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ABSTRACT 

 

An Efficient Supply Modulator for Linear Wideband RF Power Amplifiers. 

(August 2011) 

Richard Turkson, B.Sc., Kwame Nkrumah University of Science and Technology 

Chair of Advisory Committee: Dr. Jose Silva-Martinez 

 

Radio Frequency (RF) Power Amplifiers are responsible for a considerable 

amount of the power consumption in the entire transmitter-receiver (transceiver) of 

modern communication systems. The stringent linearity requirements of multi-standard 

transceivers to minimize cross-talking effects makes Linear Power Amplifiers, 

particularly class A, the preferred choice in broadband transceivers. This linearity 

requirement coupled with the fact that the Power Amplifier operates at low transmit 

power during most of its operation makes the efficiency of the entire transceiver poor. 

The limited transceiver efficiency leads to a reduction in the battery life of battery 

operated portable devices like mobile phones; hence drastically limiting talk time. To 

alleviate this issue, several research groups propose solutions to improve PA power 

efficiency. However, these solutions usually have a low efficiency at low power and are 

mostly limited to narrow bandwidth applications.  

In this thesis, the efficiency of a class A Power amplifier in wideband wireless 

standards like WiMax is improved by dynamically controlling the bias current and 

supply voltage of the PA. An efficient supply modulator based on a switching regulator 

architecture is proposed for controlling the supply voltage. The switching regulator is 

found to be slew-limited by the bulky inductor and capacitor used to regulate the supply 

voltage. The proposed solution alleviates the slew rate limitation by adding a bang-bang 

controlled current source. The proposed supply modulator has an average power 

efficiency of 81.6% and is suitable for wireless standards with bandwidths up to 20MHz 



iv 

 

 

compared to the relatively lower efficiencies and bandwidths of state of the art 

modulators. A class-A PA is shown to promise an average power efficiency of 21.3% 

when the bias current is controlled dynamically and the supply voltage is varied using 

the proposed supply modulator. This is a significant improvement over the poor average 

efficiency of 1.06% for a fixed bias conventional linear class A PA.  

The project has been simulated using the TSMC 0.18µm technology. 
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1. INTRODUCTION 

 

Radio Frequency (RF) Power Amplifiers (PAs) are at the heart of every wireless 

system playing a key role in transmitting information between places for communication 

purposes. These forms of communication could be between mobile phone handsets, base 

stations, computers or Bluetooth devices. The role of the PA is to greatly amplify the 

power of the baseband signal to be transmitted to make it capable of driving the low 

impedance of the antenna in the transmitter. However, the PA consumes most of the 

power in the entire transmitter-receiver (transceiver). In a mobile phone handset, the PA 

alone consumes about 40% of the entire battery energy [1]. Additionally, the PA suffers 

from a poor efficiency especially when transmitting low power. A high power 

consumption and poor efficiency reduces battery life, which is very critical in portable 

devices like mobile phones and laptop computers. A reduced battery life reduces talk 

time in mobile phone handsets and will require the mobile phone to be recharged 

frequently after the battery has been run down. This issue of poor power efficiency is 

also critical in base stations where high efficiency and low power consumption is 

important in determining the size of heat sinks for cooling purposes.  As a result of all 

these issues, there is an increased focus on improving the power efficiency of PAs in the 

wireless industry. 

Figure 1.1 shows the front end of a typical wireless transmitter. It shows the main 

building blocks that make up the transmitter. The typical transmitter mainly consists of a 

Digital Signal Processor (DSP), a supply modulator (or regulator), frequency synthesizer, 

RF mixer and the PA. The DSP generates the baseband signal (information to be 

transmitted) and the envelope signal (outline of the peak variations in the baseband 

signal).  The information generated by the DSP is in digital format and requires a Digital 

to Analog Converter (DAC) to convert it to its analog equivalent. The frequency 
synthesizer  generates  an   RF  signal   hich  serves  as  the   carrier  for  transmitting  the  
 

This thesis follows the style of the IEEE Journal of Solid-State Circuits.
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baseband signal. The generated RF signal is mixed with the baseband signal to generate 

a high frequency modulated signal which is transmitted by the PA. The supply regulator 

(or modulator) generates the proper supply voltage demanded by the PA using the 

envelope signal. The supply voltage is often modulated by the envelope of the baseband 

signal in order to control the dc power consumption of the PA, and to make its power 

consumption proportional to the transmit signal power.  This way of modulating the 

supply voltage is typically how efficiency is improved in PAs; these techniques will be 

discussed in Section 2.  

 

 
Figure 1.1 Simplified Block Diagram of a Transmitter Front End 

 

 One reason for the poor power efficiency of the PA is the nature of the baseband 

signal used in modern wireless systems. Thus we look at the current trend in wireless 

communication systems and how the nature of the baseband signal affects system 

performance in the next section. 
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1.1 System Design Considerations 

The demand by consumers for high quality high-speed data in wireless systems 

has led to the transmission of information at faster rates while maintaining high linearity 

in the wireless industry. This requires the use of modulation schemes with higher data 

rates which results in the baseband information having high peak to average power ratio 

(a parameter which gives an indication of the peak power transmitted to the load 

compared to the average power transmitted to the load). The problem here is that the 

peaks in the information are infrequent but in order to accommodate the entire dynamic 

range of the baseband signal while maintaining high linearity, the PA needs is biased 

with a high quiescent current which increases the static power consumption of the PA. 

Thus the PA is not optimized for the transmission of average power as far as power 

efficiency is concerned. This issue will become clearer in Section 2. Table 1.1 shows a 

summary of some wideband wireless standards with their bandwidths and peak to 

average power ratio. 

 
Table 1.1 Wireless Standards Showing their Peak to Average Power Ratio and Channel Bandwidth 

Standard Peak to Average Power Ratio Channel Bandwidth 

EDGE 3.2dB 200 kHz 

CDMA 4-9 dB 1.25 MHz 

WCDMA 3.5-7 dB 3.84 MHz 

WLAN 10 dB 20 MHz 

WiMax 10-12 dB 1.25 MHz – 20 MHz 

 

This table shows an increasing trend in the bandwidth and peak to average power 

ratio in wireless systems, with WLAN and WiMax currently being the standards of 

choice. Power management techniques typically using a supply modulator to control the 
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supply voltage of the PA are required to optimize the PA for average power transmission 

and hence improve power efficiency. However, the design of the supply regulator (or 

modulator) becomes particularly challenging since it requires large and fast variations in 

the supply voltage and as a result is the focus of this thesis. In this thesis, a switching 

regulator architecture is proposed for use as a supply modulator. The challenges in 

designing efficient switching regulators for high speed applications are identified as a 

trade-off between output ripple voltage, slew rate, bandwidth and power efficiency. The 

inherent slew rate of the switching regulator is found to be limited by the bulky output 

inductor and capacitor used to regulate the supply. Efficient circuit techniques are 

needed to improve the limited slew rate of the switching regulator to prevent the peaks 

of the signal transmitted from being distorted. In this work, the switching regulator is 

designed to optimize its bandwidth and power efficiency for average power transmission. 

A bang-bang controlled current source is added to the switching regulator to improve its 

speed without compromising the ripple performance, stability and power efficiency of 

the system. 

 The thesis is organized as follows. 

 

1.2 Thesis Organization 

The main objective of this thesis is to develop power management techniques for 

improving the efficiency of linear PAs. A switching regulator architecture is identified as 

the preferred supply modulator in this thesis. The main challenge in designing an 

efficient switching regulator for this application is identified as power efficiency and the 

trade-off between ripple voltage and limited slew rate. As a result an efficient technique 

for enhancing the slew rate of switching regulators without sacrificing ripple 

performance that makes them applicable for use in variable output supply modulators is 

proposed.  

Section 2 introduces linear Power Amplifiers. The Section begins with some 

basic metrics such as probability density functions, power consumption and average 

power efficiency which are associated with PAs. Next class A and B PAs are discussed 
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along with their efficiency limitations. The Section concludes with a discussion on 

dynamic biasing of PAs to enhance their efficiency. 

Section 3 discusses supply modulators. The existing supply modulator 

architectures are discussed. Next buck switching regulators used as variable supply 

modulators are discussed. The main parameters associated with switching regulators 

such as bandwidth, ripple voltage and slew rate are discussed along with the bottlenecks 

in designing high speed switching regulators. These issues involve a tradeoff between 

ripple voltage, slew rate and regulator bandwidth. The limitations in the existing 

techniques such as quiescent power consumption, stability and power efficiency are 

discussed and an efficient bang-bang solution is then proposed to overcome its slew rate 

limitation. The proposed technique does not degrade the efficiency and the stability of 

the switching regulator.  

Section 4 discusses the main design considerations in the transistor level 

implementation of the proposed supply modulator. Schematic simulation results in 

CADENCE are presented to demonstrate the feasibility of the proposed approach.          

 In Section 5, conclusions are made and the scope for future work in the thesis is 

discussed. 
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2. FUNDAMENTALS OF LINEAR POWER AMPLIFIERS 

 

In this section the fundamentals of Linear PAs are discussed. The section starts 

with definitions of some basic terms and metrics such as probability density function, 

average power consumption and average efficiency which are associated with PAs. Next 

class-A and class-B PAs are discussed along with their efficiency limitations to 

emphasize the problem of poor efficiency. The section concludes with a discussion on 

dynamic biasing of PAs to enhance their efficiency. 

 

2.1 Basic Definitions 

This section provides some basic definitions of terms such as the envelope of a 

signal, conduction angle, peak-to-average-power-ratio, probability density function, 

average power and average efficiency. 

 

2.1.1 Conduction Angle 

If a sinusoidal signal is applied to the gate of a transistor, then the portion of the 

period of the sinusoidal signal that causes the transistor to conduct current in the drain is 

referred to as conduction angle. For instance, if the entire period of the sine wave causes 

the transistor to conduct then the conduction angle is 360o. This term is usually used to 

distinguish between power amplifiers. 

 

2.1.2 Envelope of a Signal 

The envelope of a signal refers to the outline of the signal’s peak variations. 

Consider an amplitude modulated signal, y(t), obtained by mixing a signal containing the 

message to be transmitted, m t = cos (ωmt ), with an RF signal,yRF t = sin ωRFt .  

                                                 𝑦 𝑡 = 𝑦𝑅𝐹 𝑡 . 𝑚 𝑡                                                                (2.1a) 

                                                𝑦 𝑡 = sin 𝜔𝑅𝐹𝑡 . cos(𝜔𝑚 𝑡)                                              (2.1b) 

                                               𝑦 𝑡  = sin 𝜔𝑅𝐹 + 𝜔𝑚 𝑡 + sin(𝜔𝑅𝐹 − 𝜔𝑚 )𝑡                    (2.1c) 

The resulting signal and its envelope are shown in Figure 2.1. 
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Figure 2.1 Plot of Modulated RF Signal and its Envelope 

 

It should be noted that in this work, input envelope signal is used to refer to the 

envelope of the input baseband signal to be transmitted and output envelope signal is 

used to refer to the envelope of the output signal delivered to the load. The input 

envelope and output envelope signals are very important in improving efficiency. The 

role that they play in improving efficiency will be become evident in Section 2.3. 

 

2.1.3 Probability Density Function and Cumulative Distribution Function 

Probability density function and Cumulative distribution function are statistical 

parameters that are used to indicate the likelihood or tendency of occurrence of an event. 

For various wireless standards, the probability density function provides use case 
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information which indicates the probability of operating at a particular power level while 

the cumulative distribution function indicates the probability of transmitting power less 

than a particular power level. Figure 2.2 shows the probability distribution function of 

CDMA. This plot shows that during most of the operation of a CDMA handset, the 

power transmitted is less than 16dBm. To get more insight, we consider the cumulative 

distribution function of CDMA in Figure 2.3. It shows that the probability of 

transmitting power less than 16dBm is actually 90%. Similar trends have been observed 

for other relevant wireless communication standards[2]. Consequently, there is an 

increased focus on improving mid-power (16dBm) efficiency in the semiconductor 

industry[3]. Thus, any optimizations in the efficiency of a PA for CDMA handsets 

should be focused on power levels around and below 16dBm.   

 

 
Figure 2.2 Probability Distribution Function of a Typical CDMA Transmit Signal [4] 
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Figure 2.3 Cumulative Distribution Function of a Typical CDMA Transit Signal 

 

2.1.4 Peak to Average Power Ratio 

The peak to average power ratio (PAPR) is the ratio of the peak value of the 

power transmitted to the average value of the power. The signals transmitted by PAs in 

modern wireless communication systems employ different coding schemes to optimize 

the signal bandwidth in order to obtain the best possible bit-error-rate, and as a result 

may have PAPRs as high as 12dB. The problem with having a high peak to average 

power ratio is that the PA will need to have the power capability to transmit the peak 

power even though in average the PA transmits at low power[5]. Referring to the 

probability distribution function of CDMA in Figure 2.2, we notice that the probability 

of transmitting at peak power is actually 0.01%[6]. Clearly, this suggests that the PA is 

not optimized to transmit the average power and as a result the full-power capability of 

the PA is wasted leading to a poor power efficiency. The effect of this parameter on the 
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power efficiency of the PA will become clearer when linear PAs are discussed in Section 

2.2. 

 

2.1.5 Average Power Transmitted 

The power transmitted by the PA in a CDMA handset is variable. Based on use 

case data in Figure 2.2, it was noticed that the power transmitted by the PA is mostly less 

than 16dBm. Consequently, the average power transmitted is a metric which gives a 

good indication on how the PA is used. It is given by 

                                             𝑃𝑎𝑣𝑒 ,𝑟𝑓 =  𝑃𝑜𝑢𝑡

+∞

−∞

. 𝑝 𝑃𝑜𝑢𝑡  𝑑𝑃𝑜𝑢𝑡                                              (2.2) 

where Pout  is the RF power transmitted and p Pout  is the probability of transmitting 

power, Pout.  

