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ABSTRACT

Spaces of Analytic Functions and Their Applications. (August 2010)

Mishko Mitkovski, B.S., Ss. Cyril and Methodius University

Chair of Advisory Committee: Dr. Alexei Poltoratski

In this dissertation we consider several problems in classical complex analysis

and operator theory.

In the first part we study basis properties of a system of complex exponentials

with a given frequency sequence. We show that most of these basis properties can

be characterized in terms of the invertibility properties of certain Toeplitz operators.

We use this reformulation to give a metric description of the radius of l2-dependence.

Using similar methods we solve the classical Beurling gap problem in the case of

separated real sequences.

In the second part we consider the classical Polýa-Levinson problem asking for a

description of all real sequences with the property that every zero type entire function

which is bounded on such a sequence must be a constant function. We first give a

description in terms of injectivity of certain Toeplitz operators and then use this to

give a metric description of all such sequences.

In the last part we study the spectral changes of a partial isometry under uni-

tary perturbations. We show that all the spectra can be described in terms of the

characteristic function of the partial isometry that is being perturbed. Our main tool

in the proofs is a Herglotz-type representation for generalized spectral measures. We

furthermore use this representation to give a new proof of the classical Naimark’s

dilation theorem and to generalize Aleksandrov’s disintegration theorem.
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CHAPTER I

INTRODUCTION AND BACKGROUND

One of the most fundamental facts of classical harmonic analysis says that the se-

quence (eint)n∈Z (with appropriate normalization) forms an orthonormal basis in

L2(0, 2π). It is natural to examine what happens if one replaces the integer frequen-

cies with some other sequence of real numbers. Clearly, the very useful orthogonality

property will be lost. However, in many cases the sequence will still possess some

basis property. Thus, the following natural problem arises: For a given frequency

sequence Λ := (λn)n∈Z, describe the basis properties of the corresponding sequence

of complex exponentials (eiλnt). Questions of this type have a very long history, with

origins in the works of Paley and Wiener [35], and Levinson [25]. In the early years,

the most interesting was the question whether (eiλnt) forms a Riesz basis in L2(0, 2π).

However, later many other types of basis properties were also considered.

Some of these questions turned out to be very easy to answer. For example,

(eiλnt) is a Bessel sequence in L2(0, 2π) if and only if its sequence of frequencies

(λn)n∈Z can be represented as a finite union of separated ones [46] (we say that

(µn)n∈Z is separated if there exists δ > 0 such that |µn − µm| ≥ δ > 0, (n 6= m)).

However, many other questions turned out to be much more difficult. For example,

the Riesz basis problem remained open until Pavlov’s impact in the late seventies

[37] (see also [17]), despite the fact that many famous mathematicians worked on it

since the early thirties. Finally, for some basis properties the question is still open.

Moreover, for most of them no reasonably condensed answer is expected.

Because of these difficulties, the following natural subproblem has been consid-

This dissertation follows the style of Advances in Mathematics.
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ered. For a fixed basis property and a given frequency sequence Λ := (λn)n∈Z find the

upper bound of all c > 0 for which (eiλnt) has (or doesn’t have) this basis property

in L2(0, c). This upper bound is usually called the radius for the corresponding basis

property. For example, we have a radius of completeness, frame radius, etc. By now,

most of these problems have been completely resolved. It is interesting, however,

that the natural l2-independence problem remained open. One of the main results

of this dissertation is the solution to this problem in the case when the frequency

sequence is real and separated. We also give a criterion for a sequence of complex

exponential to be a Riesz basis and Parseval frame. Our characterization is in terms

of the invertibility properties of a certain Toeplitz operator (whose symbol depends

on an inner function that is associated to the frequency sequence Λ.) Let us men-

tion the important paper of Hruschev, Nikolskii, and Pavlov [17], where the idea to

use Toeplitz operators in the study of basis properties of complex exponentials was

introduced. These results are presented in chapter III.

Another classical problem that we consider in this dissertation is the so called

Polya-Levinson problem. The Polya-Levinson problem asks for a description of sepa-

rated real sequences Λ having the property that any entire function of zero exponen-

tial type which is bounded on Λ must be constant. This problem was first explicitly

posed by Polya in [40] although some partial cases were considered much earlier by

Valiron [45]. Using involved classical techniques Levinson [25] obtained some very

strong results regarding the problem. Except for de Branges’ improvement in [11]

these results remained strongest to date. In chapter IV we give a complete solution

to the Polya-Levinson problem. Again the inner function that is associated to the

sequence Λ plays a major role.

The final chapter of the dissertation has a somewhat different flavor, being much

more operator theoretic. However, even in this chapter a major role is played by
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a certain inner function which is operator valued in this case. We consider the old

question concerning the spectral changes which occur when a partial isometry in

a Hilbert space is subjected to unitary perturbations. These questions were first

systematically treated by Donoghue [13] for the case of a symmetric operator, and

by Clark [6] for the partial isometry case. Both of these authors considered only

the case when the corresponding deficiency indices are both equal to one. Even

this simplest case attracted great deal of interest among mathematicians in the past

(see [39] and references therein). In this dissertation we treat the general possibly

infinite-dimensional case. The main novelty in our approach is the new Herglotz-type

representation for generalized spectral measures. This representation allows us to

translate many properties from the very well studied rank-one case in the general

infinite-dimensional case.
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CHAPTER II

PRELIMINARIES

Here we summarize some well known facts that will be used in the forthcoming

chapters.

2.1. Function theory

References for this section are [14, 19, 33, 12].

2.1.1. Harmonic functions

Each function f ∈ Lp(R), 1 < p < ∞ can be extended in a natural way to a harmonic

function on the upper half-plane C+. The natural harmonic extension is defined by

the Poisson formula:

f(x + iy) :=
1

π

∫
yf(t)

(x− t)2 + y2
dt.

It is easy to check that each such function, besides being obviously harmonic, must

satisfy:

sup
y>0

∫
|f(x + iy)|pdx < ∞. (2.1)

Conversely, any harmonic function f : C+ → C satisfying (2.1) can be obtained from

some (boundary) function in Lp(R) using the Poisson formula above. The space of

all such functions forms a Banach space with respect to the norm

‖f‖p := (sup
y>0

∫
|f(x + iy)|pdx)

1
p = (lim

y→0

∫
|f(x + iy)|pdx)

1
p

and it will be denoted by hp(C+). Given f(z) ∈ hp(C+) there are several ways to

recover the boundary function. One way is as an Lp limit of the family of level

functions fy(x) := f(x + iy) as y → 0. As a consequence, the following important
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relation follows:

‖f‖p = (

∫
|f(x)|pdx)

1
p .

This shows that the correspondence between hp(C+) and Lp(R) is isometric. Another,

perhaps more natural way, to recover f(z) ∈ hp(C+) from its boundary function is

by taking vertical limits, i.e., by

f(x) := lim
y→0

f(x + iy).

This limit exists for a.e. x ∈ R and completely recovers the boundary function f . All

this results continue to hold in the case p = ∞, except for the fact that one cannot

recover the boundary function by taking L∞ limits of fy. In the case when p = 1 the

situation is a little bit different. Namely, now the collection of all harmonic functions

f : C+ → C satisfying (2.1) is in 1-1 correspondence with the collection of all finite

(complex) measures on R. In one direction the correspondence is given again by the

Poisson formula. However, in the opposite direction taking the vertical limits (or

L1-limit of fy) recovers only the absolutely continuous part of the measure.

Each nonnegative harmonic function f(z) on C+ can be represented by the for-

mula

f(x + iy) := ky +
1

π

∫
y

(x− t)2 + y2
µ(dt), (2.2)

where µ is some positive measure on the real line satisfying the Poisson integrability

condition
∫

µ(dt)/(1+ t2) < ∞ and k ≥ 0 is some nonnegative number (which should

be thought of as a point mass at infinity). The correspondence is one to one since

obviously each such pair determines a nonnegative harmonic function on C+ by the

formula above. The measure µ can be recovered as a weak∗ limit of the family of level

functions fy(x) := f(x + iy) as y → 0, whereas one way to recover the point mass k

is the formula k = limy→∞ f(iy)/y.
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2.1.2. Hardy spaces Hp(C+)

An important linear subspace of hp(C+) (and consequently of Lp(R)) is obtained

by taking only the holomorphic functions f : C+ → C for which (2.1) holds. This

subspace is closed and is therefore a Banach space itself. It is called Hardy space and

is denoted by Hp(C+). The corresponding space of boundary functions is denoted

by Hp(R) (and is also called Hardy space). In this case even for p = 1 there is

a perfect isometric 1-1 correspondence between Hp(C+) and Hp(R). Furthermore,

besides the Poisson formula, now, there is another way to recover f(z) ∈ Hp(C+)

from its boundary values on R. It is given by the Cauchy formula:

f(z) =
1

2πi

∫
f(t)

t− z
dt.

The right hand side in the last formula makes sense for any function f ∈ Lp(R),

p < ∞. Moreover, the Cauchy operator C : Lp(R) → Hp(R) defined by

Cf(z) :=
1

2πi

∫
f(t)

t− z
dt

is bounded and onto for 1 < p < ∞. In the case when p = 2 it defines an orthogonal

projection of L2(R) onto H2(R). If p = 1 the Cauchy operator fails to be bounded.

However, it still defines an analytic function in the upper half-plane which belongs to

the Smirnov class (see below).

2.1.3. Nevanlinna class N(C+)

A simple fact that for any function f ∈ Hp(R), log+ |f(z)| has a positive harmonic

majorant |f(z)|p implies by itself many nice properties for functions in Hp(R). This is

why the class of holomorphic functions for which log+ |f(z)| has a harmonic majorant

(or equivalently log |f(z)| has a positive harmonic majorant) deserved to be studied
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on its own. Such a class is called Nevanlinna class and is denoted by N(C+). As in

the case of Hardy spaces, functions in N(C+) have vertical limits a.e. on the real

line which determine them uniquely. This unique determination is strong in the sense

that the boundary values of two different functions in N(C+) cannot coincide even

on a set of positive measure. Moreover, the nonzero boundary functions possess the

following integrability property

f(t) ∈ L1(
dt

1 + t2
). (2.3)

Conversely, each nonnegative function on the real line satisfying (2.3) is a boundary

modulus of some function in N(C+).

Another nice property of this class is the fact that there is a complete description

for the zero sets of its functions. Namely, if {zk} is a sequence of zeros of a function

f ∈ N(C+) then
∑ =zk

1 + |zk|2 < ∞. (2.4)

Conversely, for any such sequence {zk} there exists a (non unique) function in N(C+)

with zeroes exactly {zk}. One such function is given by the product

b(z) :=
∏ 1− z

zk

1− z
z̄k

.

and is known as the Blaschke product. It is easy to see that such a function is

bounded by 1 in the upper half-plane and is therefore in N(C+). Being bounded,

every Blaschke product has vertical limits a.e. on R. Furthermore, it is not hard to

see that |B(t)| = 1 a.e. on R. As a byproduct one also obtains that

log |f(t)| ∈ L1(
dt

1 + t2
).

Besides having easy to describe zero sets, functions in N(C+) also have a very
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nice and extremely important factorization property. Namely, if f(z) ∈ N(C+) then

f(z) = CeiazB(z)
s1(z)

s2(z)
h(z), (2.5)

where C is some unimodular constant, a ∈ R, B(z) is the Blaschke product containing

all the zeros of f(z),

sk(z) := exp(− 1

πi

∫
tz + 1

t− z

µk,s(dt)

1 + t2
)

(µk,s is the singular part of µk) and

h(z) := exp(
1

πi

∫
tz + 1

t− z

log |f(t)|
1 + t2

dt).

The factorization above is unique up to a unimodular constant and it is called an

inner-outer factorization. The inner-outer terminology is due to Beurling. Namely, a

holomorphic function in C+ which is bounded by 1 on C+ and is unimodular a.e. on

R is called an inner function. On the other hand, a holomorphic function h(z) in C+

satisfying

log |h(z)| = 1

π

∫
y log |h(t)|

(x− t)2 + y2
dt

or equivalently

h(z) = exp(
1

πi

∫
tz + 1

t− z

log |f(t)|
1 + t2

dt)

is called an outer function. Every function s(z) of the form

s(z) := exp(− 1

πi

∫
tz + 1

t− z

ν(dt)

1 + t2
),

where ν is a singular measure, is an inner function. This particular kind of inner

functions are known as singular inner functions. Therefore, in the inner-outer factor-

ization above, each of the factors eiaz, b(z), sk(z) is either an inner function or an

outer function. Using the inner-outer factorization one easily obtains the following al-
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ternative description of the Nevanlinna class. A holomorphic function on C+ belongs

to the Nevanlinna class, N(C+), if and only if it can be represented as a quotient of

two bounded holomorphic functions in C+.

Functions in N(C+) are sometimes called functions of bounded type. Below we

explain the reason for this. A holomorphic function f(z) in C+ is said to have a type

T if the infimum of all M ∈ R for which

|f(z)| ≤ CeM |z|

is equal to T . A theorem of Hayman (see [24]) can be used to show that any function in

N(C+) has a finite type (which is the reason for the name functions of bounded type).

Furthermore, using the same theorem one can also show that for a.e. θ ∈ (0, 2π)

lim
r→0

log |f(reiθ)|
r

= T.

One way to compute the type is the formula

T = lim sup
y→0

log |f(iy)|
y

.

T is exactly the opposite of the number a ∈ R in the inner-outer factorization (2.5)

of f(z).

2.1.4. Smirnov class N+(C+)

The Smirnov class N+(C+) is obtained by taking only those functions f(z) ∈ N(C+)

for which in the inner-outer factorization (2.5) of f(z), a ≥ 0, i.e., the type is non

positive, and the singular inner function in the denominator s2(z) ≡ 1. Each function

in the Smirnov class can be therefore factored in a unique way as f(z) = g(z)h(z),

where g(z) is inner and h(z) is an outer function. It trivially follows from (2.5) that
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for each function f(z) ∈ N+(C+) the following inequality holds

log |f(z)| ≤ 1

π

∫
y log |f(t)|

(x− t)2 + y2
dt, (2.6)

for all z = x + iy ∈ C+. Conversely, each holomorphic function satisfying this

inequality everywhere in C+ must be in the Smirnov class. This characterization of

N+(C+) yields that Hp(R) ⊂ N+(C+) for all 1 ≤ p ≤ ∞. Moreover, every function

in N+(C+) whose boundary function belongs in Lp(R) must be in Hp(R), i.e.,

Hp(R) = Lp(R) ∩N+(C+).

