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ABSTRACT

Bias Reduction and Goodness-of-Fit Tests in Conditional

Logistic Regression Models.

(August 2010)

Xiuzhen Sun,

B.S., Shandong Normal University;

M.S., Southern Methodist University;

M.S., Texas A&M University

Co–Chairs of Advisory Committee: Dr. Suojin Wang
Dr. Samiran Sinha

This dissertation consists of three projects in matched case-control studies. In the first

project, we employ a general bias preventive approach developed by Firth (1993) to handle

the bias of an estimator of the log-odds ratio parameter in conditional logistic regression by

solving a modified score equation. The resultant estimator not only reduces bias but also

can prevent producing infinite value. Furthermore, we propose a method to calculate the

standard error of the resultant estimator. A closed form expression for the estimator of the

log-odds ratio parameter is derived in the case of a dichotomous exposure variable. Finite

sample properties of the estimator are investigated via a simulation study. Finally, we apply

the method to analyze a matched case-control data from a low-birth-weight study.

In the second project of this dissertation, we propose a score typed test for checking

adequacy of a functional form of a covariate of interest in matched case-control studies by

using penalized regression splines to approximate an unknown function. The asymptotic

distribution of the test statistics under the null model is a linear combination of several
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chi-square random variables. We also derive the asymptotic distribution of the test statistic

when the alternative model holds. Through a simulation study we assess and compare

the finite sample properties of the proposed test with that of Arbogast and Lin (2004). To

illustrate the usefulness of the method, we apply the proposed test to a matched case-control

data constructed from the breast cancer data of the SEER study.

Usually a logistic model is needed to associate the risk of the disease with the covari-

ates of interests. However, this logistic model may not be appropriate in some instances. In

the last project , we adopt idea to matched case-control studies and derive an information

matrix based test for testing overall model adequacy and investigate the properties against

the cumulative residual based test in Arbogast and Lin (2004) via a simulation study. The

proposed method is less time consuming and has comparative power for small parameters.

It is suitable to explore the overall model fitting.
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CHAPTER I

INTRODUCTION

1.1 Study Designs in Epidemiology

Epidemiology is the study of the distribution and determinations of diseases in human

populations. One of goals of Epidemiology is to assess the relationship between disease

and potential risk factors of interest, which sometimes are called exposures, or covariates.

Primarily, there are two types of design to collect data. If we apply “treatments” to the

subjects, for example, give patients certain doses of medicine to see how it affects the

disease, then it is called an experimental design. If we just observe what are happening

and record the information from a group of subjects without imposing “treatments” to the

subjects, this type of design is called an observational study.

Observational studies are commonly used in epidemiology. In observational studies,

generally data are collected through cross-sectional, prospective cohort, or case-control

study. In a cross-sectional study, the disease outcome and potential risk factors are observed

at a given point in time. So it is also called an epidemiological survey. It provides a snapshot

of the frequency and characteristics of a disease in a population on a particular point in time.

Cross-sectional study is useful in showing association between different variables and can

provide early clues to etiology. Usually it is faster and costs less. However, in some cases it

may be difficult to determine which are the effects and which are the causes. For example,

if we find that people with cancer are more likely to have heavy drinking problems, but we

cannot tell whether heavy drinking problems cause cancer or people with cancer are more

likely to drink a lot as a comfort. Furthermore, if the disease is rare, we may not observe

This dissertation follows the style of Biometrics.
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sufficient number of diseased subjects in the sampled data.

In a prospective cohort study, a group of study subjects (cohort) with heterogeneous

exposures, or two or more groups defined by certain exposure status is obtained, and then

the incidence of the outcome is recorded during the follow-up study period. If the disease

is rare, we may end up with only a few subjects with disease, which will lead to a less

powerful statistical test to test the hypothesis of interest. Furthermore, there exists a low

likelihood that the population may take a long time to develop the disease. For example,

the study of death from lung cancer could involve 20 to 40 years, potentially longer than

the careers of many epidemiologists. Thus the study generally will cost a huge amount

of money due to the time consumed and a large number of subjects involved in the study.

However, a prospective cohort study can provide stronger evidence of causality and provide

potential risk factors with less bias due to errors of recall or measurement.

Case-control studies are types of epidemiological designs which compare individuals

who have disease (cases) with a group of individuals without the disease (controls). When

there is convincing evidence about the association between disease and potential exposures,

the related sources of exposures are reallocated for studies. Case-control studies are par-

ticularly suited to investigate the risk factors for rare diseases and diseases that take a long

time to manifest. Case-control studies require much smaller sample sizes than the usual

prospective studies and can deal with multiple risk factors simultaneously. Generally, case-

control studies are very informative. Once a population based disease is identified, we can

describe the picture of the disease, for example, we can estimate the incident rate according

to subjects’ age, gender, location, etc.

The distinction between a case-control study and a prospective study lies in the sam-

pling. In a case-control study we sample from among the diseased and nondiseased,

whereas in a prospective study we sample from among those with the factors of interest

and those without the factors.
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1.2 Research Topics

The two main topics in the inferential analysis of a study are parameter estimation and

hypothesis testing. Estimation involves the use of information from a sample to represent

the measurement from the target population, while the hypothesis testing is a statistical

method to discover whether the assertion about the population is believable based on the

sample information. In the hypothesis testing, we first set up a null hypothesis denoted by

H0 against an alternative hypothesis denoted by H1, then seek information from samples

to check whether the data support the null hypothesis H0 statistically. If the data is not

compatible to H0, then the test rejects H0. Otherwise, it fails to reject H0 which means

there is no strong evidence to detect whether H0 is true or false.

My dissertation researches on the point estimator and goodness-of-fit tests in case-

control studies, specifically the work are done in the context of matched case-control set-

tings.

1.3 An Example in Matched Case-Control Studies

It often happens that a case-control study involves some confounding variables. Confound-

ing variables are extraneous factors that wholly or partially accounts for the observed effect

of the risk factors on disease status. It can cause the association between disease and risk

factors to appear or mask their true association. We can assess confounding by estimat-

ing the effect of the risk factors with and without allowing for confounding. Control of

confounding can be achieved by stratified analysis. In stratified case-control studies, we

compare the potential risk factors between the group of cases and the group of controls

within homogeneous categories of the confounding variables.

Matched design is a special case of case-control studies where a case is matched with

one or more controls within each stratum. Here is an example (see Table 1) that motivates
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my research. It is about infants’ low-birth-weight data from Hosmer and Lemeshow (1989),

collected at the Baystate Medical Center, Springfield, Massachusetts, in 1986. Low birth

Table 1. Low-birth weight data.

STR OBS AGE LOW LWT SMOKE HT UI PTD

1 1 16 1 130 0 0 0 0
1 2 16 0 112 0 0 0 0
1 3 16 0 135 1 0 0 0
1 4 16 0 95 0 0 0 0
2 1 17 1 130 1 0 1 1
2 2 17 0 103 0 0 0 0
2 3 17 0 122 1 0 0 0
2 4 17 0 113 0 0 0 0

· · · · · · · · ·

29 1 32 1 105 1 0 0 0
29 2 32 0 121 0 0 0 0
29 3 32 0 132 0 0 0 0
29 4 32 0 134 1 0 0 1

weight is one of the main concerns to the physicians. If the baby has low birth weight,

generally the baby has high risk of death and also may suffer lifelong disabilities. So it is

important to identify the potential risk factors that cause the low birth weight. Scientists

believe that mother’s behavior during pregnancy can play a major role for her baby’s birth

weight, thus the mothers’ related information was measured. For example, LWT is the

mother’s weight at her last menstrual period, SMOKE denotes whether the mother smoked

or not during her pregnancy, PTD is the status whether the mother has previous preterm

delivery history, etc. For the detail of the data, one can refer to Hosmer and Lemeshow

(1989).

An infant is defined as a case if its birth weight is below 2500 gms, otherwise the

infant is a control. In this dataset mother’s age is used as a matching variable to reduce the
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potential effect due to the variation of age. For this dataset mother’s age is between 16 and

32 years. Totally there are 29 strata.

In matched case-control studies, the probability of getting disease given the potential

risk factors on a stratum is usually modeled by a logistic regression model with a common

set of slope parameters and an intercept term which is a nuisance parameter that depends on

the stratum. The common slope which are interpreted as log-odds-ratios are the parameters

we are interested in. The log-odds ratio measures the degree of association between disease

and potential risk factors. One of the study goals is to estimate the log-odd ratio for a mother

to have a low-birth weight baby.

1.4 Bias and Maximum Likelihood Estimators

In statistics, an estimator denoted by θ̂ is a function of observed data that used to estimate

the unknown population parameters denoted by θ0. To estimate θ0, we generally need to

select a random sample from the target population, then calculate the point estimator θ̂.

The value of θ̂ varies from sample to sample. Theoretically we need sample infinite times

to form the distribution of the point estimator θ̂, then use the center E(θ̂) of distribution

to estimate θ0. The error of the estimator is defined as θ̂ − θ0 and bias is defined as

b(θ̂) = E(θ̂) − θ0, i.e., the expectation of the error. If b(θ̂) = 0, then θ̂ is an unbiased

estimator of θ0. Otherwise it is biased.

In a logistic regression model, the log-odds ratio is obtained by maximizing the likeli-

hood function. The Likelihood function is a function of parameters for statistical inference.

If a sample x1, x2, · · · , xn of n independent observations are drawn from probability den-

sity f(·|θ), then the likelihood function is defined as

L(θ|x1, x2, · · · , xn) =
n∏
i=1

f(xi|θ) .
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The point estimator θ̂MLE called the maximum likelihood estimator (MLE) is obtained by

maximizing log likelihood function

θ̂MLE = argmaxθlog {L(θ|x1, x2, · · · , xn)} = argmaxθ

n∑
i=1

log {f(xi|θ)} .

For a large sample size, the MLE has the following asymptotic properties:

• strong consistency: θ̂MLE → θ0 as n→∞;

• asymptotic normality: the distribution of MLE θ̂MLE is convergent to a normal dis-

tribution with mean θ0 and covariance matrix equal to the inverse of the Fisher infor-

mation matrix.

The consistency and asymptotic normality property hold only under regularity conditions.

Here are the conditions for 1-dimensional parameter which can be extended to multivariate

cases (Serfling, 1980). For θ ∈ Θ, where Θ is an open interval,

1. log{f(x|θ)} is three times continuously differentiable in θ ∈ Θ;

2. for each θ0 ∈ Θ, there exists functions g(x), h(x) and q(x) such that in some neigh-

borhood of θ0∣∣∣∣∂ {logf(x|θ)}
∂θ

∣∣∣∣ ≤ g(x),

∣∣∣∣∂2 {logf(x|θ)}
∂2θ

∣∣∣∣ ≤ h(x),

∣∣∣∣∂3 {logf(x|θ)}
∂3θ

∣∣∣∣ ≤ q(x)

and ∫
g(x)dx <∞,

∫
h(x)dx <∞, Eθ {q(x)} <∞ ;

3. for each θ ∈ Θ,

0 < Eθ

{(
∂logf(x; θ)

∂θ

)2
}
<∞ .

The maximum likelihood estimator selects the parameter value which is mostly likely rel-

ative to the other values. The MLE is invariance under transformation, i.e., if φ(θ) is any

transformation of θ, then φ(θ̂MLE) is the MLE of φ(θ).
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However, when sample sizes are not large enough, the estimator could be significantly

biased. One of the contributions of the dissertation is to deal with the bias problems in

conditional logistic regression models.

1.5 Goodness-of-Fit Tests

The goodness-of-fit of a statistical model describes how well the model fits a sample of

observations. Typically the discrepancy between the observed values and expected valued

under the model is summarized to measure the goodness-of-fit. This can be achieved by

testing the null hypothesis H0 that a given random variable X follows a specified distribu-

tion f(x;θ).

In assessing whether a given distribution is suited to a dataset, we can use Kolmogorov-

Smirnov test, Cramérvon-Mises criterion, and Anderson-Darling test based on the empiri-

cal distribution function. An attractive feature of these tests is that the distributions of the

test statistics do not depend on the underlying cumulative distribution function which is

being tested. However, in some cases these tests have low power. Another test statistic

used very often is a chi-square test when the variance of the measurement error is known.

The test statistic asymptotically follows a chi-square distribution with certain degrees of

freedom for large sample sizes. The test rejects the null H0 if the test statistic is larger than

the critical value of chi-square distribution at specified significant level.

In a general model setting, likelihood ratio test is used to compare the fit of two models

that one is nested within the other. The likelihood ratio Λ is the ratio of the likelihood

function varying the parameters over two different sets in the numerator and denominator.

Under H0, when the sample size is large, −2log(Λ) converges to a chi-square distribution

with degrees of freedom equal to the difference of dimensions of the null space and the

alternative space.
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Besides likelihood ratio test, there are other two commonly used methods of testing

hypotheses concerning nested models. One is called a Wald test which compares the dif-

ference between maximum likelihood estimates of a group of parameters and their null

values in relation to their variance. The other is a score test which uses the derivative of

log likelihood evaluated at the null hypothesis. All these three methods are asymptotically

equivalent. In this dissertation we construct a generalized score test to handle model fitting

in conditional logistic regression models.

1.6 Organization of This Dissertation

Due to the presence of infinite dimensional nuisance parameters, matched case-control

studies are distinct from the standard logistic regression analysis. The standard estimator

of log-odds ratio parameter is obtained by maximizing the conditional likelihood function.

However, for small to moderate sample sizes, the standard estimator is usually biased. For

some data configuration, the estimate of the parameter could be infinite.

Furthermore, in epidemiological research often we assume that the covariates are as-

sociated with the disease risk through a linear-logistic model which means the logit of the

disease probability is a linear function of the covariates. However, it may not be adequate

to explain the effect of a continuous covariate on the disease risk.

My dissertation is designed to handle these issues in certain specified settings. This

chapter has given a brief review of the research background. Chapter II is intended to be

an expository introduction to some of the basic methods in case-control studies. Chapter

III studies the methodology to deal with the bias problem in estimating log-odds ratio

parameters. A general bias reduction approach developed by Firth (1993) is employed

to reduce the bias of estimator of the log-odds ratio parameter in a matched case-control

study by solving a modified score equation. In Chapter IV, we propose a generalized score
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test to check whether a specific functional form of a covariate is adequate in the logistic

regression model against a general unknown function form by applying a penalized spline

function to approximate the unknown function such that the null model is a special case of

the alternative. Furthermore, in order to test if the overall model is adequate to describe

the disease risk, a generalized information matrix based method is developed for testing

overall goodness-of-fit of the logistic model for matched case-control studies in Chapter V

by following the idea of White (1982) that dealt with the effect of model misspecification

on maximum likelihood estimators. Chapter VI offers concluding remarks and potential

future research topics.
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CHAPTER II

CASE-CONTROL STUDIES

2.1 Introduction

A case-control study is a retrospective design to establish an association between the pres-

ence of risk factors and the occurrence of a disease. It is useful for rare diseases or when

the disease takes a very long time to become manifest. In case-control studies, the outcome

is measured now and exposure is estimated from the past.