 

2.1.6 Average Power Consumption 

The average dc power dissipated by the PA is given by 

                                                𝑃𝑎𝑣𝑒 ,𝑑𝑐 =  𝑃𝑑𝑐 (𝑃𝑜𝑢𝑡 )
+∞

−∞

. 𝑝 𝑃𝑑𝑐 𝑑𝑃𝑜𝑢𝑡                                 (2.3) 

where Pdc(Pout) is the dc power used at Pout and p Pdc  is the probability of consuming 

Power, Pdc, when transmitting Pout. If the dc power consumed by the PA is constant (i.e. 

independent of the power transmitted) then, Pdc Pout =Pdc  and  

                                           𝑃𝑎𝑣𝑒 ,𝑑𝑐 = 𝑃𝑑𝑐  𝑝 𝑃𝑑𝑐 
+∞

−∞
𝑑𝑃𝑜𝑢𝑡 = 𝑃𝑑𝑐                                       (2.4) 

As a result the average static power consumed by a PA with a fixed bias is the same as 

the static power used to bias the PA. Also, if the drain supply voltage of a PA is varied 

such that it is proportional to the envelope signal under all operating conditions then 

p Pdc =p(Pout) and the average dc power dissipated by the PA becomes 

                                               𝑃𝑎𝑣𝑒 ,𝑑𝑐 =  𝑃𝑑𝑐 (𝑃𝑜𝑢𝑡 )
+∞

−∞

. 𝑝 𝑃𝑜𝑢𝑡  𝑑𝑃𝑜𝑢𝑡                                (2.5) 

This is what we seek to achieve with efficiency enhancement techniques which are 

discussed in Section 2.3. 
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2.1.7 Average Power Efficiency 

Since PAs rarely operate at peak power, using peak power efficiency to compare 

the different power amplifiers is not a fair comparison. A metric which gives a good 

indication of battery life and as a result is extremely important in choosing an optimum 

PA architecture especially for transmission of variable envelope signals is the average 

power efficiency. It is given by the ratio of average power transmitted to the dc power 

used by the PA. It is expressed as 

                                       𝜂𝑎𝑣𝑒 =
𝑃𝑎𝑣𝑒 ,𝑟𝑓

𝑃𝑎𝑣𝑒 ,𝑑𝑐
=

 𝑃𝑜𝑢𝑡
+∞

−∞
. 𝑝 𝑃𝑜𝑢𝑡  𝑑𝑃𝑜𝑢𝑡  

 𝑃𝑑𝑐 (𝑃𝑜𝑢𝑡 )
+∞

−∞
. 𝑝 𝑃𝑑𝑐 𝑑𝑃𝑜𝑢𝑡

                           (2.6) 

 

2.2 Classification of Linear Power Amplifiers 

A linear power amplifier attempts to preserve the original wave shape of the 

input[7]. Linear power amplifiers may be classified as class A or AB according to the 

conduction angle of the drain current. Class A and B PAs are explained in the following 

section. 

 

2.2.1 Class A PA 

The conduction angle of a class A PA is 360o.This implies that the operating 

points are such that current continuously flows through the output device at all times. As 

a result, class A PAs are usually very linear. Figure 2.4 shows the schematic of a 

simplified class A PA with waveforms at the input and output. VDC is the dc supply 

voltage, IDC is the dc current to the PA,  VGS is the gate bias voltage,  vgs is the ac 

component of the input signal, vGS is the combination of VGS and vgs and vo is the RF 

output voltage. 
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Figure 2.4 Schematic of a Simplified Class A PA with Input and Output Waveforms 

 

A class A PA has a fixed bias current,IDC, and supply voltage,VDC. Hence its 

static power consumption is fixed.  The power efficiency is defined as the ratio of the 

average value of the power delivered to the load to the DC power consumed by the PA 

expressed as a percentage. This is given by 

                                                                            𝜂𝐴 =
𝑃𝑜𝑢𝑡

𝑃𝐷𝐶
                                                      (2.7a) 

                                                                          𝜂𝐴  =
𝐼𝑝𝑘 . 𝑉𝑝𝑘

2. 𝐼𝐷𝐶 . 𝑉𝐷𝐶
                                            (2.7b) 

                                                                        𝜂𝐴   =  
𝑃𝑜𝑢𝑡 ,𝑝𝑒𝑎𝑘

2. 𝑃𝐷𝐶
                                              (2.7c) 

As a result the efficiency of a PA operating in class A is directly proportional to the 

power delivered to the load. Thus the PA power efficiency degrades as the output power 

reduces. It achieves a maximum efficiency of 50% only when transmitting at maximum 

power. Figure 2.5(a) and 2.5(b) show how the efficiency of a class-A amplifier varies 

with output power. 
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(a) 

 
(b) 

Figure 2.5 Plot of Power Efficiency of a Class A PA with (a) Normalized Power and (b) Output Power in 
dBm 
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From the plots, it is noticed that a class A PA with the capability to transmit 28dBm of 

power has efficiency less than 3.5% when the power transmitted is less than 16dBm. 

When a class A PA is used in a 28dBm CDMA handset, its average efficiency will be 

given by 

                                                    𝜂𝑎𝑣𝑒 =
 𝑃𝑜𝑢𝑡

28𝑑𝐵𝑚

−50𝑑𝐵𝑚
. 𝑝 𝑃𝑜𝑢𝑡  𝑑𝑃𝑜𝑢𝑡  

𝑃𝑑𝑐
                                 (2.8) 

Using numerical integration in MATLAB with  p Pout  obtained from the probability 

distribution function of CDMA in Figure 2.2, the average efficiency is computed as 

ηave=
0.0186
0.631

=2.91% . 

Even though the class-A PA has a peak power efficiency of 50%, when used in a 

modulation scheme with high PAPR like CDMA the average efficiency is limited to less 

than 3%. Thus, finding linear PA architectures with better power efficiency figures is 

mandatory to extend the talk time of existing services. 

 

2.2.2 Class B PA 

The conduction angle of a class-B PA is 180o. This implies that the operating 

points are such that current flows through the output device(s) for half the time. As a 

result, a class-B PA has theoretically zero quiescent current. Figure 2.6 shows the 

schematic of a simplified single transistor class B PA with waveforms at the input and 

output.  
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Figure 2.6 Schematic of a Class-B PA with Input and Output Waveforms 

 

The average value of the drain current is proportional to the magnitude of the input 

signal. It is given by 

                                                                          𝐼𝑎𝑣𝑒 =
𝐼𝑝𝑘

𝜋
                                                         (2.9) 

This makes class-B PAs more efficient than class A PAs. However, this benefit is 

achieved at the price of increased distortion since the class-B amplifier operates as a 

half-wave rectifier. Thus, the efficiency of a class B PA is given by [8] 

                                                                          𝜂𝐵 =
𝜋

4

𝑉𝑝𝑘

𝑉𝐷𝐶
                                                     (2.10) 

Thus the efficiency of a class-B PA is proportional to the amplitude of the signal 

delivered to the load. It achieves a peak efficiency of 78.5% when transmitting at 

maximum power. Figure 2.7(a) and 2.7(b) show how the efficiency of a class-B PA 

varies with the amplitude of the signal transmitted and the output power respectively. 
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(a) 

 
(b) 

Figure 2.7 Plot of Efficiency of a Class B PA vs. (a) V pk VDC   (b) Output Power 
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In summary, class B PAs are more efficient but less linear than class A PAs. A 

class B PA with the capability to transmit up to 28dBm of power has efficiency below 

20% when the power transmitted is less than 16dBm. For CDMA handset applications, 

the class B PA average efficiency will be given by 

                                       𝜂𝑎𝑣𝑒 =
 𝑃𝑜𝑢𝑡

28𝑑𝐵𝑚

−50𝑑𝐵𝑚
. 𝑝 𝑃𝑜𝑢𝑡  𝑑𝑃𝑜𝑢𝑡  

 𝑃𝑑𝑐 (𝑃𝑜𝑢𝑡 )
28𝑑𝐵𝑚

−50𝑑𝐵𝑚
. 𝑝 𝑃𝑑𝑐 𝑑𝑃𝑜𝑢𝑡

                                    (2.11) 

Using numerical integration in MATLAB with p Pout  obtained from the probability 

distribution function of CDMA in Figure 2.2 and p Pdc  = p Pout  since the bias current 

of the class B PA varies at the same rate as the envelope signal, the average efficiency is 

calculated to be 24.8%. It should be noted that the relatively high efficiency of the class 

B PA is achieved at the detriment of reduced linearity. The half-wave sinusoidal signal 

produced by the class B PA presents significant harmonic content which prevents them 

from being used in a CDMA handset. A Fourier series expansion of the half-wave 

sinusoid reveals the following harmonic components 

                              𝑣𝑜 𝑡 =
𝑉𝑝𝑘

𝜋
+   𝑎𝑛 cos(𝑛𝜔𝑡) + 𝑏𝑛sin(𝑛𝜔𝑡) 

∞

𝑛=1

                            (2.12𝑎) 

where ω is the fundamental frequency, n is an integer and 

                                                  𝑎𝑛 =   
0     if n is odd
−2

𝜋(𝑛2 − 1)
  if n is even

                                         (2.12𝑏) 

                                                 𝑏𝑛 =   
0.5   if n = 1
 0 if n is even

                                                            (2.12𝑐)  

These non-linearities introduce spurs into adjacent communication channels which 

interferes with their proper operation[4]. Thus an alternative PA architecture with high 

linearity and a good average efficiency is needed. 

The next section discusses some of the techniques that can be used to improve 

the efficiency of the linear PAs. 

 

 



18 

 

 

2.3 Efficiency Enhancement Techniques 

In the previous section, it was realized that the efficiency of PAs is very limited. 

Efficiency enhancement techniques such class G and dynamic biasing can be used to 

improve the power efficiency of PAs but often at the expense of increased system 

complexity, silicon area and reduced linearity. However, these trade-offs are acceptable 

and as a result these techniques are widely used for improving the power efficiency of 

PAs. These methods are considered next.  

 

2.3.1 Class G  

From equation (2.7b), it is noticed that the efficiency of the linear power 

amplifier is the product of the current efficiency ( Ipk IDC )  and voltage efficiency 

( Vpk VDC  ) of the power amplifier normalized by 2. The goal of the class G technique 

is to ideally make the voltage efficiency 100%. In the class G technique, multiple supply 

voltages are made available to the PA and one supply voltage selected at a time 

according to the level of the envelope signal such that the supply selected is ideally equal 

to the magnitude of the output signal delivered to the load. If an infinite number of 

supply voltages are made available to the PA, then the supply voltage to the PA becomes 

continuous and the 100% voltage efficiency can be achieved under all operating 

conditions. However each additional supply needs to be generated which increases the 

cost and system complexity greatly if many supply voltage are used. As a result, 

practical class G’s are usually limited to two supply voltages. Figure 2.8 shows a 

simplified schematic of a PA supply using the class G technique.  
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Figure 2.8 Simplified Schematic of a Class G Supply Modulated PA 

 

In class G, the envelope signal is compared with a threshold voltage, Vth. When 

the envelope signal is less than Vth, a lower supply voltage (VDD2) is selected and when 

the envelope signal is greater than Vth a higher supply voltage (VDD2) is selected. The 

class G can be used for wideband applications since its speed response can be as fast as a 

clock period. However, it relies on appropriately choosing Vth so that the lower supply 

voltage is used most of the time in order to guarantee a high efficiency. Figure 2.9 shows 

how efficiency varies with output power in a class G modulator with Vth chosen to 

optimize efficiency at 16dBm.  
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Figure 2.9 Variation of Efficiency with Output Power of a Class G Modulated PA 

 

Note that the additional supply will not be generated with 100% efficiency and as a 

result further degrades the efficiency of the PA. A practical implementation of this 

technique is shown in reference [9]. It achieves an average power efficiency of 22.6% 

with an efficient non-linear PA. 

 

2.3.2 Dynamic Drain Biasing 

From the previous section, it was realized that a limitation to the class G 

technique was the fact that it was impractical to generate an infinite number of power 

supplies. A way around this problem is to use a continuously variable supply voltage by 

using Dynamic Drain Biasing. From equation (2.7b), if VDC is varied such that VDC=Vpk 

under   all   operating   conditions   then   the   efficiency   of   the   class   A  PA becomes  
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                                                                         𝜂𝐴 =
𝐼𝑝𝑘

2𝐼𝐷𝐶
                                                        (2.13) 

Notice that this assumption is idealistic and unrealistic since the amplifier requires an 

overdriving drain-source voltage to operate properly. As a result, in a real 

implementation VDC  will be actually greater than Vpk. A supply modulator is required to 

vary the drain supply voltage. Figure 2.10 shows a simplified schematic illustrating the 

concept of dynamic drain biasing. The output envelope signal is applied to the input of 

the supply modulator for it to vary the drain voltage of the PA according to the level of 

the envelope signal. 

 

 
Figure 2.10 Simplified Schematic Illustrating Dynamic Drain Biasing 

 

2.3.3 Dynamic Gate Biasing 

The techniques discussed thus far seek to improve the voltage efficiency of the 

power amplifier without improving the current efficiency. The bias current of a PA is 

controlled by its gate bias voltage. As a result dynamic gate biasing can be used to 

improve the current efficiency of the power amplifier. This involves varying the bias 
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current of the PA according to the level of the baseband signal such that ideally IDC=Ipk 

under all operating conditions. If this is achieved, then the efficiency of the linear PA 

becomes 

                                                                           𝜂𝐴 =
𝑉𝑝𝑘

2𝑉𝐷𝐶
                                                 (2.14) 

Note that this will not be achieved in a real implementation since a bias current higher 

than peak current will be required for the PA to operate properly. The resulting 

efficiency then becomes similar to the class B example with the efficiency proportional 

to the amplitude of the signal delivered to the load. The gate bias voltage is varied with 

the envelope of the baseband signal and as such simple circuit components requiring 

little power consumption is needed. As a result dynamic gate biasing is simple to 

implement.  However, varying the bias current causes variations in the gain of the PA 

and as a result introduces power gain non-linearities. To gain insight into this, note that 

the voltage gain of the power amplifier is given by  

                                                                 𝐺 = 𝑔𝑚 . 𝑅                                                               (2.15a) 

                                                              𝐺 = 𝑅.  2𝑘𝑛

𝑊

𝐿
𝐼                                                     (2.15b) 

where gm is the transconductance of the PA, W is the width of the PA transistor, L is the 

channel length, kn is a process dependent parameter, I is the bias current and R is the 

output load impedance. 

