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ABSTRACT

Instrumentation to Measure the Backscattering Coefficient bb for Arbitrary Phase

Functions. (August 2010)

David Haubrich, B.S., Johannes Gutenberg-Universität Mainz

Chair of Advisory Committee: Dr. Edward S. Fry

The backscattering coefficient bb is one of the inherent optical properties of nat-

ural waters which means that it is independent of the ambient light field in the water.

As such, it plays a central role in many problems of optical oceanography and is used

in the characterization of natural waters. Essentially, any measurement that involves

sending a beam of light into water must account for all inherent backscattering. Some

of the applications that rely on the precise knowledge of the backscattering coefficient

include studies of suspended particle distributions, optical bathymetry, and remote

sensing. Many sources contribute to the backscattering, among them any suspended

particles, air bubbles, and the water molecules themselves. Due to the importance of

precise measurements and the ease with which water samples can be contaminated,

an instrument to determine directly and quickly the backscattering coefficient in situ

is highly desirable.

We present such an instrument in both theory and experiment. We explain the

theory behind our instrument and based on measurements made in the laboratory

we demonstrate that our prototype shows the predicted behavior. We present data

for increased extinction in the water, and show how measuring the extinction and

taking it into account improves the quality of our measurements. We present calibra-

tion data obtained from three different particle sizes representing differently shaped

volume scattering functions. Based on these measurements we demonstrate that our

prototype has the necessary resolution to measure the backscattering coefficient bb
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over the whole range found in natural waters. We discuss potential improvements

that should be made for a commercial version of the instrument.
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CHAPTER I

INTRODUCTION

Water and light are two of the main ingredients for life on earth. Despite their

abundance, it was not until the early 1800s that mankind’s research into optical

oceanography began. Otto von Kotzebue is believed to be the first person to conduct

optical oceanographic research during his Rurik circumnavigational cruise in 1817 [1].

Using a piece of red cloth tied to a rope he roughly measured the penetration depth

of light. Over the course of the next decades this method was refined, cumulating in

the measurements of Secchi [2]. In 1885, photographic methods were first used by Fol

and Sarasin, who submerged photographic plates in the Mediterreanean.

The first person to develop and publish a theoretical treatment for marine light

scattering was Ludwig Valentin Lorenz in 1890 [3]. Gustav Mie did further work

on this theory and presented what today is known as Mie-Theory, sometimes also

referred to as Lorenz-Mie Theory in 1908 [4]. This theory uses Maxwell’s equations

and gives a complete analytical solution for the scattering of electromagnetic radiation

on spherical particles; however, it was not widely used until the advent of computers

due to the complexity of the calculations.

In the 1950s and 1960s, new instruments and measurements of scattering in water

were done by several groups, among them Tyler and Richardson [5] and Kullenberg [6].

Special mention has to be given to the measurements of Petzold [7], whose data is

widely used in the description of natural waters today.

Further research led to the development of the wide range of instruments that are

now commercially available to measure diverse parameters of natural waters; however,

This dissertation follows the style and format of Applied Optics.
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a complete discussion of all available instruments for all the different parameters is

outside the purview of this work. We will concentrate on backscattering in water,

since our instrument was designed specifically for this purpose.

Backscattering plays a central role in many problems of optical oceanography

and is used in the characterization of natural waters. Essentially, any measurement

that involves sending a beam of light into water has to account for the backscattering

that occurs. Some of the applications that rely on the precise knowledge of the

backscattering coefficient include studies in suspended particle distributions, optical

bathymetry, and remote sensing. Sources contributing to the backscattering include

the water molecules themselves, suspended organic and inorganic particulates, and

air bubbles.

From a physicist’s point of view, the importance of the backscattering coefficient

is not based on its rather arbitrary portion of the total scattering coefficient, instead it

is founded in the history of optical oceanography. In this discipline, the backscattering

coefficient bb became an important parameter that is used to characterize natural

waters and is also used in many equations to connect the inherent optical properties

to the apparent optical properties. Some of these relationships will be discussed in

Chapter II. Chapter III will briefly review methods currently used to determine the

backscattering coefficient and discuss the (dis-)advantages of the methods they use.

The thory and design of the instrument is presented in Chapter IV, followed by a

description of the experimental setup in Chapter V, and the results in Chapter VI.

As is summarized in Chapter VII, the importance of precise measurements and the

ease with which water samples can be contaminated make an instrument to directly

and quickly determine the backscattering coefficient in situ highly desirable.
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CHAPTER II

BACKGROUND

It is important to understand that the optical properties that will be discussed in

this dissertation are bulk properties of water, and are not meant to be applied on

a molecular level. Bulk properties are best determined directly in the open water;

apparent optical properties (AOP’s) can only be measured in situ.

Scattering and absorption are the two fundamental processes involved in the

distribution of light in water. These processes give rise to two fundamental IOP’s,

the volume scattering function and the absorption coefficient. Several other IOP’s

can be derived once these two are known. These properties are called “inherent”,

because they are independent of the ambient light field, and thus depend only on

the constituents of the water. This fact also allows for the IOP’s to be - at least in

principle - measured both in situ and in the laboratory. Since our instrument has

been designed to measure one of these IOP’s, we will discuss them in detail in Section

A.

In Section B we will briefly discuss AOP’s, which will also include defining some

general quantities that can be encountered frequently in studies of natural waters.

While AOP’s are not fundamental, they were the first to be defined and measured.

This is because historically, observations were first made using naturally available

light sources, usually the sun. Because of this, the AOP’s not only depend on the

water and its constituents, but also on the ambient light field.

A. Inherent Optical Properties

As mentioned above, the volume scattering function (VSF) β (λ, θ, φ) and the ab-

sorption coefficient a (λ) are two fundamental IOP’s. Other IOP’s include the index
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Fig. 1. The interaction between light and matter

of refraction n, the single scattering albedo ω0, and the total, forward, and back

scattering coefficients b(λ), bf (λ), and bb(λ), which can all be derived from the two

fundamental ones.

In order to define the inherent optical properties, consider a small volume ∆V

with thickness ∆r (see Fig. 1). We illuminate this volume with a small collimated

beam with wavelength λ and incident power Pi(λ). Further we define Pa(λ), Ps(λ),

and Pt(λ) to be the absorbed, scattered, and transmitted power, respectively. From

the energy conservation principle it is obvious that the sum of the absorbed, in all

direction scattered, and transmitted power has to be equal to the incident power:
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Pi(λ) = P (λ)a + P (λ)s,4π + P (λ)t. (2.1)

We can now define the dimensionless absorptance A(λ), scatterance B(λ), and trans-

mittance T (λ) as the ratios of the absorbed, scattered, and transmitted powers to the

incident power:

A(λ) =
P (λ)a

P (λ)i
(2.2)

B(λ) =
P (λ)s,4π

P (λ)i

(2.3)

T (λ) =
P (λ)t

P (λ)i
(2.4)

Plugging Eqs.(2.2 - 2.4) into Eq.(2.1) it is easy to see that

A(λ) +B(λ) + T (λ) = 1 . (2.5)

The commonly encountered quantities in optical oceanography are the absorption

and scattering coefficients, which are defined as the absorptance and scatterance per

unit length

a(λ) ≡ lim
∆r→0

A(λ)

dr
(2.6)

b(λ) ≡ lim
∆r→0

B(λ)

dr
, (2.7)

respectively. The typical unit for these coefficients is m−1, although cm−1 is also used.

Frequently, the quantity we are interested in is how much power is lost in the

transmission of a beam, irrespective of whether this is due to absorption or scattering.

Therefore, we define the beam attenuation coefficient c as the sum of the absorption

and scattering coefficients,

c(λ) ≡ a(λ) + b(λ) . (2.8)
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Now we can use these coefficients to determine how much power is lost in a light

beam propagating in a medium with absorption a, scattering b, or extinction c. The

initial power P (x = 0) decreases exponentially with the distance traveled through

that medium, thus at a distance x the remaining power P (x) can be calculated by

P (x) = P (x = 0) · e−(a,b,c)x . (2.9)

So far we have only considered the total scattered power, i.e. the power which

is scattered in all directions. Taking into account the angular distribution, we define

the volume scattering function (VSF)

β(λ, θ, ϕ) ≡ lim
∆r→0

lim
∆Ω→0

B(λ, θ, ϕ)

∆r∆Ω
(2.10)

where B(λ, θ, ϕ) is the fraction of the incident power scattered into a solid angle ∆Ω

centered on (θ, ϕ). The unit for the VSF is m−1sr−1.

