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ABSTRACT 
 
 

The Role of Free-ranging Mammals in the Deposition of Escherichia coli into a Texas 

Floodplain. 

(August 2010) 

Israel David Parker, B.S., New Mexico State University; 

M.S., Texas A&M University 

Chair of Advisory Committee:   Dr. Roel R. Lopez 
               

 
 

Free-ranging wildlife are an important contributor of fecal pollution in the form 

of Escherichia coli (E. coli) to water bodies.  Currently, details of this contribution are 

nebulous and understudied.  Much of the related research has not focused on free-

ranging wildlife; instead investigations examine entire systems while estimating wildlife 

contribution indirectly or with data of inconsistent quality and source.  I began my 

research by conducting a meta-analysis of existing research to determine the current 

state of knowledge of wildlife’s specific contribution.  Data were sparse, fragmented, of 

variable quality, and difficult to access.  Researchers relied on a variety of outside 

sources (e.g., state natural resource agencies).  Making comparison between studies was 

nearly impossible because methodologies differed greatly or were described 

inconsistently.  I then calculated wildlife population densities, undertook fecal 

collection, and conducted spatial analyses of fecal deposition to gather accurate and 
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relevant data of the study area.  I augmented field data collection with data derived from 

my meta-analysis (i.e., fecal deposition rates).  I was able to estimate the relative role of 

individual species (e.g., raccoons [Procyon lotor], white-tailed deer [Odocoileus 

virginianus], and feral hogs [Sus scrofa]). Finally, I created a model using these data to 

determine important parameters for future research (e.g., fecal deposition rates) and 

simulate various management strategies.  Although all parameters need more research 

focus, I found defecation rates were especially important but little researched.  I found 

raccoons were the greatest determiner of potential E. coli load in the floodplain though 

adjustment of other parameters would greatly impact these findings.   
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CHAPTER I 
 

INTRODUCTION 
 

BACKGROUND 

 Water is at the center of many conflicts around the world.  Examples date back to 

antiquity and extend from war in the Middle East to civil unrest in China and Pakistan to 

the second United States/Iraq war (Gleick 2006).   Water issues take on a more polarized 

quality when they are combined with political and cultural mores (Haftendorn 2000).   

These are often at play in the rural land ethic (e.g., agriculturally-based) versus urban 

value system.  States like Texas that have a strong individualistic and agriculturalist 

tradition combined with growing urban populations often endure these conflicts.  In the 

United States, many streams and rivers traverse both rural and urban areas, and pollution 

problems impact all water users along the length of the water body, though often to 

differing degrees.  There is intense pressure to identify the pollution sources, thus 

leading to distrust between traditional land users (agriculturalists) and urban residents as 

livelihoods and cultural identities are tied to the results.  The sources of water quality 

problems are often grouped into urban (human contributions) and rural (livestock and 

wildlife), though wildlife inhabits both.  Many studies have found that depending on 

land use, all are potential contributors to water quality problems (Hagedorn et al. 1999, 

Atwill et al. 2003).   It is obvious, then, that accurate source delineation is critically 

important.  

This dissertation follows the style of the Journal of Wildlife Management. 
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Escherichia coli (E. coli)  and other fecal coliform species are so-called indicator 

species of water quality.  It is assumed they are present mainly in warm-blooded species 

so their presence in a water body indicates fecal contamination and concomitant 

pathogens.  Those water bodies that have fecal pollution loads above U.S. 

Environmental Protection Agency standards are classified as impaired, thus necessitating 

comprehensive analysis of sources of fecal pollution and delineation of reductions 

necessary to return to compliance.  Although, there is a wealth of independent water 

quality research, much of the data flows into and out of these source delineation studies, 

termed Total Maximum Daily Load (TMDL) plans.   

 The purpose of this dissertation is to characterize free-ranging mammals’ 

contribution of E. coli into a Texas floodplain.  Accurate data about the sources of fecal 

pollution into water bodies is vital in the creation of effective mitigation strategies.  

These sources vary based on location, land use, hydrology, and other factors.  Previous 

E. coli research has investigated sources of fecal pollution in waterways, but little 

research had focused particularly on the role that free-ranging wildlife plays in water 

contamination (Brittingham et al. 1988, Dobson and Foufopolous 2001).   The term 

wildlife is consistently defined as all non-domesticated animals that inhabit the study 

area in the following literature.  Researchers have increasingly included free-ranging 

wildlife in their lists of non-point pollution sources.  Generally, questions regarding 

wildlife have been incorporated into larger studies looking at all sources of pollution 

(Table 1.1).  Little research has attempted to synthesize the information regarding  
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Common Name  Species Name 

White-tailed deer  Odocoileus virginianus 
Virginia opossum  Didelphis virginiana 
Striped skunk  Mephitis mephitis 
Nine-banded armadillo  Dasypus novemcinctus 
Raccoon  Procyon lotor 
Feral hog  Sus scrofa 
Eastern gray kangaroo  Macropus giganteus 
Wombat  Vombatus ursinus 
Pademelon  Halmaturus eugenii 
Swamp wallaby  Wallabia bicolor 
Brushtail possum  Trichosurus vulpecula 
Platypus  Ornithorhynchus anatinus 
Common brown antechinus  Antechinus stuartii 
Australian wood duck  Chenonetta jubata 
Bush rat  Rattus fuscipes 
Red fox  Vulpes vulpes 
European rabbit  Oryctolagus cuniculus 
Feral goat  Capra aegagrus 
Common carp  Cyprinus carpio 
Canada goose  Branta canadensis 
North American Beaver  Castor canadensis 
Wild Turkey  Maleagris gallopavo 
Bobcat  Lynx rufus 
Red-winged blackbird  Agelaius phoeniceus 
Coyote  Canis latrans 
Killdeer  Charadrius vociferus 
Roadrunner  Geococcyx californianus 
California ground squirrel  Spermophilus beecheyi 
Yellow-bellied marmot  Marmota flaviventris 
Boat-tailed grackle  Quiscalus major 
Ring-billed gull  Larus delawarensis 
Javelina  Tayassu pecari 
Moose  Alces alces 
European starling  Sturnus vulgaris 
Muskrat  Ondatra zibethicus 
Mallard  Anas platyrhynchos 
Domestic cat  Felis catus 

Table 1.1.  Index of important polluting animal species found in water quality 
studies, 2010. 
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wildlife and E. coli into a single document that compares existing research and important 

results.  

RESEARCH OBJECTIVES 

 Objectives of my dissertation were to:  (1) conduct a meta-analysis of water 

quality research (particularly focused on E. coli) that includes wildlife, (2) determine the 

role of wildlife in the deposition of E. coli into a Texas floodplain, and (3) create a 

model of wildlife E. coli deposition.  My dissertation is divided into 3 primary chapters 

with each designed as an individual publication so some repetition between chapters is 

expected.  Chapter titles are as follows: 

1. A meta-analysis of the role of free-ranging wildlife in the deposition of 

Escherichia coli into water bodies (Chapter II) 

2. The role of free-ranging mammals in the deposition of Escherichia coli into a 

texas floodplain (Chapter III) 

3. A model of free-ranging wildlife deposition of Escherichia coli (Chapter IV) 

STUDY AREA 

I evaluated the role of wildlife in E. coli transmission in the Cedar Creek (Brazos 

County) watershed (Fig. 1.1).  Brazos County is located in southeast Texas in the Post 

Oak Savannah ecoregion.  Texas Parks and Wildlife Department (2010) describes the 

post oak savannah as  

a savannah dominated by native bunch grasses and forbs with scattered clumps of trees, 
primarily post oaks [Quercus stellata].  Forested areas [are] generally restricted to 
bottomlands along major rivers and creeks, or in areas protected from fire...Sands and 
sandy loams are predominantly found on upland sites, while clay or clay loams are 
typically associated with bottomlands. A dense clay pan, that is almost impervious to 
water, underlies all soil types within the region at depths of only a few feet.  
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Cedar Creek flows southeast for a total of approximately 44 km through Robertson 

County and the northern part of Brazos County before emptying into the Navasota River 

on the eastern border of Brazos County.  The Navasota River ultimately merges with the 

Brazos River at the southern tip of the county.  Cedar Creek has a history of impairment 

due to bacterial loads (U.S. Environmental Protection Agency 2008).  I conducted my 

research on 2 private ranches (Property A, 518 ha; Property B, 660 ha) bisected by Cedar 

Creek (Fig. 1.1).  Each ranch stocked cattle (Property A, 1 cow:10.36 ha; Property B, 1 

cow:2.2 ha) on typical post oak savannah of mixed upland/bottomland grasslands with 

scattered post oak woodlands located both in the upland and bottomland zones.  Both 

properties exhibited impacts from grazing, though Property B had shorter grasses and 

more impacted soils, likely due to higher cattle stocking rate.  Each property had ample 

available water from Cedar Creek and numerous stock tanks located throughout the 

properties.  Property B had several active oil wells with concomitant truck traffic and 

habitat alteration.  Soils throughout the Cedar Creek floodplain were classified by 

Natural Resources Conservation Service according to probability of 1 annual overland 

water flow occurrence (flooding or rainfall; occasional = 5-50%, frequent = >50%; Fig. 

1.2).   
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Figure 1.1. Location of Cedar Creek study area, Brazos County, Texas, 2008–2010. 
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Figure 1.2. Location of research properties (Property A, Property B) on Cedar Creek and 
delineation of soil zones, Brazos County, Texas, 2008–2010. 
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CHAPTER II 
 

META-ANALYSIS OF THE ROLE OF FREE-RANGING WILDLIFE IN THE 

DEPOSITION OF ESCHERICHIA COLI INTO WATER BODIES 

SYNOPSIS 

 Free-ranging wildlife are widely recognized as an important contributor of fecal 

pollution into water bodies.  As state and federal agencies create plans to mitigate for 

point and non-point fecal pollution, the need for accurate data regarding all sources has 

increased.  As part of that initiative, I conducted a meta-analysis focused on the nexus 

between wildlife and water quality in order to provide a relevant synthesis of data to land 

managers tasked with improving water quality.  My objectives were to:  (1) summarize 

reported mammalian species Escherichia coli (E. coli) contribution, and (2) identify gaps 

or inconsistencies in the literature.  I used Google Scholar (Google, Mountain View, 

California) and the Texas A&M University article search system that I configured to 

look into 9 separate databases.   I included articles relating to both E. coli research 

specifically and fecal coliform analyses generally as they relate to wildlife or mammals.  

