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ABSTRACT

Inference and Visualization of Periodic Sequences. (August 2011)

Ying Sun, M.S., Tsinghua University

Co–Chairs of Advisory Committee: Dr. Jeffrey D. Hart
Dr. Marc G. Genton

This dissertation is composed of four articles describing inference and visualiza-

tion of periodic sequences.

In the first article, a nonparametric method is proposed for estimating the period

and values of a periodic sequence when the data are evenly spaced in time. The

period is estimated by a “leave-out-one-cycle” version of cross-validation (CV) and

complements the periodogram, a widely used tool for period estimation. The CV

method is computationally simple and implicitly penalizes multiples of the smallest

period, leading to a “virtually” consistent estimator.

The second article is the multivariate extension, where we present a CV method

of estimating the periods of multiple periodic sequences when data are observed at

evenly spaced time points. The basic idea is to borrow information from other cor-

related sequences to improve estimation of the period of interest. We show that the

asymptotic behavior of the bivariate CV is the same as the CV for one sequence,

however, for finite samples, the better the periods of the other correlated sequences

are estimated, the more substantial improvements can be obtained.

The third article proposes an informative exploratory tool, the functional box-

plot, for visualizing functional data, as well as its generalization, the enhanced func-

tional boxplot. Based on the center outwards ordering induced by band depth for
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functional data, the descriptive statistics of a functional boxplot are: the envelope of

the 50% central region, the median curve and the maximum non-outlying envelope.

In addition, outliers can be detected by the 1.5 times the 50% central region empirical

rule.

The last article proposes a simulation-based method to adjust functional box-

plots for correlations when visualizing functional and spatio-temporal data, as well

as detecting outliers. We start by investigating the relationship between the spatio-

temporal dependence and the 1.5 times the 50% central region empirical outlier de-

tection rule. Then, we propose to simulate observations without outliers based on a

robust estimator of the covariance function of the data. We select the constant factor

in the functional boxplot to control the probability of correctly detecting no outliers.

Finally, we apply the selected factor to the functional boxplot of the original data.
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CHAPTER I

INTRODUCTION

1.1. Period Estimation

Many datasets are periodic or nearly so in time series analysis, and many applications

of period estimation methods have been to problems in the physical and environmental

sciences. For instance, stars for which brightness changes over time are referred to as

variable stars. For many such stars, brightness varies in a periodic, or approximately

periodic way. The period lengths, and light-curve shapes, are of significant interest for

the reason that if the intensity of light radiating from a star varies in a periodic fashion

over time, then there are significant opportunities for accessing information about

the star’s origins, age and structure (Hall, 2008). Other interesting period estimation

problems include the study of the periodicity of sunspot numbers from one of the

earliest recorded monthly series (Schuster, 1906) and more modern investigations

centering on whether a warming is present in global temperature measurements, such

as the periodicity of the El Niño effect, which can have profound effects on local

climate. The study of periodicity extends to economics and social sciences, where

one may be interested in yearly periodicities in series such as monthly unemployment

or monthly birth rates (Shumway and Stoffer, 2000).

Before looking more closely at the particular statistical methods, it is appropriate

to mention that two separate, but not necessarily mutually exclusive, approaches to

time series analysis exist, commonly identified as the frequency domain approach and

the time domain approach.

The time domain approach is generally motivated by the presumption that cor-

This dissertation follows the style of Biometrika.
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relation between adjacent points in time is best explained in terms of a dependence

of the current values on past values, and models future value of a time series as

a parametric function of the current and past values, i.e., stochastic models. For

example, this includes autoregressive (AR), moving average (MA) or autoregressive

integrated moving average (ARIMA) models. In the first part of this dissertation,

however, we will focus on modeling the periodicity by deterministic models assuming

the periodicity is in the mean function, and our method will be nonparametric.

Conversely, the frequency domain approach assumes the primary characteristics

of interest in time series analysis relate to systematic sinusoidal variations found nat-

urally in most data. These periodic variations are often caused by biological, physical,

or environmental phenomena of interest and expressed as Fourier frequencies being

driven by sines and cosines (Shumway and Stoffer, 2000). The partition of the various

kinds of periodic variation in a time series is accomplished by evaluating separately

the variance associated with each periodicity of interest. In spectral analysis, the

periodogram is a measure of the squared correlation of the data with sinusoids oscil-

lating at a frequency of ωj = j/n, or j cycles in n time points. This is a popular way

to discover the periodic components of a time series. The primary justification for the

use of frequency domain methods lies in their potential for explaining the behavior

of some empirical phenomenon, such as an explanation involving several primary and

physically meaningful oscillations. However, for real data examples, usually little is

known about the structure of a periodic sequence, and it is thus important to have

nonparametric methods of estimating the period.

In our view, no schism divides time domain and frequency domain methodology,

because in many cases, the two approaches may produce similar answers and provide

more possibilities of interpretation. Hence, in this dissertation, we will show the

advantages of our period estimation methodology in the time domain, but compare
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the frequency domain methods in a complementary fashion.

For period estimation methods in the time domain, Hall, Reimann and Rice

(2000) proposed a nonparametric method for estimating both the period and the am-

plitude function from noisy observations of a periodic function made at irregularly

spaced time points. They were motivated by applications to brightness data on peri-

odic variable stars where the time points of the observations are irregular, due to a

star being observed on most nights but not at the same time each night. They also

remarked that if observations are made at regularly spaced points in time then identi-

fication of the brightness function without a structured model might not be possible.

Therefore, they pointed out that the appropriate use of randomness in selecting de-

sign points ensures that a consistent period estimator can be constructed. Our point

of view in the dissertation is that we evaluate periodicity by nonparametric methods

as best we can when the time points are evenly spaced. We propose methodologies

to estimate both the period and sequence values for one periodic sequence as well as

a multivariate extension where multiple correlated periodic sequences are observed.

1.2. Complex Data Visualization

Data visualization is the graphical representation of information. The step in many

statistical analyses involves careful scrutiny of the plotted data. This scrutiny often

suggests the method of analysis that will be of use in summarizing the information in

the data. The classical boxplot is an example of simple data visualizations that have

been used for decades. More complex data visualizations usually involve observations

made over time and space, for example functional data or spatio-temporal data.

In many statistical experiments, the observations are functions by nature, such as

temporal curves or spatial surfaces, where the basic unit of information is the entire
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observed function rather than a string of numbers. Ramsay and Silverman (2005)

and Ferraty and Vieu (2006) provided various functional data examples and methods

for functional data analysis. In the second part of this dissertation, we propose

an informative exploratory tool, the functional boxplot analogous to the classical

boxplot, for visualizing complex curve or image data as well as detecting possible

outliers candidates. Then, considering that the possible correlations in data might

affect the outlier detection performance, we propose a bootstrap method to adjust

functional boxplots when visualizing functional and spatio-temporal data.

In the period estimation context, to visualize periodic sequences, the functional

boxplot can be applied to all the cycle curves where the periodic sequences are broken

down into different cycles by the estimated period. Then we can examine which

cycles are more representative or which cycles are more outlying with respect to

all the possible cycles in a functional boxplot. Moreover, in time series analysis,

many datasets have annual cycles, for instance, the monthly sea surface temperatures

related to the El Niño effect and measured in degrees Celsius over the east-central

tropical Pacific Ocean. The functional boxplot can be used to detect El Niño years

if we let each curve represent one year of observed sea surface temperatures. This

example will be discussed in detail to illustrate the functional boxplot and the adjusted

functional boxplot.

1.3. Overall Structure

The following is the the general structure of the dissertation.

Chapter II and Chapter III are about inference of periodic sequences. In Chap-

ter II, a nonparametric method is proposed for estimating the period and values of

a periodic sequence when the data are evenly spaced in time. The period is esti-
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mated by a “leave-out-one-cycle” version of cross-validation (CV) and complements

the periodogram, a widely used tool for period estimation. The CV method is compu-

tationally simple and implicitly penalizes multiples of the smallest period, leading to a

“virtually” consistent estimator, which is investigated both theoretically and by sim-

ulation. Estimating a period is tantamount to selecting a model, and it is shown that

the CV estimator works much better in the period estimation context than it does in

other model selection problems. As applications, the CV method is demonstrated on

three well-known time series: the sunspots and lynx trapping data, and the El Niño

series of sea surface temperatures. Chapter III is a multivariate extension, where we

present a method of estimating the periods of multiple periodic sequences when data

are observed at evenly spaced time points. The basic idea is to borrow information

from other correlated sequences to improve the period estimation of interest.

Chapter IV and Chapter V introduce the visualization tools. Chapter IV pro-

poses an informative exploratory tool, the functional boxplot, for visualizing func-

tional data, as well as its generalization, the enhanced functional boxplot. Based on

the center outwards ordering induced by band depth for functional data, the descrip-

tive statistics of a functional boxplot are: the envelope of the 50% central region, the

median curve and the maximum non-outlying envelope. In addition, outliers can be

detected in a functional boxplot by the 1.5 times the 50% central region empirical

rule, analogous to the rule for classical boxplots. The construction of a functional

boxplot is illustrated on a series of sea surface temperatures related to the El Niño

phenomenon and its outlier detection performance is explored by simulations. As ap-

plications, the functional boxplot and enhanced functional boxplot are demonstrated

on children growth data and spatio-temporal U.S. precipitation data for nine climatic

regions, respectively. Chapter V proposes a simulation-based method to adjust func-

tional boxplots for correlations when visualizing functional and spatio-temporal data,
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as well as detecting outliers. We start by investigating the relationship between the

spatio-temporal dependence and the 1.5 times the 50% central region empirical outlier

detection rule. Then, we propose to simulate observations without outliers based on a

robust estimator of the covariance function of the data. We select the constant factor

in the functional boxplot to control the probability of correctly detecting no outliers.

Finally, we apply the selected factor to the functional boxplot of the original data. As

applications, the factor selection procedure and the adjusted functional boxplots are

demonstrated on sea surface temperatures, spatio-temporal precipitation and General

Circulation Model (GCM) data. The outlier detection performance is also compared

before and after the factor adjustment.

Summary and possible future extensions are discussed in Chapter VI and all the

theoretical proofs are provided in the Appendix.
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CHAPTER II

NONPARAMETRIC ESTIMATION OF A

PERIODIC SEQUENCE

2.1. Introduction

Sequences that are periodic or nearly so appear in many disciplines, including astron-

omy, meteorology, environmetrics and economics. When little is known about the

structure of such a sequence, it is important to have nonparametric methods of esti-

mating both its values and period. This paper is concerned with these two estimation

problems in the situation where one has observations at equally spaced time points.

We consider the following model:

Yt = µt + εt, t = 1, . . . , n, (2.1)

where Y1, . . . , Yn are the observations, µ1, . . . , µn are unknown constants, and the

errors ε1, . . . , εn are independent, identically distributed and mean-zero random vari-

ables. It is assumed that µt = µt+mp for t = 1, . . . , p, m = 1, 2, . . ., and some integer

p ≥ 2. (It is implicit that p is the smallest such integer.) Of interest is estimating the

period p and the sequence values µ1, . . . , µp. Our approach to the problem will be

nonparametric. Even though p is finite, we assume no upper bound on it, and hence

there is no bound on how many sequence values have to be estimated.

One motivation for our methodology is the study of periodicity of El Niño effects,

which are defined as sustained increases of at least 0.5 ◦C in average sea surface

temperatures over the east-central tropical Pacific Ocean. Such occurrences that last

less than five months are classified as El Niño conditions. An anomaly persisting for

five months or longer is called an El Niño episode. Typically, this happens at irregular
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intervals of 2-7 years and lasts nine months to two years; see Torrence and Webster

(1999) and references therein. El Niño is associated with floods, droughts and other

weather disturbances in many regions of the world, particularly those bordering the

Pacific Ocean. We will apply our proposed methodology to a series of sea surface

temperatures in order to estimate the El Niño period.

Our method of estimating the period is based on cross-validation (CV). A candi-

date period q is evaluated by first “stacking,” at the same time point, all data which

are separated in time by a multiple of q, and then computing a “leave-out-one-cycle”

version of the variance for each of the q stacks of data. This variance will tend to be

smallest when q equals p. A sequence of period p is also periodic of period mp for

m = 1, 2, . . ., and hence a cross-validatory assessment of variance is required to avoid

overfitting, i.e., overestimating the period. It is shown that this method of estimating

p is asymptotically equivalent to Akaike’s information criterion (AIC, Akaike 1973)

when the errors in (2.1) are assumed to be i.i.d. Gaussian.

We show that when p is sufficiently large, our period estimator p̂ is virtually

consistent, in the sense that limn→∞ P (p̂ = p) increases to 1 as p increases. When p

is 16, for example, limn→∞ P (p̂ = p) ≈ 0.990. These results are surprisingly good in

comparison to a variety of model selection problems. Consider the canonical scenario

where the true model is of finite dimension k, and one selects a model from a collection

of nested models (of which the true model is a member). Here, the asymptotic

distribution of AIC and cross-validation estimators of k are typically independent

of the value of k. Furthermore, there is usually a substantial probability that these

methods will overestimate k. For example, when using AIC to select the order of

a finite order autoregression, Shibata (1976) shows that the asymptotic probability

that AIC overestimates the true order is about 0.29. The fact that p is discrete makes

the virtual consistency result remarkably strong. To wit, for all n sufficiently large,
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the probability that our period estimator is exactly equal to the truth is at least 0.99

for each p ≥ 16.

Recent articles on nonparametric methods for estimating periodic functions in-

clude Hall, Reimann and Rice (2000), Hall and Yin (2003), Hall and Li (2006), Genton

and Hall (2007) and Hall (2008), the last of which is an excellent review of the sub-

ject. The assumption in these papers is that the underlying function, f , of interest is

defined at all the reals and has period that could be any positive number. As pointed

out by Hall (2008), an appropriate random spacing of time points is needed in such

problems in order to ensure consistent estimation of the period of f . It is important to

appreciate that the problem addressed in the current paper is different from that just

discussed. We are content to estimate the period of the sequence µ = {µ1, µ2, . . .}

even in cases where µ may be a sampling of an underlying function f . In such cases,

f need not be periodic even though µ is, or if f is periodic, then its period need

not be the same as that of µ. For equally spaced data, Quinn and Thomson (1991)

proposed a periodogram-based method for period estimation which is discussed in

Section 2.2.4.

The rest of this chapter is organized as follows. Section 2.2 describes the cross-

validation method of estimating the period and sequence values, while Section 2.3

discusses asymptotic properties of the method. Simulations motivated by real data

applications are reported in Section 2.4, and Section 2.5 illustrates applications of

our methods to well-known time series, including the El Niño series of sea surface

temperatures. Concluding remarks are provided in Section 2.6, including a discussion

of how our period estimator performs when the underlying periodic function has

domain R+. The proof of virtual consistency is provided in Appendix A.
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2.2. Methodology

Suppose we observe a time series {Yt : t = 1, . . . , n} from the model (2.1), where

the sequence µ is periodic with (smallest) period p and ε1, . . . , εn are independent

and identically distributed random variables with zero means and finite variances σ2.

We propose a methodology for estimating p in Section 2.2.1 and discuss some related

model selection criteria in Section 2.2.2. In Section 2.2.3 we propose methods for

estimating the sequence values µ1, . . . , µp within one period.

2.2.1. Cross-validation method for estimating an integer period

Let q be a candidate integer period with 2 ≤ q ≤ Mn, where Mn is of smaller order

than
√
n. For each i = 1, . . . , q, we construct an estimator of µi by stacking all data

that are separated in time by a multiple of q. So, at time point i we have data

Yi, Yi+q, . . . , Yi+qkq,i , where kq,i is the largest integer such that i+ qkq,i ≤ n. For each

relevant q, i and j, define Yqij = Yi+(j−1)q and µqij = µi+(j−1)q. Let

CV(q) =
1

n

q∑
i=1

kq,i∑
j=1

(Yqij − Ȳ j
qi)

2, (2.2)

where Ȳ j
qi is the average of Yqiℓ, ℓ = 1, . . . , kq,i, excluding Yqij. We define a period

estimator p̂ to be the minimizer of CV(q) for 2 ≤ q ≤ Mn.

The version of cross-validation used in (2.2) is more closely related to that of

Hart and Wehrly (1993) in the setting of functional data than to the version used in

smoothing independent data. The method of Hart and Wehrly (1993) leaves out one

curve in a sample of curves and then predicts the deleted curve by using all the others.

Analogously in our setting, all the data in one cycle (corresponding to a putative cycle

length) are deleted, and then data from other cycles are used to predict the omitted

cycle. One may regard different cycles as independent copies of a multivariate random
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variable in the same way that functional data are independent copies of a curve.

The CV method may be motivated by taking the expectation of (2.2). Let

εqij = Yqij − µqij and ε̄jqi = Ȳ j
qi − µ̄j

qi, where µ̄j
qi is the average of µqiℓ, ℓ = 1, . . . , kq,i,

excluding µqij. Then (2.2) may be written as

CV(q) =
1

n

q∑
i=1

kq,i∑
j=1

(εqij − ε̄jqi + µqij − µ̄j
qi)

2.

Now, there are at most two distinct values of kq,i and these values differ by only 1.

So,

E{CV(q)} ≈ E{(εq11 − ε̄1q1)
2}+ 1

n

q∑
i=1

kq,i∑
j=1

(µqij − µ̄j
qi)

2

≈ σ2

(
1 +

1

kq,1 − 1

)
+

k2
q,1

(kq,1 − 1)2
1

n

q∑
i=1

kq,i∑
j=1

(µqij − µ̄qi)
2

= σ2

(
1 +

1

kq,1 − 1

)
+

k2
q,1

(kq,1 − 1)2
Cq

= Eq,

where µ̄qi is the average of µqiℓ, ℓ = 1, . . . , kq,i.

A motivation for our cross-validation method stems from the following facts:

F1. The term Cq is 0 if and only if q is a multiple of p, as shown in Appendix A.

F2. By fact F1, min2≤q<p Eq > Ep for all n sufficiently large.

F3. Fact F1 and the definition of kq,i imply that minp<q≤Mn Eq > Ep for all n

sufficiently large.

More succinctly, we may say that, over any bounded set of q-values containing p, the

minimizer of E{CV(q)} is p for all sufficiently large n.

The necessity of using cross-validation follows upon considering what happens
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when Ȳ j
qi in (2.2) is replaced by Ȳqi, the average of Yq1, . . . , Yqkq,i . Call the resulting

criterion V (q). Then for q = kp and k = 1, 2, . . .,

E{V (q)} ≈ E{(εq11 − ε̄q1)
2} = σ2

(
1− 1

kq,i

)
≈ σ2

(
1− kp

n

)
.

The rightmost quantity immediately above is decreasing in k, and so the minimizer

of V (q) will tend to be a large multiple of p.

Of course, the considerations above do not prove that CV yields a good estimator

of p. That question will be addressed in Section 2.3.