From a physicist’s point of view we also can interpret the volume scattering

function as the differential scattering cross section per unit volume. Looking at the

definition of β(λ, θ, ϕ) it is clear that integration of the volume scattering function

over all solid angles gives the total scattering coefficient b(λ). We can therefore write

b(λ) =

∫

4π

β(λ, θ, ϕ)dΩ = 2π

π
∫

0

β(λ, θ) sin θdθ. (2.11)

We are able to do the integration over ϕ because for natural waters the scattering

is azimuthally symmetric about the incident direction, as long as we assume that the

scatterers are randomly oriented. Furthermore, it is useful to separate the integration

in Eq. (2.11) into the forward scattering, 0 6 θ 6 π/2, and the backward scattering,

π/2 6 θ 6 π, parts, and to define the forward and backward scattering coefficients,
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bf and bb, respectively, as

bf (λ) ≡ 2π

π/2
∫

0

β(λ, θ) sin θdθ (2.12)

bb(λ) ≡ 2π

π
∫

π/2

β(λ, θ) sin θdθ . (2.13)

From the VSF and these coefficients, we can derive three other frequently en-

countered quantities. These are, while not fundamental, quite useful in describing

and comparing natural waters. The first of these quantities is the volume scattering

phase function β̃(λ, θ), often shortened to “phase function”. It is defined as the VSF

divided by the total scattering coefficient:

β̃(λ, θ) ≡ β(λ, θ)

b(λ)
(2.14)

Combining this expression with Eq. (2.11) we see that the phase function is normal-

ized to
∫

4π

β̃(λ, θ)dΩ = 1. (2.15)

This normalization effectively separates the shape of the volume scattering function

from the total strength of the scattering. As such, it is particularly useful to com-

pare the shape of different volume scattering functions, irrespective of the absolute

magnitude of the scattering.

The single-scattering albedo is defined as

ω0(λ) ≡ b(λ)

c(λ)
. (2.16)

Thus, the value range for the single-scattering albedo is 0 6 ω0(λ) 6 1, where values
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of 0 and 1 indicate beam attenuation due to absorption and scattering, respectively.

The asymmetry parameter is defined as the average over all scattering directions

of the cosine of the scattering angle θ:

g ≡ 2π

π
∫

0

β̃(λ, θ) cos θ sin θdθ (2.17)

It is a measure of the symmetry of the phase function, with values of g near 1 and

−1 for strongly forward/backward peaked phase functions, respectively, i.e. β̃(λ, θ)

is large/small for small θ and small/large, often by several orders of magnitude, for

θ near 180 ◦. For a totally symmetric phase function about θ = 90 ◦ the asymmetry

parameter takes on a value of 0.

The volume scattering function and the absorption coefficient are generally con-

sidered to be fundamental IOP’s; others can be derived from these two. Knowledge

of those two quantities provides a description of the optical properties of a body of

water with regard to the underwater light field using radiative transfer theory.

Both scattering and absorption are independent of the ambient light field and,

in principle, water samples can be taken in situ and then analyzed in the laboratory.

An instrument that can measure these quantities in situ is preferable, however, for

reasons including the extreme difficulties involved in keeping the sample clean from

contaminants, and the problem of the rapid disintegration of the majority of par-

ticulate matter which is of organic nature. Thus far, we have explicitly written the

wavelength dependence of all optical properties into their definitions. In order to

increase the readability of equations, from now on the λ will be omitted from the list
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of dependent variables, except where necessary, i.e.

bb ≡ bb(λ)

β(θ) ≡ β(λ, θ)

etc;

however, it must be understood that the wavelength dependence of these values is

implied.

B. Apparent Optical Properties

Some properties of bodies of water do not fall into the category of the inherent optical

properties; while these are not fundamental, they are generally easier to measure and

thus are often used to describe natural waters.

Unlike the IOP’s, the AOP’s depend not only on the properties of the medium but

also on the directional structure of the ambient light field. Due to this dependence

it is impossible to determine AOP’s through sample measurements in laboratory

environments. Using radiative transfer theory, AOP’s can be related to IOP’s. Before

we can show examples of AOP’s, we want to present the following definitions. While

some of the following quantities might be deemed trivial or generally known by the

reader, we consider them important enough to give their definitions in order to prevent

any possible misunderstandings.

First, we want to define several quantities and equations directly related to the

distribution of light.

The radiant flux F is defined as the power P per time t

F =
dP

dt
(2.18)
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The unit of the radiant flux is Watt [W].

The light intensity at an angle ζ to the incoming beam is defined as the radiant

flux through the solid angle d Ω

I(ζ) =
dF (ζ)

dΩ(ζ)
(2.19)

The radiance L is the light intensity I emitted at an angle ζ by an infinitesimally

small element dA through the solid angle ddΩ

L(ζ) =
dI(ζ)

dA cos θ
=

dP

dA cos θdΩdt
(2.20)

where θ is the angle between the normal and direction ζ . Its unit is [W m−2 sr−1].

The irradiance E can be defined as

E =

∫

4π

L(ζ) cos θdΩ. (2.21)

Commonly, the irradiance is divided into updwelling and downdwelling irradiances,

Eu and Ed, where the integration in Eq. (2.21) is taken over the upper and lower

hemisphere, respectively.

A widely used example for an apparent optical property is the irradiance re-

flectance RD, defined as

RD =
Eu

Ed

, (2.22)

The irradiance reflectance is also known as “diffuse reflectance”. Another frequently

encountered pair of AOP’s are the diffuse attenuation coefficients of updwelling and

downdwelling light in the water, Ku and Kd, respectively:

Ku = − 1
Eu

dEu

dz
(2.23)

Kd = − 1
Ed

dEd

dz
(2.24)
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In order for such a quantity to be a useful description of the body of water

the quantity must meet certain requirements: on one hand it has to be descriptive

enough to differ between two different bodies of water and on the other hand it should

be relatively insensitive to environmental factors such as cloud cover or sea state.

Consider, for example, an irradiance, which can change by orders of magnitude very

quickly if a cloud covers the sun temporarily, or if the surface of the water becomes

distorted by waves. As such, the irradiance is not a very useful quantity. However,

looking at ratios of irradiances and their rate of change with depth, it is found that

these ratios are fairly independent of environmental factors and can therefore be used

as descriptive properties of bodies of water.

C. Scattering Theory

1. Rayleigh Theory

Lord Rayleigh’s theory of the scattering dipole, published in 1871 [8,9], was the first

explanation for light scattering. In 1899 [10] Rayleigh made the assumption that the

molecules themselves formed the dipoles. His approach requires the particles to be

small compared to the wavelength of the scattered light. In 1920 Rayleigh [11] and

Cabannes [12] modified the theory to include the anisotropy of molecules. While this

approach works well for gases, it does not satisfactorily apply to dense media like

liquids. Despite this, because several valid results can be obtained from Rayleigh’s

scattering theory, we will introduce it first before delving into the fluctuation theory

by Smoluchowski and Einstein.

If an arbitrarily shaped particle with polarizability p is placed in an electric field

E, it can be treated as a dipole, in which a dipole moment

P = pE (2.25)



12

is induced. Scattering is then explained as a result of the oscillation caused by the

incident radiation. The frequency of this oscillation is determined by the frequency

of the incident radiation. The scattered intensity I of a monochromatic, parallel, and

unpolarized beam with intensity I0 incident on an isotropic particle observed at a

distance R at an angle θ is given as

I(θ) = I0
1 + cos2θ

2R2

(

2π

λ

)4

p2. (2.26)

Replacing the polarizability p in the previous equation using the Lorentz-Lorenz equa-

tion for isotropic, spherical particles with diameter d and refractive index n,

p =
n2 − 1

n2 + 2

(

d

2

)3

, (2.27)

we can write the Rayleigh scattering function in its most common form

I (θ) = I0
1 + cos2 θ

2R2

(

2π

λ

)4 (

n2 − 1

n2 + 2

)2 (

d

2

)6

. (2.28)

This equation is often expressed in terms of the dimensionless size parameter X,

X =
2πr

λ
, (2.29)

where r is the radius of the particle and λ the wavelength of the incident light (r � λ).

Thus we can rewrite Eq. (2.28) as

I (θ) = I0
1 + cos2 θ

2R2
X4

(

n2 − 1

n2 + 2

)2 (

d

2

)2

. (2.30)

Two important results can directly be seen from this equation: Firstly, the wave-

length dependence of the scattering on 1
λ4 and secondly, the symmetry around 90 ◦ of

the scattering intensity. The latter is clearly visible in Fig. 2.