I then compared techniques and results in the literature to my own research on wildlife 

and water quality.  Meta-analysis results suggest that water quality studies (n = 27) often 

used wildlife data (i.e., population density and fecal deposition rates), but the quality of 

the data varied greatly.  Data were available in limited degrees, but difficult to evaluate, 

use, and compare between studies.  For instance, different metrics of analysis (fecal 

coliform = 48% of studies, Escherichia coli = 41% of studies) were often used making 

comparison between studies difficult.  Previous research found wildlife density increased 
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the impact on wildlife contribution to water quality.  However, the wildlife mass, 

behavior, and E. coli load also affected the size of the per species impact.  The most 

numerous species did not necessarily have the most impact.   

INTRODUCTION 

 Water quality concerns are growing throughout much of the world as 

anthropogenic impacts on the environment are coupling with increasing human need for 

water.  Land managers and natural resource decision-makers need to understand the role 

of wildlife in the deposition of E. coli into watersheds in order to successfully manage 

water supplies in the state and to implement effective pollution control strategies.  

Furthermore, information concerning the contribution of E. coli from free-ranging 

wildlife populations is needed to improve watershed-level contamination models and 

reliability of model results.  This will allow managers to develop alternative strategies 

for system management in order to meet water quality standards.  Finally, understanding 

of water quality problems is needed for mitigation efforts mandated under the Clean 

Water Act (1972). 

 E. coli and other fecal coliform species are so-called indicator species of water 

quality.  It is assumed that they are present mainly in warm-blooded species therefore 

their presence in a water body indicates fecal contamination and the concomitant risk for 

pathogens harmful to humans.  Those water bodies that have fecal pollution loads above 

U.S. Environmental Protection Agency standards are classified as impaired, thus 

necessitating the comprehensive analysis of sources of fecal pollution and reductions 

necessary to return to compliance.  Although, there is a wealth of independent water 
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quality research, significant quantities of the data flows into and out of these source 

delineation studies, termed Total Maximum Daily Load (TMDL) plans.   

Previous E. coli research has investigated sources of fecal pollution in 

waterways, but little research had focused particularly on the role that free-ranging 

wildlife play in water contamination (Brittingham et al. 1988, Dobson and Foufopolous 

2001).   The term wildlife is consistently defined as all non-domesticated animals that 

inhabit the study area.  Researchers have increasingly included free-ranging wildlife in 

their lists of non-point pollution sources.  Generally, questions regarding wildlife have 

been incorporated into larger studies examining all sources of pollution.  The term 

wildlife though, has varied from study to study due to availability of data or perceptions 

of researchers towards wildlife impact.  The wildlife data in pollution studies vary in 

scope, methodology, and aim.  However, little research has been attempted to coalesce 

the information regarding wildlife and E. coli into a single document that compares 

existing research and important results.  Hedges et al. (1999) defined meta-analysis as 

the formal application of quantitative methods to summarize evidence across studies.  

Meta-analysis then has the potential dramatically change this fragmented paradigm into 

a synthesized whole (Gurevitch et al. 1992).  Such a synthesis provides a platform from 

which to develop general theory (Arnqvist and Wooster 1995).    

 The goal of this meta-analysis was to describe existing research concerning 

wildlife and water quality, particularly E. coli.  My objectives were to:  (1) summarize 

reported wildlife species E. coli contribution and (2) identify gaps or inconsistencies in 

the literature.  
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METHODS 

I conducted this meta-analysis using Google Scholar (Google, Mountain View, 

California) and the Texas A&M University article search system that I configured to 

look into 10 separate databases.   These databases included the following: Academic 

Search Complete, Business Source Complete, CAB Abstracts, ERIC, MEDLINE, MLA 

International Bibliography, OmniFile FT Mega, PsycINFO 1872-current, ScienceDirect, 

and Web of Science.  I included articles relating to both E. coli research specifically and 

fecal coliform analyses generally.   I gathered data on E. coli concentrations in feces and 

E. coli deposition when available.  I also gathered data sets especially important for 

wildlife managers (i.e., species, wildlife population densities, fecal deposition rates).  I 

then conducted a 2-tier analysis: (1) determination of important trends in data from 

literature, and (2) illumination of patterns in the methods and presentation of water 

quality research in regards to wildlife.  I included my research conducted in the Cedar 

Creek watershed in central Texas (2008–2009) for comparison (Chapter III).    

RESULTS 

Wildlife were acknowledged as important contributors of fecal pollution.  

Animals, in one form or another, are present in all watersheds and a variety of research 

has demonstrated that a large portion of their fecal material is washed into water bodies.   

I found water quality research uneven in the analysis of the impact of wildlife (Table 

2.1).  My sample of studies indicated little standardization in wildlife analyses and little 

data geared towards aiding natural resource managers.   
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A relative paucity of rigorous data prevented a full meta-analysis.  None of the 

studies included all of the necessary components (sample size, standard deviation, mean, 

and well-described methodology) to conduct a meta-analysis as described by Hedges et 

al. (1999).  I, therefore, restricted this meta-analysis to (1) descriptive statistics, and (2) 

comparison of means for E. coli concentration and deposition. 

 I reviewed 27 water quality studies that incorporated wildlife of some sort into 

their framework (Table 2.2).  Approximately 74% found deer important (n = 20), 

equaled by waterfowl/shorebirds (74%, n = 20), and followed by raccoons (52%, n = 

14), muskrats (33%, n = 9), turkeys (30%, n = 8), opossums (26%, n = 7), hogs (15%, n 

= 4), and various other species (67%, n = 18).  Waterfowl and shorebirds were 

researched by many of the studies, but to varying degrees.  Some studies examined only 

geese (presumably Canada geese [Branta canadensis]), though others looked at mallards 

[Anas platyrhynchos], wood ducks [Aix sponsa], and others.  The group labeled “Other” 

was comprised of all other species.  These were generally in less than 10% of the studies 

(e.g., javelina [Tayassu pecari]), though beavers [Castor canadensis] were in 6 (22%).  

As a whole, infrequently studied species occurred in about 67% of all of the studies, thus 

indicating the importance of regionally specific species and the difficult task of 

researchers determining species to include.   

I found that sample studies used different indicator organism classifications.  

Researchers used either the general fecal coliform indicator or the more specific E. coli 

indicator in 48% (n = 13) and 41% (n = 11) of studies, respectively (3 studies used 

neither).  Interestingly, those studies that incorporated wildlife density (37%, n = 10) 
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generally obtained information from non-peer-reviewed sources such as state natural 

resource agencies reports (33%, n = 9).  A non-peer-reviewed source is any source that 

did not undergo rigorous peer-review prior to publishing or acceptance.  Only 7 studies 

(26%) incorporated any information about fecal deposition rates. 

I collected insufficient data to conduct comparison of means; however, I found 

much lower E. coli concentrations in white-tailed deer and raccoons than indicated in 

other studies (Table 2.3).  The main problem was the dearth of studies that 

comprehensively included wildlife into water pollution studies, leaving far too few to 

conduct significance testing. 

Many of the studies were based on water sampling rather than direct sampling 

from wildlife; therefore obviating the need for wildlife density estimates.  However, of 

the studies that incorporated some kind of density estimation, 90% of those estimates 

were taken from non-peer-reviewed research.   
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Table 2.1.  Summary of research of wildlife contributions in impacting water quality by 
species, water quality measures, and population densities, 2010. 
 

Species  
CFU/g of 
fecal material 

 
Fecal 
deposit 
g/daya 

 
CFU/day/
head 

 
Pop. 
density 
(#/km2)b 

 Study 

Deer  2.2 x 106 (FC)  -  -  -  Cox et al. 2005 

  -  -  
1.75 x 108 

(EC) 
 -  Teague et al. 2009 

  107 (EC)  310  -  7.06  Rice 2005 
  3.8 x 105 (FC)  772*  -  20.76  Maptech 2002 

  -  -  
7.72 x 109 

(FC) 
 

12.36–
17.38 

 Culver et al. 2002 

  4.5 x 105 (FC)  772*  
3.47 x 108 

(FC) 
 11.90  Lawson 2001 

  106 (EC)  -  -  7.72  
Wittman Hydro Planning 
Associates, Inc. 2004 

  -  -  
3.47 x 108 

(FC) 
 -  Brannan et al. 2001 

  -  -  
5.00 x 108 

(EC) 
 4.94  Wieckowicz et al. 2008 

Hogs  4.1 x 104 (FC)  -  -  -  Cox et al. 2005 
  -  -  -  3.6–4.7  Kaller et al. 2007 

  -  -  
2.23 x 109 

(EC) 
 3.2–6  Teague et al. 2009 

  -  -  
1.08 x 

1010 (EC) 
 -  Wieckowicz et al. 2008 

Raccoons  107 (EC)  280  -  12.36  Rice 2005 
  2.1 x 106 (FC)  450*  -  17.30  Maptech 2002 

  -  -  
1.13 x 108 

(FC) 
 -  Brannan et al. 2001 

  -  -  
8.14 x 108 

(FC) 
 17.38  Culver et al. 2002 

  106 (EC)  -  -  12.36  
Wittman Hydro Planning 
Associates, Inc. 2004 

  2.5 x 105 (FC)  450*  
1.13 x 108 

(FC) 
 19.01  Lawson 2001 

  -  -  -  -  Millican and Hauck 2008 

  -  -  
1.25 x 108 

(EC) 
 -  Wieckowicz et al. 2008 

Opossums  107 (EC)  140  -  1.74  Rice 2005 
  -  17.5  -  -  Porter et al. 2001 
aConservative estimates from literature (Chapter II) 
bSeasonal density ranges on 2 study properties (Chapter II) 
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Publications  Species* 
Cox et al. 2005  eastern gray kangaroo, wombat, pademelon, swamp wallaby, 

brushtail possum, platypus, common brown antechinus, Australian 
wood duck, bush rat, feral hog, red fox, European rabbit, feral goat, 
white-tailed deer, common carp, domestic cat 