2.2.2. Model selection criteria for period estimation

Cross-validation is typically used as a model selection tool. Our use of CV may appear

to be different, but in fact each candidate period q corresponds to a model for the

sequence µ consisting of the q parameters µ1, . . . , µq. With this perspective it is thus

natural to consider model selection criteria other than CV in estimating q.

If we assume that the errors in model (2.1) are i.i.d. Gaussian, then Akaike’s

information criterion has the form

AIC(q) = nlogσ̂2
q + 2(q + 1), q = 2, . . . ,Mn,

where σ̂2
q = V (q), as defined in Section 2.2.1. Minimizing AIC(q) with respect to

q provides an estimator of p. It is not difficult to argue that under appropriate

conditions on Mn, the estimator of p obtained from AIC is asymptotically equivalent

to the CV estimator of Section 2.2.1.

The usual variations of AIC are also possible. These have the general form

C(q) = nlogσ̂2
q + cn(q + 1), q = 2, . . . ,Mn, (2.3)

for some (specified) penalty cn. Bayes information criterion (Schwarz 1978), or BIC,
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corresponds to cn = logn. Another possibility is a Hannan-Quinn-type criterion with

cn = loglogn (Hannan and Quinn 1979). Both these methods have cn > 2 for all n

large enough, and hence have a smaller probability of overestimating the true model

dimension than does AIC. In fact, BIC and the Hannan-Quinn criterion produce

consistent estimators of the true model dimension, whereas CV and AIC do not.

This is true in the setting of the current paper as well as in many scenarios where a

sequence of nested models is under consideration.

It will be shown in Section 3 that although CV (and hence AIC) do not produce

consistent estimators of p, their asymptotic probability of selecting p is very close

to 1 for p larger than 15. We call this last property virtual consistency. The vir-

tual consistency of CV/AIC is somewhat surprising in comparison to familiar results

associated with CV and AIC. For example, if the true model is of finite dimension

and AIC chooses amongst nested models, then its asymptotic probability of selecting

the correct model is 0.71, independent of the model dimension (Shibata 1976 and

Woodroofe 1982). In spite of its lack of consistency, AIC is still preferred to BIC by

some practitioners, since the latter criterion has a higher likelihood of underestimat-

ing the model dimension. In our setting this preference is even more justified since

CV/AIC have a much higher than usual probability of selecting the correct model.

The CV method is desirable because of its virtual consistency, but if a formally

consistent criterion is desired, then one of the form (2.3) would be an option. Among

them, one that we find appealing has cn = max(2, loglogn), which is a compromise

between AIC and the Hannan-Quinn-type criterion. On the one hand it yields a

consistent estimator of p, but on the other it matches the definition of AIC for all

n < 1619, since then loglogn ≤ 2.
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2.2.3. Estimating sequence values

Given that the period is q, we desire estimates for the sequence values µ1, . . . , µq. If

the errors are assumed to be i.i.d. Gaussian, then it is straightforward to verify that

the maximum likelihood estimates of these parameters are the means Ȳq1, . . . , Ȳqq, as

defined in Section 2.2.1. For the moment, we set aside the effect that estimation of p

has on estimates of the sequence values, and assume that q = p. Obviously, whenever

the errors have two finite moments, Ȳp1, . . . , Ȳpp are consistent for µ1, . . . , µp, since as

n tends to ∞, the number of observed full cycles, kp,i, also tends to ∞.

James-Stein theory (Stein 1964) implies that the estimator Ȳ = (Ȳp1, . . . , Ȳpp)

is inadmissible when p ≥ 3. A better estimator of a normal mean vector may be

obtained by shrinking the sample mean vector towards a specified point. In our

setting where the data are time ordered, a natural form of shrinkage is to smooth

means that are close to each other in time. More precisely, we may estimate µi by

µ̂i =

q∑
t=1

ȲptKh(|t− i|), (2.4)

where
∑q

t=1Kh(|t − i|) = 1, Kh decreases monotonically to 0 on [0,∞) and h is a

smoothing parameter that dictates how quickly Kh goes to 0. When the sequence µ is

“smooth,” in the sense that
∑p−1

t=1 (µt+1−µt)
2 is sufficiently small, then the kernel-type

smoother (2.4) can have smaller mean squared error than Ȳpi.

Asymptotically, the use of kernel smoothing cannot be expected to yield a large

improvement over the simple mean Ȳpi. This is because an estimator of the form (2.4)

must eventually collapse to Ȳpi in order to be consistent. This entails that an opti-

mal estimator of the form (2.4) will have mean squared error asymptotic to pσ2/n,

the same as that of Ȳpi. The situation where a substantial improvement could be

obtained by smoothing is when n is small enough that p/n is fairly large. In this case
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the variance of Ȳpi can be large, and so smoothing, while introducing bias, can be

beneficial if it reduces variance substantially.

Obviously, maximum likelihood estimates of sequence values can be profoundly

affected by misspecification of the value of p. Fortunately, our CV method is such

that, asymptotically, it only chooses p or a multiple of p, and if p is more than 15,

the probability of choosing a value larger than p is extremely small. Let p̂ be the

estimate of p obtained with the CV method. A useful check on this estimate is to

plot µ̂1, . . . , µ̂p̂ against time and check for evidence of more than one cycle. If, for

example, a pattern seems to repeat itself twice in the sequence of µ̂is, then there is

evidence that p̂ = 2p.

2.2.4. Cross-validation method versus the periodogram

Quinn and Thomson (1991) (QT) proposed a periodogram-based method for estimat-

ing the period of a signal when the data are observed at the time points 1, 2, . . .. Their

method is more general than ours in two ways. Firstly, their method can sometimes

consistently estimate a noninteger period, and secondly, they allow the errors to come

from a covariance stationary process.

QT assume that observations Y1, . . . , Yn follow a model of the form

Yj = r(j) + ϵj, j = 1, . . . , n,

where r is defined for all t > 0 and is periodic with arbitrary period p. They model

r as the Fourier series

r(t) = µ+
m∑
j=1

ρj cos

(
2πtj

p
− ϕj

)
, t > 0.

When the errors are white noise (as in our setting), the QT estimate of p is asymptot-

ically equivalent to the value of q that maximizes C(q) =
∑m

j=1 f̂(j/q) over q ≥ 2m,
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where f̂(ω), 0 ≤ ω ≤ 1/2, is the periodogram. There are two potential problems with

this approach. First of all the method requires that m be smaller than p/2, and since

p is unknown it is unclear that an appropriate choice for m will satisfy this require-

ment. A second problem is that even if one is certain that p ≥ p0 and that m ≤ p0/2

is satisfactory, it is still important to make a reasonable choice of m. In particular,

too small an m can lead to inconsistent estimation of p. Suppose, for example, that

m is taken to be 1 but in fact the Fourier series has more than one term. Then the

maximizer of C(q) will be inconsistent for p unless the largest of |ρ1|, . . . , |ρm| happens

to be |ρ1|.

Concerning the error series, we note that our method is not necessarily unsound

when the errors are dependent. While it is beyond the scope of the current paper

to theoretically investigate the effect of dependent errors, we will use simulation in

Sections 4.2 and 5.3 to show that the cross-validation method can be quite robust to

serial correlation that is negligible at lags greater than the period.

The method of QT is a very useful tool for investigating periodicity, but it does

have its shortcomings. We feel that our cross-validation method can be a valuable

complement to that of QT, especially when there are doubts about the assumptions

in the latter method.

2.3. Asymptotic Properties of the CV Method

We begin with a theorem that describes the asymptotic behavior of the CV period

estimator.

Theorem 1 Suppose that model (2.1) holds with ε1, . . . , εn independent and identi-

cally distributed N(0, σ2) random variables. The sequence µ is assumed to be periodic

with smallest period p, which is a positive integer. Let {Mn : n = 1, 2 . . .} be a
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sequence of positive integers that tends to infinity and is o(
√
n), and define

p̂ = argminq∈{1,...,Mn}CV (q).

Let {Zm,i : m = 1, 2, . . . ; i = 1, . . . , pm} be a collection of random variables such

that each Zm,i ∼ N(0, 1) and any finite subset has a multivariate normal distribution.

Furthermore,

C1. For each m, the random variables Zm,1, . . . , Zm,pm are mutually independent.

C2. For each r > m, Zm,i and Zr,j are independent unless i − j = p(rs − mℓ) for

some pair of nonegative integers ℓ and s, in which case

Corr(Zm,i, Zr,j) =
1√
mr

.

Define Sm =
∑pm

i=1 Z
2
m,i for m = 1, 2, . . .. Then if Sn is the set {1, 2, . . . ,Mn} excluding

multiples of p,

lim
n→∞

P (p̂ ∈ Sn) = 0,

and

lim
n→∞

P (p̂ = jp) = P

(
∞∩

m=1

{Sj − Sm + 2p(m− j) ≥ 0}

)
, j = 1, 2, . . . .

Defining τ(p) = limn→∞ P (p̂ = p), we have

τ(p) ≥ 1− P (S1 − S2 + 2p < 0)−
∞∑

m=3

P (Sm > 2p(m− 1)). (2.5)

The random variable (S1−S2)/p converges in probability to −1 as p → ∞ and hence

P (S1−S2+2p < 0) tends to 0 as p → ∞. By applying Bernstein’s inequality to each

term of the infinite series on the right-hand side of (2.5), that series may be bounded

by a quantity that tends to 0 as p → ∞. These facts show that τ(p) tends to 1 as

p → ∞, which proves the virtual consistency of p̂.
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For small values of p, simulation of the asymptotic distribution of p̂ was conducted

to approximate P (p̂ = p). The results are shown in Table 1 and were obtained using

n = 5000, Mn = 20p and 5000 replications for each p.

Table 1: Asymptotic probability of choosing the correct period for small p.

p τ̂(p) p τ̂(p)

1 0.489 9 0.957

2 0.694 10 0.968

3 0.791 11 0.971

4 0.854 12 0.977

5 0.892 13 0.981

6 0.908 14 0.983

7 0.933 15 0.988

8 0.954 16 0.990

The asymptotic probability of choosing the correct period increases quickly as p

increases. The probability is about 0.96 for p as small as 9 and increases to about

0.99 when p is 15.

Using test inversion and the result of Theorem 1, one may obtain asymptotic

(1 − α)100% confidence sets for p. A little thought makes it clear that such a set is

a subset of {p̂, p̂/k1, . . . , p̂/kj(p)−1, 1}, where 2 ≤ k1 < k2 < · · · < kj(p) = p̂ are all the

divisors of p̂. This entails that for prime p̂, the confidence set contains at most p̂ and

1. Let p0 be the observed value of p̂ and p0/k be a candidate for the confidence set.

Then p0/k is included in this set if and only if P (p̂ ≥ p0|p = p0/k) > α, where P

denotes probability for the limiting distribution of p̂. Knowledge of the asymptotic
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distribution of p̂ allows one to determine conditions under which the large sample

confidence set contains only p̂. For α = 0.05, simulation indicates that this occurs

when p̂ is at least 21.

One may justifiably be skeptical of using large sample theory to obtain a confi-

dence set when n is not “large.” Alternatively, a parametric bootstrap could be used

to approximate confidence sets in small samples. As before this can be done using

test inversion. To determine if a given value of p, say p̃, is included in the confidence

set, one may approximate the probability distribution of p̂ on the assumption that

p = p̃. This can be done as follows. Let µ̂1, . . . , µ̂p̃ and σ̂2 be the Gaussian maximum

likelihood estimates of µ1, . . . , µp̃ and σ2 on the assumption that p̃ is the true period.

Then one may generate many samples of size n from a version of model (2.1) that has

period p̃, µ1, . . . , µp̃ equal to µ̂1, . . . , µ̂p̃ and ε1, . . . , εn i.i.d. as N(0, σ̂2). From each

sample the CV estimate, p̂∗, of period is obtained, and the empirical distribution of

all these estimates provides an approximation to the required distribution.

2.4. Simulation Studies

2.4.1. Virtual consistency

To study the behavior of the CV period estimator, we performed simulations with an

intermediate value of the period, i.e., p = 43, which is our estimate of the El Niño

period. First, we consider model (2.1) with Yt = a sin(2πt/43) + εt, where ε1, . . . , εn

are i.i.d. normal with mean 0 and variance σ2. In this case µt = a sin(2πt/43) and

p = 43 is the true period of the sequence µ. Obviously, strong signals and low error

levels would lead to a more efficient estimate, and indeed what matters is the ratio

σ/a. Thus, in our simulation studies, we fix a = 1 and consider σ = 0.5, 1, 1.5. For

all cases, the set over which the objective function CV(q) was searched was taken to
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Figure 1. P (p̂ = p) for the CV method at different error levels.

be {12, 13, . . . , 96}, and the number of replications of each setting is 1000.

Figure 1 shows how the probabilities of choosing p = 43 increase as the sample

size n increases for each σ = 0.5, 1, 1.5. It is clear that the convergence is slower for

larger errors. For σ = 1, p̂ is between 41 and 44 approximately 86% of the time at

n = 200 and about 99% of the time at n = 300. Averages of CV curves are shown in

Figure 2. Here we see what is typical of individual curves, namely they tend to have

local minima at or near multiples of p. For example, at σ = 1, the plots of E{CV(q)}

(left panels of Figure 2) are minimized at the true p = 43 and have a local minimum

at its multiple 86.

Comparing the top and bottom panels of Figure 2 shows how much closer the

average CV curves agree with the theoretical expectation when the sample size in-

creases from 200 to 1000. Also it is seen that at n = 1000 the value of the CV curve
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Figure 2. Objective function plot for period candidates q from 12 to 96. The solid

blue line denotes theoretical expectation of CV(q) and the dotted red line

is the average of all 1000 CV curves from a given simulation.
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at its minimum is very close to σ2.

2.4.2. Robustness of the CV method

Model (2.1) assumes homogeneity of the error terms. In practice, however, many data

sets exhibit periodicity but with cycle amplitudes that appear to change randomly.

Such behavior can be modeled with heteroscedastic errors. To show the robustness

of the CV method for this situation, we simulate data with a periodic mean function

and errors whose standard deviations change randomly from one cycle to the next.

Specifically, suppose that model (2.1) holds with µt = sin(2πt/43), n = 43k and,

conditional on σ1, . . . , σk, ε1, . . . , εn are independent and normally distributed with 0

means and variances as follows:

Var(εi+43(j−1)) = σ2
j , j = 1, . . . , k, i = 1, . . . , 43.

The standard deviations σ1, . . . , σk are taken to be i.i.d. Gamma(1,1) with mean

1. Figure 3 shows one simulated example where the data are generated as just de-

scribed with k = 10, i.e. n = 430. Simulations at various sample sizes and using our

heteroscedastic model were conducted. The results are shown in Figure 3. The pro-

portion of cases in which p̂ was equal to p was only slightly less for the heteroscedastic

errors than it was for homoscedastic errors with σ = 1.

Especially for time series data, another interesting question is the robustness of

the CV method to serial correlation among the data. We anticipate that the result

of our Theorem 1 is not greatly affected by errors that follow an mth order moving

average (MA(m)) process as long asm ≤ p. Presumably the method will also be fairly

robust to other types of covariance stationary errors for which the autocorrelation

function damps out quickly at lags larger than p. A simulation example shows this

to be the case, at least when the errors are first order autoregressive. The right panel
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Figure 3. Left panel: an example of heteroscedastic errors with standard deviations

σ1, . . . , σk taken to be i.i.d. Gamma(1,1) and p = 43, n = 430. Right panel:

virtual consistency of CV method for heteroscedastic errors, p = 43.

of Figure 4 gives the proportion of cases with p̂ = p when the errors follow a first

order autoregressive process with first lag correlation equal to 0.3 and 0.6. While the

proportion of correct identifications is less than in the case of i.i.d. errors, the results

are nonetheless encouraging.

2.5. Applications

2.5.1. Sunspots and Lynx data

Here we apply our CV method to two classical time series, the sunspots data and

the lynx data, both of which are available in R (R Development Core Team 2010).

The sunspots series consists of mean monthly relative sunspot numbers; see, e.g.,

Andrews and Herzberg (1985). The data cover the period from 1749 to 1983 for a
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Figure 4. Left panel: an example of autoregressive errors with first lag correlation

equal to 0.6, p = 43, n = 430 and σ = 1. Right panel: virtual consistency of

the CV method for p = 43 and errors that follow a first order autoregressive

process with σ = 1.

total of 2820 observations. Sunspots are temporary phenomena on the surface of the

sun that appear visibly as dark spots compared to surrounding regions. The number

of sunspots peaks periodically, as shown in the left panel of Figure 5. By minimizing

the CV objective function (right panel of Figure 5), we get a period estimate of

p̂ = 133 months. This is in close agreement with the “accepted” period estimate of

11 years for the sunspot series. See, for example, the frequency domain analysis of

Brockwell and Davis (1991). With such a large p̂, the asymptotic 95% confidence set

contains only p̂, 133 months, as described in Section 2.3.

Another well-known time series consists of the annual number of lynx trappings in

Canada from 1821 to 1934. These data have been analyzed by a number of researchers,

including Campbell and Walker (1977). The 114 consecutive observations are plotted
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Figure 5. Sunspots data: the left panel is a plot of sunspots numbers from 1749 to

1983 and the right panel is a plot of the CV curve.

in the left panel of Figure 6 and the CV function is shown in the right. The minimizer

of the CV function occurs at 38 years, a cycle length that contains four peaks in the

time series plot.

The next smallest local minimum is at 19 years, a cycle length that is consistent

with a period of 9.5 years. Interestingly, the periodogram for the lynx data is maxi-

mized at 9.5 years, which, along with the sinusoidal appearance of the data, is highly

suggestive of a 9.5 year period. This is a good example of how our CV method and

the periodogram complement each other in cases where the period is not necessarily

a multiple of the time interval between data points.

How can one reconcile the disparate estimates of 9.5 and 38 years? In a sense the

“correct” estimate depends on how one defines periodicity. If the period is defined

as the time between two peaks, then the 9.5-year estimate seems better. However,

as can be seen in the time series plot, there is a pattern of one high peak followed
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Figure 6. Lynx data: the left panel is a plot of lynx trappings from 1821 to 1934 and

the right panel is a plot of the CV curve.

by three lower ones that repeats itself for (almost) three cycles. Therefore, a period

estimate of 38 years containing four peaks is perhaps more reasonable according to

the strict definition of periodicity. Certainly, more observations would be needed to

make the 38 year cycle more convincing. In our opinion it is a strength of the CV

method that, in conjunction with the periodogram, it identifies both 9.5 and 38 as

possible estimates, since those periods are consistent with what a data plot suggests

are plausible possibilities.

