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ABSTRACT

Robust Clock Synchronization Methods

for Wireless Sensor Networks. (August 2010)

Jae Han Lee,

B.S., Seoul National University, Seoul, Korea;

M.S., Seoul National University, Seoul, Korea

Co–Chairs of Advisory Committee: Dr. Erchin Serpedin
Dr. Khalid Qaraqe

Wireless sensor networks (WSNs) have received huge attention during the recent

years due to their applications in a large number of areas such as environmental

monitoring, health and traffic monitoring, surveillance and tracking, and monitoring

and control of factories and home appliances. Also, the rapid developments in the

micro electro-mechanical systems (MEMS) technology and circuit design lead to a

faster spread and adoption of WSNs. Wireless sensor networks consist of a number of

nodes featured in general with energy-limited sensors capable of collecting, processing

and transmitting information across short distances. Clock synchronization plays an

important role in designing, implementing, and operating wireless sensor networks,

and it is essential in ensuring a meaningful information processing order for the data

collected by the nodes. Because the timing message exchanges between different

nodes are affected by unknown possibly time-varying network delay distributions, the

estimation of clock offset parameters represents a challenge. This dissertation presents

several robust estimation approaches of the clock offset parameters necessary for time

synchronization of WSNs via the two-way message exchange mechanism. In this

dissertation the main emphasis will be put on building clock phase offset estimators
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robust with respect to the unknown network delay distributions.

Under the assumption that the delay characteristics of the uplink and the down-

link are asymmetric, the clock offset estimation method using the bootstrap bias

correction approach is derived. Also, the clock offset estimator using the robust M-

estimation technique is presented assuming that one underlying delay distribution is

mixed with another delay distribution.

Next, although computationally complex, several novel, efficient, and robust es-

timators of clock offset based on the particle filtering technique are proposed to cope

with the Gaussian or non-Gaussian delay characteristics of the underlying networks.

One is the Gaussian mixture Kalman particle filter (GMKPF) method. Another

is the composite particle filter (CPF) approach viewed as a composition between

the Gaussian sum particle filter and the KF. Additionally, the CPF using bootstrap

sampling is also presented. Finally, the iterative Gaussian mixture Kalman particle

filter (IGMKPF) scheme, combining the GMKPF with a procedure for noise density

estimation via an iterative mechanism, is proposed.



v

To Najung Kim



vi

ACKNOWLEDGMENTS

I have no words to thank my father, parents-in-law, my wife and two sons enough

for their everlasting love and prayers that helped me finish this course successfully. I

would also like to deeply thank my co-chair, Dr. Erchin Serpedin, who not only gave

me a lot of sincere advice for my research and life, but also supported me in every

possible aspect.

In addition, I want to express my gratitude for my co-chair, Dr. Khalid Qaraqe,

and my committee members, Dr. Deepa Kundur, Dr. Aydin Karsilayan, Dr. Eun

Jung Kim and the Department Head Dr. Costas Georghiades for their academic

guidance. I must also acknowledge my colleagues Yi Zhou, Sangwoo Park, Kwadwo

Agyepong, Sabit Ekin and Sawin Saibua, with whom I had a wonderful time at Texas

A&M University in College Station.



vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Clock Synchronization in Wireless Sensor Networks . . . . 1

B. General Clock Model . . . . . . . . . . . . . . . . . . . . . 5

C. Decomposition of Packet Delay . . . . . . . . . . . . . . . 7

D. Contributions of This Research . . . . . . . . . . . . . . . 8

II CLOCK OFFSET ESTIMATION USING BOOTSTRAP BIAS

CORRECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A. Problem Modeling . . . . . . . . . . . . . . . . . . . . . . 11

B. The Bootstrap Estimation Method . . . . . . . . . . . . . 13

1. The Nonparametric Bootstrap . . . . . . . . . . . . . 14

2. The Parametric Bootstrap . . . . . . . . . . . . . . . . 14

3. The Bootstrap Estimate of Bias . . . . . . . . . . . . 15

4. Bias Correction . . . . . . . . . . . . . . . . . . . . . . 16

C. Performance Analysis . . . . . . . . . . . . . . . . . . . . . 16

D. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

III CLOCK OFFSET ESTIMATION USING ROBUST

M-ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A. Problem Modeling . . . . . . . . . . . . . . . . . . . . . . 20

B. The M-Estimation Method . . . . . . . . . . . . . . . . . . 21

C. Simulation Results . . . . . . . . . . . . . . . . . . . . . . 23

D. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

IV A ROBUST ESTIMATOR FOR CLOCK PHASE OFFSET

IN THE PRESENCE OF NON-GAUSSIAN RANDOM DELAYS 28

A. Problem Formulation . . . . . . . . . . . . . . . . . . . . . 29

B. The GMKPF Method . . . . . . . . . . . . . . . . . . . . . 30

C. Simulation Results . . . . . . . . . . . . . . . . . . . . . . 35

D. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

V A ROBUST COMPOSITE PARTICLE FILTER APPROACH

FOR CLOCK OFFSET ESTIMATION . . . . . . . . . . . . . . 46



viii

CHAPTER Page

A. Problem Modeling and Objectives . . . . . . . . . . . . . . 47

B. Composite Particle Filtering and Bootstrap Sampling

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

C. Simulation Results . . . . . . . . . . . . . . . . . . . . . . 52

D. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

VI ROBUST CLOCK SYNCHRONIZATION VIA NOISE DEN-

SITY ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . 63

A. Problem Formulation . . . . . . . . . . . . . . . . . . . . . 67

B. Posterior Cramer-Rao Bound for Sequential Bayesian

Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1. PCRB for the Gaussian Network Delay Model . . . . 73

2. PCRB for Exponential and Gamma Network Delay

Models . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3. Comparison between PCRB and CRLB . . . . . . . . 76

C. An Iterative Gaussian Mixture Kalman Particle Filter-

ing Approach . . . . . . . . . . . . . . . . . . . . . . . . . 80

D. Simulation Results . . . . . . . . . . . . . . . . . . . . . . 83

E. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

VII CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . 90

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



ix

LIST OF FIGURES

FIGURE Page

1.1 Behavior of fast, slow, and perfect clocks . . . . . . . . . . . . . . . . 6

2.1 Two-way timing message exchange model with clock offset (θA:

clock offset, d: propagation delay, Lk,Mk: random delays) . . . . . . 12

2.2 MSEs of clock offset estimators for asymmetric exponential delays

(μ1 = 1, μ2 = 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 MSEs of clock offset estimators for asymmetric exponential delays

(μ1 = 1, μ2 = 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 MSEs of clock offset estimators for asymmetric gamma delays

(α1 = α2 = 2, β1 = 1, β2 = 2) . . . . . . . . . . . . . . . . . . . . . . 18

2.5 MSEs of clock offset estimators for asymmetric Weibull delays

(α1 = 2, α2 = 6, β1 = β2 = 2) . . . . . . . . . . . . . . . . . . . . . . 19

3.1 MSEs of clock offset estimators for the Gaussian delay model with

contaminated Gaussian delays . . . . . . . . . . . . . . . . . . . . . . 24

3.2 MSEs of clock offset estimators for the exponential delay model

with contaminated Gaussian delays . . . . . . . . . . . . . . . . . . . 25

3.3 MSEs of clock offset estimators for the gamma delay model with

contaminated Gaussian delays . . . . . . . . . . . . . . . . . . . . . . 26

3.4 MSEs of clock offset estimators for the Weibull delay model with

contaminated Gaussian delays . . . . . . . . . . . . . . . . . . . . . . 27

3.5 MSEs of clock offset estimators for the lognormal delay model

with contaminated Gaussian delays . . . . . . . . . . . . . . . . . . . 27

4.1 MSEs of clock offset estimators for asymmetric Gaussian random

delays (σ1 = 1, σ2 = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . 36



x

FIGURE Page

4.2 MSEs of clock offset estimators for asymmetric exponential ran-

dom delays (λ1 = 1, λ2 = 5) . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 MSEs of clock offset estimators for Gamma random delays (α1 =

2, β1 = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 MSEs of clock offset estimators for Weibull random delays (α1 =

2, β1 = 2) and (α2 = 6, β2 = 2) . . . . . . . . . . . . . . . . . . . . . 39

4.5 MSEs of clock offset estimators for mixing of a Gaussian [σ1 =

1, σ2 = 1] and an exponential [λ1 = 1, λ2 = 5] . . . . . . . . . . . . . 40

4.6 MSEs of clock offset estimators for mixing a Gaussian [σ1 =

1, σ2 = 1] and a Gamma [α1 = 2, β1 = 2] . . . . . . . . . . . . . . . . 41

4.7 MSEs of clock offset estimators for mixing a Gaussian [σ1 =

1, σ2 = 1] and a Weibull random delay [α1 = 2, β1 = 2 and

α2 = 6, β2 = 2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.8 MSEs of clock offset estimators for mixing an exponential [λ1 =

1, λ2 = 5] and a Gamma [α1 = 2, β1 = 5] and [α2 = 2, β2 = 2] . . . . . 43

4.9 MSEs of clock offset estimators for mixing an exponential [λ1 =

1, λ2 = 5] and a Weibull [α1 = 2, β1 = 2 and α2 = 6, β2 = 2] . . . . . 44

4.10 MSEs of clock offset estimators for mixing a Gamma with pa-

rameters [α1 = 2, β1 = 5] and [α2 = 2, β2 = 2] and a Weibull

[α1 = 2, β1 = 2 and α2 = 6, β2 = 2] . . . . . . . . . . . . . . . . . . . 45

5.1 MSEs of clock offset estimators for asymmetric Gaussian random

delays [σ1 = 1, σ2 = 4] . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 MSEs of clock offset estimators for asymmetric exponential ran-

dom delays [λ1 = 1, λ2 = 5] . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 MSEs of clock offset estimators for Gamma random delays [α1 =

2, β1 = 1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 MSEs of clock offset estimators for Weibull random delays [α1 =

2, β1 = 2 and α2 = 6, β2 = 2] . . . . . . . . . . . . . . . . . . . . . . . 56



xi

FIGURE Page

5.5 MSEs of clock offset estimators for mixing of Gamma [α1 =

2, β1 = 5 and α2 = 2, β2 = 2] and Weibull [α1 = 2, β1 = 2

and α2 = 6, β2 = 2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6 MSEs of clock offset estimators for asymmetric Gaussian random

delay [σ1 = 1, σ2 = 4] and two message exchange errors . . . . . . . . 58

5.7 MSEs of clock offset estimators for asymmetric exponential ran-

dom delay [λ1 = 1, λ2 = 5] and two exchange message errors occur . 59

5.8 MSEs of clock offset estimators for Gamma random delay [α1 =

2, β1 = 1] and two exchange message errors occur . . . . . . . . . . . 60

5.9 MSEs of clock offset estimators for Weibull random delay [α1 =

2, β1 = 2 and α2 = 6, β2 = 2] and two exchange message errors occur 61

5.10 MSEs of clock offset estimators for mixing of Gamma [α1 =

2, β1 = 5 and α2 = 2, β2 = 2] and Weibull [α1 = 2, β1 = 2

and α2 = 6, β2 = 2] and two exchange message errors occur . . . . . 62

6.1 PCRB and CRLB for symmetric Gaussian random delays (σ2
n = 1

and J0 = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 PCRB and CRLB for symmetric Gaussian random delays (σ2
n = 1

and J0 = 1/σ2
v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 PCRB and CRLB for symmetric Gaussian random delays (σ2
v =

10−6 and J0 = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Block diagram representation of the IGMKPF estimator . . . . . . . 81

6.5 KLD and MSE for symmetric exponential random delays (λ = 1) . . 83

6.6 MSEs of clock offset estimators for Gaussian (σ2
n = 1) . . . . . . . . . 84

6.7 MSEs of clock offset estimators for Gaussian (σ2
n = 1) . . . . . . . . . 85

6.8 MSEs of clock offset estimators for exponential (λ = 1) . . . . . . . . 86

6.9 MSEs of clock offset estimators for Gamma (α1 = 2, β1 = 2) . . . . . 87



1

CHAPTER I

INTRODUCTION

A. Clock Synchronization in Wireless Sensor Networks

The recent technological advances in micro-electro-mechanical systems (MEMS) have

accelerated the development of tiny, low-cost, low-power, and multifunctional sensors

with the ability to perform tasks such as sensing, data processing, and communica-

tion [1]-[4]. In general, a wireless sensor network (WSN) consists of a large number of

sensors, which are densely distributed over a wide geographical area to collect data

and monitor a certain physical phenomenon. The positions of wireless sensor nodes

do not need to be engineered or predetermined beforehand, a fact which enables ran-

dom deployment in inaccessible terrains or disaster relief operations. Hence, wireless

sensor network protocols and algorithms with self-organizing capabilities are needed.

Another peculiar characteristic of wireless sensor networks is the collaborative effort

of sensor nodes to carry out tasks such as detection, measurement, and data fusion.

Specifically, sensor nodes take advantage of their own processing abilities to locally

perform simple computations and send only the necessary and partially processed

data to the destination node without sending the raw data to the sink node. In other

words, a single meaningful result value is created from the data collected from each

sensor [5].

The applications of wireless sensor networks include areas as diverse as medical,

industrial, civil, military, environmental, scientific, and home appliances [6]-[12]. For

instance, doctors can identify predefined symptoms by monitoring the physiological

data of patients remotely via WSNs. In terms of military applications, WSNs can be

�The journal model is IEEE Transactions on Automatic Control.
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used to detect nuclear, biological, and chemical attacks and the presence of hazardous

materials, prevent enemy attacks by means of alerts when enemy aircrafts are spotted,

and monitor friendly forces, equipment and ammunition. Besides, WSNs are useful

in monitoring forest fires, observing ecological and biological habitats, and detecting

floods and earthquakes. As examples of civilian applications, WSNs can be used to

determine spot availability in a public parking lot, track active badge at the workplace,

observe security in public places such as banks and shopping malls, and monitor

highway traffic. Moreover, WSNs can satisfy the needs for scientific applications

such as space and interplanetary exploration, high energy physics, and deep undersea

exploration [13].

Since the sensors in a WSN operate independently, their own local clocks may

not be synchronized to the same time value, and thus this can cause difficulties when

trying to integrate and interpret information collected at different nodes. For ex-

ample, if a moving car is detected at two different times along a certain road, the

detection times need to be compared appropriately before we decide which direction

the car is going in. Moreover, we should be able to transform the two time values

into a common frame of reference before estimating the speed of the vehicle. It is

also important to estimate precisely the time differences across nodes in node local-

ization applications. As an example, many localization algorithms utilize ranging

technologies to estimate internode distances; in these technologies, synchronization is

necessary for time-of-flight measurements which are then transformed into distances

by multiplying with the medium propagation speed for the type of signal used such

as radio frequency or ultrasonic. There are additional examples where cooperative

sensing requires the nodes involved to agree on a common time frame such as con-

figuring a beam-forming array and setting a TDMA (Time Division Multiple Access)

radio scheduling mechanism [14]. For all these situations, a common notion of time
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is absolutely necessary in WSNs. Hence, there is currently a tremendous interest

towards developing energy efficient clock synchronization protocols for WSNs.