Teague et al. 2009  white-tailed deer, feral hog 
Rice 2005  white-tailed deer, raccoon, rabbit, geese, Virginia opossum, 
MapTech, Inc. 2002  white-tailed deer, raccoon, geese, muskrat, turkey, beaver, mallard 
Culver et al. 2002  white-tailed deer, raccoon, Canada goose, muskrat, beaver 
Lawson et al. 2002  white-tailed deer, raccoon, geese, muskrat, beaver, duck 
Wittman Hydro Planning 
Associates, Inc. 2004 

 white-tailed deer, raccoon, rabbit, Canada goose, Virginia opossum, 
turkey, mice, squirrel, coyote 

Wieckowicz et al. 2008  white-tailed deer, geese, muskrat, wild turkey, beaver, duck, 
waterfowl 

Kaller et al. 2007  feral hog 
Millican and Hauck 2008  white-tailed deer, raccoon, rabbit, Virginia opossum, armadillo, mice, 

squirrel, bobcat, rat, waterfowl, heron, grackle, egret, kingbird, 
sparrow, dove, red-winged blackbird, flycatcher, starling, vulture, 
killdeer, seagull, roadrunner, guinea 

Porter et al. 2001  Virginia opossum 
Atwill et al. 2003  striped skunk, California ground squirrels, coyotes, yellow-bellied 

marmot 
Booth et al. 2003  white-tailed deer, raccoon, geese, muskrat, wild turkey, duck, coyote 
Guan et al. 2002  white-tailed deer, geese, moose, turkey 
Meyer et al. 2005  geese 
Whitlock et al. 2002  raccoon, Virginia opossum, gallinule, coot, duck, European starling, 

boat-tailed grackle 
Levesque et al. 1993  ring-billed gull 
Hagedorn et al. 1999  white-tailed deer, waterfowl 
Casarez et al. 2007  white-tailed deer, raccoon, rabbit, geese, Virginia opossum, 

armadillo, feral hog, skunk, javelina, pigeon, grackle, waterfowl 
Hamilton et al. 2006  white-tailed deer, Canada goose, duck 
Ram et al. 2007  raccoon 
Siewicki et al. 2007  white-tailed deer, raccoon, shorebirds, gull, waterfowl, pigeon 
Somarelli et al. 2007  white-tailed deer, Canada goose,  
Maryland Dept. of the 
Environment 2005 

 white-tailed deer, raccoon, geese, muskrat, wild turkey, beaver, duck 

Miller 2004  white-tailed deer, Virginia opossum, squirrel, muskrat, birds 
Maryland Dept. of the 
Environment 2004 

 white-tailed deer, raccoon, geese, muskrat, wild turkey, beaver, duck 

Zeckoski et al. 2005  white-tailed deer, raccoon, geese, muskrat, turkey, beaver, duck 

Table 2.2. Listing of water quality research projects by species contributor and study, 
2010.  

aAside from 3 exceptions, wildlife were named as they were listed in publication.  I 
included specific species names for white-tailed deer, feral hogs, Virginia opossum 
when listed as deer, hogs or pigs, and opossum, respectively.  Wildlife with no specific 
name (e.g., duck, geese) had no additional information. 
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aObtained from literature estimates 
 

Species  
E. coli CFU/g of 
fecal material (x̄ ) 

 
 

n  
Number of 

Studies 

Parker data       

 
White-tailed 
deer  

2.89 x 105 

 
10  1 

 Feral hog  5.63 x 106  45  1 

 
Virginia 
opossum 

 1.60 x 107  88  1 

 Raccoon  1.59 x 107  177  1 
Literature data       
 White-tailed 

deer 
 

5.5 x 106  
-  2 

Feral hog  -  -  1 
Virginia 
opossum 

 
1.0 x 107  

-  1 

Raccoon  5.5 x 106  -  2 

Table 2.3.  Comparison of mean E. coli concentration found in Parker data 
(Chapter III) to values found in the literature, Brazos County, Texas (2008–2009). 
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DISCUSSION 

Much of the water quality research I found was variable in scope, methodology, 

and interpretations.  It was inconsistent in use of E. coli versus the general fecal coliform 

indicators and in presentation of results (e.g., determination of species density, fecal 

deposition rates, overall contribution of wildlife to fecal load in the watershed).  

Confounding methodologies and results of existing research likely hinder integration of 

water quality research into natural resource management.  Accurate and precise research 

allows managers to adjust strategies to confront the increasing challenges of growing 

human populations, pollution, invasive species, etc. (Kennedy and Thomas 1995, Kellert 

1996, McKinney 2002).   Much of the sampled water quality research, however, was not 

geared towards natural resource managers who are often the people tasked with making 

the changes necessary to improve water quality.  In order to maximize the potential 

usefulness of water quality research, a clear relationship between wildlife and impact 

must be described.  This requires detailed descriptions of wildlife population estimation, 

wildlife sampling techniques, and sources of data.  Only then can managers make 

informed decisions about wildlife population management.  In my research, I provided 

data pertinent to the natural resource manager in usable terms.   I used proven capture-

recapture and capture-resight methodologies to determine mammal densities.  I collected 

fecal samples directly from captured species and conducted transects to determine spatial 

characteristics of fecal deposition.  The literature provided fecal deposition rates.  

Together, these data illuminated the important mammal species in the deposition of E. 

coli into the study floodplain.  These data provided a clear relationship between species 
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density and E. coli deposition with numbers that could be used in wildlife management 

for water quality improvement.  Environmental systems are already dauntingly complex 

and my research could provide an important source of data not readily available to most 

natural resource managers (Naiman 1988, Dewulf et al. 2005).    

 Many water quality studies suffer from several difficulties.  Water quality 

researchers rely on existing data to determine wildlife densities and per capita pollution 

impacts when creating models or designing management strategies.  Research is often 

limited by data and expertise available.  For water quality researchers, the only sources 

of regionally relevant wildlife population data and behavior are state natural resource 

agencies and extension agencies, and more rarely, academic institutions and published 

studies.  These sources often use differing methodologies in different habitat types, thus 

increasing the difficulty in comparing results.  Many studies likewise must get daily 

defecation rates (g/day) from a variety of sources.   

Although most wildlife data in water quality studies originated from state natural 

resource agencies, the methodology used to attain density estimates varied significantly.  

For instance, Parajuli et al. (2008) evaluated the effects of best management practices 

(efforts to reduce pollution movement into the water body) on water quality and relied 

on summer roadkill indices and expert opinions to determine wildlife densities.  Kaller et 

al. (2007) compared water quality in watersheds to determine the impact of feral hogs.  

They relied on harvest data to determine population trends.  In their model of microbial 

contaminants from grazed fields, Tian et al. (2002) used stock units that covered 

expected wildlife contribution without getting wildlife data.    
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Although some studies looked at a variety of species (Culver et al. 2002, Teague 

et al. 2009), others were more limited in scope, such as the impacts of white-tailed deer 

and geese on water quality in New York (Somarelli et al. 2007), white-tailed deer in 

South Carolina (Miller 2004), or the broad impacts of feral hogs on water quality in 

Louisiana (Kaller et al. 2007).  All of these species are technically wildlife; however, the 

representative suite is dependent on the data and research time available and the 

researchers’ professional opinions on which species are important.   This limits the 

number of comprehensive studies or coordinated efforts towards improving water 

quality, further restricting the data available to managers.    

  An important question from a wildlife management perspective is the correlation 

between wildlife species density and water quality impact.   For the land manager tasked 

with understanding water quality issues and with carrying out mitigation strategies, a 

connection between number of animals in the watershed and fecal pollution contribution 

is important.  Wildlife surveys are part of the stock and trade of many land managers and 

represent a key tool in improving water quality.   

  Natural resource managers have learned the hard way to only create 

management plans with sufficient knowledge of the system.  Incoherent or poorly 

thought-out strategies often create more problems than they solve (Morrison 2002).  

Water quality plans, similarly, require detailed knowledge of the local fauna, their 

contributions to water quality, and their role in the ecosystem.  Authors of several of the 

TMDLs mentioned in this review were careful to include statements that clearly stated 

they were not advocating reducing wildlife in order to meet water quality standards, 
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even if wildlife were found to be a major contributor.  Elucidating the connection 

between species, species density/population size, and impact on water quality are clear 

cues that wildlife managers can incorporate into management plans.  The population 

size-pollution relationship also can provide cues for management.  For instance, if water 

quality tests find that a certain over-abundant species is contributing an inordinate 

amount of fecal material to a water body then the solution seems obvious.  If a species of 

large density has a small individual impact, but a large collective impact, then control of 

the species may not be practical.  Managers also must understand the balance of the 

ecosystem, including species' densities/population sizes to understand the impact of 

changing those population numbers (Naiman 1988).     

CONCLUSION 

 Previous research found wildlife density was a large impactor on wildlife 

contribution to water quality.  Water quality studies often used wildlife data (i.e., 

population density and fecal deposition rates), but the quality of the data varied greatly.  

The data was available in limited degrees, but difficult to evaluate, use, and compare 

between studies.  Although, species density is often reported in the water quality studies, 

I demonstrated that it is not consistently calculated or applied.  Species density is a 

useful tool in aiding natural resource managers in mitigating wildlife impacts on water 

quality.  Water quality research that incorporates accurate wildlife data such as 

population density/size provides a much more comprehensive and informative outlook 

for management plans.  It is incumbent upon water quality studies to describe 

methodology for determining wildlife population parameters to allow these data to be 
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applied across different studies more easily and accurately.  Additionally, much could be 

done to increase the reliability of wildlife data, such as contracting out wildlife 

components of water quality research to wildlife professionals or consulting with natural 

resource agencies to ensure that data used are reliable and applicable to the study area.  