2.5.2. El Niño effect

El Niño is a phenomenon associated with warmer than normal sea surface temper-

atures (SST). It occasionally forms across much of the tropical eastern and central

Pacific. The times between successive El Niño events are irregular, but the events

tend to recur every 2 to 7 years, as shown by Torrence and Webster (1999). Niño3

SST is an oceanic component index which is one of the measures of variability in
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the ENSO-Monsoon system. Estimating the period of the El Niño effect by analyz-

ing Niño3 SST data is a very interesting application in climate science. The data

we have consist of the area-average SST over the eastern equatorial Pacific, monthly

from January 1950 to February 2009, as seen in the left panel of Figure 7.
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Figure 7. El Niño data: the left panel is a plot of monthly Niño3 sea surface tem-

peratures from 1950 to 2009 and the right panel is a plot of the CV curve.

Our cross-validation method yields a period estimate of p̂ = 43 months; see the

right panel of Figure 7 for the CV curve. The 43 estimated means plot is shown in

Figure 8. Notice that the CV curve is also locally minimized at 59 and 89 months.

Interestingly, the periodogram is maximized at period 60, and the next largest local

maximum is at 42.4 months, both of which are consistent with our CV curve. The

other local minimizer, 89 months, is not surprising as it is close to the multiple of 43

months.
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Figure 8. A plot of the 16 1/2 cycles of data (corresponding to a period of 43 months)

superimposed on each other. The 43 estimated means are connected by

the red line.

2.5.3. Correlation in errors

The errors for any one of the sunspots, lynx or El Niño series are likely to be serially

correlated. We thus investigated the effect of correlation by using a bootstrap method.

For each series, residuals were computed after obtaining estimates p̂ and µ̂ of the

period and mean sequence, respectively. ARMA models were fitted to these residuals

and AIC was used to choose the ARMA order. Then 1000 independent data sets,

each of the same size as the original series, were generated from a model in which the

true period and mean sequence were equal to p̂ and µ̂ and the error series followed

an ARMA process with order and parameters estimated from the original series. The

period was estimated by the CV method for each of the 1000 data sets. The results

are summarized in Table 2.

In the sunspots simulation, in the twelve cases where the estimated period was
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not 133, it was 2×133 = 266. The lower probability for the El Niño series is due to the

fact that its error standard deviation of 0.327 is relatively large. When this standard

deviation was lowered to 0.10 and the simulation repeated, the period estimate was

43 in 933 cases and 2× 43 = 86 in the other 67.

These results provide more evidence that the CV method is quite robust to

correlation.

Table 2: Estimated probabilities (from 1000 replications) that p̂ = p when the errors

are correlated as in the real data examples.

Series Error model Estimated probability

Sunspots ARMA(6,4) 0.988

Lynx ARMA(5,2) 0.999

El Niño ARMA(5,3) 0.681

2.6. Discussion

2.6.1. Periodic function with domain R+

In some cases the observed data are a sampling of some periodic function f that is

defined on all of, say, R+. In this case the period of f could be any positive number,

and in particular is not necessarily a multiple of the spacing between consecutive time

points.

Hall (2008) remarks that in such cases the time points at which data are observed

should not be equally spaced, since then “for many values of the period (in particular

when the period is a rational multiple of the spacing), consistent estimation is not

possible.” So, when the period of f can be arbitrary, design, i.e., placement, of the
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time points at which observations are made, is important. Hall (2008) points out that

the appropriate use of randomness in selecting design points ensures that a consistent

period estimator can be constructed.

Our point of view in the current paper is that we will try to evaluate periodicity as

best as we can when the time points are evenly spaced, which is obviously a prevalent

situation in time series analysis. Suppose that the observations are taken at time

points 1, 2, . . .. Then the estimable parameters are the function values f(1), f(2), . . .,

which need not be periodic even though f is. Conversely, if the sequence is periodic,

its period need not be the same as that of f . However, when the period of f is

sufficiently large, then practically speaking the sequence f(1), f(2), . . . will have the

same period as f . Furthermore, as explained in Section 2.5.1, the periodogram can be

a valuable complementary tool to our time domain methodology in situations where

the period of f is not an integer.

If the period of f is a rational number, then the sequence f(1), f(2), . . . will be

periodic with some (smallest) integer period p. In such a case the CV estimator p̂ will

obviously be estimating p rather than the rational period of f . Nonetheless, there are

still other possible ways one can investigate the possibility of a noninteger rational

period. One may check to see if the CV criterion has local minima at integers near

p̂/2, p̂/3, . . .. For example, if p̂ = 37, then a rational period of 18.5 is a possibility,

and it would be worthwhile to see if the CV criterion has a local minimum at either

18 or 19. A simulated example in which the underlying function sin(2πt/18.5) has

period 18.5 is illustrated in Figure 9.

We can also evaluate a CV criterion at all the midpoints between two integers

when the sample size is not too small. For a period of the form q+1/2, stacking data

in the usual way results in 2q distinct time points in each cycle, but, in comparison to

the case of period q, only half as many observations at each time point. We propose
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Figure 9. Left panel: time series plot with the period of the underlying function

equal to 18.5 and n = 400. Right panel: the corresponding CV criterion

plot.

in such a case to leave out a cycle, compute sample means of the remaining data,

and then smooth these sample means by a three-point moving average. Then the

data in the deleted cycle may be predicted by these smoothed means. This method

was applied to the same data as in Figure 9. The modified CV criterion is shown in

Figure 10, and now the CV curve is minimized at q = 18.5.

2.6.2. Concluding remarks

We have proposed a cross-validation period estimator for equally spaced data that

are the sum of a periodic sequence and noise. The method is computationally simple

and implicitly penalizes multiples of the smallest period. Given a particular period,

or cycle length, a leave-out-one-cycle version of CV is used to compute an average

squared prediction error. The cycle length minimizing this average squared error
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Figure 10. The CV criterion plot for evaluating non-integer period with the period

of the underlying function equal to 18.5 and n = 400.

is the period estimator. Moreover, models corresponding to different periods may

be ranked from best to worst by considering values of the objective function, thus,

extending the possibilities of interpretation.

It is shown both theoretically and by simulation that the CV method has a much

higher probability of choosing the correct model than it does in familiar cases where

the considered models are nested. Our theory shows that the CV period estimator

p̂ is virtually consistent for large p, in that its asymptotic probability of equaling p

increases monotonically to 1 as p becomes large. When p = 15 this probability is

approximately 0.99. It is worth noting that the CV method has the advantage that

it can easily deal with missing data, as long as the missing data are at random.
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CHAPTER III

NONPARAMETRIC ESTIMATION OF MULTIPLE

PERIODIC SEQUENCES

3.1. Introduction

A number of nonparametric methods for period estimation in univariate time series

have been proposed recently, including Hall, Reimann and Rice (2000), Hall and Yin

(2003), Hall and Li (2006), Genton and Hall (2007) and Hall (2008). In these pa-

pers, to estimate the period of a periodic function, an appropriate random spacing

of time points is needed in order to ensure the consistency, in other words, unevenly

spaced observations are needed. Considering that equally spaced data are prevalent in

time series analysis, Sun, Hart and Genton (2011) proposed a cross-validation based

nonparametric method for evaluating the periodicity when time points are evenly

spaced and a periodic sequence is observed. In many real world problems, however,

multivariate time series are available. For instance, several different variables are

simultaneously recorded from a system under study, such as atmospheric tempera-

ture, pressure and humidity in meteorology; heart rate, blood pressure, respiration

in physiology. A multivariate time series could also be recorded from one variable

but in spatially extended systems, such as in studies of meteorology, where temper-

ature recordings are obtained from probes or satellites at different spatial locations.

In this chapter, we present a method of estimating the periods of multiple periodic

sequences when data are observed at evenly spaced time points. The basic idea is to

borrow information from other correlated sequences to improve the period estimation

of interest.
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Let d be the number of the sequences. We consider the following model:

Yt = µt + εt, t = 1, . . . , n, (3.1)

whereYt = (Y1,t, . . . , Yd,t)
T = (Xt,Zt)

T is the observed vector with Zt = (Y2,t, . . . , Yd,t),

µt = (µ1,t, . . . , µd,t)
T is an unknown constant vector and the error vectors εt =

(ε1,t, . . . , εd,t)
T for t = 1, . . . , n are independent and identically distributed with mean

zero, and covariance matrix Σ which can be partitioned into

Σ =

(
σ2
1 Σ12

ΣT
12 Σ22

)
.

It is assumed that µs,i = µs,i+mps for i = 1, . . . , ps, m = 1, 2, . . ., s = 1, . . . , d, and

integers p1, . . . , pd, each of which is at least 2. Of interest is estimating p1, the period

of the first sequence X1, . . . , Xn.

One motivation for our methodology is the study of periodicity of El Niño effects,

which are defined as sustained increases of at least 0.5 ◦C in average sea surface

temperatures over the east-central tropical Pacific Ocean. Sun, Hart and Genton

(2011) have applied their method to a series of sea surface temperatures to estimate

the El Niño period. In addition to sea surface temperatures, another series, sea level

pressures were also measured at the same time points. We will investigate whether

the El Niño period estimation would be improved by borrowing information from the

pressure series.

Our method of estimating the period of interest is also based on cross-validation

(CV). The CV estimator proposed by Sun, Hart and Genton (2011) for one periodic

sequence evaluates a candidate period q by first “stacking,” at the same time point,

all data which are separated in time by a multiple of q, and then computing a “leave-

out-one-cycle” version of the variance for each of the q stacks of data. In other words,
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if we have k complete cycles where k = n/q, the stacked means of the other k − 1

cycles are used to predict the ones left out and then the averaged prediction errors are

computed. For multiple periodic sequences, suppose we are interested in estimating

p1 in model (3.1). Instead of the stacked means, we propose to use the conditional

means, i.e. conditional on other correlated sequences, to predict the left out cycle

in cross-validation. The prediction error will tend to be smallest when the period

candidate q1 equals p1. Since cross-validation is typically used as a model selection

tool, we will also consider model selection criteria for multiple periodic sequences

other than CV in estimating a period.

Sun, Hart and Genton (2011) have described the asymptotic behavior of the

one sequence CV method. They showed that when p is sufficiently large, the period

estimator p̂1 is virtually consistent, in the sense that limn→∞ P (p̂1 = p1) increases to

1 as p1 increases. For the multivariate CV, we show that it has the same asymptotic

properties, but with simulations we show that for finite samples, stronger correlation

between sequences, better period estimation of other correlated sequences and use

of more correlated sequences all lead to substantial improvements in estimating the

period of interest.

The rest of this chapter is organized as follows. Section 3.2 describes the cross-

validation method of estimating the period and sequence values for multiple periodic

sequences, while Section 3.3 discusses asymptotic properties of the method. Simu-

lations motivated by real data applications are reported in Section 3.4. Concluding

remarks are provided in Section 3.6 and a derivation of MLEs for bivariate sequence

means is in Appendix B.
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3.2. Methodology

Suppose we observe multiple sequences at equally spaced time points from the model (3.1),

where for each s = 1, . . . , d, the sequence µs,1, . . . , µs,n is periodic with (smallest) pe-

riod ps and the εts are independent and identically distributed random vectors with

zero means and covariance matrix Σ. We propose a methodology for estimating p1,

the period of interest, in Section 3.2.1 and an alternative based on Akaike’s informa-

tion criterion (AIC) in Section 3.2.2. Besides period estimation, we also discuss the

estimation of sequence values for multiple periodic sequences.

3.2.1. Multivariate cross-validation method for period estimation

For one periodic sequence, Sun, Hart and Genton (2011) proposed the cross-validation

(CV) method for period estimation. Let q be a candidate integer period with 2 ≤ q ≤

Mn, where Mn is of smaller order than
√
n. For each i = 1, . . . , q, they constructed

an estimator of µi by stacking all data that are separated in time by a multiple of q.

So, at time points i the data are Xi, Xi+q, . . . , Xi+qkq,i , where kq,i is the largest integer

such that i+ qkq,i ≤ n. For each relevant q, i and j, define Xqij = Xi+(j−1)q. Let

CV(q) =
1

n

q∑
i=1

kq,i∑
j=1

(Xqij − X̄j
qi)

2, (3.2)

where X̄j
qi is the average of Xqiℓ, ℓ = 1, . . . , kq,i, excluding Xqij. A period estimator p̂

is defined to be the minimizer of CV(q) for 2 ≤ q ≤ Mn.

Now, suppose we observe multiple sequences at equally spaced time points from

the model (3.1). Let qs be a candidate integer period of the s-th sequence. For the

first sequence, let q = q1 for simplicity and then X̄j
qi is the average of Xqiℓ excluding

Xqij, i = 1, . . . , q, ℓ = 1, . . . , kqi and i + qkq,i ≤ n. Define the averages for the

sequences for s = 2, . . . , d in a similar way. For i = 1, . . . , qs, let Ȳs,qsi be the average
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of Ys,qsiℓ, ℓ = 1, . . . , kqs,i and i + qskqs,i ≤ n. Then define the residual for each of the

sequences to be es,qsiℓ = Ys,qsiℓ − Ȳs,qsi. Now, by defining the residual separately for

each sequence, we have a residual vector et at each time point t, t = 1, . . . , n. Let

CVd(q) =
1

n

q∑
i=1

kq,i∑
j=1

[
Xqij −

{
X̄j

qi + Σ12Σ
−1
22 eqij

}]2
, (3.3)

where eqij = ei+(j−1)q. We define a period estimator p̂1 to be the minimizer of CVd(q).

The case of two sequences is a special case of the CV criterion in (3.3). If we

observe two sequences {Xt : t = 1, . . . , n} and {Zt : t = 1, . . . , n}, the criterion (3.3)

can be simplified as

CV2(q) =
1

n

q∑
i=1

kq,i∑
j=1

[
Xqij −

{
X̄j

qi +
σ1

σ2

ρ eqij
}]2

, (3.4)

where eqij = ei+(j−1)q, i = 1, . . . , q, j = 1, . . . , kq,i, r = 1, . . . , q2 and ℓ = 1, . . . , kq2,r.

Then, we propose to estimate p1 in the following way:

S1. Apply the CV method (3.2) for one periodic sequence in Sun, Hart and Genton

(2011) to each sequence and get the period estimates p̂(0) and p̂2.

S2. Estimate the sequence values of each periodic sequence at the estimated peri-

ods. Given that the period is q, Sun, Hart and Genton (2011) showed that the

maximum likelihood estimates of the sequence values µ1, . . . , µq are the means

X̄q1, . . . , X̄qq, as defined above, when the errors are assumed to be i.i.d. Gaus-

sian.

S3. Subtract the estimated sequence values from the observations, compute the

sample covariance matrix from residual vectors, and obtain σ̂1, σ̂2 and ρ̂.

S4. Construct X̄j
qi +

σ̂1

σ̂2
ρ̂ eqij to predict Xqij and compute the averaged squared

prediction errors in (3.4).
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S5. Choose q to minimize (3.4) and obtain the period estimate p̂(1) of the first

sequence.

S6. Repeat Step 2-5 and choose the period estimate p̂1 = p̂(2).

When εt has an elliptical distribution, the best linear predictor of Xt given Zt

is µ1,t +
σ1

σ2
ρε2,t. This motivates the predictor X̄j

qi +
σ̂1

σ̂2
ρ̂ eqij of Xqij. Note that when

ρ = 0, equation (3.4) reduces to equation (3.2) for the one sequence case and the

second sequence is not used.

3.2.2. Model selection criteria for multiple periods estimation

Cross-validation is typically used as a model selection tool. Sun, Hart and Genton

(2011) discussed period estimation for one sequence from a model selection point of

view, since in fact each candidate period q corresponds to a model for the sequence

consisting of the q parameters µ1, . . . , µq. Similarly, for multiple periodic sequences,

if we assume that the error vectors in model (3.1) are i.i.d. multivariate normal, then

Akaike’s information criterion has the form

AIC(q1, . . . , qd) = −2logL(µt,Σ|Yt, t = 1, . . . , n) + 2
d∑

s=1

qs. (3.5)

Minimizing AIC(q1, . . . , qd) provides estimators of p1, . . . , pd, but we need to plug in

the MLEs of the sequence means. For the one sequence case, it is straightforward to

verify that the MLEs of µ1, . . . , µq are the stacked means Ȳq1, . . . , Ȳqq. For multiple

correlated sequences, instead of simple stacked means for each sequence, the MLEs

depend on the covariance matrix Σ. The proof for the bivariate case is in Appendix B.

We can see that only when ρ = 0 are the MLEs the usual stacked means. For ρ ̸= 0,

however, the MLEs depend on the value of ρ and the observations from both of the

sequences.
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3.3. Asymptotic Properties of the Bivariate CV Method

Sun, Hart and Genton (2011) showed the virtual consistency of the CV estimator,

that is, limn→∞ P (p̂ = p) increases to 1 as p increases. To describe the asymptotic

behavior of the one sequence CV period estimator, they have shown that P (p̂ = p) is

asymptotically equal to

P

 ∩
1≤m≤Mn/p

{CV1(mp)− CV1(p)} > 0

 ,

and then proved that P (CV1(mp) − CV1(p) ≤ 0) is exponentially small when p is

sufficiently large. For the bivariate case, suppose we observe bivariate sequences from

the following model: {
Xt = µ1,t + ε1,t,

Zt = µ2,t + ε2,t,

where

(
ε1

ε2

)
t

∼ i.i.d. N(0,Σ), and Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

Let X̃
(t)
q be the leave-out-one-cycle predictor of Xt using only data from the first

sequence. The prediction error in the one sequence case is

Xt − X̃(t)
q = ε1,t + (µ1,t − X̃(t)

q ).

In the two sequences case, by using the true error term ε2,t, the ideal prediction error

is

Xt −
(
X̃(t)

q +
σ1

σ2

ρε2,t

)
= ε1,t −

σ1

σ2

ρε2,t + (µ1,t − X̃(t)
q ).

For δt = ε1,t − σ1

σ2
ρε2,t,

Var(δt) = σ2
1 +

σ2
1

σ2
2

ρ2σ2
2 − 2

σ1

σ2

ρσ1σ2ρ = σ2
1(1− ρ2) < Var(ε1,t).
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Therefore, by using the second sequence, we can better predict the error term.

Now,

CV2(q) =
1

n

n∑
t=1

(
Xt − X̃(t)

q − σ1

σ2

ρε2,t

)2

=
1

n

n∑
t=1

(Xt − X̃(t)
q )2 − 2

n

n∑
t=1

(Xt − X̃(t)
q )

σ1

σ2

ρε2,t +
1

n

n∑
t=1

σ2
1

σ2
2

ρ2ε22,t

= CV1(q)−
2

n

σ1

σ2

ρ
n∑

t=1

(Xt − X̃
(t)
1q )ε2,t +

1

n

σ2
1

σ2
2

ρ2
n∑

t=1

ε22,t.

Then,

CV2(mp)− CV2(p) = CV1(mp)− CV1(p) +
2

n

σ1

σ2

ρ
n∑

t=1

ε2,t(X̃
(t)
mp − X̃(t)

p ).

Let An = 2
n
σ1

σ2
ρ
∑n

t=1 ε2,t(X̃
(t)
mp − X̃

(t)
p ) = 2

n
σ1

σ2
ρ
∑n

t=1 ε2,t(ε̃
(t)
1mp − ε̃

(t)
1p ). Now, ε2,t is

independent of ε̃
(t)
1mp− ε̃

(t)
1p , both are normally distributed and Var(ε̃

(t)
1mp− ε̃

(t)
1p ) = O( 1

n
).