The clock synchronization problem has been studied thoroughly in the areas of

Internet and local-area networks (LANs) for the last several decades. Many existing

synchronization algorithms depend on the clock information from GPS (Global Po-

sitioning System). However, GPS-based clock acquisition mechanisms exhibit some

weaknesses: GPS is not available ubiquitously (for example, underwater, indoors, un-

der foliage) and requires a relatively high-power receiver, which is almost impossible

on tiny and cheap sensor nodes. In addition, GPS is very sensitive to narrowband

interferences. This is the motivation for developing software-based approaches to

achieve in-network time synchronization. Among many protocols that have been de-

veloped for maintaining synchronization in computer networks, NTP (Network Time

Protocol) [15] is outstanding due to its ubiquitous deployment, scalability, robustness

related to failures, and self-configuration in large multihop networks. Futhermore,

the combination of NTP and GPS has shown that it is capable of achieving high

accuracy on the order of a few microseconds [16]. However, NTP is not appropriate

for a wireless sensor network environment because WSNs pose numerous challenges of

their own; to name a few, limited energy and bandwidth, limited hardware, latency,

and unstable network conditions caused by mobility of sensors, dynamic topology,

and multi-hopping. Therefore, clock synchronization protocols different from the

conventional protocols are needed to deal with the challenges specific to WSNs. Sub-

sequently, a large number of synchronization protocols have been devised in recent

years.

One of the representative examples of clock synchronization protocols in WSNs is

Reference Broadcast Synchronization (RBS) [17], which is a pioneering work based on

the post-facto receiver-receiver synchronization scheme. In RBS, a broadcast message
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is only used to synchronize a set of receivers with one another, in contrast with

traditional protocols that synchronize the sender of a message with its receiver. A

parent node broadcasts a reference message to the neighboring nodes which receive

the broadcasted message and record the time according to their own local clocks. The

nodes exchange their own collected observations and use a linear regression technique

to estimate the relative clock offset and skew.

Timing-Synch Protocol for Sensor Networks (TPSN) [18] is based on the tra-

ditional approach of sender-receiver synchronization. TPSN relies on the two-way

message exchange scheme to acquire the synchronization between two nodes. The

first step of the TPSN protocol, which is referred to as level discovery phase, is to

create a hierarchical spanning tree in the network. Each sensor node is assigned a

level in this hierarchical structure. A node belonging to level i can communicate

with at least one node belonging to level i − 1. Only one node is assigned level 0,

and it is referred to as the root node. Once the hierarchical structure is completed,

the root node initiates the second stage of the protocol, called the synchronization

phase. In this second phase, a node with level i synchronize to a node with level

i − 1. Finally, every node is synchronized to the root node with level 0 by means of

a two-way message exchange scheme by adjusting the clock offset, and network-wide

time synchronization is achieved.

Flooding Time Synchronization Protocol (FTSP) [19] aims at attaining a network

wide synchronization of the local clocks of participating nodes by means of multi-

hop synchronization. FTSP synchronizes the time of a sender to possibly multiple

receivers taking advantage of a single radio message time-stamped at both the sender

and the receiver sides. MAC layer time-stamping can eliminate many of the errors,

as shown in TPSN [18]. However, accurate clock synchronization at discrete points in

time is only a partial solution and thus compensation for the clock drift of the nodes
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is necessary in order to obtain high precision in-between synchronization points and

to keep the communication overhead low. Linear regression technique is used in this

protocol to compensate for clock drift as in RBS [17].

Time Diffusion Synchronization Protocol (TDP) [20] is a network-wide time syn-

chronization protocol and enables all the sensors in the network to have a local time

that is within a small bounded time deviation from the network-wide equilibrium

time. TDP architecture comprises many algorithms and procedures, which are used

to autonomously synchronize the nodes, remove the false tickers (clocks deviating

from those of the neighbors), and balance the load required for time synchronization

among the sensor nodes.

Recently, Pairwise Broadcast Synchronization (PBS) protocol was proposed in

[21], where both sender-receiver synchronization and receiver-only synchronization

shemes are efficiently combined to obtain network-wide synchronization with a sig-

nificantly reduced number of timing messages [21].

B. General Clock Model

In general, computer clocks are based on crystal oscillators which present a local

time to each network node. The time in a computer clock is called software clock in

that it is just a counter increased by crystal oscillators. Whenever an interrupt takes

place, the corresponding interrupt handler has to increase the software clock by one.

Since the frequency making time increase is not perfect, most hardware oscillators

are not so accurate. Even a frequency deviation of only 0.001% would lead to a clock

error of about one second per day. Considering the physical clock synchronization in

a distributed system referenced to UTC (Universal Time Controller), the computer

clock indicates time C(t) at real time t, which may or may not be t. In case of a
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perfect clock, the derivative dC(t)/dt should be 1. This term is referred to as clock

skew. Due to environmental conditions, such as temperature and humidity, the clock

skew can actually vary over time, but it is assumed that it stays bounded and close

to 1, so that

1 − β ≤ dC(t)

dt
≤ 1 + β , (1.1)

where β represents the maximum skew rate. A typical value of the maximum skew

for today’s hardware is 10−6. It is noted that the clocks of two nodes are synchronized

to one common time at an arbitrary time, but they do not remain synchronized in

the future because of clock skew. Even if there is no skew, the clocks of different

nodes may not be equal. Time differences from the lack of a common time origin

are called clock phase offsets. Fig. 1.1 shows the behavior of fast, slow, and perfect

clocks with respect to UTC [13], [14]. The time of a clock in a sensor node P is the

Fast clock, ( )/ 1dC t dt

Perfect clock, ( )/ 1dC t dt

Slowclock, ( )/ 1dC t dt

C(t)

t

Fig. 1.1. Behavior of fast, slow, and perfect clocks

function CP (t), where CP (t) = t for a perfect clock and the clock frequency is the rate
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at which a clock progresses. Clock offset is defined to be the difference between the

times reported by the clocks at two sensor nodes; in other words, the offset of clock

CP relative to CQ at time t is given by CP (t) − CQ(t). Clock skew is defined as the

difference in the frequencies of two clocks C
′
P (t)−C

′
Q(t), i.e., the rate of variation or

derivative of clock offset. Another clock terminology is clock drift, which is the second

derivative of the clock offset with respect to time. The mathematical expression of

the drift of clock CP relative to CQ at time t is C
′′
P (t) − C

′′
Q(t) [13].

In order for sensor nodes to be synchronized to one common time, they need

to access and use for a certain amount of time a communication channel where the

message delays between nodes can be reliably estimated. However, the obstacle of ac-

curate network time synchronization is the non-determinism of the delay estimation

process. Random events, which give rise to asymmetric round-trip-message deliv-

ery delays, make the estimation of latencies in channel more difficult, which finally

causes synchronization errors. The latency in channel can be decomposed into several

distinct components.

C. Decomposition of Packet Delay

An outline of the various delay components is presented from a system perspective

in [18], and will be briefly described below.

1. Send time: The delay in the packet traversal from the message assembly at the

application layer all the way down to MAC layer.

2. Access time: The waiting time of a packet for accessing the channel after reach-

ing the MAC layer. This is the most critical factor contributing to packet delay,

and highly variable according to the specific MAC protocol. This is nondeter-

ministic and varies up to hundreds of milliseconds.
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3. Transmission time: The time taken by a packet which is transmitted bit by bit

at the physical layer over the wireless link. This delay is mainly deterministic

in nature and can be estimated given the packet size and the radio speed.

4. Propagation time: The actual time taken by the packet to traverse the wireless

link from the sender to the receiver.

5. Reception time: The time spent in receiving the bits and passing them to the

MAC layer.

6. Receive time: The time taken in constructing the bits into a packet and then

passing this packet to the application layer.

These are the sources of delay and most of the existing clock synchronization protocols

focus on removing them.

D. Contributions of This Research

In [22], it was proved that the maximum likelihood estimate (MLE) of the clock

offset does exist and corresponds to the estimate proposed previously in [23], which

was inferred based on experimental data, for an unknown fixed delay and propagation

delay that obeys a symmetric exponential delay model. Also, [24] derived the MLE

of the clock offset under a Gaussian delay model. This dissertation substantially

provides an extension of these two researches on clock synchronization problem as

follows.

Chapter II focuses on developing clock offset estimators based on the bootstrap

bias correction approach, which is used to estimate and correct the bias of the MLE

in the exponential delay model, and more general asymmetric exponential, gamma,

and Weibull random delay models assuming the two-way timing message exchange



9

mechanism. The developed estimators show better performance than the exponential

MLE [22] in terms of mean-square error (MSE).

Chapter III describes the clock offset estimators based on the robust M-estimation

method [25]. The underlying delay distribution may be mixed with or contaminated

by other delay distributions, and thus obtaining long-term reliable and energy effi-

cient clock offset estimators becomes more difficult. For such general mixed delay

models, the proposed estimators are shown to exhibit better performance than MLE.

Chapter IV discusses a novel clock offset estimation method based on the Gaus-

sian Mixture Kalman Particle Filter (GMKPF), which has the merits of being robust

and yielding very accurate clock offset estimates in the presence of arbitrary net-

work delay distributions and general two-way timing message exchange mechanism.

GMKPF combines the importance sampling (IS) based measurement update step

with a KF (Kalman Filter) based Gaussian sum filter for the time-update and pro-

posal density generation. Since GMKPF employs new observations and exploits the

Expectation-Maximization (EM) algorithm to fit a Gaussian Mixture Model (GMM)

to the posterior and observation distributions, GMKPF is expected to exhibit better

estimation performance in general non-Gaussian/non-exponential delays when com-

pared to MLE, which was originally derived only for Gaussian or exponential delays.

Chapter V deals with another novel clock offset estimation method, called the

composite particle filter (CPF), which is shown to be robust to the unknown distri-

bution of network delays. The CPF approximates the filtering and predictive distri-

butions by using weighted Gaussian mixtures and is basically implemented via banks

of Kalman filters (KFs) instead of Gaussian Particle filters (GPFs) [26]. Therefore,

CPF appears as a variation of the Gaussian sum particle filter (GSPF) [27], fit for

estimation of linear models perturbed by non-Gaussian random noise components.

CPF is also combined with the bootstrap sampling technique, and shown to exhibit
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improved performance.

Chapter VI proposes a novel iterative clock offset estimation method, referred

to as the Iterative Gaussian Mixture Kalman Particle Filter (IGMKPF), where the

Gaussian Mixture Kalman Particle Filter (GMKPF) is combined with a network

delay density estimation approach to yield better performance than GMKPF. The

proposed method has the merits of being robust and yielding very accurate clock

offset estimates in the presence of unknown network delay distributions. At each iter-

ation, by taking into account the results (posterior density, observation noise density,

and so on) from the previous iteration, a new set of parameter values is obtained by

adding small changes to the previous parameters in such a way that the new param-

eters are likely to lead to improved performance. By estimating the posterior density

and observation noise density using an iterative technique, the estimator reduces the

bias caused by taking expectation. To validate the accuracy of IGMKPF, its MSE

performance is evaluated via computer Monte Carlo simulations and the posterior

Cramer-Rao bound (PCRB) is derived too. A sequential Monte Carlo method is

also proposed for computing the PCRB in unknown delay models. This chapter pro-

vides also a comparison of Gaussian MLE, exponential MLE, the Cramer-Rao Lower

Bound (CRLB), IGMKPF, IGMKPF with perfect network delay noise estimation,

and PCRB.

Lastly, Chapter VII summarizes the research results of this dissertation and also

presents some directions for possible future research work. It is remarkable that the

results from this dissertation can be applied and extended to improve the performance

of a variety of clock synchronization protocols.
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CHAPTER II

CLOCK OFFSET ESTIMATION USING BOOTSTRAP BIAS CORRECTION

Under the assumption that there is no clock skew between sensor nodes, the MLE

of clock offset was proved by [22] for clock synchronization protocols that assume

exponential random delays and a two-way message exchange mechanism as is the

case with TPSN [18], NTP [15], and PBS [21] protocols. The proposed MLE is

asymptotically unbiased. However, the MLE estimator is biased in the presence

of a finite number of samples and much more biased in asymmetric random delay

models, where the upstream delay characteristics are different from the downstream

delay characteristics, and thus its performance is deteriorated. This chapter deals

with clock offset estimators based on the bootstrap bias correction approach, which

estimates and corrects the bias of the MLE in the exponential delay model, and hence

it results in better performance in mean-square error (MSE).

A. Problem Modeling

The two-way timing message exchange scheme between two nodes is shown in Fig.

2.1. Node A sends the synchronization message to Node B with its current times-

tamp T1,k (although it is not required, timestamping in the MAC layer increases the

accuracy, as suggested by [18]). Node B records its current time T2,k at the reception

of this message, and then sends at time T3,k a synchronization message to Node A

containing T2,k and T3,k. Node A timestamps the reception time of the message sent

by Node B as T4,k (see Fig. 2.1). Hence, Node A has access to the set of timestamps

{T1,k, T2,k, T3,k, T4,k}, k = 1, . . . , N , at the end of each of the N rounds of message

exchanges. Note that T1,1 is considered to be the reference time, and hence every

reading {T1,k, T2,k, T3,k, T4,k} is actually the difference between the recorded time and



12

T1,1.

k A kU d L

k A kV d M

1,kT

2,kT 3,kT

4,kT
NodeA

NodeB

Fig. 2.1. Two-way timing message exchange model with clock offset (θA: clock offset,

d: propagation delay, Lk,Mk: random delays)

Modeling of network delays in WSN seems to be a challenging task [28]. Several

probability distribution function (pdf) models for random queuing delays have been

proposed so far, the most widely used being exponential, gamma, Weibull, and log-

normal distributions [29], [30]. Amongst them, the exponential distribution is suited

well for several applications [31]. Also, a single-server M/M/1 queue can fittingly

represent the cumulative link delay for point-to-point Hypothetical Reference Con-

nection (HRC), where the random delays are independently modeled as exponential

random variables [32]. Moreover, [23] experimentally demonstrated the superiority of

the MnLD (Minimum Link Delay) algorithm among the various algorithms proposed

by [32]. Reference [22] has shown mathematically that MnLD represents the MLE

in the context of exponential delays, thus confirming the fact that the exponential

delay assumption fits well the experimental observations. The reason for adopting
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the Gaussian model is due to the Central Limit Theorem (CLT), which asserts that

the pdf of the sum of a large number of independent or in general, slightly correlated

and identically distributed (iid) random variables (RVs) approaches a Gaussian RV.