Ultimately, management recommendations must be carried out by managers.  They 

require timely, accurate, and understandable information in order to make the best 

decisions.
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CHAPTER III 
 

ROLE OF FREE-RANGING MAMMALS IN THE DEPOSITION OF ESCHERICHIA 

COLI INTO A TEXAS FLOODPLAIN  

SYNOPSIS 

 
 The role of wildlife in the deposition of Escherichia coli (E. coli) is not well 

understood.  Although water quality studies incorporate wildlife data, it often lacks a 

clear connection between wildlife density and E. coli deposition.  Minimal 

understanding of species-specific fecal pollution and the role of species density on water 

quality complicates attempts by natural resource managers to reduce wildlife population 

sizes to improve water quality.  My goal for this research was to determine the impact of 

free-ranging mammals (in general and species-specific) on E. coli loads in a floodplain.  

Objectives of this research were to determine the density of important free-ranging 

wildlife in the study area, research fecal deposition rates, and determine fecal E. coli 

loads for each species. I conducted a comprehensive literature review to determine fecal 

deposition rates for important mammals.  I conducted mark-recapture and mark-resight 

populations density estimates (2008–2009) for meso- and large mammals in the study 

areas.  I collected 338 fecal samples from study species (raccoon, n = 177 samples, 

Virginia opossum, n = 88 samples, white-tailed deer, n = 10 samples, feral hog, n = 45 

samples, nine-banded armadillo, n = 7, striped skunk, n = 11) for E. coli analysis at a 

Biological and Agricultural Engineering laboratory at Texas A&M University (College 

Station, Texas, USA).  Finally, I walked 375 transects to determine spatial distribution of 

fecal material.  I found that raccoons (Procyon lotor) provided the most E. coli into the 
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floodplain followed by feral hogs (Sus scrofa), Virginia opossum (Didelphis virginiana), 

and white-tailed deer (Odocoileus virginianus) as the next important contributors.  As a 

highly destructive invasive exotic species, feral hogs are the natural choice for intensive 

management.  White-tailed deer are already highly managed in Texas.  As arguably the 

most important game species in the state, population reduction is generally undesired; 

however, reduction of deer numbers would be advisable in certain situations (e.g., 

overpopulation).  Meso-mammals populations can be controlled, but high effort, cost, 

and potential impact on ecosystem function make it difficult.   

 Management of habitat is critical to wildlife and water quality.  For instance, 

cattle grazing strategies impact vegetative communities which impact overland water 

flow and species occurrence.  Additionally, other point and non-point sources must be 

addressed first or in conjunction with wildlife management and the greater impacts on 

the ecosystem must be taken into account.   

 INTRODUCTION 

 Escherichia coli (E. coli) is a group of enteric bacteria symbiotic with warm-

blooded animal species.  Current U.S. Environmental Protection Agency standards 

depend upon E. coli content as a determinant of fecal contamination into water bodies.  

These determinations can be complicated by nebulous understanding of wildlife 

contributions of E. coli.  This is especially important as fecal material infected with E. 

coli is becoming a more common contaminant of watersheds used by humans for food, 

irrigation, drinking water, and recreation (Fisher et al. 2000, Mallin et al. 2000).  

Previous studies have demonstrated that E. coli has a variety of potential sources 
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including city effluent and agricultural operations (Hagedorn et al. 1999, Booth et al. 

2003).    

Although previous E. coli research has investigated the role of traditional sources 

of fecal pollution, little research has investigated the role that free-ranging wildlife plays 

in water contamination (Brittingham et al. 1988, Dobson and Foufopolous 2001).  

Further studies are needed to understand the role of free-ranging wildlife populations in 

the deposition of E. coli in order to accurately describe the sources of fecal 

contamination (Renter et al. 2001, Solomon et al. 2001).  Few studies have attempted to 

determine the important species in the watershed, provide density estimates of those 

species, and comprehensively collect fecal samples from them.  Land managers and 

natural resource decision-makers need to understand the role of wildlife in the deposition 

of E. coli into Texas watersheds in order to successfully manage water supplies in the 

state and to implement effective pollution management strategies.  Furthermore, 

information concerning the contribution of E. coli from free-ranging wildlife populations 

is needed to improve watershed-level contamination models and reliability of model 

results.   

Many studies now use microbial source tracking to identify fecal polluters; 

however, these methods require a regionally specific bacteria source library.  They also, 

often, rely on other sources for species density estimation (e.g., Culver et al. 2002) that 

may not describe the watershed under study.  Microbial source tracking may be the way 

of future water quality assessment; however, site-specific wildlife density estimation and 

fecal collection from important local species will remain an important component in 
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water policy.  A meta-analysis of existing water quality research (Chapter I) 

demonstrated that wildlife are important contributors to E. coli and fecal coliform loads 

found in impaired streams and so warrant the attention.    

 My study objectives were to identify, characterize, and quantify E. coli 

deposition from free-ranging wildlife populations into a floodplain of an impaired water 

body.  This project clarified the spatial distribution of fecal sources, subsequent fecal 

deposition, and E. coli locations.  Target species are exclusively mammalian (medium to 

large; e.g., Virginia opossum [Didelphis virginana], raccoons [Procyon lotor], white-

tailed deer [Odocoileus virginianus], feral hogs [Sus scrofa]).  Specific objectives were 

as follows:  (1) Identify and estimate population densities of major wildlife contributors 

of fecal material in the study floodplain.  Focal species were limited to those in direct 

contact to water course.  (2) Evaluate the E. coli levels in fecal samples from identified 

major wildlife contributors.  (3) Estimate the approximate amount of fecal material 

deposited by major contributors into the watershed on a daily basis. 

METHODS 

Study Area 

 I evaluated the role of wildlife in E. coli transmission in the Cedar Creek 

watershed (Brazos County; Fig. 3.1).  Brazos County is located in southeast Texas in the 

Post Oak Savannah ecotone.  Cedar Creek flows southeast for a total of approximately 

44 km through Robertson County and the northern part of Brazos County before 

emptying into the Navasota River on the eastern border of Brazos County.  The 

Navasota River ultimately merges with the Brazos River at the southern tip of the 
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county.  Cedar Creek has a history of impairment due to bacterial loads (U.S. 

Environmental Protection Agency 2008).  I conducted my research on 2 private ranches 

(Property A, 518 ha; Property B, 660 ha) bisected by Cedar Creek.  Each ranch stocked 

cattle (Property A, 1 cow:10.36 ha; Property B, 1 cow:2.2 ha) on typical post oak 

savannah habitat of mixed upland/bottomland grasslands with scattered post oak 

woodlands located both in the upland and bottomland zones.  Both properties exhibited 

impacts from grazing, though Property B had shorter grasses and more impacted soils 

likely due to higher cattle stocking rate.   Each property had ample available water from 

Cedar Creek and numerous stock tanks located throughout the properties.  Property B 

had several active oil wells with concomitant truck traffic and habitat alteration. 

Species Densities 

 I used remotely-activated infrared triggered cameras (Non Typical, Inc., Park 

Falls, Wisconsin, USA) to determine densities of mammals present within the Cedar 

Creek floodplain (Trolle 2003, Acevedo et al. 2006).  I selected 30 grid-based points on 

Property A (1 camera/14.3 ha; cameras not allowed on Property B)  to place remotely-

operated infrared digital cameras for 25–50 consecutive days once during the winter, 

summer, and fall seasons (winter, 22 December–21 March; summer, 22 June–21 

September; fall, 22 September–December 21) for the 2 year study (Jacobson et al. 1997, 

Watts et al. 2008). 
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Figure 3.1. Representation of land use in the Cedar Creek watershed, Brazos County, 
Texas (U.S. Environmental Protection Agency 2010). 
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Cameras were placed at observed wildlife trails or openings suitable for camera 

placement near each pre-determined grid point (Jeganathan et al. 2002, Claridge et al. 

2004, Roberts et al. 2005, Trolle and Kéry 2005).  Each camera (1 gigabyte flash card) 

was capable of storing approximately 1,000 still images and short video clips (10 sec).  I 

used apple and persimmon-scented gel on nearby substrate (e.g., thick branches, stumps) 

every 5 days as attractant.  I determined density using mark-resight methods (Karanth 

and Nichols 1998, Jacobson et al. 1997, Main and Richardson 2002, Watts et al. 2008).  

Second, I determined meso-mammal density by analyzing trapping numbers in live-trap 

grids (Main and Richardson 2002).  I trapped on both properties using a grid-design (42 

traps total for each property; raccoon/feral cat, 81 cm x 25 cm x 30 cm; Tomahawk Live 

Trap, Tomahawk, Wisconsin, USA) with 250-m spacing between traps that have been 

shown to adequately sample animals that were highly attracted to aromatic baits (e.g., 

raccoons, Virginia opossums).  Trapping locations were randomly selected and trapped 

for 12 consecutive days using Tomahawk box traps baited with canned dog food, apples, 

bananas, and fish scent.  I estimated density using mark-recapture methodologies (Krebs 

1999).  I uniquely marked captured animals using non-toxic hair dye and released them 

5–7 minutes later (Appendix A).  I immobilized animals using a Tomahawk squeeze 

cage to obviate the need for sedatives or tranquilizers.  Sex, age, species, and unique 

natural marks were recorded.  All information was recorded in database and within a 

Geographical Information System (GIS).  