Then, proving that the extra term An is negligible can be done in the same way Aq,n

was treated in the proof of Theorem 1 in Appendix A.

Therefore the asymptotic distribution of the CV estimator does not change by

adding another correlated sequence. For finite samples, however, it does improve the

estimation which will be shown by simulation in Section 3.4.

3.4. Simulation

3.4.1. Bivariate case

To study whether another correlated periodic sequence improves the period estima-

tion, we performed simulations with an intermediate value of the period, i.e., p1 = 43,

which is the estimate of the El Niño period, and p2 = 59 which is our estimate of

the sea level pressure period. Let σ1 = σ2 = 1 in model (3.1). Since the sea surface

temperatures are negatively correlated with the sea level pressures, we consider three
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Figure 11. Left panel: P (p̂1 = p1) for the bivariate CV method at different corre-

lation levels. Right panel: P (p̂1 = p1) for the bivariate CV method at

different values of p2.

cases, ρ1 = 0,−0.6,−0.8. For all cases, the set over which the objective function

CV2(q) was searched was taken to be {12, 13, . . . , 96}, and use the algorithm S1-S5

proposed in Section 3.2.1 to estimate p1. The number of replications of each setting

is 1000.

The left panel of Figure 11 shows how the probabilities of choosing p1 = 43

increase as the sample size n increases for each ρ = 0,−0.6,−0.8 when p2 = 59. It

is clear that the convergence is faster for larger correlation. We can also see that

for finite sample, the second sequence does improve the estimation of p1 and more

improvements could be obtained with stronger correlation. Then we consider different

values of p2 when ρ = −0.8. The probabilities of choosing p1 = 43 are shown in the

right panel of Figure 11 for p2 = 20, 59, 80. For a fixed sample size n, the probability

of choosing p1 = 43 is higher for smaller value of p2 due to more available cycles of
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the second sequence. Thus, for a fixed value of ρ, how much the second series helps

for estimating p1 depends on how well p2 is estimated as well.

Now, suppose p1 = p2 = 43, ρ = −0.8 and σ1 = 1. We consider different error

levels of the second sequence. Figure 12 shows the probabilities of choosing p1 = 43

for the different error levels σ2 = 0.5, 1, 1.5. The convergence is slower for larger error

levels, which is further evidence that how well p2 is estimated plays a role in the

estimation of p1.
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Figure 12. P (p̂1 = p1) for the bivariate CV method at different error levels of the

second sequence. The values of σ1 and ρ are 1 and −0.8, respectively, in

each case.
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3.4.2. Trivariate case

Suppose we observe three periodic sequences from model (3.1). Let σ1 = σ2 = σ3 = 1,

ρ12 = −0.8 which is the same as the correlation in the bivariate simulation, ρ13 = 0.6

and ρ23 = −0.5. Initially we let p1 = 43, p2 = p3 = 59. The probabilities of

choosing p1 = 43 are shown in the left panel of Figure 13. With three sequences, the

convergence is faster than either one or two sequences which shows that one more

correlated sequence further improves the estimation of p1, although the improvement

from 1 to 2 sequences is apparently larger than improvements from 2 to 3, etc. We

also consider a situation with p2 = p3 = 20. The right panel of Figure 13 shows that

the convergence is faster for p2 = p3 = 20 than for p2 = p3 = 59. This is for the

same reason as in the two sequences case, i.e., more cycles are available for a smaller

period when n is fixed.
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Figure 13. Left panel: P (p̂1 = p1) for the univariate, bivariate and trivariate CV

methods. Right panel: P (p̂1 = p1) for the trivariate CV method when

p2 = p3 = 59 and p2 = p3 = 20.
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3.4.3. AIC for bivariate case

For the bivariate case, the AIC in (3.5) becomes

AIC(q1, q2) =
1

1− ρ2

{
1

σ2
1

n∑
t=1

(Xt − µ1,t)
2 +

1

σ2
2

n∑
t=1

(Zt − µ2,t)
2

− 2ρ

σ1σ2

n∑
t=1

(Xt − µ1,t)(Zt − µ2,t)

}
+ 2(q1 + q2),

where q1 and q2 are the period candidates for p1 and p2 and we choose the period

estimates as the minimizer of AIC(q1, q2). Again, let p1 = 43, p2 = 59, σ1 = σ2 = 1

and ρ = −0.8. The set for q1 and q2 over which the AIC(q1, q2) was searched was taken
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Figure 14. P (p̂1 = p1) for the bivariate case by the AIC method comparing to the

CV method for one sequence.

to be {12, 13, . . . , 96} , and the number of replications of each setting is 1000. In the

simulation study, we assume the parameters σ1, σ2 and ρ are known, and the mean
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parameters were estimated by the closed form in Appendix B, which is a function

of the observations, ρ and the ratio of σ1 and σ2. Then the criterion AIC(q1, q2)

was minimized over the set {12, 13, . . . , 96} × {12, 13, . . . , 96}. The probabilities of

choosing p1 = 43 are shown in Figure 14. Similarly, it is clear that the convergence

is faster for the two sequences case.

3.5. Applications

El Niño is a phenomenon associated with warmer than normal sea surface tempera-

tures (SST), which can have profound effects on local climate. The data that has been

month
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Figure 15. The time series plot of sea surface temperatures and sea level pressures

from 1950 to 2009: the red solid line denotes the SST and the blue dashed

line represents the SLP.

analyzed by Sun, Hart and Genton (2011) consist of the area-average SST anomalies
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over the eastern equatorial Pacific, monthly from January 1950 to February 2009. In

addition to SST, another series, monthly sea level pressures (SLP), was also mea-

sured at the same time points. As can been seen in Figure 15, the two sequences are

negatively correlated.
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Figure 16. Left panel: the plot of the CV curve for estimating the period of the SST

sequence. Right panel: the plot of the CV curve for estimating the period

of the SST sequence when using both SST and SLP sequences.

The cross-validation method proposed by Sun, Hart and Genton (2011) yields a

period estimate of p̂1 = 43 months; see the left panel of Figure 16 for the CV curve.

The 43 estimated means plot is shown in Figure 17. Notice that the CV curve is

also locally minimized at 59 months. Interestingly, by adding the SLP sequence to

help estimate the period of the SST sequence, p̂1 becomes 59 months; see the right

panel of Figure 16 for the CV curve, where the minimum switches from 43 months

to 59 months. The 59 estimated means plot is shown in the right panel of Figure 17.

Comparing with the 43 estimated means plot shown in the left panel of Figure 17, the
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Figure 17. Left panel: a plot of the 16 1/2 cycles of data (corresponding to a period

of 43 months) superimposed on each other. The 43 estimated means are

connected by the red line. Right panel: a plot of the 12 cycles of data

(corresponding to a period of 59 months) superimposed on each other.

The 59 estimated means are connected by the red line.

peaks of each cycle seem to better coincide than when cycles are folded at the period

43 months. To measure the proportion of variability in a dataset that is accounted

for by the statistical model, we define the coefficient of determination R2 in the same

way as the R-squared measure in linear regression,

R2 =

∑n
i=1(Ȳp̂i − Ȳ )2∑n
i=1(Yi − Ȳ )2

,

where Ȳp̂i is the stacked mean at time point i and i = 1, . . . , n. For the SST sequence,

the model with p̂1 = 59 has a larger R-squared value, R2 = 0.166, comparing to

R2 = 0.144 when p̂1 = 43. This provides another evidence that the model with

p̂1 = 59 is a better one.
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3.6. Discussion

In this chapter, we have proposed a cross-validation period estimator for multiple

equally spaced periodic sequences. Sharing a similar idea with the CV method for

one sequence, a leave-out-one-cycle version of CV is used to compute an average

squared prediction error given a particular period, or cycle length. The multivariate

CV method uses the conditional means, i.e. conditional on other correlated sequences,

to predict the left out cycle in cross-validation. In this way, the period estimation

for a sequence X has been improved by borrowing information from other sequences

with which X is correlated. In theory, we show that the asymptotic behavior of the

bivariate CV is the same as the CV for one sequence. In our simulation studies,

however, it is shown that for finite samples, the better the periods of the other corre-

lated sequences are estimated, the more substantial improvements can be obtained in

estimating the period of interest. We have also shown that more correlated sequences

lead to more improvements, although the improvement from 1 to 2 sequences is ap-

parently larger than improvements from 2 to 3, etc. In addition to the CV method,

we also considered a model selection criterion, AIC, to estimate the period for mul-

tiple periodic sequences. Similarly, for finite samples, a simulation study shows an

improvement in period estimation from using information in a correlated sequence.

The asymptotic properties of the AIC method will need further exploration.
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CHAPTER IV

FUNCTIONAL BOXPLOTS*

4.1. Introduction

Functional data analysis is an attractive approach to study complex data in statistics.

In many statistical experiments, the observations are functions by nature, such as

temporal curves or spatial surfaces, where the basic unit of information is the entire

observed function rather than a string of numbers. Such functional data appear

in many fields, including meteorology, biology, medicine, and engineering. Human

growth curves, weather station temperatures, gene expression signals, medical images,

and human speech are all real life examples; see e.g. Dryden and Mardia (1998),

Fletcher et al. (2004), and Ramsay and Silverman (2005).

To analyze functional data, researchers often used mathematical models, among

which Ramsay and Silverman (2005) provided various parametric methods while Fer-

raty and Vieu (2006) developed detailed nonparametric techniques. Quantile regres-

sion, as a popular model-based method, has been widely used, and many economic

applications were discussed by Fitzenberger et al. (2002). In contrast to model-based

analysis, visualization methods often help to display the data, highlight their char-

acteristics and reveal interesting features. For functional data, Hyndman and Shang

(2010) proposed two graphical methods with outlier detection capability: the func-

tional bagplot and the functional highest density region boxplot, both of which are

*Reprinted with permission from “Functional Boxplots” by Sun, Y. and Genton, M.
G., 2011. Journal of Computational and Graphical Statistics, 20, 316-334, Copyright
[2011] by American Statistical Association.
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based on the first two robust principal component scores. They apply the bivariate

bagplot (Rousseeuw et al., 1999) to the first two robust principal component scores,

and then map the features of the bagplot into the functional space. In this chapter,

we aim to develop visualization tools for functional data directly in the functional

space rather than in the feature space that requires principal component analysis

techniques.

It is well-known that the boxplot is a graphical method for displaying five de-

scriptive statistics: the median, the first and third quartiles, and the non-outlying

minimum and maximum observations. A boxplot may also indicate which observa-

tions, if any, can be considered as outliers. First introduced by Tukey (1970) and

Tukey (1977, pp. 39-43) in exploratory data analysis, boxplots have evolved into a

straightforward but informative method in data interpretation. The first step to con-

struct a boxplot is the data ordering. In the univariate setting, the ranking is simply

from the smallest observation to the largest. However, multivariate ordering is much

more complicated and has attracted considerable interest over the years. To gener-

alize order statistics or ranks to the multivariate setting, different versions of data

depth have been introduced to measure how deep (central) or outlying an observation

is. Examples of data depth include the Mahalanobis depth (Mahalanobis, 1936), the

Tukey halfspace location depth (Tukey 1975), the Oja depth (Oja, 1983), the simpli-

cial depth (Liu, 1990), the majority depth (Singh, 1991), and the likelihood depth

(Fraiman and Meloche, 1999). Vardi and Zhang (2000) proposed an L1-depth which

can be extended to functional data. Febrero et al. (2007, 2008) have reviewed a series

of functional depths, such as the functional depth of Fraiman and Muniz (2001), the

functional depth of Cuevas et al. (2006) and the random projection functional depth

of Cuevas et al. (2007).

For functional data, López-Pintado and Romo (2009) recently introduced a no-
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tion of band depth (BD). It allows for ordering a sample of curves from the center

outward and, thus, introduces a measure to define functional quantiles and the cen-

trality or outlyingness of an observation. Having the ranks of curves, the functional

boxplot is a natural extension of the classical boxplot and is an appealing visualization

tool for functional data.

This chapter is organized as follows. Section 4.2 explains the definition of band

depth for functional data and its modified version. Section 4.3 illustrates the construc-

tion of functional boxplots and enhanced functional boxplots, as well as the associated

outlier detection rule. Simulation results on the performance of our outlier detection

method are reported in Section 4.4. The visualization capabilities of the functional

boxplots are demonstrated in Section 4.5 when applied to classical functional data

and a space-time dataset. A discussion is provided in Section 4.6.

4.2. Band Depth for Functional Data

In functional data analysis, each observation is a real function yi(t), i = 1, . . . , n,

t ∈ I, where I is an interval in R. A band depth for functional data provides a

method to order all the sample curves. Indeed, we can compute the band depths

of all the sample curves and order them according to decreasing depth values. Let

y[i](t) denote the sample curve associated with the ith largest band depth value. We

view y[1](t), . . . , y[n](t) as order statistics, with y[1](t) being the deepest (most central)

curve or simply the median curve, and y[n](t) being the most outlying curve. The

implication is that a smaller rank is associated with a more central position with

respect to the sample curves. The order statistics induced by a band depth start

from the most central sample curve and move outwards in all directions. Therefore,

they are different from the usual order statistics which are simply ordered from the
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smallest sample value to the largest.

With this basic idea, López-Pintado and Romo (2009) introduced the band depth

concept through a graph-based approach. The graph of a function y(t) is the sub-

set of the plane G(y) = {(t, y(t)) : t ∈ I}. The band in R2 delimited by the

curves yi1 , . . . , yik is B(yi1 , . . . , yik) = {(t, x(t)) : t ∈ I,minr=1,...,k yir(t) ≤ x(t) ≤

maxr=1,...,k yir(t)}. Let J be the number of curves determining a band, where J is a

fixed value with 2 ≤ J ≤ n. If Y1(t), . . . , Yn(t) are independent copies of the stochas-

tic process Y (t) generating the observations y1(t), . . . , yn(t), the population version

of the band depth for a given curve y(t) with respect to the probability measure P is

defined as

BDJ(y, P ) =
J∑

j=2

BD(j)(y, P ) =
J∑

j=2

P{G(y) ⊂ B(Y1, . . . , Yj)},

where B(Y1, . . . , Yj) is a band delimited by j random curves. The sample version

of BD(j)(y, P ) is obtained by computing the fraction of the bands determined by j

different sample curves containing the whole graph of the curve y(t). In other words,

BD
(j)
n (y) =

(
n
j

)−1∑
1≤i1<i2<...<ij≤n I{G(y) ⊆ B(yi1 , . . . , yij)}, where I{·} denotes the

indicator function. The implication is that by computing the fraction of the bands

containing the curve y(t), the bigger the value of band depth, the more central position

the curve has. Then, the sample band depth of a curve y(t) is

BDn,J(y) =
J∑

j=2

BD(j)
n (y). (4.1)

Instead of considering the indicator function, López-Pintado and Romo (2009)

also proposed a more flexible definition, the modified band depth (MBD), by mea-

suring the proportion of time that a curve y(t) is in the band: MBD
(j)
n (y) =(

n
j

)−1∑
1≤i1<i2<...<ij≤n λr{A(y; yi1 , . . . , yij)}, where Aj(y) ≡ A(y; yi1 , . . . , yij) ≡ {t ∈
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I : minr=i1,...,ij yr(t) ≤ y(t) ≤ maxr=i1,...,ij yr(t)} and λr(y) = λ(Aj(y))/λ(I), if λ is

the Lebesgue measure on I. If y(t) is always inside the band, the modified band

depth degenerates to the band depth in (4.1).

Because the modified band depth takes the proportion of times that a curve is in

the band into account, it avoids having too many depth ties and is more convenient

to obtain the most representative curves in terms of magnitude. The band depth

is more dependent on the shape of curves often yielding ties, thus it can be used

to obtain the most representative curves in terms of shape. Consequently, there are

two types of outliers: magnitude outliers and shape outliers. In general, magnitude

outliers are distant from the mean and shape outliers have a pattern different from

the other curves.

A sample median function is a curve from the sample with largest depth value,

defined by argmaxy∈{y1,...,yn}BDn,J(y). If there are ties, the median will be the average

of the curves maximizing depth.

Although the number of curves determining a band, j, could be any integer

between 2 and J , the order of curves induced by band depth is very stable in J . To

avoid computational issues, we use J = 2, and for simplicity, we write BD
(2)
n as BD

and MBD
(2)
n as MBD in the sequel.

Figure 18 provides a simple example with n = 4 curves on how to compute BD

and MBD in practice. When J = 2, there are 6 possible bands delimited by 2 curves.

For instance, the grey area in Figure 18 is the band delimited by y1(t) and y3(t). We

can see that the curve y2(t) completely belongs to the band, but y4(t) only partly

does. We define that a curve is contained in a band even if this curve is on the border

of the band. Then BD(y2) = 5/6 = 0.83 since only the band delimited by y3(t) and

y4(t) does not completely contain the curve y2(t) and BD(y4) = 3/6 = 0.5 as it is only

completely contained in the bands delimited by itself and another curve. Similarly,
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we could compute BD(y1) = 0.5 and BD(y3) = 0.5. To compute MBD, note that

the curve y2(t) is always contained in the five bands, hence MBD(y2) = 0.83, the

same value as BD. In contrast, the curve y4(t) only belongs to the band in grey 40%

of the time, thus MBD(y4) = (3 + 0.4 + 0.4)/6 = 0.63 by definition. For the other

two curves, MBD(y1) = 0.5 and MBD(y3) = 0.7.
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Figure 18. An example of BD and MBD computation: the grey area is the band

delimited by y1(t) and y3(t). The curve y2(t) completely belongs to the

band, but y4(t) only partly does.

4.3. Construction of Functional Boxplots

In the classical boxplot, the box itself represents the middle 50% of the data. An

interesting idea that can be extended to functional data is the concept of central

region introduced by Liu et al. (1999). The band delimited by the α proportion

(0 < α < 1) of deepest curves from the sample is used to estimate the α central



55

region. In particular, the sample 50% central region is

C0.5 = {(t, y(t)) : min
r=1,...,⌈n/2⌉

y[r](t) ≤ y(t) ≤ max
r=1,...,⌈n/2⌉

y[r](t)},

where ⌈n/2⌉ is the smallest integer not less than n/2. The border of the 50% central

region is defined as the envelope representing the box in a classical boxplot. Thus,

this 50% central region is the analog to the “inter-quartile range” (IQR) and gives

a useful indication of the spread of the central 50% of the curves. This is a robust

range for interpretation because the 50% central region is not affected by outliers or

extreme values, and gives a less biased visualization of the curves’ spread. There is

also a curve in the box that indicates the median y[1](t), or the most central curve

which has largest band depth value. The median curve is also a robust statistic to

measure centrality.