The last fact follows by applying Jensen’s inequality to (2.6).

2.1.5. Herglotz functions

Holomorphic functions with nonnegative imaginary part are called Herglotz functions.

Each such function m(z) can be represented by the formula

m(z) = a + bz +
1

π

∫
tz + 1

t− z

µ(dt)

1 + t2
,

where a ∈ R, b ≥ 0 (point mass at infinity) and µ is a positive Poisson integrable

measure. The constant b is determined by the formula b = limy→∞=m(iy)/y.

In the case when y=m(iy) is bounded and limy→∞ m(iy) = 0 (and only in this

case) the Herglotz function m(z) has the following representation

m(z) =
1

π

∫
µ(dt)

t− z
,

with µ being with finite total mass.

There is a close relationship between Herglotz functions and functions Θ(z) ∈
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H∞(C+) that are bounded by 1 everywhere on C+. Indeed, the Cayley transform

m(z) = i
1 + Θ(z)

1−Θ(z)
,

gives a one-to-one correspondence between these two classes. In this case, Θ(z) is

inner if and only if the measure µ in the representation of m(z) is singular. This

also gives a one-to-one correspondence between inner functions and singular Poisson

integrable measures on the real line taken with the (not necessarily nonzero) point

mass at infinity. Since this correspondence plays a major role in this dissertation it

is worth giving it explicitly:

<1 + Θ(z)

1−Θ(z)
= by +

1

π

∫
ydµ(t)

(x− t)2 + y2
. (2.7)

There is also a one-to-one correspondence between Herglotz functions m(z) and

holomorphic functions φ(z) on C+ which are nonzero everywhere on C+ and satisfy

|φ(z)| ≤ 1. The correspondence is given by the formula

φ(z) = eim(z).

In this case, φ(z) is a singular inner function if and only if the measure µ associated

to m(z) is nonzero singular measure (µ is a zero measure if and only if φ(z) = eibz).

Therefore, the class of all inner functions Θ(z) and the class of nowhere zero inner

functions φ(z) are also in a one-to-one correspondence given by

φ(z) = ei
1+Θ(z)
1−Θ(z) .

2.1.6. Paley-Wiener theorem

One of the most fundamental results for H2(C+) is the Paley-Wiener Theorem. It says

that H2(C+) is just the Fourier transform of L2[0,∞). More precisely, if f ∈ L2[0,∞)
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then its Fourier transform

F (f)(z) :=

∫ ∞

0

eitzf(t)dt

belongs in H2(C+), and conversely every function in H2(C+) can be represented in

this way. Furthermore, the Fourier transform F : L2[0,∞) → H2(C+) (multiplied by

2π) defines an isometry.

The subspace of H2(R) that one gets after applying the Fourier transform to

L2[0, a] is equal to KSa := H2(C+) ª SaH2(C+). This is a reproducing kernel space

with reproducing kernels given by

kSa(z, w) :=
1

2πi

1− Sa(z)Sa(w)

w̄ − z
.

Each reproducing kernel kSa(z, w) is obtained as an image of eiw̄t ∈ L2[0, a] under the

Fourier transformation F . Therefore, the orthonormal basis (e2πnit/a)n∈Z for L2[0, a]

is mapped onto an orthonormal basis (kSa(z, 2πn/a))n∈Z for KSa .

Applying Fourier transform to the space L2[−a, a] yields a familiar space of entire

functions known as the Paley-Wiener space PWa. Each such space consists of entire

functions of exponential type no greater than a which are square integrable on the

real line. Recall that the exponential type of an entire functions is computed by the

formula

τ := lim sup
|z|→∞

log |F (z)|
|z| .

Conversely, each Paley-Wiener space is obtained in this way.

2.1.7. Model spaces KΘ

Each inner function Θ(z) defines a model space

KΘ := H2(C+)ªΘH2(C+).
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This is a reproducing kernel space with reproducing kernels given by

kΘ(z, w) :=
1

2πi

1−Θ(z)Θ(w)

w̄ − z
.

Let µ be the singular measure corresponding to Θ(z) with b being the point mass

at infinity (see (2.7)). In the case when b = 0 (and this happens precisely when

limy→∞(1 − |Θ(iy)|2)/|1 − Θ(iy)|2 = 0) there is an isometric isomorphism between

KΘ and L2(µ). In one direction this isomorphism is given by the formula

f(z) =
1−Θ(z)

2πi

∫
f(t)

t− z
dµ(t). (2.8)

As usual, in the other direction one just takes the vertical limits. The fact that the

vertical limits exist µ a.e. is a rather deep result [38].

Every function f(z) ∈ KΘ can be extended analytically exactly at those points

at which Θ(z) can be extended. An inner function Θ(z) = Ceiazb(z)s(z) can be

extended analytically through a point on the real line if and only if this point is

not a density point of its zeros nor lies in the support of the singular measure that

determines its singular factor. Therefore, Θ(z) can be extended to a meromorphic

function on the whole complex plane if an only if s(z) ≡ 1 and the zeros of b(z) are

bounded away from the real axis. In this case, every function f(z) ∈ KΘ also has a

meromorphic extension in C given by the formula (2.8). The measure µ corresponding

to Θ(z) is then discrete with atoms at the points of Λ = {t|Θ(t) = 1} given by

µ({x}) = 2π/|Θ′(x)|. Furthermore, the system (kΘ(z, λn)/‖kΘ(z, λn)‖)λn∈Λ is an

orthonormal basis for KΘ and (2.8) represents just an expansion with respect to this

basis.

Each meromorphic inner function Θ(z) can be written as Θ(t) = eiφ(t) on R,

where φ(t) is a real analytic and strictly increasing function. The function φ(t) =

arg Θ(t) is the continuous argument of Θ(z) and is called the phase function of Θ(z).
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A subset of R is called discrete if it has no finite density points. For every

discrete set Λ ⊂ R, there exists a (far from unique) meromorphic inner function

Θ(z) such that {t|Θ(t) = 1} = Λ. In the case of a separated sequence Λ, we will be

especially interested in the inner function that corresponds to the counting measure

on Λ (measure with point masses equal to 1 at each point of Λ). In this case, we

will say that Θ(z) is associated to Λ. An important property of this inner function is

the fact that its phase arg Θ(t) has a bounded derivative (see for instance Lemma 16

in [12]).

2.1.8. de Branges spaces BE

An important class of entire functions consists of those functions F (z) of exponential

type ≤ a that satisfy log |F (t)| ∈ L1(dt/(1 + t2)). This class is mostly known as

the Cartwright class and is denoted by Ca. A classical theorem of Krein gives a

connection between the Smirnov-Nevanlinna class N+(C+) and the Cartwright class

Ca. An entire function F (z) belongs to the Cartwright class Ca if and only if

F (z)

S−a(z)
∈ N+(C+),

F#(z)

S−a(z)
∈ N+(C+),

where F#(z) = F (z̄).

As an immediate consequence one obtains a connection between the Hardy space

H2(C+) and the Paley-Wiener space PWa. Namely, an entire function F (z) belongs

to the Paley-Wiener class PWa if and only if

F (z)

S−a(z)
∈ H2(C+),

F#(z)

S−a(z)
∈ H2(C+).

The definition of the de Branges spaces of entire functions may be viewed as

a generalization of the above definition of the Payley-Wiener spaces with S−a(z)

replaced by a more general entire function. Consider an entire function E(z) satisfying
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the inequality

|E(z)| > |E(z̄)|, z ∈ C+.

Such functions are usually called de Branges functions. The de Branges space BE

associated with E(z) is defined to be the space of entire functions F (z) satisfying

F (z)

E(z)
∈ H2(C+),

F#(z)

E(z)
∈ H2(C+).

It is a Hilbert space equipped with the norm ‖F‖E := ‖F/E‖L2(R). If E(z) is of expo-

nential type then all the functions in the de Branges space BE will be of exponential

type not greater then the type of E(z). A de Branges space is called short (or reg-

ular) if together with every function F (z) it contains (F (z) − F (a))/(z − a) for any

a ∈ C. If a de Branges space BE is short then its de Branges function E(z) must be

in Cartwright class.

Every de Branges function E(z) gives rise to a meromorphic inner function

Θ(z) = E#(z)/E(z). We say that an inner function Θ(z) in C+ is a meromorphic

inner function if it allows a meromorphic extension to the whole complex plane. The

meromorphic extension to the lower half-plane C− is given by:

Θ(z) =
1

Θ#(z)
.

Conversely, every meromorphic inner function Θ(z) can be represented in the form

Θ(z) = E#(z)/E(z), for some de Branges function E(z) (see, for instance, Lemma

2.1 in [16]). Such a function is unique up to a factor of an entire function that is

real on R and has only real zeros. There is an important relationship between the

model subspaces KΘ and the de Branges spaces BE of entire functions. If E(z) is

a de Branges function and Θ(z) = E#(z)/E(z) is the corresponding meromorphic

inner function, then the multiplication operator f 7→ Ef is an isometric isomorphism
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KΘ → BE.

Let µ be a positive measure on R satisfying
∫

dµ(t)/(1 + t2) < ∞. Then there

exists a nest of short de Branges spaces BEa contained isometrically in L2(µ). By

a nest we mean that BEa is isometrically contained in BEb
whenever a ≤ b. Two

possibilities exist. Either the union ∪a≥0BEa is dense in L2(µ) (so called limit point

case) or there exists a finite number a ≥ 0 such that BEa = BEb
for all b > a (so

called limit circle case). Moreover, the exponential type τ(a) of BEa is a nondecreasing

function of a. Therefore, if there exists a space BE in the nest with E(z) of positive

exponential type, then there also exists a space BE in the nest that is contained

properly in L2(µ).

General treatment of de Branges’ theory is given in [12]. However, the proofs are

more accessible in de Branges’ earlier work [7, 8, 9, 10].

2.2. Dilation theory

References for this section are [22, 23, 32, 44].

2.2.1. Discrete case

A bounded operator T ∈ B(H) is said to be a contraction if ‖T‖ ≤ 1. The self adjoint

operators DT := (I−T ∗T )1/2 and DT ∗ := (I−TT ∗)1/2 are called defect operators of T

and the spaces DT := DTH, DT ∗ := DT ∗H are called defect spaces for T . The defect

indices are defined by ∂T := dimDT and ∂T ∗ := dimDT ∗ . These indices measure, in a

certain sense, how much a contraction differs from a unitary operator.

Every contraction T can be dilated to a unitary operator U acting on a larger

space H′ such that T n = PHUn for n ≥ 0. In the case when T n and T ∗n con-

verge strongly to zero as n → ∞ this larger space H′ can be represented as H′ =
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∑
n∈Z Un(DT ) andH′ =

∑
n∈Z Un(DT ∗) (both sums are orthogonal). ThereforeH′ will

be isomorphic to both L2(T,DT ) and L2(T,DT ∗). (Here L2(T, E) represents the space

of all E valued square summable functions on T.) Denote by L : L2(T,DT ) → H′ and

L∗ : L2(T,DT ∗) → H′ these isomorphisms. It can be shown that L∗∗L : L2(T,DT ) →
L2(T,DT ∗) maps the vector valued Hardy space H2(T,DT ) into the vector valued

Hardy space H2(T,DT ∗). Therefore, there exists an operator valued inner function

ΘT (z) (for each z ∈ D, ΘT (z) is a contraction mapping DT into DT ∗ and ΘT (ξ) is

unitary for a.e ξ ∈ T) such that

L∗∗Lf(ξ) = ΘT (ξ)f(ξ),

for every f ∈ L2(T,DT ). This inner function ΘT (z) is called a characteristic function

for T . It can be explicitly computed by the formula

ΘT (z) := −T + zDT ∗(I − zT ∗)−1DT |DT .

Now, the space H can be represented as

H = H2(T,DT ∗)ªΘT H2(T,DT ),

and the contraction T can be represented as a shift (multiplication by z) compressed

on H2(T,DT ∗)ªΘT H2(T,DT ).

A similar theory exists even in the case when T n and T ∗n do not converge strongly

to zero as n → ∞. In this case H′ is not necessarily isomorphic to L2(T,DT ) and

L2(T,DT ∗), however if T is completely non-unitary (c.n.u) these spaces embed into H′

and their embeddings span H′ (A contraction T is said to be completely nonunitary

(c.n.u.) if it is not unitary on any of its invariant subspaces.) Therefore, in defining
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ΘT (z) one should take

L∗∗PL : L2(T,DT ) → L2(T,DT ∗),

where P is the projection from the embedding of L2(T,DT ) onto the embedding of

L2(T,DT ∗). Now, the characteristic function will only be contraction valued holo-

morphic function, i.e, in general it will not be inner. The form of the model space

will also be more complicated. However, the formula for ΘT (z) remains the same.

As seen above, every contraction T determines a contraction valued holomorphic

function ΘT (z). Every such function ΘT (z) is pure in the sense that ‖Θ(0)h‖ < ‖h‖
for h ∈ DT , h 6= 0. Conversely, for any given pure inner function Θ : D → B(L,L∗)
there exists a contraction T whose characteristic function coincides with Θ(z).

2.2.2. Continuous case

One-parameter family {T (t)|t ≥ 0} of contractions on H satisfying T (0) = I and

T (t1 + t2) = T (t1)T (t2) for t1, t2 > 0 is called a semigroup of contractions. The

semigroup is strongly continuous if limt→0 T (t)h = h for all h ∈ H. Every such

subgroup possesses an infinitesimal generator B defined by

Bh := −i lim
t→0

T (t)h− h

t
.

