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ABSTRACT

Research on Combinatorial Statistics:

Crossings and Nestings in Discrete Structures. (August 2010)

Svetlana Poznanovikj, B.S., Ss. Cyril and Methodius University

Chair of Advisory Committee: Dr. Catherine H. Yan

We study the distribution of combinatorial statistics that exhibit a structure of

crossings and nesting in various discrete structures, in particular, in set partitions,

matchings, and fillings of moon polyominoes with entries 0 and 1.

Let π and λ be two set partitions with the same number of blocks. Assume π

is a partition of [n]. For any integers l, m ≥ 0, let T (π, l) be the set of partitions of

[n+l] whose restrictions to the last n elements are isomorphic to π, and T (π, l, m) the

subset of T (π, l) consisting of those partitions with exactly m blocks. Similarly define

T (λ, l) and T (λ, l, m). We prove that if the statistic cr (ne), the number of crossings

(nestings) of two edges, coincides on the sets T (π, l) and T (λ, l) for l = 0, 1, then it

coincides on T (π, l, m) and T (λ, l,m) for all l,m ≥ 0. These results extend the ones

obtained by Klazar on the distribution of crossings and nestings for matchings.

Moreover, we give a bijection between partially directed paths in the symmetric

wedge y = ±x and matchings, which sends north steps to nestings. This gives a

bijective proof of a result of E. J. Janse van Rensburg, T. Prellberg, and A. Rechnitzer

that was first discovered through the corresponding generating functions: the number

of partially directed paths starting at the origin confined to the symmetric wedge

y = ±x with k north steps is equal to the number of matchings on [2n] with k

nestings.

Furthermore, we propose a major index statistic on 01-fillings of moon poly-

ominoes which, when specialized to certain shapes, reduces to the major index for
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permutations and set partitions. We consider the set F(M, s; A) of all 01-fillings of

a moon polyomino M with given column sum s whose empty rows are A, and prove

that this major index has the same distribution as the number of north-east chains,

which are the natural extension of inversions (resp. crossings) for permutations (resp.

set partitions). Hence our result generalizes the classical equidistribution results for

the permutation statistics inv and maj. Two proofs are presented. The first is an

algebraic one using generating functions, and the second is a bijection on 01-fillings

of moon polyominoes in the spirit of Foata’s second fundamental transformation on

words and permutations.
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CHAPTER I

INTRODUCTION

In this chapter we will introduce the notion of crossings in several combinatorial

structures and summarize the results that have been obtained about them by various

authors. The objects of main interest for us are set partitions, matchings as an

interesting subclass, and fillings of moon polyominoes. Since they can be viewed as

a generalization of permutations and words, the first section is dedicated to them.

Only results that have motivated the work for this dissertation are presented here

and this is by no means an exhaustive list of results in the area.

1.1. Mahonian statistics on words and permutations

Given a multiset S of n positive integers, a word on S is a sequence w = w1w2 . . . wn

that reorders the elements in S. When S = [n] := {1, . . . , n} the word is a permuta-

tion. A pair (wi, wj) is called an inversion of w if i < j and wi > wj. One well-known

statistic on words and permutations is inv(w), defined as the number of inversions of

w. The descent set and descent statistic of a word w are defined as

Des(w) = {i : 1 ≤ i ≤ n− 1, wi > wi+1}, des(w) = #Des(w).

In [35] MacMahon defined the major index statistic for a word w as

maj(w) =
∑

i∈Des(w)

i,

and showed the remarkable result that its distribution over all words on S is equal to

that of the inversion number over the same set. Precisely, for the set WS of all words

This dissertation follows the style of SIAM Journal on Discrete Mathematics.
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on S = {1m1 , . . . , kmk},
∑

w∈WS

qmaj(w) =
∑

w∈WS

qinv(w) =

(
m1 + · · ·+ mk

m1, . . . , mk

)

q

. (1.1)

The first proof of (1.1) given by MacMahon relied on combinatorial analysis. This

raised the question of constructing a canonical bijection Φ : WS → WS such that

maj(w) = inv(Φ(w)). Foata answered the question by constructing an elegant map

Φ [20], which is referred to as the second fundamental transformation [21]. Here we

review Foata’s map Φ : WS → WS.

Let w = w1w2 · · ·wn be a word on N and let a be an integer. If wn ≤ a, the

a-factorization of w is w = v1b1 · · · vpbp, where each bi is a letter less than or equal

to a, and each vi is a word (possibly empty), all of whose letters are greater than a.

Similarly, if wn > a, the a-factorization of w is w = v1b1 · · · vpbp, where each bi is a

letter greater than a, and each vi is a word (possibly empty), all of whose letters are

less than or equal to a. In both cases one defines

γa(w) = b1v1 · · · bpvp.

With the above notation, let a = wn and let w′ = w1 · · ·wn−1. The second fun-

damental transformation Φ is defined recursively by Φ(w) = w if w has length 1,

and

Φ(w) = γa(Φ(w′))a,

if w has length n > 1. The map Φ has the property that it preserves the last letter

of the word, and inv(Φ(w)) = maj(w).

A statistic on words/permutations is called Mahonian if it has the same gen-

erating function as the inversion number. So, the major index is one example of a

Mahonian statistic. Since the beginning of MacMahon’s systematic study of permu-
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tation statistics, numeorus other Mahonian statistics have been discovered and the

relations and interpolations between them have been studied (e.g. den [14], mak [22],

mad [12], [5, 16, 23, 24, 25, 29]). Babson and Steingrimsson in [1] gave a unified view

to a lot of Mahonian permutation statistics by showing that they can all be written

as linear combinations of what the authors call generalized permutation patterns.

1.2. Matchings and set partitions

A (set) partition of [n] = {1, 2, . . . , n} is a collection of disjoint nonempty subsets

of [n], called blocks, whose union is [n]. A matching of [2n] is a partition of [2n] in

n two-element blocks, which we also call edges. Let Πn and Mn denote the sets of

partitions of [n] and matchings of [2n], respectively. If a partition π has k blocks,

we write |π| = k. A partition π is often represented as a graph on the vertex set

[n], drawn on a horizontal line in the increasing order from left to right, whose edge

set consists of arcs connecting the elements of each block in numerical order. We

write an arc e as a pair (i, j) with i < j. For example, the graph of the partition

1, 3, 6, 2, 4, 5 has three arcs (1, 3), (3, 6), and (2, 4). The type of a partition is defined

to be type(π) = (S, T ) where S and T are the sets of minimal and maximal elements

in the blocks of π, respectively.

For a partition π of [n], we say that the arcs (i1, j1), (i2, j2), . . . , (ik, jk) form a

k-crossing if i1 < i2 < · · · < ik < j1 < j2 < · · · < jk, and they form a k-nesting

if i1 < i2 < · · · < ik < jk < · · · < j2 < j1. When the number k is omitted it

is assumed to be 2. So, the terms crossings and nestings mean 2-crossings and 2-

nestings, respectively. The crossing number of π is the maximal k such that π has

a k-crossing. The nesting number is defined analogously. By cr(π) (resp. ne(π)),

we denote the number of crossings (resp. nestings) of π. In order to avoid possible
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confusion we remark that some authors that study the crossing and nesting numbers

use cr and ne to denote these numbers, respectively. The distribution of the statistics

cr and ne on matchings has been studied in a number of articles. Here we summarize

the main results.

Theorem 1 ([15, 31]). Let S, T ⊂ [n]. Then

|{π ∈ Πn : type(π) = (S, T ), cr(π) = k, ne(π) = l}|

= |{π ∈ Πn : type(π) = (S, T ), ne(π) = k, cr(π) = l}|.

This implies symmetric distribution of crossings and nestings over set partitions,

as wells as over the subclass of matchings.

Theorem 2 ([42, 38]). The generating function for cr over the set Mn is given by

∑
M∈Mn

qcr(M) =
1

(1− q)n

n∑

k=−n

(−1)kqk(k−1)/2

[
2n

n + k

]
.

Theorem 3. Let Xn be the random variable equal to the value of cr taken over the

set Mn endowed with the uniform probability distribution.

(a) ([38, 19, 18]) The mean and the variance of the distribution of Xn are

µn := E(Xn) =
n(n− 1)

6
σ2

n := V ar(Xn) =
n(n− 1)(n + 3)

45
,

(b) ([18]) The distribution of Xn is Gaussian in the asymptotic limit, i.e., for all x

one has

lim
n→∞

Pr(
Xn − µn

σn

≤ x) =
1√
2π

∫ x

−∞
e−y2/2dy.

Analogues of Thorems 2 and 3 for set partitions are not known. In section 2.4 we

give a continued fraction expansion of
∑

π∈Πn
qcr(π)pne(π). Unfortunately, k-crossings

and k-nestings for k ≥ 3 seem to be a lot more complicated than the basic k = 2

case. Namely, the equidistribution result does not hold for these values of k.
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On the other hand, there are some very elegant results concerning avoidance

of large crossings and nestings. Partitions that do not have a k-crossing are called

k-noncrossing. Similarly, one defines k-nonnesting partitions. 2-noncrossing objects

are commonly said to be simply noncrossing.

Theorem 4 ([6]). The number of partitions of [n] of type (S, T ) that are k-noncrossing

and l-nonnesting is equal to the number of partitions of the same type that are l-

noncrossing and k-nonnesting.

The number of noncrossing partitions of [n] as well as the number of noncross-

ing matchings on [2n] is equal to the Catalan number Cn = 1
n+1

(
2n
n

)
. Noncrossing

partitions arise in the context of algebraic combinatorics, geometric combinatorics,

in relation to topological problems, questions in probability theory and mathematical

biology [41]. The set of 3-noncrossing matchings is in one-to-one correspondence with

the set of pairs of noncrossing Dyck paths. For general k, the number of k-noncrossing

matchings of [2n] is equal to the number of closed lattice walks of length 2n in the

set

Vk = {(a1, a2, . . . , ak−1) : a1 ≥ a2 ≥ · · · ≥ ak−1 ≥ 0, ai ∈ Z}

from the origin to itself with unit steps in any coordinate direction or its negative [6].

Similarly, the number of k-noncrossing partitions is equal to the number of vacillating

walks in the same region starting and ending at the origin. Another result is the

following.

Theorem 5 ([4]). The number C3(n) of 3-noncrossing partitions is given by C3(0) =

C3(1) = 1 and, for n ≥ 0

9n(n + 3)C3(n)− 2(5n2 + 32n + 42)C3(n + 1) + (n + 7)(n + 6)C3(n + 2) = 0.
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Equivalently, the associated generating function Cn(t) =
∑

n≥0 C(n)tn satisfies

t2(1− 9t)(1− t)
d2

dt2
C(t) + 2t(5− 27t + 18t2)

d

dt
C(t) + 10(2− 3t)C(t) = 20.

Finally, as n tends to infinity,

C3(n) ∼ 39 · 5
25

√
3

π

9n

n7
.

The authors in [7] defined major index pmaj for set partitions which is an ana-

logue of the classical major index for permutations. We present their definition next.

Given π ∈ Πn, first label the arcs of π by 1, 2, . . . , k from right to left in order of

their left-hand endpoints. That is, if the arcs are (i1, j1), (i2, j2), . . . , (ik, jk) with

i1 > i2 > · · · > ik , then (ir, jr) has label r, for 1 ≤ r ≤ k. Next we associate a

sequence σ(r) to each right-hand endpoint r. Assume that the right-hand endpoints

are r1 > r2 > · · · > rk. The sequence σ(ri) is defined backward recursively: let

σ(r1) = a if r1 is the right-hand endpoint of the arc with label a. In general, after

defining σ(ri), assume that the left-hand endpoints of the arcs labeled a1, . . . , at are

lying between ri+1 and ri, including ri+1. Then σ(ri+1) is obtained from σ(ri) by

deleting entries a1, . . . , at and adding b at the very beginning, where b is the label for

the arc whose right-hand endpoint is ri+1. Finally, define pmaj(π) by

pmaj(P ) :=
∑
ri

des(σ(ri)).

The statistic pmaj is an analogue of maj for permutations in the sense that when

permutations are embedded into set partitions in a natural way (a permutation σ of

[n] can be represented as the partition with arcs connecting n+1−σ(i) and n+ i for

1 ≤ i ≤ n), the major index of each permutation is equal to the major index of the
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corresponding set partition. Moreover,

∑

type(π)=(S,T )

qpmaj(π) =
∑

type(π)=(S,T )

qcr(π). (1.2)

1.3. Fillings of moon polyominoes

A polyomino is a finite subset of Z2, where we represent every element of Z2 by a

square cell. The polyomino is convex if its intersection with any column or row is

connected. It is intersection-free if every two columns are comparable, i.e., the row-

coordinates of one column form a subset of those of the other column. Equivalently,

it is intersection-free if every two rows are comparable. A moon polyomino is a convex

intersection-free polyomino. If the rows (resp. columns) of the moon polyomino are

left-aligned (resp. top-aligned), we will call it a left-aligned stack polyomino (resp.

top-aligned stack polyomino). A Ferrers diagram is a left-aligned and top-aligned

stack polyomino. See Figure 1.1 for an illustration. The term ‘moon polyomino’

was first used by Jonsson in [27] where he used fillings of such polyominoes to study

generalized triangulations.

Fig. 1.1 A moon polyomino, a left-aligned and a top-aligned stack polyomino, and a

Ferrers diagram.

Fillings of moon polyominoes with nonnegative entries have been subject of study

of various authors in several articles. A north-east chain, or shortly ne-chain of length

k in an arbitrary filling of a moon polyomino is a chain of k non-zero entries, such that
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each element is strictly to the right and strictly above the preceding element of the

sequence and such that the smallest rectangle containing the chain is contained in the

moon polyomino. Similarly, in a south-east chain, or shortly se-chain each element

is strictly to the right and strictly below the preceding element and the smallest

rectangle that contains it is contained in the moon polyomino. The length of such a

chain is the number of its elements.

Fillings of Ferrers shapes with entries 0 and 1 correspond to multigraphs [13], and

if the column and row sums are at most 1, then the fillings correspond to set partitions.

If the shape is rectangular, the filling corresponds to a word. The correspondence is

explained in section 4.2. In view of this correspondence ne-chains are a generalization

of increasing subsequences in words and crossings in set partitions. Several analogues

of Theorem 4 have been derived. We mention some of them, others including more

general theorems are given in [2, 3, 27, 28, 34, 39].

Theorem 6. (a) ([2, 34]) The number of 01-fillings of a given Ferrers shape with

exactly one 1 in each row and column with lengths of the longest north-east

chain k and the longest south-east chain l is equal to the number of fillings with

lengths of the longest north-east chain l and the longest south-east chain k.

(b) ([27, 28, 39]) Two moon polyominoes that differ only by a permutation of their

columns (without any vertical shifts) permit the same number of 01-fillings with

a given length of the longest north-east chain and a given number of non-zero

entries in each row.

(c) ([39]) Two moon polyominoes that differ only by a permutation of their columns

(without any vertical shifts) permit the same number of arbitrary fillings with a

given length of the longest north-east chain and given row and column sums.

In this dissertation, we will derive results about 01-fillings of moon polyominoes
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with restricted row sums. That is, given a moon polyomino M, we assign a 0 or a 1

to each cell of M so that there is at most one 1 in each row. The following result is

an analogue of Theorem 1.

Theorem 7 ([30]). The number of 01-fillings of a given moon polyomino with fixed

column and row sums and with at most one 1 in each row that have k north-east and

l south-east chains of length 2 is equal to the number of fillings with l north-east and

k south-east chains of length 2.

In the following chapters we will derive generalizations and analogues of some of

the theorems mentioned above. In chapter II we study the tree of set partitions and

the distribution of crossings and nestings over its subtrees. In chapter III we construct

a bijection between matchings with k nestings and partially directed self-avoiding

paths in the wedge y = ±x with k north steps. This serves as a bijective proof of the

result that was first obtained algebraically which says that the number of matchings

on [2n] with k nestings is equal to the number of aforementioned paths that start at

the origin, end at the point (n,−n) and have k north steps. In chapter IV, we define a

major index of 01-fillings of moon polyominoes with at most one 1 in each row which

generalizes the major index for words, permutations, and set partitions. We find the

generating function and construct a Foata-type bijection to prove a generalization

of (1.1) and (1.2).
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CHAPTER II

CROSSINGS AND NESTINGS OF TWO EDGES IN SET PARTITIONS

In [33] Klazar studied distributions of the numbers of crossings and nestings of two

edges in matchings. All matchings form an infinite tree T rooted at the empty

matching ∅, in which the children of a matching M are the matchings obtained from

M by adding to M in all possible ways a new first edge. Given two matchings M

and N on [2n], Klazar decided when the number of crossings (nestings) have identical

distribution on the levels of the two subtrees of T rooted at M and N . In this chapter

we investigate the distribution of the statistics cr(π) and ne(π) over the partitions of

[n] with a prefixed restriction to the last k elements.

Denote by Πn the set of all partitions of [n], and by Πn,k the set of partitions of

[n] with k blocks. For n = 0, Π0 contains the empty partition. Let Π = ∪∞n=0Πn =

∪∞n=0 ∪k≤n Πn,k. We define the tree T (Π) of partitions as a rooted tree whose nodes

are partitions such that:

1. The root is the empty partition;

2. The partition π of [n + 1] is a child of λ, a partition of [n], if and only if the

restriction of π on {2, . . . , n+1} is order-isomorphic with λ. (If π = {B1, . . . , Bk}
is a partition of the set A and C ⊆ A then the restriction of π on C is the

partition of C with blocks C ∩ B1, . . . , C ∩ Bk, where the empty intersections

are dropped.)

See Figure 2.1 for an illustration of T (Π).

