definition of a “good” distribution

(KL-divergence). Hence, we define a third metric, Edit distance, which classifies a

group of domains as malicious or legitimate by only looking at the domains within

the group, and is hence not reliant on definition of a good database or distribution.

The Edit distance between two strings represents an integral value identifying the

number of transformations required to transform one string to another. It is a sym-

metric measure and provides a measure of intra-domain entropy. The type of eligible

transformations are addition, deletion, and modification. For instance, to convert the

word cat to dog, the edit distance is 3 as it requires all three characters to be replaced.

With reference to determining anomalous domains, we expect that all sub-domains

(or hostnames) which are randomized, will, on an average, have higher edit distance
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value. We use the Levenshtein edit distance dynamic algorithm for determining the

edit distance , as shown in algorithm in 1 [28].

Algorithm 1 Dynamic programming algorithm for finding the edit distance
EditDist(s1,s2)

1. int m[i,j ] = 0

2. for i ← 1 to |s1|

3. do m[i,0] = i

4. for j ← 1 to |s2|

5. do m[0,j ] = j

6. for i ← 1 to |s1|

7. do for j ← 1 to |s2|

8. do m[i,j ] = min{m[[i-1,j -1] + if(s1[i ] = s2[j ]) then 0 else 1 fi,

9. m[i-1,j ] + 1

10. m[i,j -1] + 1}

11. return m[|s1|,|s2|]
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CHAPTER IV

GROUPING DOMAIN NAMES

In this Chapter, we present ways by which we group together domain names in order

to compute metrics that were defined in Chapter III earlier.

4.1 Per-domain analysis

Note that botnets such as Conficker used several first-level domain names to generate

algorithmic domain names, e.g., .ws, .info, .org. Hence, one way by which we group

together domain names is via the first-level domain name. The intention is that if we

begin seeing several algorithmically generated domain names being queried such that

all of them correspond to the same first-level domain, then this may be reflective of a

few favorite domains being exploited. Hence for all domains, e.g., abc.examplesite.org,

def.examplesite.org, etc., that have the same first-level domain name examplesite.org,

we compute all the metrics over the alphanumeric characters and bigrams. Since

domain fluxing involves a botnet generating a large number of domain names, we

consider only domains which contain a sufficient number of second-level sub-domains,

e.g., 50, 100, 200 and 500 sub-domains.

4.2 Per-IP analysis

As a second method of grouping, we consider all domains that are mapped to the

same IP-address. This would be reflective of a scenario where a botnet has registered

several of the algorithmic domain names to the same IP-address of a command-and-

control server. Determining if an IP address is mapped to several such malicious
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domains is useful as such an IP-address or its corresponding prefix can be quickly

blacklisted in order to sever the traffic between a command-and-control server and its

bots. We use the dataset from a Tier-1 ISP to determine all IP-addresses which have

multiple hostnames mapped to it. For a large number of hostnames representing one

IP address, we explore the above described metrics, and thus identify whether the IP

address is malicious or not.

4.3 Component analysis

A few botnets have taken the idea of domain fluxing further and generate names

that span multiple TLDs, e.g., Conficker-C generates domain names in 110 TLDs.

At the same time domain fluxing can be combined with another technique, namely

“IP fluxing” [1] where each domain name is mapped to an ever changing set of IP-

addresses in an attempt to evade IP blacklists. Indeed, a combination of the two

is even harder to detect. Hence, we propose the third method for grouping domain

names in to connected components.

Connected 
Component
Extraction Extraction

Training 

Prediction
&

Feature 
Filter F1 

IP Fan  

Domain Fan  

Multi 

Component 

Fig. 4. Connected component analysis flowchart.
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The analysis of components is done over five stages as shown in Figure 4. Each

of the five stages are explained in detail below:

4.3.1 Filter F1

We use this filter to reduce the traffic into the stage 2 onwards in Figure 4 without

losing much information. Most of the botnet groups and other groups involved in

malicious activity would either return multiple hosting servers as a reply for a domain

name or multiple domains are hosted on a single server. After experimentation we

use a threshold of 5 since we do not lose much useful information and at the same

time we also get a considerable reduction in the trace size. The input to this trace

is the complete set of (IP address, domain name) tuples from all the DNS replies for

”Name Service” present in the trace. The following cases are the two cases of interest

to us:

1. A given domain name returning more than 5 IP addresses. This will result in

two component classes namely Multi component and Domain Fans which are

explained in detail below.

2. A given IP address is mapped to more than 5 domain names. This constraint is

mainly used for the IP fan component class which is explained in detail below.