This is a densely defined (possibly unbounded) closed operator which uniquely de-

termines the semigroup. There is an interesting relation connecting the semigroup to

the resolvent of its generator. It is given by

(λI −B)−1 =

∫ ∞

0

T (t)eiλtdt,
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for all λ ∈ C+. A closed densely defined operator B generates a strongly continuous

group of contractions if and only if

‖(iyI −B)−1‖ ≤ 1

y
,

for all y > 0. This condition can be rewritten as = 〈Bh|h〉 ≥ 0 for all h lying in

the domain of B. Such possibly unbounded operators B are called dissipative. The

Cayley transform T = (B− iI)(B + iI)−1 gives a one-to-one correspondence between

dissipative operators B and contractions T . This contractions are called cogenerators

for the corresponding semigroups. It is not hard to check that T (t) forms a group

of unitary operators if and only if its generator B is self-adjoint (or eqivalently its

cogenerator T is unitary).

Every continuous semigroup of contractions T (t) can be dilated to a group of

unitary operators U(t) acting on a larger space H′ such that T (t) = PHU(t) for

t ≥ 0. In the case when T (t) and T (t)∗ converge strongly to zero as t → ∞ this

larger space H′ will be isomorphic to both L2(R,DT ) and L2(R,DT ∗). (Here L2(R, E)

represents the space of all E valued square summable functions on R.) Denote by

L : L2(R,DT ) → H′ and L∗ : L2(R,DT ∗) → H′ these isomorphisms. It can be shown

that L∗∗L : L2(T,DT ) → L2(T,DT ∗) maps the vector valued Hardy space H2(R,DT )

into the vector valued Hardy space H2(R,DT ∗). Therefore, there exists an operator

valued inner function ΦT (z) (for each z ∈ C+, ΦT (z) is a contraction mapping DT

into DT ∗ and ΦT (x) is unitary for a.e x ∈ R) such that

L∗∗Lf(x) = ΦT (x)f(x),

for every f ∈ L2(R,DT ). This inner function ΦT (z) is called a scattering operator for

the semigroup T (t). If T is the cogenerator of T (t) then the characteristic function
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ΘT (z) of T is related to the scattering operator ΦT (z) of T (t) by

ΦT (z) = ΘT (
z + i

z − i
).

The space H can be represented as

H = H2(R,DT ∗)ª ΦT H2(R,DT ),

and the semigroup of contractions T (t) can be represented as a translation (multi-

plication by eitx) compressed on H2(R,DT ∗)ªΦT H2(R,DT ). This is the reason why

spaces of this form are called model spaces. Notice that in the case when the defect

indices are both equal to one these spaces are exactly the model spaces KΘ that we

considered above.
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CHAPTER III

BASIS PROPERTIES OF COMPLEX EXPONENTIALS AND RELATED

TOPICS

In this chapter we solve the problem of characterizing those separated sequences of

real frequencies (λn)n∈Z for which the corresponding system of complex exponentials

(eiλnt) is l2 -independent, Riesz sequence and Parseval frame in L2(0, c). Furthermore,

we show that the l2 -dependence radius is equal to the interior Beurling-Malliavin

density of (λn)n∈Z.

3.1. Introduction

First we recall the definition of the most fundamental basis properties.

Definition 3.1.1. A sequence of vectors (fj) in a Hilbert space H is said to be

• a Bessel sequence for H if
∑ |〈f |fj〉|2 ¹ ‖f‖2, for all f ∈ H or equivalently if

‖∑
ajfj‖ ¹ ‖(aj)‖l2 , for all (aj) ∈ l2.

• a complete sequence for H if |〈f |fj〉| = 0 for all j implies that f = 0

• an ω-independent sequence for H if ‖∑
ajfj‖ = 0 for (aj) ∈ l2 implies that

aj = 0.

• a frame for H if
∑ |〈f |fj〉|2 ' ‖f‖2, for all f ∈ H

• a Parseval frame for H if
∑ |〈f |fj〉|2 = ‖f‖2, for all f ∈ H

• a Riesz sequence for H if ‖∑
ajfj‖ ' ‖(aj)‖l2 , for all (aj) ∈ l2

• a Riesz basis for H if it is an l2-independent frame (or equivalently if it is a

complete Riesz sequence).
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The definition can be also given in the following condensed form (which gives a

more unified view).

A sequence of vectors (fj) in a Hilbert space H is called a Bessel sequence for H
if for some/any orthonormal basis (ej) the operator T : H → H defined on (ej) by

Tej := fj can be extended to a bounded operator on H. Now, a Bessel sequence (fj)

is

• a complete sequence for H if and only if T has a dense range.

• an l2-independent sequence for H if and only if T is injective.

• a frame for H if and only if T is surjective.

• a Parseval frame for H if and only if T is a coisometry (T ∗ is an isometry).

• a Riesz sequence for H if and only if T is injective with a dense range.

• a Riesz basis for H if and only if T is invertible.

We will first consider vector systems of complex exponentials (eiλnt) in L2(0, c).

As mentioned in the previous chapter, one of the central problems in the classical

harmonic analysis can be stated as follows: For a certain fixed basis property and a

given frequency sequence Λ := (λn)n∈Z find the upper bound of all c > 0 for which

(eiλnt) has (or doesn’t have) this basis property in L2(0, c). This upper bound is

usually called radius for the corresponding basis property. For example, the radius

of completeness is the supremum of all c > 0 for which (eiλnt) is complete in L2(0, c),

whereas the radius of l2-dependence is the supremum of all c > 0 for which (eiλnt)

is l2-dependent in L2(0, c). By now, most of these problems have been resolved

completely. It is interesting, however, that the natural l2- independence problem

remained open. The main result of this chapter is the solution of this problem in
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the case when the frequency sequence is real and separated. Before stating our result

we give some necessary definitions. We also summarize some of the previous work in

order to illustrate how our result fits in the complete picture.

As mentioned above, we will be only interested in separated real sequences. Such

a sequence Λ := (λn)n∈Z is said to be uniformly regular with density d > 0 if there

exists some C > 0 such that

|nΛ(x)− n 1
d
Z(x)| < C.

Here, for a sequence Γ, nΓ(x) denotes the usual counting function defined by

nΓ(t) =





#(Γ ∩ [0, t]) if t > 0,

−#(Γ ∩ [t, 0]) if t < 0,

0 if t = 0.

and

1

d
Z = {n

d
|n ∈ Z}.

Now, the interior uniform density (which is also known as interior Beurling density)

D−
B(Λ) of Λ can be defined as

D−
B(Λ) := sup{d | ∃ strongly uniformly regular subsequence Λ′ ⊂ Λ with density d}.

Similarly, the exterior uniform density is defined as

D+
B(Λ) := inf{d | ∃ strongly uniformly regular supsequence Λ′ ⊃ Λ with density d}.

These densities are used to describe the frame radius and the Riesz sequence

radius. Note that by a frame (Riesz sequence) radius we mean the upper bound of

all c > 0 for which our sequence is a frame (not a Riesz sequence) in L2(0, c).
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Theorem 3.1.2 ([18, 21, 41]). Let Λ be a separated sequence of real numbers.

(i) The frame radius of Λ is equal to 2πD−
B(Λ).

(ii) The Riesz sequence radius of Λ is equal to 2πD+
B(Λ).

The description of the completeness and the l2-dependence radius depends on

different kind of densities. We say that Λ is regular with density d if

∫ |nΛ(x)− n 1
d
Z(x)|

1 + x2
< ∞.

The interior BM (Beurling-Malliavin) density D−
BM(Λ) of Λ is defined as

D−
BM(Λ) := sup{a | ∃ regular subsequence Λ′ ⊂ Λ with density D}.

(If no such sequence exists D−
BM(Λ) := 0.) Similarly, the exterior BM density is

defined as

D+
BM(Λ) := inf{D | ∃ regular supsequence Λ′ ⊃ Λ with density D}.

(If no such sequence exists D+
BM(Λ) := ∞.)

Now we can state the famous Beurling-Malliavin description of the completeness

radius. More about this description can be found in [20].

Theorem 3.1.3 ([4]). Let Λ be a sequence of real numbers. The radius of complete-

ness of Λ is equal to 2πD+
BM(Λ).

It is natural to expect that the only density which was not used so far will play

a role in the description of the l2-dependence radius. This is indeed the case. Recall

that the radius of l2-dependence of (eiλnt) is the supremum of all c > 0 such that

(eiλnt) is not l2-independent in L2(0, c).
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Theorem 3.1.4. Let Λ = {λn}n∈Z be a separated sequence of real numbers. The

radius of dependence R(Λ) of the sequence of complex exponentials (eiλnt) is equal to

2πD−
BM(Λ).

Notice that every uniformly regular sequence must be regular. Therefore

D−
B(Λ) ≤ D−

BM(Λ) ≤ D+
BM(Λ) ≤ D+

B(Λ).

As an easy consequence we obtain the following

Corollary 3.1.5. Let Λ = {λn}n∈Z be a sequence of real numbers. If (eiλnt) is a Riesz

basis in L2(0, c) then

c = D−
B(Λ) = D−

BM(Λ) = D+
BM(Λ) = D+

B(Λ).

3.2. Beurling-Malliavin results in terms of Toeplitz operators

A Toeplitz operator TU with a symbol U ∈ L∞(R) is the map TU : H2 → H2 defined

by

TUF := P+(UF ),

where P+ is the orthogonal projection in L2(R) onto the Hardy space H2 = H2(C+).

Along with the usual H2-kernels, one defines Toeplitz kernels in the Smirnov class

N+(C+),

ker+ TU = {f(z) ∈ N+(C+) ∩ L1
loc(R) : Ū(t)f̄(t) ∈ N+(C+)}.

The following theorem is a version of the Beurling-Malliavin multiplier theo-

rem [3] in the language of Toeplitz operators.

Theorem 3.2.1 ([27, Section 4.2]). Suppose that Θ(z) is a meromorphic inner func-

tion with the derivative of arg Θ(t) bounded on R. Then for any meromorphic inner
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function J(z), we have

ker+ TΘ̄J 6= 0 ⇒ ∀ε > 0, ker TS̄εΘ̄J 6= 0.

To state the next result we will need the following definitions.

A sequence of disjoint intervals (In) on the real line is called short (in the sense

of Beurling and Malliavin) if

∑
n

|In|2
1 + dist2(In, 0)

< ∞,

and it is called long otherwise. Here |In| denotes the length of the interval In.

Let γ : R→ R be a continuous function such that γ(∓∞) = ±∞. i.e.

lim
x→−∞

γ(x) = +∞, lim
x→+∞

γ(x) = −∞.

The family BM(γ) is defined as the collection of the connected components of the

open set {
x ∈ R : γ(x) 6= max

t∈[x,+∞)
γ(t)

}
.

We say that γ is almost decreasing if γ(∓∞) = ±∞ and the family of intervals

BM(γ) is short.

Theorem 3.2.2 ([27, Section 4.3]). Suppose γ′(t) > −const.

(i) If γ is not almost decreasing, then for every ε > 0, ker+ TSεeiγ = 0.

(ii) If γ is almost decreasing, then for every ε > 0, ker+ TS̄εeiγ 6= 0.

3.3. Criterion for l2-independence

Let Λ be a separated sequence of real numbers. In this case the corresponding se-

quence of complex exponentials (eiλnt) is a Bessel sequence and therefore we have

that
∑

n aneiλnt = 0 converges in L2(0, c) for each (an) ∈ l2.
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We will use the following simple lemma.

Lemma 3.3.1. Let {λn}n∈Z be a separated sequence of real numbers and let (an) ∈ l2.

Then the series
∑

n

an

λn − z

converges locally uniformly for all z ∈ C+ and

lim
y→∞

∑
n

an

λn − iy
= 0.

Proof. Notice that

∑
n

1

|λn − z|2 =
∑

n

1

πy

y

(x− λn)2 + y2
≤ C

y
,

where the constant C depends only on the separation constant of {λn}n∈Z. The rest

follows from the Cauchy-Schwartz inequality.

Recall that for a given separated sequence Λ we say that the inner function Θ(z)

is associated to Λ if

<1 + Θ(z)

1−Θ(z)
=

1

π

∫
ydµ(t)

(x− t)2 + y2
,

where µ denotes the counting measure on Λ.

Theorem 3.3.2. Let Λ = (λn)n∈Z be a separated sequence of real numbers and let

Θ(z) be the meromorphic inner function associated to Λ. A sequence of complex

exponentials (eiλnt) is l2-independent in L2(0, c) if and only if the Toeplitz operator

TΘ̄Sc is injective.

Remark 1. In one direction we also have the following slightly more general state-

ment. If a sequence of complex exponentials (eiλnt) is l2-independent in L2(0, c) then

the Toeplitz operator TΘ̄Sc is injective for every meromorphic inner function Θ(z)

such that {t|Θ(t) = 1} = {λn}n∈Z and 1− |Θ(iy)| 6= O(1/y) as y →∞.
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Proof. Assume that (eiλnt) is not l2-independent in L2(0, c). Then there exists a non

zero sequence (an) ∈ l2 such that
∑

n ane
iλnt = 0 in L2(0, c). By applying the Fourier

transform we have that
∑

n

ankSc(z, λn) = 0

in the space KSc . Therefore

∑
n

an

λn − z
= Sc(z)

∑
n

anS
−c(λn)

λn − z
,

for all z ∈ C+.

Define

g(z) :=
∑

n

ankΘ(z, λn) ∈ KΘ.

Then g(z) = Sc(z)f(z) for

f(z) =
1−Θ(z)

2πi

∑
n

an
S−c(λn)

λn − z
=

∑
n

anS−c(λn)kΘ(z, λn) ∈ KΘ.

Therefore, f(z) ∈ ker TΘ̄Sc , i. e., TΘ̄Sc is not injective.

Conversely, assume that TΘ̄Sc is not injective. Let f(z) be some non-zero element

from ker TΘ̄Sc . Then g(z) = Sc(z)f(z) ∈ KΘ and by the Clark formula

Sc(z)f(z) =
1−Θ(z)

2πi

∫
g(t)

t− z
dσ(t),

where dσ is the Clark measure corresponding to Θ(z) (it is actually the counting

measure for Λ). Define

h(z) :=
1

2πi

∫
1− eicze−ict

t− z
g(t)dσ(t).