Observe that if λ is a partition of [n] with |λ| = k, then λ has k + 1 children in

T (Π). Let B1, . . . , Bk be the blocks of λ ordered in increasing order with respect to

their minimal elements. For a set S, let S + 1 = {a + 1 : a ∈ S}. We denote the
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∅

Fig. 2.1 The tree of partitions T (Π).

children of λ by λ0, λ1, . . . , λk as follows: λ0 is a partition of [n+1] with k +1 blocks,

λ(0) = {{1}, B1 + 1, . . . , Bk + 1};

for 1 ≤ i ≤ k, λi is a partition of [n + 1] with k blocks,

λ(i) = {{1} ∪ (Bi + 1), B1 + 1, . . . , Bi−1 + 1, Bi+1 + 1, . . . , Bk + 1}.

For a partition λ, let T (λ) denote the subtree of T (Π) rooted at λ, and let

T (λ, l) be the set of all partitions at the l-th level of T (λ). T (λ, l, m) is the set of all

partitions on the l-th level of T (λ) with m blocks. Note that T (λ, l, m) 6= ∅ if and

only if k ≤ m ≤ k + l.

Let G be an abelian group and α, β two elements in G. Consider the statistics

sα,β : Π → G given by sα,β(λ) = cr(λ)α + ne(λ)β. In [33] Klazar defined a tree of

matchings and showed that for two matchings M and N , if the statistic sα,β coincides

at the first two levels of T (M) and T (N) then it coincides at all levels, and similarly
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for the pair of statistics sα,β, sβ,α. Here we prove that in the tree of partitions defined

above, the same results hold. Precisely,

Theorem 8. Let λ, π ∈ T (Π) be two non-empty partitions, and sα,β(T ) be the multiset

containing {sα,β(t) : t ∈ T}. We have

(a) If sα,β(T (λ, l)) = sα,β(T (π, l)) for l = 0, 1 then

sα,β(T (λ, l, m)) = sα,β(T (π, l, m)) for all l, m ≥ 0.

(b) If sα,β(T (λ, l)) = sβ,α(T (π, l)) for l = 0, 1 then

sα,β(T (λ, l, m)) = sβ,α(T (π, l, m)) for all l, m ≥ 0.

In other words, if the statistic sα,β coincides on the first two levels of the trees T (λ)

and T (π) then it coincides on T (λ, l, m) and T (π, l,m) on all levels, and similarly

for the pair of statistics sα,β, sβ,α.

Note that the conditions of Theorem 8 imply that λ and π have the same number

of blocks. But they are not necessarily partitions of the same [n].

There are several differences between the structure of crossing and nesting of set

partitions and that of matchings:

1. The tree of partitions T (Π) and the tree of matchings are different. In T (Π),

children of a partition π is obtained by adding a new vertex, instead of adding

a first edge. Hence Klazar’s tree of matchings is not a sub-poset of T (Π). The

definition of T (Π) allows us to define the analogous operators Rα,β,i, as in [33,

§2]. Since some descendants of π are obtained by adding isolated points, we

need to introduce an extra operator M , (c.f. Definition 1), and supply some

new arguments to work with our structure and M .

2. The type of a matching is encoded by a Dyck path, while for set partitions,
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the corresponding structure is restricted bicolored Motzkin paths (RBM), (c.f.

section 3).

3. The enumeration of crossing/nesting similarity classes is different. A crossing-

similarity class is determined by a value cr(M) (cr(π)) and a composition

(a1, a2, . . . , am) of n. For matchings cr(M) can be any integer between 0 and

1 + a2 + 2a3 + · · · + (m − 1)am. But for partitions the possible value of cr(π)

depends only on m, but not the ai’s.

In matchings there is a bijection between the set of nesting sequences of match-

ings of [2n] and the set of Dyck paths D(n). There is no analogous result

between set partitions and restricted bicolored Motzkin paths.

4. For matchings every nesting-similarity class is a subset of a crossing-similarity

class. This is not true for set partitions.

2.1. Proof of Theorem 8

Formally a multiset is a pair (A,m), where A is a set, called the underlying set, and

m : A → N is a mapping that determines the multiplicities of the elements of A. We

often write multisets by repeating the elements according to their multiplicities.

For a map f : X → Y and Z ⊂ X, let f(Z) denote the multiset whose underlying

set is {f(z) : z ∈ Z} and in which each element y appears with multiplicity equal

to the cardinality of the set {z : z ∈ Z and f(z) = y}. S(X) denotes the set of all

finite multisets with elements in the set X. Any function f : X → S(Y ) naturally

extends to f : S(X) → S(Y ) by f(Z) =
⋃

z∈Z{f(z)}, where
⋃

is union of multisets

(the multiplicities of elements are added).

For each bi = min Bi of λ define ui(λ) to be the number of edges (p, q) such that

p < bi < q and vi(λ) to be the number of edges (p, q) such that p < q < bi. They
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satisfy the obvious recursive relations

ui(λ
0) =





0 if i = 1

ui−1(λ) if 2 ≤ i ≤ k + 1

(2.1)

vi(λ
0) =





0 if i = 1

vi−1(λ) if 2 ≤ i ≤ k + 1

(2.2)

ui(λ
j) =





0 if i = 1

ui−1(λ) + 1 if 2 ≤ i ≤ j

ui(λ) if j + 1 ≤ i ≤ k

(2.3)

vi(λ
j) =





0 if i = 1

vi−1(λ) if 2 ≤ i ≤ j

vi(λ) + 1 if j + 1 ≤ i ≤ k

(2.4)

for j = 1, . . . , k, where k = |λ| ≥ 1. For the statistics sα,β : Π → G defined by

sα,β(λ) = cr(λ)α + ne(λ)β, we have that

sα,β(λ0) = sα,β(λ1) = sα,β(λ), (2.5)

sα,β(λj) = sα,β(λ) + uj(λ)α + vj(λ)β, j ≥ 1. (2.6)

For simplicity, we will write λij for (λi)j.

Lemma 1. For |λ| ≥ 1,

sα,β(λ0j)) =





sα,β(λ) if j = 0, 1

sα,β(λj−1) if j ≥ 2,

(2.7)
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and for i ≥ 1,

sα,β(λij) =





sα,β(λi) if j = 0, 1

sα,β(λi) + sα,β(λj−1)− sα,β(λ1) + α if 2 ≤ j ≤ i

sα,β(λi) + sα,β(λj)− sα,β(λ1) + β if j ≥ i + 1.

(2.8)

Proof. We first show (2.8). The first line in (2.8) follows directly from (2.5). For the

other two,

sα,β(λij) = sα,β(λi) + uj(λ
i)α + vj(λ

i)β

=





sα,β(λi) + uj−1(λ)α + α + vj−1(λ)β if 2 ≤ j ≤ i

sα,β(λi) + uj(λ)α + vj(λ)β + β if j ≥ i + 1

=





sα,β(λi) + sα,β(λj−1)− sα,β(λ1) + α if 2 ≤ j ≤ i

sα,β(λi) + sα,β(λj)− sα,β(λ1) + β if j ≥ i + 1.

The first and third equality follow from (2.6) and the second one follows from (2.3)

and (2.4). Similarly, (2.7) follows from (2.1), (2.2), (2.5), and (2.6).

To each partition λ with k blocks, (k ≥ 1), we associate a sequence

seqα,β(λ) := sα,β(λ1)sα,β(λ2) . . . sα,β(λk)

The sequence seqα,β(λ) encodes the information about the distribution of sα,β on the

children of λ in T (Π), in which sα,β(λ1) plays a special role when we analyze the

change of seqα,β(λ) below . This is due to the fact that sα,β(λ1) carries information

about λ and two children of λ, namely, λ0 and λ1.

For an abelian group G, let G∗
l denote the set of finite sequences of length l over

G, and G∗ = ∪l≥1G
∗
l . If u = x1x2 . . . xk ∈ G∗ and y ∈ G, then we use the convention
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that the sequence (x1 + y)(x2 + y) . . . (xk + y) is denoted by x1x2 . . . xk + y.

Definition 1. For α, β ∈ G and i ≥ 1, define Rα,β,i : G∗
l → G∗

l , (i ≤ l) by setting

Rα,β,i(x1x2 . . . xl) = xi(x1 . . . xi−1 + (xi − x1 + α))(xi+1 . . . xl + (xi − x1 + β))

and Rα,β : G∗ → S(G∗) by setting

Rα,β(x1x2 . . . xl) = {Rα,β,i(x1x2 . . . xl) : 1 ≤ i ≤ l}.

In addition, define M : G∗ → G∗ by setting

M(x1x2 . . . xl) = x1x1x2 . . . xl.

Lemma 1 immediately implies that

seqα,β(λ0) = M(seqα,β(λ)),

seqα,β(λi) = Rα,β,i(seqα,β(λ)), for 1 ≤ i ≤ |λ|.

For l ≥ 0, let Eα,β(λ, l, m) = {seqα,β(µ) : µ ∈ T (λ, l, m)}, the multiset of sequences

seqα,β(µ) associated to partitions µ ∈ T (λ, l,m). Then for l ≥ 1,

Eα,β(λ, l, m) = Rα,β(Eα,β(λ, l − 1, m)) ∪M(Eα,β(λ, l − 1, m− 1)). (2.9)

Next, we define an auxiliary function f which reflects the change of the statistic sα,β

along T (Π). Then we prove two general properties of f and use these properties to

prove Theorem 8. For an integer r ≥ 0 and γ ∈ G, the function f : G∗ → S(G) is

defined by

f r
γ (x1x2 . . . xl) := {xa1 + xa2 + · · ·+ xar − (r − 1)x1 + γ : 1 < a1 < a2 < · · · < ar ≤ l}
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In particular,

f 0
0 (x1x2 . . . xl) = {x1},

f 1
0 (x1x2 . . . xl) = {x2, . . . , xl}.

Lemma 2. Let X, Y ∈ S(G∗) be two multisets such that f r
γ (X) = f r

γ (Y ) for every

r ≥ 0 and γ ∈ G. Then

(a) f r
γ (M(X)) = f r

γ (M(Y )),

(b) f r
γ (Rα,β(X)) = f r

γ (Rα,β(Y )),

(c) f r
γ (Rα,β(X)) = f r

γ (Rβ,α(Y )),

for every r ≥ 0 and γ ∈ G.

Proof. (a) The elements in f r
γ (M(X)) have the form ya1+ya2+· · ·+yar−(r−1)y1+γ for

some y1y2 . . . yl+1 ∈ M(X), where y1y2 . . . yl+1 = x1x1x2 . . . xl for some x1x2 . . . xl ∈
X. For r = 0,

f 0
γ (M(X)) = {y1 + γ : y1y2 . . . yl+1 ∈ M(X)} = {x1 + γ : x1x2 . . . xl ∈ X} = f 0

γ (X).

Hence f 0
γ (X) = f 0

γ (Y ) implies f 0
γ (M(X)) = f 0

γ (M(Y )).

For r ≥ 1, divide the multiset f r
γ (M(X)) into two disjoint multisets,

A = {ya1 + ya2 + · · ·+ yar − (r − 1)y1 + γ : y1y2 . . . yl+1 ∈ M(X), a1 = 2}

and

B = {ya1 + ya2 + · · ·+ yar − (r − 1)y1 + γ : y1y2 . . . yl+1 ∈ M(X), a1 > 2}.



18

The elements of A can be written as

ya1 + ya2 + · · ·+ yar − (r − 1)y1 + γ = x1 + ya2 + · · ·+ yar − (r − 1)x1 + γ

= ya2 + · · ·+ yar − (r − 2)x1 + γ

= xa2−1 + · · ·+ xar−1 − (r − 2)x1 + γ.

Since a2 − 1 > a1 − 1 = 1, the multiset A is equal to f r−1
γ (X). The elements in B

can be written as

ya1 + ya2 + · · ·+ yar − (r − 1)y1 + γ = xa1−1 + xa2−1 + · · ·+ xar−1 − (r − 1)x1 + γ.

Since a1 ≥ 3, the indices on the right-hand side run through all the increasing r-tuples

1 < a1 − 1 < a2 − 1 < · · · < ar − 1 ≤ l. Therefore, B is equal to f r
γ (X). So,

f r
γ (M(X)) = f r−1

γ (X) ∪ f r
γ (X). (2.10)

By assumption we have

f r
γ (M(X)) = f r−1

γ (X) ∪ f r
γ (X) = f r−1

γ (Y ) ∪ f r
γ (Y ) = f r

γ (M(Y )).

(c) We will prove only (c) because the proof of (b) is similar and easier. Since f r
γ (X)

is a translation of f r
0 (X) by γ, it is enough to prove the result for γ = 0 only.

The elements of f r
0 (Rα,β(X)) have the form ya1 + ya2 + · · · + yar − (r − 1)y1, where

y1y2 . . . yl ∈ Rα,β(X) is equal to xi(x1 . . . xi−1 + xi − x1 + α)(xi+1 . . . xl + xi − x1 + β)

for some x1x2 . . . xl ∈ X and i ∈ [l].

For 0 ≤ t ≤ r, let

Ct,α,β(X) = {ya1 + ya2 + · · ·+ yar − (r − 1)y1 :

y1y2 . . . yl ∈ Rα,β,i(X) and at ≤ i < at+1, for some i ∈ [l]}.



19

An element ya1 + ya2 + · · ·+ yar − (r − 1)y1 ∈ Ct,α,β(X) is equal to

xa1−1 + · · · xat−1 + t(xi − x1 + α) + xat+1 + · · ·

+ xar + (r − t)(xi − x1 + β)− (r − 1)xi

= xa1−1 + · · · xat−1 + xi + xat+1 + · · ·+ xar − rx1 + tα + (r − t)β.

(2.11)

Again, we consider two cases, according to the value of a1. By (2.11), the submultiset

of Ct,α,β(X) for a1 > 2 is equal to f r+1
tα+(r−t)β(X), and for a1 = 2 the corresponding

submultiset is equal to f r
tα+(r−t)β(X). Therefore,

Ct,α,β(X) = f r+1
tα+(r−t)β(X) ∪ f r

tα+(r−t)β(X). (2.12)

Similarly,

Ct,β,α(Y ) = f r+1
tβ+(r−t)α(Y ) ∪ f r

tβ+(r−t)α(Y ). (2.13)

So,

f r
0 (Rα,β(X)) =

r⋃
t=0

Ct,α,β(X)

=
r⋃

t=0

f r+1
tα+(r−t)β(X) ∪

r⋃
t=0

f r
tα+(r−t)β(X)

=
r⋃

t=0

f r+1
tα+(r−t)β(Y ) ∪

r⋃
t=0

f r
tα+(r−t)β(Y )

=
r⋃

t=0

f r+1
(r−t)α+tβ(Y ) ∪

r⋃
t=0

f r
(r−t)α+tβ(Y )

=
r⋃

t=0

Ct,β,α(Y )

= f r
0 (Rβ,α(Y )).

The second and fifth equality follow from (2.12) and (2.13) respectively. The third
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equality follows from the assumption of the lemma, while the fourth equality is just

a reordering of the unions.

Lemma 3. If X, Y ∈ S(G∗) are one-element sets such that f 0
0 (X) = f 0

0 (Y ) and

f 1
0 (X) = f 1

0 (Y ), then f r
γ (X) = f r

γ (Y ) for every r ≥ 0 and γ ∈ G.

Proof. We need to prove that if u, v ∈ G∗ are two sequences beginning with the same

term and having equal numbers of occurrences of each g ∈ G, then f r
γ (u) = f r

γ (v) for

every r ≥ 0 and γ ∈ G. It suffices to prove the statement for γ = 0, because f r
γ (u)

is a translation of f r
0 (u) by γ. Let u = u1 . . . ul and v = v1 . . . vl. Since u1 = v1, it

suffices to prove that the multisets {ua1 +ua2 + · · ·+uar : 1 < a1 < a2 < · · · < ar ≤ l}
and {va1 + va2 + · · · + var : 1 < a1 < a2 < · · · < ar ≤ l} are equal. That is clear

because {u2, . . . , ul} and {v2, . . . , vl} are equal as multisets.

Proof of Theorem 8 . We prove (b), the proof of (a) is similar. First, we prove

by induction on l that

f r
γ (Eα,β(λ, l, m)) = f r

γ (Eβ,α(π, l, m)) for every r ≥ 0 and γ ∈ G. (2.14)

Before we proceed with the induction, it is useful to observe that the assumption

sα,β(T (λ, l)) = sβ,α(T (π, l)) for l = 0, 1

of Theorem 8 (b) is equivalent to

sα,β(T (λ, l, m)) = sβ,α(T (π, l, m)) for l = 0, 1 and k ≤ m ≤ k + l, (2.15)

where k = |λ|. One direction is clear, the other one follows from the following
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equations.

sα,β(T (λ, 1, k + 1)) = sα,β(T (λ, 0, k)) = sα,β(T (λ, 0)),

sα,β(T (λ, 1, k)) = sα,β(T (λ, 1))\sα,β(T (λ, 0)),

where \ is the difference of multisets. For the same reason the assumption of part (a)

is equivalent to

sα,β(T (λ, l, m)) = sα,β(T (π, l, m)) for l = 0, 1 and k ≤ m ≤ k + l.

Now we show (2.14). For l = 0 we need to show

f r
γ (Eα,β(λ, 0, k)) = f r

γ (Eβ,α(π, 0, k)).

By Lemma 3 we only need to check that f 0
0 (X) = f 0

0 (Y ) and f 1
0 (X) = f 1

0 (Y ) for

X = {seqα,β(λ)} and Y = {seqβ,α(π)}. This follows from (2.15), because f 0
0 (X) =

sα,β(T (λ, 0, k)) and f 1
0 (X) = sα,β(T (λ, 1, k)).