4.3.2 Connected component extraction

The second stage splits the traffic into three different categories each of which analyzed

separately. We use a connected component extraction of the bi-partite graph of IP-

addresses and domain names. By definition a connected component is isolated and

will not have a connecting edge to any other component. The extraction of connected

components is explained in detail below: We construct a bipartite graph G with
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IP-addresses on one side and domain names on the other. An edge is constructed

between a domain name and an IP-address if that IP-address was ever returned as

one of the responses in a DNS query. When multiple IP addresses are returned, we

draw edges between all the returned IP addresses and the queried host name.

First, we determine the connected components of the bipartite graph G, where a

connected component is defined as one which does not have any edges with any other

components. Next, we compute the various metrics (KL-divergence for unigrams and

bigrams, Edit distance) for each component by considering all the domain names

within a component.

The number of connected components in the graph G is given by the number of

trivial eigen vectors of the graph Laplacian L(G) = D −W where the matrices D

and W are as defined below.

The component analysis analyzes the connected components of this graph. Each

connected component of this graph reveals the interconnected nature of the IP ad-

dresses and the domain names these addresses support. By definition, a connected

component is not connected to another connected component and hence has no com-

mon IP address or a common domain name. Let ip = I be the total number of

IP-addresses that are present after the F1 stage. and let d = D be total number of

domain names that are present after the F1 stage. The vertices of graph G comprise

of all IP-addresses and domains, for a total of (I + D) vertices. First, define the

weighted adjacency matrix of the graph G as the matrix W = (wij) where i and j

are indices to the set of IP-addresses and domain names respectively. The degree

of a vertex vi is defined as di =
∑n

j=1wij. Note that, in fact, this sum only runs

over all vertices adjacent to vi, as for all other vertices vj the weight wij is 0. The

degree matrix D is defined as the diagonal matrix with the degrees d1, · · · , dn on the

diagonal. Denote A as the IP-address by domain name matrix of dimension I × D
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with values A(i, j) = 1 or = 0 if the IP-address was mapped to that domain name.

Eigen value decomposition of the Graph Laplacian allows us to compute the number

of connected components quite easily as the number of trivial eigen vectors (eigen

value = 0). While the corresponding vectors U and V provide the IP-addresses and

domain names that are part of the corresponding connected component. The algo-

rithm for the connected component extraction is as shown in Algorithm 4.3.2. We

perform a DFS on each node to search for an existing link to another vertex and

recurse through all the nodes to separate the connected components. At the end of

this algorithm we would get a matrix comprising sub-matrices of all the connected

components present in the input set of vertices.

IP addresses Domains IP addresses

Multi Component IP Fan Domain Fan

DomainsIP address Domain

Fig. 5. Different component classes.

4.3.3 Component separation

Component extraction separates the IP-domain graph into components which can be

classified in to different classes as shown in Figure 5. Each of the classes are explained

in detail below:
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Algorithm 2 Algorithm to extract the connected components

procedure ConnectedCompExtraction(A, i, j)

1: index = 0 {// DFS node number counter}

2: S = empty {// An empty stack of nodes}

3: for all v in V do

4: if v.index is undefined then

5: { // Start a DFS at each node}

6: tarjan(v) { // we haven’t visited yet}

7: end if

8: end for

9: procedure tarjan(v)

10: v.index = index {// Set the depth index for v}

11: v.lowlink = index

12: index = index + 1

13: S.push(v) {// Push v on the stack}

14: for all (v, v’) in E do

15: {// Consider successors of v}

16: if v’ index is undefined then

17: { // Was successor v’ visited?}

18: tarjan(v’) { // Recurse}

19: v.lowlink = min(v.lowlink, v’.lowlink)

20: else if v’ is in S then

21: { // Was successor v’ in stack S?}

22: v.lowlink = min(v.lowlink, v’.index )

23: end if

24: end for
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1. IP fan: these have one IP-address which is mapped to several domain names.

Besides the case where one IP-address is mapped to several algorithmic domains,

there are several legitimate scenarios possible. First, this class could include

domain hosting services where one IP-address is used to provide hosting to

several domains, e.g. Google Sites, etc. Other examples could be mail relay

service where one mail server is used to provide mail relay for several MX

domains. Another example could be when domain registrars provide domain

parking services, i.e., someone can purchase a domain name while asking the

registrar to host it temporarily.