This model is proper if the delays are thought to be the addition of numerous inde-

pendent random processes. The Gaussian distribution for the clock offset errors was

also reported by a few authors based on laboratory tests [17].

Next, it is assumed that there is no clock skew in the two-way timing message

exchange model. The kth up and down link delay observations corresponding to

the kth timing message exchange are given by Uk = T2,k − T1,k = d + θA + Lk and

Vk = T4,k − T3,k = d − θA + Yk, respectively. The fixed value θA, d, Lk and Mk

denote the clock offset between the two nodes, the propagation delay, and variable

portions of delays, respectively. In general, the delay distribution in the upstream, FL

is not equal to that in the downstream, FM , because the node A → node B and node

B → node A transmission paths through the network typically have different traffic

characteristics, and thus the network delays in each path are potentially different.

Hence, it is important to estimate the clock offset more accurately in asymmetric

delay models.

In the symmetric exponential delay model, the MLE of θA exists and is given by

θ̂A =
min

1≤i≤N
Uk − min

1≤i≤N
Vk

2
, (2.1)

where N denotes the number of observations of delay measurements [22].

B. The Bootstrap Estimation Method

If the MLE is used in the asymmetric exponential delay model, there will be a bias in

the clock offset. Therefore, it is necessary to achieve a more accurate estimate of the
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clock offset by using an alternate approach. In this chapter, bootstrap techniques are

applied to estimating the clock offset in the asymmetric delay models. Bias-corrected

estimators through non-parametric and parametric bootstrap will be analyzed. The

procedure for bootstrap bias correction is as follows [33], [34].

1. The Nonparametric Bootstrap

Step 0. Conduct the experiment to obtain the random sample X =

{X1, X2, . . . , Xn} and calculate the estimate θ̂ from the sample X.

Step 1. Construct the empirical distribution F̂ , which puts equal mass 1/n

at each observation X1 = x1, X2 = x2, . . . , Xn = xn

Step 2. From F̂ , draw a sample X∗ = {X∗
1 , X

∗
2 , . . . , X

∗
n}, called the bootstrap

resample.

Step 3. Approximate the distribution of θ̂ by the distribution of θ̂∗ derived

from the bootstrap resample X∗.

2. The Parametric Bootstrap

Suppose that one has some partial information about F . For example, F is known

to be the exponential distribution but with unknown mean μ. This suggests that

we should draw a resample of size n from the exponential distribution with mean μ̂

where μ̂ is estimated from X rather than from a non-parametric estimate F̂ of F . We

use the exponential distribution in the suggested bias correction approach through

parametric bootstrapping. The parametric bootstrap principle is almost the same as

the above non-parametric bootstrap principle except some steps.
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3. The Bootstrap Estimate of Bias

Let us suppose that an unknown probability distribution F assumes the data x =

(x1, x2, . . . , xn) by random sampling, F → x. We want to estimate a real-valued

parameter θ = t(F ). For now we will assume the estimator to be any statistic

θ̂ = s(x). The bias of θ̂ = s(x) as an estimate of θ is defined to be the difference

between the expectation of θ̂ and the value of the parameter θ,

biasF = biasF (θ̂, θ) = EF [s(x)] − t(F ) . (2.2)

A large bias is usually an undesirable aspect of an estimator’s performance. We

can use the bootstrap to assess the bias of any estimator θ̂ = s(x). The bootstrap

estimate of bias is defined to be the estimate biasF̂ obtained by substituting F̂ for F ,

biasF̂ = EF [s(x∗)] − t(F̂ ) . (2.3)

For most statistics that arise in practice, the ideal bootstrap estimate biasF̂ must

be approximated by Monte Carlo simulations. We generate independent bootstrap

samples x∗1,x∗2, . . . ,x∗B, evaluate the boostrap replications θ̂∗(b) = s(x∗b), and ap-

proximate the bootstrap expectation EF̂ [s(x∗)] by the average

θ̂∗(·) =

∑B
b=1 θ̂

∗(b)
B

=

∑B
b=1 s(x

∗b)
B

. (2.4)

The bootstrap estimate of bias based on the B replications ˆbiasB is (2.3) with θ̂∗(·)
substituted for EF̂ [s(x∗)],

ˆbiasB = θ̂∗(·) − t(F̂ ) . (2.5)
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4. Bias Correction

The usual reason why we want to estimate the bias of θ̂ is to correct θ̂ so that it

becomes less biased. If ˆbias is an estimate of biasF (θ̂, θ), then the obvious bias-

corrected estimator is

θ̄ = θ̂ − ˆbias . (2.6)

Taking ˆbias equal to ˆbiasB = θ̂∗(·) − θ̂ gives

θ̄ = 2θ̂ − θ̂∗(·) . (2.7)

C. Performance Analysis
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Fig. 2.2. MSEs of clock offset estimators for asymmetric exponential delays

(μ1 = 1, μ2 = 5)

This section provides the simulation results of the performances of the MLE and

the estimators based on bootstrap bias correction approach for asymmetric exponen-

tial, gamma, and Weibull delays, respectively. Figs. 2.2 - 2.5 show the MSEs in
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Fig. 2.3. MSEs of clock offset estimators for asymmetric exponential delays

(μ1 = 1, μ2 = 10)

environments where the distributions of the network delays are exponential, gamma,

and Weibull. In Figs. 2.2 and 2.3, μ1 and μ2 denote the exponential delay parame-

ters for the uplink and the downlink delay distributions, respectively. For the gamma

delay model, the shape parameters (α1 and α2) were chosen to be two, and the scale

parameters (β1 and β2) taken to be one and two for the uplink delay and the downlink

delay, respectively. In the Weibull case, the shape parameters (β1 and β2) were set

to be two, and the scale parameters (α1 and α2) chosen to be two and six for the

uplink delay and the downlink delay, respectively. In Figs. 2.2 - 2.5, MSE-MLE,

MSE-NBC, and MSE-PBC denote the mean square error of estimate (2.1), which is

the MLE in the symmetric exponential delay model, that of the bias-corrected estima-

tor through nonparametric bootstrapping, and that of the bias-corrected estimator

obtained through parametric bootstrapping, respectively. It is clear that the per-

formance of the bias-corrected estimators is improved for several asymmetric delay
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Fig. 2.4. MSEs of clock offset estimators for asymmetric gamma delays

(α1 = α2 = 2, β1 = 1, β2 = 2)

models and the bias corrected estimator via the parametric bootstrapping method

has the best performance for the asymmetric exponential, gamma, and Weibull delay

distributions. In Figs. 2.2 and 2.3, we also notice that as the asymmetry of the

downlink and the uplink increases, the MSE values are affected and increased by the

variance of observations.

D. Summary

In this chapter, clock offset estimators based on the bootstrap bias correction method

were proposed for synchronization protocols involving a two-way message exchange

mechanism. It is also illustrated that bootstrap bias-corrected clock offset estimators

present smaller MSEs than MLE for several general exponential family delay distribu-

tions. Moreover, the bootstrap bias-corrected estimator with parametric bootstrap-

ping produces the best performance in terms of MSE.
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CHAPTER III

CLOCK OFFSET ESTIMATION USING ROBUST

M-ESTIMATION

In practice, the distribution of network delays might be affected by numerous factors

and might change over time. This chapter deals with developing clock phase offset

estimation techniques that are robust to situations where the underlying network

delay distribution is contaminated by or mixed with other random delay distributions.

In these cases, the performance of the MLE is deteriorated considerably. This chapter

focuses on clock offset estimators based on the robust M-estimation method and shows

that the proposed estimators present excellent performance in the mean square error

(MSE) sense when the underlying distribution is mixed with other distribution.

A. Problem Modeling

The problem set-up is the same as the one introduced in Chapter II. It is assumed that

there is no clock skew in the two-way timing message exchange model. The kth up

and down link delay observations corresponding to the kth timing message exchange

are given by Uk = T2,k − T1,k = d + θA + Lk and Vk = T4,k − T3,k = d − θA + Mk,

respectively. The variables θA, d, Lk and Mk denote the clock offset between the two

nodes, the propagation delay, and variable portions of delays, respectively.

In the exponential delay model and the Gaussian delay model, the MLE of θA

exists and is given by

θ̂A =
min

1≤i≤N
Uk − min

1≤i≤N
Vk

2
, (3.1)

θ̂A =

N∑
i=1

(Uk − Vk)

2N
, (3.2)
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respectively, where N denotes the number of observations of delay measurements [22],

[24]. However, these MLEs are not suited for the case that the underlying distribution

is mixed with or contaminated by other distributions. Therefore, it is important to

estimate the clock offset more accurately in mixed delay models.

B. The M-Estimation Method

The procedures of applying robust M-estimation [25], [35] to the clock offset model

are as follows.

The M-estimator Tn is defined as the solution of the minimization problem:

arg min
Tn

n∑
k=1

ρ (Xk, θ) ,

where ρ(·, ·) is a properly chosen function. The class of M-estimators covers also

the maximal likelihood estimator (MLE) of parameter θ in the parametric model

P = {Pθ, θ ∈ Θ}. If f(x, θ) is the density function of Pθ, then the MLE is a solution

of the minimization:

arg min
Tn

n∑
k=1

(−logf (Xk, θ)) , θ ∈ Θ .

If ρ is differentiable with regard to θ with a continuous derivative ψ(·, θ) =

∂
∂θ
ρ(·, θ), then Tn is a root (or one of the roots) of the equation:

n∑
k=1

ψ (Xk, θ) = 0, θ ∈ Θ .

Hence

1

n

n∑
k=1

ψ(Xk, Tn) = EPn [ψ (Xk, Tn)] = 0, Tn ∈ Θ .

An important special case is the model with the shift parameter θ, whereX1, . . . , Xn

are independent observations with the same distribution function F (x − θ), θ ∈ R.
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The distribution function F is generally unknown. The M-estimator Tn is defined as

the solution of the minimization

arg min
Tn

n∑
k=1

ρ (Xk − θ) ,

and if ρ(·) is differentiable with absolutely continuous derivative ψ(·), then Tn satisfies

the equation
n∑

k=1

ψ (Xk − θ) = 0 .

If we look for an M-estimator of the location parameter of a distribution not very

far from the normal distribution, but possibly containing an ε ratio of nonnormal data,

more precisely, belonging to the family of distributions

F = {F : F = (1 − ε)Φ + εH} ,

where H runs over the set of symmetric distribution functions, we should use the

function ψ, proposed and motivated by P.J. Huber (1964) [25]. This function is

linear in the bounded interval [−k, k], and constant outside this interval.

ψH(x) =

⎧⎪⎨
⎪⎩

x for |x| ≤ k

ksign(x) for |x| > k
, (3.3)

where k > 0 is a fixed constant, connected with ε through the following identity:

2Φ(k) − 1 +
2Φ′(k)
k

=
1

1 − ε
. (3.4)

The corresponding M-estimator is often called the Huber estimator in the liter-

ature. It is a robust estimator of the center of symmetry, insensitive to the extreme

and outlying observations. As Huber proved in 1964, an estimator, generated by

the function ψH(x), is minimaximally robust for a contaminated normal distribution,

while the value k depends on the contamination ratio. An interesting and natural



23

question is whether there exists a distribution F such that the Huber M-estimator is

the maximal likelihood estimator of θ for F (x− θ), i.e., such that ψ is the likelihood

function for F . Such a distribution really exists, and its density is normal in the

interval [−k, k], and exponential outside.

On one hand, if Lk and MK are i.i.d. exponentially distributed random variables

with mean α, (Uk −Vk)/2 becomes a zero mean Laplace distributed RV with variance

α2/2. In this case, the ψ function is taken as

ψ∗(x) =

⎧⎪⎨
⎪⎩

sign(x) for |x| ≤ k

0 for |x| > k
. (3.5)

In the clock offset model,

Uk − Vk

2
= θA +

Lk −Mk

2
.

This equation can be rewritten as

Uk − Vk

2
− θA =

Lk −Mk

2
, (3.6)

where Uk = T2,k − T1,k, Vk = T4,k − T3,k. θA denotes the clock offset between two

nodes, and Xk and Yk denote the variable portions of delays.

Therefore, the M-estimator of the location parameter can be applied to this

model using the relationship

n∑
k=1

ψ

(
Uk − Vk

2
− θA

)
= 0 . (3.7)

C. Simulation Results

We compared the performances of Huber M-estimators which use ψH(·) and ψ∗(·), re-

spectively, under various delay models; i.e., zero-mean Gaussian, exponential, gamma,
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Fig. 3.1. MSEs of clock offset estimators for the Gaussian delay model with contami-

nated Gaussian delays

Weibull, and lognormal delay distributions, respectively, assuming that each distribu-

tion is mixed with or contaminated by another zero-mean Gaussian distribution. In

this simulation, the rate of contamination or mixing is 20% and the cutoff value of Hu-

ber estimation, k, is equal to 1.345. In Figs. 3.1 - 3.5, MLE-E and MLE-exponential

denote the MLE in the exponential delay model, and MLE-G and CRLB-G denote

the MLE and the Cramer-Rao lower bound in the Gaussian delay model, respectively,

when no contamination is assumed. In Fig. 3.1, σ2
A and σ2

B denote the delay vari-

ances for the uplink and the downlink delay distributions, respectively, and σ′
A

2 and

σ′
B

2 represent the delay variances for the uplink and the downlink Gaussian distri-

butions, which are mixed with the underlying Gaussian distributions. In Figs. 3.2 -

3.5, σ2
A and σ2

B indicate the delay variances for the uplink and the downlink Gaussian

distributions, which contaminate the underlying distributions.

For the exponential delay model, the mean values (μA and μB) were chosen to be
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Fig. 3.2. MSEs of clock offset estimators for the exponential delay model with con-

taminated Gaussian delays

one. In the gamma delay model, the shape parameter (α) and the scale parameter (β)

were taken to be two and one, respectively. For the Weibull case, the shape parameter

(k) and the scale parameter (λ) were selected to be two. In the lognormal case, the

mean and the variance were chosen to be one. The gamma, Weibull, and lognormal

families are considered as representatives to appropriately cover a wide range of typical

network delay distributions. Figs. 3.1 - 3.5 consistently show that the clock estimators

based on the robust M-estimation method present excellent MSE performances in

the presence of exponential distributions as well as in Gaussian distributions, which

are mixed with another Gaussian delay distribution. In other words, the proposed

estimators are capable of producing good performances in unknown contaminated

delay distributions.
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D. Summary

Clock offset estimators based on the robust M-estimation method are described in

a clock synchronization protocol involving a two-way message exchange model. It is

clearly illustrated that the robust M-estimation based clock offset estimators present

good MSE performance under several delay distributions that assume contaminated

distributions.
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CHAPTER IV

A ROBUST ESTIMATOR FOR CLOCK PHASE OFFSET IN THE PRESENCE

OF NON-GAUSSIAN RANDOM DELAYS

Now we turn our attention to the clock offset estimation methods based on the particle

filtering (PF) technique in order to obtain more accurate estimators of clock offset.