The present chapter is a brief review of the development of case control studies and

methodology of analysis with different types of exposures, such as discrete or continuous

variables. In the following we will use risk factors, exposures, or covariates alternatively

to describe the presence of characteristics.

2.2 Tests for Homogeneity of Odds Ratio

The relative risk is defined as the ratio of the risk of a disease for those with risk factors

to those without risk factors. If the relative risk is larger than 1, then the factors under

investigation increase the risk; If the relative risk is less than 1, then factors reduce the

risk. In epidemiological studies, we can evaluate the relative risk that individuals who have

certain risk factors develop a specified disease, or we can measure the odds ratio. Odds is

be the ratio of risk relative to the non-risk given the same risk factors, thus the odds ratio

is the ratio of odds of the disease among the exposed subjects to the odds of the disease

among the non-exposed subjects. An odds ratio above 1 implies the exposure to risk factor

increases the odds of disease and a value of less than 1 means that the exposure reduces the

odds of disease.

If Y is the binary disease indicator (Y = 1 for disease, Y = 0 for non-disease) and X
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represents a dichotomous risk factor ( X = 1 if risk factor presents, X = 0 if risk factor is

absent), then the odds ratio is defined as

θ =
pr(Y = 1|X = 1)/pr(Y = 0|X = 1)

pr(Y = 1|X = 0)/pr(Y = 0|X = 0)

=
pr(Y = 1|X = 1)pr(Y = 0|X = 0)

pr(Y = 0|X = 1)pr(Y = 1|X = 0)
.

Now let us consider a case-control study with a binary exposure variable X and dis-

ease status Y . Suppose there are n1 cases and n0 controls, and n11, n10 are number of

observations of factor present, and absent cases while n01, and n00 are number of observa-

tions of factor present, and absent controls in the sample (see Table 2). Using the Bayes

Table 2. Case-control data on binary outcomes.

Factors
Disease Status Factor Present Factor Absent Total
Case n11 n10 n1
Control n01 n00 n0
Total n.1 n.0 n

rule (Bayes, 1763) pr(A|B) = pr(B|A)pr(A)/pr(B),

θ =
pr(X = 1|Y = 1)pr(X = 0|Y = 0)

pr(X = 0|Y = 1)pr(X = 1|Y = 0)
, (2.1)

and thus it can be estimated by

θ̂ =
n11n00

n10n01

.

If the disease is rare, both pr(Y = 1|X = 0) and pr(Y = 1|X = 1) are close to 1, thus

θ ≈ pr(Y = 1|X = 1)

pr(Y = 1|X = 0)
,

i.e., the odds ratio reduces to the relative risk.

Observe that θ = 1 implies pr(Y = 1|X = 1) = pr(Y = 1|X = 0), i.e., there is no
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association between the disease and the risk factor.

For a large sample size, log(θ̂) − log(θ) is asymptotically normally distributed with

mean 0 and the variance n−110 + n−101 + n−111 + n−100 (Woolf, 1955). The test of no association

between disease and exposures is achieved by a chi-square test for large sample size. The

test statistic with Yate’s correction (Yates, 1934) is given by

χ2 =
(n− 1)

(
|n11n00 − n10n01| − 1

2
n
)2

n1n0n·1n·0
.

The test rejects null hypothesis that there is no association between disease and exposures

if χ2 > χ2
1, α at α level of significance, where χ2

1, α is the (1 − α)th quantile of the χ2
1

distribution.

For a small sample size, Fishers exact test procedure is used to test whether the odds

ratio is equal to a specified value given that the row and column totals are fixed. Regard-

less of the data from case-control or a cohort study, the conditional probability on all the

marginal totals remaining fixed is

pr(n11|n1, n0, n.1, n.0; θ) =

 n1

n11


 n0

n.1 − n11

 θn11

∑
u

 n1

u


 n0

n.1 − u

 θu

.

Here

 n

u

 denotes the binomial coefficient, where

 n

u

 =
n(n− 1)(n− 2) · · · (n− u+ 1)

u(u− 1)(u− 2) · · · 1
.
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Define the lower and upper tail probabilities respectively as follows

PL =
∑
u≤n11

pr(n11|n1, n0, n.1, n.0; θ0) ,

PU =
∑
u≥n11

pr(n11|n1, n0, n.1, n.0; θ0) .

For a given level of significance α, the test rejects the hypothesis H0 : θ = θ0 in favor of

θ < θ0 if the lower probability PL < α. Similarly the test rejects the hypothesisH0 in favor

of θ > θ0 if the upper probability PU < α.

2.3 Matched Case-Control Designs

If there is only one control matched with a case, it is called matched pairs. Suppose one

has n10, n11, n01, and n00 matched pairs under different combinations of X and Y , which

are summarized in Table 3. The pairs in which both cases and controls are exposed to the

Table 3. Matched binary data on binary outcomes.

Control
Case(Y = 1) X = 1 X = 0 Total
X = 1 n11 n10 n1
X = 0 n01 n00 n0
Total n.1 n.0 n

risk factor provide no information about the association between risk factor and disease.

Similarly, the pairs in which neither case nor control are exposed to the risk factor provide

no information. The statistical analysis depends on the discordant pairs, in which exactly

one subject is exposed and other is not.

Let π be the conditional probability of observing a pair with an exposed case and
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unexposed control given a discordant pair. Then

π =
pr(X = 1|Y = 1)pr(X = 0|Y = 0)

pr(X = 1|Y = 1)pr(X = 0|Y = 0) + pr(X = 0|Y = 1)pr(X = 1|Y = 0)
=

θ

θ + 1
,

where θ represents the odds ratio as defined in (2.1).

The conditional distribution of n10 given the total discordant pairs is a Binomial(n10 +

n01, π). So the estimate of odds ratio θ of the disease and the risk factors is given by

θ̂ =
n10

n01

with a standard error

s.e.(θ) =
n10

n01

√
1

n10

+
1

n01

.

The test statistic to test H0 : θ = 1 is

χ2 =
(|n01 − n10| − 1)2

n01 + n10

,

which is called McNemar’s test (1947). Under the null hypothesis the test statistic asymp-

totically follows χ2
1 distribution for large sample sizes. The test rejects H0 if the value of

χ2 is larger than critical value χ2
1, α at level α, and concludes that the cases and controls

differ in the presence of risk factors.

WhenM controls are matched to a case with dichotomous exposures, there are 2(M+

1) possible outcomes depending on whether or not the case is exposed and number of

exposed controls, therefore the conditional probability of the outcome that case is exposed

is

pr(case exposed|m exposed among case and controls) =
mθ

mθ +M −m+ 1
.

Assumption that there are totally m exposed in case and controls. Let n1,m−1 be

number of matched pairs that the case and exactly m − 1 control are exposed, and n0,m
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be the number of matched pairs that exactly m control are exposed. Then Tm = n1,m−1 +

n0,m represents the total number of matched sets with exactly m exposed. The conditional

probability of the entire set of data is proportional to

M∏
m=1

(
mθ

mθ +M −m+ 1

)n1,m−1
(

M −m+ 1

mθ +M −m+ 1

)n0,m

(2.2)

with

E(n1,m−1|Tm; θ) =
mθTm

mθ +M −m+ 1
,

Var(n1,m−1|Tm; θ) =
mθTm(M −m+ 1)

(mθ +M −m+ 1)2
.

The conditional maximum likelihood estimator (MLE) θ̂ that maximize (2.2) is the solution

of

M∑
m=1

n1,m−1 =
M∑
m=1

mθTm
mθ +M −m+ 1

.

A simple robust Mantel and Haenszel common odds ratio estimator is given by

θ̂ =

∑M
m=1(M −m+ 1)n1,m−1∑M

m=1mn0,m

.

The corrected test statistic for testing H0 : θ = 1 derived by Miettinen (1970) and Pike and

Morrow (1970) can be written as

χ2 =

{∣∣∣∑M
m=1(n1,m−1 −mTm/(M + 1))

∣∣∣− 1
2

}2

∑M
m=1 Tmm(M −m+ 1)/(M + 1)2

.

2.4 Logistic Regression in Case-Control Studies

So far we describe methods for having dichotomous expose variables. However, in epi-

demiological studies, disease is generally related to several different types of risk factors,

such as categorical, continuous or mixture of both, thus a mathematical model is needed to
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describe the relationship between the probability of disease and several risk factors. Usu-

ally a linear logistic model is used to deal with the risk of the disease in terms of risk

factors. More detailed theory of logistic regression can be found in Cox (1970).

The general model of linear logistic model can be written as

pr(Y = 1|X) = H(α +XTβ) ,

where H(u) = {1 + exp(−u)}−1, Y = 1 represents the individual who has disease and

Y = 0 represents the individual free of the disease, andX is a vector of risk factors.

The odds for an individual to get disease given the same risk factors is

ψ =
pr(Y = 1|X)

pr(Y = 0|X)
=

pr(Y = 1|X)

1− pr(Y = 1|X)
= exp

{
XTβ

}
,

thus

β = log
{

pr(Y = 1|X + 1)/pr(Y = 0|X + 1)

pr(Y = 1|X)/pr(Y = 0|X)

}
,

representing the log-odds ratio for an individual to get disease if the risk factor is increased

by one unit.

The logistic model indicates that the design is a cohort study that collects data forward

to see how the disease develops. In the model risk factor X is regarded as a fixed quantity

and Y is a random variable. In a case-control study, information is collected on the basis of

disease status. However, the logistic model has an identity of inferential procedures about

the log-odds ratio regardless of sampling approach whether it is carried out to a cohort or a

case-control study.

The odds for getting disease for an individual with risk factor X , relative to that for

an individual with some reference risk factorX0 is

pr(Y = 1|X)/pr(Y = 0|X)

pr(Y = 1|X0)/pr(Y = 0|X0)
= exp{(X −X0)

Tβ} , (2.3)
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by the Bayes rule, it is equivalent to

pr(X|Y = 1)/pr(X0|Y = 1)

pr(X|Y = 0)/pr(X0|Y = 0)
= exp{(X −X0)

Tβ} .

Thus the odds ratio (2.3) can be estimated from case-control data (Prentice and Pyke, 1979),

and risk factors can be modeled by an ordinary logistic regression model

pr(X|Y = 1) = pr(X0|Y = 1) exp{α∗ + (X −X0)
Tβ} ,

where α∗ = log {pr(X|Y = 0)/pr(X0|Y = 0)}.

In a case-control study with n1 cases, n0 controls and n = n0 + n1, suppose that z is

the indicator whether a subject is sampled (z = 1) or not (z = 0), and

π1 = pr(z = 1|Y = 1)

is the probability that a diseased subject is included in the study as a case and

π0 = pr(z = 1|Y = 0)

is the probability that a disease-free subject is included in the study as a control. Under

the assumption that sampling probability depend only on disease status and not on the risk

factors, i.e.,

pr(z = 1|Y = i,X) = pr(z = 1|Y = i)

for i = 0, 1, the conditional probability that a subject has disease given he has risk factor
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X and he is sampled for the case-control study is

pr(Y = 1|X, z = 1) =
pr(z = 1|Y = 1,X)pr(Y = 1|X)∑1
i=0 pr(z = 1|Y = i,X)pr(Y = i|X)

=
π1 exp(α +XTβ)

π0 + π1 exp(α +XTβ)

=
exp(α∗ +XTβ)

1 + exp(α∗ +XTβ)
, (2.4)

where α∗ = α + log(π1/π0).

From (2.4), for i = 0 and 1 we have

pr(X|Y = i) = pr(X|Y = i, z = 1)

=
pr(Y = i|X, z = 1)pr(X|z = 1)

pr(Y = i|z = 1)
,

therefore the likelihood function of case-control study with risk factorX is

L(β) =
∏
j:cases

pr(Xj|Y = 1)×
∏

j:controls

pr(Xj|Y = 0) ∝ L1 × L2 ,

where

L1(β) =
∏
j:cases

pr(Y = 1|Xj, z = 1)×
∏

j:controls

pr(Y = 0|Xj, z = 1)

and

L2 =
n∏
j=1

pr(Xj|z = 1) .

In most practical situations, the X variable does not contain any information of parameter

β, usually pr(X|z = 1) is allowed to take arbitrary distribution, or may dependent a set

of parameters that are independent of β. Under this assumption, the maximum likelihood

estimator β̂ obtained by maximizing L is the same as maximizing L1 (Prentice and Pyke,
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1979). Furthermore, β̂ is consistent for log-odds ratio parameter β and also asymptotically

normal distributed.

2.5 Logistic Regression in Matched Case-Control Studies

Suppose that data consist of n strata and there are Mi controls matched with a case for

stratum Si, i = 1, 2, · · · , n. Let Yij take on value one or zero according as the jth subject

in the ith matched set is a case or control respectively, and X ij be a vector of covariates.

The prospective logistic regression for the chance of getting disease with risk factorX ij is

pr(Yij = 1|Si,X ij) = H(αi +XT
ijβ) ,

where αi is the stratum intercept term. Similarly to the general case-control study, the

probability of a case is still included in the case-control study is modeled by

pr(Yij = 1|Si,X ij, z = 1) = H(δ(Si) +XT
ijβ) ,

where δ(Si) = αi + log(n1/n0).

The likelihood function for a matched case-control study satisfies

L(β) ∝
n∏
i=1

Mi∏
j=1

pr(Yij|Si,X ij, z = 1).

Note that the number of nuisance parameters δ(Si) is proportional to the number of strata

which may cause inconsistent estimator of the log-odds ratio. To solve this problem, we

consider the conditional likelihood function (Liddell et al., 1977; Breslow et al., 1978)

LC(β) =
n∏
i=1

Mi+1∏
j=1

pr(Yij|Si,X ij, z = 1,

Mi+1∑
j=1

Yij = 1)

=
n∏
i=1

Mi+1∑
j=1

pijYij,
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where pij = exp(XT
ijβ)/

∑M+i+1
j=1 exp(XT

ijβ).