2. Domain fan: these consist of one domain name connected to multiple IPs. This

class will contain components belonging to the legitimate content providers

such as Google, Yahoo!, etc. Since we do not have multiple domain names

belonging to a given class, we would build a component based on the second

level domain names. If we wait long enough then the legitimate components in

this class may find an edge to their corresponding legitimate components in the

multi-component class. All the domain names and IP addresses belonging to

a particular legitimate component will likely converge into one big component

in the multi-component class. To analyze the components in this class, we

collapse all the domain names based on the second level domain name and the

Top Level Domain(TLD). We collect the features for each such second level

domain name and TLD, i.e. we would compute the average of the features

for all the domain names belonging to such a second level domain name and

TLD. For example aaa.xyz.com, bbb.xyz.com, ccc.xyz.com would be the domain

names for the second level domain name of xyz.com. At times a few of the IP

addresses would end up in this component class because of a shortage in the
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analysis period, given enough time ideally all the IP addresses (hosting server)

of a single business unit would end up in a single component. Due to shortage

in analysis period, a few of such split up components would be present in this

component class.

3. Multi component: these are components that have multiple IP addresses and

multiple domain names, e.g., Content Distribution Networks (CDNs) such as

Akamai. This is the class which contains most part of information in the trace.

Various parameters not directly related only to the domain names can be com-

puted only in this component class. A few such examples are IP growth ratio,

IP degree (average number of IPs hosting a given domain name), domain de-

gree (average number of domain names hosted in an IP address) etc. A lot of

legitimate service providers like Google, Yahoo etc. would also be present in

this component class. A few domain names of these legitimate service providers

would be hosted on multiple servers around the world. This distribution of

contenet over multiple servers is mainly done for load balancing and also for

content distribution.

Most of the botnets involve in both “IP fluxing” and “Domain fluxing”. These

botnet groups would register a new IP address every few days, this would result

in “IP fluxing” and since these botnet groups are also known to register new

domain names every few hours this would register in “Domain fluxing”. We

would need to detect such components which involve in both “IP fluxing” and

“Domain fluxing”.
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4.3.4 Feature extraction

All the features/metrics explained in Section III are computed for all the components

extracted in Stage 2 as shown in Figure 4. To compute the feature value for each of

the components extracted, we would compute the metrics individually for each of the

domain names belonging to the component. Then we would take the average of all

the domain names in the component to compute the feature value of the component.

4.3.5 Training and prediction

Note that the problem of classifying a component as malicious (algorithmically gen-

erated) or legitimate can be formulated in a supervised learning setting as a linear

regression or classification problem. In particular, we label the components and train

a L1-regularized Linear Regression over 10 hours out of the one day of the ISP trace

we have access to. We first label all domains within the components found in the

training data set by querying against domain reputation sites such as McAfee Site

Advisor [29] and Web of Trust [30] as well as by searching for the URLs on search-

engines [31]. Next, we label a component as good or bad depending on a simple

majority count, i.e., if more than 50% of domains in a component are classified as

malicious (adware, malware, spyware, etc.) by any of the reputation engines, then

we label that component as malicious.

Define the set of features as F which includes the following metrics computed

for each component: KL-distance on unigrams, KL-distance on bigrams and Edit

distance. Also define the set of Training examples as T and its size in terms of

number of components as |T |. Further, define the output value for each component

yi = 1 if it was labeled malicious or = 0 if legitimate. We model the output value

yi for any component i ∈ T as a linear weighted sum of the values attained by each
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feature where the weights are given by βj for each feature j ∈ F : yi =
∑

j∈F βjxj +β0

In particular, we use the LASSO, also known as L1-regularized Linear Regression

[32], where an additional constraint on each feature allows us to obtain a model with

lower test prediction errors than the non-regularized linear regression since some vari-

ables can be adaptively shrunk towards lower values. The value of the regularization

parameter λ ∈ [0-1] that provides the minimum training error (equation below) and

then use that λ value in our tests:

argmin
β

|T |∑
i=1

(yi − β0 −
∑
j∈F

βjxj)
2 + λ

∑
j∈F

|βj|. (4.1)

This value of regularization parameter λ is used during the prediction stage. The

feature values of the all the componenents to be predicted is given as the input value

to the linear regression model. If the output value yi of this regression model for the

test component is greater than the threshold value chosen, then this component is

marked as suspicious.

The metrics that we use for prediction namely K-L distance of unigrams and

bigrams and Edit Distance would require a minimum of a few domain names to

predict with a higher accuracy as described in the Chapter III. During prediction,

we would consider only components which have more number of domain names than

the threshold we find experimentally. To verify the exact nature of the component

we check the various domain names in the component against existing blacklisting

services and we also manually check for each of the domain names in the internet.
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CHAPTER V

RESULTS

In this Chapter, we present results of employing various metrics across different

groups, as described in Chapter III. We briefly describe the data set used for each

experiment.

5.1 Per-domain analysis

5.1.1 Data set

The analysis in this sub-section [33] is based only on the sub-domains belonging to

a domain. The non-malicious distribution g may be obtained from various sources.