Clearly, h(z) ∈ KSc and

h(z) = Sc(z)(
2πif(z)

1−Θ(z)
−

∫
e−ict

t− z
g(t)dσ(t)).
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Since the function in parenthesis is obviously in the Smirnov class N+(C+) it must

be also in H2(C+) since h(t)S−c(t) ∈ L2(R). Therefore h(z) ∈ KSc ∩ScH2 and hence

h(z) ≡ 0. So we have

0 ≡ h(z) =
1

2πi

∫
1− Sc(z)S−c(t)

t− iy
g(t)dσ(t).

Now, by setting an := g(λn) we obtain an non-zero l2 sequence such that

∑
n

ankSc(z, λn) = 0,

for all z ∈ C+. Since this is equivalent to
∑

n ane
iλnt = 0 in L2(0, c) we are done.

It was shown in [27] that a sequence of complex exponentials (eiλnt) is complete

in L2(0, c) if and only if the Toeplitz operator TΘS̄c is injective for every meromorphic

inner function Θ(z) such that {t|Θ(t) = 1} = {λn}n∈Z. Using the well known Coburn

lemma, saying that a Toeplitz operator cannot have a nontrivial kernel and cokernel

in the same time, we obtain the following

Corollary 3.3.3. Let (λn)n∈Z be a separated sequence of real numbers. If the sequence

of complex exponentials (eiλnt) is l2-dependent in L2(0, c) then it must be complete in

L2(0, c).

As seen above, the problem of describing the basis properties for a sequence of

complex exponentials (eiλnt) in L2(0, c) is equivalent to the corresponding problem

for the sequence of reproducing kernels (kSc(z, λn)) in KSc . Therefore, it is natural

to consider the following more general problem. Given a meromorphic inner function

Ψ(z) and a real separated sequence {λn}n∈Z, describe the basis properties of the

system of reproducing kernels (kΨ(z, λn)) in KΨ. Furthermore, one can also consider

the analogous problem for a system of reproducing kernels in a de Branges space. In

view of the isometric relation BE = EKΨ the last two problems are equivalent under
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the assumption 0 < c < |E(λn)| < C < ∞.

In general, the separation condition on a sequence (λn)n∈Z does not imply that

the corresponding sequence of reproducing kernels (kΨ(z, λn)) is a Bessel sequence in

KΨ. Therefore, in the following theorem we must add this condition as an assumption.

Theorem 3.3.4. Let (λn)n∈Z be a separated sequence of real numbers and let Θ(z)

be the meromorphic inner function associated to Λ. Furthermore, assume that the

corresponding sequence of reproducing kernels (kΨ(z, λn)) is a Bessel sequence in KΨ.

Then a sequence of reproducing kernels (kΨ(z, λn)) is l2-independent in KΨ if and

only if the Toeplitz operator TΘ̄Ψ is injective.

The proof is the same as the one of Theorem 3.3.2. One just needs to replace

Sc(z) with Ψ(z).

We also have an analog of Corollary 3.3.3.

Corollary 3.3.5. Let (λn)n∈Z be a separated sequence of real numbers. Assume that

the corresponding sequence of reproducing kernels (kΨ(z, λn)) is a Bessel sequence in

KΨ. If the sequence of reproducing kernels (kΨ(z, λn)) is l2-dependent in KΨ then it

must be complete in KΨ.

3.4. Radius of dependence

Next we prove the Theorem 3.1.4 from the introduction.

Proof. Let R(Λ) be the radius of dependence for Λ and let Θ(z) be the the meromor-

phic inner function associate to Λ. By Theorem 3.3.2

R(Λ) = sup{c ≥ 0| ker TΘ̄Sc 6= 0}. (3.1)
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Applying the Beurling-Malliavin multiplier Theorem 3.2.1, we obtain

R(Λ) = sup{c ≥ 0| ker+ TΘ̄Sc 6= 0}. (3.2)

Now, Theorem 3.2.2 gives

R(Λ) = sup{c ≥ 0|γc(t) := ct− φ(t)is almost decreasing}, (3.3)

where φ(t) is phase function of Θ(z).

Let c < R(Λ). Then γc is almost decreasing and the collection of open intervals

BM(γc) is short. BM(γc) gives a decomposition of the real line in two parts. The

intervals in BM(γc) represent the part in which the densities of Λ and (2π/c)Z are

”comparable”, whereas the complement of BM(γc) represents the part in which the

density of Λ is much larger then the density of (2π/c)Z.

Let Σ be a subsequence of Λ obtained by throwing away points from Λ which

lie in the complement of BM(γc) so that the densities of Σ and (2π/c)Z in this part

become essentially the same. In this case we will have

|nΣ(t)− c

2π
t| ³ γ∗c (t)− γc(t),

where

γ∗c (t) := sup{γc(x)|x ∈ [t,∞]}.

Therefore,

∫ |nΣ(t)− n 2π
c
Z(t)|

1 + t2
³

∑

I∈BM(γc)

∫

I

|γ∗c (t)− γc(t)|
1 + t2

.
∑

I∈BM(γc)

1

dist(0, I)2

∫ |I|

0

tdt

³
∑

I∈BM(γc)

|I|2
1 + dist(0, I)2

< ∞.

(In the second inequality we used the fact that γ′c(t) is bounded from below.) Thus,
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R(Λ) ≤ 2πD−
BM(Λ).

Let now c < 2πD−
BM(Λ). There exists a subsequence Σ of Λ which is c-regular,

i.e.,

∫ |nΣ(t)− n 1
c
Z(t)|

1 + t2
< ∞.

Let Θ(z) be the meromorphic inner function associated to Σ and denote by φ(t)

the phase function of Θ(z). Since φ′(t) is bounded on R we have that |φ(t)−n 2π
c
Z(t)|

is bounded and hence ∫ |φ(t)− c
2π

t|
1 + t2

< ∞. (3.4)

Let 0 ≤ d < c be arbitrary. Our goal will be to show that

γd(t) :=
d

2π
t− φ(t)

is almost decreasing. This will imply that

2πD−
BM(Λ) ≤ R(Σ) ≤ R(Λ)

and we will be done.

First, it is well known (and elementary to check) that 3.4 implies

lim
t→±∞

φ(t)

t
=

2π

c
.

Therefore, γd(±∞) = ∓∞.

So, it remains to show that BM(γd) is short. We split the intervals in BM(γd)

in two groups as follows. Let I = (a, b) ∈ BM(γd). Consider the intersection between

the line y = (d−c)/2πx and the horizontal line extending the restriction of y = γ∗d(x)

on I (γ∗d is defined as above). If this point is to the right of the midpoint of I (which

we denote by m := (a + b)/2) then we put the interval I in the first group. We put
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all the other intervals from BM(γd) in the second group.

Let I be some interval from the first group. We can underestimate the area

between y = (d − c)/2πx and y = c/2πx − φ(x) by the triangle formed from y =

(d − c)/2πx the vertical line y = a and the horizontal line extending the restriction

of y = γ∗d(x) on I. Therefore we obtain

∫

I

|φ(t)− c
2π

t|
1 + t2

≥ c− d

8

|I|2
1 + b2

.

This together with 3.4 shows that the collection of intervals in the first group is short.

Similar argument shows that the collection of intervals in the second group is

short and hence BM(γd) is short. We are done.

Remark 2. Notice that since R(Λ) = sup{c ≥ 0| ker TΘ̄Sc 6= 0} we have also proved

that

2πD−
BM(Λ) = sup{c ≥ 0| ker TΘ̄Sc 6= 0}.

We will use this fact in this and the next chapter.

3.5. Criterion for Riesz sequences

Next, we characterize those sequences of complex exponentials which form a Riesz

sequence in L2(0, c).

Theorem 3.5.1. Let Λ = (λn)n∈Z be a separated sequence of real numbers and let

Θ(z) be the meromorphic inner function associated to Λ. A sequence of complex

exponentials (eiλnt) is a Riesz sequence in L2(0, c) if and only if the Toeplitz operator

TΘ̄Sc is injective with closed range (i.e., it is bounded from below).

Remark 3. Again, in one direction we also have the following slightly more general

statement. If a sequence of complex exponentials (eiλnt) is l2-independent in L2(0, c)
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then the Toeplitz operator TΘ̄Sc is injective with closed range for every meromorphic

inner function Θ(z) such that {t|Θ(t) = 1} = {λn}n∈Z and 1 − |Θ(iy)| 6= O(1/y) as

y →∞.

Proof. Notice first that since we work only with separated real sequences the Bessel

condition is always fulfilled. Therefore in our setting (eiλnt) is a Riesz sequence in

L2(0, c) if and only if

C(
∑

n

|an|2)1/2 ≤ ‖
∑

n

aneiλnt‖,

for some C > 0 and all (an) ∈ l2.

Assume that (eiλnt) is not a Riesz sequence in L2(0, c). Then there exists a

sequence in k of elements (ak
n) ∈ l2 with all elements of norm 1 (

∑
n |ak

n|2 = 1) such

that
∑

n ak
ne

iλnt → 0 in L2(0, c) as k → ∞. By applying the Fourier transform we

have that
∑

n

ak
nkSc(z, λn) → 0

in the space KSc as k →∞. Therefore

hk(z) :=
∑

n

ak
n

λn − z
− Sc(z)

∑
n

ak
nS−c(λn)

λn − z
→ 0,

in the space KSc as k →∞.

Define

gk(z) :=
∑

n

ak
nkΘ(z, λn) ∈ KΘ.

Then

gk(z) =
1−Θ(z)

2πi
hk(z)− Sc(z)fk(z)

for

fk(z) =
1−Θ(z)

2πi

∑
n

ak
n

S−c(λn)

λn − z
=

∑
n

ak
nS−c(λn)kΘ(z, λn) ∈ KΘ.
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Notice that ‖fk‖ = 1 since
∑

n |ak
n|2 = 1. Therefore,

TΘ̄Scfk(t) = P+Θ̄(t)gk(t)− P+
Θ̄(t)− 1

2πi
hk(t).

The first term in the difference above is always zero since gk(z) ∈ KΘ and the second

term goes to zero as k →∞. Therefore TΘ̄Sc is not bounded below.

Conversely, assume that TΘ̄Sc is not bounded below. Then there exists a sequence

(fk(z)) of elements in H2(C+) all with norm one such that TΘ̄Scfk → 0 as k → ∞.

Let hk := TΘ̄Scfk ∈ H2 and let gk(z) := Θ̄Scfk − hk ∈ H2. Notice that since hk → 0

and ‖fk‖ = 1 we have that the norms of gk are bounded from below.

Since Θ(z)gk(z) ∈ KΘ we have by the Clark formula

Θ(z)gk(z) =
1−Θ(z)

2πi

∑
n

gk
n

λn − z
,

where gk
n := Θ(λn)gk(λn) = gk(λn). By the remark above the l2 norms of the sequence

(gk
n) are bounded from below. Now we have the following equality

Θ(z)hk(z) =
1

2πi

∑
n

1− Sc(z)S−c(λn)

λn − z
gk

n − Sc(z)(fk(z)− 1

2πi

∑
n

S−c(λn)gk
n

λn − z
).

In the difference above the first term is in KSc and the second one is in ScH2. Thus

they are orthogonal for all k. Since the difference tends to 0 we have that both terms

must tend to 0. Therefore,

1

2πi

∑
n

1− Sc(z)S−c(λn)

λn − z
gk

n → 0

and hence
∑

n gk
neiλnt → 0 in L2(0, c) as k → ∞. Since (gk

n) is bounded from below

in l2 it follows that (eiλnt) cannot be a Riesz sequence in L2(0, c).

As mentioned above, it was shown in [27] that a sequence of complex exponen-

tials (eiλnt) is complete in L2(0, c) if and only if the Toeplitz operator TΘS̄c is injective
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for every meromorphic inner function Θ(z) such that {t|Θ(t) = 1} = {λn}n∈Z. Com-

bining this result with the theorem above gives the following:

Corollary 3.5.2. Let Λ := (λn)n∈Z be a separated sequence of real numbers and let

Θ(z) be the meromorphic inner function associated to Λ. The sequence of complex

exponentials (eiλnt) is a Riesz basis in L2(0, c) if and only if the Toeplitz operator TΘ̄Sc

is invertible.

3.6. Criterion for Parseval frames

Below we describe Parseval frames of complex exponentials. The description is very

similar to the description of frames given in [34].

Theorem 3.6.1. Let Λ = (λn)n∈Z be a separated sequence of real numbers and let

Θ(z) be the meromorphic inner function associated to Λ. A sequence of complex

exponentials (eiλnt) is a Parseval frame in L2(0, c) if and only if Θ(z) is divisible by

Sc(z). Consequently, the largest c for which (eiλnt) is a Parseval frame in L2(0, c) is

equal to the mean type of Θ(z).

Proof. Assume that (eiλnt) is a Parseval frame in L2(0, c) and equivalently (kSc(z, λn))

is a Parseval frame in KSc . Then for every f(z) ∈ KSc we have

‖f‖2 =

∫
|f(t)|2dµ(t),

where µ is the counting measure for Λ. By Aleksandrov’s theorem [1] there exists a

function h(z) holomorphic in the upper half-plane with |h(z)| ≤ 1 on C+ and

y

π

∑
n

1

(λn − x)2 + y2
= <1 + h(z)Sc(z)

1− h(z)Sc(z)
.

But this says that h(z)Sc(z) is the inner function associated to Λ. Therefore h(z) is

also inner function and hence Sc(z) divides Θ(z).
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The opposite is similar and easier.

Remark 4. It seems that the description of the mean type of Θ(z) in terms of Λ is

a difficult problem.

We also have the following more general statement with the same proof

Theorem 3.6.2. Let (λn)n∈Z be a separated sequence of real numbers and let Θ(z) be

the meromorphic inner function associated to Λ. A sequence of reproducing kernels

(kΨ(z, λn)) is a Parseval frame in KΨ if and only if Θ(z) is divisible by Ψ(z).

3.7. Basis properties of systems of eigenfunctions of one-dimensional Schrödinger

operators

Consider the differential equation

−u′′(t) + q(t)u(t) = zu(t) (3.5)

on some finite interval [0, c] (As usual we assume that the potential q ∈ L1(0, c)). Fix

some self-adjoint boundary condition at 0 of the form

cos αu(t) + sin αu′(t) = 0. (3.6)

Denote by u(t, z) (z ∈ C) the non-trivial solution of 3.5 satisfying the boundary

condition at 0.