The standard conditional maximum likelihood estimator β̂ is obtained by maximizing

the conditional likelihood function LC(β).
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CHAPTER III

BIAS REDUCTION IN CONDITIONAL LOGISTIC REGRESSION MODELS

3.1 Introduction

Conditional likelihood is widely used for the estimation of log-odds ratio from matched

case-control studies. In the conditional likelihood analysis of a matched design, we remove

the stratum specific nuisance parameters by conditioning on their sufficient statistics, and

obtain consistent estimates of the log-odds ratio parameter by maximizing the conditional

likelihood. The concern is that the maximum conditional likelihood (MCL) estimator ob-

tained by maximizing the conditional likelihood is biased for small to moderate sample

sizes. Since a matched case-control study with a small or moderate sample size is not

uncommon, it is important to develop a method which can produce an estimate of the pa-

rameters of interest with little or less bias. For instance, the data example that motivates

our research is from a low-birth-weight study discussed in Chapter I. It consists of only 29

strata, and each stratum has only one case and three controls.

In order to correct the bias of the log-odds ratio estimator based on matched studies

different approaches have been proposed so far. There are two main types of approaches to

handle the bias: a bias corrective method and a bias preventive method. Within the bias cor-

rective methods, Jewell (1984) considered a computationally-intensive jackknife method

for correcting the bias in the odds-ratio estimator for a categorical exposure variable and

he compared the performance of his proposed method with some other bias correction ap-

proaches. He exclusively focused on a single exposure variable with finite many categories.

Several other bias correction techniques for the odds-ratio estimator for discrete exposure

variables were proposed by Bishop and Holland (1975). Cordeiro and McCullagh (1991)

derived a general formula for the first-order term of bias that can be used in generalized
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linear models. Greenland (2000) adopted this general bias correction approach to correct

the bias in the conditional logistic regression setting. His method of bias correction in the

log-odds ratio estimator is able to handle any types of exposures, and can easily handle

multiple exposure variables simultaneously. In general we can describe the bias corrective

method as follows. Let β̂ be the MCL estimator of the parameter of interest β, then the

bias of the MCL estimator is

b(β) =
b1(β)

n
+
b2(β)

n2
+ · · · .

Thus the first-order bias corrected estimator for β is

β̂bc = β̂ − b1(β̂)

n
.

One of the drawbacks of the corrective approach is that if the MCL estimate β̂ has an in-

finite component for a dataset, which is not uncommon for small sample sizes, then the

first-order bias can be infinite in which cases the bias corrected estimator would be unde-

fined. Note that the jackknife method of bias correction is even more likely to encounter the

same problem. To avoid this difficulty Firth (1993) proposed a second type approach – a

bias preventive method. This approach eliminates the first-order of bias O(n−1) by solving

a modified score equation in the general context of regular parametric families of distribu-

tions. Therefore the resultant estimator does not depend on the finiteness of the standard

maximum likelihood estimator. Firth’s idea has been used in the unconditional logistic

regression (Heinze and Schemper, 2001b; Bull et al., 2002; Bull et al., 2007) and Cox’s

partial likelihood setting to handle problem of monotone likelihood (Heinze and Schemper,

2001a). We will use this bias preventive procedure in the context of conditional logistic re-

gression models and derive the modified score function to estimate the model parameters.

We refer to the method as a modified score function (MDS) approach.

This chapter is organized as follows. Section 3.2 contains the model and assumptions.
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We present the proposed method in Section 3.3. We also derive a closed form expression

for the bias-reduced estimator and its standard error for matched pair data with one dichoto-

mous exposure variable. Section 3.4 contains a simulation study, where we compare the

performance of the proposed method mainly with conditional maximum likelihood method

and the jackknife approach of bias correction. An application in a low-birth-weight dataset

is illustrated in Section 3.5. The discussion is given in Section 3.6.

In concluding this section we would like to highlight the novel features of this work.

Firstly, to the best of our knowledge this is the first bias reduction approach in the MCL

estimator in matched case-control studies using the preventive method. Secondly, com-

pared to the jackknife or bootstrap based procedures the MDS method takes much less

computational time and efforts. Thirdly, the MDS estimators are usually finite even when

MCL estimates are infinite. Fourthly, we provide a versatile formula for standard error

calculation for the MDS estimators.

3.2 Model and Assumptions

Suppose we have a 1:Mi (≥ 1) matched case-control data with n strata. Let Yij take on

value one or zero according as the jth subject in the ith matched set is a case or control

respectively. Let X ij = (Xij1, · · · , Xijp)
T be a p× 1 vector of covariates. Also, let Si be

the covariates which are used for matching purposes in the ith stratum. The disease risk in

the ith stratum can be modeled by

pr(Yij = 1|Si,X ij) = H(αi(Si) +XT
ijβ) , (3.1)

where H(u) = {1 + exp(−u)}−1, j = 1, · · · ,Mi + 1, and i = 1, · · · , n. Note that αi is the

stratum specific parameter which is a function of Si and β = (β1, · · · , βp)T is the vector

of log-odds ratio parameters for the covariateX .
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In order to estimate β in Equation (3.1) one generally adopts the conditional logistic

regression (Breslow and Day, 1980) where the estimates are obtained by maximizing

LC(β) =
n∏
i=1

Mi+1∑
j=1

pijYij , (3.2)

where pij = exp(XT
ijβ)/

∑Mi+1
k=1 exp(XT

ikβ), representing the conditional probability that

the jth subject is a case given that there is one case in the ith stratum.

Notice that Yij takes on value one or zero, the likelihood function can be rewritten as

LC(β) =
n∏
i=1

Mi+1∑
j=1

pijYij =
n∏
i=1

Mi+1∏
j=1

p
Yij
ij

=
n∏
i=1

∏Mi+1
j=1 exp(YijX

T
ijβ)∑Mi+1

k=1 exp(XT
ikβ)

.

Thus the log likelihood function

lC(β) = log(LC(β))

=
n∑
i=1

{
Mi+1∑
j=1

YijX
T
ijβ − log

(
Mi+1∑
k=1

exp(XT
ikβ)

)}
.

The MCL estimator β̂ for β can obtained by solving the score equation

U(β) = 0 ,

where the score function

U(β) =
∂lC(β)

∂β
=

n∑
i=1

Mi+1∑
j=1

(Yij − pij)X ij .

The variance of MCL estimator β̂ can be estimated by the diagonal elements of I−1(β̂).
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Since

∂pij
∂β

=
exp(XT

ijβ)X ij

∑Mi+1
k=1 exp(XT

ijβ)− exp(XT
ijβ)

∑Mi+1
k=1 exp(XT

ijβ)X ij{∑Mi+1
k=1 exp(XT

ikβ)
}2

= pij

{
X ij −

Mi+1∑
k=1

pikX ik

}
,

the I(β) which is the Fisher’s information matrix is given by

I(β) = −E
(
∂U (β)

∂βT

)

=
n∑
i=1


Mi+1∑
j=1

pijX ijX
T
ij −

(
Mi+1∑
j=1

X ijpij

)(
Mi+1∑
j=1

X ijpij

)T


=
n∑
i=1

Mi+1∑
j=1

(
X ij −X i·

) (
X ij −X i·

)T
pij ,

whereX i· =
∑Mi+1

j=1 pijX ij .

We now mention two special data configurations: complete separation and quasicom-

plete separation which are defined as follows. Following Albert and Anderson (1984)

we say a 1:Mi matched case-control data is completely separated if there exists a vector

γ ∈ Rp, and γ 6= 0, such that γT (X i1 − X ij) > 0 for all j = 2, · · · ,Mi + 1 and

i = 1, · · · , n, assuming that Yi1 = 1 and Yij = 0. If a 1:Mi matched case-control data is

not completely separated but there exists a γ 6= 0 such that γT (X i1 −X ij) ≥ 0 (i.e., the

equality holds necessarily for at least one (i, j)), then we call it quasicompletely separated.

We have the following Lemma:

LEMMA: If matched case-control data are completely or quasicompletely separated, the

MCL estimate is infinite.

Proof. In this proof we follow the idea of Albert and Anderson (1984). For notational

convenience we will denote X ij − X i1 by Zij . Let B be the set of vectors such that

for any γ ∈ B, γTZij ≤ 0, for j = 2, · · · ,Mi, and there exists at least one (i, j) for
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which the equality holds. Observe that B is a non-empty convex set for a quasi-separated

dataset. For any β ∈ Rp, we can find a projection of it on B, γ, such that β = γ + α,

α ∈ Bc. Let Di(γ) ≡ {j : γTZij = 0} and Dci (γ) ≡ {j : γTZij < 0}, and define

Q(γ) ≡ {i : |Di(γ)| > 0}, where |Di| is the cardinality of Di. Furthermore, define

β(k) = kγ +α, for k > 0. Now,

LC{β(k)}=
∏

i∈Q(γ)

1

1 +
∑

j∈Di(γ)

exp(kγTZij +αTZij) +
∑

j∈Dc
i (γ)

exp(kγTZij +αTZij)

×
∏

i∈Qc(γ)

1

1 +
∑
j

exp(kγTZij +αTZij)

=
∏

i∈Q(γ)

1

1 +
∑

j∈Di(γ)

exp(αTZij) +
∑

j∈Dc
i (γ)

exp(kγTZij +αTZij)

×
∏

i∈Qc(γ)

1

1 +
∑
j

exp(kγTZij +αTZij)
.

Note that LC{β(k)} is a monotonically increasing function in k, and the supremum attains

when k →∞, that is,

sup
k
LC{β(k)} =

∏
i∈Q(γ)

{1 +
∑

j∈Di(γ)

exp(αTZij)}−1 as k →∞ .

Thus, LC(β) = LC{β(1)} < supk LC{β(k)} for every β ∈ Rp. Therefore, the maximum

likelihood estimate β̂ must be infinity, since if β̂ were finite, then the argument above

indicates that there is a large enough K, such that LC{β̂(k)} > LC(β̂) for k ≥ K, leading

to a contradiction.

Similarly, the conclusion holds true when the data are completely separated for which

Q(γ) is an empty set, and then the supk LC{β(k)} = 1.
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3.3 Method of Bias Reduction

Firth (1993) gave a geometric interpretation of the modified score function. The basic idea

is that the bias in β̂ can be reduced by introducing a small bias inU(β). By Taylor’s series

expansion we can write

U(β̂) = U(β) +
∂U(β)

∂βT
(β̂ − β) + · · ·

=

{
U(β) +

∂U(β)

∂βT

b1(β)

n

}
+
∂U(β)

∂βT

{
β̂ − b1(β)

n
− β

}
+ · · ·

= 0 ,

where b1(β) = (b1(1)(β), · · · , b1(p)(β))T. This expansion indicates that the estimator β̂R

obtained by solving the modified score

Umod(β) = U(β) +
∂U(β)

∂βT

b1(β)

n
= 0

yields a first-order bias preventive estimator ofβ. Observe that the bias reduction is implicit

through the modified score. Therefore when obtaining the bias reduced estimator we do not

need to subtract an estimated bias from the original MCL estimator β̂ of β. This is the key

idea from Firth (1993) used in our bias reduction approach in matched case-control studies.

Using the notation I(β) = −∂U(β)/∂βT, we can rewrite the modified score as

Umod(β) = U(β)− I(β)
b1(β)

n
.

To describe our methodology more effectively, we define

krs =
1

n
E

{
∂2lC(β)

∂βr∂βs

}
,

krst =
1

n
E

{
∂3lC(β)

∂βr∂βs∂βt

}
,

krs,t =
1

n
E

{[
∂2lC(β)

∂βr∂βs

]
·
[
∂lC(β)

∂βt

]}
.
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Let D = {krs} and its inverse D−1 = {krs}. Then following Cordeiro and McCullagh

(1991) and using the fact that krs,t = 0, the first-order bias term for βr is

b1(r)(β)

n
=

1

2n

p∑
a=1

p∑
t=1

p∑
u=1

kraktukatu

for r = 1, · · · , p.

Define the conventional notations such as

kr,s =
1

n
E

{[
∂lC(β)

∂βr

]
·
[
∂lC(β)

∂βs

]}
and

kr,s,t =
1

n
E

{[
∂lC(β)

∂βr

]
·
[
∂lC(β)

∂βs

]
·
[
∂lC(β)

∂βt

]}
,

the rth component of −I(β)b1(β)/n is then

cr =
1

2

p∑
s=1

p∑
a=1

p∑
b=1

p∑
c=1

krsk
sakbckabc =

1

2

p∑
b=1

p∑
c=1

kbckrbc

as
∑p

s=1 krsk
sa = I(r = a) for r = 1, · · · , p .

Following the identities krst + kr,st + ks,rt + kt,rs + kr,s,t = 0 and kr,s + krs = 0 we

can write the rth element of the correction terms as

cr =
1

2

∂

∂βr

{
log|I(β)|

}
.

Letting Umod(β) =
∑n

i=1U
mod
i (β) = (Umod

(1) (β), · · · ,Umod
(p) (β))T and U(β) =
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(U (1)(β), · · · , U (p)(β))T, the rth component of the modified score function is

Umod
(r) (β) = U (r)(β) +

1

2

∂

∂βr

{
log|I(β)|

}
= U (r)(β) +

1

2
tr
{
I−1(β)

∂I(β)

∂βr

}
=

n∑
i=1

Mi+1∑
j=1

(Yij − pij)Xijr +
1

2
tr
[{ n∑

i=1

Mi+1∑
j=1

(X ij −X i·)(X ij −X i·)
Tpij

}−1

×
n∑
i=1

Mi+1∑
j=1

(X ij − 2X i·)X
T
ij(Xijr −X i·r)pij

]
,

where X i·r =
∑Mi+1

j=1 Xijrpij . Following the argument in Firth (1993), it is seen that the

adjustment term after the standard conditional score function above effectively eliminates

the first-order bias of the conditional maximum likelihood estimator.

Note that we can write the rth component of the modified score function Umod
(r) (β) =∑n

i=1 U
mod
(r)i (β), where Umod

(r)i (β) =
∑Mi+1

j=1 (Yij − pij)X ij − I(r)(β)b1(β)/n2, and I(r)(β)

is the rth row of I(β).

Let Umod(β) = (Umod
(1) (β), · · · , Umod

(p) (β))T. Since we proposed a new equation to

calculate the estimator, naturally we need to estimate its asymptotic variance. Now ex-

panding Umod(β̂R) at the true β,

0 = n−1/2Umod(β̂R)

= n−1/2
n∑
i=1

Umod
i (β) + n−1/2

∂Umod(β)

∂βT
(β̂R − β) +Op(n

−1/2) ,

we have

β̂R = β +

(
∂Umod(β)

∂βT

)−1 n∑
i=1

Umod
i (β) +Op(n

−1) .