Considering the intensities scattered by the particles to be additive, one can

express the scattering coefficient b of a unit volume containing N spherical particles.
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Fig. 2. Rayleigh scattering phase function

Define the Rayleigh ratio < as

< = N
I90
I0
R2 = N

8π4

λ4
p2. (2.31)

Note that the Rayleigh ratio is the same as the volume scattering function at 90 ◦ ,

< = β90. (2.32)

Combining Eq. (2.28) with Eqs. (2.31) and (2.32) one obtains a simple expression

for β(θ),

β (θ) = β90

(

1 + cos2 θ
)

. (2.33)

Integrating this equation over 4π to get the total scattering coefficient b we find

b =

2π
∫

0

dφ

π
∫

0

β90

(

1 + cos2 θ
)

sin θdθ =
16π

3
β90. (2.34)
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Using the Lorentz-Lorenz formula in Eq. (2.27), we can rewrite Eq. (2.31) as

< = N
8π4

λ4

(

n2 − 1

n2 + 2

)2 (

d

2

)6

, (2.35)

where d is the diameter of the scattering particle. Combining the last two equations,

we get

b =
16π

3
8N

(π

λ

)4
(

n2 − 1

n2 + 2

)2 (

d

2

)6

. (2.36)

In 1918, Strutt [13] experimentally demonstrated a slight deviation of the po-

larization from the right angle, which was explained by Rayleigh in 1920 [11] as

depolarization by anisotropy of molecules. Rayleigh related the depolarization ratio

δ =
i2(90)

i1(90)
(2.37)

to the three components of the polarizability vector. In the same year Cabannes [12]

reported what he called the total Rayleigh ratio <tot as

<tot = <iso
6 + 6δ

6 − 7δ
, (2.38)

where <iso is given by Eq. (2.35). Consequently, Eqs. (2.33) and (2.34) need to be

modified to read

β (θ) = β (90)

(

1 +
1 − δ

1 + δ
cos2 θ

)

(2.39)

and

b =
8π

3
β (90)

2 + δ

1 + δ
, (2.40)

respectively.

We previously noted that for this theory to be applicable, there is a size restriction

of the particle size compared to the wavelength. This limit stems from the assumption

made in the derivation of Eq. (2.28) that the electric field is homogeneous across the

dipole. To assure this, the particle has to be significantly smaller than the wavelength.
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This requirement can be expressed in terms of the size parameter X (see Eq (2.29)).

The size limit of the particle is then

X � 1. (2.41)

2. Fluctuation Theory

A completely different theory of how light scatters in dense media was presented

by Smoluchowski [14] and Einstein [15]. Their approach was based on statistical

thermodynamics, since they initially wanted to explain the phenomenon of critical

opalescence. They found that their theory not only applied to large density fluctu-

ations that caused critical opalescence, but also could be applied to small density

fluctuations and thus explain scattering in liquids.

While the wavelength dependence and general symmetry of the volume scattering

function obtained by Rayleigh holds true for dense media as well, we will obtain a

different expression for the isotropic part of the Rayleigh ratio, <iso. Einstein and

Smoluchowski considered scattering as an effect caused by the random motion of

molecules. In a sufficiently small volume element ∆V this motion will cause density

fluctuations ∆ρ, which in turn will lead to small changes in the dielectric constant ε.

We can relate the mean squares of these fluctuations, 〈∆ε〉2 and 〈∆ρ〉2, as follows:

〈∆ε〉2 =

(

dε

dρ

)2

〈∆ρ〉2. (2.42)

The Rayleigh ratio is given in this theory by

<iso =
π2

2λ4
0

∆V 〈∆ε〉2, (2.43)

where λ0 is the wavelength of the incident beam in vacuo. Combining the last two



16

equations we get

<iso =
π2

2λ4
0

∆V

(

dε

dρ

)2

〈∆ρ〉2. (2.44)

The following relation can be found from statistical thermodynamics:

∆V

(

dε

dρ

)2

= kBTβTρ
2, (2.45)

where kB is the Boltzmann constant, T the absolute temperature, and βT the isother-

mal compressibility. Using the simple relationship between the dielectric constant ε

and the index of refraction n

n =
√
ε (2.46)

we get

<iso =
2π2

λ4
0

kBTβTρ
2

(

n
dn

dρ

)2

. (2.47)

The difficulty now becomes to find a suitable expression of dn/dρ. Several empirical

theoretical equations have been proposed, Einstein [15] for example, used that of

Lorentz-Lorenz

n2 − 1

n2 + 2

1

ρ
= const, (2.48)

which leads to his expression of the Rayleigh ratio

<iso =
π2

2λ4
0

kBTβT
(n2 − 1)

2
(n2 + 2)

2

9
. (2.49)

King [16] and Rocard [17] suggested using the Sellmeier formula (n2 − 1)/ρ =

const., and the Gladstone-Dale formula (n − 1)/ρ = const.. The main problem

common to all these equations, however, is that the relationship between n and ρ is

considered to be independent of pressure and temperature, which experiments have

shown to be untrue. Thus, formulae are instead used that include the experimentally

determined values for (∂n/∂T )P and (∂n/∂P )T . Depending on whether one chooses

T or P to describe the thermodynamic state, dε/dρ is replaced by one of the partial
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derivatives (∂ε/∂P )T or (∂ε/∂T )P , respectively. In the first case, we get

ρ
dε

dρ
=

1

βT

(

∂ε

∂P

)

T

=
2n

βT

(

∂n

∂P

)

T

, (2.50)

and thus

<iso =
2π2

λ4
0

kBTn
2 1

βT

(

∂n

∂P

)2

T

. (2.51)

In the latter case we get

ρ
dε

dρ
= − 1

αP

(

∂ε

∂T

)

P

= − 2n

αP

(

∂n

∂T

)

P

, (2.52)

obtaining

<iso =
2π2

λ4
0

kBTn
2 βT

αP

(

∂n

∂T

)2

P

, (2.53)

where αP is the volume expansion coefficient.

Coumou et al. [18] investigated both approaches in 1964 and concluded that Eq.

(2.51) is the better approximation due to the fact that the corrective term caused

by temperature fluctuations can be neglected. Kratohvil et al. [19] and Deželić [20]

showed that, particularly in the case of water, complete formulae are useless. Using

Eq. (2.51), all that is needed to obtain the isotropic part of the Rayleigh ratio are

physical constants and experimentally determined values of βT and (∂n/∂P )T . In

the same article ( [18]), Coumou et al. also showed experimentally that Eq. (2.38)

remains valid for liquids. We can therefore combine Eqs. (2.38) and (2.51) to get a

final expression for the Rayleigh ratio:

<tot =
2π2

λ4
0

kbTn
2 1

βT

(

∂n

∂P

)2

T

6 + 6δ

6 − 7δ
(2.54)

3. Mie Theory

At the same time as Smoluchowski and Einstein were working on their fluctuation

theory, Gustav Mie laid the foundations for rigorous theoretical treatment of absorp-
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tion and scattering by small particles [4]. Mie presented an analytical solution for

the scattering of electromagnetic radiation by a spherical particle using Maxwell’s

equations. Previous work on the subject had been done by Lorenz in 1890 [3], thus

Mie Theory is also known as Lorenz-Mie Theory. We want to give only a brief sum-

mary of Mie Theory, as a complete treatment can be found in many text books on

scattering, for example in Bohren and Huffman [21], whose text we will closely follow

in this section.

A general formulation of the scattering problem is to determine the electromag-

netic field ( ~E, ~H) at all points in- and outside a particle of given size, shape and index

of refraction, which might be embedded in a surrounding homogeneous medium, illu-

minated by an arbitrarily polarized, monochromatic wave. This electromagnetic field

must satisfy the vector wave equation

∇2 ~E + k2 ~E = 0 ∇2 ~H + k2 ~H = 0 . (2.55)

Additional conditions on, and relations between, ~E and ~H are given by the

Maxwell equations

∇ · ~E =0 (2.56)

∇ · ~H =0 (2.57)

∇× ~E =iωµ ~H (2.58)

∇× ~H = − iωε ~E, (2.59)

where k2 = ω2εµ. The problem of finding ~E and ~H can be reduced to finding a

solution ψ to the scalar wave equation,

∇2ψ + k2ψ = 0, (2.60)
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in the following way: Given a scalar function ψ and an arbitrary vector ~c we can

construct a vector function ~M by

~M = ∇× (~cψ) . (2.61)

This vector function automatically satisfies the first two Maxwell equations, Eqs.