Suppose f r
γ (Eα,β(λ, s,m)) = f r

γ (Eβ,α(π, s, m)) for all 0 ≤ s < l and all m. Then

using (2.9), the induction hypothesis, and Lemma 2 we have

f r
γ (Eα,β(λ, l, m)) = f r

γ (Rα,β(Eα,β(λ, l − 1,m))) ∪ f r
γ (M(Eα,β(λ, l − 1,m− 1)))

= f r
γ (Rβ,α(Eβ,α(π, l − 1,m))) ∪ f r

γ (M(Eβ,α(π, l − 1,m− 1)))

= f r
γ (Eβ,α(π, l,m)),

and the induction is completed. This proves (2.14). Now

sα,β(T (λ, l, m)) = f 0
0 (Eα,β(λ, l, m)) = f 0

0 (Eβ,α(π, l,m)) = sβ,α(T (π, l,m)).
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2.2. Applications and examples

As a direct corollary, we obtain a result of Kasraoui and Zeng [31, Eq.(1.6)].

Corollary 1. The joint distribution of crossings and nestings of partitions is sym-

metric i.e.
∑
π∈Πn

pcr(π)qne(π) =
∑
π∈Πn

pne(π)qcr(π)

Proof. Let G = (Z ⊕ Z, +), α = (1, 0) and β = (0, 1). The result follows from the

second part of Theorem 8 for λ = π = {{1}}.

For a partition λ we say that two edges form an alignment if they neither form

a crossing nor a nesting. The total number of alignments in λ is denoted by al(λ).

A stronger result of Kasraoui and Zeng [31, Eq. (1.4)] can also be derived from

Theorem 8.

Corollary 2.
∑
π∈Πn

pcr(π)qne(π)tal(π) =
∑
π∈Πn

pne(π)qcr(π)tal(π)

Proof. Again we use G = (Z⊕Z, +), α = (1, 0), β = (0, 1), and λ = π = {{1}}. Any

partition µ ∈ Πn with k blocks has n−k edges. Hence cr(µ)+ne(µ)+al(µ) =
(

n−k
2

)
.

The result follows from the second part of Theorem 8.

Corollary 3. Let λ and π be two partitions of [n] with same number of blocks k.

If the statistic al is equidistributed on the first two levels of T (λ) and T (π), it is

equidistributed on T (λ, l, m) and T (π, l, m) for all l,m ≥ 0.

Proof. Again we use the identity cr(µ) + ne(µ) + al(µ) =
(

n−k
2

)
, which holds for any

partition µ ∈ Πn with k blocks. Moreover, al(λ) = al(λ0). Therefore the condition

that the statistic al is equidistributed on the first two levels of T (λ) and T (π) implies

that the statistic cr+ne is equidistributed on T (λ, l, m) and T (π, l, m) for all l = 0, 1
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and all m. In other words, if we set G = Z and α = β = 1 then the the assumption

of Theorem 8 is satisfied, and hence cr + ne is equidistributed on T (λ, l,m) and

T (π, l, m) for all l,m ≥ 0. This, in return, implies that al is equidistributed on

T (λ, l, m) and T (π, l, m) for all l, m ≥ 0.

Example 9. Let λ = {{1, 2, 5}, {3, 4}} and π = {{1, 2, 4}, {3, 5}}. There are as many

partitions on [n] with m crossings and l nestings which restricted to the last five points

form a partition isomorphic to λ as there are partitions of [n] with l crossings and m

nestings which restricted to the last five points form a partition isomorphic to π.

Proof. Set G = (Z ⊕ Z, +), α = (1, 0) and β = (0, 1), sα,β = (cr, ne). The claim

follows from part (b) of Theorem 8 since sα,β(λ) = (0, 1) = sβ,α(π) and sα,β(T (λ, 1)) =

{(0, 1), (0, 1), (1, 2)} = sβ,α(T (π, 1)).

Example 10. Consider the partitions λ = {{1, 7}, {2, 6}, {3, 4}, {5, 8}} and π =

{{1, 8}, {2, 4}, {3, 6}, {5, 7}}. There are as many partitions on [n] with m crossings

and l nestings which restricted to the last eight points form a partition isomorphic to λ

as there are ones which restricted to the last eight points form a partition isomorphic

to π.

Proof. Again set G = (Z⊕Z, +), α = (1, 0) and β = (0, 1). Then sα,β = (cr, ne). The

claim follows from part (a) of Theorem 8 since

sα,β(λ) = (2, 3) = sα,β(π)

and

sα,β(T (λ, 1)) = {(2, 3), (2, 3), (3, 3), (4, 3), (4, 4)} = sα,β(T (π, 1)).



24

2.3. Number of crossing- and nesting-similarity classes

In this section we consider equivalence relations ∼cr and ∼ne on set partitions in

the same way Klazar defines them on matchings [33]. We determine the number

of crossing-similarity classes in Πn,k. For ∼ne, we find a recurrence relation for the

number of nesting-similarity classes in Πn,k, and compute the total number of such

classes in Πn.

Define an equivalence relation ∼cr on Πn: λ ∼cr π if and only if cr(T (λ, l, m)) =

cr(T (π, l,m)) for all l, m ≥ 0. The relation ∼cr partitions Πn,k into equivalence

classes. Theorem 8 implies that

λ ∼cr π if and only if cr(λ) = cr(π) and f 1
0 (seq1,0(λ)) = f 1

0 (seq1,0(π)).

Define crseq(λ) = seq1,0(λ) − cr(λ). For the upcoming computations it is useful to

observe that λ ∼cr π if and only if cr(λ) = cr(π) and f 1
0 (crseq(λ)) = f 1

0 (crseq(π)),

i.e., λ and π are equivalent if and only if they have the same number of crossings and

their sequences crseq(λ) and crseq(π) are equal as multisets. Denote the multiset

consisting of the elements of crseq(λ) by crset(λ).

Similarly, define λ ∼ne π if and only if ne(T (λ, l, m)) = ne(T (π, l, m)) for all

l,m ≥ 0. Again, from Theorem 8 we have that λ ∼ne π if and only if ne(λ) = ne(π)

and f 1
0 (seq0,1(λ)) = f 1

0 (seq0,1(π)). Since the sequence seq0,1(λ) is nondecreasing,

λ ∼ne π if and only if ne(λ) = ne(π) and seq0,1(λ)−ne(λ) = seq0,1(π)− ne(π). With

the notation at the beginning of section 2.1, seq0,1(λ)−ne(λ) = v1 . . . vk. Denote this

sequence by neseq(λ).

A Motzkin path M = (s1, . . . , sn) is a path from (0, 0) to (n, 0) consisting of steps

si ∈ {(1, 1), (1, 0), (1,−1)} which does not go below the x-axis. We say that the step

si is of height l if its left endpoint is at the line y = l. A restricted bicolored Motzkin
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path is a Motzkin path with each horizontal step colored red or blue which does not

have a blue horizontal step of height 0. We will denote the steps (1, 1), (1,−1), red

(1, 0), and blue (1, 0) by NE (northeast), SE (southeast), RE (red east), and BE

(blue east) respectively. The set of all restricted bicolored Motzkin paths of length

n is denoted by RBMn. A Charlier diagram of length n is a pair h = (M, ξ) where

M = (s1, . . . , sn) ∈ RBMn and ξ = (ξ1, . . . , ξn) is a sequence of integers such that

ξi = 1 if si is a NE or RE step, and 1 ≤ ξi ≤ l if si is a SE or BE step of height l. Γn

will denote the set of Charlier diagrams of length n.

It is well known that partitions are in a one-to-one correspondence with Charlier

diagrams. Here we use two maps described in [31], which are based on similar con-

structions in [17, 43]. For our purpose, we reformulate the maps Φr, Φl : Γn → Πn as

follows. Given (M, ξ) ∈ Γn, construct λ ∈ Πn step by step. The path M = (s1, . . . , sn)

determines the type of λ: i ∈ [n] is

- a minimal but not a maximal element of a block of λ (opener) if and only if si

is a NE step;

- a maximal but not a minimal element of a block of λ (closer) if and only if si

is a SE step;

- both a minimal and a maximal element of a bock of λ (singleton) if and only if

si is a RE step;

- neither a minimal nor a maximal element of a block of λ (transient) if and only

if si is a BE step.

To draw the edges in Φr((M, ξ)), we process the closers and transients one by one

from left to right. Each time we connect the vertex i that we are processing to the

ξi-th available opener or transient to the left of i, where the openers and transients are



26

ranked from right to left. If we rank the openers and transients from left to right, we

get Φl((M, ξ)). It can be readily checked that Φr and Φl are well defined. Moreover:

Proposition 1. The maps Φr, Φl : Γn → Πn are bijections.

The proof can be found in [17, 31] and their references.

Example 11. If (M, ξ) is the Charlier diagram in Figure 2.2, then

Φr((M, ξ)) = {{1, 7, 10}, {2, 4, 6, 8}, {3}, {5, 9}, {11, 12}}

Φl((M, ξ)) = {{1, 4, 6, 7, 9}, {2, 10}, {3}, {5, 8}, {11, 12}}

i 1 2 3 6 7 8 9 11 124 5 10

ξi 1 1 1 1 1 2 3 2 2 1 1 1

red blue

blue blue

Fig. 2.2 A Charlier diagram.

For M ∈ RBMn let di be the number of NE and RE steps that start at height

i, (i ≥ 0). The profile of M is the sequence pr(M) = (d0, . . . , dl), where l = max{i :

di 6= 0}. Note that this implies that di ≥ 1 for each i = 0, . . . , l, and that the

path M is of height l or l + 1. The semi-type of M = (s1, . . . , si) is the sequence

st(M) = (ε1, . . . , εn) where εi = 0 if si is a NE or RE step, and εi = 1 if si is a SE

or BE step. For example, if M is the path in Figure 2.2, then pr(M) = (2, 1, 2), and

st(M) = (0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1).
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Let λ ∈ Πn and Φ−1
r (λ) = (M, ξr), Φ−1

l (λ) = (M, ξl). Define ϕ(λ) = M ∈ RBMn.

Note that for a given λ, ϕ(λ) can be easily constructed using the four steps above. The

next lemma gives the relation between a partition and its corresponding restricted

bicolored Motzkin path and Charlier diagram.

Lemma 4. Let Φr, Φl and ϕ be the maps defined above and Φ−1
r (λ) = (M, ξr),

Φ−1
l (λ) = (M, ξl).

(a) The number of blocks of λ is equal to the total number of NE and RE steps of

M .

(b) cr(λ) =
∑n

i=1 (ξr
i − 1), ne(λ) =

∑n
i=1 (ξl

i − 1).

(c) pr(M) = (d0, . . . , dl) if and only if crset(λ) = {0d0 , . . . , ldl}.

(d) neseq(λ) = v1 . . . vk if and only if the zeros in st(M) = (ε1, . . . , εn) are in the

positions v1 + 1, v2 + 2, . . . , vk + k.

Proof. (a) The result follows from the fact that the number of blocks of λ is equal to

the total number of openers and singletons.

(b) Denote by E be the set of arcs of λ. For e = (i, j) ∈ E let ce = |{(p, q) ∈
E : i < p < j < q}|. Then cr(λ) =

∑
e∈E ce. Similarly, if ne = |{(p, q) ∈ E : p <

i < j < q}|, then ne(λ) =
∑

e∈E ne. From the definitions of Φr and Φl it follows that

c(i,j) = ξr
j − 1 and n(i,j) = ξl

j − 1. Hence the claim.

(c) Using the notation at the beginning of section 2.1, we have crseq(λ) =

(u1, . . . , uk), where ui is the number of edges (p, q) such that p < bi < q. Here

bi = min Bi, that is, bi is the i-th opener or singleton from left to right. But the step

in M which corresponds to bi is of height h if and only if ui = h.

(d) It follows directly from the definitions of neseq(λ) and st(M).
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A composition of k is an ordered tuple (d0, . . . , dl) of positive integers whose sum

is k.

Lemma 5. Let l ≥ 0, k ≥ 1, and n ≥ k.

(a) If λ ∈ Πn,k and crset(λ) = {0d0 , . . . , ldl}, then (d0, . . . , dl) is a composition of k

into l + 1 parts, where l ≤ n− k, and 0 ≤ cr(λ) ≤ (n− k − 1)l − l(l−1)
2

.

(b) Given a composition (d0, . . . , dl) of k into l + 1 ≤ n − k + 1 parts and an

integer c such that 0 ≤ c ≤ (n − k − 1)l − l(l−1)
2

, there exists λ ∈ Πn,k with

crset(λ) = {0d0 , . . . , ldl} and cr(λ) = c.

Proof. (a) It is clear that d0 + · · · + dl = k. It follows that all the di’s are positive

from part (c) of Lemma 4. Moreover, λ has at least l openers and, therefore, at least

l closers. So, k + l ≤ n, i.e., l + 1 ≤ n− k + 1. Let ci (respectively ti) be the number

of SE (respectively BE) steps at level i, 1 ≤ i ≤ l + 1. Then
∑l+1

i=1 (ci + ti) = n − k

and ci ≥ 1, 1 ≤ i ≤ l. Using part (b) of Lemma 4, we have

0 ≤ cr(λ) ≤
l∑

i=1

(1 + 0)(i− 1) + (n− k − l)l = (n− k − 1)l − l(l − 1)

2
.

(b) Suppose first that l + 1 ≤ n− k. Let M ∈ RBMn consist of d0 − 1 RE steps

followed by a NE step, then d1− 1 RE steps followed by one NE step, etc., dl− 1 RE

steps followed by a NE step, then n − k − l − 1 BE steps, and l + 1 SE steps. It is

not hard to see that indeed M ∈ RBMn. The path never crosses the x-axis and all

the BE steps, if any, are at hight l + 1 ≥ 1. Also pr(M) = (d0, . . . , dl). Consider all

the sequences ξ = (ξ1, . . . , ξn) such that (M, ξ) is a Charlier diagram. Then
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ξi = 1, 1 ≤ i ≤ k

1 ≤ ξi ≤ l + 1, k + 1 ≤ i ≤ n− l − 1 (2.16)

1 ≤ ξn−i+1 ≤ i, 1 ≤ i ≤ l + 1.

Hence

0 ≤
n∑

i=1

(ξi − 1) ≤ (n− k − l − 1)l + l + · · ·+ 1 = (n− k − 1)l − l(l − 1)

2
. (2.17)

In the case l = n − k, construct M ∈ RBMn similarly: d0 − 1 RE steps followed by

a NE step, then d1 − 1 RE steps followed by one NE step, etc., dl RE steps, followed

by l SE steps. (Note that, unlike in the case l < n − k, the path M is of height l)

All the sequences ξ = (ξ1, . . . , ξn) such that (M, ξ) is a Charlier diagram satisfy the

following properties:

ξi = 1, 1 ≤ i ≤ k

1 ≤ ξn−i+1 ≤ i, 1 ≤ i ≤ l. (2.18)

Hence

0 ≤
n∑

i=1

(ξi − 1) ≤ (l − 1) + · · ·+ 1 = (n− k − 1)l − l(l − 1)

2
. (2.19)

Because of (2.17) (respectively (2.19)), for any integer c between 0 and (n − k −
1)l − l(l−1)

2
, ξ can be chosen to satisfy the conditions (2.16) (respectively (2.18)) and

such that
∑n

i=1 (ξi − 1) = c. Since Φ is a bijection, there is λ ∈ Πn,k such that

Φ(λ) = (M, ξ) and, by part (b) and (c) of Lemma 4, cr(λ) = c and crset(λ) =

{0d0 , . . . , ldl}.
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Theorem 12. Let n ≥ k ≥ 1 and m = min {n− k, k − 1}. Then

|Πn,k/ ∼cr | =
m∑

l=0

(
k − 1

l

)
[(n− k − 1)l − l(l − 1)

2
+ 1]. (2.20)

In particular, if n ≥ 2k − 1,

|Πn,k/ ∼cr| = (n− k − 1)(k − 1)2k−2 + 2k−1 − (k − 1)(k − 2)2k−4. (2.21)

Proof. Recall that λ ∼cr π if and only if cr(λ) = cr(π) and crset(λ) = crset(π).

Therefore, |Πn,k/ ∼cr | = |{(crset(λ), cr(λ)) : λ ∈ Πn,k}|. Using Lemma 5 and the

fact that the number of compositions of k into l + 1 parts, 0 ≤ l ≤ k− 1, is
(

k−1
l

)
, we

derive (2.20). In particular, when n ≥ 2k − 1,

|Πn,k/ ∼cr | =
k−1∑

l=0

(
k − 1

l

)
[(n− k − 1)l − l(l − 1)

2
+ 1].

But

k−1∑

l=0

(
k − 1

l

)
= (1 + x)k−1|x=1 = 2k−1,

k−1∑

l=0

l

(
k − 1

l

)
=

(
d

dx
(1 + x)k−1

)
|x=1 = (k − 1)(1 + x)k−2|x=1

= (k − 1)2k−2,

k−1∑

l=0

l(l − 1)

(
k − 1

l

)
=

(
d2

dx2
(1 + x)k−1

)
|x=1

= (k − 1)(k − 2)(1 + x)k−3|x=1 = (k − 1)(k − 2)2k−3,

and (2.21) follows.

Theorem 12 implies that there are many more examples of different partitions λ

and π for which the statistic cr has same distribution on the the levels of T (λ) and

T (π). For example, |Π2k,k| > (2k − 1)!! ≈ √
2
(

2k
e

)k
while |Π2k,k/ ∼cr| ≈ 3k22k−4.
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Next we analyze the number of nesting-similarity classes. First we derive a

recurrence for the numbers fn,k = |Πn,k/ ∼ne |.