Thus the sandwich typed estimator of the asymptotic variance-covariance matrix of β̂R is
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given by

v̂ar(β̂R) =

[(
∂Umod(β)

∂βT

)−1( n∑
i=1

Umod
i (β)Umod

i

T
(β)

)(
∂Umod(β)

∂βT

)−T]
β=β̂R

, (3.3)

where

∂Umod
(r) (β)

∂βk
=

∂U(r)(β)

∂βk
+

1

2
tr
{
−I−1(β)

∂I(β)

∂βk
I−1(β)

∂I(β)

∂βr
+ I−1(β)

∂2I(β)

∂βk∂βr

}
.

Here

∂I(β)

∂βr
=

n∑
i=1

Mi+1∑
j=1

(X ij − 2X̄ i·)X
T
ij(Xijr − X̄i·r)pij

and

∂2I(β)

∂βk∂βr
=

n∑
i=1

Mi+1∑
j=1

[(
−2

∂X̄ i·

∂βk
XT

ij

)
(Xijr − X̄i·r)pij +

(X ij − 2X̄ i·)X
T
ij

{
(Xijr − X̄i·r)

∂pij
βk
− ∂X̄i·r

βk
pij

}]
with ∂pij/∂βk = pij(Xijk− X̄i·k), ∂X̄i·r/∂βk =

∑Mi+1
j=1 Xijr(∂pij/∂βk), and ∂X̄ i·/∂βk =∑Mi+1

j=1 X ij(∂pij/∂βk).

Although according to the development in Firth (1993) the modified score estimator

has the same asymptotic variance-covariance matrix as the maximum conditional likeli-

hood estimator does, in the simulation study we found that for small to moderate sample

sizes the sandwich type estimator (3.3) yields more accurate estimate of the true standard

error than that obtained by inverting the Fisher’s information matrix. One explanation for

more accuracy of formula (3.3) is that it takes into account the correction term of the mod-

ified score function which is of the order O(1), and the effect of this correction term on the

variance may not be negligible for small n.

Here we briefly mention the connection between this bias reduction approach and the
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Bayesian approach. Often for small sample sizes, Bayesian method with a prior distribution

of good faith can circumvent the problem of bias, and usually the prior belief depends on the

historical studies. However, the concern is how one can proceed with the Bayesian method

in the absence of precise prior knowledge about the parameter. Firth (1993) showed that the

estimator obtained by the preventive method is actually the posterior mode of the parameter

of interest with the Jeffrey’s prior on the parameter, which shows that not only precise prior

belief is useful, but also sometimes the objective prior can help us to remove the bias of the

maximum likelihood estimator.

3.3.1 Case of a Single Covariate

For a single covariate the first-order bias-reduced estimator of the log-odds-ratio parameter

is obtained by solving

n∑
i=1

Mi+1∑
j=1

(Yij − pij)Xij +

∑n
i=1

∑Mi+1
j=1 Xij(Xij −X i·)(Xij − 2X i·)pij

2
∑n

i=1

∑Mi+1
j=1 (Xij −X i·)2pij

= 0 . (3.4)

The first term on the left hand side above is the score function derived from the conditional

likelihood (5.3) and the second term is the correction term. To show the advantage of the

MDS method compared to the MCL approach, now consider a 1:Mi matched study with

j = 1 representing the cases and otherwise controls. Assume that the data are completely

separated, e.g., Xi1 > 0 and Xij < 0 for j = 2, · · · ,Mi + 1. The score equation derived

from the conditional likelihood then is

n∑
i=1

(1− pi1)Xi1 =
n∑
i=1

Mi+1∑
j=2

pijXij .

It is clearly seen that the left hand side of the equation is positive whereas the right hand

side is negative. Thus there is no finite solution for β. In contrast when we use Equation

(3.4) we do not experience such a problem in our numerical computations.
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We now provide the closed form expression for the modified score function for a

1:M (≥ 1) matched case-control study with a dichotomous exposure variable. Let nk,m,M

denote the number of matched sets containing M controls m of which are exposed and the

case is (k = 1) or is not (k = 0) exposed. In addition, let Tm,M = n1,m−1,M + n0,m,M be

the number of such sets having a total of m exposed. Then the MCL estimator of β can be

obtained as the solution of

M∑
m=1

n1,m−1,M =
M∑
m=1

Tm,MgM(m,β) ,

where gM(m,β) = m exp(β)/{(M+1−m)+m exp(β)} (Breslow and Day, 1980, p.177).

Using the MDS method the bias-reduced estimator of β can be obtained as the solution to

M∑
m=1

n1,m−1,M −
M∑
m=1

Tm,MgM(m,β)

+

∑M
m=1Tm,M{(m+1−M)/m}{1− 2gM(m,β)}g2M(m,β)

2
∑M

m=1 Tm,M{(m+ 1−M)/m}g2M(m,β)
= 0 .

One can easily compare the above modified conditional score with the conditional score

function given in Equation (5.26) of Breslow and Day (1980, p. 177).

3.3.2 Matched Pair Design with a Dichotomous Exposure

Now we consider the matched pair design, i.e., Mi = 1 for i = 1, 2, · · · , n, and with the

exposure X taking on zero or one. Let u be the number of discordant matched pairs where

the case is exposed and control is unexposed, i.e., Y = 1, X = 1;Y = 0, X = 0, and v

be the number of discordant matched pairs where the case is unexposed and the control is

exposed, i.e., Y = 1, X = 0;Y = 0, X = 1 .

The MCL estimator of the log odds-ratio is

β̂ = log
(u
v

)
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with variance

var(β̂) =
1

(u+ v)H(β){1−H(β)}
.

A consistent estimator of var(β̂) is

v̂ar(β̂) =
u+ v

uv
.

In this case Greenland’s bias corrected estimator of β is given by

β̂G = log
(u
v

)
− (u− v)2

2uv(u+ v)
.

No explicit formula for its asymptotic variance is given even though it can be approximated

by the delta method as indicated in Greenland (2000).

In the MDS method we estimate β by solving

Umod(β) = U(β) +
1

2
I−1(β)

∂I(β)

∂β
= 0 ,

where

U(β) = u− (u+ v)H(β) ,

I(β) = (u+ v)H(β){1−H(β)} ,
∂I(β)

∂β
= (u+ v)H(β){1−H(β)}{1− 2H(β)} .

The bias-reduced estimator becomes

β̂R = log
(

2u+ 1

2v + 1

)
.

Note that for a small sample the MCL estimate could be infinite. Clearly, it is more likely

for the jackknife estimator to have this difficulty. However, as we see β̂R will not be infinite

even for v = 0.
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Furthermore,

∂Umod(β)

∂β
= −(1 + u+ v)H(β){1−H(β)}

and

n∑
i=1

{Umod
(1)i (β)}2 =

1

4n
{1− 2H(β)}2 + u{1−H(β)}2 + vH2(β)

+
1

n
(u− v)H(β){1−H(β)} .

Then a consistent estimator of var(β̂R) is

v̂ar(β̂R) = 4

{
u

(1 + 2u)2
+

v

(1 + 2v)2
− (u− v)2

n(1 + 2u)2(1 + 2v)2

}
.

Although, mathematically v̂ar(β̂R) < v̂ar(β̂) = (u + v)/(uv), we cannot claim the su-

periority of one over the other. In addition, if one carries out a binomial experiment with

u + v trials, and u success are observed, then β̂R becomes identical to the modified em-

pirical estimator of the logit of the success probability of the binomial experiment given in

Cox and Snell (1968, Section 2.1.9). This fact was also recognized by Firth (1993) in the

context of unconditional logistic regression, and for conditional logistic regression for 1:1

matched case-control study as the later is equivalent to the unconditional logistic regression

with appropriately defined covariates. Notice that the variance estimator v̂ar(β̂R) is not the

same as the variance estimator given in Cox and Snell (1968), however, if u/(u + v) → ρ

as n→∞, then

v̂ar(β̂u) =
u(1 + 2v)2 + v(1 + 2u)2

(1 + 2u)2(1− 2v)2)
− (u− v)2

n(1 + 2u)2(1 + 2v)2

=
1

(u+ v)ρ(1− ρ)
+O(n−1) .

Thus v̂ar(β̂u)/{(u + v)ρ(1 − ρ)}−1 → 1, i.e., both variance estimators are asymptotically

first-order equivalent as n→∞.
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3.4 A Simulation Study

In order to judge the performance of the methods we conducted the following simulation

study. We first generated a cohort data of with three variables S, X , and Y according

to the simulation scenarios 1 and 2, and with four variables S, X , Z and Y according to

simulation scenario 3.

1. 1:1 matched case-control data with S ∼ Normal(0.53, 0.242), X ∼ Bernoulli(px),

px = H(−2.0 + S), and marginally px ≈ 0.2, and Y ∼ Bernoulli(py), where

py = H(β0 + 1.1S + βX); with β0 = −2.9 and β = 0.5, 1.0.

2. 1:2 matched case-control data with S ∼ Normal(0.53, 0.242), X ∼ Gamma(S2 +

0.5, 2.5), and Y ∼ Bernoulli(py), where py = H(β0 + 1.1S + βX); with β0 = −3.0

for β = 0.5, 1.0, β0 = −3.4 for β = 1.5, and β0 = −3.7 for β = 2.0.

3. 1:1 matched case-control data with S ∼ Normal(.53, 0.242), Z ∼ Bernoulli(pz),

pz = H(−1.7 + 1.3S), X ∼ Bernoulli(px), px = H(−2.4 + 1.4S + 1.0Z), and

Y ∼ Bernoulli(py), where py = H(β0 + 1.1S + β1Z + β2X); with β0 = −3.0 for

(β1, β2) = (0.5, 0.5) and β0 = −3.3 for (β1, β2) = (1.0, 1.0).

The distribution and log-odds ratio parameter for S in py were chosen by mimicking a

real data that we analyzed. We chose a value of β0 so that the overall marginal disease

prevalence is around 10%. The association between X and S was small to moderate, such

as corr(X,S) = 0.1, 0.28, and 0.15 for the three scenarios, respectively.

From the cohort data we created 1:M matched case-control data with n strata using S

as the matching variable. For all three scenarios we considered different values of n. Under

each of the scenarios we generated N = 2000 datasets, and for each dataset three different

estimates were obtained, the MCL estimate, the jackknife (JNF) estimate, and the MDS

estimate.
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In the jackknife method we treated each stratum as an individual unit, each time one

stratum is leaving out and the rest of n−1 strata are used to calculate the new estimator. The

process is repeated n times. Denote the new estimator after deleting the ith stratum as β̂(−i),

i = 1, 2, · · · , n, the bias of jackknife estimator is given by (n− 1){β̂(·) − β̂}, where β̂(·) =

1/n
∑n

i=1 β̂(−i). Thus the jackknife bias corrective estimator is β̂J = nβ̂− (n− 1)β̂(·), and

its variance is estimated by v̂ar(β̂J) = (n− 1)/n
∑n

i=1{β̂(−i) − β̂(·)}2.

For the purpose of comparisons, we present the bias (with its empirical standard error),

the estimated standard error (ESD), the 95% coverage probability (CP) based on a Wald-

type confidence interval, and the “true” (empirical) standard error (TSD). In order to reduce

the effect of some extreme observations we use the median absolute deviation (MAD):

median1≤k≤N |β̃k − median(β̃)|/0.6745 for TSD, where β̃ = (β̃1, β̃2, · · · , β̃N)T and β̃k

represents the estimate for the kth simulated dataset (Huber, 1981, p.144). In the simulation

we deleted the datasets when the absolute value of the MCL or JNF estimates> 10 (in such

cases the corresponding standard errors were always > 1000).

The summary quantities are calculated for all three approaches conditional on the

datasets where both the MCL and JNF estimates are finite. In this case it is not surprising

that MDS estimates often show bias because a particular data configuration which may

occur with non-zero probability is discarded. However, the performance of a method should

be judged based on all datasets instead of on its subset. From simulation results we see that

in all scenarios we considered the MDS method does not produce infinite value of the

estimators. Therefore we should evaluate the MDS method based on all 2000 replications.

The results are also provided in the tables.

In the tables, the summary quantities for a method with an ∗ refer to the approximated

values obtained from the datasets where both MCL and JNF estimate are finite. In this

context, the results in Tables 4 – 6 corresponding to scenarios 1 – 3, respectively, can be

summarized as follows:
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• The absolute bias of MCL estimator increases with β.

• The nominal 95% coverage probabilities for MCL estimator are either close to 0.95 or

higher even though the MCL estimator has high bias. Further numerical investigation

revealed that the MCL and its standard error are highly correlated. Therefore, for

a large estimate of β, the standard error is also large, and thereby the confidence

interval likely includes the true parameter.

• The jackknife method significantly reduces bias and the ESD of the estimate is al-

ways larger than its TSD.

• The MDS estimator has less absolute bias than that of the JNF method for nonzero

β and its estimates were always finite for the simulation scenarios we considered.

However, the MCL and JNF estimates were infinite in many occasions, specially for

n = 30 or 50. For scenario 1 and when n = 30 and β = 1.5, about 50% datasets

yield infinite MCL estimate (results not shown here).

• Overall, the variance of the MDS estimator is smaller than that of the other two

estimators. We calculated ESD of the MDS estimator based on formula (3.3) which

generally gives more accurate estimates of the true standard errors than that based on

I(β̂R). For example, in scenario 1 and when β = 1, the ESD based on formula (3.3)

and I(β̂R) are 0.584 and 0.699 for n = 30, 0.482 and 0.582 for n = 50, and 0.349

and 0.369 for n = 100. The corresponding TSD are given in Table 4. Furthermore,

the standard errors obtained from I(β̂R) are almost identical to the results obtained

from I(β̂MCL) which are presented in the tables as the ESD of the MCL estimator.

• In some cases the MDS estimator has slightly lower coverage probabilities in its

Wald-type confidence intervals. In unconditional logistic regression models, profile
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likelihood intervals have been shown to have better coverage properties than Wald-

type intervals (Heinze, 2006; Bull et al., 2007; and Heinze and Schemper, 2001a).

Here we computed penalized-conditional-likelihood (PCL) based confidence inter-

vals for the MDS estimator, and found that the corresponding coverage probability

(CP) is close to 0.95. For example, in scenario 2, for β = 2 and n = 20 and 30

the PCL based coverage probabilities are 0.948 and 0.945, respectively. For small

sample sizes, such as n = 30 and 50, the coverage probabilities based on the PCL

confidence interval appear to be better than that based on a Wald-type confidence

interval. Overall, the simulation results indicate that Wald-type intervals for MDS

(no matter what variance estimate) do not cover well when MDS estimation is most

desired.