For our analysis, we use a database of DNS PTR records corresponding to all IPv4

addresses. The database contains 659 first-level domains with at least 50 second-level

sub-domains, while there are 103 first-level domains with at least 500 second-level sub-

domains. From the database, we extract all first-level domains which have at least

50 second-level sub-domains. All second-level sub-domains corresponding to such

domains are used to generate the distribution g. For instance, a first-level domain

such as university.edu may have many second-level sub-domains such as physics, cse,

humanities etc. We use all such sub-domains that belong to trusted domains, for

determining g.

To generate a malicious base distribution b, we randomly generate as many char-

acters as present in the non-malicious distribution. We use sub-domains belonging to

well-known malware based domains identified by Botlab, and also a publicly available

webspam database as malicious domains [34] for verification using our metrics. Bot-
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lab provides us with various domains used by Kraken, Pushdo, Storm, MegaD, and

Srizbi. For per-domain analysis, the test words used are the second-level sub-domains.

Figure 1 shows how malicious/non-malicious distributions appear for the DNS

PTR dataset as well as the ISP dataset described in the following sections.

5.1.2 K-L divergence with unigram distribution

We measure the symmetrized K-L distance metric from the test domain to the

malicious/non-malicious alphabet distributions.

It is observed that with lower number of samples, the number of sub-domains

required for accurate detection corresponds to the latency of accurately classifying a

previously unseen domain. The results [10] seem to point out that a domain-fluxing

domain can be accurately characterized by the time it generates 500 names or less.

5.1.3 K-L divergence with bigram distribution

It is observed that a minimum of 200 to 500 sub-domains are required to yield good

results with minimal false positives. We note that the performance with unigram

distributions [10] is slightly better than using bigram distributions. This phenomena

is particularly evident for experiments using 50/100 sub-domains. The false positive

rates are seen to be slightly higher for bigram distributions compared to the unigram

distributions.

However, when botnets employ counter measures to our techniques, the bigram

distributions may provide better defense compared to unigram distributions as they

require more effort to match the good distribution (g).
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5.1.4 Edit distance of sub-domains

Figure 6 shows the performance using edit distance as the evaluation metric. The

area under the ROC is a measure of the goodness of the metric. We observe that

with 200 or 500 sub-domains, we cover a relatively greater area, implying that using

many sub-domains helps obtain accurate results. The detection rate for 50/100 test

words reaches 1 only for high false positive rates, indicating that a larger test word

set should be used. For 200/500 sub-domains, 100% detection rate is achieved at

false positive rates of less than 0.1%. It is observed with all the measures that we can

settle for a relatively low false positive rate with a good detection rate when we have

relatively high sub-domains like 200 to 500.
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5.2 Per-IP analysis

5.2.1 Data set

Here, we present the evaluation [33] of domain names that map to an IP address.

For analyzing the per-IP group, for all hostnames mapping to an IP-address, we use

the sub-domains except the top-level domain TLD as the test word. For instance, for

hostnames physics.university.edu and cse.university.edu mapping to an IP address,

say 6.6.6.6, we use physicsuniversity and cseuniversity as test words. However, we

only consider IP addresses with at least 50 hostnames mapping to it. We found 341

such IP addresses, of which 53 were found to be malicious, and 288 were considered

non-malicious. The data is obtained from DNS traces of a Tier-1 ISP in Asia.
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Many hostnames may map to the same IP address. Such a mapping holds for

botnets or other malicious entities utilizing a large set of hostnames mapping to fewer

C&C(Command and Control) servers. It may also be valid for legitimate internet

service such as for Content Delivery Networks (CDNs). We first classify the IPs

obtained into two classes of malicious and non-malicious IPs. The classification is

done based on manual checking, using blacklists, or publicly available Web of Trust

information [30]. We manually confirm the presence of Conficker based IP addresses

and domain names [3]. The ground truth thus obtained may be used to verify the

accuracy of classification. Figure 1 shows the distribution of non-malicious test words

and the randomized distribution is generated as described previously.

5.2.2 Results

We discuss the results of per-IP analysis below. For the sake of brevity, we present

results based on K-L distances of bigram distributions as shown in Figure 7. Summary

of results from other metrics is provided.

The ROC curve for K-L metric shows that bigram distribution as shown in

Figure 7 can be effective in accurately characterizing the domain names belonging

to different IP addresses. We observe a very clear separation between malicious and

non-malicious IPs with 500, and even with 200 test words. With a low false positive

rate of 1%, high detection rates of 90% or more obtained with 100 or more test words.

The bigram analysis was found to perform better than unigram distributions.