Theorem 13. Let n ≥ k ≥ 1. Then

fn,1 = 1, (2.22)

fn,k =
n−1∑

r=k−1

fr,k−1 + (k − 1)

(
n− 2

k

)
, k ≥ 2. (2.23)

Proof. Equation (2.22) is clear since |Πn,1| = 1.

Recall that λ ∼ne π if and only if ne(λ) = ne(π) and neseq(λ) = neseq(π). By

Lemma 4, fn,k is equal to the number of pairs (ε, c) such that there exists λ ∈ Πn,k

with ne(λ) = c and st(ϕ(λ)) = ε. It is not hard to see that for a given a sequence

ε = (ε1, . . . , εn) ∈ {0, 1}n, there exists λ ∈ Πn,k such that st(ϕ(λ)) = ε if and only if ε

has k zeros and ε1 = 0. Denote the set of all such sequences by S0
n,k and denote the

set of all ε ∈ {0, 1}n with k zeros by Sn,k.

For a sequence ε ∈ Sn,k define a bicolored Motzkin path M = M(ε) = (s1, . . . , sn)

as follows. For i from n to 1 do:

- If εi = 0 and si is not defined yet, then set si to be a RE step;

- If εi = 1 and there is j < i such that εj = 0 and sj is not defined yet, then

set si to be a SE step and sj0 to be a NE step, where j0 = min{j : εj =

0 and sj is not defined yet};

- If εi = 1 and there is no j < i such that εj = 0 and sj has not been defined yet,

set si to be a BE step.

Note that we build M backwards, from (n, 0) to (0, 0). Let hi be the height of si

and ne(ε) =
∑

(hi − 1), where the sum is over all the indices i such that εi = 1. For
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example, if ε = (0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1), then

M(ε) = (NE,NE, NE, BE, NE,BE, BE, SE, SE, SE,RE, SE).

The sequence of the heights of all the steps of M is (0, 1, 2, 3, 3, 4, 4, 4, 3, 2, 1, 1) and

ne(ε) = (3− 1) + (4− 1) + (4− 1) + (4− 1) + (3− 1) + (2− 1) + (1− 1) = 14.

Although clearly M(ε) stays above the x-axis, it is not necessarily a restricted

bicolored Motzkin path. The reason is that any 1 in ε before the first zero would

produce a BE step on the x-axis. Hence, M(ε) ∈ RBMn if and only if ε1 = 0, or

equivalently, ε ∈ S0
n,k.

We claim that for a fixed ε ∈ S0
n,k, there is λ ∈ Πn,k such that st(ϕ(λ)) = ε and

ne(λ) = c if and only if 0 ≤ c ≤ ne(ε). To show the if part, one can choose a sequence

ξ = (ξ1, . . . , ξn) with 1 ≤ ξi ≤ hi if εi = 1, ξi = 1 if εi = 0, and
∑n

i=1(ξi − 1) = c.

Then Lemma 4 implies that Φl((M, ξ)) satisfies the requirements. Conversely, suppose

λ ∈ Πn,k is such that st(ϕ(λ)) = ε. Let Φ−1
l (λ) = (M ′, ξ′). Then the height h

′
i of each

BE and SE step of M ′ satisfies

h
′
i ≤ min{# zeros in (ε1, . . . , εi−1), (# ones in (εi+1, . . . , εn)) + 1} = hi.

Now, by Lemma 4,

ne(λ) =
∑

(ξ
′
i − 1) ≤

∑
(h

′
i − 1) ≤

∑
(hi − 1) = ne(ε).

The claim is proved. Back to the proof of Theorem 13, we have

fn,k =
∑

ε∈S0
n,k

(ne(ε)+1) =
∑

ε∈S0
n,k

(
∑

(hi − 1) + 1) =
∑

ε∈S0
n,k

∑
hi− (n− k− 1)

(
n− 1

k − 1

)
.

Set

gn,k =
∑

ε∈S0
n,k

∑
hi and g∗n,k =

∑
ε∈Sn,k

∑
hi,
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where the inner sums are taken over all the indices i such that εi = 1. With this

notation,

fn,k = gn,k − (n− k − 1)

(
n− 1

k − 1

)
. (2.24)

The sequences gn,k and g∗n,k satisfy the following recurrence relations:

gn,k = gn−1,k−1 + g∗n−2,k−1 + (n− k)

(
n− 2

k − 1

)
, (2.25)

g∗n,k =
n∑

r=k

gr,k. (2.26)

To see (2.25), note that if εn = 0 then (ε1, ..., εn−1) ∈ S0
n−1,k−1 and the path M(ε) is

M(ε1, ..., εn−1) with one RE step appended, and if εn = 1 then (ε2, ..., εn−1) ∈ Sn−2,k−1

and M(ε2, ..., εn−1) is obtained from M(ε) by deleting the first NE and the last SE

step. For (2.26), if ε1 = · · · = εr−1 = 1 and εr = 0, then M(εr, . . . , εn) is obtained from

M(ε) by deleting the first r − 1 BE steps at level 0. Substituting (2.26) into (2.25)

gives

gn,k =
n−1∑

r=k−1

gr,k−1 + (n− k)

(
n− 2

k − 1

)
. (2.27)

Finally, by substituting gn,k from (2.24) into (2.27) and simplifying, we obtain (2.23).

Corollary 4.

|Π1/ ∼ne | = 1, |Π2/ ∼ne | = 2

|Πn/ ∼ne | = 2n−5(n2 − 5n + 22), n ≥ 3

Proof. Denote |Πn/ ∼ne | by Fn. Using Fn =
∑n

k=1 fn,k, (2.22), and (2.23), we get

Fn = 1 + F1 + · · ·+ Fn−1 +
n∑

k=2

(k − 1)

(
n− 2

k

)

= F1 + · · ·+ Fn−1 + (n− 4)2n−3 + 2, n ≥ 2.
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Table 2.1

The two equivalence relations ∼cr and ∼ne on set partitions are not compatible.

crossing-similarity classes

n \ k 1 2 3 4 5 6

1 1

2 1 1

3 1 2 1

4 1 3 3 1

5 1 4 7 4 1

6 1 5 11 4 5 1

nesting-similarity classes

n \ k 1 2 3 4 5 6

1 1

2 1 1

3 1 2 1

4 1 4 3 1

5 1 7 9 4 1

6 1 11 22 16 5 1

This yields the recurrence relation

Fn = 2Fn−1 + (n− 3)2n−4, n ≥ 3

with initial values F1 = 1 and F2 = 2, which has the solution

Fn = 2n−5(n2 − 5n + 22), n ≥ 3.

Table 2.1 gives the number of crossing/nesting-similarity classes on Πn,k for small

n and k. The two equivalence relations ∼cr and ∼ne on set partitions are not compat-

ible. From Table 2.1 it is clear that ∼cr is not a refinement of ∼ne. On the other hand,

let π = {{1, 3}, {2, 4}, {5, 6}} and λ = {{1, 3, 6}, {2, 4}, {5}}. It is easy to check that

π ∼ne λ, but π 6∼cr λ, as cr(π) = 1 and cr(λ) = 2.
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2.4. Generating function for crossings and nestings

In this section we analyze the generating function

Sπ(q, p, z) =
∑

l≥0

∑

λ∈T (π,l)

qcr(λ)pne(λ)zl

for a given partition π, and derive a continued fraction expansion for Sπ(q, p, z). For

this we work with the group G = Z⊕ Z and α = (1, 0), β = (0, 1). Fix a partition π

with k blocks. Define Eα,β(π, l) = ∪k+l
m=kEα,β(π, l, m), i.e., Eα,β(π, l) is the multiset of

sequences seqα,β(µ) associated to the partitions µ ∈ T (π, l). A recurrence analogous

to (2.9) holds. Namely, for l ≥ 1

Eα,β(λ, l) = Rα,β(Eα,β(λ, l − 1)) ∪M(Eα,β(λ, l − 1)). (2.28)

For simplicity we write El instead of Eα,β(π, l) when there is no confusion. Define bl,r

to be the generating function of the multiset f r
0 (El), i.e.,

bl,r(q, p) =
∑

(x,y)∈fr
0 (El)

qxpy,

where (x, y) ∈ f r
0 (El) contributes to the sum above according to its multiplicity in

f r
0 (El). By convention, let bl,r(q, p) = 0 if f r

0 (El) = ∅, or, one of l, r is negative. For

simplicity we write bl,r for bl,r(q, p). Note that bl,0 =
∑

λ∈T (π,l) qcr(λ)pne(λ) and hence

Sπ(q, p, z) =
∑

l≥0

bl,0z
l. (2.29)

By the formulas (2.28), (2.10), and the proof of part (c) of Lemma 2, we get

f r
0 (El) = f r

0 (M(El−1)) ∪ f r
0 (Rα,β(El−1))

= f r−1
0 (El−1) ∪ f r

0 (El−1) ∪
r⋃

t=0

f r+1
tα+(r−t)β(El−1) ∪

r⋃
t=0

f r
tα+(r−t)β(El−1),
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which leads to a recurrent relation for bl,r:

bl,r = bl−1,r−1 + bl−1,r + (
r∑

t=0

qtpr−t)bl−1,r+1 + (
r∑

t=0

qtpr−t)bl−1,r.

Using the standard notation [r]q,p := qr−pr

q−p
, we can write this as

Proposition 2.

bl,r = bl−1,r−1 + (1 + [r + 1]q,p)bl−1,r + [r + 1]q,pbl−1,r+1.

If the sequence associated to the partition π is x1x2 . . . xk, with xi = uiα +

viβ, 1 ≤ i ≤ k, then

b0,0 = qu1pv1

b0,r =
∑

1<i1<···<ir≤k

qui1
+···+uir−(r−1)u1pvi1

+···+vir−(r−1)v1 for r ≥ 1. (2.30)

In particular, b0,r = 0 if r ≥ k.

Given l and s, nonnegative integers, consider the paths from (l, 0) to (0, s) using

steps (−1, 0), (−1, 1), and (−1,−1) which do not go below the x-axis. Each step

(−1, 0) ((−1, 1), (−1,−1) respectively) starting at the line y = r has weight

[r + 1]q,p (1 + [r + 1]q,p, 1, respectively). The weight w(M) of such a path M is

defined to be the product of the weights of its steps. Let cl,s =
∑

w(M), where the

sum is over all the paths M described above. Then from Proposition 2 one has

bl,0 =
∑

0≤s≤k−1

cl,sb0,s.

Set ar = [r + 1]q,p and cr = [r + 1]q,p + 1. By the well-known theory of continued

fractions (see [17]), cl,s is equal to the coefficient in front of zl in

Ks(z) := J/0/(z)a0zJ
/1/(z)a1z · · · J/s/(z) =

1

zs
(Qs−1(z)J(z)− Ps−1(z)) (2.31)
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where

J/h/(z) =
1

1− chz −
ahz

2

1− ch+1z −
ah+1z

2

. . .

and Pk(z)
Qk(z)

is the k-th convergent of J(z) := J/0/(z). Hence

Theorem 14. Let π be a set partition with k blocks whose associated sequence is

x1x2 . . . xk, where xi = uiα + viβ for 1 ≤ i ≤ k. Then

Sπ(q, p, z) =
∑

0≤s≤k−1

b0,sKs(z),

where b0,s is given by the formula (2.30), and Ks(z) is given by (2.31).

In particular, when k = 1, i.e., π is a partition with only one block, then b0,0 = 1

and bl,0 = cl,0b0,0 = cl,0. Therefore

Corollary 5. If |π| = 1, then

Sπ(q, p, z) =
1

1− ([1]q,p + 1)z −
[1]q,pz

2

1− ([2]q,p + 1)z −
[2]q,pz

2

. . .

.

Corollary 5 leads to a continued fraction expansion for the generating function of

crossings and nestings over Π: Just taking π to be the partition of {1}, and bearing
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in mind that we are counting the empty partition as well, we get

∑
n≥0

∑

λ∈Πn

qcr(λ)pne(λ)zn = 1 + zS{1}(q, p, z)

= 1 +
z

1− ([1]q,p + 1)z −
[1]q,pz

2

1− ([2]q,p + 1)z −
[2]q,pz

2

. . .

. (2.32)

A different expansion was given in [31], as

∑
n≥0

∑

λ∈Πn

qcr(λ)pne(λ)zn =
1

1− z −
z2

1− ([1]q,p + 1)z −
[2]q,pz

2

1− ([2]q,p + 1)z −
[3]q,pz

2

. . .

.(2.33)

The fractions (2.33) and (2.32) can be transformed into each another by applying

twice the following contraction formula for continued fraction, (for example, see [11]):

c0

1−
c1z

1−
c2z

. . .

= c0 +
c0c1z

1− (c1 + c2)z −
c2c3z

2

1− (c3 + c4)z −
c4c5z

2

. . .

.
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CHAPTER III

A BIJECTION BETWEEN PARTIALLY DIRECTED PATHS IN THE

SYMMETRIC WEDGE AND MATCHINGS

E.J. Janse van Rensburg, T. Prellberg, and A. Rechnitzer in [26] studied the self-

avoiding partially directed paths in the wedge y = ±px consisting of east, north and

south steps. Using a variation of the kernel method they were able to derive explicitly

the generating function for the case p = 1. The generating function revealed that

the number of such paths which end at (n,−n) with k north steps is the same as the

number of matchings on [2n] with k nestings. In this chapter we give a bijective proof

of this fact.

A partially directed path in the plane is a path starting at the origin and con-

sisting of unit east, north, and south steps. We consider all such self-avoiding paths

confined to the symmetric wedge defined by the lines y = ±x. Let Pn be the set of

all such paths ending at the line y = −x with n horizontal steps.

Theorem 15. There is a bijection Φ : Pn → Mn that takes the number of north

steps of P ∈ Pn to the number of nestings of Φ(P ).

Below we define a bijection Φ : Pn →Mn that takes the number of north steps of

P ∈ Pn to the number of nestings of Φ(P ). The map Φ is defined as the composition

of two maps: Φ = φ ◦ ψ, where ψ : Pn →Mn and φ : Mn →Mn.

3.1. Bijection ψ from Pn to Mn

Every path P ∈ Pn is determined by the y-coordinates of its east steps, i.e., a sequence

a1, . . . , an of integers such that −(i−1) ≤ ai ≤ i−1. Set bi = an+1−i +n+1− i. Note

that 1 ≤ bi ≤ 2(n + 1− i)− 1. Define a matching M on [2n] by connecting the first
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available vertex from the left to the bi-th available vertex to its right, one by one for

each i = 1, . . . , n in that order. Note that before the i-th step there are 2(n + 1− i)

vertices that are not connected yet, so each step is possible. We define ψ(P ) = M . It

is not hard to see that knowing M, one can reverse the steps one by one and find the

bi’s, which determine a path P . So ψ is a bijection. Figure 3.1 shows a path P ∈ P7

and ψ(P ).

Definition 2. Let M ∈Mn. Suppose the edges e1, . . . , en of M are ordered according

to their left endpoints in ascending order. Suppose ei = (a, b) and ei+1 = (c, d). Define

sti(M) :=





|{v : d ≤ v ≤ b, v is a vertex of ek, k > i}| , if ei and ei+1 are nested

0, otherwise

and

st(M) =
n−1∑
i=1

sti(M).

Fig. 3.1 Path P ∈ P7 and the corresponding matching ψ(P ).

Lemma 6. The number of north steps of P is equal to st(ψ(P )).

Proof. Let M = ψ(P ). The number of north steps of P is

∑
ai+1>ai

(ai+1 − ai) =
∑

bn−i≥bn−i+1+2

(bn−i − bn−i+1 − 1) (3.1)



41

So, it suffices to show that

sti(M) =





bi − bi+1 − 1, if bi ≥ bi+1 + 2

0, otherwise

(3.2)

After the i-th edge ei is drawn in the construction of M , there are bi− 1 unconnected

vertices below it. In the case bi ≥ bi+1 +2, we have bi−1 ≥ bi+1 +1 which implies ei+1

is nested below ei and sti(M) = bi − bi+1 − 1. In the other case, when bi < bi+1 + 2,

we have bi − 1 < bi+1 + 1 and hence the edge ei+1 and ei are crossed (if bi > 1) or

aligned (if bi = 1). In either case, sti(M) = 0.

3.2. Bijection φ from Mn to Mn

We describe φ by a series of transformations on the diagrams of the matchings. This

map preserves the first edge. For M ∈ Mn, N = φ(M) is constructed inductively as

follows. If n = 1 set φ(M) = M . If n > 1, let M1 be the matching obtained from

M by deleting its first edge e1 = (1, r) and let N1 = φ(M1). Let N2 be the matching

obtained by adding back the edge e1 in the same position as it was in M . Denote

by e2 the second edge of N2 (which was also the second edge of M). There are three

cases:

case 1: e1 and e2 were aligned

In this case set N = φ(M) = N2.

case 2: e1 and e2 were crossed

Let f2 = e2 = (l2, r2), f3 = (l3, r3), . . . , fk = (lk, rk) be the edges in N2 crossing

e1 ordered by their left endpoints 2 = l2 < l3 < · · · < lk. Rearrange them

in the following way: connect r2 to l3, r3 to l4, . . . , rk−1 to lk. Finally, insert

one additional vertex right before r and connect it to rk. Delete the vertex l2
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and renumber the remaining vertices (see Figure 3.2). Note that the position

of the first edge in the matching N obtained this way is the same as in M . Set

φ(M) = N .