Each such equation gives rise to a short de Branges space with a de Branges

function

E(z) :=
√

π(u′(c, z)− iu(c, z)).
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The corresponding generalized Fourier transform F : L2(0, c) → BE defined by

F(f)(z) :=

∫ c

0

f(t)u(t, z)dt

is a unitary transformation which maps u(t, λ) to a reproducing kernel KE(z, λ).

The next proposition shows that for a given separated real sequence (λn)n∈N the

basis properties of the system (u(t, λn)) in L2(0, c) are identical to the basis properties

of the system (cos
√

λnt) in L2(0, c).

Proposition 3.7.1. Let Λ := (λn)n∈N be a separated sequence of positive real num-

bers. Let u(t, λ) be the non-trivial solution of 3.5 satisfying some non-Dirichlet bound-

ary condition at 0 (α 6= 0 in 3.6). Then the system (u(t, λn)) is l2- independent in

L2(0, c) if and only if the system (cos
√

λnt) is l2- independent in L2(0, c)

Proof. Consider the equation 3.5 with a zero potential and Neumann boundary con-

dition at 0 (α = π/2 in 3.6). Notice that its non-trivial solution is given by (cos
√

zt)

and its de Branges function is given by EN(z) := cos c
√

z + i
√

z sin c
√

z. There-

fore, all we need to show is that the systems of reproducing kernels (KEN
(z, λn)) and

(KE(z, λn)) have the same basis properties. Here, E(z) is the de Branges function of

the equation with solutions u(t, λ).

Standard asymptotic formulae for u(t, λ) imply that 0 < c < |E(t)|/|EN(t)| <

C < ∞ on R (see [27]). Therefore, BE and BEN
are equal as sets with equivalent

norms. Now, showing that (KEN
(z, λn)) is l2- independent (complete, a frame, a

Riesz sequence, a Riesz basis) if and only if the system (KE(z, λn)) is l2- independent

(complete, a frame, a Riesz sequence, a Riesz basis) is easy. We will prove the

l2- independence only since the rest are similar. Indeed,
∑

n anKE(z, λn) = 0 for

some (an) ∈ l2 is equivalent to
∑

n anF (λn) = 0 for every F (z) ∈ BE. The last

equality is equivalent to
∑

n bnF1(λn) = 0, where bn := E(λn)an/EN(λn) and F1(z) :=
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EN(z)F (z)/E(z). The last two equations are unitary transformations. The first one is

unitary in l2 whereas the second one is unitary between BE and BEN
. Thus, we obtain

that l2- dependence of (KE(z, λn)) is equivalent to l2- dependence of (KEN
(z, λn)).

We are done.

3.8. Beurling gap problem

The Beurling gap problem that we consider here may be formulated as follows. For a

given real separated sequence Λ = (λn)n∈Z find the supremum of all a > 0 for which

there exists a nonzero l1 sequence (an) such that
∑

n ane
iλnt = 0 for all t ∈ (−a, a).

Notice that if (an) ∈ l1 then
∑

n aneiλnt defines a continuous function in t. Denote

this supremum by R1(Λ).

Theorem 3.8.1. With the notation above the following equality holds

R1(Λ) = πD−
BM(Λ).

Notice that since l1 ⊂ l2 from Theorem 3.1.4 we immediately have R1(Λ) ≤
R(Λ)/2 = πD−

BM(Λ). The proof of the equality now follows from 2 combined with the

following two lemmas.

Lemma 3.8.2. Let (λn)n∈Z be a separated sequence of real numbers and let Θ(z) be

the meromorphic inner function associated to Λ. If ker TΘ̄S2a 6= 0 for some a > 0,

then for any ε > 0 there exists (hn) ∈ l1 such that

lim
y→±∞

exy
∑

n

hn

λn − iy
= 0

for every x ∈ (−a + ε, a− ε).

Proof. Let

b(z) :=
z − i

z + i
.
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Since ker TΘ̄S2a 6= 0 we have that ker TΘ̄S2a−2εb 6= 0 for any ε > 0. Hence there exists

a non-zero

f ∈ ker TΘ̄S2a−2εb 6= 0 ⊂ H2(C+).

Then S2a−2ε(z)b(z)f(z) ∈ KΘ. Define h(z) := Sa−ε(z)b(z)f(z)/(z − i). Clearly h(z)

belongs to KΘ, and therefore

h(z) =
1−Θ(z)

2πi

∫
h(t)

t− z
dσ(t)

where σ is the counting measure for Λ. In particular, for x < a− ε,

lim
y→∞

exy

∫
h(t)

t− iy
dσ(t) = 0

because f(iy) → 0, since f ∈ H2(C+), and because the outer function 1 − Θ(iy)

cannot go to zero exponentially fast.

Denote g = Θ̄h ∈ H̄2 = H2(C−). Then h = Θg in the lower half-plane. Note

also that g = S−a+εk where

k(z) = Θ̄(z)S2a−2ε(z)b(z)f(z)/(z − i) ∈ H̄2 = H2(C−).

Hence for x > −a + ε,

lim
y→−∞

exy

∫
h(t)

t− iy
dσ(t) = lim

y→−∞
2πi

k(iy)Θ(iy)

e(a−ε+x)y(1−Θ(iy))
= 0.

The last equality follows from the facts that k(z) ∈ H2(C−) and that

1−Θ(iy)

Θ(iy)
= Θ(−iy)− 1.

It is left to notice that h(z) = l(z)/(z− i) where both l = S2a−2εbf and (z− i)−1

belong to L2(σ). Thus, h ∈ L1(σ), i.e., (hn) = (h(λn)) ∈ l1.

The following lemma is a well known fact that we include here for completeness.
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Lemma 3.8.3. Let µ be a measure with finite total variation. Then the Fourier

transform of µ vanishes on [−a, a] if and only if

lim
y→±∞

exy

∫
dµ(t)

t− iy
= 0,

for every x ∈ [−a, a].

Proof. Suppose that
∫

eixtdµ(t) = 0 for all x ∈ [−a, a]. Then

e−ixz

∫ +∞

−∞

eixt − eixz

i(t− z)
=

∫ +∞

−∞

∫ x

0

eiu(t−z)dudµ(t) =

=

∫ x

0

∫ +∞

−∞
eiutdµ(t)e−iuzdu = 0,

for every x ∈ [−a, a] and z ∈ C. Therefore,

∫
eixt − eixz

t− z
dµ(t) = 0

for every x ∈ [−a, a]. Obviously,

lim
y→±∞

∫
eixt

t− iy
dµ(t) = 0 (3.7)

and therefore

lim
y→±∞

exy

∫
dµ(t)

t− iy
= 0

for every x ∈ [−a, a].

Conversely, for x ∈ [−a, a], define

H(z) :=

∫
eixt − eixz

t− z
dµ(t).

Then H(z) is an entire function of Cartwright class. To show that H(z) is identically

zero it suffices to check that limy→±∞H(iy) = 0. Recall that for x ∈ [−a, a],

lim
y→±∞

∫
eix(iy)

t− iy
dµ(t) = 0.
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Together with (3.7) this implies H(z) ≡ 0.

Thus

∫
eixtdµ(t) = lim

y→∞
−iy

∫
eixtdµ(t)

t− iy
= lim

y→∞
−iye−xy

∫
dµ(t)

t− iy
= 0

for all −a ≤ x ≤ a.

An extreme point method of de Branges [11] can be used to give another proof

of the inequality R(Λ) ≤ πD−
BM(Λ). This proof does not depend on Toeplitz kernels

techniques. Below, we give a sketch of it. We will follow de Branges’s argument

from [11]. The only difference is that we work with l1-sequences instead of finite

measures.

Assume that there exists a non-zero sequence (an) ∈ l1 such that
∑

n ane
iλnt = 0

for all t ∈ (−a, a). By applying the Fourier transform we obtain a relation for the

corresponding sequence of reproducing kernels in the Paley-Wiener space PWc and

therefore
∑

n

anF (λn) = 0, (3.8)

for all F (z) ∈ PWc. The fact that F (z) ∈ PWc implies F#(z) ∈ PWc assures

existence of a real sequence (an) ∈ l1 satisfying 3.8.

Consider the set of all real sequences (an) ∈ l1 with l1 norm at most 1 and

satisfying 3.8. It is a nonempty weak* compact and convex set. Therefore by the

Krein-Millman Theorem it must have a nonzero extreme point. Fix one such extreme

point (an) ∈ l1. Let Λ′ ⊂ Λ be the subsequence consisting of those λn for which an 6= 0.

The goal is to construct an entire function H(z) of Cartwright class vanishing at Λ′

such that

lim sup
y→∞

log |H(iy)|
y

=
c1

2
= lim sup

y→−∞

log |H(iy)|
−y

, (3.9)
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for some c1 ≥ c. The natural candidate for such an entire function is

H(z) :=
1∑

n
an

λn−z

.

Of course, such a function H(z) will not be entire for all (an) ∈ l1 satisfying 3.8.

However, it turns out that it will be entire for our extremal choice (an) ∈ l1.

First, it is easy to show that
∑

n |an| = 1. Denote by B the closure of PWc with

respect to the norm

‖F‖ :=
∑

n

|F (λn)||an|.

It can be shown that B consists of entire function of Cartwright class Cc. Moreover,

the fact that (an) is an extreme point implies that for any sequence (bn) satisfying
∑

n |anbn| < ∞ and
∑

n anbn = 0 there exists a function G(z) ∈ B such that G(λn) =

bn. Without loss of generality assume that λ0, λ1 ∈ Λ′. There exists an entire function

G(z) ∈ B such that G(λ0) = 1/a0(λ0 − λ1), G(λ1) = 1/a1(λ1 − λ0), and G(λn) = 0

for all other elements in Λ′. Finally, define H(z) := G(z)(z − λ1)(z − λ0). It can be

shown that

H(z) :=
1∑

n
an

λn−z

,

and H(z) satisfies 3.9. This implies that Λ is a regular sequence in the sense of [4].

Finally, using the well known description of the interior BM-density in terms of regular

subsequences we obtain the desired inequality R(Λ) ≤ πD−
BM(Λ).

Remark 5. A little more work shows that

Sc(z)

H(z)
=

∑
n

ane
icλn

λn − z
.
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CHAPTER IV

PÓLYA-LEVINSON PROBLEM

A separated sequence Λ on the real line is called a Pólya sequence if any entire

function of zero exponential type bounded on Λ must be a constant function. In this

chapter we solve the problem of Pólya and Levinson that asks for a description of

Pólya sequences.

4.1. Introduction

Recall that an entire function F (z) is said to have exponential type zero if

lim sup
|z|→∞

log |F (z)|
|z| = 0.

We call a separated real sequence Λ = {λn}n∈Z (a sequence satisfying

|λn − λm| ≥ δ > 0, (n 6= m)) a Pólya sequence if any entire function of exponential

type zero that is bounded on Λ is constant.

Historically, first results on Pólya sequences were obtained in the work of Val-

iron [45], where it was proved that the set of integers Z is a Pólya sequence. Later this

result was popularized by Pólya, who posted it as a problem in [40]. Subsequently

many different proofs and generalizations were given (see for example section 21.2

of [24] or chapter 10 of [5] and references therein).

In his 1940’ book [25] Levinson showed that if |λn−n| ≤ p(n), where p(t) satisfies

∫
p(t)

1 + t2
log | t

p(t)
|dt < ∞

and some smoothness conditions, then Λ = {λn} is a Pólya sequence. In the same

time for each such p(t) satisfying
∫

p(t)dt/(1 + t2) = ∞ he was able to construct a

sequence Λ = {λn} that is not Pólya sequence. As it often happens in problems from
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this area, the construction took a considerable effort (see [25], pp. 153-185). Closing

the gap between Levinson’s sufficient condition and the counterexample remained an

open problem for almost 25 years until de Branges [11] essentially solved it by showing

that Λ is a Pólya sequence if
∫

p(t)dt/(1 + t2) < ∞ (but assuming extra regularity

conditions on the sequence).

The results of [25] and [11] remain strongest to date. However, none of them gives

a complete answer, since there are Pólya sequences for which
∫

p(t)dt/(1 + t2) = ∞.

For example, as will be clear from our results below, the sequence

λn := n + n/ log (|n|+ 2), n ∈ Z

is a Pólya sequence.

In the opposite direction, [11] contains the following necessary condition. A

sequence of disjoint intervals In on the real line is called long (in the sense of Beurling

and Malliavin) if
∑

n

|In|2
1 + dist(In, 0)2

= ∞,

and it is called short otherwise. De Branges [11] proved that if the complement of a

closed set X ⊂ R is long then there exists a non constant zero type entire function that

is bounded on X. In particular, if the complement of a sequence Λ is long then Λ is not

a Pólya sequence. The sequence λn := n2 shows that this condition is not sufficient.

Indeed, λn = n2 is the zero set of the zero type function F (z) := cos
√

2πz cos
√−2πz

and thus is not a Pólya sequence. On the other hand, the real complement of this

sequence is short.

Most of the results from this chapter can be found in [29].
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4.2. Characterization of Pólya sequences

As was mentioned in the introduction, a sequence of real numbers is called separated

if |λn − λm| ≥ δ > 0, (n 6= m). It is natural to introduce a separation condition in

the Pólya-Levinson problem because of the following obvious reasons. If one takes a

zero set of a zero-type entire function and adds a large number of points close enough

to each zero, the entire function will still be bounded on the new sequence. At the

same time, this way one can obtain non-Pólya sequences of arbitrarily large density,

in any reasonable definition of density. Hence, if one hopes to obtain a description

of Pólya sequences based on densities or similar terms, it is necessary to include a

separation condition, as it was done in the classical results cited above.

The following theorem gives a complete characterization of Pólya sequences.

Theorem 4.2.1. Let Λ = (λn)n∈Z be a separated sequence of real numbers and let

Θ(z) be the meromorphic inner function associated to Λ. The following are equivalent:

(i) Λ = {λn} is a Pólya sequence.

(ii) The interior Beurling-Malliavin density of Λ, D−
BM(Λ), is positive.