The per-IP bigram analysis performed better than per-domain bigram analysis. We

believe that the bigrams obtained from the ISP dataset from Asia provide a compre-

hensive non-malicious distribution. The first-level sub-domains also assist in discard-

ing false anomalies, and therefore providing better performance.

Edit distance with domains mapping to an IP, results in a good performance
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in general. The experiments with 100 test words results in a low false positive rate

of about 10% for a 100% detection rate. However for using only 50 test words, the

detection rate reaches about 80% for a high false positive rate of 20%. Thus, we

conclude that for per-IP based analysis, the JI measure performs relatively better

than previous measures applied to this group. However, as highlighted in section VI,

the time taken to compute edit distance is large.

5.3 Component analysis results

5.3.1 Methodology

We discuss the results from applying connected component analysis to the ISP trace.

We classify the connected components in to three classes: IP fans, Domain fans and

Many-to-many components, details of which are provided in Table I.

Next, we use a supervised learning framework where we train a L1-regularized

linear regression model (see Equation 4.1) on components labeled in a 10-hour trace

interval. For labeling the components during training, we used the information from

URL reputation services such as Web of Trust, McAfee Site Advisor and mark 128

components as good (these contain CDNs, mail service providers, large networks

such as Google) and we mark 1 component belonging to the Conficker botnet as

malicious. For each component we compute the features of KL-divergence, Jaccard

Index measure and Edit distance. We train the regression model using glmnet tool

[32] in statistical package R, and obtain the value for the regularization parameter λ

as 1e− 4, that minimizes training error during the training phase. We then test the

model on the remaining portion of the one day long trace. In this regards, our goal is

to check if our regression model can not only detect Conficker botnet but whether it

can also detect other malicious domain groups during the testing phase over the trace.



36

Table I. Different types of classes

Type of class No. of

compo-

nents

No. of IP

addresses

No. of

domain

names

Types of components

found

Many-to-many 440 11K 35K Legitimate services

(Google, Yahoo), CDNs,

Cookie tracking, Mail

service, Conficker botnet

IP fans 1.6K 1.6K 44K Domain Parking, Adult

content, Blogs, small

websites

Domain fans 930 8.9K 9.3K CDNs (Akamai), Ebay,

Yahoo, Mjuyh botnet

We apply a constraint, requiring a minimum of 20 domain names per component to

predict with more confidence. During the testing stage, if a particular component is

flagged as suspicious then we check against Web of Trust [30], McAfee Site Advisor

[29] as well as via Whois queries, search engines, to ascertain the exact behavior of

the component.

5.3.2 Results

Detailed results for each of the component class are as shown in Table I and II. The

details of each of the groups of components extracted is given below later we explain
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Table II. Behavior of the type of component

Notation

TTL Time To Live

U.G. K.L. Divergence of Unigrams

B.G. K.L. Divergence of Bigrams

E.D. Edit Distance

Type of comp. TTL U.G. B.G. E.D.

CDN’s Around 100s 0.4 0.4 0.3

Mail servers Around 3 hrs 0.6 0.37 0.4

Botnet Less than 1 hr 0.9 1.5 0.9

Cookie tracking 15 minutes 0.2 0.2 0.4

Adult websites 1 hour 0.7 0.6 0.4

Large service

providers

30 min 0.4 0.4 0.3

the results from each of the component classes.

The characteristics of each such groups are as shown in Table II. The behavior

of each of these classes are explained below:

1. It can be observed that the CDN’s and large service providers like Google have

a very low value of TTL, this is done for load balancing. With a low value of

TTL, the DNS servers can return an updated set of hosting servers with time.

For example say the CDN’s provide service for both a news website like CNN

and a sports channel like Fox Sports on the same set of servers. During normal
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Table III. Detailed results for each class

Notation

U.G. K.L. Divergence of Unigrams

B.G. K.L. Divergence of Bigrams

E.D. Edit Distance

Type Multi component IP fans Domain fans

Feature U.G. B.G. E.D U.G. B.G. E.D U.G. B.G. E.D

Training Conficker component - -

Detected com-

ponents

10 1 3 - - 14 - - 1

Detected no. of

domain names

2229 1908 2082 - - 510 - - 121

False Positive

components

2 3 - - - 1 - - -

False Positive

no. of domain

names

99 12920 - - - 56 - - -
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traffic say both these services are hosted on the same set of servers. When the

traffic is high from one of the clients say during a football match when the traffic

is very high from the sports channel. To provide fair service to other clients like

say the news websites initially hosted with the sports websites, the fair server

allocator would allocate new servers to such low traffic clients. This way all the

clients subscribing to these CDNs would be given a fair service.