−→

l3 l4 r1 2 ↑

deleted vertex

r2lklk−1 ↑

new vertex

Fig. 3.2 Definition of φ when e1 and e2 are crossed. Dashed lines are used to

represent edges whose left endpoints have been changed.

case 3: e1 and e2 were nested

In N2, let f1 = (l1, r1), . . . , fp = (lp, rp) be the edges crossing both e1 = (1, r)

and e2 = (2, q), and let fp+1 = (lp+1, rp+1), . . . , fp+s = (lp+s, rp+s) be the edges

crossing e1 but not e2, such that l1 < · · · < lp < q < lp+1 < · · · < lp+s. For

easier notation let {l1 < · · · < lp < q < lp+1 < · · · < lp+s} = {v1 < · · · < vp <

vp+1 < vp+2 < · · · < vp+s+1}. Add one vertex right before r and connect it

to vs+1. ”Rearrange” the edges f1, . . . , fp+s so that r1, . . . , rp+s are connected

to v1, . . . , vs, vs+2, . . . , vp+s+1 in that order. Finally, delete the vertex 2 and

renumber the remaining vertices. See Figure 3.3 for an illustration when p = 3

and s = 2. Call the matching obtained this way N . The first edge of N is the

same as in M . Set φ(M) = N .

Example 16. Figure 3.4 shows step-by-step construction of φ(M) for the matching

M from Figure 3.1. So, for the path P given in Figure 3.1, the corresponding matching

is Φ(P ) = {(1, 4), (2, 14), (3, 12), (5, 8), (6, 9), (7, 11), (10, 13)}.
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−→

↑

new vertex

}

p edges

−→

s edges

s edges

p edges

↑

deleted vertex

rq21

}

}

}

Fig. 3.3 Example of case 3 for p = 3 and s = 2.

Theorem 17. The map φ is a bijection and ne(φ(M)) = st(M).

Proof. To show that φ is bijective, we explain how to define the inverse map. Note

that the matching resulting from case 1 above has the property that its first edge is

(1,2). In the matching resulting from case 2 (case 3 respectively), the vertex preceding

the right endpoint of the first edge e1 is a left endpoint (right endpoint respectively)

of an edge different than e1. Since all the steps in the definition of φ are invertible,

we simply perform the inverse steps of the corresponding case.

It is left to prove ne(φ(M)) = st(M). For shortness, for any matching M , let

ne(e,M) denote the number of edges in M below the edge e. Let M , M1, N1, N2, and

N be the same as in the definition of φ. By inductive hypothesis, ne(N1) = st(M1) =

st(M)− st1(M). So we just need to prove

ne(N) = ne(N1) + st1(M) (3.3)

It is clear that

ne(N2) = ne(N1) + ne(e1, N2) (3.4)

In the first case of the definition of φ, (3.3) clearly follows since st1(M) = 0 and

we do not add nestings to N1 by adding back e1.

In the second case, st1(M) = 0, so we need to show that ne(N) = ne(N1). To this
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M φ(M)

Fig. 3.4 Example of construction of φ(M).

end, if e is an edge in N2 different from f2, . . . , fk (notation from the definition of φ),

let r(e) be the edge in N that corresponds to e in the obvious way, and let r(fi) be the

edge with right endpoint ri, for i = 2, . . . , k. It is clear that ne(e,N2) = ne(r(e), N)

for any edge e /∈ {e1, f2, . . . , fk}. Note that the left endpoint of r(fi) in N is li+1 − 1

because the vertex 2 from N2 was deleted (see Figure 3.2). So, for 2 ≤ i < k

ne(fi, N2)− ne(r(fi), N) =

= |{edges in N below e1 with left endpoint between li − 1 and li+1 − 1}|
(3.5)

ne(fk, N2)− ne(r(fk), N) =

= |{edges in N below e1 with left endpoint between lk − 1 and r}| (3.6)
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By subtracting the following equalities

ne(N2) =
k∑

i=2

ne(fi, N2) +
∑

e/∈{f2,...,fk}
ne(e,N2) (3.7)

ne(N) =
k∑

i=2

ne(r(fi), N) +
∑

e/∈{f2,...,fk}
ne(r(e), N) (3.8)

and using (3.5) and (3.6) we get

ne(N2)− ne(N) = ne(e1, N) = ne(e1, N2) (3.9)

This together with (3.4) gives ne(N) = ne(N1).

In the third case, similarly, denote by r(fi) the edge in N that ends with vertex

ri, i = 1, . . . , p + s, by r(e2) the edge that ends with the vertex r − 1, and for every

other edge e in N2, denote by r(e) the edge in N that corresponds to e in the natural

way. In N2, define a to be the number of edges below e1 and crossing e2 = (2, q) and

b to be the number of those edges below e1 with a left endpoint right of q. In what

follows, vi are the vertices defined in case 3 of the definition of φ. Then

st1(M) = 1 + a + 2b + s (3.10)

ne(r(e2), N) = |{edges in N2 below e1 with left endpoint between vs+1 and r}|
(3.11)

ne(N2) = ne(N1) + ne(e2, N2) + 1 + a + b (3.12)

ne(N2) = ne(e1, N2) + ne(e2, N2) +

p+s∑
i=1

ne(fi, N2) +
∑

e/∈{e1,e2,f1,...,fp+s}
ne(e,N2)

(3.13)

ne(N) = ne(e1, N) + ne(r(e2), N) +

p+s∑
i=1

ne(r(fi), N) +
∑

e/∈{e1,e2,f1,...,fp+s}
ne(r(e), N2)

(3.14)
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To complete the proof, we need to distinguish two cases: s ≥ p and p > s. When

s ≥ p, close inspection of the ”rearrangement” of the edges reveals:

ne(r(fi), N)− ne(fi, N2) =

=





1, 1 ≤ i ≤ p

1 + |{edges in N2 below e1 with left vertex between vi and vi+1}| , p < i ≤ s

0, s < i ≤ p+ s

(3.15)

while when p > s, similar equalities hold:

ne(r(fi))− ne(fi) =

=





1, 1 ≤ i ≤ s

− |{edges in N2 below e1 with left vertex between vi and vi+1}| , s < i ≤ p

0, p < i ≤ p+ s

(3.16)

Now, we add the equations (3.12) and (3.14) and subtract (3.13) from them. Using

(3.10), (3.11), and (3.15), i.e., (3.16), we get (3.3).

3.3. Some properties of Φ

First we need few definitions. We say that {l, l+1, . . . , k} is a component of a matching

M ∈ Mn if the restrictions of M on each of the sets {1, . . . , l − 1}, {l, l + 1, . . . , k},
and {k + 1, . . . , n} are matchings themselves. A matching is called irreducible if it

has only one component. In terms of diagrams, a matching is irreducible if it cannot

be split by vertical bars into disjoint matchings.
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A component of a path P ∈ Pn is a subsequence of consecutive steps beginning

at (l,−l) and ending at (k,−k) such that both parts of P between (l,−l) and (k,−k),

and between (k,−k) and (n,−n) when translated by the appropriate vector to the

origin represent paths in Pk−l and Pn−k respectively. A component which does not

have nontrivial subcomponents is called irreducible.

Proposition 3. For P ∈ Pn the following are true:

(a) P has k south steps on the line x = n if and only if in Φ(P ), 1 is connected to

k + 1 .

(b) The irreducible components of P read backwards are in one-to-one correspon-

dence with the irreducible components of Φ(P ) from left to right.

Proof. (a) From the definition of ψ, it is clear that P has k south steps on the line

x = n if and only in ψ(P ), 1 is connected to k +1. Thus, the claim follows from

the fact that φ preserves the first edge.

(b) This statement is clearly true if we replace Φ by ψ. Hence, it suffices to observe

that if the irreducible components of ψ(P ) are C1, . . . , Ck, then φ(C1), . . . , φ(Ck)

are the irreducible components of Φ(P ).

Proposition 4. If P is a path with no north steps (Dyck path) then M = Φ(P ) is

the unique matching with no nestings such that i is a left endpoint in M exactly when

the (2n + 1− i)-th step of P is a south step.

In other words, the set of left and right endpoints of M is determined by P traced

backwards.

Proof. It follows from the definition of ψ that the statement is true for ψ(P ). More-

over, since ψ(P ) has no nestings, φ leaves ψ(P ) unchanged.
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CHAPTER IV

MAJOR INDEX FOR 01-FILLINGS OF MOON POLYOMINOES

In this chapter we extend the major index to certain 01-fillings of moon polyominoes

which include words and set partitions. In section 4.1 we introduce the necessary

notations, and describe the definition of the major index for 01-fillings of moon poly-

ominoes. We explain in section 4.2 how the classical definition of major index on

words and set partitions can be obtained by considering moon polyominoes of special

shapes. In section 4.3 we show that the maj statistic is equally distributed as ne, the

number of north-east chains of length 2, by computing the corresponding generating

functions. In the fillings of special shapes, ne corresponds to the number of inversions

for words and crossings for set partitions. Therefore, our main result, Theorem 21,

leads to a generalization of (1.1) and the analogous result for set partitions. In sec-

tion 4.4, we present a bijective proof for the equidistribution of maj and ne, which

consists of three maps. The first is from the fillings of left-aligned stack polyominoes

to itself that sends maj to ne, constructed in the spirit of Foata’s second fundamental

transformation. The other two are maps that transform a moon polyomino to a left-

aligned stack polyomino with the same set of columns, while preserving the statistics

maj and ne, respectively. Composing these three maps yields the desired bijection.

4.1. Definition of major index for fillings of moon polyominoes

We are concerned with 01-fillings of moon polyominoes with restricted row sums.

That is, given a moon polyomino M, we assign a 0 or a 1 to each cell of M so that

there is at most one 1 in each row. In this chapter we will simply use the term filling

to denote such 01-filling. Also we will use the term north-east chain, or shortly NE

chain, to denote a north-east chain of length 2. The number of NE chains of M will
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be denoted ne(M). We say a cell is empty if it is assigned a 0, and it is a 1-cell

otherwise. Given a moon polyomino M with m columns, we label them c1, . . . , cm

from left to right . Let s = (s1, . . . , sm) be an m-tuple of nonnegative integers and A

be a subset of rows of M. We denote by F(M, s; A) the set of fillings M of M such

that the empty rows of M are exactly those in A and the column ci has exactly si

many 1’s, 1 ≤ i ≤ m. The filling M in Figure 4.1 is in F(M, s; A) for A = {3} and

s = (1, 1, 2, 1, 1, 0).

1

1

1

1

1

1

Fig. 4.1 Filling M of a moon polyomino M with ne(M) = 5.

The set F(M, s; A) was first studied by Kasraoui [30], who showed that the

numbers of north-east and south-east chains are equally distributed. The generating

functions for these statistics are also presented in [30, Theorem 2.2].

To define the major index for fillings of moon polyominoes, we first state it for

rectangular shapes, which is essentially the classical definition of major index for

words, (c.f. section 4.2.1).

Let R be a filling of a rectangle whose n nonempty rows r1, . . . , rn are numbered

from top to bottom. We define the descent statistic for R as

des(R) = |{i | the 1-cells in rows ri and ri+1 form an NE chain}|.

That is, descents of a rectangular filling are NE chains in consecutive nonempty rows.

For each nonempty row ri of R, let R(ri) denote the rectangle that contains the
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row ri and all rows in R above the row ri.

Definition 3. The major index for the rectangular f illing R is defined to be

maj(R) =
n∑

i=1

des(R(ri)). (4.1)

Clearly, the empty rows of R do not play any role in maj(R). That is, if we

delete them, the major index of the resulting filling remains the same.

Definition 4. Let M be a filling of a moon polyomino M. Let R1, . . . ,Rr be the

list of all the maximal rectangles contained in M ordered increasingly by height, and

denote by Ri the filling M restricted on the rectangle Ri. Then the major index of M

is defined to be

maj(M) =
r∑

i=1

maj(Ri)−
r−1∑
i=1

maj(Ri ∩Ri+1), (4.2)

where maj(Ri) and maj(Ri ∩Ri+1) are defined by (4.1).

In particular, maj(M) = maj(R1) when M is a rectangular shape. It is also clear

that maj(M) is always nonnegative since maj(Ri+1) ≥ maj(Ri∩Ri+1), i = 1, . . . , r−1.

Example 18. Consider the filling from Figure 4.1. It has four maximal rectangles

and maj(M) = (2 + 2 + 1 + 1)− (2 + 0 + 0) = 4. See Figure 4.2.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

maj(R1) = 2 maj(R4) = 1maj(R3) = 1maj(R2) = 2

Fig. 4.2 Calculation of maj(M) for a moon polyomino using Definition 4.
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The major index can be equivalently defined in a slightly more complicated

way. However, this way is useful in proofs, especially when one uses induction on

the number of columns of the filling, (c.f. Theorem 4.1). We state this equivalent

definition next. First we need some notation. Let Left(M) be the set of columns of

M which are to left of the columns of maximal length and let Right(M) consist of

the remaining columns of M.

We order the columns of M, c1, . . . , cm, by a total order ≺ as follows: ci ≺ cj if

and only if

• |ci| < |cj| or

• |ci| = |cj|, ci ∈ Left(M) and cj ∈ Right(M), or

• |ci| = |cj|, ci, cj ∈ Left(M) and ci is to the left of cj, or

• |ci| = |cj|, ci, cj ∈ Right(M) and ci is to the right of cj,

where |c| denotes the length of the column c. A similar ordering of rows was used

in [30].

For every column ci ∈ Left(M) define the rectangle M(ci) to be the largest

rectangle that contains ci as the leftmost column. For ci ∈ Right(M), the rectangle

M(ci) is taken to be the largest rectangle that contains ci as the rightmost column

and does not contain any columns from Left(M) of same length as ci.

Definition 4’. Let ci1 ≺ ci2 ≺ · · · ≺ cim be the ordering of the columns of M and

let Mj be the restriction of M on the rectangle M(cij), 1 ≤ j ≤ m. Then

maj(M) =
m∑

j=1

maj(Mj)−
m−1∑
j=1

maj(Mj ∩Mj+1), (4.3)

where maj(Mj) and maj(Mj ∩Mj+1) are defined by (4.1).
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Example 19. Consider the f illing M from Figure 4.1. The order ≺ on the columns of

M is c6 ≺ c1 ≺ c5 ≺ c4 ≺ c3 ≺ c2. So, M1 = M(c6), M2 = M(c1), M3 = M(c5),

M4 = M(c4), M5 = M(c3), and M6 = M(c2), as illustrated in Figure 4.3. By

Definition 4’, maj(M) = (2 + 2 + 1 + 1 + 1 + 0)− (2 + 1 + 0 + 0 + 0) = 4.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

maj(M1) = 2 maj(M2) = 2

maj(M6) = 0maj(M5) = 1

maj(M3) = 1

maj(M4) = 1

Fig. 4.3 Calculation of maj(M) for a moon polyomino using Definition 4’.

Proposition 5. Definitions 4 and 4’ are equivalent.

Proof. Some of the rectangular fillings Mj in Definition 4’ may contain Mj+1, in which

case maj(Mj+1) − maj(Mj ∩ Mj+1) = 0 and formula (4.3) can be simplified. More

precisely, there are uniquely determined indices 1 = j1 < j2 < · · · < jr ≤ m such

that M1 = Mj1 ⊇ M2 ⊇ · · · ⊇ Mj2−1 + Mj2 ⊇ · · · ⊇ Mjr−1 + Mjr ⊇ · · · ⊇ Mm.

That is, if the rectangles Mi are ordered by containment, then Mj1 ,Mj2 , . . . ,Mjr are

the maximal elements. Following the notation in Definition 4, the filling Mjk
is the

filling Rk of the k-th maximal rectangle contained in M. Then, after cancellation of

some terms, the right-hand side of (4.3) becomes the right-hand side of (4.2). For
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instance, in the previous example, the rectangles M3 and M6 are not maximal and

therefore maj(M3)−maj(M2 ∩M3) = 0 and maj(M6)−maj(M5 ∩M6) = 0.

4.2. maj(M) for special shapes M

It is well-known that permutations and set-partitions can be represented as fillings of

Ferrers diagrams (e.g. [34]). Here we will describe such presentations to show how to

get the classical major index for words and set partitions from Definition 4.

4.2.1. When M is a rectangle: words and permutations

For any rectangle, label the rows from top to bottom, and columns from left to right.

Fillings of rectangles are in bijection with words. More precisely, let w = w1 . . . wn

be a word with letters in the set [m]. The word w can be represented as a filling M

of an n ×m rectangle M in which the cell in row n − i + 1 and column m − j + 1

is assigned the integer 1 if wi = j, and is empty otherwise. Conversely, each filling of

the rectangle M corresponds to a word w. It is easy to check that ne(M) = inv(w),

des(M) = des(w), and maj(M) = maj(w). The latter follows from the fact that

maj(w) =
∑n

i=1 des(wiwi+1 . . . wn).

4.2.2. When M is a Ferrers diagram: matchings and set partitions

As explained in [13], general fillings of Ferrers diagrams correspond to multigraphs.

Here we briefly describe the correspondence when restricted to 01-fillings with row

sum at most 1. The Ferrers diagram is bounded by a vertical line from the left, a hor-

izontal line from above, and a path consisting of east and north steps. Following this

path starting from the bottom left end, we label the steps of the path by 1, 2, . . . , n.

This gives a labeling of the columns and rows of the diagram. Draw n vertices on a
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horizontal line and draw an edge connecting vertices i and j if and only if there is

a 1 in the cell of the column labeled i and the row labeled j (see Figure 4.4). The

resulting graph has no loops or multiple edges and every vertex is a right endpoint

of at most one edge. The NE chains correspond to crossings of edges in the graph.