From equation (2.15b), we observe that as the bias current is reduced, the 

transconductance and gain of the PA also reduces as a square root of the bias current. As 

a result, the power gain is non-linear and exhibits some dependence on the bias current 

(voltage). Thus this method degrades the linearity of the class A PA. However its 

linearity performance is better than that of a class B PA since the bias point of the PA is 

varied such that a sinusoidal signal is always produced at the output of the PA. Figure 

2.11 shows a simplified schematic illustrating dynamic gate biasing. A fixed bias voltage 

(VGG) is used to bias the PA above the threshold voltage and the input envelope signal 

added for varying the gate bias voltage. Figure 2.12 shows a plot of bias current against 
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gate bias voltage for a PA with dynamic gate biasing. It shows the direction of 

movement of the operating point of the PA, Q, as the envelope signal changes from 

maximum to minimum. The maximum envelope swing (Venv,i-max ) corresponds to the 

maximum operating point ,Qmax ,when transmitting at peak power and the minimum 

envelope swing corresponds to the lowest operating point, Qmin when transmitting at low 

power. 

 

 
Figure 2.11 Simplified Schematic Illustrating Dynamic Gate Biasing 
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Figure 2.12 Plot of Bias Current vs. Gate Bias Voltage 

 

2.3.4 Combination of Dynamic Gate and Drain Biasing 

The efficiency enhancement techniques discussed either improve the voltage 

efficiency or the current efficiency of the PA. To improve both the current efficiency and 

voltage efficiency of the PA simultaneously, we can combine dynamic gate biasing and 

dynamic drain biasing to control the bias current and drain bias voltage of the PA[10]. 

Theoretically, a power efficiency of 50% can be maintained for all power levels if the dc 

supply voltage, VDC(Vout), and dc current, IDC, are varied such that they ideally follow 

Vpk and  Ipk  respectively. Figure 2.13 shows a simplified schematic illustrating a 

combination of dynamic drain and gate biasing. 
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Figure 2.13 Simplified Schematic Illustrating Dynamic Gate and Drain Biasing 

 

The output envelope signal is applied to the input of the supply modulator and 

the input baseband envelope signal to the gate bias control block. The supply modulator 

replicates the envelope of the output signal at the drain of the PA. Meanwhile the gate 

bias control block varies the bias current of the PA by adjusting the gate bias voltage 

according to the level of the input envelope signal. Figure 2.14 shows how the efficiency 

of a class A PA varies with output power for fixed bias, class G, dynamic gate bias, 

dynamic drain bias and a combination of both dynamic gate and dynamic drain bias. 
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Figure 2.14 Theoretical Efficiency of a Class A PA with Various Efficiency Enhancement Techniques 

 

It should be noted that these plots are idealized values and that in a real PA 

implementation, the efficiencies will be limited. For instance, the peak efficiency of the 

class-A PA will be less than 50% because the PA needs some headroom equal or greater 

than the saturation voltage ,VDSAT, of the transistor to maintain linearity. Also the 

techniques for improving the power efficiency consume power and as a result are not 

100% efficient. Thus, the peak efficiency and the efficiency at each operating power will 

be less than the values shown in Figure 2.14.  

            Since the combination of the dynamic gate and dynamic drain bias architecture 

promises the best efficiency results, it is used in this thesis to improve the power 
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efficiency of the linear PA. The challenge however is to design an efficient supply 

modulator to control the supply voltage of the PA for wideband applications and is 

discussed in the next section. 
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3. SUPPLY MODULATORS 

 

In this section, the operation of supply modulators is described. The existing 

supply modulation techniques are discussed and switching regulators identified as the 

most suitable for supply modulation because of their high efficiency. The challenges in 

designing high efficiency switching regulators for wideband applications are identified 

as a trade-off between ripple voltage, slew rate, bandwidth and efficiency and an 

architecture which alleviates these issues is described. 

 

3.1 Definition 

A supply modulator is a circuit in which the output node follows a signal applied 

to its input. Voltage regulators use feedback to force their output node to follow a 

reference voltage which is usually fixed. In this way, if the envelope of the baseband 

signal is used as the reference voltage then the output node of a voltage regulator will 

follow the signal power. Thus voltage regulators are usually used as supply modulators 

in the transmitter front end of RF PAs. The existing supply modulator architectures can 

be classified as: 

a) Linear Regulators 

b) Switching Regulators 

c) Hybrid Regulators 

The next section discusses these existing supply modulator architectures. 

 

3.1.1 Linear Regulators 

Linear Regulators are capable of achieving high bandwidths and as such can be 

used as supply modulators of wideband power amplifiers. Figure 3.1 shows a simplified 

diagram of a linear regulator used as a supply modulator. 
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Figure 3.1 Simplified Diagram of a Linear Regulator Used as a Supply Modulator 

 

The relationship between the envelope signal and the output voltage is given by 

                                                         𝑉𝑜𝑢𝑡 =
𝐴(𝑠). 𝑔𝑚 . 𝑟𝑜

1 + 𝐴(𝑠). 𝑔𝑚 . 𝑟𝑜
𝑉𝑒𝑛𝑣                                            (3.1) 

where A s  is the gain of the error amplifier (EA), gm is the transconductance of the 

PMOS pass transistor and ro is the output impedance of the pass transistor. Therefore 

if A s .gm.ro≫1, then Vout≅Venv . However the efficiency of a linear regulator is in the 

best case given by [11] 

                                                                 𝜂𝐿𝑅 =
𝑉𝑜𝑢𝑡

𝑉𝐷𝐷
                                                                  (3.2) 

Linear regulators can be classified within the class-A type regulators. They have a poor 

efficiency when the output voltage is significantly less than the supply voltage. 

Unfortunately, this is the scenario in modern wireless communication systems where the 

envelope signal is much less than the supply voltage during most of its operation. As a 
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result linear regulators are not suitable applications in which efficiency is a mjor concern. 

They are only used as supply modulators for highly efficient nonlinear PAs like class E 

PAs [12]. 

 

3.1.2 Switching Regulators 

Switching regulators can produce an output voltage lower or higher than the 

battery supply voltage. When the output voltage produced is lower than the supply they 

are referred to as buck switching regulators and when the output voltage is higher than 

the supply they are referred to as boost switching regulators. In this application, the 

output voltage is required to be less than the battery supply so our discussion will be 

limited to the buck switching regulator. The buck switching regulator is the most 

efficient way of modulating a supply voltage. It achieves a maximum theoretical power 

efficiency of 100% but non-idealities such as losses due to the non-zero “on” switch 

resistance and dynamic power dissipation due to the turning on and off of the switches 

limits the efficiency usually to the range of 80-95%. Figure 3.2 shows a simple block 

diagram of a buck switching regulator used as a supply modulator.  

 

 
Figure 3.2 Block Diagram of a Buck Switching Regulator Used as a Supply Modulator 
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References [4],[13],[14] show a practical implementation of a switching regulator as a 

supply modulator. The envelope signal, Venv, is applied to the input of the Pulse Width 

Modulator (PWM) for it to generate pulse width modulated signals for controlling the 

power switches for the output voltage follow the envelope signal. However, for 

wideband applications the typical switching regulator is not fast enough to respond to 

envelope signals with high bandwidths because it is slew-limited by the bulky inductor 

and capacitor used to regulate the output voltage. Therefore switching regulators are 

usually limited to low speed applications. These limitations are discussed in more detail 

in Section 3.2 along with a more detailed description of the buck switching regulator. 

 

3.1.3 Hybrid Regulators  

         This technique combines the high efficiency advantage of a switching regulator 

with the high speed advantage of linear regulators. Figure 3.3 shows a simplified 

schematic of a hybrid regulator.  

 

 
Figure 3.3 Simplified Schematic of a Hybrid Regulator Used as a Supply Modulator 
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The switching regulator is usually designed to handle the low frequency envelope 

signals and the linear regulator handles the fast envelope variations. This architecture 

seems to be the way forward with many research groups using this approach [15-22]. 

However this architecture usually has the following issues:  

a) High Quiescent current consumption 

The role of the class AB amplifier is to use feedback to reproduce the envelope 

signal with minimum distortion and also to attenuate the ripple voltage of the switching 

stage thus eliminating the need for an external capacitor[18]. As a result it is required to 

provide a path of very low impedance over a wide range of frequencies in order to 

absorb the ripple current in the inductor of the switching regulator which requires the 

class AB amplifier to have a very high bandwidth. Additionally, the class AB output 

stage has large transistors in order to supply current to the load when the switching stage 

is not able to do so [16]. As a result the current supplied by the class AB stage varies 

from zero to the maximum required by the load. This makes stabilizing the class AB 

amplifier very challenging since it has two low frequency poles which change locations 

with load current (one at the gates of the current source and sink and another at the 

output of the amplifier). This problem is similar to that of the external capacitor less 

LDO regulators[23]. In order to guarantee stable operation while maintaining wide 

bandwidth, the quiescent current is required to be several tens of milliamps[21]. The 

quiescent current consumption of the class AB amplifier can be as much as 24mA [20]. 

This high quiescent current consumption degrades the power efficiency of the supply 

modulator under low and mid-power regions. For instance reference [18] has a power 

efficiency of only 30% at 16dBm because of its high quiescent current consumption of 

24mA. 

b) Increased Power Losses 

In the event of transients, the class AB amplifier should be capable of supplying 

or absorbing all the current demanded by the load since the bulky inductor will not be 

able to supply or absorb the fast current component. As a result the class AB output 

stage uses large PMOS and NMOS current sources and sinks respectively for enhancing 
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the positive and negative slew rates of the switching regulator. The current sink used for 

improving the negative slew rate increases the power loss in the system by quickly 

discharging the load capacitor to ground. As a result, power that could have been 

conserved by allowing the capacitor to discharge through the load is dumped to ground 

hence increasing the power losses. 

Clearly, an efficient way of modulating the supply voltage for wideband 

standards is needed. To do this we start off by revisiting the most efficient supply 

modulator; the buck switching regulator. We identify the fundamental problems 

associated with designing high efficiency switching regulators for wideband applications 

and propose an efficient solution for solving the problems. 

 

3.2 Buck Switching Regulators 

          A buck switching regulator consists mainly of two power switches and an LC 

filter for transferring power from a battery supply voltage to the load. Figure 3.4 shows 

the schematic of a buck switching regulator. 
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Figure 3.4  Simplified Schematic of a Switching Regulator 

 

The error amplifier (EA) compares the output voltage,Vout, with the envelope 

voltage, Venv, and generates an error signal. The comparator compares the error signal 

with a triangular waveform reference to convert the error signal to a pulse width 

modulated on-off signal for controlling the power switches Sp and Sn. Since the power 

switches are large devices, they are buffered to make improve drive strength and 

minimize propagation delays. The pulse width modulated signal turns the power 

switches on and off in the right sequence to force the output voltage to follow the 

envelope signal. Notice that since the power switches are implemented with PMOS and 

NMOS transistors, they require the same clock phase to control them. That is, whatever 

clock phase turns on a PMOS device turns off an NMOS device and vice-versa. The LC 

filter on the output node acts as a low pass filter which minimizes out-of-band noise and 
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attenuates the high frequency harmonic components due to the switching, to extract the 

output envelope signal. The LC filter also plays the role of suppressing the ripple voltage 

on the output voltage. The DC output voltage of the switching regulator, Vout, is related 

to the supply voltage, VDD , by  

                                                                            𝑉𝑜𝑢𝑡 = 𝐷𝑉𝐷𝐷                                                     (3.3) 

where D is defined as the duty cycle of the PWM waveform and is given by 

                                                                          𝐷 =
𝑉𝑒𝑛𝑣

𝑉𝐷𝐷
                                                            (3.4) 

Even though the switching regulator is non-linear, it can be assumed to be linear 

for small signals if the bandwidth is significantly less than the switching frequency[24]. 

As a result, the PWM can be modeled as a simple gain block[24]. Thus the action of the 

feedback loop is such that the output voltage is forced to follow the envelope signal. To 

obtain this, let the gain of the error amplifier be given by A(s), the gain of the PWM by 

k1 and that of the LC filter by H(s) then 

                                                          
𝑉𝑜𝑢𝑡  𝑠 

𝑉𝑒𝑛𝑣  𝑠 
=

𝐿𝑜𝑜𝑝 𝐺𝑎𝑖𝑛

1 + 𝐿𝑜𝑜𝑝 𝐺𝑎𝑖𝑛
                                           (3.5a) 

                                                         
𝑉𝑜𝑢𝑡  𝑠 

𝑉𝑒𝑛𝑣  𝑠 
 =

𝑘1𝐴 𝑠 𝐻(𝑠)

1 + 𝑘1𝐴 𝑠 𝐻(𝑠)
                                        (3.5b) 

If k1A s H s ≫1, 

                                                                   𝑉𝑜𝑢𝑡  𝑠 ≅ 𝑉𝑒𝑛𝑣  𝑠                                                    (3.6) 

Switching regulators are noisy and usually expensive because of the high area 

associated with using the inductor and capacitor which are off chip components. 

However, they are still preferred because they promise the best efficiency. 