2. The mail servers would generally have a high TTL value since they would gener-

ally have a single server providing service to multiple clients. Their edit distance

value would be on the higher side since they provide service to a variety of end

user kind of clients who would not have any common part in the domain name.

3. It can be observed that the groups which use algorithmically generate domain

names has a very high value of KL-Divergence of unigrams and bigrams and

Edit Distance.

4. Cookie tracking websites would track the cookies and predict the advertisements

for a given user based on his browsing. Private websites would use the service

of these websites to suggest advertisements/products to such users.

5. Adult websites use a slightly longer TTL since they would not change their

servers frequently. Also their edit distance would be high since they would host

the same content under different domain names on the same server. This is

mainly done to attract more users.

The results from each of these component classes are described below:

1. Multi component: This is the biggest class which has most of the information in

the trace. There are a total of 442 components components in this component

class having a total of 11.1K IP addresses and 34.9K domain names as shown
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in Table I. The number of domain names in a component vary from 12.8K

(psmtp mail relays) to 2 (small networks). A few of the components present

in this component class are the CDN, large service providers like google, mail

providers, cookie tracking, botnet groups etc.

If we use Edit distance as the feature we correctly predict 3 components (Con-

ficker, 1 component with tricked names, 1 component hosting adult content).

There are no false positives with this feature. If we use KL-divergence with

bigrams as the feature for prediction only Conficker component is correctly

predicted along with 3 other false positives (Cloudfront, mail relay services).

These false positives can be eliminated using other features (such as TTL).

KL-Divergence with unigrams as a feature correctly predicts 10 components (1

Conficker, 1 malware/bot, 5 mis-spelt, 3 adult content). There are two false

positives(1 google, 1 news blogs). Each of these type of detected components

are explained in detail later in this section.

2. IP Fans: The number of domains in this class varies from 66 (domain parking)

to 5 (small enterprises and adult websites). If we use edit distance as the feature

15 components (630 domain names) are correctly predicted for domain parking

out of 1605 components with no false positives.

3. Domain Fans: In this class, we find 430 second level domains for which we

employ all the features. The number of domain names corresponding to these

second level domains varies from 121 (bot) to 1 (small networks). When we

use edit distance as the feature, there is only 1 component with a second level

domain which gets detected out of the present 430 second level domains. We do

not detect anything using alphabet entropy and bigram frequency in this class.

On applying our model to the rest of the trace, 29 components (out of a total of
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Table IV. Summary of interesting networks discovered through component analysis

Component Type No. of Com-

ponents

No. of do-

mains

No. of IPs

Conficker botnet 1 1.9K 19

Helldark botnet 1 28 5

Mjuyh botnet 1 121 1.2K

Misspelt Domains 5 215 17

Domain Parking 15 630 15

Adult content 4 349 13

3K components) are classified as malicious, and we find 27 of them to be malicious

after cross checking with external sources (Web of Trust, McAfee, etc.) while 2

components (99 domains) are false positives and comprise of Google and domains

belonging to news blogs. Note that here we use a broad definition of malicious domains

as those that could be used for any nefarious purposes on the web, i.e., we do not

necessarily restrict the definition to only include botnet domain generation algorithm.

Out of the 27 components that were classified as malicious, one of them corresponds

to the Conficker botnet, which is as expected since our training incorporated features

learnt from Conficker. We next provide details on the remaining 26 components that

were determined as malicious (see Table IV). Next, we explain the results of each of

the detected set of groups individually.

1. Mjuyh Botnet: The most interesting discovery from our component analysis is

that of another Botnet, which we call Mjuyh, since they use the domain name
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mjuyh.com (see Table V). The second level name is generated randomly and is

57 characters long. Each of the 121 domain names belonging to this bot network

return 10 different IP addresses on a DNS query for a total of 1.2K IP-addresses.

Also, in some replies, there are invalid IP addresses like 0.116.157.148. All the

10 IP addresses returned for a given domain name, belong to different network

prefixes. Furthermore, there is no intersection in the network prefixes between

the different domain names of the mjuyh bot. We strongly suspect that this is

case of “domain fluxing” along with “IP fast fluxing” going on, where each bot

generated a different randomized query which was resolved to a different set of

IP-addresses.

2. Helldark Trojan: We discovered a component containing 5 different second

level domains (a few sample domain names are as shown in Table V) The

component comprises of 28 different domain names which were all found to

be spreading multiple Trojans. One such Trojan spread by these domains is

Win32/Hamweq.CW that spreads via removable drives, such as USB memory

sticks. They also have an IRC-based backdoor, which may be used by a remote

attacker to order the affected machine to participate in Distributed Denial of

Service attacks, or to download and execute arbitrary files [35].