(2.56) and (2.57), since the divergence of the curl of any arbitrary vector ~a is identi-

cally zero:

∇ · (∇× ~a) = 0. (2.62)

Using the vector identities

∇×
(

~A× ~B
)

= ~A
(

∇ · ~B
)

− ~B
(

∇ · ~A
)

+
(

~B · ∇
)

~A−
(

~A · ∇
)

~B, (2.63)

∇
(

~A · ~B
)

= ~A×
(

∇× ~B
)

+ ~B ×
(

∇× ~A
)

+
(

~B · ∇
)

~A+
(

~A · ∇
)

~B (2.64)

we can rewrite Eq. (2.61) as

∇2 ~M + k2 ~M = ∇×
[

~c
(

∇2ψ + k2ψ
)]

. (2.65)

A second vector function ~N can be constructed from ~M by

~N =
∇× ~M

k
. (2.66)

These two vector functions satisfy all requirements we placed upon the electromag-

netic field. Thus we have reduced the problem of finding solutions ( ~E, ~H) to the

vector wave equations to the comparatively easier task of finding a solution ψ for the

scalar wave equation.

At this point the geometry of the scatterer determines which form ψ takes. Since

we are interested in scattering by spherical particles, we chose to write the scalar wave
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equation in spherical polar coordinates,

1

r2

∂

∂r

(

r2∂ψ

∂r

)

+
1

r2 sin Θ

∂ψ

∂Θ

(

sin Θ
∂ψ

∂Θ

)

+
1

r2 sin Θ

∂2ψ

∂φ2
+ k2ψ = 0. (2.67)

The solutions to this equation can be written as

ψemn =cosmφPm
n (cos Θ) zn (kr) , (2.68)

ψomn =sinmφPm
n (cos Θ) zn (kr) , (2.69)

where Pm
n are the associated Legendre functions of the first kind of degree n and

order m, and zn is any of the four spherical Bessel functions

jn(ρ) =

√

π

2ρ
Jn+1/2(ρ), (2.70)

yn(ρ) =

√

π

2ρ
Yn+1/2(ρ), (2.71)

h(1)
n (ρ) =jn(ρ) + iyn(ρ), and (2.72)

h(2)
n (ρ) =jn(ρ) − iyn(ρ). (2.73)

Having found a solution to the scalar wave equation we can construct solutions

to the vector wave equations:

~Memn =∇× (~rψemn) (2.74)

~Momn =∇× (~rψomn) (2.75)

~Nemn =
∇× ~Memn

k
(2.76)

~Nomn =
∇× ~Momn

k
. (2.77)

Thus we have found a way to expand any electromagnetic field in an infinite

series of spherical harmonics. It is now possible to use these expansions in addition

to boundary conditions to describe the scattering of an electromagnetic field on any
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object. The major difficulty becomes in finding a suitable expansion for the field

and object. Luckily, this expansion is, while cumbersome, relatively straightforward

for scattering on a spherical particle. Additionally, due to the necessity of using

recursion relations to calculate the Bessel functions, a large amount of computing

power is necessary. Thus, although exact, calculations using Mie theory were not

practical until the availability of computers. Today many codes are available for

computing scattering functions; two of the most widely used are the code presented

by Bohren and Huffman [21] and the one published by Mishchenko et al. in the book

Scattering, Absorption, and Emission of Light by Small Particles [22].

D. Theoretical Backscattering Coefficient of Pure Water

Given the Rayleigh scattering for a single spherical particle with diameter d

I = I0
1 + cos2 θ

2R2
X4

(

n2 − 1

n2 + 2

)2 (

d

2

)2

, (2.78)

we can make a “back of the envelope” calculation to get an idea of the backscattering

coefficient for pure water. Of course, as we have discussed in Section C, this calcula-

tion will not provide us with the exact value. As we will see, however, our result will

be close to the value obtained using the fluctuation theory.

Assuming a diameter of an H2O molecule of 0.275 nm, the size parameter at a

wavelength of λ = 532 nm is

XH2O,532nm =
2πr

λ
=

2π · 0.1375 nm

532 nm
' 1.6239 · 10−3 . (2.79)

Since this value is much smaller than 1, it justifies our usage of the Rayleigh scattering

theory instead of having to use the more general Mie theory.
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We can now find the Rayleigh scattering cross section

σs =
2π5

3

d6

λ4

(

n2 − 1

n2 + 2

)2

. (2.80)

To obtain the scattering coefficient b for pure water, we have to multiply the

scattering cross section with the number of particles per unit volume. Since the

standard unit of the scattering coefficient is m−1, we will express the scattering cross

section and the unit volume in m2 and m3, respectively. Given the molar mass of

water of 18.01524 g mol−1 and its density of 1000 kg m−3 we find that we need

1000 kg
m3

18.01524 g
mol

= 55508.55831mol H2O . (2.81)

Multiplying this value by Avogadro’s number

NA = 6.02214 · 1023 mol−1 (2.82)

we get the total number j of H2O molecules per m3:

j = 55508.55831mol ·NA = 3.342801262 · 1028 (2.83)

Plugging all the values into Eq. (2.80) we find the total scattering coefficient of water

at λ = 532 nm:

b = jσs = 1.53 · 10−3 m−1 . (2.84)

Due to the symmetry of Rayleigh scattering we can write that one half of the

scattering is forward, the other half backward,

bb
b

=
1

2
(2.85)

and therefore we get a value for the backscattering coefficient of pure water based on
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Rayleigh theory of

bb(H2O, 532nm) = 7.66 · 10−4 m−1 . (2.86)

In this calculation, we made two assumptions: first, that the water molecules are

spherical, and second, that there are no density fluctuations in the water. In 1974

Morel [23] published the currently accepted value of bb = 8.95 · 10−4m−1 (at 525 nm).

In his calculations he included density fluctuations and the real molecular size and

shape of the water molecules, but even without those, our quick estimate is, in fact,

rather close to Morel’s number.

E. Optical Properties of Natural Waters

Now that we have established the theoretical framework for light distribution in nat-

ural waters, let us briefly discuss what we have to expect when dealing with natural

waters. The term “natural waters” is used to avoid any confusion with the proper-

ties of pure water. Unfortunately, the properties of natural waters are very seldom

close to those of pure water, due to the plethora of foreign matter in the water that

affects both absorption and scattering. One of the difficulties in measuring properties

of natural waters arises from the fact that the variety of dissolved and particulate

matter components can change the properties by multiple orders of magnitude, thus

requiring a large dynamic range of instruments designed to measure these values. The

large number of different factors influencing water properties makes it also hard to

compare measurements taken at different locations and/or times. Let us look, for

example, at the backscattering coefficient bb. We can write the total backscattering

as a sum of the constituent contributions,

bb = bb pw +
N

∑

i=1

bb i (2.87)
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where N is the number of different contributors with a backscattering of bb i. Natural

waters consist of particles with a continuous size distribution, which, simplified, can

be expressed by the Junge distribution J(X) as

J(X) = const ·X−ξ , (2.88)

where ξ is the characteristic parameter for a sample, which for natural waters generally

varies from 2.6 to 3.0; and X is the size parameter, defined by Eq. (2.29). It has to

be noted, however, that this simple distribution frequently overestimates the number

of small (d ≤ 1 µm) particles while underestimating the number of larger particles.

Additionally, spatial and temporal variations exist, for example due to organic growth,

that can only be captured by actual measurements.

Historically, particles with sizes smaller than 0.4 µm are called dissolved matter,

those larger, particulate matter. This rather arbitrary separation has its origin in the

filtration of water. Typically the smallest pore sizes were of the order of 0.4 µm and

thus everything that was caught by the filter was designated as particulate, anything

that stayed in the water was called dissolved. Further classification is separation

into categories of organic and inorganic, and living and non-living. For a detailed

description of the various constituents of natural waters see, for example, Chapter 3

of Curtis D. Mobley’s book Light and Water [24].

From the measurements of Petzold [7] an averaged volume scattering phase func-

tion for natural waters has been defined; this so called Petzold phase function is shown

in Fig. 3. As can be seen, the scattering is strongly forward peaked, indicating that

the scattering is dominated by particles with a size parameter significantly greater

than one, such that Rayleigh theory cannot be applied to obtain even approximate

values.