• Additional simulation study (not shown here) indicates that all three methods yield

almost unbiased estimates when the true value of β is zero.

For all three estimators in scenario 1 we also estimated the parameters by the method

prescribed in Greenland (2000). For large values of β and for small sample size, Green-

land’s method reduces bias. For example, after deleting the datasets that MCL or JNF

estimates are infinite, we found that when β = 2 (not shown) and sample size n = 30, the

empirical bias due to Greenland and MCL estimators are 0.029 (0.731) and−0.725 (0.427)

based on 1166 remaining datasets and for n = 50 they are 0.131 (0.668) and−0.094 (0.487),

based on 1673 remaining datasets, respectively. The quantity in the parentheses represents

the empirical standard error of the estimate, and it appears that the variance of the Green-

land method is slightly larger than that of the MCL estimator. However, we did not find

any appreciable differences between the Greenland’s estimator and the MCL estimator for

the sample sizes we considered in the simulation when β is 0.5, 1 and 1.5 (not shown).
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In summary, the limited simulation study along with the data example below has il-

lustrated the usefulness of the MDS estimator compared to the existing bias correction

approaches in matched case-control studies.

3.5 An Analysis of Low-Birth-Weight Data

In order to illustrate the MDS method for M = 1 and M > 1 we considered the 1:3

matched low-birth-weight dataset discussed in Chapter I. Among several covariates, we

focused on two covariates, the mother’s smoking status (SMOKE) during the pregnancy

and presence of previous preterm delivery (PTD).

First we considered 1:3 matching, and analyzed the data by the conditional logistic

regression method, the jackknife method, and the modified score approach. The results are

presented in the top part of Table 7. It is seen that at level 5% all three estimators MCL,

JNF and MDS are statistically significant for PTD, while there is no significant association

between SMOKE and the risk of having low-birth-weight child.

For the example of using M = 1, we randomly picked one control out of 3 from

each stratum of the dataset and formed a 1:1 matched case-control data. The results of

the analyses of the 1:1 matched data are presented in the bottom part of Table 7. Here we

also considered SMOKE and PTD as the two covariates. Note that in this scenario the JNF

estimates are infinite. At level 5%, the MDS estimate of the log-odds ratio for PTD is sig-

nificant while the corresponding MCL estimate is not. Both the MDS and MCL estimates

of the log-odds ratio parameter for SMOKE turn out to be statistically insignificant at level

5%. The table also provides the p-values which are calculated based on the asymptotic

Z-statistic.
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Table 7. Results of the analysis of the 1:M matched case-control data on low-birth-weight
study with two covariates, SMOKE and PTD. The JNF estimator does not exist
when M = 1. “Estimate” and “SE” denote the estimate and its standard error for
the parameters of interest.

SMOKE PTD
M Method Estimate SE P-value Estimate SE P-value

MCL 0.598 0.476 0.209 1.733 0.611 0.005
3 JNF 0.587 0.520 0.259 1.597 0.705 0.023

MDS 0.583 0.461 0.206 1.646 0.565 0.004
MCL 0.699 0.615 0.256 1.896 1.083 0.080

1 MDS 0.636 0.547 0.245 1.542 0.740 0.037

3.6 Discussion

In this chapter we apply Firth’s general approach to reduce the bias in the maximum con-

ditional likelihood estimator for matched case-control studies. The MDS estimator is ob-

tained as the solution of a modified conditional score equation. The numerical studies

showed that the MDS approach not only reduces bias but also has less asymptotic variance

than the MCL estimators. The MDS technique yields finite parameter estimates, and can

be applied when MCL and JNF estimates are infinite. Another advantage of the MDS ap-

proach over the JNF method is that the computation is easy and much less time consuming.

Furthermore, like other bias preventive approaches the MDS method can also handle mul-

tiple covariates simultaneously, and the covariates could be categorical, continuous, or a

mixture of both types.

It appears possible to apply the MDS method to obtain MDS estimates of the log-odds

ratio parameters when a covariate is partially missing in the dataset. In this situation the

likelihood will be more complex. A main issue in that context is how to appropriately

calculate the information matrix. This problem deserves further investigation and is a topic

for future research.
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For the conditional logistic regression analysis we used clogit function of the sta-

tistical software R, and for the MDS estimator we used the Newton-Raphson method. Since

Heinze and Schemper (2001a) adopted Firth’s approach to handle the issue of monotonic-

ity in Cox’s partial likelihood and conditional logistic regression is a special case of Cox’s

partial likelihood for a stratified survival design, it is conceivable that one could adopt the

software due to Heinze and Schemper (2001a) to obtain the MDS estimates.
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CHAPTER IV

TESTING ADEQUACY OF A FUNCTIONAL FORM OF A COVARIATE IN

MATCHED CASE-CONTROL STUDIES

4.1 Introduction

Suppose that Y ,X , and Z are the binary disease variable, a p× 1 vector of covariates, and

a continuous covariate of our interest, respectively. For modeling the disease risk in terms

of the observed covariates we usually assume that

pr(Y = 1|X, Z) = H{β0 +XTβ1 + ω(Z;β2)} ,

where ω(Z;β2) is a known function of Z with some unknown parameters β2. The concern

is whether ω(Z;β2) adequately captures the effect of Z. This is a well known problem of

model goodness-of-fit. For instance, usually dietary fat increases the risk of breast cancer.

However, the rate of increase of the risk for unit change in the amount of fat intake is not

the same for the entire range of fat intake. Rather, it is a U-shaped function (Goodwin

et al., 2003). Consequently a simple linear logistic effect of fat-intake will not adequately

explain the effect on the risk of breast cancer. Therefore, it is scientifically important to

check whether the fitted model adequately captures the effect of the potential risk factors.

In this chapter we will investigate this issue in the context of matched case-control studies.

For matched case-control studies, Pregibon (1985), Moolgavkar et al. (1984), Mool-

gavkar et al. (1985), and Hosmer and Lemeshow (1989) developed conditional maximum

likelihood-based diagnostic for detecting outliers and influential subjects. Hosmer and

Lemeshow (1985) presented both parametric approaches based on probabilities and non-

parametric methods to evaluate the ability of the multiple logistic regression model to dis-

tinguish the cases from the controls. Bedrick and Hill (1996) developed exact conditional



46

methods for checking the fit of a logistic regression to individual matched sets in case-

control studies.

Arbogast and Lin (2004) proposed graphical and numerical methods for checking the

adequacy of the logistic regression model for matched case-control studies. More specifi-

cally, they proposed three different tests for checking the overall model adequacy, the link

function, and the functional forms of covariates, respectively. Arbogast and Lin’s meth-

ods are based on cumulative sum of residuals over the covariates or linear predictors. The

asymptotic distributions of their test statistics follow Gaussian processes, and the p-values

of the tests are obtained by simulating a large number of empirical realizations of the ap-

proximate limiting processes. As a result the methods are very time consuming, and the

computational burden increases heavily with the sample size. In this chapter, we are par-

ticularly interested in developing a simple and effective test for checking functional forms

of a covariate.

This work is motivated by breast cancer data obtained from the Surveillance, Epidemi-

ology and End Results (SEER) program which is a premier source for cancer statistics in

the United States (www.seer.cancer.gov/statfacts/html/breast.html).

The program routinely collects and publishes cancer incidence and survival data from

population-based cancer registries covering approximately 26 percent of the US popula-

tion. The SEER data contain information about patients’ demographics, primary tumor

site, tumor morphology and stage at diagnosis, first course of treatment, and follow-up

for vital status. The age at diagnosis is one of important factors related to breast cancer

prevention and control interventions, and it is also an important index for identifying the

potential patients and deciding proper treatments for cancer patients. Generally, the effects

of different functional forms of age at diagnosis on survival chance vary, thus the adequacy

of the fitting needs to be checked in the logistic function of the risk of death due to breast

cancer.
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We propose to use a generalized score test for checking the adequacy of the functional

form of a covariate. Boos (1992) discussed generalized score tests in the context of gener-

alized estimating equations. The following is a brief outline of our method. Basically we

write out an alternative model such that the fitted model whose adequacy is being tested is a

special case of the alternative model. We approximate the alternative model by a regression

spline with a given set of knot points. To avoid over-fitting the regression spline is accom-

panied by a penalty term which results in a penalized conditional likelihood function. In

order to check the adequacy of the functional form of the covariate in the fitted model, we

test whether the coefficients not corresponding to the assumed functional form are zero.

The resulting score test involves the penalty parameter which is determined following the

technique given by Gray (1994). Furthermore the asymptotic distribution of our proposed

test statistic follows a linear combination of chi-square random variables.

The model and notation are described in Section 4.2. Section 4.3 contains the details

of the proposed method. Section 4.4 describes the general application of the score test. Sec-

tion 4.5 is the derivation of asymptotic distribution of test statistic Tn under the null model.

Section 4.6 gives the power of the test statistic under the local alternative Model. Sec-

tion 4.7 contains a simulation study to investigate the usefulness of the proposed method.

In Section 4.8 we provide a data analysis on breast cancer data obtained from the SEER

Program.

Before concluding this section we would like to emphasize the novel points of this

chapter. First, we propose an effective method to address one important issue of testing the

adequacy of the effect of a covariate on the risk of a disease that was studied previously

only by Arbogast and Lin (2004). Second, the simulation results indicate that the proposed

score test has much better power compared to Arbogast and Lin’s test procedure. Third, in

terms of the computational time, our proposed method is much faster than their simulation

based test procedure.
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4.2 Model and Notations

Suppose we have a 1:Mi (≥ 1) matched case-control data with n strata. Let Yij take on one

or zero according as the jth subject in the ith matched set is a case or control respectively,

where i = 1, · · · , n, j = 1, · · · ,Mi + 1. Let X ij = (Xij1, · · · , Xijp)
T be a p × 1 vector

of covariates and Z is the covariate of interest or a suitable given transformation of the

covariate. Let Si be the set of covariates which are used for matching purposes in the ith

stratum. Define αi(Si) as an arbitrary function which confers the effect of the ith stratum

on the risk of the disease. Under the null hypothesis that the effect of Z is linear, the disease

risk model is

pr(Yij = 1|Si,X ij, Zij) = H{αi(Si) +XT
ijβ1 + ω(Zij;β2)} , (4.1)

where β1 = (β11, · · · , β1p)T is the vector of log-odds ratio parameters for the covariateX

and β2 is a parameter or a vector of parameters related to the covariate Z.

The alternative model for the disease risk is assumed to be

pr(Yij = 1|Si,X ij, Zij) = H{αi(Si) +XT
ijβ1 + g(Zij)} , (4.2)

where g(·) is an unknown smooth function with m − 1 continuous derivatives and square

integrable mth derivative on a compact set. We will first develop a method to test model

(4.1) with ω(Zij; β2) = Zijβ2 against model (4.2). We then extend method to a more

general case whose ω(Zij;β2) takes an arbitrary form.
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4.3 Score Test Methodology

4.3.1 Derivation of the Test Statistic

Following Eubank (1988, p. 355) we will approximate the nonparametric function g(·) by

a regression spline. Suppose that there are K known knot points κ1 < · · · < κK , such that

a < κ1 < · · · < κK < b, where a and b are the minimum and maximum of the variable Z

observed in the dataset. Define

C1m(Z) ≡ (Z,Z2, · · · , Zm)T

and

C2m(Z) ≡ {(Z − κ1)m+ , · · · , (Z − κK)m+}T

where u+ ≡ max{u, 0}.

Let γ1 = (γ11, · · · , γ1m)T and γ2 = (γ21, · · · , γ2K)T. Now, g(Z) can be parameter-

ized by anmth order regression spline functionCT
1m(Z)γ1+CT

2m(Z)γ2. Thus model (4.2)

can be approximated by

pr(Yij = 1|Si,X ij, Zij) = H{αi(Si) +XT
ijβ1 +CT

1m(Zij)γ1 +CT
2m(Zij)γ2}. (4.3)

Kim et al. (2003) proposed a Bayesian method of estimation of model (4.3). However,

they did not consider the problem of model adequacy. Define θ ≡ (βT
1 ,γ

T
1 ,γ

T
2 )T. Then

the conditional log-likelihood function which is commonly used in matched case-control

studies is

l(θ) =
n∑
i=1

li(θ) =
n∑
i=1

Mi+1∑
j=1

Yijlog{pij(θ)} ,

where

pij(θ) =
exp{XT

ijβ1 +CT
1m(Zij)γ1 +CT

2m(Zij)γ2}∑Mi+1
k=1 exp{XT

ikβ1 +CT
1m(Zik)γ1 +CT

2m(Zik)γ2}
,
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representing the conditional probability that the jth subject is a case given that there is

one case in the ith stratum under model (4.3). To reduce the effect of over-fitting due to

too many parameters, parameters are estimated by maximizing the penalized conditional

log-likelihood function

lp(θ) =
n∑
i=1

li(θ)− nη

2
θTDθ ,

where η is a smoothing parameter that controls the degree of smoothing used, D is a

(p+m+K)× (p+m+K) diagonal matrix with the first p+m diagonal elements being

zero followed by the last K diagonal elements all equal to one (Kim et al., 2003), i.e.,

D = diag(0p+1, Λ), where Λ be the matrix obtained from D by deleting the first p + 1

rows and columns.

Checking adequacy of model (4.1) is equivalent to test

H0 : γ12 = · · · γ1m = 0 and γ2 = 0 .

Observe that under H0 the disease risk model (4.3) reduces to (4.1).

LetV ij ≡ (XT
ij,C

T
1m(Zij),C

T
2m(Zij))

T. Under the disease risk model (4.3), the score

function conditional on S,X , and Z becomes

U p(θ) =
n∑
i=1

Mi+1∑
j=1

{Yij − pij(θ)}V ij − nηDθ

and the corresponding conditional information matrix is

Ip(θ) = I(θ) + nηD ,

where

I(θ) =
n∑
i=1

Mi+1∑
j=1

pij(θ)(V ij − V̄ i·)(V ij − V̄ i·)
T
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is the information matrix without the penalty term and V̄ i· ≡
∑Mi+1

j=1 pij(θ)V ij .