If the column sums are at most one, the graph is a matching. If, moreover, in the

labeling of the steps we allow to have a vertical step followed by a horizontal one with

a same label, then the corresponding graph will have vertices which are both right

and left endpoints of edges. Such graphs represent set partitions. In either case, the

major index of the filling is equal to the major index of the corresponding match-

ing or set partition as defined in [7]. Restricting to the triangular Ferrers diagram,

the 01-fillings considered in this paper also include linked partitions, a combinatorial

structure that was studied in [10, 30].
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Fig. 4.4 A filling of a Ferrers diagram and the corresponding graph.

4.2.3. When M is a top-aligned stack polyomino

In the case when M is a top-aligned stack polyomino, maj(M) has a simpler form

in terms of the des statistic, just as in words and permutations. Explicitly, if the

nonempty rows of M are r1, . . . , rn, denote by M(ri) the filling M restricted to the

largest rectangle contained in M whose bottom row is ri.
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Proposition 6. Let M be a filling of a top-aligned stack polyomino and M(ri) be as

defined above. Then

maj(M) =
n∑

i=1

des(M(ri)). (4.4)

Proof. Let rk+1, . . . , rn be all the nonempty rows of M that are of same length as the

last row rn. Denote by M ′ = M\{rk+1, . . . , rn} and by R the filling of the largest

rectangle of M containing rn. We proceed by induction on the number n of rows of

M . The claim is trivial when M has only one row or is a rectangle. Otherwise,

maj(M) = maj(M ′) + maj(R)−maj(M ′ ∩R) (Definition 4)

=
k∑

i=1

des(M(ri)) +
n∑

i=k+1

des(M(ri)), (Ind. hyp. and Definition 3)

which completes the proof.

Example 20. Consider the filling M of a top-aligned stack polyomino in Figure 4.5

with A = {3} and s = (0, 1, 2, 1, 1). M has five nonempty rows and, by Proposition 6,

maj(M) =
∑5

i=1 des(M(ri)) = 0 + 1 + 0 + 1 + 1 = 3.
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1
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1

1

1

1

1

1

1

11

des(M(r1)) = 0 des(M(r2)) = 1 des(M(r3)) = 0 des(M(r4)) = 1 des(M(r5)) = 1

Fig. 4.5 Calculation of maj(M) using Proposition 6.

Proposition 6 will be used in the proof of Lemma 9.
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4.3. The generating function for the major index

In this section we state and prove the main theorem which gives the generating

function for maj over F(M, s; A), the set of all fillings of the moon polyomino M
with column sums given by the integer sequence s and empty rows given by A . Let

|c1|, . . . , |cm| be the column lengths of M and let ai the number of rows in A that

intersect the column ci. Suppose that, under the ordering defined in section 4.1,

ci1 ≺ ci2 ≺ · · · ≺ cim . Then for j = 1, . . . , m, define

hij = |cij | − aij − (si1 + si2 + · · ·+ sij−1
) (4.5)

The numbers hi have the following meaning: if one fills in the columns of M from

smallest to largest according to the order ≺, then hij is the number of available cells

in the j-th column to be filled.

Theorem 21. For a moon polyomino M with m columns,

∑

M∈F(M,s;A)

qmaj(M) =
m∏

i=1

[
hi

si

]

q

(4.6)

where hi is defined by (4.5).

We postpone the proof of Theorem 21 until the end of this section.

Example 22. Suppose M is the first moon polyomino in Figure 1.1, A = {5}, and

s = (1, 0, 2, 1, 1). The ≺ order on the columns of M is: c1 ≺ c5 ≺ c2 ≺ c4 ≺ c3.

The fifth row intersects all columns except c1, so, a1 = 0 and a2 = a3 = a4 = a5 = 1.



57

Therefore,

h1 = hi1 = |c1| − a1 = 2− 0 = 2

h5 = hi2 = |c5| − a5 − s1 = 3− 1− 1 = 1

h2 = hi3 = |c2| − a2 − (s1 + s5) = 4− 1− (1 + 1) = 1

h4 = hi4 = |c4| − a4 − (s1 + s5 + s2) = 6− 1− (1 + 1 + 0) = 3

h3 = hi5 = |c3| − a3 − (s1 + s5 + s2 + s4) = 6− 1− (1 + 1 + 0 + 1) = 2

By Theorem 21,
∑

M∈F(M,s;A) qmaj(M) =
∏m

i=1

[
hi

si

]
q

=
[
2
1

]
q

[
1
0

]
q

[
2
2

]
q

[
3
1

]
q

[
1
1

]
q

= (1+q)(1+

q + q2) = 1 + 2q + 2q2 + q3. The fillings in F(M, s; A) are listed in Figure 4.6.
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Fig. 4.6 Illustration of Theorem 21.

Corollary 6. Let σ be a permutation of [m] and let M be a moon polyomino with

columns c1, . . . , cm. Suppose the shape N with columns c′i = cσ(i) is also a moon
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polyomino and s′ = (s′1, . . . , s
′
m) with s′i = sσ(i). Then

∑

M∈F(M,s;A)

qmaj(M) =
∑

N∈F(N ,s′;A)

qmaj(N). (4.7)

That is, the generating function
∑

M∈F(M,s;A) qmaj(M) does not depend on the order of

the columns of M.

Proof. The formula (4.6) seems to depend on the order ≺ of the columns of the moon

polyomino. However, note that ci ≺ cj if |ci| < |cj|; and columns of same length are

consecutive in the order ≺. Hence it suffices to compare the terms in the right-hand

side of (4.6) that come from columns of fixed length. If cij+1
≺ · · · ≺ cij+k

are all the

columns of M of fixed length, then

hij+r
= hij+1

− (sij+1
+ · · ·+ sij+r−1

), 2 ≤ r ≤ k. (4.8)

Thus the contribution of these columns to the right-hand side of (4.6) is

k∏
r=1

[
hij+r

sij+r

]

q

=

[
hij+1

sij+1
, . . . , sij+k

, hij+1
− (sij+1

+ · · ·+ sij+k
)

]

q

. (4.9)

The last q-multinomial coefficient is invariant under permutations of sij+1
, . . . , sij+k

,

and the claim follows.

The right-hand side of formula (4.6) also appeared in the generating function of

NE chains, as shown in [30]:

Theorem 23 (Kasraoui).

∑

M∈F(M,s;A)

qne(M) =
m∏

i=1

[
hi

si

]

q

.

Combining Theorems 21 and 23, we have
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Theorem 24.
∑

M∈F(M,s;A)

qmaj(M) =
∑

M∈F(M,s;A)

qne(M).

That is, the maj statistic has the same distribution as the ne statistic over the set

F(M, s, A). Since ne(M) is the natural analogue of inv for words and permutations,

Theorem 24 generalizes MacMahon’s equidistribution result. Unfortunately, as noted

in [7], the refinement of MacMahon’s theorem which asserts that the joint distribution

of maj and inv over permutations is symmetric does not hold even for matchings.

We shall prove a lemma about the major index for words and then use it to prove

Theorem 21.

Lemma 7. Let w = w1 . . . wk be a word such that wi < n for all i. Consider the

set S(w) of all the words w′ that can be obtained by inserting m many n’s between

the letters of w. Then the difference maj(w′) − maj(w) ranges over the multiset

{i1 + i2 + · · ·+ im | 0 ≤ i1 ≤ i2 ≤ · · · ≤ im ≤ k}. It follows that

∑

w′∈S(w)

qmaj(w′) = qmaj(w)
∑

0≤i1≤i2≤···≤im≤k

qi1+i2+···+im = qmaj(w)

[
k + m

m

]

q

. (4.10)

The same statement holds if w = w1 . . . wk is a word such that wi > 1 for all i and

S(w) is the set of all the words w′ obtained by inserting m many 1’s between the

letters of w.

Proof. We give an elementary proof for the case of inserting n’s. The case of inserting

1’s is dealt with similarly. For a word w = w1 . . . wk we define the descent sequence

desseq(w) = a1 . . . ak+1 by letting ai = maj(w(i))−maj(w), where w(i) is obtained by
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inserting one n in the i-th gap of w, i.e., w(i) = w1 . . . wi−1nwi . . . wk. Note that

maj(w(i)) = maj(w) +





1 + des(wi . . . wk), if wi−1 > wi, 2 ≤ i ≤ k or i = 1

i + des(wi . . . wk), if wi−1 ≤ wi, 2 ≤ i ≤ k

0, if i = k + 1.

Hence, if t = des(w) then desseq(w) is a shuffle of the sequences t + 1, t, . . . , 0 and

t + 2, t + 3, . . . , k which begins with t + 1 and ends with 0. Moreover, every such

sequence is desseq(w) for some word w. By definition, the multiset {maj(w′) −
maj(w) | w′ ∈ S(w)} depends only on desseq(w) and not on the letters of w.

First we consider the case when desseq(w) = k(k−1) . . . 0, i.e., Des(w) = [k−1].

Inserting b n’s between wi−1 and wi increases the major index by b(k− i+1). Hence,

if one inserts bi many n’s between wi−1 and wi for 1 ≤ i ≤ k + 1, the major index is

increased by

k+1∑
i=1

bi(k − i + 1) = k + · · ·+ k︸ ︷︷ ︸
b1

+ (k − 1) + · · ·+ (k − 1)︸ ︷︷ ︸
b2

+ · · ·+ 0 + · · ·+ 0︸ ︷︷ ︸
bk+1

.

Letting (b1, . . . , bk+1) range over all (k + 1)-tuples with
∑k+1

i=1 bi = m, the increased

amount ranges over the multiset {i1 + i2 + · · ·+ im | 0 ≤ i1 ≤ i2 ≤ · · · ≤ im ≤ k}.
To deal with the other possible descent sequences, we note that any descent

sequence desseq(w) can be obtained by applying a series of adjacent transpositions

to k(k − 1) . . . 0, where we only transpose adjacent elements i, j which correspond to

ascent and descent positions, respectively. Suppose

desseq(w) = a1 . . . ai−1ai+1aiai+2 . . . ak+1

is obtained by transposing the i-th and (i + 1)-st element in

desseq(v) = a1 . . . ai−1aiai+1ai+2 . . . ak+1,
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where ai and ai+1 correspond to an ascent and a descent in v, respectively. Con-

sequently, wi−1 > wi ≤ wi+1 and vi−1 ≤ vi > vi+1, while wj ≤ wj+1 if and only if

vj ≤ vj+1 for j 6= i−1, i. It suffices to show that the multisets {maj(w′)−maj(w) | w′ ∈
S(w)} and {maj(v′)−maj(v) | v′ ∈ S(v)} are equal. Suppose w′ ∈ S(w) is obtained

by inserting bj many n’s in the j-th gap of w, 1 ≤ j ≤ k + 1. Let v′ ∈ S(v) be the

word obtained by inserting cj n’s in the j-th gap of v where cj are defined as follows.

If bi+1 = 0 then

cj =





0, if j = i

bi, if j = i + 1

bj, if j 6= i, i + 1.

(4.11)

If bi+1 > 0 then

cj =





bi + 1, if j = i

bi+1 − 1, if j = i + 1

bj, if j 6= i, i + 1.

(4.12)

This defines a map between sequences (bj) with bi+1 = 0 (resp. bi+1 > 0), and (cj)

with ci = 0 (resp. ci > 0), which is a bijection. The n’s inserted in the j-th gap

of w for j 6= i, i + 1 contribute to maj(w′) −maj(w) the same amount as do the n’s

inserted in the same gaps in v to maj(v′)−maj(v). The major index contributed to

maj(w′) by the segment

wi−1 n . . . n︸ ︷︷ ︸
bi

wi n . . . n︸ ︷︷ ︸
bi+1

is the sum of i− 1 (which equals the contribution of wi−1wi to maj(w)) and





(b1 + · · ·+ bi) + (b1 + · · ·+ bi+1 + i), if bi+1 > 0

(b1 + · · ·+ bi), if bi+1 = 0.
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Similarly, the major index contributed to maj(v′) by the segment

vi−1 n . . . n︸ ︷︷ ︸
ci

vi n . . . n︸ ︷︷ ︸
ci+1

is the sum of i (which equals the contribution of vi−1vi to maj(v)) and





(c1 + · · ·+ ci + i− 1) + (c1 + · · ·+ ci+1), if ci > 0

(c1 + · · ·+ ci+1), if ci = 0.

Now, one readily checks that maj(w′)−maj(w) = maj(v′)−maj(v). This completes

the proof.

Proof of Theorem 21. Let c be the smallest column of M in the order ≺ and

M′ = M\c. Note that c is the leftmost or the rightmost column of M. Let M be

a filling of M with s nonempty cells in c and let M ′ be its restriction on M′. From

Definition 4’, we derive that

maj(M) = maj(M ′) + maj(Rc)−maj(Rc ∩M ′),

where Rc is the filling of the rectangle M(c) determined by the column c. Rc is

obtained by adding a column with s many 1-cells to the rectangular filling Rc ∩M ′.

Using the bijection between fillings of rectangles and words described in section 4.2.1,

one sees that if c is the leftmost (resp. rightmost) column in M , this corresponds to

inserting s maximal (resp. minimal) elements in the word determined by the filling

Rc ∩M ′. When the column c varies over all possible
(

h
s

)
fillings, by Lemma 4.10, the

value maj(Rc) −maj(Rc ∩M ′) varies over the multiset {i1 + i2 + · · · + is | 0 ≤ i1 ≤
i2 ≤ · · · ≤ is ≤ (h − s)} with generating function

∑
0≤i1≤···≤is≤(h−s) qi1+···+is =

[
h
s

]
q
,

where h is the value h1 (resp. hm) if c is the leftmost (resp. the rightmost) column
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of M , as defined in (4.5). Therefore,

∑

M∈F(M,s;A)

qmaj(M) =

[
h

s

]

q

∑

M ′∈F(M′,s′;A)

qmaj(M ′)

where s′ is obtained from s by removing the first (resp. last) component if c is the

leftmost (resp. rightmost) column of M . Equation (4.6) now follows by induction on

the number of columns of M.

4.4. The Foata-type bijection for moon polyominoes

The objective of this section is to give a bijective proof for Theorem 24. For the set

WS of all words of a multiset S, the equidistribution of maj and inv was first proved

by MacMahon by combinatorial analysis.

Foata’s map Φ is constructed recursively with certain “local operations” to elim-

inate the difference caused by adding the last letter in the words. Inspired by this

idea, we construct a Foata-type bijection φ : F(M, s; A) → F(M, s; A) with the

property maj(M) = ne(φ(M)). The map φ can be defined directly for left-aligned

stack polyominoes. But we describe it first for Ferrers diagrams in section 4.4.1, be-

cause this case contains all the essential steps and is easy to understand. This map

is a revision of the Foata-type bijection presented in the preprint of [7] for set par-

titions, which correspond to fillings with row and column sums at most 1. Then in

section 4.4.2 we extend the construction to left-aligned stack polyominoes and prove

that maj(M) = ne(φ(M)). In section 4.4.3, we construct two bijections, f and g, that

transform a filling of a moon polyomino to a filling of a left-aligned stack polyomino

and preserve the statistics maj and ne, respectively. Composing these maps with φ

defined on left-aligned stack polyominoes yields a bijection on F(M, s; A) that sends

maj to ne.
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4.4.1. The bijection φ for Ferrers diagrams

The empty rows in the filling M ∈ F(M, s; A) do not play any role in the definitions

of maj(M) or ne(M). Therefore, in what follows we assume that A = ∅ and describe

φ for fillings without empty rows. For A 6= ∅, one can first delete the empty rows of

the filling, apply the map φ, and reinsert the empty rows back.

Let F be a Ferrers diagram and F a filling of F . The bijection φ is defined

inductively on the number of rows of F . If F has only one row, then φ(F ) = F .

Otherwise, we denote by F1 the filling obtained by deleting the top row r of F .

Let F ′
1 = φ(F1) and let F2 be the filling obtained by performing the algorithm γr

described below. Then F ′ = φ(F ) is obtained from F2 by adding the top row r. So,

by definition, φ preserves the first row of F .

The algorithm γr

If C is the 1-cell of r, then denote by R the set of all rows of F ′
1 that intersect the

column of C. The 1-cells in R that are strictly to the left of C are called left and the

1-cells in R that are weakly to the right of C are called right. The cell C is neither

left nor right.

Let CLC (critical left cell) be the topmost left 1-cell, and CRC (critical right

cell) be the leftmost right 1-cell that is above CLC. If there is more than one such cell

the CRC is defined to be the lowest one. Note that CLC and CRC need not exist.

Denote by R1 the set of all rows weakly below the row of CRC that intersect the

column of CRC and R2 is the set of all rows in R that do not intersect the column

of CRC. If CLC does not exist then both R1 and R2 are empty. If CLC exists but

CRC does not, then R1 is empty and R2 contains all the rows in R weakly below

CLC. See Figure 4.7 for an illustration.
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Fig. 4.7 The CRC and CLC are in rows 5 and 6, respectively. R1 contains rows 5,

6, and 7, while R2 contains rows 8 and 9.

Definition 5. Let C1 and C2 be two 1-cells with coordinates (i1, j1) and (i2, j2),

respectively. We swap the cells C1 and C2 by deleting the 1’s from these two cells and

write 1’s in the cells with coordinates (i1, j2) and (i2, j1).

For a cell C, denote by col(C) the column of C, and |col(C)| the length of col(C).

Algorithm γ1
r on R1

Let ptr1 and ptr2 be two pointers.

(A) Set ptr1 on the highest row of R1 and ptr2 on the next row in R1 below ptr1.

(B) If ptr2 is null, then go to (D). Otherwise, the pointers ptr1 and ptr2 point at

1-cells C1 and C2, respectively.

(B1) If C2 is a left cell then swap the cells C1 and C2 and move ptr1 to the row

of ptr2.

(B2) If C2 is a right cell, then

(B2.1) If |col(C1)| = |col(C2)| then move ptr1 to the row of ptr2.