As our instrument is designed to measure the backscattering coefficient, we now



25

Fig. 3. Petzold phase function

want to look at the range of the backscattering coefficients in various natural waters.

Since most measurements have been made at different wavelengths, it is difficult to

find easily comparable data. Although our instrument operates at the laser wave-

length of λ = 532 nm, Table I shows the backscattering coefficient in different types

of water at a wavelength of λ = 514 nm, as this is the wavelength at which Petzold’s

VSF meter operated and for which data is more readily available. In addition to bb

obtained from his measurements of the VSF in different waters, Table I contains the

value for pure water obtained from Buiteveld et al. in 1994 [25] (bb/b = 0.5) and that

for pure sea water as reported by Morel [23].

As can be seen from Table I, natural waters have a wide range in the value of

the backscattering coefficient, depending on the location where the measurements are

taken. Generally, the clearest waters are found in the ocean far from land, while

higher values for bb are found in shallow, turbid waters, where air bubbles may also

have a significant influence on the backscattering.
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Table I. Approximate results for the backscattering coefficient at λ = 514 nm

Type of water bb [m−1]

Pure water (Buiteveld et al. [25]) 0.00095

Pure sea water (Morel [23]) 0.00125

Clear ocean (Petzold [7]) 0.00163

Coastal ocean (Petzold [7]) 0.00285

Turbid harbor (Petzold [7]) 0.03648

We must keep in mind that with our instrument we will expect slightly lower

values, as it operates at a wavelength of λ = 532nm and the fact that backscattering

in natural waters decreases with longer wavelengths.

As will be described in depth in Chapter IV, absorption has a non-negligible

effect on our instrument and, therefore, we want to at least mention the range in

which it occurs. The expected absolute minimum for the absorption coefficient is

given by the absorption of pure water, which has been experimentally determined by

Pope and Fry in 1997 [26] to have a value of apw = 0.0447 m−1 at λ = 532.5 nm.

Typically, values of a in natural waters range from 0.05m−1 to more than 50m−1.



27

CHAPTER III

CURRENT INSTRUMENTS

Despite the importance of the knowledge of the backscattering coefficient for a multi-

tude of applications, there have been relatively few successful approaches to measure

the backscattering coefficient, in the laboratory or in situ. Currently, the methods

to determine the backscattering coefficient in both cases are based on one of the

following principles:

• A measurement of the volume scattering function (VSF) and calculation of bb

• An integrating cavity to collect backscattered light

• A fixed-angle (“Magic Angle”) backscattering meter

• A measurement of several AOPs and application of an inversion algorithm

We will briefly introduce each of the methods and discuss their respective ad-

vantages and disadvantages. It should be noted that, to our knowledge, the only

commercially available instruments to directly measure the backscattering coefficient

in situ are based on the fixed angle approach. The design of instruments measuring

the scattering in water is driven by the (exact) mathematical definition of the desired

quantity. A generic instrument to measure the scatterance has to sample a specific

volume which is illuminated by a beam of light and must have a detector that can

detect the scattered light at various angles.

A. Measurement of the VSF

By definition of the backscattering coefficient in Eq. (2.13) it is obvious that by

knowing the full volume scattering function one can easily calculate the backscattering
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Fig. 4. Generic design for a volume scattering meter

coefficient by a simple integration.

Fig. 4 shows the generic design of a volume scattering function meter. A well

defined sample volume is illuminated by a collimated light beam. A detector, with a

field of view restricted to the sample volume, is mounted such that it can be moved

around the sample cell and can measure the scattered signal at different angles.

A precise measurement of the VSF over the full angular range is subject to some

difficulties. At very small angles, it is difficult to separate the scattered light from

the incident beam. At large angles in the backward direction it is difficult to take

a measurement without the detector blocking the incident beam. Additionally, the

shape of the volume scattering function requires a large dynamic range of the detector,

spanning multiple orders of magnitude. First measurements of the VSF in situ were

made over 25 years ago, by, among others, Tyler and Richardson [5], Petzold [7], and

Kullenberg [6]; however, operation of these instruments was difficult and the angular

resolution was not satisfactory to solve the radiative transfer equation. Another

problem inherent to all VSF meters is the necessity to have a small sampling volume
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in order to have high resolution. If the natural water to be measured contains large

particles, such as marine snow, for example, these large particles typically occur in

concentrations of less than 1 particle per cm3 and thus may not be correctly accounted

for in this type of VSF measurements; however, in large scale observations, these

particles can greatly affect the distribution of the light.

An improved volume scattering meter design was presented by Lee and Lewis [27]

in 2003. By virtue of their design, the problems of measuring very small and large

angles are largely overcome. In fact, Lee and Lewis claim to be able to measure the

volume scattering function in a range from 0.6 ◦ to 177.3 ◦ at an angular resolution of

0.3 ◦. From these measurements Lee and Lewis are able to calculate the total, forward,

and backscattering coefficients, respectively. From a controlled laboratory experiment

using a solution with known VSF, Lee and Lewis estimate their error in determining

the backscattering coefficient bb to be less than −8%. This error was calculated by

comparing the theoretical value for bb with the value obtained by integrating over the

measured range only.

B. Cavity Approach

One of the first groups to use the integrated cavity approach was Bricaud et al. [28]

in 1983 who reported the use of an integrating sphere to measure the backscattering

coefficient of phytoplankton. Their basic laboratory design is shown in Fig. 5. A

beam of light passes through a small opening into the integrating sphere, which has

inside walls coated with a highly reflective material, typically with reflectivity over

99%. The light passes through this hole and the entire cavity before entering the cell

containing the water sample. With the exception of the wall facing the cavity, the

walls of the sample cell are coated to act as light trap, to prevent light from reentering
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Fig. 5. Typical design for integrating sphere backscattering meter

the sample. The backscattered light is reintroduced into the cavity and potentially

scattered around it before hitting a detector mounted against the sphere.

There are several problems with this design:

• Signal close to 180 ◦ cannot be collected

Due to the necessity of getting the light into the cavity, an opening has to be

created directly across from the sample cell. A certain amount of the backscat-

tered signal close to 180 ◦ will therefore escape the integrating cavity and thus

avoid detection

• Total internal reflections in the sample cell for scattering angles near 90 ◦.

Backscattered light near 90 ◦ will not make it into the cavity and therefore

will not be detected

• Backscattered light can be reflected in the sphere and be reintroduced into the

sample cell
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• Any absorption in the integrating sphere will lead to problems since there is a

range of ”preferred” angles, which the light can travel from the sample cell to

the detector without hitting the walls of the integrating cavity

• Reflection off the front face of the sample cell

A percentage of the incident light will be reflected and introduced into the cavity

as backscattered light without having entered the sample and will thus create a

background signal that can potentially be larger than the backscattered signal.

In 2005 Kim and Philpot [29] suggested an improved version of a laboratory inte-

grating sphere backscattering meter, which used a hemispherical sample cell instead

of the previously cone shaped version. They argue that their design avoids some of

the aforementioned problems. Since their work was purely theoretical based on Monte

Carlo simulations, a final verdict on the quality of this design is not possible at this

time.

C. Fixed Angle Approach

Today the most common way to “measure” the backscattering coefficient in situ

consists of measuring the scattering signal at one angle, namely 120 ◦ , the so called

“magic” angle.

The existence of a so called “magic” angle was first suggested by Jerlov in

1953 [30]. Comparing measured and calculated values for the backscattering coef-

ficient Jerlov noted that it seemed that the measured values of bb were proportional

to the calculated values at a particular angle, namely 45 ◦ . A generic instrument im-

plementation of this idea is shown in Fig. 6. Over the next decades this approach was

investigated further and several other values for the “magic” angle were suggested.

This refinement culminated in the paper published by Oishi in 1990 [31]. Using Mie
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Fig. 6. Generic design of a fixed angle backscattering meter

scattering calculations, Oishi compared a multitude of different single scattering func-

tions with size parameters ranging from 0.2 to 200 and for a variety of characteristic

parameters ξ in the Junge distribution (see Eq. (2.88)). In these simulations he found

that the scattering signal due to the particles at an angle of 120 ◦, βp(120), could be

related to the particulate backscattering coefficient bbp by

bbp = (6.9 ± 0.4) × βp(120). (3.1)

Comparing the simulations to real-life data, Oishi estimated his maximum likely error

to be around 17%. Further investigations were made by Maffione and Dana [32] in the

mid-1990s, who compared data from some of the then available fixed angle backscat-

tering meters. They found that there is no significant difference between using an

angle of 120 ◦, 130 ◦, or 140 ◦. A similar result was presented by Boss and Pegau [33],
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although they suggest using an angle of 117 ◦ to limit the necessary corrections to the

measurement.