This chapter proposes a novel clock offset estimation method, called the Gaussian

Mixture Kalman Particle Filter (GMKPF), which is robust and yields very accurate

clock offset estimates in the presence of arbitrary network delay distributions. The

clock offset estimation framework assumes the two-way message exchange mecha-

nism between two nodes, a set-up encountered in NTP [15] and TPSN protocol [18].

GMKPF combines the importance sampling (IS) based measurement update step

with a KF (Kalman Filter) based Gaussian sum filter for the time-update and pro-

posal density generation. Since GMKPF employs new observations and exploits the

Expectation-Maximization (EM) algorithm to obtain the Gaussian Mixture Model

(GMM), GMKPF is expected to exhibit better estimation performance when com-

pared to symmetric Gaussian MLE (SGML) and symmetric exponential MLE (SEML)

in general non-Gaussian/non-exponential delay models. Thus far, in the synchroniza-

tion literature for WSNs, it appears that only very few preliminary and straightfor-

ward applications of standard Kalman filtering or general adaptive signal processing

techniques were reported (see [36], [37] and [38]) to improve the mean square error

(MSE) performance of protocols such as RBS [17] or TPSN [18].

In this chapter, upon designing the GMKPF, a thorough performance analysis of

GMKPF, GML, and EML in the presence of the two-way message exchange mecha-

nism between two nodes and symmetric/asymmetric Gaussian, exponential, Gamma,

Weibull network delay distributions is first carried out. The performance of GMKPF,
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SGML, and SEML is also simulated under the mixing of two different distributions:

Gaussian and exponential, Gaussian and Gamma, Gaussian and Weibull, exponential

and Gamma, exponential and Weibull, and Gamma and Weibull delay distributions,

respectively. The computer simulation results corroborate the superior performance

of the proposed method relative to SGML and SEML, and its robustness to general

network delay distributions. Therefore, the proposed GMKPF method represents a

high-performance and very reliable clock offset estimation scheme fit to overcome the

uncertainties caused by the network delay distributions.

A. Problem Formulation

Similarly to [24], the differences between the kth up and down-link delay observations

corresponding to the kth timing message exchange are given by Uk = T2,k − T1,k =

d + θA + Lk and Vk = T4,k − T3,k = d − θA + Mk, respectively. The fixed value d

denotes the fixed (deterministic) propagation delay component (which in general is

neglected d ≈ 0 in small range networks that assume RF transmissions). Parameters

Lk and Mk stand for the variable portions of the network delays, and might assume

any distribution such as Gaussian, exponential, Gamma, Weibull or mixtures of two

different distributions.

Given the observation samples zk = [Uk, Vk]
T , our goal is to find the minimum

MSE estimate of the unknown clock offset θA. For convenience, the notation xk = θA

will be used henceforth. Thus, it turns out that we are looking to determine the

estimator:

x̂k = E{xk|zl} , (4.1)

where zl denotes the set of observed samples up to time l, zl = {z0, z1, ..., zl}. Since
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the clock offset value is assumed constant, the clock offset can be modeled as obeying

a Gauss-Markov dynamic channel model of the form:

xk = Fxk−1 + vk−1 , (4.2)

where F is the state transition matrix for clock offset. The additive noise component

vk can be modeled as Gaussian with zero mean and covariance Evkv
T
k = Q. The vector

observation model follows from the observed samples and it assumes the expression:

zk =

⎡
⎢⎣ d+ xk + Lk

d− xk +Mk

⎤
⎥⎦ =

⎡
⎢⎣ 1

1

⎤
⎥⎦ d+

⎡
⎢⎣ 1

−1

⎤
⎥⎦xk + nk , (4.3)

where the observation noise vector nk = [Lk,Mk]
T accounts for the random delays.

One can now observe that (4.2) and (4.3) recast our initial clock offset estimation

problem into a Gauss-Markov estimation problem with unknown states.

B. The GMKPF Method

Particle filtering is a sequential Monte Carlo sampling method built within the Bayesian

paradigm. From a Bayesian perspective, at time k, the posterior distribution p(xk|z0:k)

is the main entity of interest. However, due to the non-Gaussianity of the model (4.3),

the analytical expression of p(xk|z0:k) cannot be obtained in closed-form expression,

excepting for some special cases like Gaussian or exponential pdfs. Alternatively, par-

ticle filtering can be applied to approximate p(xk|z0:k) by stochastic samples generated

using a sequential importance sampling strategy.

Since the particle filtering with the prior importance function employs no infor-

mation from observations in proposing new samples, its use is often ineffective and

leads to poor filtering performance. Herein, we implement a slightly changed version

of the Gaussian Mixture Sigma Point Particle Filter (GMSPPF) proposed in [39], and
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which will be referred to as a composite approach. This composite approach comes

out from the utilization of another filtering technique producing a filtering probability

density function used as importance function (IF) for the particle filtering.

The GMSPPF is a family of methodologies that use hybrid sequential Monte

Carlo simulation and a Gaussian sum filter to efficiently estimate posterior distribu-

tions of unknown states in a non-linear dynamic system. However, in our state space

modeling, because of the linear model, we do modify this method further. Following

[39], we will next describe briefly the general framework assumed by the GMKPF

method, obtained by replacing the SPKF with a KF. We next outline the main fea-

tures of the proposed approach. First, we remark that any probability density p(x)

can be approximated as closely as desired by a Gaussian mixture model (GMM) of

the following form [40],

p(x) ≈ pg(x) =
G∑

g=1

α(g)N(x;μ(g), P (g)) , (4.4)

where G stands for the number of mixing components, α(g) denote the mixing weights

and N(x;μ, P ) is a normal distribution with mean μ and covariance P . Thus, the

predicted and updated Gaussian components, i.e., the means and covariances of the

involved probability densities (posterior, importance, and so on) are calculated using

the Kalman filter (KF) instead of the Sigma Point Kalman Filter (SPKF) [39], [41].

Since the state and observation equations are linear, the KF was employed instead of

the SPKF. Therefore, the resulting approach is called the Gaussian mixture Kalman

particle filter (GMKPF). In order to avoid the particle depletion problem in cases

where the observation (measurement) likelihood is very peaked, the GMKPF repre-

sents the posterior density by a GMM which is recovered from the re-sampled equally

weighted particle set using the Expectation-Maximization (EM) algorithm.
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In general for the particle filtering approach, the posterior density p(x0:k|z1:k),

where x0:k = {x0, · · · , xk} and z1:k = {z1, · · · , zk}, constitutes the complete solution

to the sequential estimation problem. Our objective is to generate samples from

the distribution p(x0:k|z1:k). For this purpose, we have collected N sets of samples

x
(i)
0:k = {x(i)

0 , · · · , x(i)
k } with weights w

(i)
k , i = 1, ..., N . The particles {x(i)

k , w
(i)
k }N

i=1

approximate p(x0:k|z1:k). Finally, the conditional mean state and the corresponding

error covariance can be calculated:

x̄k =
N∑

i=1

w
(i)
k x

(i)
k , Φ =

N∑
i=1

w
(i)
k [x̄k − x

(i)
k ][x̄k − x

(i)
k ]T . (4.5)

At the end of each recursion, the particles are resampled to ensure they occur with

the same probability as the weights.

The GMKPF combines the importance sampling (IS) based measurement update

step with a KF based Gaussian sum filter for the time-update and proposal density

generation. In the time update stage, GMKPF approximates the prior, proposal and

posterior density function as GMMs using banks of parallel KFs. The updated mean

and covariance of each mixand follow from the KF updates. In the measurement

update stage, the GMKPF uses a finite GMM representation of the posterior filtering

density

pg(xk|zk) =
G∑

g=1

α
(g)
k N(xk;μ

(g)
k , P

(g)
k ) , (4.6)

where G is the number of GMMs, α
(g)
l are the mixing weights and N(xk;μ

(g)
k , P

(g)
k )

is a normal distribution determined from the gth KF with predicted mean μ
(g)
k = x̄k

and positive definite covariance P
(g)
k . This is recovered from the weighted posterior

particle set of the IS based measurement update stage, by means of an Expectation-

Maximization (EM) [42] step. The EM algorithm can be used to obtain Gaussian Mix-

ture approximations from these particles and weights. Through this mechanism, the
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EM-based posterior GMM further mitigates the “sample depletion” problem through

its inherent “kernel smoothing” nature. The EM algorithm provides an iterative

method to estimate θ̄ via

θ̄ = arg max
θ

p(z|θ) , (4.7)

with the Gaussian mixture specified by the parameter set θ = {α(1)
l , · · · , α(G)

l , μ
(1)
l , · · · ,

μ
(G)
l , P

(1)
l , · · · , P (G)

l }. Specifically, the EM algorithm is a two-step iterative algorithm

which works as follows: given a θ(j), it finds the next value θ(j+1) via

• E-step : Q(θ|θ(j)) = E[log p(z|θ)|θ(j)]

• M-step : θ(j+1) = arg max
θ

Q(θ|θ(j))

The reader is directed to reference [42] for more detailed explanations of the EM algo-

rithm for GMM. Finally, the conditional mean state estimate and the corresponding

error covariance can be calculated as follows:

x̄k =
G∑

g=1

α
(g)
k μ

(g)
l , P̄k =

G∑
g=1

α
(g)
k [P

(g)
k + (μ

(g)
k − x̄k)(μ

(g)
k − x̄k)

T ]. (4.8)

Below we provide a pseudo-code for a GMKPF algorithm.

GMKPF Algorithm Pseudo-Code:

1. At time k − 1, initialize the densities

• The posterior density is approximated by

pg(xk−1|zk−1) =
∑G

g=1 α
(g)
k−1N(xk−1;μ

(g)
k−1, P

(g)
k−1) .

• The process noise density is approximated by

pg(vk−1) =
∑I

i=1 β
(i)
k−1N(vk−1;μ

(i)
vk−1, Q

(i)
k−1) .

• The observation noise density is approximated by

pg(nk) =
∑J

j=1 γ
(J)
k N(nk;μnk

(j),R
(j)
k ) .
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2. Pre-prediction step

• Calculate the pre-predictive state density p̃g(xk|zk−1) using KF.

• Calculate the pre-posterior state density p̃g(xk|zk) using KF.

3. Prediction step

• Calculate the predictive state density p̂g(xk|zk−1) using GMM.

• Calculate the posterior state density p̂g(xk|zk) using GMM.

4. Observation Update step

• DrawN samples {χ(l)
k ; l = 1, · · · , N} from the importance density function,

q(xk|zk) = p̂g(xk|zk)

• Calculate their corresponding importance weights:

w̃
(l)
k =

p(zk|χ(l)
k )p̂g(χ

(l)
k |zk−1)

p̂g(χ
(l)
k |zk)

• Normalize the weights: w
(l)
k = w̃

(l)
k /

∑N
l=1 w̃

(l)
k

• Approximate the state posterior distribution pg(xk|zk) using the EM-algorithm.

5. Infer the conditional mean and covariance:

• x̄k =
∑N

l=1 w
(l)
k χ

(l)
k and P̄k =

∑N
l=1 w

(l)
k (χ

(l)
k − x̄k)(χ

(l)
k − x̄k)

T .

• Or equivalently, upon fitting the posterior GMM, calculate the variables

in (4.8).

For computational complexity comparisons, it is difficult to assess exactly the

number of floating point operations (flops) involved in GMKPF due to its iterative

and complex operations involved. Therefore, we will only quantify the most computa-

tionally demanding steps in all algorithms using the Big O notation. Let L denote the
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dimension of the state vector x (L = 1). Assume also that N represents the number

of particles, and G is the number of GMM components. Thus, x ∈ R1×1, F ∈ R1×1,

P ∈ R1×1. The Kalman Filter is approximately O(L3) due to the fact that the matrix

times matrix multiplication is the most time consuming step (Pk+1|k = FPk + Q),

whereas the particle filter is approximately O(NL2) because of the matrix times vec-

tor multiplication operation (x̄
(i)
k+1|k = F x̄

(i)
k , i = 1, 2, · · · , N) and sampling step. The

Gaussian Mixture Kalman Particle Filter requires approximately O(GL3) flops due

to the KF step and O(GL2N) flops due to the EM step. If N � L, GMKPF is

approximately O(GL2N). Notice also that SGML is approximately O(L). This indi-

cates that GMKPF is approximately 300 times slower than GML in an application

with L = 1, N = 100, and G = 3.

C. Simulation Results

In this section, computer simulation results are presented to assess the performance

of GMKPF, SGML [24], and SEML [24]-approaches for estimating the clock offset

in wireless sensor networks. We consider a total of 10 delay models: asymmetric

Gaussian, exponential, Gamma, Weibull, and mixtures of Gaussian and exponential,

Gaussian and Gamma, Gaussian and Weibull, exponential and Gamma, exponential

and Weibull, and Gamma and Weibull. The reason for this study is to illustrate that

the proposed method is robust, exhibits superior performance and can be applied to

deal with any delay distribution. The stationary process vk exhibits a given constant

variance Q = 10−4. The number of particles and GMMs are 100 and 3, respectively.

One aspect about using GMKPF is that it requires proper initialization. Depending

on the problem, the initial guesses may need to be close to the correct value for

convergence. However, this initialization problem is easily solved. ML-estimator for
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symmetric Gaussian/exponential random delays provide good estimates. This initial

value (x̂0 = x̂SGML) is near the true value. The GMKPF is used to start the tracking

algorithm fairly close to the true values. The convergence of GMKPF is achieved

after a number of iterations equal to the number of measurements.
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Asymmetric Gaussian delay model

 

 
GMKPF (GMM=3)
GMKPF (GMM=5)
SGML
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Fig. 4.1. MSEs of clock offset estimators for asymmetric Gaussian random delays

(σ1 = 1, σ2 = 4)

Figs. 4.1 - 4.4 show the MSE of the estimators assuming that the random delay

models are asymmetric Gaussian, exponential, Gamma, Weibull pdfs, respectively.