(iii) ker TΘ̄S2c 6= 0, for some c > 0.

We will use the following lemma.

Lemma 4.2.2. Let Λ = (λn)n∈Z be a separated sequence of real numbers and let Θ(z)

be the meromorphic inner function associated to Λ. Denote by σ the counting measure

on Λ (i.e. the Clark measure corresponding to Θ(z)). If ker TΘ̄S2c 6= 0 for some c > 0

then there exists h ∈ L2(σ)

lim
y→±∞

exy

∫
h(t)

t− iy
dσ(t) = 0,

for all x ∈ (−c, c).
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Proof. Let f(z) be some nonzero element of ker TΘ̄S2c ⊂ H2(C+). Then S2c(z)f(z) ∈
KΘ. Define h(z) := Scf(z). Clearly, h(z) belongs to KΘ and therefore

h(z) =
1−Θ(z)

2πi

∫
h(t)

t− z
dσ(t).

In particular, for x < c

lim
y→∞

exy

∫
h(t)

t− iy
dσ(t) = 0

because f(iy) → 0, since f ∈ H2(C+), and because the outer function 1 − Θ(iy)

cannot go to zero exponentially fast.

Let g(t) := Θ̄(t)h(t) ∈ H2(R) = H2(C−). Then the meromorphic continuation

of h(z) to the lower half plane C− is given by h(z) = Θ(z)g(z). Note that g(z) =

S−c(z)k(z) where

k(t) = Θ̄(t)S2c(t)f(t) ∈ H2(R) = H2(C−).

Therefore, for x > −a,

lim
y→−∞

exy

∫
h(t)

t− iy
dσ(t) = lim

y→−∞
2πi

k(iy)Θ(iy)

e(c+x)y(1−Θ(iy))
= 0.

The last equality follows from the facts that k(z) ∈ H2(C−) and that

1−Θ(iy)

Θ(iy)
= Θ(−iy)− 1.

Proof. By Remark 2 in the previous chapter it follows that (ii) and (iii) are equiva-

lent.

(i) ⇒ (iii) Assume (iii) is not true, i.e., for the meromorphic inner function

Θ(z) associated with Λ, ker TΘ̄S2c = 0 for every c > 0. In this case we will construct a

nonconstant zero type entire function which is bounded on Λ, which will mean that
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Λ is not a Pólya set. Let σ be the counting measure on Λ. Then since Λ is separated
∫

dσ(t)/(1 + t2) < ∞. Therefore, there exists a short de Branges space BE contained

isometrically and properly in L2(µ). First, let us show that BE cannot contain a

function of positive exponential type c > 0.

Suppose that F (z) ∈ BE has a positive exponential type. We can assume that

F (iy) grows exponentially in y as y →∞. Since BE 6= L2(σ), there exists g(t) ∈ L2(σ)

with ḡ(t) ⊥ BE. Then

0 =

∫
F (t)− F (w)

t− w
g(t)dσ(t) =

∫
F (t)

t− w
g(t)dµ(t)− F (w)

∫
1

t− w
g(t)dσ(t),

for any w ∈ C and therefore

F (w) =

∫ F (t)
t−w

g(t)dσ(t)∫
1

t−w
g(t)dσ(t)

.

Since F (w) grows exponentially along iR+, the integral in the denominator must

decay exponentially in w along iR+. Thus the function

G(z) :=
1−Θ(z)

2πi

∫
1

t− z
g(t)dσ(t)

can be represented as G(z) = Sc(z)h(z) for some nonzero h(z) ∈ H2(C+) and c > 0,

and belongs to KΘ, where Θ(z) is the inner function associated to Λ. Hence h(z) ∈
ker TΘ̄S2c and we have a contradiction.

Therefore any F (z) ∈ BE has zero type. It is left to notice that

|F (λn)| ≤
√∑

m

|F (λm)|2 = ‖F‖L2(µ) < ∞,

which means that F (z) is bounded on Λ.

(iii) ⇒ (i) Let F (z) be a zero type entire function bounded on Λ by some



49

constant M > 0. For any integer n ∈ N, F n(z) is also a zero type function. Let σ be

the counting measure on Λ. If ker TΘ̄S2c 6= 0 for some c > 0 then by the Lemma 4.2.2

there exists h(t) ∈ L2(σ) such that

lim
y→±∞

exy

∫
h(t)

t− iy
dσ(t) = 0, (4.1)

for all x ∈ (−c, c).

Define

H(z) :=

∫
F n(t)− F n(z)

t− z
h(t)dσ(t)

for all z ∈ C. It is clear that H(z) is an entire function of zero type. To show that

H(z) ≡ 0 it is enough to check that H(iy) → 0 as y → ±∞.

Using 4.1 and Lemma 3.3.1 we obtain

lim
y→±∞

H(iy) = lim
y→±∞

[∫
F n(t)

t− iy
h(t)dσ(t)− F n(iy)

∫
h(t)

t− iy
dσ(t)

]
= 0.

Therefore, ∫
F n(t)− F n(z)

t− z
h(t)dσ(t) ≡ 0.

Now,

|F (z)

(∫
h(t)dσ(t)

t− z

)1/n

| ≤ M

(
‖h‖2

∑
n

1

|λn − z|2
)1/n

≤ M

(
C‖h‖2

|=z|
)1/n

,

for every non real z. Since this is true for all n ∈ N, we have that |F (z)| ≤ M for

all non real z ∈ C for which
∫

dµ(t)/(t− z) 6= 0. Since σ is a non-zero measure, by

continuity, F (z) is bounded on the whole plane and hence it is identically 0.

As an immediate consequence we obtain that the sequence of integers Z is a

Pólya sequence, as known from Valiron’s original statement. This follows from (iii)
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and also from (iv) by taking Θ(z) = S2π(z). Another consequence is that a separated

real sequence with classical density zero cannot be a Pólya sequence. However, there

are sequences with positive classical density which are not Pólya. As was mentioned in

the introduction, the first example of such a sequence was given by Levinson [25]. New

examples in both directions can now be constructed using the following description.

Corollary 4.2.3. Let Λ = {λn}n∈Z be a separated sequence of real numbers. Then

Λ is a Pólya sequence if and only if for every long sequence of intervals {In} the

sequence #(Λ ∩ In)/|In| is not a null sequence, i.e., #(Λ ∩ In)/|In|9 0.

Proof. Suppose that there exists a long sequence of intervals {In} such that #(Λ ∩
In)/|In| → 0. Let Θ(z) be any meromorphic inner function with {Θ = 1} = Λ whose

argument φ(t) := arg Θ(t) has a bounded derivative. Also, let b > 0 and ε = b/4π > 0.

Without loss of generality, |In| → ∞. Then there exists n0 ∈ N such that for every

n ≥ n0, |In| > 2π/b and #(Λ ∩ In)/|In| < ε. Let kn := #(Λ ∩ In) ∈ N and let

In = (an, bn). Denote by λn
1 the largest element of Λ smaller than an and by λn

kn+2 the

smallest element larger than bn. Denote the first half of In by Jn. For every t ∈ Jn

we have

2b(λn
kn+2 − t) > 2b

|In|
2

> b
kn

ε
≥ b

kn + 1

4ε
= π(kn + 1) > φ(λn

kn+2)− φ(t)

if kn > 0, and similarly

2b(λn
kn+2 − t) > 2b

|In|
2

> 2π > φ(λn
kn+2)− φ(t)

if kn = 0. Therefore, for γb(t) := 2bt−φ(t), we obtain γb(λ
n
kn+2) > γb(t), for all t ∈ Jn,

and hence Jn ∈ BM(γb). Thus, BM(γb) is long, and consequently γb(t) is not almost

decreasing. Since γ′b(t) > −const., Theorem 3.2.2 applies and we get ker TSεeiγb ⊆
ker T+

Sεeiγb
= 0 for every ε > 0. Now, for any a > 0, by choosing b = ε = a/3 > 0, we
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obtain ker TΘ̄S2a = 0. Finally, by the remark after Theorem 4.2.1, Λ is not a Pólya

set.

Conversely, assume that Λ is not a Pólya set. Choose a meromorphic inner

function Θ(z) with {Θ = 1} = Λ which has a continuous argument φ(t) with bounded

derivative. We will show that for every b > 0, γb(t) := 2bt − φ(t) is not almost

decreasing. Indeed, let b > 0 be such that γb(t) is almost decreasing. Then, by

Theorem II, ker T+
S2b−εe−iφ = ker T+

S̄εeiγb
6= 0 for every ε > 0. Now, using Theorem 3.2.2,

we obtain N [Θ̄S2a] 6= 0, for some a > 0. This is in contradiction with Theorem 4.2.1.

So, γb(t) is not almost decreasing for all b > 0. This implies that for every b > 0

either γb(±∞) 6= ∓∞ or BM(γb) is long.

First, assume that there exists a decreasing null sequence (bn) such that

γbn(±∞) 6= ∓∞.

By passing to a subsequence we can assume without loss of generality that γbn(∞) 6=
−∞ (the case γbn(−∞) 6= ∞ is analogous). There exists ε1 > 0 and a sequence

t1n → ∞ such that γb1(t
1
n) > ε1 for all n ∈ N. Therefore, for n1 ∈ N large enough we

have that

#(Λ ∩ (0, t1n1
))

t1n1

< b1

Now, since γb2(∞)− γb2(t
1
n1

) 6= −∞ there exists ε2 > 0 and a sequence t2n →∞ such

that γb2(t
2
n) − γb2(t

1
n1

) > ε2. for all n ∈ N. Hence, for n2 ∈ N large enough we have

that t2n2
> 2t1n1

and

#(Λ ∩ (t1n1
, t2n2

))

t2n2

< b2.

Continuing the same procedure we obtain a sequence (tknk
) such that tk+1

nk+1
− tknk

> tknk

and
#(Λ ∩ (tk−1

nk−1
, tknk

))

tknk

< bk,
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for all k ∈ N. Finally, by taking Ik := (tknk
, tk+1

nk+1
) we obtain a long sequence of

intervals (Ik) such that

#(Λ ∩ Ik)

|Ik| → 0.

If there is no decreasing null sequence (bn) such that γbn(±∞) 6= ∓∞ then

there exists b0 > 0 such that γb(±∞) = ∓∞ for all b < b0. For r ∈ N, since

γb0/r(±∞) = ∓∞, we have that BM(γb0/r) = ∪nI
r
n is long. Let Ir

n = (ar
n, b

r
n) and let

kr
n := #(Λ ∩ Ir

n). Then, since

γ b0
r

(ar
n) = γ b0

r

(br
n),

we have

2π(kr
n − 1) ≥ φ(br

n)− φ(ar
n) =

b0

r
(br

n − ar
n) =

b0

r
|Ir

n|

and hence

#(Λ ∩ Ir
n)

|Ir
n|

≤ 1

2πk
+

b0

|Ir
n|

.

So, for each r ∈ N, there is a large enough nr such that for n ≥ nr,

#(Λ ∩ Ir
n)

|Ir
n|

≤ 1

πk
.

Choose l1 < m1 ∈ N such that

m1∑

n=l1+1

|I(1)
n |2

d(I
(1)
n )2

> 1

and define In = I
(1)
l1+n for 1 ≤ n ≤ m1 − l1. Next, choose l2 < m2 ∈ N such that

m2∑

n=l2+1

|I(2)
n |2

d(I
(2)
n )2

> 1,

and I
(1)
m1 is to the left of I

(2)
l2+1. Define Im1−l1+n = I

(2)
l2+n for 1 ≤ n ≤ m2 − l2. Continue

the same procedure. It is clear that the sequence {In} defined in this way is long and
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that #(Λ ∩ In)/|In| → 0.

4.3. Cartwright theorem

It is natural to ask weather there exist Pólya type sequences for entire functions

of exponential type bigger than 0. The most famous result in this direction is the

classical theorem of Cartwright.

Theorem 4.3.1. If F (z) is an entire function of exponential type < π which is

bounded on the integers Z (i.e. there exists M > 0 such that |F (n)| < M for all

n ∈ Z) then F (z) must be bounded on the whole real line.

It is interesting to try to extend this classical result to more general real sequences

then Z. Below we give some results in this direction that can be obtained using the

techniques from the proof of Theorem 4.2.1.

Let Λ be a separated sequence of real numbers and let Θ(z) be the meromorphic

inner function associated to Λ. Denote by σ the counting measure on Λ. Let F (z) be

an entire function of exponential type c < πD−
BM(Λ) such that |F (λn)| < M .

By the Lemma 4.2.2 for every h(z) ∈ ker TΘ̄Sc we have that

lim
y→±∞

exy

∫
h(t)

t− iy
dσ(t) = 0,

for all x ∈ (−c, c).

Define

H(z) :=

∫
F (t)− F (z)

t− z
h(t)dσ(t)

for all z ∈ C. It is clear that H(z) is an entire function of Carthwright class. Reason-

ing as in the proof of Theorem 4.2.1 one shows that H(z) ≡ 0. Therefore we obtain
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the following identity

F (z) =

∫ F (t)h(t)
t−z

dσ(t)
∫ h(t)

t−z
dσ(t)

. (4.2)

Now, since h(z) ∈ ker TΘ̄Sc ⊂ KΘ we can rewrite the last identity as

h(z)F (z) =
1−Θ(z)

2πi

∫
F (t)h(t)

t− z
dσ(t).

Therefore, for every x ∈ R and ‖h‖2 = 1 we obtain

|h(x)F (x)| ≤ M‖kΘ(·, x)‖2 = Mφ′(x).

Since Θ(z) is associated to a separated sequence Λ, φ′(t) must be bounded on R.

Thus, |h(x)F (x)| < C for all x ∈ R and h ∈ ker TΘ̄Sc with norm 1. Therefore, to

obtain boundedness of F (z) on the real line we must show that for all x ∈ R,

sup{|h(x)| | h ∈ ker TΘ̄Sc , ‖h‖2 = 1} > B > 0.

At this point we do not know if this is possible.