 Additionally, I attempted to trap nine-banded armadillos (Dasypus novemcinctus) 

and eastern cottontails (Sylvilagus floridanus), and striped skunks (Mephitis mephitis) on 
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both properties using trap arrays because each species was less attracted or seasonally 

attracted to baits.  I fabricated the arrays from 61-cm tall chicken fencing with 61-cm 

long wooden stakes.  Each array had 8–12 double-door raccoon/rabbit traps (43 traps 

total for each property; 48 cm x 15 cm x 15 cm; Tomahawk Live Trap, Tomahawk, 

Wisconsin, USA) with variable array setups designed to take advantage of the local 

vegetative community and topography.  Previous studies have successfully conducted 

research on meso-mammals using this technique (Faulhaber 2003).   

Escherichia coli Data 

 I collected fecal material of major contributing species during mammal live-

trapping (McCleery et al. 2005).  Upon animal release, I collected all fecal material from 

the traps.  I cleaned the trap thoroughly using bleach water and scrub brush and moved 

the trap (5-m radius) to prevent possible cross contamination of subsequent fecal 

samples (Rutala and Weber 2008).  Fresh samples were sent to the laboratory at Texas 

A&M University for analysis of E. coli concentration.  Fresh samples directly from the 

source animal helped to reduce the risk of environmental contamination of the fecal 

samples.  I collected fecal samples of relevant and dominant identified sources during 

the summer (2008 and 2009) and winter (2008) seasons.   

  I trapped and euthanized hogs during summer 2008 (9 traps) and summer 2009 (6 

traps) for 7 days and 6 days respectively using 3 panel corral-style traps on property A 

(not allowed on Property B).  Traps were baited daily with soured corn (max of 7.8 l and 

locked open for 7 days prior to trapping to increase the potential success rate.  I checked 

the traps daily and rebaited with corn as necessary during trapping.  Hogs were 
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euthanized with a single shot to the head and fecal samples were collected from 

euthanized hogs.  I supplemented sampling on Property A by accompanying hog hunters 

in watersheds near the Brazos River (April 2009). 

I captured white-tailed deer using drop nets (Lopez et al. 1998) on Property A.  

Drop nets were pre-baited for 7–10 days prior to capture with apple-scented corn.  All 

deer were restrained with rope (legs bound) and a hood was placed over each animal’s 

head.  Average handling time was 5–10 minutes (no drugs used).  I recorded sex, age 

and capture location (Lopez et al. 2003).  Each animal received an ear tattoo as a 

permanent marker (Silvy 1975).   

Texas A&M University collaborators quantified E. coli numbers from 

characterized waste streams for all dominant identified sources using appropriate 

methods (TSSWCB Project Number 07-06, unpublished report).  All collection and 

handling of fecal specimens was performed using protective gear (i.e., latex or nitrile 

gloves).  All feces collected were placed in sterile Whirl-Pak containers (Nasco, Fort 

Atkinson, Wisconsin, USA).  Fecal specimens were placed in an insulated cooler on ice 

during transport to the Biological and Agricultural Engineering laboratory atTexas A&M 

University.  Padia (2010) described the process used to analyze the fecal samples. 

Fecal samples were analyzed and enumerated for E. coli using Colilert-18 method.  All 
the samples were analyzed between 24 and 72 h after they were brought to the laboratory. 
A standard membrane-filtration method (EPA Method 1603) to enumerate E. coli in 
water was used to estimate E. coli concentrations. A direct count of E. coli was obtained 
based on the development of colonies that grew on the surface of the membrane filter 
placed on a selective nutrient medium.  Only the plates having colonies between 30 and 
300 were used to report E. coli concentrations as colony forming units (CFUs) per g of 
wet fecal material  
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Species-Specific Deposition and Spatial Analysis 

I conducted a comprehensive literature review to determine fecal shedding rate 

for relevant species.  I then extrapolated floodplain-scale estimates of the amount of 

species-specific fecal material by combining these estimates with density estimates that I 

calculated (Morrison et al. 2001).  Finally, I combined these data with E. coli 

concentrations found in fecal material collected from captured wildlife to find the 

species-specific amount of E. coli deposited into the watershed.   

Proximity of fecal deposition to water body is directly correlated with the 

probability that it will infiltrate the stream system (Collins and Rutherford 2003).  I 

determined spatial deposition behavior by using a random design to place 70–80 

individual 600 m2 transects within each study property (375 transects total).  All fecal 

material found within these transects (Property A: summer 2008, winter 2008, summer 

2009; Property B: summer 2008, winter 2009) was identified to species and located via 

handheld global positioning system (GPS).   

Data Analyses 

I used several methodologies to determine population densities and compared the 

results. I conducted Schnabel population density tests on all subject species.  The 

Schnabel estimator is conservative and was the primary estimator for all species 

densities.  I converted capture-recapture data for meso-mammals and white-tailed deer 

into encounter histories and used Program MARK (White and Burnham 1999) to 

develop abundance models.  I used an information-theoretic approach (Burnham and 

Anderson 1998) to evaluate the null, behavioral, temporal, and requisite interaction 
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models.  I calculated model-averaged 95% confidence intervals for all plausible models 

(≤4 AICc, Burnham et al. 1987).  I compared these abundance estimates to estimates 

reported in the literature and to the Schnabel estimates to ensure validity (Lopez et al. 

2003).  Finally, in order to compare estimates against conservative numbers, I generated 

minimum densities for all species based on minimum number known alive from capture 

histories.   

RESULTS 

Species Density 

I gathered white-tailed deer data (1,025 total pictures) concurrently with feral 

hogs (1,487 total pictures).   I found insufficient numbers of naturally-marked hogs 

during any season to conduct model selection approaches. However, I could estimate 

effective sample area thus allowing conservative density estimation.  I relied on 

Schnabel estimators and minimum number known alive to calculate conservative 

population densities for all species (Table 3.1).  Schnabel estimates were comparable to 

model-selection techniques.  I grid-trapped 2,328 traps-nights during the study (2008–

2009).   Additional array trapping totaled approximately 1,680 trap-nights   I captured 

negligible numbers of rabbits, armadillos, and skunks using arrays.  I had insufficient 

data to calculate feral hog Schnabel estimates for winter–spring 2008-2009 and summer 

2009 and Virginia opossum estimates for summer 2008.  I found that Property A had 

higher densities of raccoons, but Virginia opossums were approximately equal (Table 

3.1) on each property.    
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Escherichia coli Data 

 During the study, I collected 338 fecal samples from 182 individuals including: 

raccoon (Property A: n = 115 samples; Property B: n = 62 samples), Virginia opossum 

(Property A: n = 43 samples; Property B: n = 45 samples), white-tailed deer (Property A: 

n = 6 samples; other properties: n = 4 samples), feral hog (Property A: n = 39 samples; 

other properties: n = 6 samples), nine-banded armadillo (Property A: n = 3; Property B, 

n = 4), and striped skunk (Property A, n = 6; Property B, n = 5).   

Species-Specific Deposition and Spatial Analysis 

According to the literature, feral hogs have the highest mean individual daily 

defecation rate of any of the study species (feral hogs: 1,121 g/day [Ohio State 

University Extension 2006, Mapston 2007], white-tailed deer:  500–772 g/day 

[McCullough 1982, Sawyer et al. 1990, Wittman Hydro Planning Associates, Inc. 2004], 

raccoon: 180–450 g/day [Sorvillo et al. 2002, Wittman Hydro Planning Associates, Inc. 

2004], Virginia opossum: 75–108 g/day [Hopkins and Forbes 1979, Atwill et al. 2003]).  

I combined the highest and lowest seasonal density estimates with conservative 

estimates of fecal deposition rates and found that white-tailed deer, raccoons, and feral 

hogs deposited the most fecal material into the watershed.  Although raccoon maximum 

deposition was much higher than white-tailed deer or feral hogs, the deposition estimates 

overlap extensively.  Virginia opossums contributed the least fecal material of the 

sampled animals (Fig. 3.3).  Using the fecal samples, I found that raccoons and Virginia 

opossums had the highest mean CFU/gram of fecal material of sampled species (Table 
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3.2).  Overall, I estimated that raccoons potentially deposited the most E. coli per km2, 

followed by feral hogs, Virginia opossums, and white-tailed deer (Table 3.3). 

I collected 147 fecal samples during transects.   Fecal samples were grouped by 

species, but across seasons and properties due to low sample sizes.  White-tailed deer 

deposited fecal material closest to Cedar Creek (n = 77; x̄ = 264.1 m, SD = 204.1 m) 

though the wide standard deviation demonstrates that I found white-tailed deer fecal 

material throughout the floodplain.  Feral hogs were the next closest (n = 25; x̄ = 279.4 

m, SD = 106.1 m), followed by raccoons (n = 18; x̄ = 335.1 m, SD = 235. 1 m). 