The subscripts 1 and 2 are used to differentiate the parameters of delay distributions

corresponding to uplink and downlink, respectively. As an example, the parameters σ1

and σ2 in Fig. 4.1 denote the standard deviations of uplink and downlink asymmetric

Gaussian network delay densities, respectively. The MSEs are plotted against the

number of observations, ranging from 5 to 25. Note that the GMKPF (G = 3 and

G = 5) performs much better (a reduction of MSE with over 100%) when compared
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Fig. 4.2. MSEs of clock offset estimators for asymmetric exponential random delays

(λ1 = 1, λ2 = 5)

to SGML or SEML. Two different GMKPF (G = 3 and G = 5) were compared. The

first GMKPF estimator (G = 3) uses a 3-component GMM for the state posterior, a

1-component GMM for the process noise density, and a 3-component GMM for the

measurement noise density. The second GMKPF estimator (G = 5) uses a 3-, 1-, 5-

component GMM for the state posterior, process noise density and measurement noise

density, respectively. In this case, a 3 and 5-component GMM is used to approximate

the non-Gaussian distribution of measurement noise. GMKPF (G = 5) is slightly

better than most of results except for Figs. 4.4 and 4.5. The GMKPF-estimator

did adaptively fit the posterior probability function (likelihood function) using the

EM, so the performance of GMKPF depends on the ability of GMM to capture the

distributions of process noise, measurement noise, posterior PDFs, and so on. As

shown in the Figs. 4.4 and 4.5, when the GMKPF has more components included the
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Fig. 4.3. MSEs of clock offset estimators for Gamma random delays (α1 = 2, β1 = 1)

GMM, its performance is not always better than in the case when a reduced number

of components are present in GMM. However, in general, the performance of GMKPF

is better when a larger number of components are used in GMM.

It is interesting to note that the MSE of SGML exhibits better performance

than SEML in the asymmetric Gaussian delay model case and poorer performance

in the presence of asymmetric exponential, Gamma, and Weibull delay models. The

reason for this is that Gamma and Weibull delay models are closer to the exponential

distribution than the Gaussian distribution.

To further quantify the robustness of the estimators, we studied the performance

of the GMKPF, GML, and EML under various network delay conditions, where the

random delay models are mixtures of two distributions. For example, in Fig. 4.5,

we mix equally a Gaussian with an exponential delay model, each having a weight

of 50%. This means that if 10 observations are received, 5 observations are Gaussian
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Fig. 4.4. MSEs of clock offset estimators for Weibull random delays (α1 = 2, β1 = 2)

and (α2 = 6, β2 = 2)

and the remaining 5 samples assume an exponential distribution. From Figs. 4.5 -

4.10, we observe that GMKPF clearly outperforms the SGML and SEML. In these

cases, the SGML presents better performance than SEML if the network delay process

is closer to a Gaussian. Otherwise, the SEML exhibits better performance than the

SGML, while GMKPF outperforms both the SGML and SEML.

D. Summary

This chapter presented a novel method for estimating the clock offset in wireless sen-

sor networks. The benefits of the proposed synchronization method are in terms of

improved performance and applicability to arbitrary random delay models such as

asymmetric Gaussian, asymmetric exponential, Gamma, Weibull, as well as to mix-

tures of these delay models. One negative aspect is the fact that analytical closed
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Fig. 4.5. MSEs of clock offset estimators for mixing of a Gaussian [σ1 = 1, σ2 = 1] and

an exponential [λ1 = 1, λ2 = 5]

form expressions do not necessarily exist and in general it is hard to derive lower

bounds in the presence of (unknown) non-Gaussian distributions. The chapter pre-

sented a robust estimator based on the GMKPF that is capable of estimating the

clock offset in arbitrary delay models, a result which might present applications in

numerous wireless sensor networks applications with tight synchronization require-

ments [43], [44]. Computer simulations also show that the proposed method yields

superior performance.
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Fig. 4.6. MSEs of clock offset estimators for mixing a Gaussian [σ1 = 1, σ2 = 1] and a

Gamma [α1 = 2, β1 = 2]
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Fig. 4.7. MSEs of clock offset estimators for mixing a Gaussian [σ1 = 1, σ2 = 1] and a

Weibull random delay [α1 = 2, β1 = 2 and α2 = 6, β2 = 2]
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Fig. 4.8. MSEs of clock offset estimators for mixing an exponential [λ1 = 1, λ2 = 5]

and a Gamma [α1 = 2, β1 = 5] and [α2 = 2, β2 = 2]
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Fig. 4.9. MSEs of clock offset estimators for mixing an exponential [λ1 = 1, λ2 = 5]

and a Weibull [α1 = 2, β1 = 2 and α2 = 6, β2 = 2]
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Fig. 4.10. MSEs of clock offset estimators for mixing a Gamma with parameters

[α1 = 2, β1 = 5] and [α2 = 2, β2 = 2] and a Weibull [α1 = 2, β1 = 2

and α2 = 6, β2 = 2]
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CHAPTER V

A ROBUST COMPOSITE PARTICLE FILTER APPROACH FOR CLOCK

OFFSET ESTIMATION

This chapter discusses a clock offset estimator based on the composite particle filter

(CPF) to cope with the possible asymmetries and non-Gaussianity of the network

delay distributions. The CPF approximates the posterior and predictive distributions

by weighted Gaussian mixtures and is basically implemented via banks of Kalman

filters (KFs). The CPF can be alternatively viewed as a composition between the

Gaussian sum particle filter (GSPF) [27] and the KF. In addition, a variant of the CPF

approach based on the bootstrap sampling (BS) is shown to exhibit good performance

in the presence of reduced number of observations. The idea behind the CPF with BS

is to generate sampled observation data from the original observation data by using

the BS, and then to estimate the clock offset using the CPF.

In [27], the inference of general state-space models characterized by nonlinear

process and observation equations is addressed via the concept of Gaussian sum par-

ticle filter (GSPF) which approximates the filtering and predictive distributions by

weighted Gaussian mixtures, i.e., banks of Gaussian particle filters (GPFs). With

non-Gaussian noise approximated by Gaussian mixtures, the non-Gaussian noise

models are approximated by banks of Gaussian noise models. However, in wireless

sensor networks, the process and observation equations are linear functions. There-

fore, we extend the use of a new filter, the composite particle filter (CPF), to encom-

pass linear and additive non-Gaussian noise models. For a linear state-space model

with additive non-Gaussian noise, CPF approximates the posterior distributions as

Gaussian mixtures using banks of parallel Kalman filters (KFs). The main contribu-

tion of this chapter is a novel clock offset estimation method, called the composite
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particle filter (CPF), which is shown to be robust to the unknown distribution of

network delays.

A. Problem Modeling and Objectives

The problem model is the same as the one described in Chapter IV. Following [24, ?],

the time differences corresponding to the kth up and down link delay observations of

the kth timing message exchange can be expressed respectively as Uk = T2,k − T1,k =

d + θA + Nk and Vk = T4,k − T3,k = d − θA + Mk, respectively. The fixed value

θA denotes the clock offset between the two nodes, d stands for the (deterministic)

propagation delay, and Nk and Mk model the variable portions of delay, and might

assume any distribution such as Gaussian, exponential, Gamma, Weibull or a mixture

of two distributions. For notational convenience, we adopt the notation xk = θA to

denote the unknown clock phase offset. Given the observation samples zk = [Uk, Vk]
T ,

our goal is to find the minimum mean-square estimator of the unknown clock offset

θA, which is given by

x̂k = E{xk|Zl} , (5.1)

where Zl denotes the set of observed samples up to time l, Zl = {z0, z1, ..., zl}. Since

the clock offset value is constant, the clock offset is assumed to obey a Gauss-Markov

dynamic channel model of the form:

xk+1 = Fxk + vk , (5.2)

where F represents the state transition scalar value (if xk is vector, F is matrix) for

the clock offset. The noise vector vk is modeled as a Gaussian random variable with

zero mean and covariance Evkv
T
k = Q. Notice also that the vector observation model
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follows from the observed data and takes the expression:

zk =

⎡
⎢⎣ Uk

Vk

⎤
⎥⎦ =

⎡
⎢⎣ d+ xk +Nk

d− xk +Mk

⎤
⎥⎦ =

⎡
⎢⎣ 1

1

⎤
⎥⎦ d+

⎡
⎢⎣ 1

−1

⎤
⎥⎦xk + nk , (5.3)

where the observation noise vector nk = [Nk,Mk]
T may assume any probability den-

sity function (pdf). Hence, it turns out that our initial problem is now casted as

the estimation problem of a Gauss-Markov model with unknown state (see (5.2) and

(5.3)).

B. Composite Particle Filtering and Bootstrap Sampling Approach

The maximum likelihood clock offset estimator was reported in [24] for the two-way

timing message exchange protocol such as TPSN and NTP under the assumption of

Gaussian or exponential delay models. Herein we will derive a CPF for clock phase

offset estimation assuming a general unknown distribution of network delays, and

then compare the CPF and existing maximum likelihood clock offset estimators that

were derived for Gaussian (GML) and exponential (EML) delay models. Under the

Bayesian framework, an emerging powerful technique for obtaining the posterior, pre-

dictive, and filtering probability density functions is referred to as the particle filtering

(PF) (see e.g., [45], [46]). The PF technique allows for a complete representation of

the state posterior distribution, which approximates p(xk|z0:k), by stochastic sam-

ples generated using a sequential importance sampling strategy. The most common

employed PF strategy is to sample from the transition prior distribution due to its

simplicity. Since the prior importance sampling distribution employs no information

from observations in proposing new samples, its use is often ineffective and leads to

poor filtering performance. To overcome these challenges, we will derive an extension

of GSPF [27] applicable for linear non-Gaussian models.
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In the GSPF, the filtering and predictive distributions are recursively represented

as finite Gaussian mixtures (GMs) using Gaussian Particle Filtering (GPF) [26]. One

set of methods approximates the mixture components of the predictive and filtering

distributions as Gaussian. The approximation can be implemented by the GSPF,

resulting in a parallel bank of GPFs. Since Gaussian mixture models are increasingly

used for modeling non-Gaussian densities [?, ?], herein we plan extending the use

of the GSPF to linear non-Gaussian models. The resulting new approach will be

referred to as CPF. Notice that in the measurement and time-update equations of

CPF, the updated mean and covariance of each mixand follow from the KF. The CPF

is implemented by means of G parallel KFs, and the weights are adjusted according

to the given update equations. Notice also that the CPF approach comes out of

the utilization of another filtering technique (KF) producing a filtering probability

density function used as importance function (IF) for the particle filtering.

We next describe briefly the general framework of CPF methods. Assume at time

k − 1, the posterior distribution p(xk−1|z0:k−1) is approximated as closely as desired

by a Gaussian mixture model (GMM) of the following form [40]

p(xk−1|z0:k−1) ≈
G∑

g=1

w(k−1)gN(xk−1;μ(k−1)g, P(k−1)g), (5.4)

where G stands for the number of mixing components, w(·)g denote the mixing weights,

and N(x;μ, P ) is the normal distribution of RV x with mean μ and covariance P . The

transition prior is modeled as

p(xk|xk−1) =

L∑
l=1

α(k)lN(xk;Fxk−1 + μ̄(k−1)l, P̄(k−1)l). (5.5)

where α(k)l denote the mixing weights, L is the number of Gaussian mixing compo-

nents for modeling the transition prior. The time update stage that the previous
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observations and state are used to predict the current state is encompassed by the

predictive distribution which can be approximated as follows

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1

=

∫
p(xk|xk−1)

G∑
g=1

w(k−1)gN(xk−1;μ(k−1)g, P(k−1)g)dxk−1

=

∫ L∑
l=1

α(k)lN(xk;Fxk−1 + μ̄(k−1)l, P̄(k−1)l) ·

·
G∑

g=1

w(k−1)gN(xk−1;μ(k−1)g, P(k−1)g)dxk−1. (5.6)

The predicted and updated Gaussian component means and covariances are cal-

culated using the KF, where the integral in (5.6) is approximated by a Gaussian.

Then, the predictive distribution can be approximated as

p(xk|z1:k−1) ≈
GL∑
j=1

w̃kgN(xk; μ̃(k)j, P̃(k)j), (5.7)

where the parameters of the mixture are obtained according to KF:

μ̃kj = μ̄(k−1)l + Fμ(k−1)g, (5.8)

P̃kj = FP(k−1)gF
T + P̄(k−1)l, (5.9)

w̃kj = αlw(k−1)g, (5.10)

for appropriate j = 1, · · · , GK, g = 1, · · · , G and l = 1, · · · , L and j = g + (l − 1)L.

In the measurement update stage, the operation of acting on new observations

to improve on previously “predictive” states p(xk|z1:k−1) can be approximated as

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|zk−1)

≈ Cn

GL∑
j=1

w̃kjp(zk|xk)N(xk; μ̃(k)j , P̃(k)j), (5.11)
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where Cn is the normalizing constant. Therefore, the updated filtering distribution

is approximated as

p(xk|z1:k) ≈
GL∑
j=1

wkjN(xk;μ(k)j, P(k)j). (5.12)

The reader is directed to [27] for more detailed explanations of the GSPF algorithm.

Finally, notice that the conditional mean state estimate and the corresponding error

covariance can be calculated respectively as:

x̄k =

GK∑
j=1

w
(j)
k μ

(j)
k , P̄k =

GK∑
j=1

w
(j)
k [P

(j)
k + (μ

(j)
k − x̄k)(μ

(j)
k − x̄k)

T ]. (5.13)

Next, we introduce another clock estimation scheme obtained through the inte-

gration of the CPF technique with the bootstrap sampling (BS) approach. The reader

is directed to references [33, 34] for more detailed explanations about bootstrap sam-

pling. In order to provide a consistent amount of observation data in the presence of

errors during timing message transmissions, new sampled observation data from the

original observation data are generated via the BS. Then, the clock offset is estimated

based on the CPF. Notice that even in the presence of corrupted or lost data packets,

BS can create additional samples to the original sample set, by drawing at random

with replacement from Z, and without being necessary for additional retransmissions.

Each of the bootstrap samples is considered as new data. Based on the additional

sampled observation data, we can then approximate the clock offset x by using the

CPF. The major steps of the CPF approach with bootstrap sampling are summarized

by the following pseudo-code:

Algorithm: CPF with BS

1. Conduct the experiment to obtain the random sample Z = {Z1, · · · ,Zn} and

calculate the estimate θ̂ from the sample Z.
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2. Construct the empirical distribution Ĥ , which puts equal mass 1/n at each

observation Z1 = z1, · · · ,Zn = zn.

3. From Ĥ , draw a sample Z∗ = {Z∗
1, · · · ,Z∗

n}, operation called bootstrap resam-

pling.

4. From the bootstrap resample Z∗, estimate the clock offset x̂ by CPF.

The calculation of the computational cost of CPF is very complex, compared

to GML and EML. In general, the computational cost of CPF is a function of the

number of particles and the number of measurements. However, GML and EML

are a function of the number of measurements, and do not use the particle filtering

method. Hence, it is difficult explicitly to compare the complexities of GML/EML

and CPF. However, we will use the big O notation to express the computational

complexities of GML/EML and CPF in terms of flops by evaluating only the most

computationally demanding steps. Letting L, N , and G denote the dimension of the

state vector (x), the number of particles, and the number of GMM, respectively, the

GML is approximately O(L), and the CPF is approximately O(GNL3) which is the

maximum complexity and occurs in the posterior pdf step. This shows that the CPF

is approximately 300 times slower than GML in an application with L = 1, N = 100,

and G = 3.