The “whiskers” of the boxplot are the vertical lines of the plot extending from the

box and indicating the maximum envelope of the dataset except the outliers. Thus,

we need to identify the outliers first. Again, we extend the 1.5 times IQR empirical

outlier criterion to the functional boxplot. The fences are obtained by inflating the

envelope of the 50% central region by 1.5 times the range of the 50% central region.

Any curves outside the fences are flagged as potential outliers. It is worth noting that

when each curve is simply a point, the functional boxplot degenerates to a classical

boxplot. We suggest the constant factor 1.5 as in a classical boxplot, but we leave to

the user the possibility of modifying it.

Now that the pieces of the functional boxplot have been identified, we illustrate

its construction on a dataset used by Hyndman and Shang (2010) to demonstrate their

functional bagplot. The data consist of monthly sea surface temperatures (SST) mea-

sured in degrees Celsius over the east-central tropical Pacific Ocean and are shown in

Figure 19. In this case, each curve represents one year of observed SST in degrees Cel-
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Figure 19. Data of monthly sea surface temperatures measured in degrees Celsius

over the east-central tropical Pacific Ocean from 1951 to 2007.

sius from January 1951 to December 2007. In our functional boxplot (Figure 20 (a)),

only the median curve and the flagged outliers are real observations. The border of

the box in the middle denotes the envelope of the 50% central region and the minimum

and maximum provide the range of non-outlying envelope. To show this difference,

we use blue curves to denote envelopes, a black curve to represent the median curve

and red dashed curves to indicate outlier candidates. Thus, instead of having five

summary statistics as in a classical boxplot, the functional boxplot has the envelope

of the central 50% region, the median curve and the maximum non-outlying envelope

as descriptive statistics.

As can be seen from Figure 20 (a) and Figure 20 (c), the two methods display

the same median curve in this example, but slightly different outlier detection results.
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Figure 20. (a): the functional boxplot of SST with blue curves denoting envelopes,

and a black curve representing the median curve. The red dashed curves

are the outlier candidates detected by the 1.5 times the 50% central re-

gion rule. (b): the enhanced functional boxplot of SST with dark magenta

denoting the 25% central region, magenta representing the 50% central

region and pink indicating the 75% central region. (c): the functional

bagplot of SST. (d): the pointwise boxplots of SST with medians con-

nected by a black line.
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Our functional boxplot detects two outliers by using MBD: the years 1983 and 1997.

In addition, the year 1982 from September to December and the year 1998 from

January to June are viewed as being part of the maximum envelope. The information

discovered by the functional boxplot that September 1982 to December 1983 and

January 1997 to June 1998 are abnormal is in close agreement with the recent major

El Niño events reported by Dioses et al. (2002). Similarly, the functional bagplot of

Hyndman and Shang (2010) detects the years 1982-1983 and 1997-1998 as outliers.

For functional data, such as these sea surface temperatures, there will necessarily be

dependence in time. This is why the outliers come in adjacent years. Considering

that the dependence in time may affect outlier detection performance, we allow the

constant factor 1.5 to be adjustable in practice.

By introducing the concept of central regions, the functional boxplot can be

generalized to an enhanced functional boxplot shown in Figure 20 (b). Besides the

50% central region, the 25% and 75% central regions are provided as well. We have

implemented a function fbplot in R (R Development Core Team, 2010) to produce

functional boxplots and enhanced functional boxplots. It is available as supplemental

material on the JCGS website.

One may think of using the most intuitive approach, the pointwise boxplots

shown in Figure 20 (d), which do not treat each curve as one observation. Obviously,

such an approach has lost the information of the curves’ shapes. In general, the

central regions provided by pointwise boxplots are narrower than those given by

the functional boxplot, thus many more points would be detected as outliers. By

comparing these two types of boxplots, we see that the functional median could be

equivalent to the medians in pointwise boxplots only if all the points on the functional

median curve are the pointwise 50% quantiles simultaneously. This is rarely true for

functional data, especially when curves are very irregular. Specifically, in the above
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sea surface temperatures example, outliers are detected for each month without taking

the annual trend into account. One may connect those monthly outliers from the same

year, but it is very difficult to visualize the whole outlying yearly curve and there are

cases where only one or two monthly observations within one year are relatively

extreme. Furthermore, using the connected pointwise medians (the middle black line

in Figure 20 (d)) as the most representative curve is not very sensible since it smoothes

out too many monthly features of a typical yearly temperature curve and is no longer

a true curve of the sample.

It is important to note that the box, the whiskers and the median can reveal useful

information about a functional dataset by looking at their position, size, length, and

even the shape of the box or the median curve. Moreover, the spacings between the

different parts of the box help indicate the degree of skewness in the data and identify

outliers.

4.4. Simulation Studies

Hyndman and Shang (2010) proposed the functional bagplot and the functional high-

est density region (HDR) boxplot of which both can detect outliers. The former

obtains the outer region (the “fence”) by inflating the inner region (the “bag”) by

a constant factor 2.58 and the latter needs to prespecify the coverage probability of

the outlying region. We will focus on comparing our functional boxplot with their

functional bagplot since the empirical outlier rule we have proposed obtains the outer

region (the “fence”) by inflating the inner region (the “envelope”) by 1.5 times the

range of the 50% central region. We prefer not to have to prespecify the coverage

probability of the outlying region in case there is no outlier or the fraction of outliers

is unknown.
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To further compare our functional boxplot with the principal component (PC)

based functional bagplot and assess their performance for outlier detection, we have

generated curves from different models introducing either magnitude outliers or shape

outliers. The model structures are similar to those in López-Pintado and Romo

(2009), but with different parameter values. Some of these models were already

considered in Fraiman and Muniz (2001).

Model 1 is a basic one without contamination shown in the left panel of Figure 21.

Model 2, model 3 and model 4 have magnitude outliers while model 5 has shape

contamination as shown in the left panel of Figure 22. Model details are described as

follows:

1. Model 1 is Xi(t) = g(t) + ei(t), 1 ≤ i ≤ n, with mean g(t) = 4t, t ∈ [0, 1]

and where ei(t) is a stochastic Gaussian process with zero mean and covariance

function γ(s, t) = exp{−|t− s|}.

2. Model 2 includes a symmetric contamination: Yi(t) = Xi(t) + ciσiK, where

ci is 1 with probability q and 0 with probability 1 − q, K is a contamination

size constant and σi is a sequence of random variables independent of ci taking

values 1 and −1 with probability 1/2.

3. Model 3 is partially contaminated: Yi(t) = Xi(t) + ciσiK, if t ≥ Ti and

Yi(t) = Xi(t), if t < Ti, where Ti is a random number generated from a uniform

distribution on [0, 1].

4. Model 4 is contaminated by peaks: Yi(t) = Xi(t) + ciσiK, if Ti ≤ t ≤ Ti + ℓ,

and Yi(t) = Xi(t) otherwise, where Ti is a random number from a uniform

distribution in [0, 1− ℓ].

5. Model 5 considers shape contamination with different parameters in the covari-

ance function γ(s, t) = k exp{−c|t−s|µ}. The basic model 1, Xi(t) = g(t)+e1i(t)
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has parameter values k = 1, c = 1 and µ = 1 for the covariance function of e1i(t).

To generate irregular curves, let Yi(t) = g(t) + e2i(t), where e2i(t) is a Gaussian

process with zero mean and covariance function parameters k = 8, c = 1 and

µ = 0.2. The contaminated model is given by Zi(t) = (1 − ci)Xi(t) + ciYi(t),

1 ≤ i ≤ n, where ci is 1 with probability q and 0 with probability 1− q.
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Figure 21. Left panel: curves generated from model 1. Middle panel: the corre-

sponding functional boxplot. Right panel: the corresponding functional

bagplot.

In the simulation studies, we generate n = 100 curves with parameters q = 0.1,

K = 8, ℓ = 3/49, and compute depth values by MBD, the more flexible version of

band depth. Figure 21 and Figure 22 show the difference of outlier detection between

our band depth based functional boxplots and the functional bagplots of Hyndman

and Shang (2010) based on the first two PC scores. For this particular generated

dataset, both methods work equally well on the first three models and the first two

PCs of the robust covariance matrices explain 87.0%, 85.0% and 89.3% of the total

variation, respectively. However, the PC based functional bagplot only detects one

outlier in model 4, and in model 5 it misses most of the outliers and falsely detects

one non-outlying curve. For these two models, the first two PCs explain only 78.3%
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Figure 22. Left panels: curves generated from each contaminated model. Middle

panels: the corresponding functional boxplots. Right panels: the corre-

sponding functional bagplots.
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and 77.5% of the total variation, respectively, which are smaller than those in models

1 to 3. Thus, using only the first two PCs is sometimes a potential drawback of the

functional bagplot.

To assess the variability of the outlier detection methods, we are interested in

the distribution of two quantities: pc, the percentage of correctly detected outliers

(number of correctly detected outliers divided by the total number of outlying curves),

and pf , the percentage of falsely detected outliers (number of falsely detected outliers

divided by the total number of non-outlying curves).

For model 1, the basic model without outliers, we estimate the percentage, p0,

that each of the two methods detects no outliers, and obtain the distribution of the

percentage p̂f with 1000 replications and 100 curves. The percentage, the mean and

standard deviation of p̂f are shown in Table 3. For models 2 to 5, we obtain the

distribution of the two percentages p̂c and p̂f with 1000 replications and 100 curves.

The means and standard deviations are shown in Table 4. A good performance is

defined as high correct detection percentages p0 and pc, but a low false detection

percentage pf . As can be seen, overall the functional boxplot method works better

than the functional bagplot except for model 3, where, however, the two methods

are not significantly different considering the variation. Focusing on the models 1,

4 and 5, the better performance of the functional boxplot method is obvious and

significant. The simulation results show that the functional bagplot method is more

likely to either miss a true outlier or falsely detect a non-outlying curve because it

only depends on the first two principal components.

Notice that the peaks only appear during short intervals in model 4. By defi-

nition, BD would give small depth values for this type of outlying curves but MBD

may not. Thus, an alternative would be to compute depth values by BD and to break

the possible ties by their MBD values. In this way, simulation results show that the
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mean of p̂c could be increased to 95%.

Table 3: The percentage p̂0, the mean and standard deviation of the percentage p̂f

for the functional boxplot and functional bagplot with 1000 replications, 100

curves for model 1.

Method p̂0 Mean(p̂f ) SD(p̂f )

Functional Boxplot 93.2 0.07 0.27

Functional Bagplot 24.4 2.42 6.24

Table 4: The mean and standard deviation (in the parentheses) of the percentage p̂c

and p̂f for the functional boxplots and functional bagplots with 1000 replica-

tions, 100 curves for models 2 to 5.

p̂c Model 2 Model 3 Model 4 Model 5

Functional Boxplot 99.1(3.1) 83.7(13.9) 55.0(18.4) 78.6(15.3)

Functional Bagplot 99.5(5.5) 88.4(10.8) 18.6(15.7) 32.7(17.0)

p̂f Model 2 Model 3 Model 4 Model 5

Functional Boxplot 0.03(0.19) 0.03(0.20) 0.05(0.27) 0.03(0.18)

Functional Bagplot 1.81(5.80) 1.51(4.59) 1.82(5.51) 1.66(5.13)

As another simulation study with harmonic signals, we simulated n = 100 curves

of the form Yi(x) = (1 − ci){a1i sin(t) + a1i cos(t)} + ci{b1i sin(t) + b2i cos(t)}, where

0 < t < 2π, ci is 1 with probability 0.1 and 0 with probability 0.9. The coefficients

a1i and a2i follow independent uniform distributions on [0,0.05], and b1i and b2i also

follow independent uniform distributions but on [0.1,0.15]. This model (model 6) is

similar to the third example studied in Hyndman and Shang (2010), but we introduce
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outliers randomly with probability 0.1.
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Figure 23. Top panels: the original curves generated from model 6, the corresponding

functional boxplot and the functional bagplot. Bottom panels: the cor-

responding functional HDR boxplots for α = 0.05, 0.1, 0.2, respectively.

For one particular generated dataset, the original curves and the corresponding

functional boxplot and functional bagplot are shown in the top panels of Figure 23.

Since the functional highest density region (HDR) boxplot needs to prespecify α,

the coverage probability of the outlying region, the corresponding HDR boxplots for

α = 0.05, 0.1, 0.2 are shown in the bottom panels of Figure 23. For this dataset,

the functional boxplot correctly detects all the outliers, but the functional bagplot

fails to detect any. The three HDR boxplots clearly show that the outlier detection

performance highly depends on the prespecified α. When α increases, more outliers
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are detected but non-outlying curves are also more likely to be flagged as potential

outliers at the same time.

Similarly, we obtain the distribution of the two percentage p̂c and p̂f for model

6 with 1000 replications and 100 curves. The means and standard deviations are

reported in Table 5. The simulation results show that the functional boxplot also

works better than the functional bagplot for model 6 and also better than the func-

tional HDR boxplot even with the correctly prespecified outlier probability. For the

functional HDR boxplots, the mean of p̂c and p̂f both increases as α increases. Hence,

the outlier detection performance depends on the choice of α.

Table 5: The mean and standard deviation (in the parentheses) of the percentage

p̂c and p̂f for the functional boxplot, the functional bagplot and the HDR

boxplots with 1000 replications, 100 curves for model 6.

Method Functional Boxplot Functional Bagplot
Functional HDR Boxplots

α = 0.05 α = 0.1 α = 0.2

p̂c 100(0.2) 72.8(42.4) 54.7(17.7) 90.7(12.9) 100(0.6)
p̂f 0(0) 0.48(4.50) 0.07(0.32) 1.41(1.75) 11.1(3.0)

Any outlier detection method should take care of both magnitude and shape

outliers. However, to detect shape outliers not far from the median curve with lower

density is not an easy task. The functional boxplot would be a good outlier detection

method when outliers are either far away from the median in magnitude (models 2

to 4), or outlying in terms of shape but with some outlyingness in magnitude as well

(models 5 and 6). However, it may miss outliers which are completely outlying in

shape without showing any feature of magnitude outliers. This is where a density

approach such as a functional highest density region boxplot can be useful, albeit

the fact that the percentage of potential outliers must be known and the first two
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PC scores must explain most of the variation. To illustrate this situation, we let the

parameters a1i and a2i in model 6 follow independent uniform distributions on [0,0.1],

and b1i and b2i follow independent uniform distributions on [0.1,0.12]. In this model

(model 7), the parameters have the same values as the third example in Hyndman

and Shang (2010), which make the outliers not very outlying in magnitude. The only

difference is that we still simulate 100 curves and introduce outliers randomly with a

probability of 0.1.
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Figure 24. Top panels: the original curves generated from model 7, the corresponding

functional boxplot and the functional bagplot. Bottom panels: the cor-

responding functional HDR boxplots for α = 0.05, 0.1, 0.2, respectively.

For one particular generated dataset, the original curves and the corresponding

functional boxplot and functional bagplot are shown in the top panels of Figure 24,
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and the corresponding HDR boxplots for α = 0.05, 0.1, 0.2 are shown in the bottom

panels of Figure 24. For this dataset, the functional boxplot and functional bagplot

fail to detect any of the outliers because the outlying curves are not sufficiently

distant from the median. All three HDR boxplots detect some of the outliers but

also flag other curves as potential outliers. As in model 6, when α increases, more

and more outliers are detected. With 1000 replications and 100 curves, we obtain the

distribution of the two percentage p̂c and p̂f for model 7. The means and standard

deviations are reported in Table 6. It is shown that the functional boxplot fails to

detect the outliers that are not far from the median, and the functional bagplot also

fails most of the time. In contrast, the HDR boxplots can identify more such outliers

but the correct detection rate is not high. For instance, the mean of p̂c is only 17.5%

even with the correctly prespecified α = 0.1. A larger α could increase the correct

detection rate, however, the false detection rate increases as well.

Table 6: The mean and standard deviation (in the parentheses) of the percentage

p̂c and p̂f for the functional boxplot, the functional bagplot and the HDR

boxplots with 1000 replications, 100 curves for model 7.

Method Functional Boxplot Functional Bagplot
Functional HDR Boxplots

α = 0.05 α = 0.1 α = 0.2

p̂c 0(0) 1.73(12.31) 8.25(19.39) 17.5(29.9) 33.0(38.5)
p̂f 0(0) 0.66(5.26) 5.07(1.15) 9.95(2.08) 19.7(3.3)
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4.5. Applications

4.5.1. Children growth data

A strong point of the functional boxplot is its ability to display differences between

populations without making any assumptions on the underlying statistical distribu-

tion. We start by applying the functional boxplot to the children growth data of

Ramsay and Silverman (2005). The heights of 54 girls and 39 boys were measured

at 31 unequally spaced ages from 1 year to 18 years. Within each population, the

growth curves are monotonic and similar to a shifted version of each other. Thus we

use the MBD because it is more suitable for magnitude outliers as we have discussed

in Section 4.2.

Comparing the original curves to the functional boxplots in Figure 25, we see

that the latter are very informative to compare the boys and girls data. The four

blue curves and the black curve are the analog to the five summary statistics in a

classical boxplot as we explained in the previous section. The median curves can

be interpreted as the most representative observed patterns of children growth with

age. In the functional boxplot for girls, we notice that there is one detected outlier

candidate (red dashed curve), and girls reach lower height values at the end of the

growth curves. Also, the shape of the boxes and the median curves depict that boys

grew faster than girls between age 13 and 15 years. This information is difficult to

obtain by simply looking at the original curves. In addition, one girl is detected as an

outlier candidate whose growth curve is always higher in magnitude than the rest. In

terms of the shape, this girl grew a little faster at her early age and stopped growing

earlier but then still ended up taller than the others.
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Figure 25. Top panels: the heights of 39 boys and 54 girls at 31 unequally spaced

ages. Bottom panels: the corresponding functional boxplots of the chil-

dren growth data using MBD.
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4.5.2. Spatio-temporal precipitation data

Another feature of the functional boxplot is its ability to summarize information from

complex data, such as space-time datasets. To illustrate this aspect, we use the ob-

served annual total precipitation data for the coterminous U.S. from 1895 to 1997,

provided by the Institute for Mathematics Applied to Geosciences at the web page

(http://www.image.ucar.edu/Data/US.monthly.met/ ). There are 11,918 stations re-

porting precipitation at some time in this period. The observations are functional

data since we have one time series with p = 103 yearly precipitation observations,

or one curve, at each spatial location. Before we apply the functional boxplot to

this complex dataset, we first need to perform smoothing to estimate each mean pre-

cipitation curve because the records of precipitation at each weather station are so

variable. The original data were smoothed by a spline smoothing approach in a non-

parametric regression model yj = f(xj) + εj, where εj i.i.d. ∼ N(0, σ2), j = 1, . . . , p.