(B2.2) If C1 is to the left of C2 and |col(C1)| > |col(C2)| then do nothing.
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(B2.3) If C1 is to the right of C2 and |col(C1)| < |col(C2), then find the

lowest left 1-cell L that is above C1. Suppose that the row-column

coordinates of the cells L, C1, and C2 are (i1, j1), (i2, j2), and (i3, j3),

respectively. Delete the 1’s from these three cells and write them in

the cells with coordinates (i1, j3), (i2, j1), and (i3, j2). Move ptr1 to

the row of ptr2.
†

(C) Move ptr2 to the next row in R1. Go to (B).

(D) Stop.

See Figure 4.8 for illustration of the steps.

†Note: This step is well-defined since it cannot occur before ptr2 reaches CLC

(that would contradict the definition of CRC) and, after that, ptr1 is always below

CLC. Therefore, the 1-cell L always exists. The fact that the square (i3, j2) belongs

to F follows from the definition of R1 and Lemma 8 (c).

When the algorithm γ1
r stops, we continue processing the rows ofR2 by algorithm

γ2
r .

Algorithm γ2
r on R2

(A′) Set ptr1 on the highest row of R2 and ptr2 on the next row in R2 below ptr1.

(B′) (Borrowing) If ptr1 points to a right 1-cell then find the lowest left 1-cell above

it and swap them. Now ptr1 points to a left 1-cell.

(C′) If ptr2 is null, then go to (E′). Otherwise, the pointers ptr1 and ptr2 point at

1-cells C1 and C2 respectively.

(C′1) If C2 is a right cell then swap C1 and C2.
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ptr2 ptr1

ptr2

Step (B1).

Step (B2.3).Step (B2.2).

Step (B2.1).

Fig. 4.8 The algorithm γ1
r on R1.

(C′2) If C2 is a left cell then do nothing.

(D′) Move ptr1 to the row of ptr2 and ptr2 to the next row in R2 below. Go to (C′).

(E′) Stop.

See Figure 4.9 for illustration of the steps in γ2
r .

Let us note the following easy but useful properties of the algorithm γr.

1. The pointers ptr1 and ptr2 process the rows of R1 and R2 from top to bottom.

However, while ptr2 always moves from one row to the next one below it, ptr1
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ptr1 ptr1

Step (C′1). Step (C′2).

ptr2 ptr1

ptr2

ptr2 ptr1

ptr2

1L

1L

1L
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1R

1L

1L

1R

Fig. 4.9 The algorithm γ2
r on R2.

sometimes stays on the same row (cf. step (B2.2)) and sometimes “jumps”

several rows below (cf. step (B1)).

2. Pointer ptr1 always points to a right 1-cell in γ1
r and to a left 1-cell in γ2

r .

Further we show some nontrivial properties which will be used to show that the

map φ has the desired property maj(F ) = ne(φ(F )).

Lemma 8. Suppose in γ1
r ptr1 is pointing to C1 and ptr2 is pointing to C2. Then

(a) In the rows between C1 and C2 there are no 1’s weakly to the left of C1.

(b) If L is the lowest left 1-cell above C1, then in the rows between L and C1 there

are no 1’s weakly to the left of C1.

(c) The 1-cell C1 is in a column with same length as the column of the critical right

cell CRC. Moreover, when γ1
r stops ptr1 points to the last row in R1.

Proof. The first two parts are proved by induction on the number of steps performed

in the algorithm.

(a) The only step which leaves the gap between ptr1 and ptr2 nonempty is (B2.2).

But after this step, the number of 1’s in the rows between ptr1 and ptr2 weakly

to the left of C1 does not change.
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(b) The case when the last step is (B2.2) follows from the induction hypothesis. If

the last step is (B1) or (B2.3) the claim follows from part (a). The case when

the last step was (B2.1) and the cells C1 and C2 formed an NE chain the claim

also follows from part (a) and the induction hypothesis. If in (B2.1), the cells

C1 and C2 do not form an NE chain, in addition to the induction hypothesis,

one uses the fact that there are no 1’s in the rows between these two cells which

are weakly to the left of C2.

(c) The first part follows immediately from the definition of the steps. If the second

part is not true, then the last step must be (B2.2). and the column of C1 is

longer than the column of C2. Since this is the last step of γ1
r , it follows that

the column of C1 intersects the top row of R2. However, the column of CRC

does not intersect the top row of R2 by definition of R2. This contradicts the

fact that C1 and CRC are in columns of same length.

Proposition 7. During algorithm γ1
r the number of NE chains decreases by the total

number of left 1-cells in R1, whereas during algorithm γ2
r the number of NE chains

increases by the total number of right 1-cells in R2.

Proof. To prove the first part note that pointer ptr2 points to each left 1-cell in R1

exactly once in the algorithm γ1
r . When that happens, step (B1) is performed during

which, by Lemma 8(a), the number of NE chains decreases by one. In the other

steps, the number of NE chains remains unchanged. This is trivial for steps (B2.1)

and (B2.2), whereas for step (B2.3) it follows from Lemma 8 (a) and (b).

For the second part, note that pointer ptr2 points to each right 1-cell in R2

exactly once in the algorithm γ2
r with possible exception being the top 1-cell in R2

to which it never points. In those steps the number of NE chains is increased by one,
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while otherwise it remains the same. When the top 1-cell is right, then Borrowing

occurs. It follows from parts (b) and (c) of Lemma 8 that the number of NE chains

is also increased by one.

Theorem 25. The map φ : F(F , s; A) → F(F , s; A) is a bijection.

Proof. To show that the map φ : F(F , s; A) → F(F , s; A) is a bijection, it suffices to

describe the inverse of the algorithm γr. First, we need to determine what R1 and

R2 were. For that we use the following properties of γr.

1. When γ1
r stops, the pointer ptr1 is at the lowest row of R1 pointing at a right

1-cell C1. The algorithm γ2
r does not change the cell C1 and when the whole

algorithm γr terminates, there is no 1-cell below C1 that together with it forms

an NE chain.

2. After performing γ2
r , all the right 1-cells in R2 have at least one 1-cell below

them with which they form an NE chain.

3. If R2 was nonempty then, after performing γr, the lowest row of R2 contains a

left 1-cell.

4. If any borrowing occurred and the right cell C1 = (i1, j1) and the left cell

C2 = (i2, j2) were swapped, then right after this step the cell (i1, j2) is a right

1-cell in R1 which forms an NE chain with a left 1-cell from R2 and this is the

lowest 1-cell in R1 with this property.

Therefore, if R has no left 1-cells then R2 = R1 = ∅. Otherwise, find the lowest

right 1-cell C∗ in R such that there is no 1-cell in R below it that together with C∗

forms an NE chain. Then, by Properties 1 and 2 all the nonempty rows in R below

C∗ are in R2. If there is no 1-cell C∗ with that property, then R2=R.
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Algorithm δ2
r : the inverse of γ2

r

(IA′) Initially, set ptr1 to the lowest row of R2 and ptr2 to the next row in R2 above

ptr1.

(IB′) If ptr2 is null then go to step (ID′). Otherwise, suppose ptr1 and ptr2 are

pointing at 1-cells C1 and C2.

(IB′1) If C2 is a left cell do nothing.

(IB′2) If C2 is a right cell then swap the cells C1 and C2.

(IC′) Move ptr1 to the row of ptr2 and ptr2 to the next row in R2 above it. Go to

(IB′).

(ID′) (Inverse borrowing) Note that ptr1 always points to a left 1-cell. When it

reaches the highest row ofR2 and points to a 1-cell C1 first we need to determine

whether there was any borrowing. For that purpose find the lowest right 1-cell

C2 above C1 such that the two cells form an NE chain. Using Property 4 we

conclude:

(ID′1) If there is no such a cell C2, then there was no borrowing so do nothing.

(ID′2) If there is such a cell C2, and there is a left 1-cell in the rows between C1

and C2, then there was no borrowing so do nothing.

(ID′3) If there is such a cell C2, and there is no left 1-cell between C1 and C2,

then swap C1 and C2.

(IE′) Stop.

When the algorithm δ2
r stops, continue by applying the algorithm δ1

r on R\R2.
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Algorithm δ1
r : the inverse of γ1

r

(IA) Position ptr1 on the lowest row in R\R2 and ptr2 on the lowest nonempty row

in R\R2 above it.

(IB) If ptr2 is null then go to step (ID). Otherwise, suppose that ptr1 and ptr2 point

at the 1-cells C1 and C2 respectively.

(IB1) If C2 is a left cell then check whether there exists a right 1-cell R above

C2 in a column longer than the column of C1 such that there are no left

1-cells between R and C2.

(IB1.1) If such a cell R exists, then suppose that the row-column coordinates of

C1, C2, and R are (i1, j1), (i2, j2), and (i3, j3), respectively. Delete the

1’s from these three cells and write them in the cells with coordinates

(i1, j3), (i2, j1), and (i3, j2). Move ptr1 to the row of ptr2.

(IB1.1) If there is no such a cell R, then swap C1 and C2 and move ptr1 to the

row of ptr2.

(IB2) If C2 is a right cell, then

(IB2.1) If |col(C1)| = |col(C2)| then move ptr1 to the row of ptr2.

(IB2.2) If |col(C1)| 6= |col(C2)| then do nothing.

(IC) Move ptr2 to the next row in R\R2 above it. Go to (IB).

(ID) Stop.

Suppose M ′ is a filling obtained by applying the algorithm γr to the filling M ∈
F(M, s; A). Next we show that by applying δ2

r and δ1
r to M ′ one obtains the filling

M .

Steps (IB′1) and (IB′2) clearly invert the steps (C′2) and (C′1), respectively.

Immediately after the borrowing step in γ2
r , by Lemma 8, (b) and (c), and Property 4,
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we can conclude that borrowing has been performed if and only if there is a right

1-cell in R\R2 which forms an NE chain with a left 1-cell from R2 and does not form

an NE chain with any left cells in R1. It is clear that step (ID′) detects whether there

was any borrowing and inverts it if it occurred. So, the first algorithm δ2
r is indeed

the inverse of γ2
r .

In δ1
r , when ptr2 points to a left 1-cell we need to invert either (B1) or (B2.3).

Using Lemma 8 (c) one sees that step (IB1) detects exactly which of (B1) and (B2.3)

occurred and inverts it. If ptr2 points to a right cell, it is clear that (IB2.1) and (IB2.2)

invert the steps (B2.1) and (B2.2) of γ1
r . Moreover, if both ptr1 and ptr2 point to right

1-cells, and there is no left 1-cell above them, then clearly the algorithm δ1
r leaves

them unchanged. That is, the algorithm δ1
r preserves all rows that are above the rows

in R1. Therefore, we have

M
γr−→ M ′ δ2

r+δ1
r−→ M.

This implies that γr : F(M, s; A) → F(M, s; A) is injective. Since F(M, s; A) is

finite, it follows that γr is bijective.

An example of the bijection φ is presented in Figure 4.10 and we next explain

how it includes Foata’s second fundamental transformation. If the moon polyomino is

rectangular, then the algorithm γr has a simpler description because some of the cases

can never arise. Namely, if the cell in the second row forms an NE chain with the

top cell (a descent) then R1 = ∅, and only the steps (C’1) and (C’2) are performed.

Otherwise, R2 = ∅ and, since all columns are of equal height, only the steps (B1)

and (B2.1) are performed. In both these cases, via the correspondence between words

and rectangular fillings (c.f. section 4.2.1) the algorithms γ2
r and γ1

r for rectangles are

equivalent to Foata’s transformation for words [20].
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Fi φ(Fi)φ(Fi) Fi

Fig. 4.10 Example of the map φ applied inductively on F = F7. The fillings Fi are

restrictions of F on the last i rows.

4.4.2. The bijection φ for left-aligned stack polyominoes

Next we extend the bijection φ to fillings of left-aligned stack polyominoes which

sends maj to ne. Let M be a left-aligned stack polyomino. As in the case of Ferrers

diagrams, we can assume that A = ∅ and only consider fillings without empty rows.

Suppose M is a filling of M with top row r. The map, which is again denoted by

φ, is defined inductively on the number of rows of M . If M has only one row, then

φ(M) = M . Otherwise, let F be the maximal Ferrers diagram in M that contains

the top row and F1 be F without the top row. Let F = M ∩ F and F1 = M ∩ F1.

To obtain φ(M) we perform the following steps. (See Figure 4.11).

1. Delete the top row of M and get M1 = M\r.
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2. Apply φ to M1 and get M ′
1 = φ(M1).

3. Apply the algorithm γr to the filling F ′
1 = M ′

1 ∩ F1 and leave the cells in M ′
1

outside of F ′
1 unchanged. Denote the resulting filling by M2.

4. φ(M) is obtained by adding row r back to M2.

  delete return

M

(shaded part is F )
M1 M ′

1
M2 φ(M)

(shaded part is F1) (shaded part is F ′

1
)

φ γr

rr

row r row rto F ′

1

(shaded part is F2)

Fig. 4.11 Illustration of φ for left-aligned stack polyominoes.

It is a bijection from F(M, s; A) to itself since every step is invertible. That Step

3 is invertible follows from the proof of Theorem 25.

Lemma 9. Using the notation introduced above,

maj(M)−maj(M1) = maj(F )−maj(F1) = #R2(F1) (4.13)

where R2(F1) is defined with respect to the top row r of F as in section 4.4.1.

Proof. Let S be the filling M restricted to the rows which are not completely contained

in F . From the definition of maj, we have

maj(M) = maj(F ) + maj(S)−maj(F ∩ S) (4.14)

maj(M1) = maj(F1) + maj(S)−maj(F1 ∩ S) (4.15)
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Note that F ∩ S = F1 ∩ S, hence (4.14) and (4.15) give the first equality in (4.13).

The second one is readily checked using Proposition 4.4 for major index of stack

polyominoes.

The rest of this subsection is devoted to proving that the map φ has the desired

property maj(M) = ne(φ(M)). We shall need one more lemma.

Let C be a 1-cell in a filling M of a left-aligned stack polyomino. We say that C

is maximal if there is no 1 in M which is strictly above and weakly to the left of C.

Clearly, a maximal cell must be the highest 1-cell in its column. For a maximal cell

C in M , we use t(C, M) to denote the index of the leftmost column (the columns are

numbered from left to right) to the right of C that contains a 1-cell which together

with C forms an NE chain. If such a column does not exist set t(C, M) = ∞.

Lemma 10. A 1-cell C in M is maximal if and only if the highest 1-cell C ′ in the

same column in M ′ = φ(M) exists and is maximal. Moreover, t(C, M) = t(C ′, M ′)

when they are both maximal.

Proof. We proceed by induction on the number of rows of M and keep the notation

as in Figure 4.11. The case when M has one row is trivial.

Suppose that the top row r of M has a 1-cell C∗ in the column i∗. The cell C∗

is maximal in both M and M ′ and t(C∗,M) = ∞ = t(C∗, M ′). Note that a 1-cell

C 6= C∗ in M (resp. M ′) is maximal if and only if C is in column i < i∗ and is

maximal in M1 (resp. M2).

Denote by C1, C ′
1, and C2 the highest 1-cells in column i < i∗ in the fillings M1,

M ′
1 = φ(M1), and M2, respectively. By the induction hypothesis, C1 is maximal in

M1 if and only if C ′
1 is maximal in M ′

1. M2 is obtained from M ′
1 by applying the

algorithm γr with respect to the row r to F ′
1. C ′

1 is a left cell in this algorithm, and

since γr does not change the relative position of the left 1-cells, C2 is maximal in M2.
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It only remains to prove that t(C, M) = t(C ′,M ′). Suppose that t(C1,M1) =

t(C ′
1,M

′
1) = a (they are equal by the inductive hypothesis).

If a < i∗ then t(C,M) = a. In M ′
1 it corresponds to a 1-cell D′ in a column

left of C∗ such that C ′
1, D

′ form an NE chain. Since the algorithm γr preserves the

column sums and the relative positions of left 1-cells, we have t(C2,M2) = a, and

hence t(C ′,M ′) = a.

If a ≥ i∗ then t(C,M) = i∗. The fact that t(C ′
1,M

′
1) = a ≥ i∗ means that there

is no left 1-cell in M ′
1 above and to the right of C ′

1 and, since γr does not change the

relative positions of the left 1-cells, there will be no left 1-cell above and to the right

of C2 in M2. So, in this case, we conclude t(C ′,M ′) = i∗ = t(C,M).

Theorem 26. If M is a filling of a left-aligned stack polyomino M, then maj(M) =

ne(φ(M)).

Proof. Again we proceed by induction on the number of rows of M . The case when

M has one row is trivial. We use the notation as in Figure 4.11 and let F2 = M2∩F1.

By Proposition 7, the algorithm γr on M ′
1 decreases ne by one for each left 1-cell

in R1(M
′
1) and increases it by one for each right 1-cell in R2(M

′
1). Therefore,

ne(φ(M)) = ne(M2) + #{left 1-cells in R(F2)}

= ne(M ′
1)−#{left 1-cells in R1(F

′
1)}+ #{right 1-cells in R2(F

′
1)}

+ #{left 1-cells in R(F2)}

Since γr preserves the column sums,

#{left 1-cells in R(F2)} = #{left 1-cells in R(F ′
1)}

hence

ne(φ(M)) = ne(M ′
1) + #R2(F

′
1).
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One the other hand, from Lemma 9 and the induction hypothesis, one gets

maj(M) = maj(M1) + #R2(F1) = ne(M ′
1) + #R2(F1).