C. Simulation Results

In this section, extensive computer simulation results are presented to illustrate the

performance of the CPF, CPF with BS, GML [24], and EML [24] approaches for

estimating the clock offset in wireless sensor networks, assuming a variety of ran-

dom network delay models such as asymmetric Gaussian, exponential, Gamma, and
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Weibull as well as a mixture of Gamma and Weibull, respectively. These computer

simulations and numerous other simulations not shown herein due to space limita-

tions corroborate the conclusion that the proposed method can be widely and flexibly

applied for any delay distribution. The stationary process vk assumes the constant

variance Q = 1e− 4, while the number of particles and GMMs are set to 100 and 3,

respectively. The bootstrap samples are twice the number of measurements.
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Fig. 5.1. MSEs of clock offset estimators for asymmetric Gaussian random delays

[σ1 = 1, σ2 = 4]

Figs. 5.1-5.4 show the MSE (Mean Square Error) of the estimators when the net-

work delay distributions are asymmetric Gaussian, exponential, Gamma, and Weibull

pdfs, respectively. The subscript attached to the distribution parameters are used to

differentiate the parameters of the uplink distribution with respect to those of the

downlink distribution. For example, for an asymmetric Gaussian delay model, (σ2
1)

and (σ2
2) denote the uplink and downlink variances, respectively. The MSE curves are
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Fig. 5.2. MSEs of clock offset estimators for asymmetric exponential random delays

[λ1 = 1, λ2 = 5]

plotted against the number of observations ranging from 5 to 25. Note that the CPF

performs much better with over 100% MSE-reduction when compared to the GML or

EML. Notice also that the CPF with BS exhibits the best performance in the pres-

ence of reduced number of observation data. Notice also the MSE of GML achieves

better performance than EML in asymmetric Gaussian delay models, while EML as-

sumes superior performance relative to GML in asymmetric exponential, Gamma,

and Weibull delay models. The reason for this is that Gamma and Weibull delay

models are closer to the exponential distribution than the Gaussian distribution.

To further quantify the robustness of the estimators, we studied the performance

of the CPF with BS, CPF, GML, and EML under more general random delay models

obtained by mixing two arbitrary distributions. For example, in Fig. 5.5, we mix

uniformly the Gamma with the Weibull delay model, each distribution accounting
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Fig. 5.3. MSEs of clock offset estimators for Gamma random delays [α1 = 2, β1 = 1]

for 50% of samples. This means that if 10 observations are observed, 5 observations

are Gamma and the remaining ones are Weibull distributed. From Fig. 5.5, we

observe that CPF clearly outperforms the GML and EML. Notice that additional

simulations not shown herein and performed assuming different mixture models for

the network delays such as mixtures of Gaussian and exponential, Gaussian and

Gamma, exponential and Gamma, and exponential and Weibull corroborate the same

conclusion, namely the fact that CPF outperforms both the GML and EML no matter

what distribution model is assumed for the network delays.

Figs. 5.6 - 5.10 depict the MSEs versus the number of observation data in the

case when 2 message exchange errors occur with uniform distribution for the scenarios

assumed by Figs. 5.1 - 5.5. From the Figs. 5.6 - 5.9, we observe that CPF with BS

clearly outperforms CPF, GML, and EML. From Fig. 5.10, we observe that unlike
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Fig. 5.4. MSEs of clock offset estimators for Weibull random delays [α1 = 2, β1 = 2

and α2 = 6, β2 = 2]

the Figs. 5.6 - 5.9, CPF with BS exhibits the best performance in the presence of

a reduced number of observations. These simulation results corroborate the general

conclusion that the CPF with BS, and CPF are reliable methods in the presence of

a reduced number of samples.

D. Summary

In this chapter, we provided novel methods such as CPF and BS for estimating the

clock offset in wireless sensor networks. The benefits are in terms of improved perfor-

mance and applicability to any-random delay models such as asymmetric Gaussian,

exponential, Gamma, Weibull, as well as mixtures of these delay models. In addition,

the proposed CPF approaches are robust to the presence of a small number of obser-

vations, message exchange errors and unknown network delay distributions. Possible
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Fig. 5.5. MSEs of clock offset estimators for mixing of Gamma [α1 = 2, β1 = 5 and

α2 = 2, β2 = 2] and Weibull [α1 = 2, β1 = 2 and α2 = 6, β2 = 2]

disadvantages of the proposed composite particle filtering based approaches are the

facts that analytical closed form expressions do not seem to exist for the clock estima-

tors and the computation of the lower bound performance bounds appears difficult

due to the non-Gaussian nature of involved distributions. In addition, the CPF with

BS and CPF achieve excellent performance compared to GML and EML in environ-

ments which manifest in message exchange errors and time-varying network delay

distributions.
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Fig. 5.6. MSEs of clock offset estimators for asymmetric Gaussian random delay

[σ1 = 1, σ2 = 4] and two message exchange errors
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Fig. 5.7. MSEs of clock offset estimators for asymmetric exponential random delay

[λ1 = 1, λ2 = 5] and two exchange message errors occur
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Fig. 5.8. MSEs of clock offset estimators for Gamma random delay [α1 = 2, β1 = 1]

and two exchange message errors occur
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Fig. 5.9. MSEs of clock offset estimators for Weibull random delay [α1 = 2, β1 = 2 and

α2 = 6, β2 = 2] and two exchange message errors occur
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Fig. 5.10. MSEs of clock offset estimators for mixing of Gamma [α1 = 2, β1 = 5 and

α2 = 2, β2 = 2] and Weibull [α1 = 2, β1 = 2 and α2 = 6, β2 = 2] and two

exchange message errors occur



63

CHAPTER VI

ROBUST CLOCK SYNCHRONIZATION VIA NOISE DENSITY ESTIMATION

As a more advanced step, this chapter presents an extension of the previous results

in Chapter IV to handle the situation of unknown observation noise distribution. In

this chapter, a novel clock synchronization algorithm based on a Bayesian framework,

called Iterative Gaussian Mixture Kalman Particle Filter (IGMKPF), is proposed.

The algorithm combines the Gaussian Mixture Kalman Particle Filter (GMKPF)

with a noise density estimation procedure through an iterative mechanism to achieve

good and robust performance in the presence of unknown network delay distributions.

As mentioned in the previous chapter, a particle filter (PF) can be applied to

the estimation of the state (clock offset). The PF-method provides an approximate

Bayesian solution to the discrete-time recursive problem by updating an approxi-

mate description of the posterior filtering density. Since the PF can not calculate

the likelihood function, due to unknown measurement noise density, the proposal

distribution plays an important role in the performance of PF. There are a lot of

particle filtering techniques that could be applied for increasing the accuracy. Notice

that general particle filtering techniques have no optimal proposal distribution and

the observation noise density is in general modeled by its first two moments: mean

and variance. Therefore, in general there exists a bias in both the MLE and general

PF regardless of whether the network delay model is Gaussian or non-Gaussian, and

this is due to the finite number of observations. Thus, the MLE and Cramer-Rao

Lower Bound (CRLB) can not serve as an efficient estimator and tight lower bound,

respectively. In addition, the PF and its Posterior Cramer-Rao Bound (PCRB) may

not be an optimal estimator or lower bound due to the finite number of observations

and unknown observation noise density. The recursive PCRB has been shown to be
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the information-theoretic mean-square error (MSE) bound for an unbiased sequential

Bayesian estimator. The expectation integrals for the Fisher information compo-

nents, which arise out of the recursive PCRB formulation, are intractable in general

and must be approximated numerically. The bound is shown to have the same form

as when the measurements for clock offset are with variance equal to the deterministic

CRLB for a single data snapshot.

To cope with the limitations of MLE and PF, in this chapter we propose a novel

clock offset estimator, the IGMKPF, and analyze the PCRB as a lower bound on its

MSE-performance. The general design features of IGMKPF are next described. First

of all, IGMKPF is capable of tracking the posterior and observation noise densities in

order to reduce the bias which might stem from the observation noise estimation and

the effects induced by the finite number of observations. In general, if the estimator

is able to track the original noise density, and not the mean and variance of noise

(moments), then the bias caused by expectation and finite samples of observations

might be reduced. Thus, if the observation noise density is fully captured and not

partially modeled through the information provided by its mean and variance, then

the estimator might reduce its bias and lead to improved performance. Second, the

proposal distribution should be close to the optimal to reduce the error accumulation

due to the iterative mechanism. Third, the estimator deals with non-Gaussian noise

efficiently (e.g., by adopting Gaussian Mixture Models (GMMs) to capture various

densities). Lastly, the optimal setting should be inferred from the analytical lower

bound (e.g., PCRB).

Thus far, in the synchronization literature for WSNs, Kalman filtering and gen-

eral adaptive signal processing techniques have been proposed (see e.g., [36], [37], [38]

and [47]) to improve the MSE-performance of protocols such as RBS [17] or TPSN

[18] under the assumption that the network delays are Gaussian. To deal with non-
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Gaussian noise, [48] proposed recently the Gaussian Mixture Kalman Particle Filter

(GMKPF) which was shown to perform well in a number of distributions: asymmetric

exponential, asymmetric gamma, asymmetric Weibull, and mixture of them. As seen

in [48], in the GMKPF, the importance sampling (IS) based measurement update

step is combined with the time-update and proposal density generation steps that

use a KF (Kalman Filter) based Gaussian sum filter. Since GMKPF utilizes new

observations and uses the Expectation-Maximization (EM) algorithm to estimate the

parameters of the Gaussian mixture models, GMKPF exhibits better estimation per-

formance relative to MLEg and MLEe in quite general asymmetric network delay

models whose distributions are assumed to be known. However, the performance of

GMKPF is limited in the presence of unknown observation noise density. In cases

when the initial observation noise density is far away from the real observation noise

density, the performance of GMKPF might be poor due to its slow convergence.

Therefore, this chapter could be seen as an extension of our previous results in [48]

to handle the situation of unknown observation noise distribution.

The proposed estimation approach IGMKPF combines the GMKPF with a net-

work delay density estimator by means of an iterative scheme. The proposed method

has the merits of being robust and yielding very accurate clock offset estimates in the

presence of unknown network delay distributions. During each iteration, by taking

into account the results (posterior density, observation noise density, etc.) from the

previous iteration, a new set of parameter values is obtained by adding small changes

to the previous parameters in such a way that the new parameters are likely to lead

to improved performance. By estimating the posterior density and observation noise

density iteratively, the estimator reduces the bias caused by taking the expectation.

IGMKPF tracks the real probability density (prior distribution, posterior distribu-

tion, etc.) by using random and deterministic sampling methods. Therefore, the
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more accurate the estimation of network delays is, the better the performance of

IGMKPF is due to the improved proposal distribution. To validate the accuracy of

IGMKPF, the posterior Cramer-Rao bound is derived and a sequential Monte Carlo

method is presented for computing the PCRB in unknown delay models. Computer

simulations are conducted to compare MLEg, MLEe, CRLB, IGMKPF, IGMKPF

with perfect network delay noise estimation, and PCRB. As a result, when the ac-

curacy of noise distribution estimation is improved, the performance of IGMKPF is

significantly better than CRLB in the presence of a reduced number of observations.

In order to assess the process of fitting the unknown network delay density, we intro-

duce the Kullback-Leibler Divergence (KLD) as measure between the estimated noise

density and the true density. The simulation results show that the KLD is roughly

proportional to the MSE. To derive the PCRB, the second order derivatives of pos-

terior pdf must be evaluated. In case of Gaussian network delays, the second order

derivatives of posterior pdf can be calculated in closed-form expression. However, for

exponential network delays, the second-order derivatives of posterior pdf cannot be

calculated directly. Therefore, to bypass this issue, we will utilize a gamma network

delay model instead of exponential model. This is due to the fact that a gamma

distributed random variable (RV) z ∼ Γ(α = 1, β = λ), also assumes an exponential

distribution with the rate parameter λ. We derive the PCRB for Gaussian, exponen-

tial, and gamma network delays, and then compare the CRLB with PCRB. Computer

simulations shown that IGMKPF and PCRB can improve the performance of MLE

and CRLB.

In this chapter, upon designing the IGMKPF, we first carry out a performance

analysis of IGMKPF, MLEg, and MLEe in the two-way message exchange mechanism

between two nodes under symmetric Gaussian, exponential, and Gamma network de-

lay distributions. In order to assess the performance of proposed estimator, we derive
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the PCRB for Gaussian, exponential, and gamma network delay noise models. The

performance of IGMKPF, IGMKPF with perfect noise estimation, MLE, CRLB, and

PCRB is simulated under the Gaussian and exponential network delay models. In ad-

dition, the performance of IGMKPF, IGMKPF with perfect noise estimation, MLEe,

PCRB is simulated under the gamma network delay model. To illustrate the effects of

noise estimation, we compare the KLD and the MSE of IGMKPF. The computer sim-

ulation results corroborate the superior performance of the proposed method relative

to MLEg and MLEe, and its robustness to general (Gaussian, exponential, gamma)

network delay distributions. Therefore, the proposed IGMKPF method represents a

reliable clock offset estimation scheme fit to overcome the uncertainties caused by the

unknown network delay distributions.

A. Problem Formulation

Similarly to the mechanism in the previous chapters, the differences between the

kth up and down-link delay observations corresponding to the kth timing message

exchange are defined by Uk := T2,k − T1,k = d + θA + Lk and Vk := T4,k − T3,k = d −
θA +Mk, respectively. The fixed value d denotes the fixed (deterministic) propagation

delay component (which in general is neglected (d ≈ 0) in small range networks that

assume RF transmissions). Parameters Lk and Mk stand for the variable portions of

the network delays, and may assume any distribution such as Gaussian, exponential,

Gamma, Weibull or mixture of two different distributions.

Given the observation samples zk = [Uk, Vk]
T , our goal is to find the minimum

mean-square error estimate of the unknown clock offset θA. For convenience, the

notation xk := θA will be used henceforth. Thus, it turns out that we need to
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determine the estimator:

x̂k = E{xk|zl} , (6.1)

where zl denotes the set of observed samples up to time l, zl = {z0, z1, ..., zl}. Since

the clock offset value is assumed to be a constant, the clock offset can be modeled as

following the Gauss-Markov model:

xk = Fxk−1 + vk−1 , (6.2)

where F stands for the state transition matrix of the clock offset. The additive process

noise component vk can be modeled as Gaussian with zero mean and covariance

E[vkv
T
k ] = Q = σ2

v . The vector observation model follows from the observed samples

and it assumes the following expression:

zk =

⎡
⎢⎣ d+ xk + Lk

d− xk +Mk

⎤
⎥⎦ =

⎡
⎢⎣ 1

1

⎤
⎥⎦ d+

⎡
⎢⎣ 1

−1

⎤
⎥⎦xk + nk

= Ad+ Bxk + nk , (6.3)

where A = [1 1]T , B = [1 − 1]T , and the observation noise vector nk = [Lk,Mk]
T

has zero mean and covariance R = diag{σ2
n, σ

2
n}, and it accounts for the random

network delays. One can now observe that (6.2) and (6.3) recast our initial clock

offset estimation problem into a Gauss-Markov estimation problem with unknown

state.