Spline smoothing uses all unique data points x1, . . . , xp as knots in the formula-

tion of the cubic spline. Then the cubic spline estimator is obtained by minimizing∑p
j=1{yj − f(xj)}2 + λi

∫
f̈(x)2 dx, where f̈(x) is the second derivative of f(x) and

λi is the smoothing parameter of the ith curve. The smoothing parameters were es-

timated from the data by generalized cross-validation. Using functional boxplots to

summarize and compare the annual precipitation for different climatic regions is an

interesting application. Nine climatic regions for precipitation in the U.S. are defined

by the National Climatic Data Center (NCDC) and shown in Figure 26. The number

of stations is large for each region: the minimum number is 823 for the East North

Central region and the maximum number is 2,084 for the South region. Blue dots

denote stations with normal precipitation and red plus signs present potential out-

lying stations with respect to their respective climatic region detected by enhanced
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Figure 26. U.S. climatic regions for precipitation from NCDC with abbreviations

for North East, East North Central, Central, South East, West North

Central, South, South West, North West, and West. Blue dots denote

stations with normal precipitation and red plus signs present potential

outlying stations with respect to their respective climatic region detected

by enhanced functional boxplots.

functional boxplots.

The nine enhanced functional boxplots based on MBD in Figure 27 reveal infor-

mation about the different annual precipitation characteristics for different climatic

regions. For each region, the global spatial outliers denoted by red dashed curves

correspond to the red plus signs on the U.S. map in Figure 26.

There are mainly four areas of potential outliers within the U.S. shown in Fig-

ure 26. Two of them are located along the Rocky mountains in the West and the

Appalachian mountains in the East with different patterns from the other locations

in the corresponding climatic regions. In addition, certain amounts of potential out-

liers appear along the west coast with higher precipitation which can be clearly seen
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Figure 27. Enhanced functional boxplots of observed yearly precipitation over the

nine climatic regions for the coterminous U.S. from 1895 to 1997 using

MBD. Dark magenta, magenta and pink denote the 25%, 50% and 75%

central regions respectively and the outlier rule is 1.5 times the 50% cen-

tral region. The percentage of outliers in each climatic region is provided.
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in the enhanced functional boxplot of North West in Figure 27. By identifying the

locations of the potential outliers in the enhanced functional boxplot of South East,

we notice that the annual precipitation at the southmost tip in Florida shows an

oscillatory pattern. It varies greatly from year to year when hurricanes and droughts

have occurred. In Florida, wet springs and summers make up the wet season, and

relatively dry winters and autumns form the dry season. If we go back to look at

the original monthly precipitation, it matches the wet and dry seasons at normal

locations. However, the outlying locations usually have drier springs, but wet season

from July to November even though it is during the drought. And during wet years,

most of the precipitation is contributed by the period from July to November which

is the hurricane season in Florida. Therefore, the high points of the oscillation in the

enhanced functional boxplot capture the effects of hurricanes. If we use a logarithmic

scale, it would yield fewer potential outliers. However, it is common that an observa-

tion could be an outlier in one scale but not in another. As the classical boxplot also

suffers from the same problem, we prefer not to do any transformation in general.

As we have noticed, for spatio-temporal data, we do not have independent curves

like in the children growth data example. These precipitation curves are spatially

correlated, but the dependence between the curves should only affect the variance of

the band depth estimator, not its unbiasedness. The percentage of potential outliers

might be different because of the spatial correlation.

4.6. Discussion

This chapter presented the functional boxplot as an informative exploratory tool

for visualizing functional data, as well as its generalization, the enhanced functional

boxplot. These functional boxplots were applied to sea surface temperatures, children
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growth and spatio-temporal precipitation datasets. With this new technique, outliers

can be detected based on the 1.5 times the 50% central region empirical rule. Our

approach is distinct from others in treating each curve as an observation rather than

summarizing datasets pointwisely. The descriptive statistics in a functional boxplot

are rank-based, hence they may lead to building robust statistical models to capture

the features of complex datasets.

Figure 28. The surface boxplot with the box in the middle representing the 50%

central region in R3, the middle surface inside the box denoting the me-

dian surface, and the upper and lower surfaces indicating the maximum

non-outlying envelope.

For spatio-temporal data, we have viewed the information as a temporal curve

at each spatial location. An alternative would be to treat the dataset as a spatial

surface at each time. In that case, we could define a volume-based surface band depth

for a surface S by counting the proportion of surface bands determined by J different

surfaces (2 ≤ J ≤ n) in R3, containing S. This would lead to a three-dimensional
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surface boxplot with similar characteristics as the functional boxplots defined in this

article. An illustrative surface boxplot is shown in Figure 28. Similarly, the fences

are obtained by the 1.5 times the 50% central region rule. Any surface outside the

fences are flagged as outlier candidates. The surface boxplot is a natural extension

of the functional boxplot to R3. However, to obtain a three-dimensional functional

bagplot, one would definitely need robust principal component analysis techniques to

an array rather than a matrix (Hyndman and Shang, 2010).
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CHAPTER V

ADJUSTED FUNCTIONAL BOXPLOTS FOR

SPATIO-TEMPORAL DATA VISUALIZATION

AND OUTLIER DETECTION

5.1. Introduction

Functional data analysis is an attractive approach to study complex data in statistics.

In many statistical experiments, the observations are functions by nature, such as

temporal curves or spatial surfaces, where the basic unit of information is the entire

observed function rather than a string of numbers. There is also an interesting class

of applications that can be characterized as random processes evolving in space and

time in, for instance, environmental science, agriculture, climatology, meteorology

and hydrology.

To analyze functional data, many model-based methods have been developed over

the years, among which Ramsay and Silverman (2005) provided various parametric

methods while Ferraty and Vieu (2006) developed detailed nonparametric techniques.

For spatio-temporal data, one can imagine a random field Z(s, t), (s, t) ∈ Rd ×

R, observed at the space-time coordinates (s1, t1), . . . , (sn, tn). The spatio-temporal

variable Z(s, t) could stand for temperature, precipitation, wind speed or atmospheric

pollutant concentrations, to name a few. Some recent literature, such as Kyriakidis

and Journel (1999), Brown et al. (2001), Banerjee et al. (2004), Schabenberger

and Gotway (2005), and Cressie and Wikle (2011) point out the significance of the

spatio-temporal modeling approach.

However, visualization methods can also help to display the data, highlight their

characteristics and reveal interesting features. Sun and Genton (2011) proposed an
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informative exploratory tool, the functional boxplot, and its generalization, the en-

hanced functional boxplot, for visualizing functional data as well as detecting po-

tential outliers. The functional boxplot orders functional data by means of band

depth (López-Pintado and Romo, 2009). It allows for ordering a sample of curves

from the center outwards and, thus, introduces a measure to define the centrality or

outlyingness of an observation. Indeed, one can compute the band depths of all the

sample curves and order them according to decreasing depth values. Suppose each

observation is a real function yi(t), i = 1, . . . , n, t ∈ I, where I is an interval in R.

Let y[i](t) denote the sample curve associated with the ith largest band depth value.

Then y[1](t), . . . , y[n](t) can be viewed as order statistics, with y[1](t) being the deepest

(most central) curve or simply the median curve, and y[n](t) being the most outlying

curve. The implication is that a smaller rank is associated with a more central posi-

tion with respect to the sample curves. The order statistics induced by band depth

start from the most central sample curve and move outwards in all directions. Thus,

it is straightforward to define a central region for functional data.

In the classical boxplot, the box itself represents the middle 50% of the data. By

analogy, the 50% central region in the functional boxplot can be defined by extending

the concept of central region introduced by Liu et al. (1999) to functional data. The

band delimited by the α proportion (0 < α < 1) of deepest curves from the sample is

used to estimate the α central region. In particular, the sample 50% central region is

C0.5 =
{
(t, y(t)) : min

r=1,...,⌈n/2⌉
y[r](t) ≤ y(t) ≤ max

r=1,...,⌈n/2⌉
y[r](t)

}
,

where ⌈n/2⌉ is the smallest integer not less than n/2. The envelope of the 50% central

region represents the box in a classical boxplot. Thus, this 50% central region is the

analog to the “inter-quartile range” (IQR) and gives a useful indication of the spread

of the central 50% of the curves.
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For functional boxplots, based on the center outwards ordering induced by band

depth for functional data, the descriptive statistics are: the envelope of the 50% cen-

tral region, the median curve and the maximum non-outlying envelope. In addition,

potential outliers can be detected in a functional boxplot by the 1.5 times the 50%

central region empirical rule, analogous to the rule for classical boxplots. Recall that

the 50% central region is the analog to the IQR. The outer region (the “fence”) is

obtained by inflating the inner region (the “envelope”) by 1.5 times the range of the

50% central region. Any curves crossing the fences are flagged as potential outliers.

Considering that when each curve is simply a point, the functional boxplot degen-

erates to a classical boxplot, Sun and Genton (2011) suggested the constant factor 1.5

as in a classical boxplot, but left to the user the possibility of modifying it. However,

for functional data, there will be necessarily dependence in time for each curve. And

for spatio-temporal data, curves from different locations will be spatially correlated as

well. The outlier detection performance may be affected by the dependence in time

and space. Therefore, in this chapter, we investigate the relationship between the

dependence and the constant factor, and then propose a method to adjust the factor

in a functional boxplot. This leads to an adjusted functional boxplot. Febrero et al.

(2007, 2008) also considered outlier detection in functional data by depth measures

but they did not account for the temporal or spatio-temporal correlation in the data

and their method is quite different from the functional boxplot approach.

Classical boxplots were first introduced by Tukey (1970) and Tukey (1977, pp. 39-

43) in exploratory data analysis. In a classical boxplot, outliers can be detected by the

1.5 time IQR empirical rule. Here the constant factor 1.5 can be justified by a standard

normal distribution. Let Q1 and Q3 be the first and third quartiles of the standard

normal distribution, respectively. The fences determined by L1 = Q1−1.5×IQR and

L2 = Q3 + 1.5× IQR are −2.698 and 2.698. Then the probability of being detected
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as an outlier is 0.7%. If we change the factor to 2, then the probability that a value is

an outlier is only 0.07%. Therefore, in the functional boxplot, we would like to adjust

the value of the constant factor based on the dependence such that the probability of

detecting no outliers is 99.3% when actually no outliers are present. It is clear that

in a functional boxplot, the factor adjustment is crucial for outlier detection since it

determines the percentage of detected outliers. However, the adjustment involves a

certain amount of computation, thus it is not necessary if one only wants to visualize

and compare functional or spatio-temporal data.

This chapter is organized as follows. Section 5.2 illustrates how the dependence in

time and space affects the outlier detection performance of functional boxplots. Then

the new method to select the constant factor in a functional boxplot is proposed in

Section 5.3. The adjusted functional boxplots are demonstrated on applications to

space-time datasets in Section 5.4, and a discussion is provided in Section 5.5.

5.2. Simulation Studies

To illustrate how the dependence in time and space affects the outlier detection per-

formance of the functional boxplots, simulation studies are conducted under different

spatio-temporal covariance models reviewed by Gneiting et al. (2007). Other covari-

ance models can be found in Cressie and Huang (1999) and Gneiting (2002).

5.2.1. Data generation

We consider data drawn from a zero-mean, stationary spatio-temporal Gaussian ran-

dom field Z(s, t) where (s, t) ∈ R2 × R. Let C(h, u) = cov{Z(s1, t1), Z(s2, t2)} be

the covariance function between any two observations whose locations are apart by a

vector h = s1− s2 and a time span u = |t1− t2|. Then C(h, 0) and C(0, u) are purely
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spatial and purely temporal covariance functions, respectively. The spatio-temporal

data Z(si, t), where 1 ≤ i ≤ n, t ∈ [0, 1], are generated from the Gaussian random

field Z(s, t) at n = 100 locations s1, . . . , sn on a grid of size 10 × 10 with the grid

spacing 1/9. We aim at seeing how the strength of the correlation in time, in space,

or in both, affects the outlier detection performance of the functional boxplot with

the constant factor F = 1.5. We consider the following isotropic correlation models:

1. A purely temporal correlation function of Cauchy type,

CT (u) = (1 + a|u|2α)−1, (5.1)

where α ∈ (0, 1] controls the strength of the temporal correlation and a > 0 is

the scale parameter in time. We set a = 1 and let α vary from 0.1 to 0.9.

2. A purely spatial correlation function of the form

CS(h) = (1− ν) exp(−c∥h∥) + νδh=0, (5.2)

where c > 0 controls the strength of the spatial correlation, and ν ∈ (0, 1] is a

nugget effect. We set ν = 0.05 and let c vary from 0.1 to 2.

3. A space-time separable correlation function of the form

CSEP (h, u) = CS(h)CT (u), (5.3)

which is the product of the purely temporal correlation function (5.1) and the

purely spatial correlation function (5.2). Here, we consider combinations of α

and c, where each has three levels, α = 0.1, 0.5, 0.9 and c = 0.1, 1, 2.

4. A fully symmetric but generally non-separable correlation function

CFS(h, u) =
1− ν

1 + a|u|2α

[
exp

{
− c∥h∥
(1 + a|u|2α)β/2

}
+

ν

1− ν
δh=0

]
,
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where 0 ≤ β ≤ 1 controls the non-separability. It reduces to the separable

model (5.3) when β = 0. Here we set β = 1, the most non-separable version

of this model, ν = 0.05 and consider the same combinations of α and c as in

model (5.3).

5. A general stationary correlation model

CSTAT (h, u) =
(1− ν)(1− λ)

1 + a|u|2α

[
exp

{
− c∥h∥
(1 + a|u|2α)β/2

}
+

ν

1− ν
δh=0

]
+ λ

(
1− 1

2v
|h1 − vu|

)
+

,

where q+ = max(q, 0) and h1 is the first component of the spatial separation

vector h = (h1, h2)
′. Here 0 ≤ λ ≤ 1 controls the asymmetry. Again, we set

a = 1, β = 1 and ν = 0.05, then let λ = 0.5, v = 0.05 and consider the same

combinations of α and c as in model (5.3).

In the simulation studies, we generate n = 100 curves without any outliers at

locations s1, . . . , sn and p = 50 time points from the model Z(s, t) = g(s, t) + e(s, t),

with mean g(s, t) = 0, (s, t) ∈ [0, 1]2 × [0, 1] and where e(s, t) is a Gaussian random

field with zero mean and covariance function the same as each of the correlation

models above. Then with 1,000 replications, we compute the proportion of time that

functional boxplots with the constant factor F = 1.5 detect no outliers. Thus, a

proportion much smaller than 1 is an indication of bad outlier detection performance.

5.2.2. Numerical results

Tables 7 and 8 summarize the simulation results. In the purely temporal model (5.1),

the larger the value of α, the stronger the temporal dependence is when u < 1. For

a fixed constant factor F = 1.5 in the functional boxplot, Table 7 shows that the

proportion of times that the functional boxplot correctly detects no outliers decreases
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as α increases. In other words, the stronger the correlation in time, the worse the

outlier detection performance is. Similarly, in the purely spatial model (5.2), the

smaller the value of c, the stronger the spatial dependence is. For all the values of c

in Table 7, the proportions of correctly detecting no outliers are close to 1. This is an

evidence that the constant factor 1.5 is too large when spatial correlation exists since

usually spatially correlated curves are more concentrated than independent ones.

Table 7: The proportion of times (p) that a functional boxplot with the constant factor

F = 1.5 correctly detects no outliers under the purely temporal and the purely

spatial correlation models with 1,000 replications and n = 100 curves.

Temporal
α 0.1 0.3 0.5 0.7 0.9

p 0.998 0.974 0.938 0.839 0.745

Spatial
c 0.1 0.5 1 1.5 2

p 1 0.999 1 1 1

Table 8: The proportion of times that a functional boxplot with the constant factor

F = 1.5 correctly detects no outliers under the separable, symmetric but

non-separable and the general stationary spatial-temporal correlation models

with 1,000 replications and n = 100 curves.

@
@
@
@
@

α

c Separable Symmetric Stationary

0.1 1 2 0.1 1 2 0.1 1 2

0.1 1 0.997 0.993 0.995 0.990 0.994 0.995 0.994 0.995

0.5 1 0.980 0.961 0.956 0.945 0.952 0.957 0.943 0.950

0.9 1 0.942 0.908 0.901 0.854 0.836 0.900 0.833 0.844
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Table 8 provides the proportion of times that a functional boxplot with the

constant factor F = 1.5 correctly detects no outliers for each combination of α and c

under the separable, symmetric but non-separable and the general stationary spatial-

temporal correlation models. It also shows that the proportion of correctly detecting

no outliers decreases as α or the temporal dependence increases. For each value of

α under different correlation models, since the strongest spatial correlation (c = 0.1)

makes curves most concentrated, with the fixed constant factor F = 1.5 in functional

boxplots, the proportions of correctly detecting no outliers for c = 0.1 are always the

largest among those for c = 0.1, 1, 2. When the dependence in time is relatively large,

α = 0.5, 0.9, all the proportions under the separable correlation model are greater,

hence better outlier detection performance, than that under either the symmetric

but non-separable or the general stationary correlation model. This suggests that

the interaction or the separability between spatial and temporal dependence has an

effect on the outlier detection performance in a functional boxplot. To investigate the

possible effect of the asymmetry in a correlation model, we compare the proportion

of a functional boxplot correctly detecting no outliers under the symmetric but non-

separable and the general stationary correlation models. When α = 0.5, 0.9 and

c = 1, the two proportions under the symmetric correlation model are larger than

those under the general stationary one. However, there are still several cases where

the general stationary model shows a better outlier detection performance.

It is now clear that the adjustment of the constant factor in functional boxplots

is necessary when spatio-temporal correlations exist. In Section 5.3, we propose a

method for selecting the factor F .



85

5.3. Selection of the Adjustment Factor

The simulation studies in Section 5.2 have shown that the constant factor F = 1.5

gives different probability coverage under different spatio-temporal correlation mod-

els. In other words, we should choose the value of the factor F by controlling the

probability of detecting no outliers to be 99.3% when actually no outliers are present.

Sharing the same idea as in the simulations, we propose first to estimate the

covariance matrix of the data in order to generate observations without any outliers.

Then we use the simulations described in Section 5.2 to choose the constant factor

F such that the percentage of outliers in a functional boxplot 1 − 99.3% = 0.7%.

Finally, we can apply this adjusted factor to the functional boxplot on the original

data and detect outliers. When estimating the covariance matrix, robust techniques

are needed since outliers may exist in the original data. We use a componentwise

estimator of a dispersion matrix proposed by Ma and Genton (2001), based on a

highly robust estimator of scale, Qn. This estimator is location-free and has already

been successfully used in the context of variogram estimation (Genton, 1998) in spa-

tial statistics, and autocovariance estimation (Ma and Genton, 2000) in time series.

There are also many other robust estimators that could be used, some of which are

based on the minimization of a robust scale of Mahalanobis distances. For example,

the minimum volume ellipsoid (MVE) and minimum covariance determinant (MCD)

estimators (Rousseeuw, 1984, 1985). However, their computation can be challenging.

Alternatively, a more rapid orthogonalized Gnanadesikan-Kettenring (OGK) estima-

tor was proposed by Maronna and Zamar (2002) for high dimensional datasets.