         Designing power efficient switching regulators for use as supply modulators in 

modern wideband standards such as WiMax becomes very challenging because of the 

bandwidth and slew rate required to follow its envelope variations (the bandwidth can be 

as high as 20MHz). Another related issue is the high peak-to-average power ratio (up to 

12 dB) present in typical OFDM schemes which introduce fast envelope variations that 

demand very high slew-rate figures. These challenges are discussed next. 
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3.2.1 Power Efficiency 

            The power efficiency of a switching regulator is given by 

                                                                        𝜂𝑆𝑅 =
𝑃𝑜,𝑑𝑐

𝑃𝑜,𝑑𝑐 + 𝑃𝐿
                                               (3.7) 

where Po,dc is the power delivered to the load and PL is the power loss in the switching 

regulator. 

           Maintaining a high power efficiency in the switching regulator under all operating 

conditions in this application is very important since a poor power efficiency degrades 

the overall system efficiency. To optimize the power efficiency, all the loss mechanisms 

in the switching regulator need to be analyzed and mechanisms devised to minimize 

them. The losses in the switching regulator are  

a) Switching Losses: This occurs because of dynamic power dissipation in the parasitic 

capacitance of the power switches as a result of switching. Consider the simplified 

schematic of the switching regulator in Figure 3.5 with effective switch parasitic 

capacitance, Cp, given by 

                                                            𝐶𝑝 = 𝐶𝑥1 + 𝐶𝑥2 + 𝐶𝑥3                                                   (3.8) 

 

 
Figure 3.5 Simplified Schematic Showing Switch Parasitic Capacitance 

 

The switching losses in a switching regulator are given by  
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                                                                          𝑃𝑠𝑤 = 𝑓𝑠𝑤𝐶𝑝𝑉𝐷𝐷
2                                              (3.9) 

where fsw is the switching frequency and VDD is the supply voltage. 

It is noticed from equation (3.9) that the switching losses increase linearly with 

the switching frequency for a fixed switch parasitic capacitance and supply voltage. 

These losses degrade the efficiency of the switching regulator under light loads (i.e. 

when the power delivered to the load is typically less than 50mW) which is the region 

under which the switching regulator will be mostly operated for this application. The 

most critical thing here is to limit the switching losses when delivering average power to 

the load since in average the switching regulator will operate at average power. 

Considering a typical average power consumption of 70mW, it is important to limit the 

switching losses to a maximum of 5mW in order to guarantee good average power 

efficiency. In order to optimize the switching losses, we consider Figure 3.6 which 

shows a graph of the variation of the switching frequency with the switching losses for 

different values of Cp(Cp1<Cp2<Cp3). These different values of Cp were obtained from 

different transistor switch sizes with dimensions shown in Table 3.1 using the TSMC 

0.18um technology with VDD=2V. 
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Figure 3.6 Plot of Switching Loss vs. Switching Frequency 

 
Table 3.1 Power Switches and their Dimensions 

Switch Width(µm) Length(µm) 

Sp1 3072 0.18 

Sp2 4096 0.18 

Sp3 7168 0.18 

Sn1 768 0.18 

Sn2 1024 0.18 

Sn3 1792 0.18 

 

From Figure 3.6, it is noticed that the switching frequency must be less than 100MHz in 

order to guarantee that the switching losses are limited to a maximum of 5mW. Thus, the 
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switching frequency for this application must be less than 100MHz in order to obtain 

good average power efficiency. 

b) Conduction Loss: This is due to the non-zero on resistance of the PMOS, RON-P, and 

NMOS, RON-N, power switches. It is given by 

                                         𝑃𝐶 = 𝑃𝐶−𝑃 + 𝑃𝐶−𝑁                                                           (3.10a) 

                                         𝑃𝐶 =  𝐷. 𝐼2. 𝑅𝑂𝑁−𝑃 +  1 − 𝐷 . 𝐼2. 𝑅𝑂𝑁−𝑁                   (3.10b) 

        If  RON-P=RON-N=RON, then 

                                                      𝑃𝐶 = 𝐼2. 𝑅𝑂𝑁                                                                      (3.10c) 

where I is the load current. 

The simplified assumption of equation (3.10c) is used in this work to evaluate the 

conduction loss. Figure 3.7 shows the variation of conduction loss with load current for 

different values of switch on resistance, RON, obtained from the different switch sizes in 

Table 3.1 using equation (3.10c). 

 

 
Figure 3.7 Conduction Loss vs. Load Current for Different Switch On-resistances 
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The conduction losses increase with load current making these losses significant at 

medium and heavy loads. It is noticed that while switching losses are independent of 

loading, the conduction losses increase with load current. There is also a tradeoff 

between the conduction losses and switching losses. The equations for the switch on 

resistance and the switch parasitic capacitance are given by 

                                                                       𝑅𝑂𝑁 ≅
𝐿

𝜇𝐶𝑜𝑥𝑊(𝑉𝐷𝐷 − 𝑉𝑇)
                              (3.11) 

                                                                          𝐶𝑝 ≅ 𝑊𝐿𝐶𝑜𝑥                                                    (3.12) 

where W is the width of the transistor switch, L is the channel length, VT  is the 

threshold voltage of the transistor, μ is the mobility of the carriers and Cox is the oxide 

capacitance per unit area. 

From these equations, it can be shown that, 

                                                               𝑅𝑂𝑁 =
𝐿2

𝜇(𝑉𝐷𝐷 − 𝑉𝑇)𝐶𝑝
                                           (3.13) 

It is observed that RON is inversely proportional to Cp. Thus, increasing the width of the 

switch reduces RON which consequently causes the conduction loss to reduce and 

increases Cp which causes the switching losses to increase. As a result of this, the power 

switches should be sized to get the best performance by equalizing the conduction loss 

and switching loss for average power transmission. Thus, 

                                                           𝑓𝑠𝑤 . 𝐶𝑝 . 𝑉𝐷𝐷
2 = 𝐼2. 𝑅𝑂𝑁                                               (3.14a) 

                                                                
𝐶𝑝

𝑅𝑂𝑁
=

𝐼2

𝑓𝑠𝑤 . 𝑉𝐷𝐷
2                                                     (3.14b) 

Figure 3.8 shows a plot of the optimum values of the ratio of Cp RON  for a fixed supply 

voltage, VDD=2V, and different average load currents for three switching frequencies of 

fsw1=40MHz,  fsw2=80MHz and fsw3=120MHz. 
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Figure 3.8 Plot of C/Ron vs. Average Load Current for Different Switching Frequencies 

 

The optimum value of switch on resistance and parasitic capacitance can be obtained for 

a particular switching frequency and average load current from Figure 3.8. For a 

particular switching frequency after obtaining the average load current, the transistor 

dimensions should be varied until the desired value of Cp RON  is obtained. 

c) Short Circuit Current Power Loss: This is due to the power switches being on at the 

same time. Consider the circuit diagram of Figure 3.9 in which logic 0 is required to turn 

on Sp and logic 1 is required to turn on Sn. The periods of time ∆T1and ∆T2 for which 

the power switches Sp and Sn are simultaneously on causes a large amount of current 

Isc to flow from supply to ground. This results in short-circuit power losses which are 

given by 

                                                𝑃𝑆𝐶 = 𝐼𝑆𝐶𝑉𝐷𝐷𝑓𝑠𝑤  ∆𝑇1 + ∆𝑇2                                                (3.15) 
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Figure 3.9 Diagram Illustrating Short-circuit Power Loss 

 

However short-circuit currents in the power switches can be eliminated by using 

non-overlapping clocks for controlling the power switches. Figure 3.10 shows the timing 

diagram of ideal non-overlapping clocks. 

 

 
Figure 3.10 Timing Diagram of Non-overlapping Clocks 
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The non-overlapping clocks introduce dead-times  Δtd1and Δtd2  which prevent 

the occurrence of short-circuit power loss. The clock phase ∅pcontrols the high side 

switch, Sp, which is a PMOS switch and hence requires a logic 0 to turn it on while ∅n 

controls the low side switch, Sn, which is an NMOS switch and hence requires a logic 1 

to turn it on. In order to avoid short-circuit currents, Sp must be turned off before Sn is 

turned on and Sn must turn off before Spturns on.  

d) Losses due to the power spent in biasing auxiliary building blocks. This is given by 

                                                       𝑃𝑏𝑖𝑎𝑠 = 𝑉𝐷𝐷 . 𝐼𝑏𝑖𝑎𝑠                                                 (3.16) 

where Ibias  is the current used to bias the auxiliary building blocks. 

The switching regulator requires auxiliary building blocks such as an error amplifier and 

pulse width modulator (PWM) in a feedback loop as Figure 3.4 showed to enable it to 

perform its function as a voltage regulator. These auxiliary building blocks also consume 

power. 

After, analyzing the various loss mechanisms in the switching regulator we arrive 

at the power efficiency which is given by 

                                                             𝜂𝑆𝑅 =
𝑃𝑜,𝑑𝑐

𝑃𝑜,𝑑𝑐 + 𝑃𝑆𝑊 + 𝑃𝐶+ 𝑃𝑆𝐶 + 𝑃𝑏𝑖𝑎𝑠
                  (3.17) 

Note that for a fixed load resistance of R, 

                                                            𝑃𝑜,𝑑𝑐 = 𝐼2𝑅                                                                    (3.18) 

Now to illustrate the effect of bias power (quiescent power) on the efficiency of the 

switching regulator, we consider Figure 3.11 which shows a plot of the variation of 

power efficiency with output power for different values of Pbias 

with f=80MHz, RON=700mΩ ,Cp=10pF and R=8Ω. 
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Figure 3.11 Plot of Efficiency against Pout for Different Values of Pbias 

 

This plot shows that the bias power limits the power efficiency mostly when the output 

power is less than 100mW. Considering a typical average power of 70mW, we notice 

that the average power efficiency degrades severely as the quiescent power consumption 

increases. It is therefore important to minimize the quiescent current of the switching 

regulator in order to guarantee a high efficiency under all operating regions. 

             In summary, the limitations to the power efficiency of the switching regulator 

need to be analyzed and understood under different loading conditions in order to 

optimize efficiency. It has been identified that the switching losses and the quiescent 

current consumption particularly degrade the average power efficiency of the switching 

regulator. As a result, these losses need to be minimized in order to guarantee a high 

average power efficiency in the switching regulator.  
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3.2.2 Bandwidth  

For WiMax applications, the bandwidth of the envelope signal can be as high as 

20MHz. The bandwidth of a switching regulator is required to be higher than that of the 

envelope signal in order for it to track the envelope signal accurately. Referring to 

equation (3.5a), we noticed that the loop gain must be sufficiently greater than unity for 

the output voltage to be approximately equal to the envelope signal. Note that the 

bandwidth of the switching regulator is defined to be the unity gain frequency of the 

loop gain. For this reason, the modulator bandwidth is usually required to be at least four 

times the envelope bandwidth to be able to track the envelope signal with minimum 

distortion [4],[25].As a result, the minimum bandwidth of the switching regulator is 

required to be 80MHz. However, the PWM is a simple analog to digital converter and as 

a result it samples the error signal at a rate equal to the switching frequency. From the 

sampling theorem, the bandwidth of the supply modulator must be sufficiently less than 

half the switching frequency. The switching frequency is usually made 5-10 times the 

bandwidth of the switching regulator to prevent switching harmonics present in the 

output voltage and feedback signals from disrupting the operation of the PWM [4],[24]. 

So for an envelope bandwidth of 20MHz, a minimum switching frequency of 400MHz 

will be required. Switching at such high frequencies poses some challenges to the design 

of the switching regulator; the most critical one being the switching losses. These losses 

were discussed in Section 3.2.1 and it was realized that in order to optimize the 

efficiency the switching frequency has to be limited to a maximum of 100MHz. 

Another issue related to increasing the switching frequency is the propagation 

delay of the auxiliary building blocks required for the switching regulator to operate 

properly. To gain more insight into this, consider the simplified switching regulator 

shown in Figure 3.4 operating at a switching frequency of 400MHz. This means that 

only a 2.5ns time window is available for making a switching decision. Any significant 

delays in the switching regulator loop limits the speed response. Reducing these delays 

usually require an increase in the power consumption of the auxiliary building blocks. 

As a result, designing a switching regulator for such high bandwidths is unrealistic 
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because of the increased switching losses and the increased power consumption required 

for designing fast auxiliary building blocks. As a result, it is important to limit the 

bandwidth of the switching regulator to handle envelope variations up to a maximum of 

4MHz in order to guarantee a high efficiency.  

 

3.2.3 Stability 

The LC filter of the switching regulator in Figure 3.4 is a low pass second order system 

with transfer function 

                                                𝐻 𝑠 =
𝑉𝑜 𝑠 

𝑉𝑠𝑤 (𝑠)
=

1

𝑠2𝐿𝐶 + 𝑠
𝐿
𝑅 + 1

                                      (3.19) 

It has a natural frequency, 

                                                            𝜔𝑛 =
1

2𝜋 𝐿𝐶 
                                                               (3.20) 

and damping factor,  

                                                          𝜀 =
1

2𝑅
 

𝐿

𝐶
                                                                     (3.21)  

This is a well known system with the following properties: 

1) When ε<1 , the system is underdamped and produces oscillations which 

eventually settle in the presence of transients 

2) When ε=1, the system is critically damped and produces the fastest response 

without any overshoot in the presence of transients 

3) When ε>1 the system is overdamped and has no oscillations in the presence of 

transients 

Since oscillations are not desirable, the system is usually desired to be critically damped 

in order to obtain the best speed response. However, the typical switching regulator will 

have a filter that is underdamped if the load is a current source. This is because a current 

source load has a large output resistance (i.e. as R→∞, ε→0) which makes the system 

exhibit poor transients whenever there is any disturbance in the load. As a result, a 
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switching regulator typically has an error amplifier(or more generally a controller) and a 

PWM in a feedback loop as shown in Figure 3.4 to regulate the output to the desired 

level and improve the transient response. However, stability becomes a major concern 

whenever there is a feedback loop. Feedback could potentially make the system unstable.  