Let

U(θ) =
n∑
i=1

Mi+1∑
j=1

{Yij − pij(θ)}V ij ,

where θ = (θT1 ,θ
T
2 )T, θ1 = (βT

1 , γ11)
T and θ2 = (γ12, · · · , γ1m,γT

2 )T. Now we partition

functions

U(θ) =

 U 1(θ)

U 2(θ)

 =

 ∂l(θ)
∂θ1

∂l(θ)
∂θ2

 , U p(θ) =

 U p1(θ)

U p2(θ)

 =

 ∂lp(θ)
∂θ1

∂lp(θ)
∂θ2

 ,

and the information matrix

I(θ) =

 I11(θ) I12(θ)

I21(θ) I22(θ)

 .

Conditional on each stratum and given covariatesX and Z, I11(θ) = −E{∂U 1(θ)/∂θT1 }

= −∂U 1(θ)/∂θT1 , I21(θ) = −E{∂U 2(θ)/∂θT1 } = −∂U 2(θ)/∂θT1 , I12(θ) = IT21(θ) and

I22(θ) = −E{∂U 2(θ)/∂θT2 } = −∂U 2(θ)/∂θT2 .

Let θ̂0 = (θ̂
T

01,0
T)T be the estimate of θ under the null hypothesis H0 which can be

obtained by a simple conditional logistic regression analysis of model (4.1) with ω(Zij, β2) =

Zijβ2. Following Boos’s (1992) approach, expand the score function at the true parameter

θ, i.e.,

n−1/2U p1(θ̂0) = n−1/2U p1(θ) + n−1/2E

(
∂U p1(θ)

∂θT1

)
(θ̂01 − θ1) +Op(n

−1/2)

= n−1/2U p1(θ) + n−1/2I11(θ)(θ̂01 − θ1) +Op(n
−1/2)

= 0 ,

n−1/2U p2(θ̂0) = n−1/2U p2(θ) + n−1/2E

(
∂U p2(θ)

∂θT1

)
(θ̂01 − θ1) +Op(n

−1/2)

= n−1/2U p2(θ) + n−1/2I21(θ)(θ̂01 − θ1) +Op(n
−1/2) .
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Combining these two equations, then we have

n−1/2U p2(θ̂0) = n−1/2U p2(θ)− n−1/2I21(θ)I11(θ)−1U p1(θ) +Op(n
−1/2)

= n−1/2A(θ)U p(θ) +Op(n
−1/2) ,

whereA(θ) =
(
−I21I−111 , Im−1+K

)
, an (m− 1 +K)× (p+m+K) matrix, and Im−1+K

is a m− 1 +K identity matrix.

Notice that under H0, U p(θ) = U(θ). It implies that E{n−1/2U 2(θ̂0)} = O(n−1/2).

Furthermore we have var{U p(θ)} = Ip(θ), and

A(θ)Ip(θ)A(θ)T

=
(
−I22(θ)I−111 (θ), Im−1+K

) I11(θ) I12(θ)

I21(θ) I22(θ) + nηΛ


 −I−111 (θ)I12(θ)

Im−1+K


= I22(θ)− I21(θ)I−111 (θ)I12(θ) + nηΛ .

Thus the score test statistic can be given by

Tn = UT
2 (θ̂0){I22(θ̂0)− I21(θ̂0)I−111 (θ̂0)I12(θ̂0) + nηΛ}−1U 2(θ̂0) . (4.4)

4.3.2 Asymptotic Distribution of the Test Statistic under the Null Model

Suppose that the number of knot points is fixed as sample size goes to∞, and the usual con-

ditions are satisfied so that the standard asymptotic expansion holds for unpenalized condi-

tional likelihood. Then the test statistic Tn is asymptotically distributed as
∑

j δjG
2
j under

the null hypothesis, where δjs are the positive eigenvalues of the matrix limn→∞(I22 −

I21I
−1
11 I12)(I22 − I21I−111 I12 + nηΛ)−1 and Gjs are independent standard normal vari-

ables. A simple proof is given in section 4.5. Thus for testing the hypothesis, the remain-

ing main issue is how to obtain the distribution of the linear combination of several χ2
1

distributions effectively. Here we will approximate the distribution by the Satterthwaite
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method. The basic idea is to find an effective degrees of freedom ν such that νTn/E(Tn)

approximately follows the χ2
ν distribution. Now, using the fact that E(Tn) =

∑
j δj and

var(Tn) = 2
∑

j δj , then

var
{
ν

Tn
E(Tn)

}
= ν2var

{
Tn

E2(Tn)

}
= 2ν2

∑
j δ

2
j

(
∑

j δj)
2
.

Equating var{νTn/E(Tn)} = var(χ2
ν) = 2ν, we obtain ν = (

∑
δj)

2/
∑
δj

2. Therefore,

we consider a scaled version of Tn,

Qn ≡ Tn(
∑
j

δj)/(
∑
j

δ2j )

as our final test statistic and reject the null hypothesis at 5% level of significance if Qn >

χ2
ν,0.05, the 95th quantile of the χ2

ν distribution.

The power of the test statistic Tn can be calculated theoretically. The details are given

in section 4.6.

4.3.3 Choice of the Penalty Parameter and the Knot Points

Now some remarks are in order about the proposed test statistic. First of all, for the calcu-

lation of the test statistic, we only need to estimate the parameters of the null model (4.1).

However, statistic Tn involves the penalty parameter η through δ2j ; and η and the degrees

of freedom ν are interrelated. The range of η is (0,∞), and a larger value of η leads to a

smoother g(Z). On the other hand, for finite sample sizes, the data may not capture the

nonparametric effect very accurately, so one needs to use smaller degrees of freedom to

test the null hypothesis. Thus the range of possible degrees of freedom is much shorter

than the range of the penalty parameter. Therefore, following Gray (1994) we will specify

the degrees of freedom and then determine the penalty parameter η. For moderate to large

sample sizes we have tried different degrees of freedom (df) from 2 to 4. All the degrees
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of freedom appear to be reasonable. To be specific, we recommend taking 3 as degrees of

freedom. Furthermore, for given degrees of freedom we used 2, 3, 5 and 10 knot points.

We have chosen quantiles of the observed covariate Z that we are interested in as the knot

points. Specifically, when the number of knots is 2, 3 or 5 we choose equal spaced quantiles

between 30th and 70th percentiles, and when the number of knot points is 10 we choose

equal spaced quantiles between 20th and 80th percentiles.

4.4 Generalization for Arbitrary Known Form of ω(Z;β2)

We assume that ω(Z;β2) is not a spline which is a practical assumption when ω(Z;β2) is

assumed to be known to a practitioner. Without loss of generality we assume

ω(Z;β2) =

m0∑
k=1

ρk(β2)Z
k + ω2(Z;β2) ,

where m0 ≤ m and ω2(Z;β2) is a non-polynomial function. If ρk(β2) ≡ 0 for all 1 ≤

k ≤ m0, define C−1m(Z) = C1m(Z), otherwise let C−1m(Z) be the vector consisting of

remaining components of C1m(Z) after deleting all Zk corresponding to ρk(β2) 6= 0 for

1 ≤ k ≤ m0, and correspondingly we define γ−1 . Now, the alternative model which covers

the assumed parametric model as a special case can be written as

pr(Yij = 1|Si,X ij, Zij) = H{αi(Si) +XT
ijβ1 + ω(Zij;β2)

+ C−
T

1m(Zij)γ
−
1 +CT

2m(Zij)γ2} . (4.5)

Thus for testing adequacy of the known form ω(Z;β2) we need test

H0 : γ−1 = 0 and γ2 = 0 ,

following steps similar to those described in Section 4.3.
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Specifically, for θ = (βT,βT
2 ,γ

−T
,γT

2 )T, here

pij(θ) =
exp{XT

ijβ1 + ω(Z;β2) +CT
1m(Zij)γ1 +CT

2m(Zij)γ2}∑Mi+1
k=1 exp{XT

ikβ1 + ω(Z;β2) +CT
1m(Zik)γ1 +CT

2m(Zik)γ2}
,

U(θ) =
n∑
i=1

Mi+1∑
j=1

{Yij − pij(θ)}V ij ,

and

∂U(θ)

∂θT
=

n∑
i=1

{
Mi+1∑
j=1

(Yij − pij)D̃ −
Mi+1∑
j=1

pij(θ)(V ij − V̄ i·)(V ij − V̄ i·)
T

}
,

where Vij =
(
XT

ij, ∂
Tω(Z;β2)/∂β2,C

T
1m(Zij),C

T
2m(Zij)

)T
, V̄ i· ≡

∑Mi+1
j=1 pij(θ)V ij ,

and D̃ = diag(0p, I |β2|
,0|γ−

1 |
,0|γ2|). Here 0|t| represent the square matrix whose dimen-

sion is the same as the vector t, and I |β2|
is an identity matrix. Thus, Under H0,

I(θ) = −E
{
∂U(θ)

∂θT

}
=

n∑
i=1

Mi+1∑
j=1

pij(θ)(V ij − V̄ i·)(V ij − V̄ i·)
T .

For the general case considered here,

U 2(θ) =
n∑
i=1

Mi+1∑
j=1

{Yij − pij(θ)}V 2ij

with V 2ij = (CT
1m(Zij), C

T
2m(Zij))

T.

4.5 Derivation of Asymptotic Distribution of Test Statistic Tn under the Null Model

We derive the asymptotic distribution of the statistic Tn under the null model (4.1). Let

V ij,2 = {C−T

1m(Zij),C
T
2 (Zij)}, and E and Cov be the expectation and covariance condi-
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tional on S,X and Z under the null model. Define

P ≡ lim
n→∞

1

n
E{I22(θ̂0)− I21(θ̂0)I−111 (θ̂0)I12(θ̂0)}+ ηΛ,

W 2 ≡ lim
n→∞

1

n
Cov

{
U 2(θ̂0)

}
= lim

n→∞

1

n

n∑
i=1

Mi+1∑
j=1

pij(θ)
{
V ij,2 − V̄ i·,2

}{
V ij,2 − V̄ i·,2

}T
,

where pij(θ) = exp(XT
ijβ1)/

∑Mi+1
k=1 exp(XT

ikβ1), and V̄ i·,2 =
∑Mi+1

j=1 pij(θ)V ij,2. Let

J ≡ n−1/2P−1/2U 2(θ̂0). Then E(J) = 0 and W ≡ Cov(J) = P−1/2W 2P
−1/2. Note

that J → Normal(0,W ) in distribution. Thus W−1/2J asymptotically follows a normal

distribution with mean 0 and (m + K − 1) × (m + K − 1) identity covariance matrix

Im+K−1.

SinceW is a positive definite matrix, by the factorization theorem we can writeW =

R∆RT, whereR is the matrix of the orthogonal eigenvectors and ∆ is the diagonal matrix

with diagonal eigenvalues λj of W . Then Γ = RTW−1/2J → Normal(0, Im+K−1) in

distribution. Therefore, Tn = JTJ = ΓT∆Γ→
∑

j λjB
2
j in distribution as n→∞. Here

B2
j s are independent and each of which follows a centered χ2 distribution with 1 degree of

freedom.

4.6 Power Consideration under the Local Alternative Model

We derive the asymptotic distribution of the statistic Tn under the local alternative model

(4.2) with the departure of g(Z) from its null mode (4.1) in the order of O(n−1/2). Let

V ij,2 = {C−T

1m(Zij),C
T
2 (Zij)}, and E∗ and Cov∗ be the expectation and covariance condi-
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tional on S,X and Z under the true model. Define

P ≡ lim
n→∞

1

n
E∗{I22(θ̂0)− I21(θ̂0)I−111 (θ̂0)I12(θ̂0)}+ ηΛ,

µ2 ≡ lim
n→∞

1√
n
E∗{U 2(θ̂0)} = lim

n→∞

1√
n

n∑
i=1

Mi+1∑
j=1

{
p∗ij(θ)− E∗

(
p∗∗ij (θ̂0)

)}
V ij,2,

W 2 ≡ lim
n→∞

1

n
Cov∗

{
U 2(θ̂0)

}
= lim

n→∞

1

n

n∑
i=1

Mi+1∑
j=1

p∗ij(θ)
{
V ij,2 − V̄ i·,2

}{
V ij,2 − V̄ i·,2

}T
,

where p∗ij(θ) = exp{XT
ijβ1+g(Zij)}/

∑Mi+1
k=1 exp{XT

ikβ1+g(Zij)}, p∗∗ij (θ) = exp(XT
ijβ1)/∑Mi+1

k=1 exp(XT
ikβ1), and V̄ i·,2 =

∑Mi+1
j=1 p∗ij(θ)V ij,2.

Let J ≡ n−1/2P−1/2U 2(θ̂0). Then E∗(J) = P−1/2µ2 and W ≡ Cov∗(J) =

P−1/2W 2P
−1/2. Note that J → Normal(P−1/2µ2,W ) in distribution. Thus W−1/2J

asymptotically follows a normal distribution with mean W−1/2P−1/2µ2 and (m + K −

1)× (m+K − 1) identity covariance matrix Im+K−1.

Since W is a positive definite matrix, by the factorization theorem we can write

W = R∆RT, whereR is the matrix of the orthogonal eigenvectors and ∆ is the diagonal

matrix with diagonal eigenvalues λj of W . Denote τ = RTW−1/2P−1/2µ2. Then Γ =

RTW−1/2J → Normal(τ , Im+K−1) in distribution. Therefore, Tn = JTJ = ΓT∆Γ →∑
j λjB

2
j in distribution as n→∞. Here B2

j s are independent and each of which follows a

non-central χ2 distribution with 1 degree of freedom and noncentrality parameter τ 2j , where

τj is the jth component of τ . Furthermore, by the Satterthwaite approximation, the power

of the score test may be approximated by pr((
∑

j δ
2
j )
−1∑

j δj
∑

j λjB
2
j > χ2

ν,0.05), where

δjs are eigenvalues of matrix (P − ηΛ)P−1.
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4.7 A Simulation Study

In order to judge the performance of the proposed method we performed the following

simulation study. We first generated a cohort data of size 16, 000 with variables S, X , Z

and Y according to the following two simulation scenarios.

1. S ∼ Normal(0, 1), Z ∼ Normal(S, 1) and Y ∼ Bernoulli(py), where py = H(α0 +

1.1S − 0.25Z + βZ2) ; with α0 = −2.4 for β = 0, α0 = −2.6 for β = 0.10, and

α = −3.0 for β = 0.25.

2. S ∼ Normal(0, 1), Z ∼ Normal(S, 1), X ∼ Bernoulli(pz) with pz = H(−0.5 + S)

and Y ∼ Bernoulli(py), where py = H(α0 + 1.1S + 0.5X − 0.25Z + βZ2); with

α0 = −2.7 for β = 0, α0 = −2.9 for β = 0.10, and α0 = −3.3 for β = 0.25.