In order to reduce the computational burden and simplify the covariance matrix

estimation, we only generate a small number of curves, n = 100, without any outliers

at p time points from the model Z(s, t) = g(s, t)+e(s, t), with mean g(s, t) = 0, (s, t) ∈
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R2×R. Here e(s, t) is a Gaussian random field with mean zero and covariance function

estimated from the standardized original data, hence with marginal variance 1. For

simplicity, we let the trend g(s, t) be 0 and the marginal variance be 1 because they

do not affect the values of band depth, hence the order of these curves. In addition,

for spatio-temporal data, to reduce the dimension of the spatio-temporal covariance,

we only estimate the covariances at certain distances and time lags depending on the

simulation design.

5.4. Applications

5.4.1. Sea surface temperatures

A dataset of sea surface temperatures was used by Hyndman and Shang (2010) and

Sun and Genton (2011) to demonstrate the functional bagplot and the functional

boxplot, respectively. The data consist of monthly sea surface temperatures (SST)

measured in degrees Celsius over the east-central tropical Pacific Ocean and are shown

in the left panel of Figure 29. In this case, each curve represents one year of observed

SST in degrees Celsius from January 1951 to December 2007. The functional boxplot

with the constant factor F = 1.5 in Sun and Genton (2011) detects two potential

outliers: the years 1983 and 1997. In addition, the year 1982 from September to

December and the year 1998 from January to June are viewed as being part of the

maximum envelope. These 57 annual temperature curves show similarity in shape

since they share a common mean function. Therefore, we detrend them first by sub-

tracting the sample mean at each time point and then check the correlations between

the curves. Since the correlations are not statistically significant, we assume that

these annual temperature curves are independent copies of each other and estimate

the 12×12 covariance matrix in time. In simulations, by generating n = 100 curves at
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Figure 29. Left panel: data of monthly sea surface temperatures measured in de-

grees Celsius over the east-central tropical Pacific Ocean from 1951 to

2007. Right panel: the adjusted functional boxplot of SST with the con-

stant factor 1.8. The blue lines denote envelopes and the black line repre-

sents the median curve. The red dashed curves are the outlier candidates

detected by the 1.8 times the 50% central region rule.

p = 12 time points from a Gaussian process with zero mean and estimated covariance

function, the coverage probabilities for different values of the constant factor are listed

in Table 9 with 1,000 replications. We select the constant factor to be 1.8 since when

F = 1.8, the coverage probability is 0.995 close to 99.3%. The adjusted functional

boxplot of the sea surface temperatures with the constant factor 1.8 is shown in the

right panel of Figure 29. After adjusting the constant factor, the functional boxplot

still detects two El Niño years as outlier candidates.
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Table 9: The coverage probabilities for different values of the constant factor F with

n = 100 curves at p = 12 time points and 1,000 replications in simulations

for the sea surface temperatures example. The selected factor is in bold font.

Factor F 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Coverage 0.768 0.859 0.922 0.956 0.979 0.988 0.995 1.000 1.000

5.4.2. Spatio-temporal precipitation

The functional boxplot can summarize information from complex data, such as space-

time datasets. Sun and Genton (2011) illustrated this aspect by visualizing the ob-

served annual total precipitation data for the coterminous U.S. from 1895 to 1997,

provided by the Institute for Mathematics Applied to Geosciences at the web page

(http://www.image.ucar.edu/Data/US.monthly.met/ ). There are 11,918 stations re-

porting precipitation at some time in this period. The observations are time series

with p = 103 yearly precipitation observations, or one curve, at each spatial loca-

tion. Functional boxplots were applied to nine climatic regions for precipitation in

the U.S. defined by the National Climatic Data Center (NCDC) and the percentages

of detected potential outliers for each region were reported. Sun and Genton (2011)

noticed that for spatio-temporal data, the precipitation curves are not independent

but spatially correlated. Therefore, the percentages of potential outliers might not

be correct due to the spatial correlations.

By taking the spatio-temporal correlation into account, we adjust the constant

factor in the functional boxplots again by simulations. For each climatic region, in

the simulation, we generate spatio-temporal data from a zero-mean Gaussian random

field at n = 100 locations on a grid of size 10×10 with the grid spacing 1/9 at p = 30

time points. Here the distance unit is kilometer and the time unit is year. Then
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Table 10: The coverage probabilities for different values of the constant factor

F = 1.4, 1.5, . . . , 2.2 with n = 100 curves at p = 30 time points and 1,000

replications in simulations for the precipitation application. The nine cli-

matic regions are North East (NE), East North Central (ENC), Central (C),

South East (SE), West North Central (WNC), South (S), South West (SW),

North West (NW), and West (W). The selected factors are in bold font.

Region 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

NE 0.927 0.951 0.971 0.985 0.987 0.993 0.994 0.995 0.996

ENC 0.896 0.941 0.958 0.972 0.985 0.989 0.993 0.994 0.995

C 0.926 0.951 0.970 0.984 0.988 0.994 0.995 1.000 1.000

SE 0.926 0.948 0.974 0.979 0.988 0.993 0.996 0.999 1.000

WNC 0.893 0.944 0.966 0.973 0.984 0.990 0.992 0.995 0.996

S 0.902 0.934 0.959 0.976 0.983 0.987 0.989 0.993 0.994

SW 0.920 0.948 0.972 0.979 0.987 0.992 0.993 0.995 0.995

NW 0.911 0.939 0.962 0.974 0.983 0.987 0.992 0.993 0.995

W 0.911 0.949 0.974 0.988 0.993 0.994 0.996 0.999 0.999

we estimate the 3, 000× 3, 000 covariance matrix from the standardized original data

and obtain the coverage probabilities for different values of the constant factor with

1,000 replications. The results are summarized for each region in Table 10. Each

component of the 3, 000 × 3, 000 covariance matrix is estimated by the Qn-based

procedure of Ma and Genton (2001). To reduce the computational effort, for each

combination of time lag and distance, we estimate the covariance element by randomly

selecting pairs of the irregularly spaced locations that are close to the distances on

the 10 × 10 grid under the assumption of stationarity. Based on the concept of

central regions, Sun and Genton (2011) generalized the functional boxplot to an
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Figure 30. Adjusted enhanced functional boxplots of observed yearly precipitation

over the nine climatic regions for the coterminous U.S. from 1895 to 1997.

Dark magenta, magenta and pink denote the 25%, 50% and 75% central

regions, respectively, and the outlier rule is the adjusted constant factor

times the 50% central region. The percentage of detected outliers in each

climatic region is provided.
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enhanced functional boxplot where the 25% and 75% central regions are provided in

addition to the 50% central region. For the spatio-temporal precipitation data, the

nine adjusted enhanced functional boxplots in Figure 30 can still reveal information

about the different annual precipitation characteristics for different climatic regions,

but with less potential outliers than previously detected by Sun and Genton (2011).

The percentage of detected outliers for each region is summarized in Table 11.

Table 11: Comparison of outlier detection percentages for each climatic region before

and after adjustment of the constant factor.

Region NE ENC C SE WNC S SW NW W

Before 0.21 0 0.25 2.52 2.04 0 3.03 2.13 4.04

After 0.14 0 0.12 1.57 1.09 0 1.41 0.20 1.72

5.4.3. General Circulation Model

A General Circulation Model (GCM) is a climate model of the general circulation of

a planetary atmosphere or ocean. It uses complex computer programs to simulate

the Earth’s climate system and allows us to look into the Earth’s past, present and

future climate states. Here we consider precipitation data generated from the Na-

tional Center for Atmospheric Research-Community Climate System Model (CCSM)

Version 3.0 (Collins et al., 2006, and references therein), which was run given scenar-

ios from the Intergovernmental Panel on Climate Change (IPCC)’s Special Report on

Emission Scenarios (SRES); see IPCC (2000) and Ammann et al. (2010). Functional

boxplots can be used to visually compare the annual precipitation produced by the

GCM with the real observations from weather stations considered in the previous
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section.

For these GCM data, there are 256 × 128 cells over the whole globe with a

resolution of 1.406× 1.406 degree, or around 156× 156 kilometers. The observations

from weather stations are much denser but only for the coterminous U.S.. To make

the weather station observations comparable to the GCM data, we match them by

longitude and latitude first, and then average the observations from weather stations

within each cell which leads to 473 cells in total, hence 473 annual precipitation curves

for the coterminous U.S..

For the coterminous U.S. precipitation, the functional boxplots with the constant

factor F = 1.5 for weather station and GCM data are shown in the top panel of

Figure 31 with the percentage of detected outliers. Now, we estimate the 3, 000×3, 000

spatio-temporal covariance matrix from the standardized original data by the same

simulation design as in Section 5.4.2 and the coverage probabilities for different values

of the constant factor with 1,000 replications are summarized in Table 12 for both

weather station and GCM data. The adjusted functional boxplots with percentage

of detected outliers are shown in the bottom panel of Figure 31.

Table 12: The coverage probabilities for different values of the constant factor

F = 1.4, 1.5, . . . , 2.2 with n = 100 curves at p = 30 time points and 1,000

replications in simulations for both weather station and GCM data. The

weather station and the GCM past are for the time period from 1970 to

1997. The GCM future is for the time period from 2070 to 2097. The

selected factors are in bold font.

Source 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

Weather Stations 0.904 0.945 0.968 0.979 0.987 0.993 0.997 0.998 0.999
GCM Past 0.914 0.950 0.971 0.979 0.985 0.990 0.992 0.993 0.996
GCM Future 0.912 0.947 0.966 0.981 0.988 0.991 0.994 0.998 0.998
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Figure 31. Top panel: the functional boxplots of weather station and GCM data

with the constant factor F = 1.5 for the coterminous U.S. precipitation.

Bottom panel: the adjusted functional boxplots of weather station and

GCM data with the adjusted constant factor F for the coterminous U.S.

precipitation.
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Figure 31 shows that the precipitation data produced by the GCM roughly cap-

ture the overall patten of the U.S. precipitation. The two functional boxplots of

weather station and GCM data coincide on the median curves and the maximum

annual precipitation for some wet locations is also on the same level. However, the

narrower 50% central region in the functional boxplot of the GCM data indicates the

first 50% most representative precipitation curves have less variability which leads

to a relatively large percentage of outliers. Moreover, both functional boxplots are

skewed to the right (i.e. to large precipitation), but the one for GCM does not pro-

duce as low annual precipitation as the real observations from weather stations for

some dry locations.

The maps of weather station and GCM data where outliers are detected by the

adjusted functional boxplots with respect to either the whole U.S. or each of the

climatic regions are shown in Figure 32. For the whole U.S., the outliers, denoted

by red plus signs, are around the North of the U.S. for GCM data, but the only one

outlier detected by the functional boxplot is located at the North West for weather

station data. The maps also show that the precipitation data produced by GCM do

not capture the characteristics of the observed precipitation from weather stations

well. From weather stations, the West of the U.S. overall has a lower precipitation

than the East, and the higher precipitation locations are along the west coast and the

South East. This pattern is hard to see from the GCM and the higher precipitation

locations appear in the North shown as outliers. As can be expected, the detected

outliers with respect to each climatic region are different from those for the whole

U.S.. For climatic regions, the potential outliers are still in the North of the U.S. for

GCM data with a larger percentage, but are located along the West coast and the

Rocky Mountain area for weather station data.

The GCM also simulates precipitation for the future. The future runs of the GCM
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Figure 32. Top panel: the maps of weather station and GCM data where outliers are

detected by the functional boxplots with the constant factor F = 1.5 for

the coterminous U.S. precipitation. Middle panel: the maps of weather

station and GCM data where outliers are detected by the adjusted func-

tional boxplots for the coterminous U.S. precipitation. Bottom panel: the

maps of weather station and GCM data where outliers are detected by

the adjusted functional boxplots for each climatic region. The colors of

each cell denote the averaged annual precipitation and the red plus signs

indicate the detected outliers.
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Figure 33. Top panel: the functional boxplot and the adjusted functional boxplot of

weather station data for the coterminous U.S. precipitation from 1970 to

1997. Middle panel: the functional boxplot and the adjusted functional

boxplot of GCM data for the coterminous U.S. precipitation from 1970 to

1997. Bottom panel: the functional boxplot and the adjusted functional

boxplot of GCM data for the coterminous U.S. precipitation from 2070

to 2097 under IPCC A2 scenario.
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were under the IPCC A2 scenario (Ammann et al. 2010) after the year 2020, which

considers a continued increase of atmospheric green house gases and the associated

warming throughout the 21st century. To compare the past precipitation with the fu-

ture rainfall, we use the adjusted functional boxplots to visualize the spatio-temporal

precipitation for the time period from 1970 to 1997 and for the future period from

2070 to 2097. For the past, the functional boxplots of weather station and GCM data

are shown in the top and middle panels of Figure 33. The bottom panel of Figure 33

shows the functional boxplots of GCM data for the future. The future runs of the

GCM produce a little wider 50% central region than the past runs do, thus a smaller

outlier percentage, but both have narrower 50% central regions hence larger outlier

percentages compared to the weather station data. We can also see that the median

curves of the past and future runs from GCM are higher than that from weather sta-

tions and the minimum precipitation is also higher than the real observations. The

corresponding maps are shown in Figure 34 including the outliers with respect to each

of the climatic regions. The map of the GCM future runs follows the same pattern

with the GCM past runs which is different from the weather stations. For the whole

U.S., the detected outliers for the GCM future runs are fewer than those for the past

runs. However, for the climatic regions, the detected outlier percentage by the GCM

future runs is closer to the percentage from the past runs with less outliers in the

West but more outliers in the East.

5.5. Discussion

This chapter has focused on how to adjust the functional boxplot proposed by Sun

and Genton (2011) for correlations in order to perform functional and spatio-temporal

data visualization and outlier detection. In a functional boxplot, potential outliers
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Figure 34. Top left and top center panels: the maps of weather station data where

outliers are detected by the functional boxplot with the constant factor

F = 1.5 (left) and the adjusted functional boxplot (center) for the coter-

minous U.S. precipitation from 1970 to 1997. Top right panel: the map

of weather station data where outliers are detected by the adjusted func-

tional boxplots for each climatic region for the time period from 1970 to

1997. Middle panels: the three maps of GCM data corresponding to the

top panels for the time period from 1970 to 1997. Bottom panels: the

three maps of GCM data corresponding to the top panels for the time

period from 2070 to 2097 under IPCC A2 scenario. The colors of each cell

denote the averaged annual precipitation and the red plus signs indicate

the detected outliers.
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can be detected by the 1.5 times the 50% central region empirical rule, analogous

to the rule for classical boxplots. However, for functional data, there is necessarily

dependence in time for each curve. And for spatio-temporal data, curves from differ-

ent locations are spatially correlated as well. The simulation studies in Section 5.2

showed that the outlier detection performance is obviously affected by the depen-

dence in time and space. Therefore, to correct the outlier detection performance,

the constant factor of the empirical outlier rule is important. The factor F = 1.5

in a classical boxplot can be justified by a standard normal distribution, since it

leads to a probability of 0.993 that any given observation is not an outlier. Following

this idea, we proposed a simulation-based method to select this constant factor for

a functional boxplot by controlling the percentage of non-outliers to be 99.3% when

actually no outliers are present. Then how to estimate the covariance function, espe-

cially for spatio-temporal data, is also important and robust techniques are needed

when considering the potential presence of outliers in the original data.

As applications, we used our method to adjust the functional boxplots for sea

surface temperatures, spatio-temporal precipitation and GCM data. In fact, all the

selected factors were greater than 1.5 which agrees with the simulation results in

Section 5.2. The interpretation is that a positive correlation leads to larger variability,

therefore, the extreme observations may not be outliers but may be due to the positive

correlation in time and space.

For spatio-temporal data, we have viewed the information as a temporal curve

at each spatial location. Sun and Genton (2011) also proposed an alternative to treat

such data as a spatial surface at each time. In this case, it would lead to a three-

dimensional surface boxplot with similar characteristics as the functional boxplots.

Similarly, for outlier detection, the fences are obtained by the 1.5 times the 50%

central region rule. Any surfaces crossing the fences are flagged as outlier candidates.
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Therefore, for the surface functional boxplot in R3, the constant factor can also be

adjusted by the simulation-based method described in this chapter and leads to an

adjusted surface functional boxplot.
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CHAPTER VI

CONCLUSIONS

In this dissertation, we have discussed the inference and visualization of periodic

sequences. Specifically, we have proposed a cross-validation period estimator for

equally spaced data. The method is computationally simple and implicitly penalizes

multiples of the smallest period. Given a particular period, or cycle length, a leave-

out-one-cycle version of CV is used to compute an average squared prediction error.

The cycle length minimizing this average squared error is the period estimator. It is

shown both theoretically and by simulation that the CV method has a much higher

probability of choosing the correct model than it does in familiar cases where the

considered models are nested. Our theory shows that the CV period estimator p̂

is virtually consistent for large p, in that its asymptotic probability of equaling p

increases monotonically to 1 as p becomes large. When p = 15 this probability is

approximately 0.99. It is worth noting that the CV method has the advantage that

it can easily deal with missing data, as long as the missing data are at random.

Moreover, models corresponding to different periods may be ranked from best to

worst by considering values of the objective function, thus, extending the possibilities

of interpretation.

As a multivariate extension, we have also proposed a cross-validation period

estimator for multiple equally spaced periodic sequences. Sharing a similar idea with

the CV method for one sequence, a leave-out-one-cycle version of CV is used to

compute an average squared prediction error given a particular period, or cycle length.

The multivariate CV method uses the conditional means, i.e., conditional on other

correlated sequences, to predict the left out cycle in cross-validation. In this way, the

period estimation for a sequence X has been improved by borrowing information from
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other sequences with which X is correlated. In theory, we show that the asymptotic

behavior of the bivariate CV is the same as the CV for one sequence. In our simulation

studies, however, it is shown that for finite samples, the better the periods of the

other correlated sequences are estimated, the more substantial improvements can

be obtained in estimating the period of interest. We have also shown that more

correlated sequences lead to more improvements, although the improvement from 1

to 2 sequences is apparently larger than improvements from 2 to 3, etc. In addition to

the CV method, we also considered a model selection criterion, AIC, to estimate the

period for multiple periodic sequences. Similarly, for finite samples, a simulation study

shows an improvement in period estimation from using information in a correlated

sequence. The asymptotic properties of the AIC method will need further exploration.

Motivated by visualizing periodic sequences, the functional boxplot has been pro-

posed as an informative exploratory tool for visualizing functional data, as well as its

generalization, the enhanced functional boxplot. These functional boxplots were ap-

plied to sea surface temperatures, children growth and spatio-temporal precipitation

datasets. With this new technique, outliers can be detected based on the 1.5 times

the 50% central region empirical rule. Our approach is distinct from others in treating

each curve as an observation rather than summarizing datasets on a pointwise basis.