In the case when Λ = Z we have Θ(z) = S2π(z). Therefore for c < πD−
BM(Z) = π

and x ∈ R we can take h(z) = k§2π−c(z, x). Since h(x) = k§2π−c(x, x) = 2π − c > 0 we

obtain that F (z) is bounded on the real line which gives another proof of Cartwright’s

theorem.
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CHAPTER V

HERGLOTZ REPRESENTATION OF GENERALIZED SPECTRAL MEASURES

AND SOME APPLICATIONS

Let B be a family of all Borel sets on the unit circle T. By a generalized spectral

measure on T we mean a function B : B → B(H) whose values are positive bounded

self-adjoint operators on H such that B(∅) = 0, B(T) = I and for every sequence

∆1, ∆2, ... of mutually disjoint Borel sets, we have

B(∆1 ∪∆2 ∪ ...) =
∞∑
i=1

B(∆i)

in the strong operator topology. If we require all the values to be orthogonal projec-

tions then we have an (ordinary) spectral measure. A classical theorem of Naimark [30]

says that any generalized spectral measure can be represented as a projection of an

ordinary spectral measure. This theorem is considered by many as the beginning of

Dilation Theory. Since then many different proofs and generalization have appeared

(e.g. [31, 44, 43, 36]). We propose yet another approach, which involves in a natural

way characteristic functions and spectral representations of unitary operators; it also

relates Naimark’s theorem for the first time to the subject of rank-one perturbations

of a given operator. The latter is another classical subject with a rich literature be-

hind (see [39] and the references therein). The key idea in our approach is to obtain

a representation for a generalized spectral measure which is reminiscent to the well

known one:

〈
(U + zI)(U − zI)−1h1|h2

〉
=

∫

T

ξ + z

ξ − z
d 〈(E(ξ)h1|h2〉

relating a unitary operator U to its spectral measure E. We will show that if K
is a closed subspace of H and the generalized spectral measure B : B → B(K) is
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obtained from a spectral measure E : B → B(H) by B(∆) = PKE(∆) then the above

mentioned representation is given by

〈
(A + ΘS(z))(A−ΘS(z))−1k1|k2

〉
=

∫

T

ξ + z

ξ − z
d 〈(B(ξ)k1|k2〉

where A : U∗(K) → K is the restriction of PKU on U∗(K) and ΘS(z) is the charac-

teristic function corresponding to the operator S := (I − PK)U . In the case when

K is one-dimensional this relation reduces to a relation that D. Clark [6] used in his

treatment of the rank-one perturbations of a restricted shift. This is the point where

the connection between these seemingly unrelated concepts is made.

5.1. Representation theorem

In what follows we will be most concerned with partial isometries S : H → H sat-

isfying dim ker S = dim ker S∗. First, we prove some simple, but useful, facts about

them.

Lemma 5.1.1. If S is a partial isometry then ker S = DS and ker S∗ = DS∗. Fur-

thermore, the defect operators DS and DS∗ are just orthogonal projections onto DS

and DS∗ respectively.

Proof. It is well known that S is a partial isometry if and only if SS∗S = S (see

e.g. [15]) which is equivalent to SDS
2 = O. Since the elements of the form DS

2h

span DS we have that DS ⊂ ker S. For the other direction just notice that h ∈ ker S

implies h = DSh ∈ DS. The other equality is proved in the same way having in mind

that if S is a partial isometry then so is S∗. Next, to show that DS is an orthogonal

projection it is enough to prove that D2
S is. If h ∈ DS = ker S it is clear that D2

Sh = h.
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If h ⊥ DS = ker S then for all k ∈ H

〈
D2

Sh|k〉
=

〈
h|D2

Sk
〉

= 0.

Therefore, D2
Sh = 0 and hence DS is an orthogonal projection onto DS. The argument

for DS∗ is the same.

Lemma 5.1.2. A contraction S is a partial isometry if and only if ΘS(0) = O.

Proof. If S is a partial isometry then by the previous lemma S restricted on DS is

zero and hence ΘS(0) = −S|DS = O. In the other direction we need to prove that

S|DS = O implies that S is a partial isometry. But this is clear since in this case

SD2
S = O which is equivalent to SS∗S = S.

Lemma 5.1.3. Every contraction S : H → H satisfying dimDS = dimDS∗ (i.e. the

defect indices are the same) can be represented as S = (I − P )U , where P : H → H
is an orthogonal projection onto DS∗ and U : H → H is some unitary operator. The

representation is unique up to a unitary operator A : DS → DS∗. Conversely, any

operator S representable in this way must be a partial isometry satisfying dimDS =

dimDS∗.

Proof. Let S∗ = S1Q be the polar decomposition of S∗, where Q = (SS∗)
1
2 and

S1 : (Ra\T )− → (Ra\T ∗)− is unitary. S being a partial isometry implies that

Q = (I − D2
S∗)

1
2 is an orthogonal projection onto DS. Since dim ker S = dimDS =

dimDS∗ = dim ker S∗, S1 can be extended to a unitary operator on the whole H. The

extension will of course be not unique. Now, we obtain the desired representation by

setting P := I −Q and U := S∗1 . The converse is plain.

Let S : H → H be a partial isometry. By the previous lemma S can be repre-

sented as S = (I−P )U . The unitary operator U represents a unitary perturbation of
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S. It depends on the choice of the unitary operator A : DS → DS∗ . When necessary

we will stress this dependence by writing UA. Notice that both ΘS(z) and A act

between same spaces.

Fix h ∈ H. Then the function

〈
(U + zI)(U − zI)−1h|h〉

is holomorphic in z ∈ D with positive real part. Thus, there exists a unique measure

µh on the unit circle T such that

〈
(U + zI)(U − zI)−1h|h〉

=

∫

T

ξ + z

ξ − z
dµh(ξ).

Using polarization, for any h1, h2 ∈ H there exists a measure µh1,h2 such that

〈
(U + zI)(U − zI)−1h1|h2

〉
=

∫

T

ξ + z

ξ − z
dµh1,h2(ξ).

Let ∆ be any Borel set on the unit circle T. Then µh1,h2(∆) is a skew-symmetric

function of h1 and h2, linear in h1, and bounded by ‖h1‖‖h2‖. Therefore, it can be

represented as

µh1,h2(∆) = 〈E(∆)h1|h2〉 ,

for some positive bounded operator E(∆). It is well known that E : B → B(H) is an

ordinary spectral measure.

For fixed k ∈ DS∗ , again 〈(A + ΘS(z))(A−ΘS(z))−1k|k〉 is a holomorphic func-

tion in z ∈ D with positive real part and consequently there exists a unique measure

σk satisfying

〈
(A + ΘS(z))(A−ΘS(z))−1k|k〉

=

∫

T

ξ + z

ξ − z
dσk(ξ).
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By polarization again, for any k1, k2 ∈ DS∗ there exists a measure σk1,k2 such that:

〈
(A + ΘS(z))(A−ΘS(z))−1k1|k2

〉
=

∫

T

ξ + z

ξ − z
dσk1,k2(ξ).

For any Borel set ∆ on the unit circle let B(∆) be the positive self-adjoint operator

satisfying

σk1,k2(∆) = 〈B(∆)k1|k2〉 ,

for all k1, k2 ∈ DS∗ . It can be shown that B : B → B(DS∗) is a generalized spectral

measure.

Theorem 5.1.4. For any k ∈ DS∗ the following equality holds:

〈
(U + zI)(U − zI)−1k|k〉

=
〈
(A + ΘS(z))(A−ΘS(z))−1k|k〉

.

Proof. The left- and right-hand side of the equality we are aiming to prove are equal

to 2 〈(I −ΘS(z)A∗)−1k|k〉−‖k‖2 and 2 〈(I − zU∗)−1k|k〉−‖k‖2, respectively. Hence,

it is equivalent to show that:

〈
(I −ΘS(z)A∗)−1k|k〉

=
〈
(I − zU∗)−1k|k〉

.
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To prove this equality, we first notice that

〈
(I −ΘS(z)A∗)−1k|k〉

=
〈
(I − zP (I − zS∗)−1A∗)−1k|k〉

(5.1)

=
〈
(AA∗ − zP (I − zS∗)−1A∗)−1k|k〉

(5.2)

=
〈
A(A− zP (I − zS∗)−1)−1k|k〉

(5.3)

=
〈
A(A(I − zS∗)(I − zS∗)−1 − zP (I − zS∗)−1)−1k|k〉

(5.4)

=
〈
A(I − zS∗)(A(I − zS∗)− zP )−1k|k〉

(5.5)

=
〈
A(I − zS∗)(A(I − zS∗)− zAA∗P )−1k|k〉

(5.6)

=
〈
A(I − zS∗)(I − zS∗ − zA∗P )−1A∗k|k〉

. (5.7)

Now, let T := PU . It is easy to check that A∗P = T ∗ and T ∗k = A∗k, for all

k ∈ DS∗ . Therefore, we obtain

〈
(I −ΘS(z)A∗)−1k|k〉

=
〈
(I − zS∗)(I − zS∗ − zT ∗)−1A∗k|A∗k

〉

=
〈
(I − zS∗ − zT ∗)−1T ∗k|T ∗k

〉− 〈
z(I − zS∗ − zT ∗)−1T ∗k|ST ∗k

〉

=
〈
(I − zS∗ − zT ∗)−1T ∗k|T ∗k

〉
.

The last equality is a consequence of ST ∗k = 0. We finally have

〈
(I −ΘS(z)A∗)−1k|k〉

=
〈
(I − z(T + S)∗)−1T ∗k|T ∗k

〉

=
〈
(I − zU∗)−1U∗k|U∗k

〉

=
〈
U∗(I − zU∗)−1k|U∗k

〉

=
〈
(I − zU∗)−1k|k〉

.
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Remark 6. IfDS∗ = H then S = O onH and hence ΘS(z) = zI. Also, clearly A = U .

Thus, we can view (A+ΘS(z))(A−ΘS(z))−1 as a substitution for (U +zI)(U−zI)−1

in the case when DS∗ is a true subspace.

Corollary 5.1.5. For any Borel set ∆ ⊂ T, B(∆) = PE(∆).

Proof. To show the claim it is equivalent to show

〈PE(∆)k1|k2〉 = 〈B(∆)k1|k2〉

for all k1, k2 ∈ DS∗ . Since P is an orthogonal projection, this is equivalent to:

〈E(∆)k1|k2〉 = 〈B(∆)k1|k2〉 .

Therefore, using polarization it suffices to prove

〈E(∆)k|k〉 = 〈B(∆)k|k〉

for all k ∈ DS∗ . But, this easily follows from Theorem 5.1.4.

5.2. Application to Naimark’s dilation theorem

Next we give a new proof of Naimark’s dilation theorem.

Theorem 5.2.1 (Naimark [30]). Let B : B → B(K) be a generalized spectral measure.

Then there exist H ⊃ K and an ordinary spectral family E : B → B(H) such that for

any Borel set ∆ ⊂ T, B(∆) = PKE(∆).

Proof. Let k1, k2 ∈ K. Define σk1,k2(∆) = 〈B(∆)k1|k2〉 for any Borel set ∆ ⊂ T.

Clearly, σk1,k2 is a Borel measure on T. For any z ∈ D define F (z) : K → K such that

〈F (z)k1|k2〉 =

∫

T

ξ + z

ξ − z
dσk1,k2(ξ)
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for every k1, k2 ∈ K. It is easy to see that F (z) is a linear operator with a positive

real part and F (0) = I. It is also analytic as an operator-valued function in z ∈ D.

The inverse (I + F (z))−1 is defined on a dense subset of K since F (z) has a positive

real part. Set Θ(z) = (F (z)− I)(F (z) + I)−1 on that dense set. By continuity, Θ(z)

can be extended on the whole K with ‖Θ(z)‖ ≤ 1. Moreover, Θ(z) is an analytic

contraction-valued function with Θ(0) = O (and hence is pure). Thus, there exists a

completely non-unitary contraction S : H1 → H1 whose characteristic function ΘS(z)

coincides with Θ(z). More precisely, there exist unitary operators ω : DS → K and

ω∗ : DS∗ → K such that ΘS(z) = ω∗−1Θ(z)ω. Define A = ω∗−1ω : DS → DS∗ and set

T : H1 → H1 to be

Th =





Ah, h ∈ DS

0, h ∈ ker DS.

Finally, define U1 = T + S : H1 → H1. Clearly, U1 is unitary. Let E1(∆) be

the spectral measure corresponding to U1 and let B1(∆) be the generalized spectral

measure such that

〈
(A + ΘS(z))(A−ΘS(z))−1s1|s2

〉
=

∫

T

ξ + z

ξ − z
d 〈B1(ξ)s1|s2〉

for every s1, s2 ∈ DS∗ . By the previous Corrolary, for any Borel set ∆ we have

B1(∆) = PDS∗E1(∆).

Now, since

〈
(A + ΘS(z))(A−ΘS(z))−1s1|s2

〉
=

〈
(I + Θ(z))(I −Θ(z))−1ω∗s1|ω∗s2

〉

and F (z) = (I + Θ(z))(I −Θ(z))−1, it follows that B(∆) = ω∗B1(∆)ω−1
∗ .

Define H = K ⊕ ker DS∗ and W∗ = ω∗ ⊕ I : H1 → H. Clearly, W∗ is unitary.
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Then B(∆) = PKE(∆) where PK = W∗PDS∗W
−1
∗ and E(∆) = W∗E1(∆)W−1

∗ . One

readily sees that PK : H → H defined this way is the orthogonal projection onto K
and E(∆) is a spectral measure on H.

5.3. Application to rank-one unitary perturbations of partial isometries

Let S : H → H be a c.n.u. partial isometry with both defect indices equal to 1, i.e.,

∂S = ∂S∗ = 1. Fix two unit vectors k ∈ DS∗ and k̃ ∈ DS. For any complex number α

of modulus 1, define the linear operator Uα by

Uαh =





Sh, if h ⊥ DS

αk, if h = k̃.

Clearly, Uα are unitary operators; these are the only unitary rank-one perturbations

of S.

Lemma 5.3.1. With the notation above the following equality holds

span{Un
αk : n ∈ Z} = H

Proof. Consider Kα := span{Un
αk : n ∈ Z}. One can show by induction that for any

h ∈ K⊥α and β ∈ T we have that Un
β h = Snh and U∗n

β h = S∗nh. Therefore, K⊥β ⊂ K⊥α
and, by symmetry, K⊥β = K⊥α . This space K⊥α is reducing for S and S is unitary there.