So, it suffices to show that

#R2(F1) = #R2(F
′
1). (4.16)

To show equation (4.16), note that for a filling of a Ferrers diagram F the number

of rows in R2(F ) is determined by the column indices of CLC (critical left cell) and

CRC (critical right cell). The CLC is the topmost left 1-cell which, if exists, is the

topmost maximal cell besides the 1-cell in the first row. By Lemma 10, CLC in

F1 ⊆ M1 is in the same column as CLC ′ in F ′
1 ⊆ M ′

1, or neither of them exists. The

latter case is trivial, as R2(F ) is empty. In the first case, let |r| denote the length

of row r. Then CRC, the critical right cell of F1, is in the column t(CLC,M1) if

t(CLC,M1) ≤ |r| and does not exist otherwise. Similarly, the critical right cell of

F ′
1, CRC ′, is in the column t(CLC ′,M ′

1) if t(CLC,M ′
1) ≤ |r|, and does not exist

otherwise. By Lemma 10, t(CLC, M1) = t(CLC ′,M ′
1), and this implies (4.16).

4.4.3. The case of a general moon polyomino

Now we consider the case when M is a general moon polyomino. We label the rows

of M by r1, . . . , rn from top to bottom. Let N be the unique left-aligned stack poly-

omino whose sequence of row lengths is equal to |r1|, . . . , |rn| from top to bottom. In

other words, N is the left-aligned polyomino obtained by rearranging the columns of

M by length in weakly decreasing order from left to right. For the definitions that

follow, we use an idea of Rubey [39] to describe an algorithm that rearranges the

columns of M to obtain N (Figure 4.12).
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Algorithm α for rearranging M:

1. Set M′ = M.

2. If M′ is left aligned go to (4).

3. If M′ is not left-aligned consider the largest rectangle R completely contained

in M′ that contains c1, the leftmost column of M′. Update M′ by letting M′

be the polyomino obtained by moving the leftmost column of R to the right

end. Go to (2).

4. Set N = M′.

Fig. 4.12 The algorithm α.

In this section we give two bijections f, g : F(M, s; A) → F(N , s′; A) which

preserve the major index and the number of NE chains, respectively. The sequence

s′ is obtained by rearranging the sequence s in the same way N is obtained by

rearranging the columns of M.

4.4.3.1. Bijection f : F(M, s; A) → F(N , s′; A) such that maj(M) = maj(f(M))

Let R be a filling of a rectangle R with column sums s1, s2, . . . , sm. First, we describe

a transformation τ which gives a filling of R with column sums s2, s3, . . . , sm, s1 and
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preserves the major index. Recall that a descent in R is a pair of 1’s in consecutive

nonempty rows that form an NE chain. Define an ascent to be a pair of 1’s in two

consecutive nonempty rows that does not form an NE chain. Suppose the first column

of R has k many 1-cells: C1, . . . , Ck from top to bottom.
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︸ ︷︷ ︸

R∗

Fig. 4.13 Illustration of the transformation τ for rectangles.

Transformation τ on rectangles:

1. Let R∗ be the rectangle obtained by adding one empty column to R from right.

Process the 1-cells C1, . . . , Ck from bottom to top (see Figure 4.13):

2. For r = k, k − 1, . . . , 1 do the following:

Let Da be the lowest 1-cell above Cr in R∗ and Db be the highest 1-cell below

Cr in R∗.

(a) If Da does not exist or Da = Cr−1, and Db does not exist, just move Cr

horizontally to the last column of R∗;

(b) If (i) Da does not exist or Da = Cr−1, but Db exists, or (ii) both Da and

Db exist, and Da is strictly to the right of Db:
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Let D1 = Cr, D2 = Db, D3, . . . , Dp be the maximal chain of consecu-

tive ascents in R∗. Move Di horizontally to the column of Di+1, for

i = 1, . . . , p − 1, and move Dp horizontally to the last column of R∗.

(If Dp is in the last column of R∗, it remains there.)

(c) If Da 6= Cr−1, and (Da is weakly to the left of Db or Db does not exist):

Let D1 = Cr, D2 = Da, D3, . . . , Dp be the maximal chain of consecutive

descents in R∗. Move Di horizontally to the column of Di+1, for i =

1, . . . , p− 1, and move Dp horizontally to the last column of R∗.

3. Delete the first column of R∗.

Note that each iteration in Step 2 decreases the number of 1’s in the first column

of R∗ by one and increases the number of 1’s in the last column by one, while the

other column sums remain unchanged.

Lemma 11. The transformation τ is invertible. Moreover, it preserves the descents

and hence maj(R) = maj(τ(R)).

Proof. The map τ is invertible since τ−1 can be obtained by taking ρ ◦ τ ◦ ρ, where ρ

is the rotation of rectangles by 180◦. Moreover, each iteration of Step 2 of τ preserves

the positions of descents, hence the second part of the claim holds.

Now we are ready to define the map f . Suppose M ∈ F(M, s; A). We perform

the algorithm α on M to transform the shapeM toN . While we are in Step 3, instead

of just moving the first column of R to the right end, we perform the algorithm τ on

the filling R of R. f(M) is defined to be the resulting filling of N .

Proposition 8. The map f : F(M, s; A) → F(N , s′; A) is a bijection and maj(M) =

maj(f(M)).
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Proof. The first part follows from Lemma 11 and the fact that α is invertible. The

filling f(M) is obtained after several iterations of Step 3 in the algorithm α combined

with application of τ . For the second part of the claim, it suffices to show that maj is

preserved after one such iteration. Let M ′ be the filling of the shapeM′ obtained from

M after one step of f in which the rectangle R is transformed into τ(R). We shall use

Definition 4 to compare maj(M) and maj(M ′). Let R1, . . . , Rk (resp. R′
1, . . . , R

′
k) be

the maximal rectangles of M (resp. M ′), ordered by height. In particular, Ri and R′
i

are of same size. Suppose R = Rs, then R′
s = τ(R). We partition the set of rectangles

into three subsets according to i < s, i = s, and i > s, and compare the contribution

of Ri’s in each subset.

1. For 1 ≤ i ≤ s− 1, the rectangles Ri and Ri ∩Ri+1 are of smaller height than R

and contain several consecutive rows of R. Using Lemma 11 we know that the

descents in R′
i ∩ τ(R) (resp. R′

i ∩ R′
i+1 ∩ τ(R)) 1 ≤ i ≤ s − 1, are in the same

rows as in Ri ∩ R (resp. Ri ∩ Ri+1 ∩ R). And descents formed by one cell in

R and one cell on the right of R are preserved since τ preserves the set of rows

that contain a non-zero entry. Consequently,

maj(Ri) = maj(R′
i), maj(Ri ∩Ri+1) = maj(R′

i ∩R′
i+1), 1 ≤ i ≤ s− 1. (4.17)

2. For i = s, by Lemma 11, we have

maj(Rs) = maj(R′
s). (4.18)

3. For i > s, the height of the rectangle Ri or Ri−1 ∩ Ri is greater than or equal

to that of R. Each of these rectangles contains several consecutive columns

of R excluding the first one. The filling of each subrectangle of R consisting

of the columns cj, . . . , cj+m (j > 1) is equal, up to a rearrangement of the
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empty rows, to the filling of the subrectangle of τ(R) consisting of the columns

cj−1, . . . , cj+m−1. To see this, note that the shifting of the 1-cells D1, · · · , Dp

horizontally in the algorithm τ can be viewed as moving the 1-cell Di vertically

to the row of Di−1 and moving D1 to the last column of R∗ in the row of Dp.

Thus, the descent positions in the fillings R′
i ∩ τ(R) (resp. R′

i−1 ∩ R′
i ∩ τ(R)),

i > s are the same as in Ri ∩R (resp. Ri−1 ∩Ri ∩R). Finally, one checks that

the descents formed by one cell in R and one cell outside R are also preserved.

Therefore,

maj(Ri) = maj(R′
i), maj(Ri−1 ∩Ri) = maj(R′

i−1 ∩R′
i), i > s. (4.19)

Combining (4.17), (4.18), and (4.19) gives maj(M) = maj(M ′).

4.4.3.2. Bijection g : F(M, s; A) → F(N , s′; A) such that ne(M) = ne(g(M))

Suppose M ∈ F(M, s; A). To obtain g(M), we perform the algorithm α to transform

the shape M to N and change the filling when we move columns in Step 3 so that

the number of 1’s in each row and column is preserved.

Let R be the rectangular filling in Step 3 of α that contains the column c1 of the

current filling. Suppose c1 contains k many 1-cells C1, . . . , Ck from top to bottom.

Shade the empty rows of R and the cells in R to the right of C1, . . . , Ck. Let li denote

the number of empty white cells in R above Ci. If R′ is the rectangle obtained by

moving the column c1 from first to last place, fill it to obtain a filling R′ as follows.

1. The rows that were empty remain empty. Shade these rows.

2. Write k many 1’s in the last column from bottom to top so that there are li

white empty cells below the i-th 1, 1 ≤ i ≤ k.

3. Shade the cells to the left of the nonempty cells in the last column.
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4. Fill in the rest of the rectangle by writing 1’s in the unshaded rows of R′ so

that the unshaded part of R to the right of the first column is the same as the

unshaded part of R′ to the left of the last column.

See Figure 4.14 for an example.
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Fig. 4.14 One step of the map g.

Proposition 9. The map g : F(M, s; A) → F(N , s′; A) is a bijection and ne(M) =

ne(g(M)).

Proof. Clearly, every step of g is invertible. To see that ne is preserved, it suffices to

show that it is preserved in each step of g, when one column is moved from left to

right. First note that ne(R) = ne(R′). This follows from the fact that the 1’s in the

first column of R form l1, . . . , lk NE chains from top to bottom, while the 1’s in the

last column of R′ form l1, . . . , lk NE chains from bottom to top and the remaining

parts of R and R′ are essentially equal. The numbers of NE chains in M and M ′
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respectively made of at least one 1 which is outside of R and R′ respectively are equal

because each step of g preserves the row and column sums.

Theorem 27. Let φ denote the Foata-type bijection described in section 4.4.2. For a

general moon polyomino M the map ψ = g−1 ◦ φ ◦ f : F(M, s; A) → F(M, s; A) is a

bijection with the property

maj(M) = ne(ψ(M)) (4.20)

Proof. The maps f and g permute the columns of M together with the corresponding

number of 1’s, while φ preserves the column sums. Moreover, all three of them

preserve the empty rows. Therefore, ψ is indeed a map from F(M, s; A) to itself.

Finally, (4.20) follows from Proposition 8, Proposition 9, and Theorem 26.
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CHAPTER V

SUMMARY AND FUTURE DIRECTIONS

We have obtained several results about the distribution of crossings and nestings in

set partitions, matchings, and 01-fillings of moon polyominoes.

In chapter II we defined the rooted tree of set partitions T (Π) and studied the

distribution of the statistic sα,β(λ) = cr(λ)α + ne(λ)β along the subtrees of T (Π).

Our main result is that if the statistic sα,β coincides on the first two levels of the

trees T (λ) and T (π) then it coincides on T (λ, l, m) and T (π, l, k) on all levels, and

similarly for the pair of statistics sα,β, sβ,α.

We further considered equivalence relations ∼cr and ∼ne on set partitions in the

same way Klazar defined them on matchings [33]. We determined the number of

crossing-similarity classes in Πn,k. For ∼ne, we found a recurrence relation for the

number of nesting-similarity classes in Πn,k, and computed the total number of such

classes in Πn.

Finally, we analyzed the generating function

Sπ(q, p, z) =
∑

l≥0

∑

λ∈T (π,l)

qcr(λ)pne(λ)zl

for the pair (cr, ne) over a subtree T (π) rooted at a partition π with k blocks and

found that it can be written as a sum of k continued fractions. In the special case when

π is the partition of {1}, this yields a continued fraction expansion of the generating

function for (cr, ne) over all partitions.

In chapter III we defined a bijection Φ between self-avoiding directed paths in the

symmetric wedge y = ±x that begin at the origin and end at the line y = −x. The

map Φ is a composition of two maps. The first map ψ maps the paths to matchings

and sends the number of north steps to a new statistic on matchings, which we
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denote by st. The second map φ maps the set of matchings onto itself, preserves the

first edge of the matching and sends st to the number of nestings. The composition

Φ = φ ◦ψ sends paths that end at (n,−n) to matchings on [2n] and has the property

that the number of north steps in the path is equal to the number of nestings in the

corresponding matching. The construction of Φ provides a completely combinatorial

proof of this fact that was first discovered algebraically as a side result in the study

of self-avoiding directed paths in the symmetric wedge y = ±x [26] .

In chapter IV we introduced a major index for fillings of moon polyominoes

with entries 0 and 1 such that there is at most one 1 in each row. This major

index reduces to the classical major index for words and permutations when the

polyomino is a rectangle and to the major index for set partitions introduced in [7]

in the case of a Ferrers shape. Moreover, our major index has the property that it

is equally distributed with the number of north-east chains (ne) in the filling, which

can be viewed as a generalization of inversions in permutations, and crossings in

set partitions. We gave two proofs of this fact. In the first one we computed the

generating function of maj and compared it to the generating function of ne. In the

second one we constructed a bijection in the spirit of Foata’s second fundamental

transformation which sends maj to ne.

Chapter II is a joint work with Catherine Yan and a paper based on these results

is published in the SIAM Journal of Discrete Mathematics [37]. The contents of

chapter III are accepted for publication in the Annals of Combinatorics [36]. The

contents of chapter IV are a joint work with William Chen, Catherine Yan, and

Arthur Yang, and have been accepted for publication in the Journal of Combinatorial

Theory Series A [8].

Below we list some questions related to the work in this dissertation which we

hope to address in the future.
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While there are many results concerning regular crossings and nestings, not much

is known for general k-crossings/k-nestings. Since the problem of finding a recurrence

or an algebraic equation for 3-crossings is hard even for permutations, one cannot hope

to find the generating function for 3-crossings/3-nestings over matchings. It is known,

however, that these two generating functions are not equal. The question that remains

is whether they have the same limiting distribution and what this distribution is. As

mentioned in chapter II, it is known that the limiting distribution for k = 2 is normal.

Another avenue for research is to study subclasses of matchings that appear in the

literature in connection to other areas of mathematics. For example, certain families

of matchings defined by specifying conditions on the crossing structure provide models

for RNA pseudoknot structures. It would be interesting to explore the combinatorial

properties of these subclasses.

A lot of results about matchings have been based on studying the subclasses with

fixed type, i.e., fixed minimal and maximal elements in the blocks. The authors in [32]

have started investigating noncrossing pairings on bit strings in which zeros and ones

on a line are paired by arcs as in the picture for matchings. Note that while there

is still a restriction in the pairings of the vertices, this is not equivalent to fixing the

type. Finding a closed formula for the number of noncrossing pairings for the most

general case seems hard, but the case 1m10m1 . . . 1mk0mk , which is extremal in a certain

sense, gives rise to interesting combinatorics. In particular, if m1 ≤ m2 ≤ · · · ≤ mk

the noncrossing pairings correspond to certain lattice paths in Z2. As far as we know,

a simple bijection which shows this fact is not known. It would be interesting to

continue this line of work and understand the combinatorial structure of the parings

in the more general case.

Adopting the point of view that crossings are a generalization of the inversion

number of permutations, one can define as Mahonian the statistics on matchings/set
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partitions which have the same generating function as crossings do. The major index

for matchings which was defined in [7] is a natural analogue of the major index for

permutations and was shown to be Mahonian. However, the nice property that maj

and inv are symmetrically distributed, which holds for permutations, ceases to hold

in this more general setting. Thus, it is desirable to find a definition of a major index

for matchings which extends the one for permutations and still has the nice symmetry

property with cr.

Another direction connected to this is the study of Eulerian statistics and Eulerian-

Mahonian pairs on matchings. A permutation statistic stat is said to be Eulerian if it

is equally distributed with the number of descents. For example, one Eulerian statistic

is the number of excedances exc(σ) = #{i : σ(i) > i}. The first pair of equidistrib-

uted Euler-Mahonian permutation bistatistics to be discovered was that of (des, inv)

and (des, imaj) where imaj is the major index of the inverse permutation. Later,

other proper pairs were found, for example (des,maj) and (exc, den). However, there

is no proper useful definition of an Eulerian statistic for matchings. It would be in-

teresting to investigate if there are meaningful extensions of the well-known Eulerian

permutation statistics to matchings and which distribution properties they have.

Recently, some research has been devoted to the study of involutions and fixed

point free involutions as subclasses of permutations. Several results for permutations

have analogues for these subclasses. Involutions correspond to symmetric fillings of

rectangles. This motivates the exploration of the properties of symmetric moon poly-

ominoes with symmetric fillings. One interesting question is what are the analogues

of the mixed statistics, which are defined in [9] as certain combinations of crossings

and nestings, for symmetric fillings.

There exist natural analogues of set partitions in type B (C) and D, which cor-

respond to intersections of the reflection hyperplanes of the Coxeter groups of type
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B and D, respectively, while the classical set partitions arise in type A. Noncrossing

partitions for the classical reflection groups of type B (C) and D were introduced by

Victor Reiner and were shown to have similar enumerative and structural properties

as those of the noncrossing partitions, which are associated to the reflection groups of

type A. A uniform definition of nonnesting partitions was given by Alexander Post-

nikov for all irreducible root systems Φ associated to Weyl groups. For Φ = An−1 they

are naturally in bijection with nonnesting partitions of [n]. The crossing and nesting

structure in partitions of these types has not been completely understood. In [40]

the authors give definitions for crossings and nestings for partitions of types B and C

and show that they are equally distributed. The definitions they give for type C are

natural but the type B case is more complicated and one needs more insight in what

crossings and nestings should be and what they correspond to. Furthermore, there

is no natural definition of crossings or nestings in type D at all. Moon polyominoes

with certain symmetries defined on them might provide the right approach.
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