The spatial data I collected was largely inconclusive.  Despite differences in 

range sizes, I found that fecal deposition by each species was spread throughout the 

floodplain.  White-tailed deer were technically closer, though feral hogs and raccoons 

were not much further on average.  Raccoon fecal material was widespread throughout 

the floodplain.  Additionally, raccoons are documented occasionally defecating directly 

into water bodies (Lotze and Anderson 1979).  These defecations are not discoverable, 

thereby biasing the results.  The interesting component was that white-tailed deer were 
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Table 3.1. Compilation of density estimates for Property A and Property B, Brazos 
County, Texas 2008–2009. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aDerived from minimum number known alive 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Property  Species  Season  
Density  
(km2) 

 
CI-

Low 
 

CI-
High 

 
Minimum  

density 
(km2)a 

A 

 

Raccoon 

 

 

 Summer 2008  87.63  73.87  107.71  48.92 

Winter 2008  58.87  46.09  81.46  31.45 

Summer 2009  37.97  32.85  44.98  32.57 

Virginia 
Opossum 

 Summer 2008  11.98  10.02  14.909  11.74 

White-
tailed Deer 

 

 Summer 2008  16.04  14.34  18.20  15.72 

Winter 2008  20.56  15.99  28.91  13.88 

Summer 
2009a 

 -  -  -  21.15 

Feral Hog 

 

 Summer 
2008a 

 -  -  -  7.52 

Fall 2008a  -  -  -  5.09 

Win-Spr 
2008/2009a 

 -  -  -  4.64 

Summer 
2009a 

 -  -  -  3.32 

  
           

B 

 

Raccoon  Summer 2008  57.87  47.28  74.53  33.02 

Winter 2008  34.30  29.21  41.53  26.84 

Virginia 
Opossum 

 

 Summer 2008  10.78  8.99  13.49  10.95 

Winter 2008  4.33  3.08  7.32  3.94 
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Figure 3.2.  Summary of estimated daily fecal deposit by species per km2, Cedar Creek, 
Brazos County, Texas, 2008–2009. 
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Species  x̄  (CFU/g)  Range-low  Range-high 

White-tailed deer  2.89 x 105  4.00 x 103  5.20 x 105 

Feral hog  5.63 x 106  9.80 x 104  4.17 x 107 

Raccoon  1.59 x 107  1.88 x 105  3.16 x 109 

Virginia opossum  1.60 x 107  1.82 x 104  2.78 x 109 

Table 3.2.  Summary of E. coli concentrations in fecal material sampled from 
wildlife species, Brazos County, Texas, 2008–2009. 
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aEstimates derived from minimum number known alive 
 

Property  Species  Season  x̄  (CFU/km2)  CI-low  CI-high 

A 

 

Raccoon 

 

 

 Summer 2008  2.51 x 1011  2.11 x 1011  3.08 x 1011 

Winter 2008  1.69 x 1011  1.32 x 1011  2.33 x 1011 

Summer 2009  1.08 x 1011  9.40 x 1010  1.29 x 1011 

Virginia 
Opossum 

 Summer 2008  1.44 x 1010  1.20 x 1010  1.79 x 1010 

White-
tailed Deer 

 Summer 2008  2.32 x 109  2.07 x 109  2.63 x 109 

Winter 2008  2.97 x 109  2.31 x 109  4.18 x 109 

Summer 2009  3.06 x 109a  -  - 

Feral Hog 

 

 Summer 2008  4.75 x 1010a  -  - 

Fall 2008  3.21 x 1010a  -  - 

Win.–Spr. 
2008/2009 

 2.93 x 1010a  -  - 

Summer 2009  2.10 x 1010a  -  - 

B 

 

Raccoon  Summer 2008  1.66 x 1011  1.35 x 1011  2.13 x 1011 

Winter 2008  9.82 x 1010  8.36 x 1010  1.19 x 1011 

Virginia 
Opossum 

 Summer 2008  1.29 x 1010  1.08 x 1010  1.62 x 1010 

Winter 2008  5.20 x 109  3.70 x 109  8.78 x 109 

Table 3.3. Estimated daily E. coli deposition by each study wildlife species, Brazos 
County, USA, 2009–2009 (conservative defecation rate x mean E. coli concentration 
x species density). 
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the dominant species represented in transects (52.4%) followed by feral hogs (17.0%), 

raccoons (12.2%), and other (15.7%).  I could not accurately determine the age of the 

fecal material, making attempts at standardizing mass measurements impossible.   These 

data indicate that white-tailed deer and feral hogs were significant contributors of fecal 

material to the Cedar Creek floodplain.    

DISCUSSION 

 I found that estimated density of observed species was within reasonable 

boundaries established by other research (white-tailed deer: Michael 1965; hogs: 

Sweitzer et al. 2000; Virginia opossums: Gehrt et al. 1997; raccoons: Riley et al. 1998, 

Blackwell et al. 2004).  Although, observed raccoon density was higher than many 

studies, it fell within population density estimates for suburban areas and suburban-rural 

interfaces (Riley et al. 1998).  My study area was largely a rural ranching area with 

interspersed infrequent houses.  However, the area was intensively, though variably, 

managed for ranching interests (e.g., rotational grazing, fertilizer application, food 

provisions) and also subdivided in other areas of the watershed for smaller properties 

(2.0–10.1 ha parcels).  Declines in raccoon populations were observed on both properties 

over the course of the study.  Seasonal variation was expected; however, highly 

divergent rain patterns from Summer 2008 (dry) to Summer 2009 (wet) likely impacted 

populations and population estimates.  Feral hog estimates were certainly impacted by 

concomitant lethal hog sampling efforts.  Minimum number known alive estimates of the 

feral hog population reflected a generally declining population over the course of the 

study.  The population estimates also may have been a product of differing rain patterns 
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that allowed hogs to move further away from the bottomlands on the study property.   I 

expect that the feral hog population was higher than the results indicated, but research 

into hog populations in similar habitats indicates that the numbers are likely fairly 

accurate.  Property A generally had higher densities of raccoons and Virginia opossums 

than property B.  This may be partially due to less intensive grazing and lack of exotic 

grazers on the property.  Vegetational differences due to grazing intensity were evident 

(e.g., grass species present, height of grazed vegetation).   As an obvious example, traps 

located in the center of pastures captured far fewer meso-mammals than those located 

near the periphery.         

 Many water quality researchers rely on existing data to determine wildlife 

densities and per capita pollution impacts when creating models or designing 

management strategies.  Although most wildlife data in water quality studies originated 

from state natural resource agencies, the methodology used to attain density estimates 

varied significantly.  For instance, Parajuli et al. (2008) evaluated the effects of best 

management practices on water quality and relied on summer roadkill indices and expert 

opinions to determine wildlife densities.  Kaller et al. (2007) compared water quality in 

watersheds to determine the impact of feral hogs.  They relied on harvest data to 

determine population trends.  In their model of microbial contaminants from grazed 

fields, Tian et al. (2002) used stock units that covered expected wildlife contribution 

without getting wildlife data.  In a TMDL developed in Virginia, Culver et al. (2002) 

found that white-tailed deer contributed by far the most fecal coliform to the system, 

followed by raccoons, and geese.  Brannan et al. (2001) found that white-tailed deer 
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contributed the most fecal coliform to the system followed distantly by wood ducks, 

mallards, and geese.  Despite having the third highest population, raccoons contributed 

only the fifth highest amount of fecal.  White-tailed deer contributed the least of all 4 

species sampled; while raccoons and feral hogs were the largest potential contributors.  

Minimal differences in fecal deposition distance from Cedar Creek indicated that the 

potential E. coli contribution results accurately reflect the important contributing species.   

However, I could not detect fecal contributions directly into Cedar Creek, thus 

potentially increasing bias.  Direct contribution of fecal material by wildlife into water 

bodies cannot be ruled out and has been documented in raccoons (Lotze and Anderson 

1979).    

CONCLUSION 

Free-ranging mammals in my study area were significant contributors of E. coli 

into floodplains.  Raccoons are larger potential contributors than mammals like feral 

hogs and white-tailed deer.  This is exacerbated by the fact that raccoons stay near water 

and are known to defecate in water sources (Lotze and Anderson 1979, spatial data).  

Feral hogs largely remain near water sources (Mapston 2007); however, the abundance 

of water on the properties (water tanks) probably allowed unrestricted movement away 

from bottomland streams.  Feral hogs are known for a high degree of coprophagy likely 

further reducing their fecal contribution.  White-tailed deer defecated frequently and in 

relatively large amounts; however, they had relatively low E. coli concentration in their 

fecal material.   
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Little can be done to practically manage meso-mammal populations, nor would 

such management for water quality improvement necessarily be advisable.  Reduction of 

meso-mammal populations would likely have additional unintended collateral 

consequences (e.g., trophic cascades, prey population increases, [Naiman 1988]).  

White-tailed deer are arguably the most important game species in Texas, but little 

population management could practically be directed towards reducing their impact on 

water quality.  Hogs are potential candidates for mammal management due to their 

acknowledged nature as an invasive exotic with a plethora of documented ecological 

damage.  Reduction of hogs may not have a large impact on water quality, but this 

research adds to the already compelling evidence supporting feral hog control efforts.  

Few studies have attempted to determine the important contributing species in 

the watershed, provide density estimates of those species, and comprehensively collect 

fecal samples from them.  I attempted to find all of these data for a specific water body 

so that the methodology could be tested and the results applied to other similar areas.  

Finally, I have shown in detail that wildlife have an important impact on E. coli 

deposition, thus adding uncertainty to water quality models that have relied on less 

precise or unproven data.  Further research must be undertaken to determine fecal 

degradation rates and E. coli viability in different fecal morphologies.  Additionally, it 

was impractical for me to conduct experiments to estimate fecal deposition rates due to 

time, manpower, and financial constraints.  Projects in the future should budget these 

necessities in order to increase the precision and usefulness of the research.    
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CHAPTER IV 
 

A MODEL OF FREE-RANGING WILDLIFE CONTRIBUTION OF ESCHERICHIA 

COLI  

SYNOPSIS 

 Free-ranging wildlife are considered important contributors to fecal pollution in 

United States water bodies.  Non-pathogenic Escherichia coli (E. coli) is a bacteria 

located in warm-blooded animals and is therefore used by agencies and researchers as a 

so-called indicator organism to determine the amount of fecal material present in a water 

body.  I constructed a model that incorporated spatial data, population density estimates, 

defecation rates, E. coli loads in feces estimates, and E. coli survival for the three most 

important contributing wildlife of fecal pollution as determined in previous chapters: 

raccoons (Procyon lotor), white-tailed deer (Odocoileus virginianus), and feral hogs 

(Sus scrofa),l .  I conducted sensitivity analyses to determine the most important 

variables and to analyze outcomes of prospective management strategies.  I found that E. 

coli survival was the most important parameters in determining the amount of E. coli in 

the floodplain, followed by defecation rates and population densities.  Although this 

research indicates that E. coli survival should be the primary focus for future research, 

all of the tested parameters are either location specific (i.e., population density) or have 

extremely scarce data (i.e., defecation rate, E. coli survival).  For wildlife management 

actions, adjustment of raccoon population density was the most impactful on E. coli load 

in the floodplain.  Although white-tailed deer and feral hogs were found much less 

important, managers must be cautioned that spatial selection for fecal deposition is 
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location specific and could significantly impact which species are considered the most 

important contributors.  Lastly, habitat quality proved an important management 

consideration; thus emphasizing that management of wildlife and water quality should 

always include habitat management.   