B. Posterior Cramer-Rao Bound for Sequential Bayesian Estimation

We need a lower bound on the covariance of the estimator, x̂k for the true state

xk, defined by (6.2) and (6.3). Since we are interested in the class of trackers that

are unbiased, bounding the MSE can be achieved by the PCRB alone. Assuming
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that regularity condition holds for the probability density functions, the Posterior

Cramer-Rao Bound (PCRB or Bayesian CRLB) [49] provides a lower bound on the

mean-square error matrix for random parameters. Let p(z, x) = p(z|x)p(x) denote

the joint probability density function (pdf) of z and x, where p(x) and p(z|x) stand

for the a priori pdf of x and the conditional pdf of z given x, respectively. Letting x̂(z)

denote an estimate of x which is a function of the observations z, the MSE matrix is

M = Ez,x{[x̂(z) − x][x̂(z) − x]T}. (6.4)

The PCRB C provides a lower bound on the MSE matrix M, and it is expressed

as the inverse of the Bayesian Fischer Information Matrix (BFIM) J :

M ≥ C ≡ J−1 . (6.5)

The BFIM for x is defined as

J = Ez,x{−
x
x ln p(z, x)} , (6.6)

where 
θ
φ is the m× n matrix of second-order partial derivatives with respect to the

m× 1 parameter vector φ and n× 1 parameter vector θ:


θ
φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2

∂φ1θ1

∂2

∂φ1θ2
· · · ∂2

∂φ1θn

∂2

∂φ2θ1

∂2

∂φ2θ2
· · · ∂2

∂φ2θn

...
...

. . .
...

∂2

∂φmθ1

∂2

∂φmθ2
· · · ∂2

∂φmθm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

In [49], the BFIM is shown to follow the recursion:

Jk+1 = D22
k − (D21

k )T (Jk + D11
k )−1D12

k , (6.7)
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where

D11
k = Ex{−
xk

xk
ln p(xk+1|xk)} (6.8)

D12
k = Ex{−
xk+1

xk
ln p(xk+1|xk)} (6.9)

D22
k = Ex{−
xk+1

xk+1
ln p(xk+1|xk)}

+ Ex{−
xk+1
xk+1

ln p(zk+1|xk+1)} . (6.10)

The recursion is initialized with

J0 = Ex{−
x0
x0

ln p(x0)} . (6.11)

In general, the expectations in (6.8) - (6.10) have no closed-form analytical solu-

tion and must be approximated. If the equations are nonlinear, then the expectation

integrals can be evaluated via Monte Carlo integration. If either the process model

or observation model is linear, then some of the terms in (6.8) - (6.9) become simply

products of matrices. As a first step in applying the Monte Carlo integration, we

need to define the following matrix functions:

Λ11(xk, xk+1) = −
xk
xk

ln p(xk+1|xk)

Λ12(xk, xk+1) = −
xk+1
xk

ln p(xk+1|xk)

Λ22,a(xk, xk+1) = −
xk+1
xk+1

ln p(xk+1|xk)

Λ22,b(xk+1, zk+1) = −
xk+1
xk+1

ln p(zk+1|xk+1) .
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We can rewrite the equations (6.8) - (6.10) as follows:

D11
k =

∫
Λ11(xk, xk+1)p(xk+1|zk+1)dxk+1

D12
k =

∫
Λ12(xk, xk+1)p(xk+1|zk+1)dxk+1

D22
k =

∫
(Λ22,a(xk, xk+1)p(xk+1|zk+1)

+ Λ22,b(xk+1, zk+1))p(xk+1|zk+1)dxk+1 .

Once we have a sample representation of the posterior density, these expectation

integrals can be calculated through sample mean approximation. We can obtain

the sample-based representation of the posterior pdf p(xk+1|zk+1) by exploiting the

work done in particle filtering [50]. The a posterior samples at k denoted by X
(n)
k

with weight w
(n)
k are passed through the process model. The output samples of the

process model are then fed into the measurement model to assign new weights to the

samples. The weighted samples are then used in the sequential importance resampling

(SIR) step to produce the a posterior samples at time k + 1. Therefore, using the

process model density and likelihood density, we can generate weighted samples on a

stochastic grid to represent the posterior density and estimate the Fisher component

matrices with the empirical averages:

D11
k � 1

N

N∑
n=1

Λ11(X
(n)
k , X

(n)
k+1) (6.12)

D12
k � 1

N

N∑
n=1

Λ12(X
(n)
k , X

(n)
k+1) (6.13)

D22
k � 1

N

N∑
n=1

(Λ22,a(X
(n)
k , X

(n)
k+1)

+ Λ22,b(X
(n)
k , X

(n)
k+1)) , (6.14)

where X
(n)
k+1, n = 1, ..., N , are the a posteriori samples representing the density
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p(xk+1|zk+1) and N stands for the number of samples. We will refer to the algorithm

for computing PCRB via sequential Monte Carlo integration as PCRB-IGMKPF (see

e.g., [51] for additional details). The detailed derivation of PCRB-IGMKPF is de-

scribed next.

PCRB-IGMKPF

1. Initialize the samples X
(n)
0 , n = 1, ..., N , from p(x0), and then compute J0 from

(6.11).

2. Predict by sampling for n = 1, ..., N from p(xk+1|xk = xtrue
k ) to choose X

′(n)
k+1.

3. From ntrue
k , the observation noise density is approximated by

pg(nk) =

J∑
j=1

γ
(J)
k N(nk;μnk

(j),R
(j)
k )

• The posterior density is approximated by

pg(xk−1|zk−1) =
∑G

g=1 α
(g)
k−1N(xk−1;μ

(g)
k−1, P

(g)
k−1)

• The process noise density is approximated by

pg(vk−1) =
∑I

i=1 β
(i)
k−1N(vk−1;μ

(i)
vk−1, Q

(i)
k−1)

• The observation noise density is approximated by

pg(nk) =
∑J

j=1 γ
(J)
k N(nk;μnk

(j),R
(j)
k ).

4. Pre-prediction step

• Calculate the pre-predictive state density p̃g(xk|zk−1) using KF.

• Calculate the pre-posterior state density p̃g(xk|zk) using KF.

5. Prediction step
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• Calculate the predictive state density p̂g(xk|zk−1) using GMM.

• Calculate the posterior state density p̂g(xk|zk) using GMM.

6. Observation update step

• Draw N samples {χ(l)
k ; l = 1, · · · , N} from the importance density function

q(xk|zk) = p̂g(xk|zk).

• Calculate their corresponding importance weights:

w̃
(l)
k =

p(zk|χ(l)
k )p̂g(χ

(l)
k |zk−1)

p̂g(χ
(l)
k |zk)

• Normalize the weights: w
(l)
k = w̃

(l)
k /

∑N
l=1 w̃

(l)
k .

• Approximate the state posterior distribution pg(xk|zk) using the EM-algorithm.

7. Infer the conditional mean and covariance:

• x̄k =
∑N

l=1 w
(l)
k χ

(l)
k and P̄k =

∑N
l=1 w

(l)
k (χ

(l)
k − x̄k)(χ

(l)
k − x̄k)

T .

• Or equivalently, upon fitting the posterior GMM, calculate the variables

in (4.8).

1. PCRB for the Gaussian Network Delay Model

The relationship in (6.2) determines the conditional pdf p(xk+1|xk)

p(xk+1|xk) =
1√
2πσ2

v

e
− 1

2σ2
v

[(xk+1−xk)2]
,

and the relationship in (6.3) decides the conditional pdf p(xk+1|zk+1)

p(zk+1|xk+1) =
1√
2πσ2

n

e
− 1

2σ2
n

[(zk+1−Ad−Bxk+1)2]
.
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Accordingly, we can obtain the following equations:

Λ11
k (xk, xk+1) = −
xk

xk
ln p(xk+1|xk) =

1

σ2
v

Λ12
k (xk, xk+1) = −
xk+1

xk
ln p(xk+1|xk) = − 1

σ2
v

Λ22,a
k (xk, xk+1) = −
xk+1

xk+1
ln p(xk+1|xk) =

1

σ2
v

Λ22,b
k+1(xk+1, zk+1) = −
xk+1

xk+1
ln p(zk+1|xk+1) =

BTB

σ2
n

=
2

σ2
n

.

Therefore, we can estimate the Fisher component matrices with the empirical aver-

ages:

D11
k � 1

N

N∑
n=1

Λ11(X
(n)
k , X

(n)
k+1) =

1

σ2
v

D12
k � 1

N

N∑
n=1

Λ12(X
(n)
k , X

(n)
k+1) = − 1

σ2
v

D22
k � 1

N

N∑
n=1

(Λ22,a(X
(n)
k , X

(n)
k+1) + Λ22,b(X

(n)
k , X

(n)
k+1))

=
1

σ2
v

+
2

σ2
n

.

From (6.7), it turns out that the evaluation of BFIM for Gaussian case can be done

using the recursion:

Jk+1 =
1

σ2
v

+
2

σ2
n

− (− 1

σ2
v

)T (Jk +
1

σ2
v

)−1(− 1

σ2
v

) . (6.15)

Therefore, from (6.5), PCRB is inverse of BFIM (J). From the above equations,

we note that PCRB is a function of σ2
v and σ2

n. In [24], the CRLB is expressed as

var(x̂) ≥ σ2
n/2N . Thus, the lower bound of MLE is limited by σ2

n. In other words,

to improve the MSE performance, the number of observations has to be increased.
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However, WSNs are power limited systems, and a large number of message exchanges

is not desirable. Therefore, alternative algorithms with improved MSE-performance

are desirable.

2. PCRB for Exponential and Gamma Network Delay Models

(6.2) determines the conditional pdf p(xk+1|xk):

p(xk+1|xk) =
1√
2πσ2

v

e
− 1

2σ2
v

[(xk+1−xk)2]
, (6.16)

while (6.3) decides the conditional pdf p(xk+1|zk+1):

p(zk+1|xk+1) = λe−λ[(zk+1−Ad−Bxk+1)] . (6.17)

(6.17) cannot be used to evaluate the entries of Fisher matrix because of the second-

order derivatives. Using the fact that a gamma-distributed random variable z ∼
Γ(α = 1, β = λ) assumes an exponential distribution with rate parameter λ, we will

exploit this alternative route to evaluate the Fisher matrix entries. (6.3) leads to the

conditional pdf p(xk+1|zk+1):

p(zk+1|xk+1) =
βα

Γ(α)
[(zk+1 − Ad−Bxk+1)]

α−1

× e−β[(zk+1−Ad−Bxk+1)] , (6.18)

where if α is a positive integer, then Γ(α) = (α− 1)!.

From the above equation, it follows that

Λ22,b
k+1(xk+1, zk+1) = −
xk+1

xk+1
ln p(zk+1|xk+1)

=
(α− 1)BTB

[(zk+1 − Ad− Bxk+1)]T

× 1

[(zk+1 − Ad− Bxk+1)]
.
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Therefore, we estimate the Fisher matrix entries with the empirical averages:

D11
k � 1

N

N∑
n=1

Λ11(X
(n)
k , X

(n)
k+1) =

1

σ2
v

D12
k � 1

N

N∑
n=1

Λ12(X
(n)
k , X

(n)
k+1) = − 1

σ2
v

D22
k � 1

N

N∑
n=1

(Λ22,a(X
(n)
k , X

(n)
k+1) + Λ22,b(X

(n)
k , X

(n)
k+1))

=
1

σ2
v

+
1

N

N∑
n=1

Λ22,b(X
(n)
k+1, zk+1) .

3. Comparison between PCRB and CRLB

Figs. 6.1-6.2 shows CRLB and PCRB when the random delay model is Gaussian with

zero mean and variance σ2
n = 1 for various initializations of the Fisher information

matrix J0 and different power levels for the process noise (σ2
v). Figs. 6.1-6.2 show that

for small power levels of the process noise σ2
v = 10−4, 10−5, 10−6, depending on the ini-

tialization J0, PCRB might achieve similar or better performance levels than CRLB

[24] depending on how J0 is selected. Fig. 6.3 shows that for negligible process noise

(σ2
v = 1e − 6) relative to observation noise (σ2

n = 1, 0.7, 0.5), PCRB exhibits lower

values than CRLB. These plots illustrate the fact that PCRB depends on the initial-

ization (J0), observation noise power (σ2
n), and process noise power (σ2

v). It is natural

that process modeling errors exist and their effect on PCRB becomes noticeable at

certain power levels (σ2
v). As the variance of process noise decreases, the modeling

error is almost removed and then the model becomes identical with the one adopted

by the ML approach. The simulation results corroborated the fact that CRLB ex-

hibits almost the same performance levels as PCRLB provided that the process noise

variance is sufficiently small (less than 10−4) and the Fisher Information matrix used

for initialization is J0 = 1. The simulation results also illustrated an interesting fact
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when the process noise variance is sufficiently small (less than 10−4) and the initial

value of Fisher information matrix is J0 = 1/(σ2
v), PCRLB is significantly lower than

CRLB.
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Fig. 6.1. PCRB and CRLB for symmetric Gaussian random delays (σ2
n = 1 and J0 = 1)

Computer simulations also illustrate the fact that PCRLB might increase as the

number of observations increases. In the state-space iterative estimation model, pre-

diction errors and random sampling errors [50] might occur due to the non-optimal

proposal distribution, which might cause a constant error accumulation. Therefore,

in the state tracking process, these errors might accumulate from one iteration to

the next iteration. These accumulative errors increase as the number of observations

increase. When the performance improvement due to the increase in the number of

observations is larger than the performance degradation due to the cumulative er-

rors, the MSE decreases as the number of observations increases, and in the limit the

cumulative errors are neglected. On the other hand, when the performance improve-
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Fig. 6.2. PCRB and CRLB for symmetric Gaussian random delays (σ2
n = 1 and

J0 = 1/σ2
v)

ment due to the increase in the number of observations is less than the performance

degradation induced by the cumulative errors, the MSE increases as the number of

observations increases. The cumulative errors play a more important role in the per-

formance as the number of observations increases. For a large number of observations,

tracking error accumulation is important in the performance of the Bayesian iterative

estimation approach that we will propose later. In order to reduce the accumulative

error, a more accurate proposal distribution is needed. Since it is impossible to obtain

an optimal proposal distribution, there will always exist random sampling errors.