The true parameters of the distribution of S and the log-odds ratio parameter for S in py

were chosen based on the setting given in Arbogast and Lin (2004). We chose a value of

α0 so that the overall marginal disease prevalence is around 10%. From the cohort data

we created 1:3 matched case-control data with n strata using S as the matching variable.

For scenario 1 we considered only a single covariate, and for scenario 2 we considered two

covariates. For both scenarios we considered three different sample sizes n = 25, 50, and

100. Note that for both the scenarios the true effect of Z on the disease risk is a quadratic

when β equals 0.10 and 0.25. For both scenarios, the true effect of Z is linear when β

equals zero. Thus β = 0 situation allows us to judge the level of the proposed test.

Our results are based on N = 1000 datasets, and for each scenario we calculated the

power of our proposed test and that of Arbogast and Lin’s (2004) approach. In our proposed

score method, we approximated g(·) by a cubic regression spline, i.e., m = 3. Note that the

limiting distribution of Arbogast and Lin’s (2004) test G2 follows a Gaussian process, for

each dataset. The p-value calculation of the test is based on B = 1000 bootstrap samples.
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Under scenario 1 with n = 50, df = 2.5, and β = 0, the computational time in minutes

for Qn and G2 are 40.3 and 1594, respectively, and a ratio of about 1:39 when the program

coded in R was run in a 2.6 GHZ Xenon processor.

The simulation results for scenarios 1 and 2 are presented in Tables 8 and 9, respec-

tively. The performance of two methods can be summarizes as follows:

• These results indicate that the empirical levels of both penalized score test and the

test of Arbogast and Lin (2004) are not significantly different from the nominal level

0.05.

• For a given sample size, the power of both tests increases with β. Furthermore, the

power of the tests increases with the sample size as expected.

• The results also indicate that in most of the cases the number of knot points and

degrees of freedom in the proposed score test do not affect the power of the test

significantly for the fixed β at a given sample size. Only in a few cases, the power of

the score test varies somewhat. For example, in scenario 2 (Table 9), when n = 25

and β = 0.10, the power is 0.213 and 0.215 for 5 and 10 knot points, respectively;

while the power of the other cases is round 0.13.

• The results in both scenarios show that for β = 0.10 at all considered sample sizes

and for β = 0.25 with sample size 25, the power of our proposed test is at least twice

of that of Arbogast and Lin (2004).

Overall the power of the proposed test is much higher than that of Arbogast and Lin (2004).

Importantly, the power of the proposed test is generally remarkably stable for changing

degrees of freedom and number of knot points.
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4.8 An Application to the SEER Breast Cancer Data

We now return to the SEER data discussed in the introduction. The data (1973-2003)

from National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics

Branch, were based on the November 2005 submission and were publicly available in April

2006. The follow-up cutoff date was December 31, 2003. For the purpose of our analysis

we consider only white and black females aged 30 years or older from Connecticut registry

and diagnosed for breast cancer between January, 1980 and December, 2000.

Since the grades of tumor play an important role in the survival time, we will use it

as one of the matching variables. The grades of cancer were described as well differen-

tiated (I), moderately differentiated (II), poorly differentiated (III), undifferentiated (IV),

and others (all others except for the above four categories). In the SEER data estrogen

receptor status was recorded as tumor marker 1 (Bedrosian et al., 2008). Estrogen recep-

tor positive (ER+) means that estrogen is causing the tumor to grow, and that the cancer

should respond well to hormone suppression treatments. If the estrogen receptor status is

negative (ER-), then the tumor is not driven by estrogen, thus an effective treatment need to

be determined. Our data analysis focused only on the black or white women whose tumor

marker 1 is either ‘Positive’ or ‘Negative’ and grades ranges from I to IV. Thus the cohort

contains 16, 930 women, of which 5, 194 died before December 31, 2003. The women who

died will be treated as cases (Y = 1) and otherwise controls (Y = 0). First we randomly

selected n = 200 woman who died on or before the end of the study (cases) from the cohort

of 16,930 women, then for each randomly chosen case we selected M control women by

matching the race and cancer grade’s level. In this example we took M = 3. In order to

avoid repetition of the same subjects, once a control was matched with a case, it was then

removed from the cohort. The goal is to test whether the age at diagnosis of breast cancer

has a linear effect on the survival of a patient.
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Define a binary variable X corresponding to the tumor marker 1 as

X =

 1 if tumor marker 1 is positive

0 otherwise .

The age at diagnosis was measured in years. In our matched case-control data the age at

diagnosis ranges from 31 to 97 years, with a mean of 61.8 years and a standard deviation

of 14.2 years. For the analysis purpose we define continuous variable

Z =
age at diagnosis− 61.8

14.2
.

First we fit a model

pr(Y = 1|S, X, Z) = H(β0(S) +Xβ1 + Zβ2) ,

where S consists of two variables race and grade. The results are presented in Table 10.

Here ER and SE stand for estrogen receptor (tumor marker 1) and the estimated standard

error. The results show that ER+ has a significantly negative impact on the risk of survival

Table 10. Conditional logistic regression analysis of the 1:3 matched case-control data con-
structed from the SEER study.

Covariate Estimate SE p-value
ER positive vs. negative -0.427 0.205 0.037
Age at Diagnosis 0.856 0.105 < 0.001

which supports the fact that ER+ subjects respond well to their hormone suppression treat-

ment as all the subjects were under some therapy or treatment after the diagnosis of the

cancer. Age at diagnosis has a statistically significant effect on the survival.

Now we test if the linear effect of age at diagnosis adequately explains its association

with the survival. The proposed test statistic Qn with 3 degrees of freedom and 10 knot

points is 10.025, which gives a p-value of 0.018. We also analyzed the data with degrees
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of freedom 2, 2.5, 3, 3.5 and 4 with number of knot points 2, 3, 4, and 10. The test statistic

Qn varies little for different number of knot points. As is expected, it depends more on the

degrees of freedom. The numerical results show that for different degrees of freedom the

proposed test leads to the same conclusion, that is, the linear effect of age at diagnosis does

not adequately capture its effect on the survival. In contrast, the test statistic of Arbogast

and Lin’s approach is 0.439 with the p-value of 0.512. This concludes that there is no

strong evidence against the linear effect of age at diagnosis on the survival of the patients.

The scientific evidence (Adami et al., 1986) shows that the survival rates vary at dif-

ferent periods of observations and relative survival declines markedly as the women are

getting older. However it is not clear whether the age at diagnosis plays a linear role in

the logit link with survival status. Here we investigated this issue based on the cohort of

16,930 women. We selected three age groups [40, 55), [55, 70), and [70, 90) on the entire

cohort data of 16, 930 women, respectively. If age at diagnosis has a linear effect, we would

expect the log odd-ratios to be not significantly different among these three groups. We fit

the following linear logistic regression model to the data of each group

pr(Y = 1|X,Z,Race,Grade) = H{β0 + β1X + β2Z + β3Id(Race = white)

+
3∑

k=1

β4kI(Grade = k)} .

Here Y , X and Z are survival status, the binary variable corresponding to tumor marker

1, and age at diagnosis rescaled by dividing by 10, respectively. Here Id(·) represents an

indicator function.

The summary results of log odd-ratio parameter β2 are listed in Table 11. Obviously

the log odd-ratios for these three groups are quite different. Thus the data analysis from the

cohort provides supplementary evidence in support of the conclusion from our score test

that the effect of age at diagnosis on the survival status in the logistic regression model is
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Table 11. Estimates from different age groups.

Age Group Sample Size Estimate of β2 SE p-value
[40, 55) 4598 0.106 0.096 0.268
[55, 70) 5396 0.643 0.077 < 0.001
[70, 90) 5806 1.068 0.056 < 0.001

strongly non-linear.

4.9 Discussion

In this chapter we proposed a test for testing adequacy of a functional form of a covariate in

the logistic regression model of a matched case-control study. We applied the generalized

score test method along with the regression spline technique used for approximating the

nonparametric form of the covariate effect. The results of a simulation study indicate that

the proposed method is more powerful than the existing method and computationally it is

easy and less time consuming. As long as the number of knots is moderate, our proposed

test is generally robust to the choice of knot points and the degrees of freedom. The analysis

of the SEER breast cancer data not only illustrates the usefulness of the proposed method

but also is scientifically important as we closely investigate the effect of age at diagnosis

on the survival of the breast cancer patients which may shed new light on the pathogenesis

of breast cancer.

Here we derived the form of the test in a simple set-up where the covariate of interest is

observed without measurement error and has no missing values. In principle the proposed

score method can be extended to the scenarios of partially missing data and when the

covariate is measured with errors.
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CHAPTER V

AN INFORMATION MATRIX BASED TEST IN MATCHED CASE-CONTROL

STUDIES

5.1 Introduction

In Chapter IV we proposed a generalized score method to test the adequacy of a functional

form of a covariate of interest in a conditional logistic regression model where the alterna-

tive model has the same link function as the null model. Thus we can write the null model

as a special case of the alternative. When the link function of the alternative model is dif-

ferent from logistic function, for example, log link, probit, or inverse link, the generalized

score method proposed in the previous chapter is not applicable anymore. Our goal in this

chapter is to develop an information matrix based test for matched case-control studies.

For prospectively collected binary data, White (1982) proposed an information matrix

test for detecting parametric model misspecification. Lin and Wei (1991) extended White’s

approach to the partial likelihood setting with particular interest in the Cox semiparametric

regression model. Zhang (2001) applied this method to case-control studies. However, his

method is not directly applicable to matched case-control studies.

In this chapter we will employ the idea to construct a test to check the validity of

model

H0 : pr(Yij = 1|Si,X ij) = H(αi(Si) +XT
ijβ) (5.1)

against the following alternative model in matched case-control studies

H1 : P (Yij = 1|Si,X ij) = f(αi(Si),X ij,β), (5.2)

where f(·) is an unknown function. For j = 1, · · · ,Mi + 1, i = 1, · · · , n, Yij takes on
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value one or zero according as the jth subject in the ith matched set with Mi controls is a

case or control respectively, X ij = (Xij1, · · · , Xijp)
T is a p × 1 vector of covariates, and

Si is the covariates which are used for matching purposes in the ith stratum.

5.2 An Information Matrix Based Method

Under null model H0, we again consider the conditional log likelihood function

LC(β) =
n∏
i=1

Mi+1∑
j=1

pijYij, (5.3)

where pij = exp(XT
ijβ)/

∑Mi+1
k=1 exp(XT

ikβ). Let l(β) be the log of likelihood function

LC(β). Conditional on each stratum, i.e., givenX and S, define

B(β) = − ∂2l(β)

∂β∂βT

=
n∑
i=1

Mi+1∑
j=1

pij(X ij −X i·)(X ij −X i·)
T

and

V (β) =

{
∂l(β)

∂β

}{
∂l(β)

∂βT

}
=

n∑
i=1

{
Mi+1∑
j=1

(yij − pij)X ij

}{
Mi+1∑
j=1

(yij − pij)XT
ij

}
,

where X i· =
∑Mi+1

j=1 pijX ij , and both B(β) and V (β) are symmetric. Since the con-

ditional logistic regression model is a member of the exponential family of distributions,

under Model (5.1), for the given strata S and covariateX we have

E{B(β)} = E{V (β)} .

To test the validity of null model, we can compare whether the two matrices are sta-

tistically different. Alternatively, we just need to compare the elements on or below the
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diagonals of the two matrices. For m1 = 1, · · · , n,m2 ≤ m1, let bm1m2(β) and vm1m2(β)

be the components of matrix B(β) and V (β) at location of mth
1 row and mth

2 column,

respectively. Then

bm1m2(β) =
n∑
i=1

Mi+1∑
j=1

(Xijm1 −X i·m1)(Xijm2 −X i·m2)
Tpij

and

vm1m2(β) =
n∑
i=1

{
Mi+1∑
j=1

(yij − pij)Xijm1

}{
Mi+1∑
j=1

(yij − pij)XT
ijm2

}
,

where X i·r =
∑Mi+1

j=1 pijXijr, i.e., the rth component ofX i· , r = m1,m2.

Notice that both X i·r andX i· depend on β, thus we have

∂bm1m2(β)

∂β
=

n∑
i=1

Mi+1∑
j=1

pij(Xijm1 −X i·m1)(Xijm2 −X i·m2)(X ij −X i·)

and

∂vm1m2(β)

∂β
= −

n∑
i=1

{
Mi+1∑
j=1

Xijm1pij(X ij −X i·)

}{
Mi+1∑
j=1

(Yij − pij)Xijm2

}

−
n∑
i=1

{
Mi+1∑
j=1

Xijm2pij(X ij −X i·)

}{
Mi+1∑
j=1

(Yij − pij)Xijm1

}
,

which implies

E {∂vm1m2(β)/∂(β)|X ij} = 0

for i = 1, 2, . . . , n, j = 1, 2, . . . ,Mi + 1.

Now Consider the lower triangular elements of matrix V (β)−B(β). Let

Qn(β) = (Q11(β), Q21(β), Q22(β), · · · , Qpp(β) )

= (v11(β)− b11(β), v21(β)− b21(β), v22(β)− b22(β), · · · , vpp(β)− bpp(β)) .

Suppose β̂ is the maximum conditional likelihood estimator under Model (5.1) which is
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obtained by maximizing (5.3). By Taylor expansion,

0 =
∂l(β̂)

∂β
=
∂l(β)

∂β
+
∂2l(β)

∂β∂Tβ
(β̂ − β) +Op(1) ,

we have

β̂ − β = −
(
∂2l(β)

∂β∂Tβ

)−1
∂l(β)

∂β
+ op(n

−1/2)

= B−1(β)
∂l(β)

∂β
+ op(n

−1/2)

Thus

Qm1m2(β̂) = Qm1m2(β) +
∂TQm1m2

∂β
(β̂ − β) + op(n

−1/2)

= Qm1m2(β)−
(
∂bm1m2(β)

∂β

)T
B−1(β)

∂l(β)

∂β
+ op(n

−1/2)

It can be shown that under Model (5.1), asymptotically

Qn(β̂)
T

Σ̂−1(β̂)Qn(β̂)→ χ2
d ,

where Σ(β) = {σij} is the d × d asymptotic covariance matrix of Qn(β̂) that has a com-

plicated form with d = p(p + 1)/2 and can be estimated by Σ̂(β̂). The derivation of Σ is

given in Section 5.3.