INTRODUCTION 

 Fecal pollution into water bodies continues in the United States despite concerted 

efforts to limit sources.  Much of the focus has understandably landed on point-source 

polluters.  As obvious single sources, these are easier to identify, regulate, and reduce.  

Certainly, researchers and regulators have understood, though, that non-point source 

pollution, originating across floodplains and watersheds, presents an important and 

onerous problem.  As complex and inter-related sources of pollution combine, the 

burden of identifying and mitigating the important contributors increases in difficulty 

and cost.  Understanding of fecal sources is an important initial step in any mitigation 

efforts (Streets and Holden 2003).  Increasingly, free-ranging wildlife are seen as 

important fecal pollution contributors alongside humans and domesticated animals 

(Fischer et al. 2001, Lamendella et al. 2006).  However, there is a comparative dearth of 

comprehensive research on the subject (Chapter II).   

 I created a structured model of wildlife Escherichia coli (E. coli) contribution 

into a Texas floodplain that built upon basic research documented in this dissertation 

(Chapters II-III).  Structured models allow stochasticity in important variables and are 

thus easily manipulated and analyzed (Lopez 2001).  Additionally models, as simple 

representations of systems, are desired when field or laboratory experimentation on 
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those systems is untenable due to scope or cost (Turner et al. 1995).  Models, however, 

are processing engines that produce results sensitive to the quality of source data, thus 

necessitating rigor in data inclusion.   

 I used this structured model to complete the following study objectives.  First, 

conduct a sensitivity analysis to determine the impact of individual parameters and thus, 

direct areas of future research.  Second, provide natural resource managers with reliable 

data illuminating important contributors of fecal pollution and the likely outcomes of 

various management strategies.  Together, these objectives help designate areas of 

research need, while providing management advice.   

METHODS 

Study Area 

Cedar Creek is located in southeast Texas in the Post Oak Savannah ecoregion.  

Cedar Creek flows southeast for a total of approximately 44 km through Robertson 

County and the northern part of Brazos County before emptying into the Navasota River 

on the eastern border of Brazos County.  Density data, spatial data, and E. coli 

concentration data were all collected in the Cedar Creek watershed (Chapter III).   

Model Overview 

 I used the modeling program STELLA (ISEE Systems, Hanover, New 

Hampshire, USA) to create a structured model based on daily E. coli deposition rates 

extrapolated into a likely ambient E. coli load originating from free-ranging wildlife 

(Fig. 4.1).  Species determined as important E. coli contributors were modeled as 

discrete entities with individually adjustable parameters.  The model allowed seasonal  
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adjustments to super variables such as E. coli survival and flood extent.  I determined 

spatial selection for important species and floodplain scale using ArcGIS 9.3.1 

(Environmental Systems Research Institute (ESRI), Redlands, California, USA) with the 

Soil Data Viewer extension (Natural Resources Conservation Service [NRCS] 2010).   

 I conducted a sensitivity analysis of model parameters important to E. coli load 

(i.e., E. coli survival, wildlife densities, and fecal deposition rates).  I also conducted a 

sensitivity analysis of individual management plans (increase or reduction of individual 

wildlife species) to determine potential impacts.   

Data Collection 

 I gathered the source data from multiple sources.  I determined population 

densities of important species in Chapter III.  I determined spatial selection in Chapter 

III.  Species-specific E. coli concentration in fecal material was determined in Chapter 

III.  I conducted a meta-analysis of water quality research to determine fecal deposition 

rates in Chapter II.  I obtained property ownership, land use, and county streams 

shapefiles from Brazos County Engineer's office and soil inundation shapefiles and the 

Soil Data Viewer from the NRCS.    

Wildlife Density 

 Seasonal variations in population density were integrated into subsequent 

analyses.   Age and sex variations were not determinable in these density estimations.   

Density was integrated as a normal distribution with mean and standard deviation 

derived from the data.  
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 Spatial Fecal Deposition 

 The NRCS provided shapefiles differentiating various soil types based on 

probability of overland water flow during flooding or rainfall events.   I assumed 

percentage of fecal material from each species in each soil class represented an area 

selection.   

Habitat Quality, E. coli Transmission, and Fecal Deposition Rates 

 In the Cedar Creek floodplain, habitat quality for species studied is largely tied to 

cattle grazing management.  I assumed that overgrazing decreased surface vegetation.  

Increased surface vegetation can slow overland flow and decrease erosion (Loch 2000, 

Wainwright et al. 2000).  I assumed that overland flow was impacted by habitat quality.  

As habitat quality increased, surface vegetation increased, and E. coli transmission from 

the floodplain into Cedar Creek directly decreased.  I used a scale of 0.0–1.0 as the basis 

for habitat quality, with 1.0 being the best habitat quality.  I divided habitat quality into 

high (0.7–1.0), medium (0.4–0.69, and low (0.0–0.39) values that varied randomly and 

were multiplied with total E. coli deposition to estimate E. coli transmission into the 

water body at different habitat qualities.  I incorporated fecal deposition rates as a 

species-specific random variable bounded by the ranges discovered in the literature.   

E. coli Survival and Concentration 

 I found no research that specifically addressed survival for E. coli in fecal 

material for species in this research (Renter et al. 2001).  I therefore, assumed reduced 

survival of E. coli compared to existing research in cattle feces and sediments (Bach et 

al. 2005, Meays et al. 2005, Scott et al. 2006).  I maintained survival curves similar to 
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existing research (indirectly proportional), but shortened the timeframe (mean of 

approximately 14 days) to account for smaller fecal morphology.  In the absence of 

detailed data, I assumed equal E. coli survival for different species' fecal morphology, 

though I differentiated survival based on season (50% increase in survival time for 

winter compared to summer).  Variance estimates were derived using random numbers 

bounded by the range estimates (Padia 2010).     

Model Use 

 I analyzed the contribution of raccoons, feral hogs, and white-tailed deer by 

running a set of 1,000 simulations for each variable stage.  In order to both determine 

important variables for further research I conducted the following.   First, I determined a 

medium value for each critical parameter (i.e., mean population density for each species, 

median defecation rate for each species, and a mean E. coli survival rate).  I then varied 

each parameter individually (medium, high [+50%], and low [–50%]) while keeping the 

other parameters at their medium setting (Table 4.1).  I ran 1,000 simulations for each 

adjustment.  I then subtracted mean E. coli loads found for the minimum parameter 

value from the maximum parameter value to determine the range of change.  This 

provided an estimate of the impact changing the parameter had on overall E. coli load.  I 

then determined impacts of various management strategies by adjusting individual 

species densities (-50%, -75%, +50%, +75%) and E. coli transmission while keeping 

other parameters at medium settings.  This provided baseline expected E. coli loads and   
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Parameter  Low  Medium  High 

Population 
Density 
(km2) 

 
Species = mean(SD)  Species = mean(SD)  Species = mean(SD) 

Raccoon = 
25.82(9.3) 

 
Raccoon = 

51.64(24.84) 
 

Raccoon = 
77.46(31.70) 

Deer = 9.41(0.03)  Deer = 18.83(0.04)  Deer = 28.25(0.05) 

Hog = 2.51(0.13)  Hog = 5.02(0.18)  Hog = 7.52(0.23) 

E. coli 
Survival 
(days) 

 

7  14  21 

Fecal 
Deposition 
Rate 
(g/day) 

 
Species = range  Species = range  Species = range 

Raccoon = 80–100  Raccoon = 170–190  Raccoon = 350–370 

Deer = 240–260  Deer = 490–510  Deer = 740–760 

Hog = 550–570  Hog = 1,110–1,130  Hog = 1,670–1,690 

Habitat 
Quality 
Scale 

 0.0–0.39  0.4–0.69  0.7–1.0 

Table 4.1. Low, medium, and high parameter estimates used in E. coli deposition 
analysis on Cedar Creek, Brazos County, Texas, 2008–2009. 
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the expected E. coli loads stemming from alterations in species density.  I also 

investigated the impact of various habitat management strategies by adjusting the habitat 

quality parameter (Table 4.1).  I continued the management analysis methodology by 

subtracting the minimum values from the maximum values to determine overall impact 

on E. coli load. 

RESULTS 

 I conducted sensitivity analyses to determine the important impactors on E. coli 

load in the floodplain and to illuminate important parameters for further study.  I found 

that changes in E. coli survival had the largest impact on E. coli load in the floodplain 

(maximum value – minimum value = 2.26 x 1015 CFU/km2; Fig. 4.2).   This was 

followed by population density (maximum value – minimum value = 2.1 x 1015 

CFU/km2) and defecation rate (maximum value– minimum value= 2.05 x 1015 

CFU/km2). 

I found that despite increased E. coli survival (winter = 21 days, summer = 14 

days) during the winter, summer E. coli loads were estimated to be higher during the 

summer (Property A: x̄ = 8.34 x 1015, SD = 2.16 x 1015; Property B: x̄ = 4.41 x 1015, SD 

= 8.81 x 1014) compared to the winter (Property A: x̄ =8.12 x 1015CFU/km2, SD = 1.79 x 

1015; Property B: x̄ = 4.20 x 1015, 5.80 x 1014).   

In order to determine potential impacts on E. coli load in the floodplain, I 

adjusted wildlife populations to mimic various management efforts for raccoons, white-

tailed deer, and feral hogs.  Due to relatively small impacts on E. coli load for white-

tailed deer and feral hogs, stochastic effects resulted in non-proportional changes from 
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population adjustments.  Adjustment of raccoon density had, by a large margin, the 

greatest impact on E. coli load.  White-tailed deer and feral hogs had similar impacts to 

each other when population densities were reduced (Table 4.2).  I was unable to produce 

credible results from increases in feral hog densities.  This was likely due to the 

relatively low percentage of hog fecal samples found in the floodplain (12.5%) and small 

estimated population densities.  Combined these would allow changes that were 

unrealistic (E. coli reduction resulting population increase) in the present format of the 

model.   