Let us consider the case where the error amplifier in Figure 3.4 has a transfer function 

given by 

                                                                        𝐴 𝑠 =
𝐴

1 +
𝑠

𝜔𝑝

                                                 (3.21) 

Then the loop gain will be given by 

                                                                 𝐿 𝑠 = 𝑘1𝐴 𝑠 𝐻 𝑠                                              3.22a  

                                                    𝐿 𝑠 = 𝑘1

𝐴

(1 +
𝑠

𝜔𝑝
)

1

(𝑠2𝐿𝐶 + 𝑠
𝐿
𝑅 + 1)

                        (3.22b) 

where k1 is the gain of the PWM.  

The stability of the resulting system is analyzed using the root locus( a stability 

analysis tool which gives a graphical representation of the closed loop poles as the loop 

gain is varied[26]). The location of the closed loop poles in the s-plane indicates whether 

the system is stable or not as well as the nature of the transient response. Poles in the left 

half of the s-plane indicate a stable system while poles in the right half plane indicate an 

unstable system.  The root locus of equation (3.22b) is plotted in Figure 3.12 

assuming ωp=10Mrad/s, L=330nH, C=3.6nF and R=100Ω . 
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Figure 3.12 Root Locus of Loop Gain without any Zero 

 

The root locus shows that as the loop gain,k1A, varies the closed loop poles move into 

the right half plane resulting in an unstable system. As a result, a zero is needed in the 

feedback loop to guarantee stability. A zero implements a Proportional Derivative (PD) 

controller with transfer function given by  

                                                          𝐴𝑧 𝑠 = 𝑘𝑃(1 +
𝑠

𝜔𝑧1
)                                                   (3.23) 

where kP is the DC gain and ωz1is the frequency at which the zero is located. 

Now replacing A s  with Az s  in equation (3.22a), the expression for the loop gain 

becomes 

                                                         𝐿 𝑠 = 𝑘1𝐴𝑧 𝑠 𝐻 𝑠                                                    (3.24a) 
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                                                 𝐿 𝑠 = 𝑘1. 𝑘𝑃

(1 +
𝑠

𝜔𝑧1
)

(𝑠2𝐿𝐶 + 𝑠
𝐿
𝑅

+ 1)
                                      (3.24b) 

The root locus of the loop gain of equation (3.24b) is shown in Figure 3.13 

assuming ωz1=4Mrad/s, L=330nH, C=3.6nF and R=100Ω . 

 

 
Figure 3.13 Root Locus of System with a Zero 

 

This shows that as the loop gain,k1. kP, varies, the closed loop poles move away from the 

imaginary axis towards the left half plane thus guaranteeing stability and improving the 

transient response. However, the PD controller makes the system susceptible to high 

frequency noise from the switching harmonics present in the output voltage. A real 

implementation will require high frequency poles for attenuating this noise. Another 

disadvantage of using a PD controller is that it has a finite gain at DC which introduces 
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finite steady state errors in the output voltage. To gain insight into this effect, notice that 

from equation (3.24b), the loop gain at DC (i.e. when s=0) is given by 

                                                                         𝐿 0 = 𝑘1. 𝑘𝑃                                                    (3.25) 

Therefore, the error in the output voltage at DC will be given by                       

                                         DC error =
1

1 + 𝐿 0 
=

1

1 + 𝑘1. 𝑘𝑃
                                           (3.26) 

Now if we assume that k1.kP=1, the output voltage will be in error by 50%. To alleviate 

these effects, a Proportional Integral Derivative (PID) controller can be used. The 

transfer function of a PID controller is given by 

                                               𝐴𝑍2 𝑠 =
𝐾

𝑠
 1 +

𝑠

𝜔𝑧1
  1 +

𝑠

𝜔𝑧2
                                        (3.27) 

where K is a finite gain and ωz1 and ωz2  are the frequencies at which the zeros are 

located.  

Now replacing Az s  with AZ2 s  in equation (3.24a), the expression for the loop 

gain becomes 

                                                           𝐿 𝑠 = 𝑘1𝐴𝑍2 𝑠 𝐻 𝑠                                                (3.28a) 

                                                           𝐿 𝑠 =
𝑘1𝐾  1 +

𝑠
𝜔𝑧1

  1 +
𝑠

𝜔𝑧2
 

𝑠(𝑠2𝐿𝐶 + 𝑠
𝐿
𝑅

+ 1)
                         (3.28b) 

The root locus of the loop gain of equation (3.28b) is shown in Figure 3.14 

assuming ωz1=4Mrad/s, ωz2=12Mrad/s, L=330nH, C=3.6nF and R=100Ω . 
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Figure 3.14 Root Locus of System with a PID Controller 

 

The root locus shows that as the loop gain varies, the closed loop poles move away from 

the imaginary axis towards the zeros in the left half plane thereby guaranteeing stability 

and improving the transient response. The PID controller has a pole at the origin which 

has the advantage of eliminating steady state errors. To gain insight into this, notice that 

at DC, equation (3.28b) reduces to L 0 =∞ . Therefore, the error in the output voltage at 

DC will be given by 

DC error =
1

1+L 0 
= 0 

The pole at the origin thus increases the low frequency loop gain and ensures that a high 

loop gain is maintained over a wide frequency range. As a result of this a PID controller 

is used in this thesis to stabilize the switching regulator. A PID controller can be 

implemented using the circuit shown in Figure 3.15. 
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Figure 3.15 Circuit Diagram of a PID Controller 

 

It can be shown that the transfer function of this circuit is given by [27] 

                                      
𝑉𝑥 s 

𝑉𝑜(𝑠)
=

−1

𝑠𝑅1 𝐶2 + 𝐶3 

(1 + 𝑠𝑅1𝐶1)(1 + 𝑠𝑅2𝐶2)

(1 + 𝑠𝑅2
 𝐶2𝐶3 

 𝐶2 + 𝐶3 
)

                       (3.29) 

It should be noted that in this schematic implementation, a high frequency pole is added 

to attenuate high frequency noise from the switching harmonics present in the output 

voltage.  

Even though the root loot locus gives a lot of insight into the transient analysis of 

the switching regulator, the stability of switching regulators is often analyzed using the 

magnitude and phase response of the loop gain since this information can be easily 

obtained in the lab. The stability of the switching regulator can be determined using the 

phase margin of the loop gain. Phase margin indicates the amount by which the phase of 

the system has to be reduced at unity gain before it becomes unstable. A positive phase 

margin usually guarantees stability. However, to guarantee good transient response with 

little ringing the phase margin should be greater than 450. This criterion is used in this 

thesis to evaluate the stability of the switching regulator. Consider a system with 

magnitude and phase response of the loop gain shown in Figure 3.16. The phase margin 

of the system is evaluated as 
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                                                               ∅m=1800+ (phase at fu)                               (3.30) 

where fu is the unity gain frequency of the loop gain. 

In this example, ∅m=1800- 1200= 600  thus guaranteeing stable operation. 

 

 
Figure 3.16 Magnitude and Phase Response 

 

3.2.4 Slew Rate 

Slew Rate is the maximum rate of change at which the output changes when 

input signals are large [28]. The maximum rate of change of the input signal is given by 

                                                             𝑆𝑅𝑒𝑛𝑣 = 2. 𝜋. 𝐵. 𝐴                                                       (3.30) 
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where A is the amplitude of the signal and B is the maximum frequency of the signal. 

For a signal bandwidth of 20MHz and amplitude of 0.8V, the peak rate of change of the 

signal is given by SR≅100.5mV/ns. 

As a result, the slew rate of the switching regulator is required to be greater than 

100.5mV/ns. When large signal variations are applied to the input of a switching 

regulator, the output is not able to rise quickly to the desired level because it is slew 

limited by the bulky LC filter on its output node. This slew limitation stems from the 

fundamental property of the switching regulator; an inductor cannot change its current 

instantaneously. Consider the circuit diagram of Figure 3.17, the inductor is given by 

                                                        𝑖𝐿 =  
 𝑉𝑠𝑤 − 𝑉𝑜    

L
𝑑𝑡                                                    (3.31) 

Now if the voltage across the inductor is small and or the inductor is large, then the 

amount of current that the inductor can pump into the output node to charge up the load 

capacitor C is limited.  

 
Figure 3.17 Simplified Schematic Illustrating Slew Limitation 
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The slew rate of a critically damped switching regulator is obtained in the 

Appendix as 

                          
𝑑𝑉𝑜𝑢𝑡  𝑡 

𝑑𝑡
= 𝑡𝜔𝑜𝑒

−𝜔𝑜 t 𝑉𝑠𝑤 − 𝑉𝑜 0                𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝐷𝑇             (3.32) 

where D is the duty cycle and T is the switching period. 

Figure 3.18(a) shows a plot of the slew rate of the switching regulator against time for 

different values of LC with initial conditions Vo 0 =0.35V and Fig 3.18(b) shows the 

output of the switching regulator slewing in the presence of large and fast envelope 

signal variations. These plots show that the inherent slew rate of the switching regulator 

is limited. It should also be noted from equation (3.32) that, the slew rate is dependent on 

the circuit initial conditions. If the initial conditions are such that Vo 0  is close to the 

VDD supply rail, then the slew rate figures will be lesser than those in Figure 3.18(a). 

Therefore, it is difficult to design a switching regulator to achieve the desired slew rate 

of 100.5mV/ns. As a result some mechanism for enhancing the slew rate of the 

switching regulator is required.  

 

 
(a) 

Figure 3.18 Plot of the (a) Slew Rate of the Switching Regulator Against Time for Different Values of 
Natural Frequency, fo and (b) Output Voltage of Switching Regulator and Envelope Signal 
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(b) 

Figure 3.18 Continued 

3.2.5 Ripple Voltage 

The output voltage of a switching regulator has a ripple component which results 

from the incomplete attenuation of the switching harmonics by the LC filter [24].The 

ripple requirements of a switching regulator are application dependent. Typically, it is 

required that the ripple voltage is limited to a few tens of millivolts. In this application, a 

low output ripple is critical for the overall system performance because any noise in the 

converter output directly couples to the PA output [4]. The expression for the output 

ripple voltage of the switching regulator can be obtained as follows [24] 

The voltage across an inductor is given by 

                                                                           𝑉𝐿 = 𝐿
𝑑𝑖

𝑑𝑡
                                                     (3.33𝑎) 

when the switching regulator is in steady state and switch Sp is connected to VDD, 
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                                                      𝑉𝐷𝐷 − 𝑉𝑜 = 𝐿
𝛥𝐼

𝐷𝑇
                                                             (3.33b) 

Thus 

                                                  𝐿 = 𝐷𝑇
 𝑉𝐷𝐷 − 𝑉𝑜 

𝛥𝐼
                                                             (3.33c) 

                                                  𝐿 =
 1 − 𝐷 𝑉𝑜

𝑓𝑠𝑤∆𝐼
                                                                     (3.33d) 

where ∆I is the peak-peak inductor ripple current, T is the switching period, D is the 

duty cycle and fsw is the switching frequency 

Similarly, it can be shown that 

                                                                      𝐶 =
∆𝐼

8𝑓𝑠𝑤∆𝑉
                                                        (3.34) 

where ∆V is the peak-peak ripple voltage. 

These equations are usually used as design equations to select L and C in the design of 

switching regulators for a given ripple current and ripple voltage specification. They 

show that a large L or high switching frequency is required to reduce the inductor ripple 

current and a large LC or high switching frequency is required to reduce the output 

ripple voltage.  

Equations (3.33d) and (3.34) can be combined to obtain, 

                                                                  ∆𝑉 =
 1 −

𝑉𝑜
𝑉𝐷𝐷

 𝑉𝑜

8𝑓𝑠𝑤𝐿𝐶
                                             3.35a  

                                                                  ∆𝑉 =
π2

2
  1 −

𝑉𝑜

𝑉𝐷𝐷
  

𝑓𝑜
2

𝑓𝑠𝑤
2                                  (3.35b) 

Equation (3.35a) is used in this work to select the switching frequency of the supply 

modulator after L and C have been selected to meet a specified output voltage ripple. 

Figure 3.19 shows a graph of the ripple voltage vs. output voltage 

for fsw=10fo with VDD=2V. It is observed that the maximum ripple occurs when Vo= VDD
2

. 

This plot shows that the switching frequency must be equal to ten times the natural 

frequency in order to guarantee a maximum ripple voltage of 25mV.  
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Figure 3.19 Plot of Peak-Peak Ripple against Output Voltage 

 

It has been noticed that designing the switching regulator involves a trade-off 

between the output ripple voltage, bandwidth, slew rate and power efficiency. This 

makes the design of efficient high speed regulators particularly challenging. In the next 

section, a solution is proposed which potentially eliminates these limitations. 

 

3.3 Proposed Solution 

It was realized from Section 3.1 that state of the art implementations are mostly 

focused on using hybrid regulators as supply modulators. Even though these regulators 

usually eliminate the need for an external capacitor to achieve a low ripple voltage 

performance they usually have a poor power efficiency at low transmit power, are 

complex to design and suffer potential stability issues. As a result, an architecture which 
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alleviates these issues is proposed for use as a supply modulator is proposed in this 

section.  

 

3.3.1 Conceptual Idea of Proposed Solution 

The conventional switching regulator is the most efficient way of modulating a 

supply voltage so far as the switching losses and quiescent power consumption are 

minimized. As a result the proposed solution is based on the conventional switching 

regulator architecture. A dead time control circuit (DTC) implemented with a standard 

non-overlapping clock generator is added to prevent the occurrence of short-circuit 

currents due to the power switches being turned on simultaneously. Now if an auxiliary 

block is added to the switching regulator such that it supplies current to the output node 

only when the switching regulator is slew limited then the speed can be enhanced. 