3. Mis-spelt component: There are about 5 components (comprising 220 domain

names) which used tricked (mis-spelt or slightly different spelling) names of

reputed domain names. For example, these components use domain names such

as uahoo.co.uk to trick users trying to visit yahoo.co.uk (since the alphabet ‘u’

is next to the alphabet ‘y’, they expect users to enter this domain name by

mistake). Dizneyland.com to trick users trying to visit Disneyland.com (which

replaces the alphabet ‘s’ with alphabet ‘z’). We still consider these components
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Table V. Domain names used by bots

Type of group Domain names

Conficker botnet

vddxnvzqjks.ws

gcvwknnxz.biz

joftvvtvmx.org

Mjuyh bot

935c4fe60462ea17126904272149-

-c258a35bfc3ed65528431555c03d.6.mjuyh.com

c2d026e07295e8f3fefa771a049b804-

-45c353bdd55c3d1342b823350.6.mjuyh.com

Helldark Trojan

may.helldark.biz

X0R.ircdevils.net

www.BALDMANPOWER.ORG

Domain Parking

realdealreport.com

ghostzilla.com

abolishthesenate.org

Legitimate Domains
dkz2f4f37vdc9.hkg1.cloudfront.net

ltvxid5qpnjfsxuwefrckbv0sb.Megavideo.com
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as malicious since they comprise of domains that exhibit alphanumeric features

different than normal.

4. Domain Parking: We found 15 components (630 domain names) that were being

used for domain parking, i.e., a practice where users register for a domain name

without actually using it, in which case the registrar’s IP-address is returned

as the DNS response. In these 15 components, one belongs to GoDaddy (66

domain names), 13 of them belong to Sedo domain parking (510 domain names)

and one component belongs to OpenDNS (57 domain names). Clearly these

components represent something out of the normal as there are many domains

with widely disparate algorithmic features clustered together on account of the

same IP-address they are mapped to.

5. Adult Content: We find four components that comprise of 349 domains primar-

ily used for hosting adult content sites. Clearly this matches the well known

fact, that in the world of adult site hosting, the same set of IP-addresses are

used to host a vast number of domains, each of which in turn may use very

different words in an attempt to drive traffic.

In addition, for comparison purposes, we used the lexical features of the domain

names such as the length of the domain names, number of dots and the length of the

second level domain name (xyz.com, for example) for training on the same ISP trace

instead of the KL-divergence and Edit distance measures used in our study. These

lexical features were found to be useful in an earlier study in identifying malicious

URLs [12]. The model trained on these lexical features correctly labeled four com-

ponents as malicious (Conficker bot network, three adult content components and

one component containing mis-spelt domain names) during the testing phase, but it

also resulted in 30 components which were legitimate as being labeled incorrectly;
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compare this against 27 components that were correctly classified as malicious and

two that were false positives on using our alphanumeric features.

We also test our model on an ISP Tier 1 trace from Brazil. This trace is about

20 hours long and is collected on a smaller scale as compared to the ISP trace from

Asia. This trace from Brazil was collected 15 days after the ISP trace from Asia was

collected. We use the same training set for the prediction model as we had used for

the ISP trace from Asia. In the prediction stage we successfully detect the Conficker

component with no false positives. We are not able to detect other components

because the length of the trace is smaller in size as compared to the other trace. The

Conficker component has 185 domain names and 10 IP addresses. 9 out of the 10 IP

addresses are common between this component and the Conficker component from

the ISP trace from Asia. So we could definitely say that the servers do not change

much with time. But out of the 185 domain names only 5 domains are common from

this component and the component from the ISP trace from Asia. This clearly shows

the domain fluxing in Conficker botnet.
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CHAPTER VI

DISCUSSION

6.1 Usefulness of component analysis

Conficker botnet, present in our ISP trace, employs domain fluxing across TLDs, that

became directly visible after IP-domain components were extracted and analyzed from

the trace. The component analysis allowed the application of our detection methods

across several different domains, which otherwise would have looked different from

each other. In addition, component analysis allowed us to detect Conficker domains

that would not have been detectable with our approach when applied to domain

names alone since some of these domains contained fewer than 50 names needed for

accurate analysis. Similarly, some of the IP addresses in the component hosted fewer

than 50 names and would not have been detected with the IP address based analysis

either. However, these domains will be included in the component analysis as long as

the component has altogether more than 50 names.