5.3 Covariance Matrix Expression

Let d(x) be the indicator function, T (t) be the integer part of t > 0, then i = {m1 −

d(T (m1/2) = m1/2)}T (m1/2) + m2 and j = {r1 − d(T (r1/2) = r1/2)}T (r1/2) + r2.
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Since

Qm1m2(β̂) = vm1m2(β)− bm1m2(β)−
(
∂bm1m2(β)

∂β

)T
B−1(β)

∂l(β)

∂β
,

Qr1r2(β̂) = vr1r2(β)− br1r2(β)−
(
∂br1r2(β)

∂β

)T
B−1(β)

∂l(β)

∂β
,

we have

σij = Cov
(
Qm1m2(β̂) , Qr1r2(β̂)

)
= Cov {vm1m2(β), vr1r2(β)} − Cov

(
vm1m2(β),

∂T l(β)

∂β

)
B−1(β)

∂br1r2(β)

∂β

− Cov
(
vr1r2(β),

∂T l(β)

∂β

)
B−1(β)

∂bm1m2(β)

∂β

+

{
∂br1r2(β)

∂β

}T
B−1(β)var

{
∂l(β)

∂β

}{
∂br1r2(β)

∂β

}
B−1(β)

= E{vm1m2(β)vr1r2(β)} − E {vm1m2(β)}E {vr1r2(β)} − E
{
vm1m2(β)

∂l(β)

∂β
)

}T

× B−1(β)
∂br1r2(β)

∂β
− E

{
vr1r2(β)

∂l(β)

∂β
)

}T
B−1(β)

∂bm1m2(β)

∂β

+

{
∂bm1m2(β)

∂β

}T
B−1(β)

{
∂bm1m2(β)

∂β

}
= E {vm1m2(β)vr1r2(β)} − bm1m2(β)br1r2(β)− E

{
vm1m2(β)

∂l(β)

∂β

}T
× B−1(β)

∂br1r2(β)

∂β
− E

{
vr1r2(β)

∂l(β)

∂β
)

}T
B−1(β)

∂bm1m2(β)

∂β

+

{
∂bm1m2(β)

∂β

}T
B−1(β)

{
∂bm1m2(β)

∂β

}
.
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Here

E {vm1m2(β)vr1r2(β)}

=
n∑

i1,i2=1

Mi+1∑
j,k,l,t=1

E {(Yi1j − pi1j)(Yi1k − pi1k)(Yi2l − pi2l)(Yi2t − pi2t)}

× {Xi1jm1Xi1km2Xi2lr1Xi2tr2}

=
n∑
i=1

Mi+∑
j,k,l,t=1

E {(Yij − pij)(Yik − pik)(Yil − pil)(Yit − pit)}Xijm1Xikm2Xilr1Xitr2

+
n∑

i1 6=i2

E

{
Mi+1∑
j,k=1

(Yi1j − pi1j)(Yi1k − pi1k)Xi1jm1Xi1km2

}

× E

{
Mi+1∑
j,k=1

(Yi2j − pi2j)(Yi2k − pi2k)Xi2jr1Xi2kr2

}

=
n∑
i=1

∆i(β) +
n∑

(i1 6=i2)=1

K(i1,β)K(i2,β) ,

where

∆i(β) =

Mi+1∑
j,k,l,t=1

E {(Yi1j − pi1j)(Yi1k − pi1k)(Yi2l − pi2l)(Yi2t − pi2t)}

× Xi1jm1Xi1km2Xi2lr1Xi2tr2 .

Now we consider the ∆i(β) in the following cases:

1. If j = k = l = t, then

δi1 =

Mi+1∑
j=1

pij(1− 4pij + 6p2ij − 3p3ij)Xijm1Xijm2Xijr1Xijr2 ;

2. If only three of j, k, l, t are equal,

δi2 = −
Mi+1∑
j 6=k

pijpik(1− 3pij + 3p2ij){Xijm1Xijm2Xijr1Xikr2

+ Xijm1Xijm2Xikr1Xijr2 +Xijm1Xikm2Xijr1Xijr2

+ Xikm1Xijm2Xijr1Xijr2} ;
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3. If only two pairs of j, k, l, t are equal, for example j = k, l = t, and k 6= l,

δi3 = −
Mi+1∑
j 6=k

pijpik(pij + pik − 3pijpik){Xijm1Xikm2Xijr1Xikr2

+ Xijm1Xikm2Xikr1Xijr2 +Xijm1Xijm2Xikr1Xikr2} ;

4. If only two of j, k, l, t are equal, and Mi ≥ 2,

δi4 = −
Mi+1∑
j 6=k 6=l

pijpikpil(1− 3pij){Xijm1Xijm2Xilr1Xikr2 +Xijm1Xikm2

× Xijr1Xilr2 +Xijm1Xikm2Xilr1Xijr2 +Xikm1Xijm2Xijr1Xilr2

+ Xikm1Xijm2Xilr1Xijr2 +Xilm1Xikm2Xijr1Xijr2} ;

5. If none of j, k, l, t are equal, and Mi ≥ 3,

δi5 = −3

Mi+1∑
j 6=k 6=l 6=t

pijpikpilpitXijm1Xikm2Xilr1Xitr2 ;

Thus ∆i = δi1 + δi2 + δi3 + δi4 + δi5 , and

K(i,β) = E

{
Mi+1∑
j,k=1

(Yij − pij)(Yik − pik)

}
Xijr1Xikr2

=

Mi+1∑
j,k=1

E {(Yij − pij)(Yik − pik)}Xijr1Xikr2

=

Mi+1∑
j=1

E
{

(Yij − pij)2
}
Xijr1Xijr2

+

Mi+1∑
j 6=k

E {(Yij − pij)(Yik − pik)}Xijr1Xikr2

=

Mi+1∑
j=1

pij(1− pij)Xijr1Xijr2 −
Mi+1∑
j 6=k

pijpikXijr1Xikr2 .
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Cov
(
vm1m2(β),

∂l(β)

∂β

)
= E

{
vm1m2(β)

∂l(β)

∂β

}
=

n∑
i1,i2=1

Mi+1∑
j,k,l=1

E {(Yi1j − pi1j)(Yi1k − pi1k)(Yi2l − pi2l)}Xi1jm1Xi1km2X i2l

=
n∑
i=1

Mi+1∑
j,k,l=1

E {(Yij − pij)(Yik − pik)(Yil − pil)}Xijm1Xikm2X il

=
n∑
i=1

J i(β) .

J i(β) can be computed by the following cases:

1. If j = k = l, then

γi1 =

Mi+1∑
j=1

pij(1− 3pij + 2p2ij)Xijm1Xijm2X ij ;

2. If only two of i, k, l are equal, then

γi2 = −
Mi+1∑
j 6=k

pijpik(1− 2pij){Xijm1Xijm2X ik +Xijm1Xikm2X ij +Xikm1Xijm2X ij} ;

3. If i 6= k 6= l, then

γi3 = 2

Mi+1∑
j 6=k 6=l

pijpikpilXijm1Xikm2X il ,

So

Cov
(
vm1m2(β),

∂l(β)

∂β

)
= E

{
vm1m2(β)

∂l(β)

∂β

}
=

n∑
i=1

(γi1 + γi2 + γi3) .

5.4 A Simulation Study

In order to judge the performance of the methods under consideration we performed a

simulation study by following the same scenarios in Section 4.7, Chapter IV.
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We generated N = 1000 datasets for simulation purpose and compared the informa-

tion matrix method IM with the cumulative residual based overall model adequacy test G0

proposed by Arbogast and Lin (2004). Since the alternative models also has logit form, it

would be interesting to include generalized score test Tn discussed in Chapter IV.

In scenario 1, we used only X to fit model to estimate the level and data were fit

omitting X2 for power. In scenario 2, we used X,Z to fit model to estimate the level and

data were fit omitting X2 for power. Since the limit distribution of G0 follows a Gaussian

process, for each dataset, we calculated p-value of the test based on 1000 bootstrap samples.

For the calculation of the test statistic Tn and the degrees of freedom ν, one needs a value

of the penalty parameter η. Following Gray’s (1994) suggestion, we took 2.5 degrees of

freedom and computed iteratively to obtain η. Also we used cubic splines and took 30%

and 70% quantile as knots. The following are the simulation results. Table 12 corresponds

to scenario 1 and Table 13 to scenario 2.

Table 12. Results of the simulation study for scenario 1 and M = 3.

β N TS IM G0

0 25 0.053 0.048 0.047
0.10 25 0.161 0.071 0.062
0.25 25 0.562 0.252 0.210

0 50 0.051 0.062 0.062
0.10 50 0.224 0.115 0.097
0.25 50 0.852 0.457 0.464

0 100 0.063 0.052 0.051
0.10 100 0.345 0.163 0.167
0.25 100 0.991 0.764 0.790

The simulation results can be summarized as follows:

• These results indicate that the empirical levels of all three methods are not signifi-

cantly different from the nominal level 0.05.

• The power of the tests is increasing with sample sizes as expected.
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Table 13. Results of the simulation study for scenario 2 and M = 3.

β N TS IM G0

0 25 0.058 0.046 0.049
0.10 25 0.149 0.073 0.041
0.25 25 0.573 0.212 0.181

0 50 0.048 0.059 0.051
0.10 50 0.232 0.101 0.078
0.25 50 0.856 0.354 0.412

0 100 0.054 0.057 0.056
0.10 100 0.373 0.124 0.151
0.25 100 0.987 0.596 0.778

• The finite sample performance of the overall model adequacy test IM is comparable

to the overall model test G0 of Arbogast and Lin (2004) for small parameters.

• In terms of computational time the IM method is much faster than that of Arbogast

and Lin (2004), but is equivalent to score test Tn.

• Information matrix based method can be used to test the functional form of a contin-

uous covariate, but it is not as powerful as score test Tn.

As expected, the overall model test is not as powerful as the score test. We have

tried various sample sizes and different settings for alternative models to check the overall

model fitting and compared the power with the method proposed by Arbogast and Lin

(2004). Even though the information matrix method IM is much faster than the test G0, it

does not have great advantage in terms of power compared to cumulative residual based test

G0. Furthermore, information matrix based test can also test link functions, too. However,

it may not be efficient in terms of power to test link functions. So a method of testing

link function needs to be developed. Apart from the overall model test, how to handle the

intercept term of each stratum in matched case-control is a main issue.

Overall, information matrix based test is suitable to explore the validity of overall
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model fitting without taking too long time. If one need a more powerful test, one choice is

to use cumulative residual based test G0, otherwise a new method has to be developed.
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CHAPTER VI

SUMMARY AND FUTURE RESEARCH

Case-control studies are widely used in epidemiological studies. In this dissertation we

have considered the problems of bias reduction and goodness-of-fit measures.

The problem of bias reduction is presented in Chapter III. The purpose of this work

is to reduce the bias of log-odds-ratio estimators in logistic regression model based on

matched case-control studies. Usually, maximum conditional likelihood is used to estimate

the log-odds-ratio. Due to the restriction of rare occurrence of disease or high cost of mea-

surements, small to moderate sample sizes are not uncommon, which may cause significant

bias problems.

We employ Firth’s (1993) idea to matched case-control studies by penalizing the con-

ditional likelihood with Jeffrey’s invariant prior, and obtain the first order bias reduced

estimator by solving the modified score function derived from the penalized conditional

likelihood. The advantages of the proposed method are shown through a simulation study.

We also apply the method to analyze a matched case-control data from a low-birth-weight

study.

Chapter IV is developed to test the adequacy of a functional form of a covariate of

interest in matched case-control studies. In matched case-control studies, we usually as-

sume that the covariates are associated with the disease risk through a linear-logistic model,

which means the logit of the disease probability is a linear function of the covariates. How-

ever, it is often not adequate to explain the effect of a continuous covariate on the disease

risk. We develop a penalized score test for testing functional form of a covariate via a penal-

ized regression spline with a moderately large number of given knot points. We study the

asymptotic properties of the test and finite sample performance via a simulation study. It

turns out that the power of the our proposed method is much better than that of the only one
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existing method (Arbogast and Lin, 2004). We also illustrate the usefulness of the proposed

method by using the SEER data. Furthermore, we develop a generalized method in Chapter

V for testing overall goodness-of-fit of the logistic model for matched case-control studies.

Here we use an information matrix based test by following the idea of White (1982) that

dealt with the effect of model misspecification on maximum likelihood estimators. The

finite sample performance of this test is judged via a simulation study. Importantly, both of

my methods are computationally much faster than the existing ones.

In all the projects we assume that the data has complete observations. However, miss-

ing data or data with measurement errors are commonly seen almost in all research. Lipsitz

et al. (1998) proposed a modified conditional logistic regression that is appropriate with

covariates that are missing at random when the model involves many nuisance parameters.

Paik and Sacco (2000) considered methods for analyzing matched case-control data when

some covariates are completely observed but other covariates are missing for some sub-

jects. Our proposed methods can be extended to handle bias and test model fitting issues

that may appear in these scenarios.

Although our proposed methods are investigated in the context of matched case-

control studies, the methods also are applicable in general case-control studies. In logistic

regression model when covariates are measured with error the usual estimator is asymp-

totically biased (Michalik and Tripathi, 1980), Stefanski and Carroll (1985) proposed a

bias-adjusted estimator to handle bias. By using the similar techniques to deal with the

likelihood, it is possible to modify our proposed method to fit the model to get an estimator

with less bias.

The proposed methods are also useful in analyzing the data from nested case-control

studies where a case-control study is nested within a cohort study. A nested case-control

study generally costs less and saves time compared to a cohort study. It also reduces recall

bias compared with case-control studies.
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In matched case-control study, we have considered how to test adequacy of a function

form of covariates and overall model fitting. Even thought information matrix based can be

used to test link function, it is not as powerful as the method in Arbogast and Lin (2004).

In the future I am planning to develop a new method to test the link function.

Another problem of interest to me is family based case-control studies which are useful

for studying familial aggregation of a disease. People have done a lots of work in this

area (Whittemore, 1995; Zhao et al., 1998). However, still there are many questions on

how to evaluate the effect of covariates on the disease risk, taking into account familial

correlation using a flexible correlation structure and a logistic marginal model. And this

problem has very practical applications in Epidemiology. For example, in Framingham

Heart Studies, there are three generations involved. The causes of heart disease from the

first or second generation may have an impact to the next generation. Even within the same

generation, the members that are family related may show similar symptoms. Because of

the correlation among family members, how to model the correlation within the model is

critical for identifying the common factors or characteristics that contribute to the heart

disease.

In the foreseeable future I plan to spend more time investigating case-control studies

from clinical trials and Frammingham Heart Studies. It is my strong desire to conduct

cutting edge methodological and collaborative research.
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