Additionally, this auxiliary block should have negligible quiescent current consumption 

and should not degrade the stability of the switching regulator. Furthermore, only 

positive slew rate needs to be enhanced since enhancing negative slew rate increases the 

power losses in the system by quickly discharging the load capacitor to ground. All these 

features are desired to make the system more efficient. Note that this auxiliary block also 

takes advantage of the envelope statistics (i.e. the fast and large envelope variations are 

infrequent and occur only about 10% of the time) to make the system efficient. Figure 

3.20 shows a conceptual diagram of the proposed solution. 
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Figure 3.20 Schematic Diagram of Proposed Supply Modulator 

 

          The auxiliary building block takes the form of a bang-bang controlled current 

source. The role of the bang-bang controlled current source is to compare the output 

voltage of the switching regulator with the envelope signal and inject current into the 

output node when it is slew-limited. Figure 3.21 shows a simplified schematic of the 

bang-bang controller circuit. 
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Figure 3.21 Simplified Schematic of Bang-bang Controller 

 

It is made up of a comparator, current source,Mp, and drivers. The bang-bang 

controller is equipped with an enable (EN) control input which can be used to deactivate 

the bang-bang control circuitry. When this enable input is a logic zero (ground), the gate 

of Mp becomes VDD and the current source is deactivated. This functionality is added for 

practical purposes to allow the user control to wait for the switching regulator to start-up 

before enabling the bang-bang controller. An offset voltage is subtracted from the 

envelope signal before comparing it with the output voltage in order to provide some 

safety margin for control. An offset of 100mV is used in this design. This offset masks 

the output ripple voltage and makes the bang-bang controller insensitive to the output 

ripple voltage. When the enable input is a logic one (VDD) and the output voltage of the 

switching regulator goes below (Venv – offset), a logic one is produced at the output of 

the comparator. This signal is inverted by the NAND gate to produce a logic zero which 

turns on Mp to inject current into the output node of the switching regulator until output 

voltage becomes greater than the envelope signal. When the output voltage goes above 

(Venv – offset), Mp  is turned off. The amount of current required by the bang-bang 

controller depends on the maximum slew rate required. Consider the circuit diagram of 

Figure 3.22. 
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Figure 3.22 Schematic Illustrating Concept of Bang-bang Control 

 

The slew rate required by the switching regulator can be expressed as 

                                                                  
𝑑𝑉𝑜𝑢𝑡

𝑑𝑡
=

𝑖𝐶
𝐶

                                                              (3.36) 

Now in the event that the inductor is not able to provide the fast current needed to charge 

up the load capacitor when there are fast and large envelope variations, the bang-bang 

controlled current should be able to provide the current required to meet the slew rate 

requirements. Thus the maximum slew rate of the bang-bang controller is given by 

                                                                𝑆𝑅𝐵𝐵 =
𝐼𝐵𝐵

𝐶
                                                            (3.37a)  

The current required by the switching regulator to meet the slew rate requirements will 

be given by 

                                                                𝐼𝐵𝐵 = 𝐶. 𝑆𝑅𝐵𝐵                                                         (3.37b) 

The bang-bang current source is sized to provide this current. 
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Figure 3.23 shows the ideal behavior of the supply modulator with and without the bang-

bang controller. It is noticed that adding the bang-bang controller improves the positive 

slew rate of the switching regulator. The current used to charge up the capacitor during 

positive slew rate limitation is discharged from the capacitor through the load.  

 

 
Figure 3.23 Plot of Envelope Signal and Ideal Output Voltage with and without Bang-bang Controller 

 

The main highlights of the proposed solution are:

a) Current efficiency (Negligible quiescent current consumption): The supply modulator 

has little quiescent current consumption. By employing a bang-bang controller, the 

extra-circuitry used for slew enhancement is off under normal operating conditions and 

is activated only during fast or large PA input variations. Since these variations only 

Positive Slew Rate Enhanced 
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occur about 10% of the time, the supply modulator operates just like a switching 

regulator during normal operation and is assisted by the bang-bang current source only 

during fast or large PA input variations. Also since the proposed supply modulator has 

negligible quiescent power consumption, it promises a high power efficiency under all 

loading conditions. 

b) Easy to stabilize: Adding a bang-bang controller to the switching regulator does not 

degrade stability. This is because the bang-bang controller is an open loop comparator 

with poles in the left half of the s-plane. As a result stability does not become a problem. 

c) Area efficient (only positive slew rate enhancement): Improving both the positive 

slew rate and negative slew rate of the switching regulator requires a PMOS current 

source and an NMOS current sink respectively. But by improving only the positive slew 

rate of the switching regulator, only a PMOS current is used and the area that would 

have been consumed by the NMOS current sink is conserved. Also, improving the 

negative slew rate increases the power losses in the system by quickly discharging the 

charged capacitor to ground. But by just using a PMOS current source, area is conserved 

and power losses are also reduced. 

               The main design considerations in the transistor level implementation of the 

proposed supply modulator are shown in the next section. 
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4. DESIGN CONSIDERATIONS 

In this section, we look at the main considerations in designing the proposed 

supply modulator. Since the role of the supply modulator is to produce a replica of the 

voltage applied to its input, it is important to apply the appropriate reference voltage to 

the input of the supply modulator. Thus we begin this section with the design and 

characterization of a simple class-A PA. The characterization exercise is needed to 

obtain the relationship between minimum drain voltage required by the PA to operate 

properly and the envelope of the signal delivered to the load. The efficiency and linearity 

performance of the fixed biased PA is extracted and then compared with the dynamic 

biased PA since the ultimate goal of this work is to improve the efficiency of the class-A 

PA using dynamic gate and drain biasing. Afterwards, some of the main design 

considerations in the transistor level implementation of the supply modulator are 

discussed.  

    

4.1 Design and Characterization of PA 

A simple class A PA without an input matching network and output matching 

network was designed to test the supply modulator and show the efficiency gained by 

using the proposed approach. Figure 4.1 shows the schematic of the PA used.  

 
Figure 4.1 Simplified Schematic of PA 
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The PA is designed for a maximum output power of 19.5dBm using the TSMC 

0.18um technology. In this design, the dc voltage supplied to the drain of the PA was 

limited to a maximum of 1.6V because of technology restrictions. Assuming that the PA 

is matched to an optimum output impedance of RPA=6Ω, the peak ac voltage delivered to 

the load will be given by  

                                                                      𝑉𝑝𝑘 =  2. 𝑅𝑃𝐴.𝑃𝑜𝑢𝑡                                               (4.1) 

𝑉𝑝𝑘 = 1.03V 

And the peak ac current delivered to the load will be given by 

                                                               𝐼𝑝𝑘 =
𝑉𝑝𝑘

𝑅𝑃𝐴
                                                                     (4.2) 

                                                             𝐼𝑝𝑘 = 171.7𝑚𝐴 

We allow some safety margin and size the transistor to provide a maximum dc current of 

192mA in order for the transistor to operate properly. The PA is designed for a peak 

input signal of 320mV. To ensure that the PA operates in class-A mode, the PA needs to 

be biased such that for the maximum swing of the input signal, the gate voltage does not 

swing below the threshold voltage, VT, of the transistor. Thus, with VT = 0.8V, a gate 

bias voltage, VGS , of 1.16V is used to ensure that the PA operates in the saturation 

region with some margin to guarantee class-A operation. The dimensions of the 

transistor are obtained from  

                                                     
𝑊

𝐿
=

𝐼𝐷
𝜇𝐶𝑜𝑥 (VGS − VT)2

                                                        (4.3) 

where W is the width of the transistor, L is the channel length, μ is the mobility of the 

carriers, Cox is the oxide capacitance per unit area and ID is the drain current. 

An NMOS transistor with W=3600μm  and L=0.350um  is used in this design. This 

transistor is characterized to extract its Drain ID, vs. VGS and ID vs. VDS (Drain 

voltage) curve. These curves shown in Figure 4.2(a) and 4.2(b) respectively show the 

operating point, Q, of the fixed bias PA.  
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(a) 

 
(b) 

Figure 4.2 Plot of ID vs. (a) VGS for Different Values of VDS and (b) VDS for Different Values of VGS 



68 

 

 

For a carrier frequency, f, of 1.9GHz, the values of coupling capacitor,Cc , and RF 

choke, LRF, are selected as 

                                                                                𝐶𝑐 =
1

2. 𝜋. 𝑓. 𝑋𝑐
                                           (4.4) 

                                                                                𝐿𝑅𝐹 =
𝑋𝐿

2. 𝜋. 𝑓
                                               (4.5) 

To reduce the ripple current in LRF and the ripple voltage across Cc [8],  

                                                              𝑋𝐿 ≥ 10. 𝑅𝑃𝐴                                                                  (4.6) 

                                                              𝑋𝑐 ≤
𝑅𝑃𝐴

10
                                                                       (4.7) 

Thus, this design uses Cc=100pF and LRF=10nH.  

In this application, we seek to control the bias current and supply voltage of the 

PA in order to optimize power efficiency. Controlling the bias current can be achieved 

by using the envelope of the input baseband signal to control the gate bias voltage using 

the approach discussed in Section 2.3.3. Figure 4.3 shows a plot of the operating point of 

the PA as the gate bias voltage varies for different values of VDS. The arrow indicates the 

direction of the movement of the operating point,Q, as the amplitude of the envelope 

signal varies from maximum to minimum. The envelope varies the bias current between 

192mA for maximum power transmission and 30mA for minimum power transmission. 
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Figure 4.3 Plot of Bias Current vs. Gate Bias Voltage for Dynamic Biased PA 

 

Now, the peak output voltage variations are measured by applying an amplitude 

modulated signal to the input of the PA with dynamic gate bias and measuring the 

corresponding peak variations in the output signal delivered to the load. The minimum 

drain voltage required at each operating point is obtained by adding VDSAT to the peak 

output voltage variations and adding an offset between 50mV and 100mV to allow some 

safety margin. Figure 4.4 shows the relationship between the peak output voltage and the 

drain voltage.  
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Figure 4.4 Plot of Drain Voltage against Peak Output Voltage 

 

For each peak output voltage expected at the output of the PA, the supply modulator has 

to generate the corresponding drain voltage in Figure 4.4. Note that the minimum drain 

voltage is limited to 0.35V. Based on this characterization, a plot of the drain current and 

drain voltage against the output power delivered to the load is shown in Figure 4.5(a) 

and 4.5(b) respectively. 
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(a) 

 

(b) 

Figure 4.5 Plot of (a) Drain Current and (b) Drain Voltage against Output Power 
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The PA is characterized to measure its linearity performance and efficiency for a 

fixed bias and a combination of dynamic gate and drain bias. The linearity is measured 

by applying two tone signals of equal amplitude spaced equally at 4MHz from the 

carrier to the input and measuring the third order intermodulation distortion (IM3). This 

measurement is done for different signal amplitudes in order to observe how linearity 

varies with output power delivered to the load. Figure 4.6(a) and 4.6(b) show plots of the 

IM3 and efficiency of the fixed bias PA and dynamically biased PA against output 

power respectively.  

 

 
(a) 

Figure 4.6 Plot of (a) IM3 of PA vs. Output Power and (b) Efficiency of PA vs. Output Power 
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(b) 

Figure 4.6 Continued 
 

It is observed from Figure 4.6(a) and 4.6(b) that linearity is sacrificed for 

efficiency by using dynamic biasing. The improvement in efficiency at the expense of 

linearity is the price we pay for using dynamic biasing. However, it should be noted that 

typically at each output power, dynamic biasing is used to reduce the bias current and 

drain voltage until the linearity performance is just enough for a target application. In 

this work, an IM3 value better than -20 dB is used as the target reference specification 

for linearity. The linearity and efficiency of the fixed bias and dynamic bias PA become 

equal at maximum power. It should be noted that the efficiency values shown in Figure 

4.6(b) for the dynamically biased PA will be obtained if the switching regulator is able 

to replicate the drain voltage with zero error and the switching regulator is 100% 

efficient. The linearity performance will also be maintained if the switching regulator is 
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able to replicate the drain voltage with zero error. If the drain voltage produced by the 

switching regulator is less than the ideal values shown in Figure 4.6 then its linearity 

performance will be worse than Fig 4.6(a) but its efficiency will be better than Fig 4.6(b). 

The TSMC 0.18um technology limits the maximum power to about 19.5dBm. So to 

calculate the average power efficiency of the PA in a CDMA handset, we extrapolate the 

plot of the drain voltage and drain current against output power up to 28dBm so we can 

calculate the expected efficiency of the PA up to 28dBm. The average power 

consumption and average power transmitted for the dynamically biased PA are plotted in 

Figure 4.7 using the urban probability distribution function for CDMA in Figure 2.2. 

The average efficiency is computed as 

Average Efficiency =
Average Power Transmitted

Average Power Consumption
                                                      (4.8) 

                                =
0.0186
 0.0712

 

                                = 26.1% 

A fixed bias PA in a CDMA will have a static power consumption of 1.76W and hence 

the average efficiency will be 1.06%. 
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Figure 4.7 Plot of Average Power in a CDMA Handset 

 

          Now that we have observed the efficiency improvement gained by using dynamic 

biasing over a fixed bias PA, we look at the various design considerations for 

implementing the proposed supply modulator. 

 

4.2 Selection of L and C Components 

            In the discussion on the slew rate of the switching regulator, it was realized that 

the size of the L and C components and the initial circuit conditions determine the slew 

rate of the switching regulator. It should be remembered that the proposed approach 

relies on the fact that the large and fast variations in the envelope signal are infrequent 

and occur only about 10% of the time. In this design, the switching regulator is designed 

to handle envelope variations with bandwidths up to 4MHz without any help from the 

bang-bang controller. As a result the inherent slew rate of the switching regulator should 
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be enough to handle such envelope variations. To achieve this, the slew rate required 

will be 16mV/ns. Thus from Figure 3.18(a),  fo≥4.6MHz  and hence  LC ≤1.2*10-15. 

           Thus there seems to be a lot of flexibility in choosing L and C. This result 

suggests that a large L and small C might be a good option because it relaxes the amount 

of current required by the bang-bang controller to meet the slew rate requirements. 

However, it should be remembered that the PA presents a dynamic load to the switching 

regulator. As a result, for envelope variations within the natural bandwidth of the 

switching regulator, the load capacitor should be large enough to supply the current 

required by the PA when the inductor is not able to respond quick enough to supply the 

required current. From simulations, with  L =330nH and  C=3.6nF , the switching 

regulator is able to support envelope variations up to 4MHz without any help from the 

bang-bang controller. 