Let Dc be the number of hostnames and Ic be the number of IP addresses in the

component. If Dd, Id are the number of hostnames and corresponding IP addresses

detected through domain level analysis, we define domain level completeness ratios

as Dd/Dc and Id/Ic. Similarly, we can define the completeness ratios for IP-based

analysis as Di/Dc and Ii/Ic, where Di and Ii correspond to the total number of

hostnames and IP addresses of the conficker botnet detected by the IP-based analysis.

For the Conficker botnet, these completeness ratios for IP-based analysis were

73.68% for IP addresses and 98.56% for hostnames. This implies that we are able to

detect an additional 26.32% of IP addresses and a relatively small fraction of 1.44%
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of hostnames for those IP addresses as shown in Figure 8. The completeness ratios

for domain based analysis were found to be 100% for IP addresses and 83.87% for the

hostnames. Therefore, we do 16.13% better in terms of determining the hostnames

using the per-domain analysis. This shows that the component level analysis provided

extra value in analyzing the trace for malicious domains.

6.2 Complexity of various measures
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Fig. 9. CDF of sub-domain sizes for DNS PTR dataset.

Table 6.2 identifies the computational complexity for every metric, and for all

groups that we use. We observe that K-L metrics analyzing unigram and bigram

distributions can be computed fairly efficiently. However, for the JI measure, the
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size of the non-malicious database largely influences the time taken to compute the

measure. A good database size results in a higher accuracy, at the cost of increased

time taken for analysis. Similarly, edit distance takes longer for large word lengths,

and the number of test words. However, it is independent of any database, hence the

space requirements are smaller.

Table VI. Computational complexity

Notation

A Alphabet size

W Maximum word size

K Number of test words

K’ Number of test words in a component

SNM Number of words in non-malicious database

Group
K-L K-L

JI ED
unigram bigram

Per-domain O(KW + A) O(KW + A2) O(KW 2SNM) O(K2W 2)

Per-IP O(KW + A) O(KW + A2) O(KW 2SNM) O(K2W 2)

Component-based O(K’W + A) O(K’W + A2) O(K’W 2SNM) O(K ′2W 2)

We briefly describe how we determine the bounds as expressed in table 6.2 for

the per-domain group. For the K-L unigram analysis since we examine every char-

acter of every test word, the complexity is bounded by KW . We then compute, for

every character in the alphabet A, the divergence values. Therefore, we obtain the
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complexity as O(KW + A). Bigram distribution based K-L divergence is calculated

similarly except that the new alphabet size is A2. While calculating the Jaccard in-

dex, note that the number of bigrams obtained is O(W − 1). For each bigram, we

examine the queues pointing to words from the non-malicious database. Thus, for

each bigram, we examine O(WSg) bigrams. Since we do it for K test words, we obtain

O(KW 2Sg). For every test word used while obtaining the edit distance, we examine

it against the K - 1 test words. Therefore, the total complexity is simply O(K2W 2).

The expressions for per-IP and per-component groups are obtained analogously.

It is interesting to note that A is of the size 36 (0-9,a-z characters). K used in

our analysis varies as 50/100/200/500. However, the average value for K’ is higher in

comparison. The DNS PTR dataset considered for per-domain analysis has approxi-

mately 469,000 words used for training purposes. This helps us estimate Sg. For the

ISP dataset, Sg is of the order of 11522 words. An estimate of W for the DNS PTR

dataset is obtained from figure 9.
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CHAPTER VII

CONCLUSION

In this paper, we propose a methodology for detecting algorithmically generated do-

main names as used for “domain fluxing” by several recent Botnets. We propose

statistical measures such as Kullback-Leibler divergence and Levenshtein edit dis-

tance for classifying a group of domains as malicious (algorithmically generated) or

not. We propose to employ a macro levele relationship between domain names and

IP addresses obtained through a DNS graph for an analysis of DNS network traffic

for detection of bot networks. We perform a comprehensive analysis on several data

sets including a set of legitimate domain names obtained via a crawl of IPv4 address

space as well as DNS traffic from a Tier-1 ISP in Asia. One of our key contributions

is the relative performance characterization of each metric in different scenarios. In

general Edit distance measure performs better than the KL divergence. Furthermore,

we show how our methodology when applied to the Tier-1 ISP’s trace was able to

detect Conficker as well as a botnet yet unknown and unclassified, which we call as

Mjuyh. In this regards, our methodology can be used as a first alarm to indicate the

presence of domain fluxing in a network, and thereafter a network security analyst can

perform additional forensics to infer the exact algorithm being used to generate the

domain names. We are able to correctly predict 26 unknown components (3251 do-

main names) with 2 components which show up as false positives (99 domain names).

As future work, we plan to generalize our metrics to work on n-grams for values of

n > 2. We also plan on analyzing the strongly connected components for interesting

patterns.
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