The main drawback of this method, however, apart from the fact that the true bb

is not measured, but extrapolated, is that while this approach is somewhat reliable as

long as the measured water is within typical parameters, it will break down as soon

as the volume scattering function of the water does not closely follow the Petzold

phase function.

D. Inversion Algorithm

As we mentioned earlier, measurements of AOP’s were performed before those of

IOP’s. This means that considerable work has been done on creating inversion algo-

rithms that can calculate the absorption and scattering coefficients from irradiance

measurements. As a complete discussion of the inversion problem would fill many

pages, we will only briefly discuss the general theory behind this method. An exam-

ple for an in-depth discussion can be found in Chapter 10 in C. Mobley’s book Water

and Light and the references therein [24].

Gordon and Boynton [34–37] and Gordon et al. [38] present an example of an

inversion algorithm in a series of papers published between 1997 and 2009. Their

algorithm takes depth profile measurements of the upward and downward irradiances,

Eu and Ed, and calculates the absorption and backscattering coefficient. Gordon and

Boynton estimate their errors to be about 2% for the absorption coefficient and about

10% for the backscattering coefficient. While these errors are comparable or smaller

than those of the other methods, there are several drawbacks associated with it:

• As in the case of fixed-angle scattering meters, a priori knowledge of the VSF

is required
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• A relatively precise depth profile measurement of the up- and downdwelling

irradiances is necessary

• The iterative algorithm takes a significant amount of time to run (in the article

from 2000 [36] a running time of 16 hours is quoted), thus making any (near)

real-time determination impossible

We have presented the currently available methods to determine the backscatter-

ing coefficient of natural waters. We will now present our instrument in theory and

experiment and show how it avoids most of the negative aspects of the aforementioned

instruments and methods.
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CHAPTER IV

INSTRUMENT THEORY AND DESIGN

Consider a laser beam entering a medium at z = 0. The aperture to the detector

that measures the scattered light is a cylindrical ring of radius R; it extends from

z = −Z0 to z = +Z0. The laser beam is surrounded by a small tube of radius r up

to the point z = 0 where it enters the scattering medium.

In Fig. 7 a laser beam of cross-sectional area A and irradiance E0 enters a

scattering medium along the z-axis. Consider a scattering volume of length dz and

cross-sectional area A at position z. The power dP scattered at an angle θ into the

detector aperture in the solid angle defined by θ1 ≤ θ ≤ θ2 is then given by

dP = 2πAE0

θ2
∫

θ1

e−cxβ(θ) sin θdθdz (4.1)

where β(θ) is the volume scattering function defined in Eq (2.11), c is the extinction

coefficient, and x is the total distance a scattered photon travels in the medium, i.e.

from z = 0 to the scattering volume dz and then back to the detector. The total

power scattered into the detector is obtained by adding (integrating) the power dP

from all elements dz,

P = 2πAE0

∞
∫

0

dz

θ2
∫

θ1

e−cxβ(θ) sin θdθ. (4.2)

We will discuss the theory in two steps. At first we will look at the special case of

small extinction, i.e. e−cx ≈ 1, before looking at those situations where we have to

take the extinction factor into account. This two-tiered approach has several benefits,

the major one being that the small extinction case allows an in-depth understanding

of the theory of the instrument without the need for any further approximations,
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Fig. 7. Conceptual sketch of instrument

while the rigorous treatment will then give full disclosure of the limitations of this

design.

A. Small Extinction

From Figure 7, we can express θ1 in terms of z:

tan (π − θ1) =
R

z − Z0

⇒ θ1 = π − tan−1(
R

z − Z0

). (4.3)

And, similarly we find for θ2

θ2 = π − tan−1(
R

z + Z0
). (4.4)

We emphasize that for a fixed value of z, the detector only observes light that is
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scattered at angles θ defined by θ1 ≤ θ ≤ θ2, where θ1 and θ2 are given by Eqs. (4.3)

and (4.4), respectively. For a fixed value of θ, scattered light is only observed from

points z between z1 and z2. The latter are obtained by inverting Eqs.(4.3) and (4.4):

θ1 = π − tan−1

(

R

z − Z0

)

z = − R

tan θ1
+ Z0

θ2 = π − tan−1

(

R

z + Z0

)

z = − R

tan θ2
− Z0 .

Thus, we find

z1 = − R
tan θ

+ Z0 (4.5)

z2 = − R
tan θ

− Z0 . (4.6)

At z = 0 we have

tan θ1 =
R

Z0
⇒ θ10 ≡ tan−1

(

R

Z0

)

tan θ2 =
R

−Z0
⇒ θ20 ≡ tan−1

(

R

−Z0

)

.

To explicitly show the z-dependence, we rewrite the total power, Eq. (4.2),

received by the detector,

P = 2πAE0

∞
∫

0

dz

π−tan−1( R

z+Z0
)

∫

π−tan−1( R

z−Z0
)

β(θ) sin θdθ. (4.7)
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Reversing the order of integration in Eq. (4.7), i.e. integrating over z first, gives

P = 2πAE0

π
∫

θ20

β(θ) sin θdθ

Z0−
R

tan θ
∫

−Z0−
R

tan θ

dz

+ 2πAE0

θ20
∫

θ10

β(θ) sin θdθ

Z0−
R

tan θ
∫

0

dz. (4.8)

After completing the integrations over z, Eq. (4.8) becomes

P = 4πAE0Z0

π
∫

θ20

β(θ) sin θdθ + 2πAE0

θ20
∫

θ10

β(θ)(Z0 sin θ − R cos θ)dθ . (4.9)

We can expand the second term and rewrite the whole expression as four integrals

(where we split the Z0 sin θ - integral into two),

P = 4πAE0Z0

π
∫

θ20

β(θ) sin θdθ + 2πAE0Z0

θ20
∫

π

2

β(θ) sin θdθ

+ 2πAE0Z0

π

2
∫

θ10

β(θ) sin θdθ − 2πAE0R

θ20
∫

θ10

β(θ) cos θdθ . (4.10)

A term identical to the second integral can be added and subtracted to give

P = 4πAE0Z0

π
∫

θ20

β(θ) sin θdθ + 4πAE0Z0

θ20
∫

π

2

β(θ) sin θdθ

− 2πAE0Z0

θ20
∫

π

2

β(θ) sin θdθ + 2πAE0Z0

π

2
∫

θ10

β(θ) sin θdθ

− 2πAE0R

θ20
∫

θ10

β(θ) cos θdθ . (4.11)

Finally, combining the first two integrals gives the following result for the power
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Fig. 8. The functions Θ1(z) and Θ2(z). Areas 1 and 2 correspond to the domain of

integration of the first integral (corresponding to bb) in Eq. (4.12)

observed by the detector.

P = 4πAE0Z0

π
∫

π

2

β(θ) sin θdθ − 2πAE0Z0

θ20
∫

π

2

β(θ) sin θdθ

+ 2πAE0Z0

π

2
∫

θ10

β(θ) sin θdθ − 2πAE0R

θ20
∫

θ10

β(θ) cos θdθ. (4.12)

The first integral is, by definition, the integrated backscattering function bb; the

integration range covers Areas 1 and 2 in Fig. 8. The second integral mainly corre-

sponds to backscattered light from the beam inside the shield that cannot reach the

detector. The third integral corresponds to the small amount of forward scattered

light in the range 0 ≤ z ≤ Z0 that does reach the detector. Specifically, the small
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amount of light due to forward scattering that is collected (Area 3 in Fig. 8) com-

pensates for the small amount of backscattered light that is prevented from reaching

the detector due to the light shield around the laser beam (Area 2 in Fig. 8). Mathe-

matically, sin θ is symmetric around θ = 90 ◦; consequently, if β(θ) is also symmetric,

the second and third integrals would be identical and therefore exactly cancel. If

β(θ) is symmetric in a small angular range around θ = 90 ◦, the fourth integral would

be identically zero since cos (θ) is an odd function over the interval of integration;

in addition, cos (θ) is very small for angles around 90 ◦, so the contribution of this

integral is negligible even when β(θ) is not completely symmetric.