 

4.3 Design of Error Amplifier and Compensation Network 

               The main design considerations for the error amplifier (EA) are: 

1) A high gain over a wide frequency range. This is required to make sure the loop 

regulates to the desired reference level across a wide frequency range. A DC gain greater 

than 60dB is used in this design. 

2) A wide common mode range. The envelope signal is required to vary from 0.35 V to 

1.6 V with a 2V supply. Thus the input common mode range of the amplifier is required 

to be wide so that the error amplifier can operate properly within this range of voltages.  

3) The parasitic poles of the error amplifier must be located at frequencies much higher 

than the bandwidth of the switching regulator to prevent them from affecting the stability 

of the system. 

        Thus, the PMOS input two stage amplifier shown in Figure 4.8 is used as the error 

amplifier. The dimensions of the transistors used for implementing the error amplifier 

are shown in Table 4.1.  
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Figure 4.8 Schematic Diagram of Error Amplifier 

 
Table 4.1 Circuit Parameters of Error Amplifier 

Transistor W(µm) L (µm) Bias Current (µA) 

M1,M2 8 0.24 40 

M3,M4 4 0.36 40 

M5 16 0.36 160 

M6 8 0.36 80 

M7 8 0.36 80 

M8 16 0.36 160 

 

It should be noted that the switching regulator has an internal feedback loop 

formed by the error amplifier and the compensation network. The error amplifier by 

itself is not internally compensated since compensating the stand alone error amplifier 

limits the unity gain frequency of the loop and hence limits the bandwidth of the 
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switching regulator. However, the compensation network added to the error amplifier in 

Figure 4.9 compensates the error amplifier thus making it feedback stable.  

          During the discussion on stability, we realized that we needed a PID controller to 

compensate the feedback loop of the supply modulator. The PID controller shown in 

Figure 4.9 is used to stabilize the supply modulator.  

 

 
Figure 4.9 Schematic Diagram of Compensation Network 

 

The transfer function of this network is given by[27] 

                                     
𝑉𝑥 s 

𝑉𝑜𝑢𝑡 (𝑠)
=

−1

𝑠𝑅1 𝐶2 + 𝐶3 

(1 + 𝑠𝑅1𝐶1)(1 + 𝑠𝑅2𝐶2)

(1 + 𝑠𝑅2
 𝐶2𝐶3 

 𝐶2 + 𝐶3 )
                      (4.9) 

          Note that the resistor divider formed by 𝑅1 and 𝑅3  scales down the output voltage 

and envelope signal before they are applied to the input of the error amplifier. Thus even 

though the output voltage and envelope signal vary within a wide range (0.35V-1.6V), 

the voltage variation at the inputs of the error amplifier is actually smaller. As a result, 

the input common mode requirements of the error amplifier are relaxed.  



79 

 

 

         With the natural frequency of the LC filter located at 4.6MHz, the zeros of the 

compensation network are placed at 2.2MHz and 8.8MHz to stabilize the loop. A high 

frequency pole is placed around 100MHz to help attenuate high frequency switching 

harmonics present in the output voltage of the supply modulator. Table 4.2 shows the 

values of the components used to design the compensation network.  

 
Table 4.2 Component Values of Compensation Network 

Component Value 

R1 18kΩ 

R2 18kΩ 

R3 95kΩ 

C1 4pF 

C2 1pF 

C3 100fF 

 

          The simulated loop magnitude and phase response is shown in Figure 4.10 and 

Figure 4.11 for maximum and minimum loading conditions respectively. This response 

is obtained by performing a periodic steady state analysis on the switching regulator in 

CADENCE for it to attain steady state and then performing a periodic stability analysis 

by inserting a probe in the loop of the switching regulator as shown in Figure 4.12. The 

frequency response shows that the loop has a unity gain frequency of 20MHz and a 

worse case phase margin of 490 thus guaranteeing stable operation.   
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Figure 4.10 Loop Magnitude and Phase Response at Maximum Load 

 

 
Figure 4.11 Loop Magnitude and Phase Response at Minimum Load 
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Figure 4.12 Set-up for Measuring Loop Magnitude and Phase Response 

 

A step response is performed on the switching regulator by applying a voltage 

pulse from 0.35V to 1.6V with 80ns rise and fall times at the reference input of the 

switching regulator. The response of the switching regulator to this step is shown in 

Figure 4.13. This confirms that the loop is stable. 

 

Probe 
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Figure 4.13 Step Response of Switching Regulator 

 

4.4 Selection of Switching Frequency 

Now that the L and C components have been selected, equation (3.33a) is used to 

select the switching frequency to obtain a maximum ripple voltage of 25mV. From this 

equation, the switching frequency can be expressed as 

                                                                 𝑓𝑠𝑤 ≥
 

 1 −
𝑉𝑜

𝑉𝐷𝐷
 𝑉𝑜

8𝐿𝐶∆𝑉
                                              (4.9) 

Thus fsw≥46MHz. Since the loop bandwidth is 20MHz, a switching frequency of 80MHz 

is used in this design in order to allow good rejection of switching noise and reduce the 

effect of switching harmonics on the operation of the PWM. 

 

4.5 Design of Comparator 

The most critical parameter of the pulse width modulator is propagation delay. 

The propagation delay of the comparator limits the response time of the switching 
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regulator. With a switching frequency of 80MHz, a 12.5ns time window is available for 

making a switching decision. Any delays in the comparator reduce the available time for 

making a switching decision. Thus the comparator is designed for a propagation delay 

less than 2ns with a 100mV overdrive. The schematic diagram of the comparator is 

shown in Figure 4.14.  

 

 
Figure 4.14 Schematic Diagram of Comparator 

 

         The input stage is designed to provide some gain to increase the minimum signal 

that the comparator needs to make a decision. This stage amplifies the difference 

between the input signals and the positive feedback loop formed by transistors M4 

increase the gain and enables the circuit to arrive at a decision by determining which 

input signal is larger. This decision is amplified by a differential gain stage to restore the 

output to digital. The Schmitt trigger at the output of this gain stage helps restore the 

output signal to full logic level and makes the circuit more noise tolerant by adding 

hysteresis. Table 4.3 shows the transistor dimensions used in the design. 
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Table 4.3 Circuit Parameters of Comparator 

Transistor W(µm) L (µm) Bias Current (µA) 

M1 1.6 0.24 40 

M2 2.4 0.24 40 

M3 8 0.40 80 

M4 20 0.20 - 

M5 8 0.40 80 

M6 20 0.20 80 

M7 1 0.18 - 

M8 1 0.18 - 

M9 0.4 0.18 - 

M10 1 0.18 - 

M11 2 0.18 - 

M12 2 0.18 - 

 

4.6 Design of Non-overlapping Control Signal Generator 

        From our discussion on short-circuit power losses, we realized that we needed non-

overlapping clocks to introduce dead times into the clocks used to control the power 

switches to prevent the occurrence of short-circuit power loss. The non-overlapping 

clock generator shown in Fig 4.15 is used to implement the dead time control (DTC). 

The dead time is determined by the propagation delay through the NOR gates and the 

inverters at the output of the NOR gates. 
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Figure 4.15 Logic Diagram of Non-overlapping Clock Generator 

 

4.7 Design of Power Switches and Switch Drivers 

         The power switches Sp and Sn are implemented with PMOS and NMOS transistors 

respectively. They are sized to optimize switching losses and conduction losses. The 

switching regulator is designed for equal switching and conduction losses when the 

static power consumption is equal to an average power consumption of 71.5mW. This 

corresponds to a dc current of 80mA drawn from the PA and a drain voltage of 0.89V. 

From equation (3.14b), Cp/RON=20pF/Ω. 

            Thus the dimensions of the switch have to be adjusted until the ratio of Cp to 

RON   is equal to about 20pF/Ω. The final dimensions of the power switches are shown in 

Table 4.4 with their switch on-resistance and parasitic capacitance.  

 
Table 4.4 Switch Dimensions with their On-resistance and Parasitic Capacitance 

Switch W(µm) L(µm) RON(mΩ) Cp (pF) 

Sp 3072 0.18 713 8.15 

Sn 768 0.18 695 2.56 

 

           The switch drivers are sized to optimize propagation delay and power dissipation. 
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4.8 Design of Bang-bang Controller  

          The transistor level design considerations for the bang-bang controller circuit of 

Figure 4.16 are shown in this section.  

 

 
Figure 4.16 Schematic Diagram of Bang-bang Controller 

 

         The bang-bang controlled current source is required to help the switching regulator 

to meet the slew rate requirements. From equation (3.37b), IBB=SRBB.C. Thus with 

C=3.6nF and a required slew rate of SRBB=100.5mV/ns,IBB=361.8mA. 

The bang-bang controlled current source is sized to produce this amount of current. The 

bang-bang current source is a PMOS transistor operating in the triode region. The size of 

the PMOS transistor is given by 

                             
𝑊

𝐿
=

𝐼𝐵𝐵

𝜇𝐶𝑜𝑥   𝑉𝐷𝐷 − 𝑉𝑇 𝑉𝐷𝑆 −
𝑉𝐷𝑆

2

2
 

                                                      (4.10) 

 with μCox=74µA/V2, VT=0.5V ,VDS=0.5V and 
W
L

≅7824. 

Using L=180nm, W=1.41m. The final dimensions of the PMOS transistor are L=0.18um 

and W=1664um. 

          The most critical parameters of the comparator used to control the current source 

are speed and common mode range. The propagation delay of the comparator limits the 

response time of the bang-bang controller and hence introduces errors in the voltage 
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produced by the supply modulator. As a result the propagation delay of the comparator is 

designed to be less than 1ns for a 100mV overdrive. The input common mode range of 

the comparator is required to be from 0.3V to 1.6V since the envelope signal varies 

within this range. As a result the comparator is designed to have a rail-rail input stage. 

The schematic diagram of the comparator is shown in Figure 4.17. 

 

 
Figure 4.17 Schematic of Bang-bang Comparator [29] 

 

4.9 Simulation Results 

           The simulation results for the proposed supply modulator are shown in this 

section. A reference signal is applied to the input of the supply modulator and the signal 

produced at the output plotted. Fig 4.18(a) and 4.18(b) shows a plot of the output voltage 

and the reference signal for a 1MHz and 4MHz signal respectively. These plots show 

that the proposed supply modulator is able to handle envelope variations up to 4MHz.   
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(a) 

 
(b) 

Figure 4.18 Plot of Envelope Signal and Output Voltage for a (a) 1MHz and (b) 4MHz Signal 
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             Fig 4.19 shows a plot of the output voltage and a 20MHz reference signal with 

and without the bang-bang controller. It is noticed that without the bang-bang controller 

the output voltage is not able to follow the reference signal properly.  

 

 
Figure 4.19 Plot of Envelope Signal and Output Voltage with and without Bang-bang Controller for a 

20MHz Signal 
 

         Finally, the efficiency of the supply modulator is measured using CADENCE for 

dc signals as 

                                                             𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐼𝑜𝑢𝑡 𝑉𝑜𝑢𝑡

𝐼𝐷𝐶𝑉𝐷𝐷
                                            (4.11) 

where Iout is the DC current supplied to the PA, Vout is the DC drain supply voltage of 

the PA, VDD is the battery supply voltage and IDC is the average value of the current 

drawn from VDD. The efficiency is obtained for different output power transmitted and 

plotted in Figure 4.20. The average power efficiency of the supply modulator is found to 

be 81.6%. 



90 

 

 

 
Figure 4.20 Plot of Efficiency of Supply Modulator vs. Output Power 

 

          A summary of the design parameters of the supply modulator are shown in Table 

4.5. Table 4.6 shows how the proposed supply modulator compares with state-of-the-art. 

It is noticed that the proposed supply modulator simultaneously achieves a high 

bandwidth and high average power efficiency. 
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Table 4.5 Summary of Performance Parameters of Supply Modulator 

Supply Voltage 2V 

Output Voltage Range 0.35 – 1.6V 

Maximum Output Power (RMS) 19.5 dBm 

Quiescent Current (𝑰𝒃𝒊𝒂𝒔) 0.92mA 

Maximum Envelope Bandwidth 20MHz 

Switching Frequency 80MHz 

Output Inductance, L, 330nH 

Load Capacitance, C 3.6nF 

Average Efficiency of Supply 

Modulator 

81.6 % 

Average Efficiency with a Linear PA 21.3% 

 

Table 4.6 Comparison of Results 

Performance 

Parameter 

 

[15] [18] [20] Proposed 

Architecture 

Technology 0.18um SiGe 

BiCMOS 

 

0.065um 

CMOS 

 

0.35um 

CMOS 

 

0.18um CMOS 

 

Maximum Envelope 

Bandwidth 

20MHz 20MHz 2.5MHz 20MHz 

Average Modulator 

Efficiency 

65% *59% *30% 81.6% 

 

* Efficiency at 16dBm 
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5.  CONCLUSIONS 

 

The design of an efficient supply modulator for wideband power amplifiers has 

been described in this thesis. A switching regulator with a bang-bang controlled current 

source has been proposed for use as the supply modulator for wideband linear RF PAs. 

The proposed supply modulator has been shown to work for bandwidths up to 20MHz. 

The supply modulator has negligible quiescent current consumption, is easy to stabilize, 

has high efficiency and is simple to design because of its bang-bang nature. It achieves 

an average power efficiency of 81.6%.  

The performance of the proposed supply modulator is limited by the speed of the 

bang-bang controller. A slow bang-bang control will reduce the response time of the 

supply modulator and cause large ripple voltages in the output. More intelligent control 

schemes using software can be used to improve the performance of the system. 

In summary, the speed response of the supply modulator is a tradeoff between 

ripple voltage, slew rate and power efficiency. Future research should focus on more 

intelligent control mechanisms for controlling the static power consumption of the PA 

while maintaining good linearity performance.  