Since S is c.n.u., we have that Kα = H for all α ∈ T.

Next we will describe the spectrum of Uα. Let ΘS(z) be the characteristic func-

tion of S. For each z ∈ D, ΘS(z) is an operator between two one-dimensional

spaces DS and DS∗ . Denote by θ(z) the scalar valued analytic function such that

ΘS(z)k̃ = θ(z)k for each z ∈ C. Clearly, |θ(z)| ≤ 1. Define also Aα : DS → DS∗ to be
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the operator sending k̃ to αk. Let σα be the measure on T for which

〈
(Aα + ΘS(z))(Aα −ΘS(z))−1k|k〉

=

∫

T

ξ + z

ξ − z
dσα(ξ).

This is equivalent to

α + θ(z)

α− θ(z)
=

∫

T

ξ + z

ξ − z
dσα(ξ),

i.e., σα is a Clark measure for θ(z). It is also immediate that the corresponding

generalized spectral measure Bα(∆) is simply given by Bα(∆)k = σα(∆)k. If Eα(∆)

is the spectral measure corresponding to Uα then it follows from Corollary 5.1.5 that

〈Eα(∆)k|k〉 = σα(∆).

Since span{Eα(∆)k : ∆ Borel subset of T} = H the last equality proves the following:

Corollary 5.3.2. The spectrum of Uα coincides with the support of σα. Thus, it

consists of the union of those points in T at which θ(z) cannot be analytically continued

and those ζ ∈ T at which θ(z) is analytically continuable with θ(ζ) = α. The set of

eigenvalues of Uα coincides with the set of all the atoms of σα.

Remark 7. There are several well-known conditions describing the atoms of a Clark

measure σα. An important one (goes back to M. Riesz) is the following: σα has a

point mass at ζ if and only if θ(z) has the nontangential limit α at ζ and for all (or

one) β in T different from α, ∫

T

dσβ(ζ)

|ξ − ζ|2 < ∞.

Remark 8. In [6], a similar description (although with different methods) of the

spectra is obtained for unitary rank-one perturbations of a restricted shift. Notice

that not every partial isometry can be represented as a restricted shift on the space

H2(D) ª ΘH2(D) of scalar-valued functions. Thus, the proposition above is not

implied by the results in [6].
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5.4. Application to higher rank unitary perturbations of partial isometries

We can also consider the general case when S is c.n.u. with equal (possibly infinite)

defect indices. For a unitary operator A : DS → DS∗ , similarly as in [2], we can define

a unitary perturbation UA of S by

UAh =





Sh, if h ⊥ DS

Ah, if h ∈ DS.

Notice that these are just the unitary perturbations for which S = (I − P )UA with

P orthogonal projection onto DS∗ as in Lemma 5.1.3.

As in the case of the rank-one perturbations, one can show that S c.n.u. implies

span{Un
Ak : k ∈ DS∗ , n ∈ Z} = H. To describe the spectrum of UA notice that by

Theorem 5.1.4 we have

〈
(A + ΘS(z))(A−ΘS(z))−1k|k〉

=
〈
(AA + ΘS(z))(AA −ΘS(z))−1k|k〉

=

∫

T

ξ + z

ξ − z
d 〈EA(ξ)k|k〉 .

Corollary 5.3.2 has the following analogue in this general case.

Corollary 5.4.1. The spectrum of UA consists of the union of those points in T at

which ΘS(z) cannot be analytically continued and those ζ ∈ T at which ΘS(z) is

analytically continuable with ΘS(ζ)− A not invertible.

5.5. Generalization of the Aleksandrov disintegration theorem

In this section we generalize the well known Aleksandrov disintegration theorem to

the case of finite rank unitary perturbation.

Let S : H → H be a c.n.u. partial isometry with equal finite defect indices

∂S = ∂S∗ < ∞. Furthermore, assume that Sn and S∗n converge strongly to zero as
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n →∞. This implies that ΘS(z) is inner.

Now, fix a unitary operator K : DS → DS∗ . For a unitary operator A : DS∗ →
DS∗ , define a unitary perturbation UA of S by

UAh =





Sh, if h ⊥ DS∗

AKh, if h ∈ DS∗ .

Let M be the left-invariant Haar measure on the group of unitaries U(DS∗). No-

tice that such measure exists since dimDS∗ < ∞ which implies that the group U(DS∗)

is compact. For a continuous function f : U(DS∗) → L(H) define
∫
U(DS∗ )

f(A)dM(A)

to be the bounded operator on H for which

〈
(∫

U(DS∗ )
f(A) dM(A)

)
h1|h2〉 =

∫

U(DS∗ )
〈f(A)h1|h2〉 dM(A)

for all h1, h2 ∈ H.

Theorem 5.5.1. Let f : T→ C be a continuous function. Then

∫

U(DS∗ )
f(UA) dM(A)k =

(∫

T
f(ξ) dm(ξ)

)
k,

for all k ∈ DS∗.

Proof. By density, it is enough to prove the statement for f(ξ) = Pz(ξ) := 1−|z|2
|ξ−z|2 .

Therefore, by polarization it is enough to show that

∫

U(DS∗ )
〈Pz(UA)k|k〉 dM(A) = 〈

(∫

T
Pz(ξ) dm(ξ)

)
PDS∗k|k〉 = 〈PDS∗k|k〉 = 1,

for all norm one k ∈ DS∗ .
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∫

U(DS∗ )
〈Pz(UA)k|k〉 dM(A) =

∫

U(DS∗ )

∫

T
Pz(ξ) d〈EA(ξ)k|k〉 dM(A)

= <
∫

U(DS∗ )

∫

T

ξ + z

ξ − z
d〈EA(ξ)k|k〉 dM(A)

= <
∫

U(DS∗ )
〈(AK + ΘS(z))(AK −ΘS(z))−1k|k〉 dM(A)

= <
∫

U(DS∗ )
2

∞∑
n=0

〈(ΘS(z)(AK)∗)nk|k〉 dM(A)− 1

= 2<
∞∑

n=0

∫

U(DS∗ )
〈(ΘS(z)(AK)∗)nk|k〉 dM(A)− 1

Define φn(z) :=
∑n

i=1

∫
U(DS∗ )

〈(ΘS(z)(AK)∗)nk1|k2〉 dM(A). This is a bounded

holomorphic function on the unit disc. Since ΘS(z) is inner, it is unitary for almost

every ξ ∈ T. For each such ξ the radial limit

lim
z→ξ

φn(z) =
k∑

n=0

∫

U(DS∗ )
〈(ΘS(ξ)(AK)∗)nk|k〉 dM(A) = 0.

Therefore, φn(z) = 0 for every z ∈ D and n ≥ 1. So, we have

2<
∞∑

n=0

∫

U(DS∗ )
〈(ΘS(z)(AK)∗)nk|k〉 dM(A)− 1

= 2<
∫

U(DS∗ )
〈k|k〉 dM(A) + 2<

∞∑
n=1

∫

U(DS∗ )
〈(ΘS(z)(AK)∗)nk|k〉 dM(A)− 1 = 1.

Thus, ∫

U(DS∗ )
〈Pz(UA)k|k〉 dM(A) = 1

and we are done.
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CHAPTER VI

SUMMARY AND FUTURE DIRECTIONS

6.1. Summary

In this dissertation we considered three problems in classical complex analysis and

operator theory.

In the third chapter we considered the following classical problem: Describe in

terms of {λn} the basis properties of {εiλnt} in L2[0, a]. We gave a characterization of

the l2-independent, Riesz basic sequences and Parseval frames of complex exponentials

in terms of invertibility properties of certain Toeplitz operators. Moreover, using this

characterization we completely described the l2-dependence radius showing that it is

equal to the interior Beurling-Malliavin density of the frequency sequence {λn}.
In the fourth chapter we gave a solution to the classical Polya-Levinson prob-

lem. More precisely, we gave a description of all separated real sequences on which

a nonconstant zero type entire function cannot be bounded. Again, an important

intermediate step was to translate the problem in the language of Toeplitz operators.

In the fifth chapter we made the first steps in trying to understand the general

(not necessarily rank-one) unitary perturbations of a given partial isometry. The

key thing in our approach was the Herglotz-type representation relating a partial

isometry to a related generalized spectral measure. This is an analog to the well

known formula relating a unitary operator to its spectral measure. We used this

representation formula to describe the spectra of all unitary perturbations of a given

partial isometry in terms of the characteristic function. Furthermore, we applied this

formula to derive a generalization of the Aleksandrov’s disintegration theorem and to

give a new proof of the classical Naimark’s dilation theorem.
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6.2. Future directions

6.2.1. Schauder basis for complex exponentials

One of the few basis properties of non-harmonic complex exponentials for which the

complete description has not been obtained yet is the property of being a Schauder

basis.

Problem 1. Describe all sequences {λn} for which the sequence of complex expo-

nentials represents a Schauder basis for L2[0, 2π].

The key step will be to reformulate the question in terms of certain properties

of appropriate Toeplitz operators.

It is clear that for a sequence of vectors in a Hilbert space the property of being

a Riesz basis is stronger then just being a Schauder basis. It is interesting, however,

that in classical function spaces it is in general very difficult to construct a Schauder

basis which is not a Riesz basis. For the sequence of complex exponentials this is still

open.

Problem 2. Is there a Schauder basis of complex exponentials which is not a Riesz

basis?

Solution of Problem 1 would give a solution to Problem 2 since the complete

description of complex exponentials which represent a Riesz basis is known.

6.2.2. An old problem for entire functions

A well known classical result in function theory (Cartwright Theorem) says that every

entire function of exponential type less than π which is bounded on the sequence of

integers must be bounded on the whole real line. The natural question of extending

this result to an arbitrary sequence of real numbers has received a considerable amount

of attention in the past. However, to the best of my knowledge, a complete solution
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is still not known.

Problem 3. For the given separated sequence of real numbers {λn} find the optimal

restriction on the type τ > 0 such that every entire function of exponential type less

than τ which is bounded on {λn} is bounded on the whole real line.

6.2.3. Unitary perturbations of a contraction

The Herglotz-type representation formula that we obtained holds only for partial

isometries. This raises a natural question if a similar formula hold true for general

contractions.

Problem 4. Can the Herglotz-type representation formula be extended to the case

of general contractions with equal defect indices?

Another direction (and perhaps a more important one) is to find an analog of the

Simon-Wolff criterion in this more general situation of possibly infinite-dimensional

perturbations. In other words, to find a criterion under which ”most” of the unitary

perturbations have a complete set of eigenvectors. Such a result might have nice

implications to the spectral theory of multi-dimensional Schrodinger operators.

Problem 5. Is there an analog of the Simon-Wolff criterion and other one-dimensional

results in the case of infinite-dimensional perturbations?

6.2.4. De Branges spaces of entire functions

These spaces can be viewed as an analog of the Paley-Wiener space obtained by replac-

ing the differentiation operator with more general second-order differential operators

(so called canonical systems). Besides the Paley-Wiener space, important examples

of de Branges spaces are given by the spaces generated by classical orthogonal poly-

nomials. Another important class is generated by the one-dimensional Schrodinger

operators.
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It was noticed by Barry Simon [42] that there are many similarities between

the theory of orthogonal polynomials and the theory of one-dimensional Schrodinger

operators. He was able to translate many of the results from one area to the other

and vice versa. I strongly believe that the simple reason behind these similarities is

the fact that all of them come from the results that hold generally in a larger class

of de Banges spaces. For certain results, the extension to this larger class is very

desirable because it may reveal properties that are not visible in the classical, more

restricted setting. The following is, in my opinion, an example of a problem of this

kind.

Many important results about the distribution of eigenvalues of random matrices

are usually proved by reducing them to certain technical limits involving orthogonal

polynomials. An important example of such a limit is:

lim
n→∞

Kn(ξ + a
K̃n(ξ,ξ)

, ξ + b
K̃n(ξ,ξ)

)

Kn(ξ, ξ)
=

sin π(b− a)

π(b− a)
,

where Kn(ξ, ξ) is the reproducing kernel for the space generated by certain orthogonal

polynomials of degree not larger than n and K̃n(ξ, ξ) is their normalized version. It

was observed by Lubinsky [26] that by replacing ξ with a sequence ξn the nice limiting

behavior (now on the subsequence level) is still preserved. However, in this more

general setting there is a possibility for the limit function to be a reproducing kernel

of a class of de Branges spaces known as weighted Paley-Wiener spaces. Inspired

probably by Simon’s program an analog of the above limit was very recently obtained

in [28] for the case of Schrodinger operators. All this strongly suggests the existence

of a more general version holding for a larger class of de Branges spaces. Exploring

this might give a better understanding of the above mentioned results of Lubinsky.
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[40] G. Pólya, Problem 105, Jahresber. Deutsch. Math.-Verein. 40 (1931).

[41] K. Seip, On the connection between exponential bases and certain related se-

quences in L2(−π, π), J. Funct. Anal. 130 (1995) 131-160.

[42] B. Simon, Orthogonal Polynomials on the Unit Circle, Amer. Math. Soc. Colloq.

Publ., vol. 54, AMS, Providence, RI, 2005.

[43] W.F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc.6

(1955) 211-216.



76

[44] B. Sz.-Nagy, C. Foias, Harmonic Analysis of Operators on Hilbert Space, Trans-

lated from the French and revised, North-Holland Publishing Co., Amsterdam,

1970.

[45] G. Valiron, Sur la formule d’interpolation de Lagrange, Bull. Sci. Math. 49 (1925)

181-192, 203-224.

[46] R.M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press,

New York, 1980.



77

VITA

Mishko Mitkovski was born in Kumanovo, Macedonia. He received his Bachelor

of Science in mathematics from Ss. Cyril and Methodius University in February

2004. In the fall of 2005 he enrolled in the doctoral program in the Department of

Mathematics at Texas A&M University. The current dissertation was defended in

April 2010. His research interests include complex analysis, harmonic analysis and

operator theory. Mishko can be contacted at:

Department of Mathematics

Texas A&M University

College Station, TX 77843-3368

U. S. A.

E-mail address: mmitkov@math.tamu.edu