In order to demonstrate the efficacy of these symmetry assumptions, the four

terms in Eq.(4.12) are numerically evaluated for a Petzold phase function. For sim-

plicity, we denote the successive four terms in Eq. (4.12) by I, II, III, and IV, respec-

tively. The error of interest is then

ε =
II + III + IV

I
. (4.13)

This error is shown in Table II for different widths of the aperture,Z0. To summarize,

β(θ) is not generally symmetric around 90 ◦; but it is also not generally too asymmetric

for a small angular range around 90 ◦. To the extent that Z0 is small and β(θ) is nearly

symmetric, the second and third integrals in Eq. (4.12) cancel and the fourth integral

is negligible. As can be seen in Table II, decreasing Z0 reduces the contributions of

the second, third, and fourth integrals. Unfortunately, this also reduces the size of the

desired backscattering signal, which is also proportional to Z0 (i.e. the first integral).

Therefore, for practical applications a compromise between smallest error and largest

signal has to be made.

Thus, the power which enters the detector just corresponds to the integrated
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Table II. Theoretical error in the detected bb for a Petzold VSF (R = 1 cm).

Z0 [cm] R
Z0

ε

0.1 10 0.09%

0.2 5 0.83%

0.5 2 5.81%

1.0 1 22.22%

backscattering coefficient bb and is given by

P = 4πAE0Z0

π
∫

π/2

β(θ) sin θdθ ∝ bb. (4.14)

The detector(s) will detect a signal S which is, of course, proportional to P , so finally,

we have the integrated backscattering coefficient given by

bb = KS , (4.15)

where K is a calibration constant which must be determined experimentally.

B. Effects of Extinction

Now let us look at the effects that extinction has on the signal and estimate the

resulting error. We again start with Eq. (4.2),

P = 2πAE0

∞
∫

0

dz

θ2
∫

θ1

e−cxβ(θ) sin θdθ ,

but this time we will not ignore the factor for the power lost due to extinction,

Pext ∝ e−cx , (4.16)
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where c is the extinction coefficient, the sum of scattering and absorption coefficient

(c = a + b) and x is the total distance that the light travels through the medium.

From our geometry we get

x = z +
R

sin θ
(4.17)

and therefore Eq. (4.2) becomes

P = 2πAE0

∞
∫

0

θ2
∫

θ1

e−c(z+ R

cos θ
)β(θ) sin θdzdθ. (4.18)

which we write in the same way as Eq.(4.8):

P = 2πAE0

π
∫

θ20

β(θ) sin θdθ

Z0−
R

tan θ
∫

−Z0−
R

tan θ

e−c(z+ R

sin θ
)dz

+ 2πAE0

θ20
∫

θ10

β(θ) sin θdθ

Z0−
R

tan θ
∫

0

e−c(z+ R

sin θ
)dz. (4.19)

Looking at the z integration we get in the first integral

Z0−
R

tan θ
∫

−Z0−
R

tan θ

e−c(z+ R

sin θ )dz = e−
cR

sin θ

Z0−
R

tan θ
∫

−Z0−
R

tan θ

e−cz

=
1

c
e−

cR

sin θ
(1−cos θ)

(

ecZ0 − e−cZ0
)

, (4.20)

and in the second integral

Z0−
R

tan θ
∫

0

e−c(z+ R

sin θ
)dz = e−

cR

sin θ

Z0−
R

tan θ
∫

0

e−czdz

=
1

c

(

e−
cR

sin θ − e−cR 1−cos θ

sin θ
−cZ0

)

. (4.21)
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Plugging this into Eq. (4.19) we get

P =
2πAE0

c

(

ecZ0 − e−cZ0
)

π
∫

θ20

β (θ) sin θ · e−cR 1−cos θ

sin θ dθ

+
2πAE0

c

θ20
∫

θ10

β (θ) sin θ
(

e−
cR

sin θ − e−cR 1−cos θ

sin θ
−cZ0

)

dθ. (4.22)

Splitting the second integral into two, we can write this as

P =
2πAE0

c

(

ecZ0 − e−cZ0
)

π
∫

θ20

β (θ) sin θ · e−cR 1−cos θ

sin θ dθ

+
2πAE0

c

θ20
∫

θ10

β (θ) sin θe−
cR

sin θ dθ − 2πAE0

c

θ20
∫

θ10

β (θ) sin θe−cR 1−cos θ

sin θ
−cZ0dθ. (4.23)

Adding and subtracting the integral

2πAE0

c
ecZ

θ20
∫

π

2

β (θ) sin θ · e−cR 1−cos θ

sin θ dθ (4.24)

to the expression on the right hand side of Eq. (4.23) and then combining terms gives

P =
2πAE0

c

(

ecZ0 − e−cZ0
)

π
∫

π

2

β (θ) sin θe−cR 1−cos θ

sin θ dθ

+
2πAE0

c

θ20
∫

θ10

β (θ) sin θe−
cR

sin θ dθ − 2πAE0

c
e−cZ0

π

2
∫

θ10

β (θ) sin θe−cR 1−cos θ

sin θ dθ

− 2πAE0

c
ecZ0

θ20
∫

π

2

β (θ) sin θe−cR 1−cos θ

sin θ dθ. (4.25)

Label the first of these integrals P0 and the sum of the other three integrals P1. Note

that up to this point there are no approximations in the integrals of Eq. (4.25).

Now consider P1. Typically, R and Z0 are 1 cm or less, so even for c ≈ 10m−1,
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cR and cZ0 are small. Also, throughout the integration range of all three integrals, θ

is close to π
2

and we therefore have sin θ ≈ 1. Consequently, the exponentials can be

expanded in a power series giving

P1 = −2πAE0Z0

θ20
∫

π

2

dθ + 2πAE0Z0

π

2
∫

θ10

β (θ) sin θdθ − 2πAE0R

θ20
∫

θ10

β (θ) cos θdθ

+ 2πAE0

{

cRZ0

θ20
∫

π

2

β (θ) (1 − cos θ) dθ − cRZ0

π

2
∫

θ10

β (θ) (1 − cos θ) dθ

− cZ2
0

2

θ20
∫

θ10

β (θ) sin θdθ + cR2

θ20
∫

θ10

β (θ)
cos θ

sin θ
dθ − cR2

2

θ20
∫

θ10

β (θ)
cos θ2

sin θ
dθ

}

+K (4.26)

where the higher order terms are proportional to cj+k−1RjZk
0 with j and k ranging

over all positive integers and zero, but with j + k = 3, 4, 5, . . . for successively higher

orders (the terms with j + k = 1 and j + k = 2 are shown in Eq. (4.26)). Note

first that the constant terms (i.e. those proportional to R1 or Z1
0 ) are the first three

integrals in Eq. (4.26); they are identical to the error terms given by the integrals II,

III, and IV in Eq. (4.12) and are small based on the previous discussion. All of the

second order terms (j + k = 2) are the other integrals in Eq. (4.26) and are just a

small correction on a small correction. We now consider P0, the first integral in Eq.

(4.25). Typically, Z0 is a few mm, so even for c ≈ 10 m−1, cZ0 is small. Expanding

the exponentials in P1 for small cZ0 gives

(

ecZ0 − e−cZ0
)

≈ 2cZ0 +
1

3
c3Z3

0 + L . (4.27)

If only the first term in this expansion is kept, P0 becomes

P0 = 4πAE0Z0

π
∫

π

2

β (θ) e−cR 1−cos θ

sin θ dθ . (4.28)
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Fig. 9. Coefficient of β (θ) in the integrand of Eq. (4.28)

Except for the exponential function in the integrand of Eq. (4.28), P0 is just

proportional to bb with proportionality constant 2AE0Z0, i.e. bb is explicitly defined

by

bb = 2π

π
∫

π

2

β (θ) sin θdθ . (4.29)

In fact, if c = 0 m−1 and we set 2AE0Z0 equal to 1.0, then P0 from Eq. (4.28)

is identical to bb from Eq. (4.29). Unfortunately, the exponential function in the

integrand of Eq. (4.28) cannot be simply expanded for small cR because, for cR 6= 0

the exponent is not always small; i.e. it is −∞ at θ = π. Nevertheless, for small

cR the coefficient of β (θ) in the integrand is approximately sin θ for all θ, as Fig. 9

clearly shows. In fact, on this scale, the curve for cR = 0.001 cannot be distinguished

from the data points for cR = 0, the latter being just a plot of sin θ. Assuming a
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reasonable value R = 1 cm = 0.01 m, the parameter cR would be only 0.01 for an

extinction of 1 m−1. Even in this case, Fig. 9 indicates that the quantity P0 in Eq.