Notice that particle filters (PF) track the unknown state using the observation,

process, and prior density. However, the particle filter is not optimal due to the

random sampling errors, non-optimal proposal distribution (particle filter samples

from the proposal distribution) etc. Additionally, note that the convergence of particle

filter has not been proved to be uniform in time t [51]. For a given fixed t, there is
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Fig. 6.3. PCRB and CRLB for symmetric Gaussian random delays (σ2
v = 10−6 and

J0 = 1)

convergence as N → ∞ but nothing is said about that limit at t → ∞. In practice,

this could mean that at a later time t, a large value of N may be required, though

that could depend also on other factors such as the nature of the state-space model.

GMKPF gives better performance than general PF by using improved prediction

and proposal distribution. However, the remaining parameter (the observation noise

density is fixed) is not changed. In case that the observation noise density is fixed

and process noise variance is lower than 10−4, GMKPF has the same performance

as MLE or CRLB. However, in the case that the observation noise density can be

estimated more accurately and the process noise variance is negligible relative to the

observation noise power, we will show in the next sections that IGMKPF yields much

better performance than MLE and CRLB.
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C. An Iterative Gaussian Mixture Kalman Particle Filtering Approach

In wireless or mobile communication systems, such as CDMA, GSM, and 3G, iterative

techniques (e.g., linear parallel interference cancelation, successive interference cance-

lation) were applied to resolve the multiuser detection problem. It is known that the

iterated linear interference cancelation technique employed for the detection of linear

multiple access channels is equivalent to the well known iterative methods for finding

the solution of a system of linear equations [52]. In general, Successive Interference

Cancelation (SIC) decodes the signals from the strongest interferers and subtracts the

re-encoded signal, effectively increasing the signal-to-noise ratio. This is iteratively

repeated until the first interferer is obtained. Likewise, the proposed Iterative Gaus-

sian Mixture Kalman Particle Filtering (IGMKPF) estimator combines the Gaussian

mixture Kalman particle filter (GMKPF) with the observation noise density estima-

tor. The observation noise density estimator consists of the state model and a cost

function in the form of an innovation equation expressed as the difference between the

observation and estimated state posterior pdfs: p(z)− p(ẑ). The innovation equation

is produced by considering the estimate yielded by a standard Kalman filter as well as

a GMKPF estimator using the prior, process, observation, state posterior, and noise

density, which are propagated over time. In order to analyze the MSE-performance of

the proposed IGMKPF technique, computer simulations will be conducted, and the

posterior Cramer-Rao Bound and the Kullback-Leibler Divergence (KLD) between

the true and estimated network delay noise will be evaluated as well.

Fig. 6.4 provides a perspective on the proposed IGMKPF estimator. In IGMKPF,

the first processing stage is represented by the GMKPF which is used to estimate the

state posterior density using the observation density, prior density, and process den-

sity. The second processing stage consists in estimating the observation noise density
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Fig. 6.4. Block diagram representation of the IGMKPF estimator

using the innovation, by considering the estimate of the standard Kalman filter. The

estimated observation noise density, which is used as an input to the first processing

stage, is approximated by a GMM fitting function. The iterative process between the

two processing stages is repeated up to the end of observations.

In IGMKPF, at the first iteration, GMKPF initializes the densities and estimates

the state posterior pdf using particles for generation of pdfs (posterior pdf, prior

pdf, process noise pdf, observation noise pdf, and so on). Next, the observation

noise density generator block estimates the observation noise pdf using both the

measurement observations and the posterior density computed by GMKPF. This

iteration is repeated up to the number of observations. The pseudo-code of IGMKPF

algorithm is next described. The detailed explanation of GMKPF is already described

in Chapter IV.
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IGMKPF algorithm

1. At time k, initialize the densities and set the initial state x̂k−1 = xML.

2. GMKPF step (estimate the state posterior density)

• Calculate the state posterior density pg(xk|zk) using GMKPF.

• If k reaches the end of observations, go to “Infer the conditional mean and

covariance step”.

3. OND step (estimate the observation noise density)

• Calculate the observation noise density p(n̂) given zk and pg(xk|zk), and

state model ((6.2) and (6.3))

• The observation noise density using GMM is approximated by:

pg(nk) =
∑J

j=1 γ
(J)
k N(nk;μnk

(j),R
(j)
k )

4. k = k + 1, go to the GMKPF step.

5. Infer the conditional mean and covariance:

• x̄k =
∑N

l=1 w
(l)
k χ

(l)
k and P̄k =

∑N
l=1 w

(l)
k (χ

(l)
k − x̄k)(χ

(l)
k − x̄k)

T

• Or equivalently, upon fitting the posterior GMM, calculate the variables

in (4.8).

To validate the accuracy of the observation noise density estimation, we use

the Kullback-Leibler Divergence (KLD) [53] as a measure of fitting the estimated

noise density to the true one. Fig. 6.5 shows the relationship between KLD and

MSE-performance of IGMKPF. In Fig. 6.5, the upper graph refers to KLD, while

the lower graph depicts the MSE performance of IGMKPF. Upon 10 Monte Carlo

simulation runs, the KLD and the MSE performance exhibit a very similar behavior.
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Fig. 6.5. KLD and MSE for symmetric exponential random delays (λ = 1)

These plots illustrate the fact that the more accurately the observation noise density

is estimated, the better the MSE performance of IGMKPF is.

D. Simulation Results

In this section, computer simulations will be conducted to assess the performance of

IGMKPF, PCRB-IGMKPF, MLEg [24], MLEe [24], and CRLB for estimating the

clock offset in WSNs that are subject to three types of network delays: symmetric

Gaussian, exponential, and Gamma. The process noise assumes the power σ2
v = 10−6.

The number of particles and GMMs are 500 and 3, respectively. One aspect about

using IGMKPF is that it requires proper initialization. Depending on the problem,

the initial guess may need to be close to the correct value to achieve fast convergence.
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The ML estimators proposed in [24] for symmetric Gaussian and exponential ran-

dom delays are good examples of initializations. The initial values x̂0 = x̂MLEg, and

x̂0 = x̂MLEe are near the true values in Gaussian and non-Gaussian (exponential and

gamma) delay distributions, respectively. The convergence of IGMKPF is achieved

after a number of iterations on the order of the number of measurements. Since

GMKPF does not initialize the observation noise density and does not track it, its

performance might be limited. However, IGMKPF tracks the observation noise den-

sity using the observation and estimated posterior pdfs. Therefore, the performance

of IGMKPF is expected to be better than CRLB.
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Fig. 6.6. MSEs of clock offset estimators for Gaussian (σ2
n = 1)

Fig. 6.6 shows the MSE performances of MLEe, MLEg, GMKPF, and IGMKPF.

Left-triangles and right-triangles denote MLEe and MLEg, respectively. The dashed

line indicates GMKPF with the initial condition x0 = XMLEe and known observation

noise density. The dashed-with-circles line represents GMKPF with initial condition
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x0 = Xtrue+1 and unknown observation noise density. Dashed-with-addition-sign line

denotes GMKPF with initial condition x0 = XMLEe and unknown observation density.

Solid line represents IGMKPF with initial condition x0 = XMLEe and estimated

observation density. In the symmetric Gaussian model, GMKPF shows the same

performance as MLE because it does not exploit the observation noise density and the

fixed parameter is J0 = 1. However, when the observation noise density is estimated,

IGMKPF shows better performance than MLE and GMKPF. If the observation noise

density is not tracked, a bias will be induced in the GMKPF estimate and it exhibits

performance close to MLEg. However, tracking the observation noise density help to

reduce the bias, which will help IGMKPF estimate to approach closer the real clock

offset.
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Fig. 6.7. MSEs of clock offset estimators for Gaussian (σ2
n = 1)

Figs. 6.7 - 6.9 show the MSE of the estimators under the assumption that the

random delay models are symmetric Gaussian, exponential, and Gamma, respectively.

Notations KN and EN denote the set-ups with known observation noise density and
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Fig. 6.8. MSEs of clock offset estimators for exponential (λ = 1)

estimated observation noise density, respectively. The MSEs are plotted against the

number of observations ranging from 15 to 30. To use the GMM fitting function

in MATLAB (such as kmean), the number of observations starts at 15. Note that

IGMKPF (G = 3) performs much better (over 100% reduction in MSE) than CRLB

and MLEg in the presence of a Gaussian delay model. It is remarkable that the

performance of MLE is proportional to the number of observations, whereas that

of IGMKPF is proportional to the number of particles, the number of GMMs, and

the accuracy of noise density estimation, but it does not depend on the number of

observations [51]. This is a desirable feature for WSNs in order to keep the number

of timing exchanges low so that energy is conserved.

IGMKPF uses a 3-component GMM (G = 3) to predict the state posterior, a 1-

component GMM to capture the process noise density, and a 3-component GMM for

estimating the measurement noise density. The GMKPF-estimator predicts the pos-

terior probability function (likelihood function) adaptively using the EM-algorithm,
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Fig. 6.9. MSEs of clock offset estimators for Gamma (α1 = 2, β1 = 2)

and thus its performance depends on the ability of GMM to capture distributions

such as process noise, posterior PDFs, and so on. However, GMKPF is neglecting

the observation noise density in estimating the posterior pdf because of lack of any

adaptation mechanism to predict the observation noise density. In order to overcome

this challenge, IGMKPF, which is configured in terms of two estimators: GMKPF and

observation noise density estimator, is iterated until the required accuracy of observa-

tion noise density estimation is obtained. Therefore, IGMKPF yields more accurate

estimates of the state as illustrated in Figs. 6.7 and 6.8, for exponential (λ = 1) and

gamma (α = 2 and β = 2) network delay models, respectively. In Fig. 6.9, IGMKPF

exhibits also much better performance than MLE in the presence of reduced number

of observations. When IGMKPF is properly initialized, its performance goes close to

PCRB. Notice also that PCRB is much lower than CRLB.

Next we compare IGMKPF with other well-known clock estimation schemes
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MLEg and MLEe in TPSN [18], RBS [17], and FTSP [19], with respect to the number

of required timing messages (which practically indicates the amount of energy con-

sumption) to achieve a specific MSE-performance. Let NTPSN−MLEg, NRBS−MLEg,

and NFTSP−MLEg denote the numbers of required timing messages for synchroniza-

tion in TPSN, RBS, and FTSP, respectively, assuming the MLE scheme and a

Gaussian delay model. In TPSN [18], denoting by J the overall number of sen-

sor nodes, and assuming that 2K timing messages are required in every pairwise

synchronization, NTPSN−MLEg is equal to the number of pairwise synchronization

times the number of required timing messages per pairwise synchronization. Thus,

NTPSN−MLEg = 2K(J − 1). In RBS [17], NRBS−MLEg = K + J(J − 1)/2, since the

number of unique pairs in the network is J(J − 1)/2. In FTSP [19], the number

of required timing messages is NFTSP−MLEg = JK. When MSE = 10−3 and the

number of nodes is 100, NTPSN−MLEg = 2K(100 − 1) = 2 × 500 × 99 = 99000 for

MLEg [24], NTPSN−IGMKPF = 2K(100 − 1) = 2 × 15 × 99 = 2970 for IGMKPF

from Fig. 6.7. Consequently, the benefit of IGMKPF over MLEg is huge in terms

of energy consumption in the network. Similar statements hold for NRBS−MLEg and

NFTSP−MLEg.

E. Summary

This chapter proposed a novel method for estimating the clock offset in wireless sen-

sor networks. The benefits of the proposed synchronization method are improved

performance compared to CRLB and MLE, and applicability to arbitrary random

delay models such as symmetric Gaussian, symmetric exponential, and Gamma de-

lay models. In general, in case of (unknown) non-Gaussian distributions, analytical

closed-form expressions for MSE-performance do not necessarily exist and it is hard
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to derive lower bounds. However, this chapter derived the posterior Cramer-Rao

bound (PCRB) and IGMKPF. An important element in improving the performance

of clock estimator is the prediction of unknown observation noise density which led

to an improved estimator. IGMKPF presents better performance than maximum

likelihood estimator (MLE). The chapter presented a robust estimator based on the

IGMKPF which is capable of estimating the clock offset in arbitrary delay models

and in the presence of time-varying clock offset, and that can be used in a number of

applications of wireless sensor networks with tight synchronization requirements [43],

[44]. Computer simulations corroborate that the proposed method yields a superior

performance.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In WSNs, clock synchronization is significantly important for a lot of tasks such

as tracking, localization, data fusion, and efficient duty cycling. However, the re-

quirements of limited energy consumption and increased clock accuracy makes clock

synchronization problem in WSNs very difficult. This dissertation focused on finding

robust estimation techniques of the clock offset for synchronization in WSNs under

a two-way message exchange mechanism using the sender-receiver synchronization

scheme in order to cope with symmetric or asymmetric, and non-Gaussian or non-

exponential random delay distributions.

The clock offset estimator based on bootstrap bias correction has been derived

for asymmetric exponential random delay models. Next, the clock offset estima-

tor using the robust M-estimation technique is also proposed in order to cope with

the circumstances that one underlying delay distribution may be contaminated by

or mixed with another delay distribution. Subsequently, more accurate and robust

estimators of clock offset based on particle filtering techniques are obtained and com-

pared with the maximum likelihood estimator to show the outstanding performances

in the presence of non-Gaussian or even unknown network delay environments. One

of the estimators is the Gaussian mixture Kalman particle filter, which is a better

and more flexible alternative to Gaussian and exponential maximum likelihood esti-

mators of clock offset in arbitrary random delay models. The clock estimator based

on the composite particle filter is also proposed, which approximates the filtering and

predictive distributions by exploiting weighted Gaussian mixtures and is basically

implemented through banks of Kalman filters replacing Gaussian particle filters. In

addition, the composite particle filter combined with the bootstrap sampling is shown
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to represent a more accurate clock offset estimator. Lastly, another novel clock offset

estimator based on the iterative Gaussian mixture Kalman particle filter combining

the Gaussian mixture Kalman particle filter with a noise density estimation scheme

via an iterative scheme is shown to outperform GMKPF and applicable to general

unknown network delay distributions.

There are several future research directions that can be explored. It is worth ex-

amining the possibility that the statistical methodologies adopted in this dissertation

can be extended for clock synchronization models that include clock skew and drift in

the set of unknown parameters. Furthermore, it is of interest to investigate whether

the proposed techniques can be applied to other clock synchronization protocols that

use receiver-receiver synchronization or receiver-only synchronization schemes such

as RBS (Reference Broadcast Synchronization) or PBS (Pairwise Broadcast Synchro-

nization).
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