 I then investigated the impact of habitat management on E. coli load in the 

floodplain.  I discovered that the impact of habitat quality was important to the overall E. 

coli load in the floodplain.  The difference in overall E. coli loads between high 

parameter settings and low (1.26 x 1015 CFU/km2) was high, elucidating the importance 

of habitat management under the model parameters. 
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Figure 4.2.  Estimate of the impact of each parameter on overall E. coli load 
(subtraction of the mean E. coli loads found for the minimum parameter value from 
the maximum parameter value to determine the range of change).   
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Species  E. coli reduction (CFU/km2)  E. coli increase (CFU/km2)  

Raccoon      

 50%  3.82 x 1015  3.72 x 1015  
75%  5.71 x 1015  5.70 x 1015  

Deer      

 50%  6.62 x 1013  5.33 x 1013  
75%  4.82 x 1013  4.98 x 1013  

Hog      
 50%  3.62 x 1013  -  

75%  6.32 x 1013  -  

Table 4.2.  Changes in potential E. coli load based on population density adjustments 
in Cedar Creek, Brazos County, Texas, 2008–2009.  
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DISCUSSION 

 Although a simple representation of the E. coli deposition system in Cedar 

Creek, this model is a usable structure based on proven data.  This model can provide 

researchers and managers with results that incorporate parameter variability for more 

realistic simulations.  The ultimate output of the model is potential E. coli density, which 

users can easily convert to total E. coli in the study area floodplain.  Although, designed 

to operate simply, this model has several important issues that may impact results.  First, 

species occurrence in the floodplain is location specific.  I urge users to use spatial 

distribution data specific to the water body of interest.  Second, E. coli survival and fecal 

deposition rates are remarkably little studied thus adding uncertainty to the overall 

model. 

Important Parameters 

 I found that defecation rate was the most impactful parameter I tested during the 

sensitivity analyses.  Population density and E. coli survival were important, but less 

than defecation rate.   Due to the relatively large amount of E. coli in each gram of fecal 

material, even small changes in defecation rate could impact E. coli loads in the 

floodplain a great deal.  This indicates that defecation rate is the parameter most in need 

of additional research.  Due to the paucity of relevant defecation data for feral hogs and 

raccoons, I was forced to use data that may have had little application outside the target 

areas with few indications of variability or accuracy.  Further study of defecation rates is 

critical to reducing uncertainty in this model and increasing understanding of wildlife 

contribution of E. coli in general.  E. coli survival as it relates to fecal morphology and 
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area of deposition also requires additional research.  I chose conservative E. coli survival 

estimates (7 days, 14 days, 21 days); however, significantly different survival would 

change the estimated ambient E. coli in the system.    

Management Implications  

The wildlife manager has the option of adjusting the populations of select 

wildlife as necessary.  This is contingent upon having accurate information about the 

population of each species.  Under conditions recognized in the Cedar Creek watershed, 

raccoon density impacted the system far more than white-tailed deer or feral hogs.  

Managers are cautioned that under different spatial selection relationships (e.g., hogs are 

in the floodplain more often than I recorded), species density impact may differ.  I 

surmise that increased hog presence in the floodplain is likely, and would make feral hog 

population reduction more impactful on potential E. coli loads.  This is supported by 

other studies that document feral hogs remain in close proximity to water (Graves 1984, 

Mapston 2007).  My findings have obvious implications for managers.  Reduction of 

raccoon populations, although likely impactful on floodplain E. coli load, are only 

practical in areas of over population.  Wide-scale reduction of native meso-mammal 

populations can have negative impacts on the local trophic system (Naiman 1988).  

Additionally, studies have demonstrated that raccoon reduction can lead to population 

increases in other meso-mammals (Kasparian et al. 2004).  For instance, I found Virginia 

opossums had E. coli loads equal to raccoons (Chapter III); therefore, a potential 

population increase would cause concomitant increases in floodplain E. coli load.  

White-tailed deer population management is already a mature field; however, population 
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reductions are generally avoided in well-managed systems.  Population density is an 

important parameter that is nearly always a primary consideration in population 

management.  Again, areas of white-tailed deer overpopulation may benefit from 

reduction.  Feral hogs are the most likely candidate for population reduction.  They are 

an invasive exotic species capable of widespread damage and documented disease 

transmission (Hone et al. 1992, Mapston 2007).  Even at the relatively low documented 

occurrence in the Cedar Creek floodplain, population reduction would likely decrease E. 

coli loads.  At greater hog densities, the benefits to population reduction would increase 

(Kaller et al. 2007).   

 I found that habitat quality was important to transmission of E. coli load.  Both 

Property A and B remain working ranches with cattle herds.  In the context of these 

properties, habitat management stems from grazing patterns that then impact habitat 

quality for meso-mammals, deer, and hogs.  Improved vegetation cover would likely 

decrease E. coli transmission from the floodplain to the water body as deeper soils and 

increased vegetation cover increase water penetration and reduce overland flow (Loch 

2000, Wainwright et al. 2000).  This improvement could take the form of quality grazing 

management, brush management, and erosion control.  Conversely, overgrazing and 

brush encroachment would likely increase transmission as bare relatively impermeable 

ground spreads.   

CONCLUSION 

 Wildlife are important contributors of E. coli into floodplains.  Unfortunately, 

existing data is scarce, fragmented, and difficult to access.  Further research to offset 
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these short-comings is critical in future evaluations of wildlife contributions to water 

pollution.  Although, future research is important, management decisions must be made 

in the present.  The overall worth of management of wildlife for water quality is only, 

arguably, determinable on a location basis and requires additional debate both 

scientifically and throughout society.   
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CHAPTER V 
 

CONCLUSION AND IMPLICATIONS 
 
 In this dissertation, I analyzed the role of wildlife in the deposition of 

Escherichia coli (E. coli) into a Texas floodplain.   Each chapter was a component of my 

attempt to understand the heretofore little understood impact of wildlife on water quality.  

In my final chapter, I recount the important points of each chapter and synthesize 

recommendations.   

 In Chapter II, I found that water quality research relied heavily upon wildlife 

density estimates.  Water quality researchers must obtain this data from outside sources 

such as state natural resource agencies; however, I found a paucity of relevant and 

reliable wildlife data used for water quality research.  Although, much of the water 

research demonstrated that wildlife was an important contributor of fecal pollution, the 

quality of the data varied.  I recommend that, when possible, water quality research 

include wildlife density estimates gathered in the study watersheds.  I would recommend 

vigilance in using extant data.  Wildlife professionals should validate this data and 

determine that it is biologically relevant to areas studied. 

 In Chapter III, I found that wildlife were important contributors of E. coli to 

Cedar Creek.  Raccoons provided the most E. coli into the floodplain followed by white-

tailed deer and feral hogs as the next biggest contributors.  As a highly destructive 

invasive exotic species, feral hogs are the natural choice for intensive management.  

White-tailed deer are already highly managed in Texas.  As arguably the most important 

game species in the state, population reduction is sometimes undesirable.  Overabundant 
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populations of white-tailed deer contribute more E. coli into the floodplain and cause 

damage to vegetative communities thus increasing E. coli transmission into water bodies 

(Chapter IV).  In these scenarios population reduction is highly desired.  Meso-mammals 

populations can be controlled, but high effort, cost, and potential impact on ecosystem 

function make it difficult.  Wildlife management to improve water quality must be 

undertaken with great caution.  Other point and non-point sources must be addressed 

first or in conjunction with wildlife management and the greater impacts on the 

ecosystem must be taken into account.  

 In Chapter IV, I determined the (1) parameters important to E. coli load in the 

floodplain and (2) potential E. coli load in the Cedar Creek floodplain under different 

management scenarios.  Although all of the tested parameters remain in desperate need 

of further research, my sensitivity analyses indicated that E. coli survival is especially 

important.  Relatively simple studies that determine defecation rates and E. coli survival 

in different fecal morphologies would drastically improve available knowledge.    

My analysis of potential management strategies illustrated the large importance 

that raccoons play in E. coli deposition.  They overwhelmingly determined wildlife E. 

coli contribution during my simulations.  These results are in need of scrutiny, due to the 

likely variability of other parameters in other locations (e.g., spatial data).   I argue that 

reduction of feral hogs is the most practical wildlife management strategy in improving 

water quality.  Feral hogs are invasive exotics that can be theoretically controlled to the 

point of eradication.  Without intensive and consistent management, hogs have the 

ability to increase in numbers rapidly thus enlarging their potential impact on water 
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quality in the future.  I found that reduction of deer herds would decrease the E. coli load 

in the watershed, though the deer population does not appear overabundant.  Meso-

mammals are likely untenable management targets.  A broad-based management strategy 

targeting multiple meso-mammal species would be required to control species 

contributions.  Additionally, impacts on local ecology are unpredictable and likely 

undesired.  Control of meso-mammal over-population is advisable for multiple reasons, 

with water quality concerns now adding to the argument.  

 The reduction of wildlife’s contribution of fecal pollution into water bodies is 

greatly impacted by habitat management strategies.  For instance, over-grazing by cattle 

can greatly reduce vegetation cover and increase soil impermeability; thereby increasing 

E. coli transmission into the water body.   Brush encroachment can decrease vegetative 

cover and increase overland flow and erosion problems.   Wildlife feeders (e.g., deer 

feeders) tend to attract a variety of species (e.g., deer, feral hogs, raccoons).  Normal 

placement of these feeders is in riparian areas to take advantage of the abundance of 

target species; however, the cost of this activity is an unnatural abundance of species 

attracted to near-stream areas.  I would recommend that habitat management enter into 

the consciousness of all managers seeking to reduce fecal pollution into water bodies.  

On a large scale, preservation or conservation of vegetative communities and restoration 

of animal communities and behaviors, would likely decrease wildlife contribution of E. 

coli to water bodies. 
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