The descriptive statistics in a functional boxplot are rank-based, hence they may lead

to building robust statistical models to capture the features of complex datasets. For

spatio-temporal data, we have viewed the information as a temporal curve at each

spatial location. An alternative would be to treat the dataset as a spatial surface

at each time. In that case, we have proposed the surface boxplot which is a natural

extension of the functional boxplot to R3.

We have also proposed a bootstrap method to adjust functional boxplots for

correlations when visualizing functional and spatio-temporal data, as well as detecting
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outliers. In a functional boxplot, potential outliers can be detected by the 1.5 times

the 50% central region empirical rule, analogous to the rule for classical boxplots.

However, for functional data, there is necessarily dependence in time for each curve.

And for spatio-temporal data, curves from different locations are spatially correlated

as well. Our simulation studies showed that the outlier detection performance is

obviously affected by the dependence in time and space. Therefore, to correct the

outlier detection performance, the constant factor of the empirical outlier rule is

important. The factor F = 1.5 in a classical boxplot can be justified by a standard

normal distribution, since it leads to a probability of 0.993 that any given observation

is not an outlier. Following this idea, we proposed a simulation-based method to select

this constant factor for a functional boxplot by controlling the probability of detecting

no outliers to be 99.3% when actually no outliers are present. Then how to estimate

the covariance function, especially for spatio-temporal data, is also important and

robust techniques are needed when considering the potential presence of outliers in

the original data. Furthermore, for spatio-temporal data, the constant factor can be

also adjusted by the simulation-based method in the surface functional boxplot in R3

which leads to an adjusted surface functional boxplot.
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APPENDIX A

PROOF OF THEOREM 1

We begin with a lemma that addresses the behavior of the deterministic compo-

nent of the CV criterion.

Lemma 1 Define Sn = {q = 1, 2, . . . ,Mn : q is not a multiple of p}, and for q =

1, 2, . . .,

Cq =
1

n

q∑
i=1

kq,i∑
j=1

(µi+(j−1)q − µ̄qi)
2,

where µ̄qi =
∑kq,i

j=1 µi+(j−1)q/kq,i, i = 1, . . . , q. Then there exists ξ > 0 such that

min
q∈Sn

Cq > ξ

for all n sufficiently large.

Proof. The proof consists of two main steps:

Step 1 Show that minq∈{2,...,p−1}Cq is bounded away from 0 for all n sufficiently

large.

Step 2 Argue that the bound in Step 1 can be applied to Cq for q > p as well.

Step 1 Let q be one of 2, 3, . . . , p−1. Then there is an ℓ ∈ {1, 2, . . . , q} such that not

all of µℓ, µℓ+q, µℓ+2q, . . . are the same. If there was not such an ℓ, then {µj} would be

periodic of period q, which contradicts the assumption that p is the smallest period.

We have

Cq ≥
1

2nkq,q

kq,q∑
j=1

kq,q∑
k=1

(µℓ+(j−1)q − µℓ+(k−1)q)
2

=
1

2nkq,q

p∑
r=1

p∑
s=1

nqrnqs(µr − µs)
2,
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where nqr is the number of times µℓ+(j−1)q equals µr for j between 1 and kq,q. Since

not all of µℓ+(j−1)q are the same, there exist r1 and r2 such that µr1 ̸= µr2 and nqr1 > 0

and nqr2 > 0.

Obviously,

Cq ≥
1

2nkq,q
nqr1nqr2(µr1 − µr2)

2.

The proof of Step 1 is done if we can show that each of nr1 and nr2 is bounded below

by Cn, where C > 0. Let r be any integer between 1 and p such that µℓ+(j−1)q equals

µr for some (smallest) j. It follows that there is a nonnegative integer k such that

ℓ+ (j − 1)q − kp = r. Therefore, for m = 1, 2, . . ., we have

ℓ+ [(j − 1) +mp]q − (k +mq)p = r,

which implies that µℓ+sq = µr at s = (j − 1), (j − 1) + p, (j − 1) + 2p, . . . and hence

that nqr ≥ (kq,q − j + 1)/p. The result to be proven in Step 1 follows immediately.

Step 2 Suppose that {Mn} is a sequence of integers such that Mn → ∞ with

Mn = o(n). Now let q = Mp+ j, where 1 ≤ M ≤ Mn and 1 ≤ j ≤ p− 1. We have

Cq =
1

n

Mp+j∑
i=1

kq,i∑
k=1

(µi+(k−1)q − µ̄qi)
2

=
1

2n

Mp+j∑
i=1

1

kq,i

kq,i∑
k=1

kq,i∑
ℓ=1

(µi+(k−1)q − µi+(ℓ−1)q)
2

≥ 1

2nkq,q

Mp+j∑
i=1

kq,q∑
k=1

kq,q∑
ℓ=1

(µi+(k−1)j − µi+(ℓ−1)j)
2

=
M∑

m=1

Cqm +
1

2nkq,q

Mp+j∑
i=Mp+1

kq,q∑
k=1

kq,q∑
ℓ=1

(µi+(k−1)j − µi+(ℓ−1)j)
2,
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where

Cqm =
1

2nkq,q

mp∑
i=(m−1)p+1

kq,q∑
k=1

kq,q∑
ℓ=1

(µi+(k−1)j − µi+(ℓ−1)j)
2

=
1

2nkq,q

p∑
r=1

kq,q∑
k=1

kq,q∑
ℓ=1

(µr+(k−1)j − µr+(ℓ−1)j)
2.

It follows that Cq ≥ MCq1, and hence that

Cq ≥
M

2nkq,q

j∑
r=1

kq,q∑
k=1

kq,q∑
ℓ=1

(µr+(k−1)j − µr+(ℓ−1)j)
2.

For future reference we note that

kq,q =

[
n

q

]
=

[
n

Mp+ j

]
≥ n

p(Mn + 1)
− 1. (A.1)

Using the same type of notation and arguing exactly as in the proof of Step 1,

Cq ≥
M

2nkq,q
nq1nq2(µr1(j) − µr2(j))

2

≥ M

2nkq,q
nq1nq2δ,

where δ is the smallest nonzero value of (µi − µj)
2 for i, j in {1, . . . , p}. Now, for

i = 1, 2, nqi is the number of times that µr+(k−1)j equals µri(j) as k ranges between 1

and kq,q. As in the proof of Step 1, we know that

nqi ≥
(
kq,q − k(i, j) + 1

p

)
,

where k(i, j) is the smallest k for which µr+(k−1)j = µri(j). Importantly, k(i, j) depends

on j but not M . We thus have

Cq ≥
δM

2np2kq,q
(kq,q − k∗ + 1)2

≥ δM

2(Mp+ j)p2

(
1− Mp+ j

n

)(
1− k∗ − 1

kq,q

)2

,
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where k∗ is the largest of the integers k(i, j), i = 1, 2, j = 1, . . . , p− 1.

Now,

M

Mp+ j
≥ M

p(M + 1)
≥ 1

2p
,

and hence

Cq ≥
δ

4p3

(
1− Mp+ j

n

)(
1− k∗ − 1

kq,q

)2

.

Recalling (A.1) and the fact that Mn = o(n), it follows that (Mp + j)/n and (k∗ −

1)/kq,q are smaller than 1/2 for all n sufficiently large, and so

Cq ≥
δ

32p3

for all n sufficiently large. �

To prove that limn→∞ P (p̂ ∈ Sn) = 0 we must show that

lim
n→∞

P

 ∩
1≤ℓ≤Mn/p

∩
q∈Sn

{CV(q)− CV(ℓp) > 0}

 = 1.

The periodicity of µ entails that

CV(q)−CV(ℓp) =
1

n
(Sq,n−Sℓp,n)+

2

n

q∑
i=1

kq,i∑
j=1

(εqij−ε̄jqi)(µqij−µ̄j
qi)+

1

n

q∑
i=1

kq,i∑
j=1

(µqij−µ̄j
qi)

2,

where, for each q, Sq,n =
∑q

i=1

∑kq,i
j=1(εqij − ε̄jqi)

2. Using the result of Lemma 1, it is

easily checked that, for all n sufficiently large,

min
q∈Sn

1

n

q∑
i=1

kq,i∑
j=1

(µqij − µ̄j
qi)

2 ≥ ξ

2
.
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It therefore follows that

P

 ∩
1≤ℓ≤Mn/p

∩
q∈Sn

{CV(q)− CV(ℓp) > 0}

 ≥ 1−
∑
ℓ

∑
q

P

(
1

n
(Sq,n − Sℓp,n) ≤ −ξ

6

)

−
∑
ℓ

∑
q

P

(
Aq,n ≤ −ξ

6

)
−

∑
ℓ

∑
q

P

(
Bq,n ≤ −ξ

6

)
, (A.2)

where

Aq,n =
2

n

q∑
i=1

kq,i∑
j=1

εqij(µqij − µ̄j
qi) and Bq,n = − 2

n

q∑
i=1

kq,i∑
j=1

ε̄jqi(µqij − µ̄j
qi).

For t any positive number, Bernstein’s form of the Markov inequality implies

that

P

(
Aq,n ≤ −ξ

6

)
≤ exp

[
−nt

(
ξ

6
− 8tσ2B

)]
,

where B = max1≤i≤p µ
2
i . Taking t to be smaller than ξ/(48Bσ2), it is now clear that

there exists a positive number C such that P (Aq,n ≤ −ξ/6) ≤ e−Cn, and since Mn

is smaller than n,
∑

ℓ

∑
q P (Aq,n ≤ −ξ/6) → 0 as n → ∞. The other two terms

on the right hand side of (A.2) can be dealt with in the same way, and therefore

limn→∞ P (p̂ ∈ Sn) = 0.

Now we consider P (p̂ = p), which, by the result just proven, is asymptotically

equal to

P

 ∩
2≤m≤Mn/p

{CV(mp)− CV(p) > 0}

 . (A.3)

(The proof for other P (p̂ = jp) is similar and hence omitted.) We have

CV(mp)− CV(p) =
1

n

mp∑
i=1

Cmp,i

{kmp,i∑
j=1

ε2mp,ij − kmp,iε̄
2
mp,i

}
− 1

n

p∑
i=1

Cp,i

{ kpi∑
j=1

ε2pij − kpiε̄
2
pi

}
,
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where Cq,i = k2
q,i/(kq,i − 1)2. Writing σ̂2 =

∑n
i=1 ε

2
i /n, we have

n(CV(mp)− CV(p)) = σ2

p∑
i=1

Cp,iU
2
1,i − σ2

mp∑
i=1

Cmp,iU
2
m,i + nσ2(Cmp,1 − Cp,1) +Rm,n,

where Um,i =
√
kmp,iε̄mp,i/σ, i = 1, . . . ,mp, m = 1, . . . ,Mn, and

Rm,n = n(σ̂2−σ2)(Cmp,1−Cp,1)+

mp∑
i=1

(Cmp,i−Cmp,1)

kmp,i∑
j=1

ε2mp,ij+

mp∑
i=1

(Cp,1−Cp,i)

kp,i∑
j=1

ε2p,ij.

We remark that, for each m, U2
m,1, . . . , U

2
m,mp are i.i.d. χ2

1 random variables. Subse-

quently we use the following facts:

n(Cmp,1−Cp,1) = 2p(m−1)+O

(
M2

n

n

)
, Cmp,1 = 1+O

(
Mn

n

)
, Cp,1 = 1+O

(
1

n

)
,

|Cmp,i − Cmp,1| ≤ O

(
Mn

n

)2

and |Cp,i − Cp,1| ≤ O

(
1

n

)2

,

with the last two inequalities holding uniformly in i, since, for each q, kq,1, . . . , kq,q

take on at most two distinct values that differ by only 1.

So now we have

n(CV(mp)− CV(p))

σ2
=

p∑
i=1

U2
1,i −

mp∑
i=1

U2
m,i + 2p(m− 1) + R̃m,n,

where, using previously stated facts, we have

R̃m,n =
Rm,n

σ2
+Op

(
M2

n

n

)
.

Note that the term |Rm,n| is bounded almost surely by

n(Cmp,1 − Cp,1)|σ̂2 − σ2|+ nσ̂2
[
max

i
|Cmp,i − Cmp,1|+max

i
|Cp,1 − Cp,i|

]
,

which is Op(Mn/
√
n) +Op(M

2
n/n).

Now let {δn} be an arbitrary sequence of positive numbers that tend to 0. The

sequence of probabilities (A.3) may be bounded above and below by probability se-
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quences that have the same limits as

P

 ∩
2≤m≤Mn/p

{
p∑

i=1

U2
1,i −

mp∑
i=1

U2
m,i + 2p(m− 1) > −δn

}
and

P

 ∩
2≤m≤Mn/p

{
p∑

i=1

U2
1,i −

mp∑
i=1

U2
m,i + 2p(m− 1) > δn

} ,

respectively. The last statement is proven by applying Bernstein’s form of the Markov

inequality to the sequences P (
∩

2≤m≤Mn/p
R̃m,n > δn) and P (

∩
2≤m≤Mn/p

R̃m,n > −δn),

and using the assumption that Mn = o(
√
n) and the fact that δn can be defined to

converge arbitarily slowly to 0. It is now clear that

lim
n→∞

P (p̂ = p) = lim
n→∞

P

 ∩
2≤m<Mn/p

{
p∑

i=1

U2
1,i −

mp∑
i=1

U2
m,i + 2p(m− 1) > 0

} .

The result will be proven if we can verify that the Um,is have the same limit-

ing correlation structure as that of the Zm,is. By construction, Um,1, . . . , Um,mp are

mutually independent. Now let r > m and consider

Corr(Um,i, Ur,j) =
1√

kmp,ikrp,jσ2

kmp,i∑
ℓ=1

krp,j∑
s=1

E
[
εi+mp(ℓ−1)εj+rp(s−1)

]
=

1√
kmp,ikrp,j

Nm,r,i,j,

where Nm,r,i,j is the number of times that j+ rp(s− 1) = i+mp(ℓ− 1). Now, if there

is a pair (ℓ, s) that satisfies this equation, then (ℓ+ ηr, s+ ηm), η = 1, 2, . . . are also
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solutions and Nm,r ∼ krp,j/m. Therefore, when Nm,r > 0,

Corr(Um,i, Ur,j) ∼ krp,j

m
√
kmp,ikrp,j

=
1

m

√
krp,j
kmp,i

∼ 1

m

√
n/(rp)

n/(mp)

=
1√
mr

.

�
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APPENDIX B

PROOF OF MLES OF SEQUENCE MEANS

For the bivariate case, suppose we observe bivariate sequences from the following

model: {
Xt = µ1t + ε1t,

Zt = µ2t + ε2t,

where

(
ε1

ε2

)
t

∼ i.i.d.N(0,Σ), and Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

The likelihood is of the form

L =
1

1− ρ2

{
1

σ2
1

n∑
t=1

(Xt−µ1,t)
2+

1

σ2
2

n∑
t=1

(Zt−µ2,t)
2− 2ρ

σ1σ2

n∑
t=1

(Xt−µ1,t)(Zt−µ2,t)

}
.

(B.1)

Let q1 and q2 be the period candidates for Xt and Zt respectively and mi = µ2,i+q2 =

µ2,i+2q2 = · · · for i = 1, . . . , q2, ηi = µ1,i+q1 = µ1,i+2q1 = · · · for i = 1, . . . , q1. First,

minimize

1

σ2
2

n∑
t=1

(Zt − µ2,t)
2 − 2ρ

σ1σ2

n∑
t=1

(Xt − µ1,t)(Zt − µ2,t) (B.2)

with respect to m1, . . . ,mq2 , where mi = µ2,i+q2 = µ2,i+2q2 = · · · for i = 1, . . . , q2.

Define Zq2ij = Zi+(j−1)q2 , where i = 1, . . . , q2 and kq2i is the largest integer such

that i+ q2kq2,i ≤ n. Then (B.2) can be written as

A =
1

σ2
2

q2∑
i=1

kq2i∑
j=1

(Zq2ij −mi)
2 − 2ρ

σ1σ2

q2∑
i=1

kq2i∑
j=1

(Xq2ij − µ1,q2ij)(Zq2ij −mi). (B.3)

The first derivative

∂A

∂mi

= − 2

σ2
2

nk2i∑
j=1

(Zq2ij −mi) +
2ρ

σ1σ2

kq2i∑
j=1

(Xq2ij − µ1,q2ij) = 0
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gives

mi = Z̄q2i − ρ
σ2

σ1

(X̄q2j − µ̄1,q2i), (B.4)

where Z̄q2i is the average of Zq2iℓ, ℓ = 1, . . . , kq2i.

Then plug (B.4) into equation (B.1),

L1 =
1

σ2
1

q1∑
i=1

kq1i∑
j=1

(Xq1ij − ηi)
2 +

1

σ2
2

q2∑
i=1

kq2i∑
j=1

(Zq2ij − Z̄q2i)
2

− 2ρ2

σ1

q2∑
i=1

kq2i(X̄q2i − µ̄q2i)
2 − 2ρ

σ1σ2

q2∑
i=1

kq2i∑
j=1

(Xq2ij − µ1,q2ij)(Zq2ij − Ȳq2i).

We then have

∂µ1,q2ij/∂ηr = 1, if i+ (j − 1)q2 = r + (ℓ− 1)q1 for some ℓ, otherwise 0,

and ∂µ̄q2i/∂ηr = Nir/kq2i, where Nir is the number of times i+(j−1)q2 = r+(ℓ−1)q1

when j ranges from 1 to kq2i and ℓ ranges from 1 to kq1r.

Then,

∂L1

∂ηr
=− 2

σ2
1

kq1r(X̄q1r − ηr)

+
2ρ2

σ2
1

( q1∑
i=1

X̄q1iNir −
q2∑
i=1

1

kq2i

q1∑
k=1

NirNikηk

)
+

2ρ

σ1σ2

Sq1,q2,r,

where Sq1,q2,r =
∑kq1r

i=1

(
Yq1rj − Ȳ q2

q1rj

)
.

We can see that ∂L1/∂ηr = 0 if and only if

kq1r(X̄q1r − ηr)− ρ2
1

kq2i

q1∑
k=1

NirNikηk = −ρ2
q1∑
i=1

X̄q1iNir − ρ
σ1

σ2

Sq1,q2,r.

This yields a set of q1 linear equations. Arrange them so that we can solve a smaller
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system, i.e., q1 < q2. The coefficient of ηr in the r-th equation is

kq1r − ρ2
q2∑
i=1

1

kq2iN
2
ir

,

and the coefficient of ηk (k ̸= r) is

−ρ2
q2∑
i=1

1

kq2i
NirNik.

The equations are

Bq1,q2η = bq1,q2 ,

where Bq1,q2(j, k) = ρ2
∑q2

i=1
1

kq2i
NijNik − kq1jI(j − k) for I(0) = 1, 0 otherwise, and

bq1,q2(j) = ρ2
q2∑
i=1

X̄q2iNij + ρ
σ1

σ2

Sq1,q2,j − kq1,jX̄q1j.

When q1 = q2, the MLEs of η1, . . . , ηq1 and m1, . . . ,mq2 are the usual stacked means.
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