A class A PA in a CDMA handset is shown to achieve an average power 

efficiency of 21.3% when the gate and drain of the PA are dynamically biased with the 

proposed supply modulator compared to an efficiency of only 1.06% for a fixed bias PA. 
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APPENDIX 

          The slew rate of the switching regulator is derived below for a step applied to the 

LC filter of the switching regulator.   

 

 
Figure A.1 Simplified Schematic for Obtaining Slew Rate 

 

Figure A.1 shows a model of the switching regulator with the power amplifier modeled 

as a resistive load R in parallel with a current source 𝐼𝐵 . 

𝑖𝐿 = 𝑖𝐶 + 𝑖𝑅 + 𝐼𝐵  

𝑖𝐿 = 𝐶
𝑑𝑉𝑜(𝑡)

𝑑𝑡
+

𝑉𝑜(𝑡)

𝑅
+ 𝐼𝐵  

𝑑𝑖𝐿
𝑑𝑡

= 𝐶
𝑑2𝑉𝑜(𝑡)

𝑑𝑡2
+

𝑑𝑉𝑜(𝑡)

𝑅𝑑𝑡
 

𝑑𝑖𝐿
𝑑𝑡

=
 𝑉𝑠𝑤 − 𝑉𝑜(𝑡)

𝐿
 

 𝑉𝑠𝑤 − 𝑉𝑜(𝑡)

𝐿
= 𝐶

𝑑2𝑉𝑜(𝑡)

𝑑𝑡2
+

𝑑𝑉𝑜(𝑡)

𝑅𝑑𝑡
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𝑉𝑜(𝑡) − 𝑉𝑠𝑤

𝐿
+ 𝐶

𝑑2𝑉𝑜(𝑡)

𝑑𝑡2
+

𝑑𝑉𝑜(𝑡)

𝑅𝑑𝑡
= 0 

𝑉𝑜(𝑡) + 𝐿𝐶
𝑑2𝑉𝑜(𝑡)

𝑑𝑡2
+

𝐿

𝑅

𝑑𝑉𝑜(𝑡)

𝑑𝑡
= 𝑉𝑠𝑤  

𝐿𝐶
𝑑2𝑉𝑜(𝑡)

𝑑𝑡2
+

𝐿

𝑅

𝑑𝑉𝑜(𝑡)

𝑑𝑡
+ 𝑉𝑜(𝑡) = 𝑉𝑠𝑤  

𝑉𝑜 𝑡 = 𝑉𝑐 𝑡 + 𝑉𝑝 𝑡  

𝑉𝑐 𝑡 = 𝐴1𝑒
𝑠1𝑡 + 𝐴2𝑒𝑠2𝑡 

𝑉𝑝 𝑡 = 𝑉𝑠𝑤  

𝑊𝑕𝑒𝑟𝑒 𝑠1 = −
1

2𝑅𝐶
+  (

1

2𝑅𝐶
)2 −

1

𝐿𝐶
 

𝐴𝑛𝑑 𝑠2 = −
1

2𝑅𝐶
−  (

1

2𝑅𝐶
)2 −

1

𝐿𝐶
 

𝑉𝑜 𝑡 = 𝐴1𝑒
𝑠1𝑡 + 𝐴2𝑒𝑠2𝑡 + 𝑉𝑠𝑤  

𝑑𝑉𝑜(𝑡)

𝑑𝑡
= 𝑠1𝐴1𝑒

𝑠1𝑡 + 𝑠2𝐴2𝑒
𝑠2𝑡 

𝑉𝑜 0 = 𝐴1 + 𝐴2 + 𝑉𝑠𝑤 − − − − − (1) 

𝑑𝑉𝑜(0)

𝑑𝑡
= 𝑠1𝐴1 + 𝑠2𝐴2 =

𝑖𝑐(0)

𝐶
− − − − − (2) 

𝑖𝑐 0 = 𝑖𝐿 0 −
𝑉𝑜(0)

𝑅
− 𝐼𝐵  

Solving the equation, 

𝐴1 =
𝑠2(𝑉𝑠𝑤 − 𝑉𝑜 0 )

𝑠1 − 𝑠2
+

𝑖𝑐(0)

𝐶(𝑠1 − 𝑠2)
 

𝐴2 =
𝑠1(𝑉𝑜 0 − 𝑉𝑠𝑤)

𝑠1 − 𝑠2
−

𝑖𝑐(0)

𝐶(𝑠1 − 𝑠2)
 

𝑑𝑉𝑜(𝑡)

𝑑𝑡
=

(𝑉𝑠𝑤 − 𝑉𝑜 0 )𝑠1𝑠2

𝑠1 − 𝑠2
𝑒𝑠1𝑡 +

(𝑉𝑜 0 − 𝑉𝑠𝑤 )𝑠1𝑠2

𝑠1 − 𝑠2
𝑒𝑠2𝑡 +

𝑖𝑐(0)𝑠1𝑒
𝑠1𝑡

𝐶(𝑠1 − 𝑠2)
−

𝑖𝑐(0)𝑠2𝑒
𝑠2𝑡

𝐶(𝑠1 − 𝑠2)
 

𝑑𝑉𝑜(𝑡)

𝑑𝑡
=

(𝑉𝑠𝑤 − 𝑉𝑜 0 )𝑠1𝑠2

𝑠1 − 𝑠2
𝑒𝑠1𝑡 −

(𝑉𝑠𝑤 − 𝑉𝑜 0 )𝑠1𝑠2

𝑠1 − 𝑠2
𝑒𝑠2𝑡 +

𝑖𝑐(0)𝑠1𝑒
𝑠1𝑡

𝐶(𝑠1 − 𝑠2)
−

𝑖𝑐(0)𝑠2𝑒
𝑠2𝑡

𝐶(𝑠1 − 𝑠2)
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𝑑𝑉𝑜(𝑡)

𝑑𝑡
=

(𝑉𝑠𝑤 − 𝑉𝑜 0 )𝑠1𝑠2

𝑠1 − 𝑠2

 𝑒𝑠1𝑡 − 𝑒𝑠2𝑡 +
𝑖𝑐(0)𝑠1𝑒

𝑠1𝑡

𝐶(𝑠1 − 𝑠2)
−

𝑖𝑐(0)𝑠2𝑒
𝑠2𝑡

𝐶(𝑠1 − 𝑠2)
       𝑓𝑜𝑟 0 ≤ 𝑡

≤ 𝐷𝑇 

𝑪𝑨𝑺𝑬 𝑰(𝑼𝒏𝒅𝒆𝒓𝒅𝒂𝒎𝒑𝒆𝒅 𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆) 

 𝑠1𝑎𝑛𝑑 𝑠2 𝑏𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒𝑠 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 𝑠1 = −𝑎 + 𝑗𝑏 𝑎𝑛𝑑 𝑠2 = −𝑎 − 𝑗𝑏  

𝑑𝑉𝑜(𝑡)

𝑑𝑡
=

 𝑉𝑠𝑤 − 𝑉𝑜 0   𝑎2 + 𝑏2 𝑒−𝑎𝑡 sin 𝑏𝑡

𝑏
+

𝑖𝑐(0)

𝑏𝐶
 𝑒−𝑎𝑡  [bcos 𝑏𝑡 − asin 𝑏𝑡] 

𝐼𝑛 𝑡𝑕𝑖𝑠 𝑐𝑎𝑠𝑒 𝑎 =
1

2𝑅𝐶
 𝑎𝑛𝑑 𝑏 =  

1

𝐿𝐶
−

1

4𝑅2𝐶2
 

𝑑𝑉𝑜(𝑡)

𝑑𝑡
=

 𝑉𝑠𝑤 − 𝑉𝑜 0  𝑒−
𝑡

2𝑅𝐶  sin 𝑏𝑡

𝐿𝐶 1
𝐿𝐶 −

1
4𝑅2𝐶2

+
𝑖𝑐(0)

𝐶 1
𝐿𝐶 −

1
4𝑅2𝐶2

 𝑒−
𝑡

2𝑅𝐶 [𝑏 cos 𝑏𝑡 − 𝑎𝑠𝑖𝑛𝑏𝑡] 

𝑑𝑉𝑜(𝑡)

𝑑𝑡
=

 𝑉𝑠𝑤 − 𝑉𝑜 0  𝑒−
𝑡

2𝑅𝐶  sin 𝑏𝑡

 𝐿𝐶 −
𝐿2

4𝑅2

+
𝑖𝑐(0)

𝐶 1
𝐿𝐶

−
1

4𝑅2𝐶2

 𝑒−
𝑡

2𝑅𝐶 [𝑏 cos 𝑏𝑡 − 𝑎𝑠𝑖𝑛𝑏𝑡] 

Considering 𝑖𝑐 0 ≅ 0 𝑓𝑜𝑟 𝑎 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 𝑟𝑖𝑝𝑝𝑙𝑒 

𝑑𝑉𝑜 𝑡 

𝑑𝑡
=

 𝑉𝑠𝑤 − 𝑉𝑜 0  𝑒−
𝑡

2𝑅𝐶  sin 𝑏𝑡

 𝐿𝐶 −
𝐿2

4𝑅2

 

 
𝑑𝑉𝑜 𝑡 

𝑑𝑡
 =

 𝑉𝑠𝑤 − 𝑉𝑜 0  𝑒−
𝑡

2𝑅𝐶  

 𝐿𝐶 −
𝐿2

4𝑅2

 

 
𝑑𝑉𝑜 𝑡 

𝑑𝑡
 =

 𝑉𝑠𝑤 − 𝑉𝑜 0  𝑒−
𝑡

2𝑅𝐶  

𝐿𝐶 1
𝐿𝐶 −

1
4𝑅2𝐶2

           𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝐷𝑇 

 

𝑪𝑨𝑺𝑬 𝑰𝑰(𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍𝒍𝒚 𝑫𝒂𝒎𝒑𝒆𝒅 𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆) 

 𝑠1 = 𝑠2 = −𝑎 

𝑉𝑜 𝑡 = 𝐵1𝑡𝑒
−𝑎𝑡 + 𝐵2𝑒−𝑎𝑡 + 𝑉𝑠𝑤  
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𝑑𝑉𝑜(𝑡)

𝑑𝑡
= −𝑎𝐵1𝑡𝑒

−𝑎𝑡 − 𝑎𝐵2𝑒−𝑎𝑡 + 𝐵1𝑒
−𝑎𝑡  

𝑉𝑜 0 = 𝐵2 + 𝑉𝑠𝑤  

𝐵2 = 𝑉𝑜 0 − 𝑉𝑠𝑤  

𝑑𝑉𝑜 0 

𝑑𝑡
= 𝐵1 − 𝑎𝐵2 =

𝑖𝑐 0 

𝐶
 

𝐵1 =
𝑖𝑐(0)

𝐶
+ 𝑎𝐵2 =

𝑖𝑐(0)

𝐶
+ 𝑎(𝑉𝑜 0 − 𝑉𝑠𝑤 ) 

𝑑𝑉𝑜(𝑡)

𝑑𝑡
= −𝑎𝐵1𝑡𝑒

−𝑎𝑡 − 𝑎𝐵2𝑒−𝑎𝑡 + 𝐵1𝑒
−𝑎𝑡  

𝑑𝑉𝑜 𝑡 

𝑑𝑡
= 𝑒−𝑎𝑡  −𝑎𝐵1𝑡 − 𝑎𝐵2 + 𝐵1  

𝑑𝑉𝑜 𝑡 

𝑑𝑡
= 𝑒−𝑎𝑡  −𝑎[

𝑖𝑐(0)

𝐶
+ 𝑎(𝑉𝑜 0 − 𝑉𝑠𝑤 )]𝑡 +

𝑖𝑐(0)

𝐶
  

𝐼𝑛 𝑡𝑕𝑖𝑠 𝑐𝑎𝑠𝑒 𝑎 =
1

2𝑅𝐶
 𝑎𝑛𝑑 𝐿 = 4𝑅2𝐶 

𝑑𝑉𝑜 𝑡 

𝑑𝑡
= 𝑒−

𝑡
2𝑅𝐶  −

1

2𝑅𝐶
 
𝑖𝑐 0 

𝐶
−

1

2𝑅𝐶
 𝑉𝑠𝑤 − 𝑉𝑜 0   𝑡 +

𝑖𝑐 0 

𝐶
  

𝑑𝑉𝑜 𝑡 

𝑑𝑡
= 𝑒−

𝑡
2𝑅𝐶  

𝑡

4𝑅2𝐶2
 𝑉𝑠𝑤 − 𝑉𝑜 0  +

𝑖𝑐 0 

𝐶
−

𝑖𝑐 0 𝑡

2𝑅𝐶2
  

𝑑𝑉𝑜 𝑡 

𝑑𝑡
= 𝑒−

𝑡
2𝑅𝐶  

𝑡

𝐿𝐶
(𝑉𝑠𝑤 − 𝑉𝑜 0 ) +

𝑖𝑐(0)

𝐶
−

𝑖𝑐 0 𝑡

2𝑅𝐶2
  

Considering 𝑖𝑐 0 ≅ 0 𝑓𝑜𝑟 𝑎 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 𝑟𝑖𝑝𝑝𝑙𝑒 

𝑑𝑉𝑜 𝑡 

𝑑𝑡
=

𝑡𝑒−
𝑡

2𝑅𝐶

𝐿𝐶
 𝑉𝑠𝑤 − 𝑉𝑜 0      𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝐷𝑇 

 
𝑑𝑉𝑜 𝑡 

𝑑𝑡
 =

𝑡𝑒
−

𝑡

 𝐿𝐶

𝐿𝐶
 𝑉𝑠𝑤 − 𝑉𝑜 0      𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝐷𝑇 

𝑑𝑉𝑜 𝑡 

𝑑𝑡
= 𝑡𝜔𝑜𝑒

−𝜔𝑜 t 𝑉𝑠𝑤 − 𝑉𝑜 0     𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝐷𝑇 
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