(4.28) would be a relatively accurate measure of bb. Of course, the quantity actually

measured by the instrument is P = P0 + P1 defined in Eq. (4.26).

To further investigate the accuracy with which our bb meter design would actu-

ally measure bb, we consider two examples of the volume scattering function β (θ) that

represent extreme cases - a Rayleigh phase function, and the particulate phase func-

tion given by Mobley et al. [39] that was based on Petzold’s data. Calculations of the

expected experimentally measured value of P = P0 + P1 as given by Eqs. (4.26) and

(4.28) were compared with the exact value of the backscattering coefficient calculated

from Eq. (4.29). For the purpose of this comparison we set the proportionality factor

2AE0Z0 ≡ 1 in both P0 and P1 so that in the limit c = 0, P0 will be identical to bb.

The percent error (P −bb)/bb ·100 is plotted as a function of the extinction c (m−1) in

Fig. 10. At c = 0m−1, the error is zero with the Rayleigh phase function regardless of

the detector aperture 2Z0 because this phase function is symmetric around π/2; the

error is non zero for the Petzold phase function and increases rapidly with increasing

Z0 because this phase function is not symmetric in a small angular range about π/2.

Even so, for Z0 = 0.003m (width of the detector aperture = 6mm) the error is less

than ± 3% at an extinction coefficient of 1 m−1 for either extreme of these phase

function possibilities.

It is also apparent from Fig. 10 that the percent error is almost linear in extinc-

tion. The slope is slightly greater for a Rayleigh phase function than for the Mobley

phase function, but clearly one should be able to introduce an extinction-dependent

factor that would provide a correction to the measurements observed with this bb

meter; such a factor could dramatically improve the accuracy at higher values of

extinction. Fig. 11 presents the results using such a factor: it shows the percent
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Fig. 10. Percent error with respect to the true bb of the calculated value for P , i.e.

(P − bb)/bb × 100 is plotted as a function of the extinction c (m−1)

error as a function of extinction when the measured values of P are multiplied by an

extinction-dependent factor to obtain a corrected P ′

P ′ = (1 + 2.72cR)P . (4.30)

Of course, this requires an additional measurement of c, but with a detector aperture

of 2Z0 = 4mm, the error in bb would be less than ± 2% at c = 5m−1.

C. Instrument Implementation

Fig. 12 shows a cross-section through one possible implementation for the integrated

backscattering meter. Our design is approximately 30 cm in length and 15 cm in

diameter. The weight is below 1 kg, excluding the detector and power supply for the

laser.

The laser is integrated into the instrument, so that only a power cable and the

reference and output signal fibers are taken outside the casing. While the design
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Fig. 11. Percent error with respect to the true bb of the calculated value for P ′, i.e.

(P ′ − bb)/bb × 100 is plotted as a function of the extinction c (m−1)

is compact enough to be suitable for in situ applications, the power supply for the

laser, the detectors, and the electronics necessary to record the signals were left

outside the instrument. As this prototype is intended as proof-of-concept of the

integrated backscattering meter, we chose values of R = 1 cm and Z0 = 0.5 cm.

Instead of mounting detectors directly past the aperture, we guide the backscattered

signal through an air cavity inside the instrument to six signal fibers. The cavity is

enclosed by a layer of highly reflective quarz powder with a Lambertian scattering

profile. This is done so the signal loses all directionality and no single scattering

angle is dominating the signal. An additional fiber carries the normalization signal,

which is picked up from reflections that occur inside the instrument before the light
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Fig. 12. Instrument implementation

is guided through a glass rod into the water.
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CHAPTER V

EXPERIMENTAL SETUP

This chapter will describe the experimental setup necessary to obtain the measure-

ments that will be presented in Chapter VI. The main components of the experimental

setup as seen in Fig. 13 are: a tank to hold the water sample and the instrument

(Section A); the electronic equipment to acquire the optical signal, transform it into

a digital one (Section B); and a data aquisition program to evaluate and display the

measured signal (Section C).

An additional measurement of the extinction in the water sample requires a

separate detector and electronics. It has been omitted from Fig. 13 and will be

discussed in Section D. This section will also contain a brief theoretical treatment on

how to obtain the extinction coefficient from the measurements taken.

A. Water Tank

While it might seem to be a trivial matter, some thought has to be spent on the ideal

design of the water tank. The biggest difficulty arises from the fact that if one wants

to obtain calibration data with sufficient confidence, extremely pure water has to be

used. Any contaminants in the water will affect at least one, if not both, absorption

and/or scattering coefficients, meaning the tank has to be made of a material that

does not contaminate the water for the duration of the experiment. It should prevent

any airborne particles from getting into the water while still giving easy access to allow

mixing of the PSL spheres to obtain well defined backscattering for the calibration

measurements. Obviously, the tank has to be large enough to easily contain the

instrument and to allow the laser beam to travel far enough such that no reflection

off the far end or any side wall can make it back to the detector.
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Fig. 13. Experimental setup

Our chosen tank is approximately 180 cm × 60 cm × 60 cm and can hold up to

600 liters. For the calibration measurements, the tank was filled with 132 liters of

high purity water that has been prepared using a Millipore water purification system

with a 0.2 micron particle filter at the outlet.

B. Data Aquisition

The signal fibers run into a photo multiplier tube outside the instrument, that converts

the optical signal into a electric current. This current is then fed to a lock-in amplifier

that is locked to the pulse frequency of the laser beam. The laser beam is pulsed at

the arbitrary, but fixed frequency of 1 kHz. The function of the lock-in amplifier is to

block signals that are produced by sources other that the laser, for example, ambient

light. The output of the lock-in amplifier is a DC signal proportional to the input AC

signal. This DC signal is then sent to an oscilloscope, where it can be read out to a

PC via the GPIB protocol. The signal may be visually monitored on the oscilloscope

screen in real time.

The normalization signal is processed in the same way as the backscattered signal,



52

and is separately transferred to the PC.

C. Data Processing

To simplify the data processing, a program has been written to remotely control the

oscilloscope and transfer the data onto the PC. Via the GPIB interface, commands

are sent to the oscilloscope to set the appropriate time and signal scale. During the

experiment, data is received by the PC. The program then converts this information

into an easily interpretable form. The data received by the PC contains the full wave-

form seen on the oscilloscope. To minimize the influence of small, random variations

in the signal and to increase the precision of the calibration, each data point is the

average of 75 measurements, each of which in turn is the average of 10000 datapoints

taken during a 400 ms interval. Each datapoint is thus the averaged signal over 5

minutes.

D. Extinction Measurements

To measure the extinction in the water tank, a small detector was built that can be

moved around the tank. It measures the transmitted light from the laser up to the

point where the detector is inserted into the water. A cross sectional drawing of the

detector is shown in Fig. 14.

The detector is made out of a PVC pipe 5 cm in diameter and approximately 10

cm long. Sandblasted glass plates are used to diffuse the incident light as much as

possible, while spectralon creates a uniform light field inside the inner cavity. This is

important to decrease a dependency on where the incident beam hits the front face

of the detector. The area of the exposed glass plate of the detector is approximately

5cm2. As neither the instrument nor the detector are fixed in the tank, this size was
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Fig. 14. Schematics of the extinction detector

chosen to ensure that the full transmitted beam is detected. Unfortunately, this also

means that measurements taken with this detector will always slightly underestimate

the total extinction in the tank because small angle forward scattered light will be

detected and counted as transmitted light. This effect will increase with higher ex-

tinctions because the distance from the instrument, where the transmitted beam is

measured, decreases and thus a larger angle of the forward scattered light is detected.

Since a measure of the extinction of the water can greatly improve the accuracy of the

backscattering measurement, this tradeoff was considered acceptable. A fiber carries

the signal from the inner cavity to a photo multiplier tube, where the optical signal

is then converted into an electronic one, which is then run to the oscilloscope after

passing a lock-in amplifier, in the same manner as the backscattered signal. The brass

end-cap is sealed at the back end of the detector to prevent water from entering.

The power P received by the detector due to an extinction coefficient c at a

distance x follows from the exponential decrease of the power P0 at x = 0:
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P = P0e
−cx (5.1)

To determine the extinction, the detector is moved along the beam in the tank,

and the power of the transmitted light is recorded at several points. The distance

between the first point and each other measuring site is measured, and the power

at the first point is designated as P0. Due to the fact that a linear fit gives the

most reliable results, Eq. (5.1) is rearranged to allow for a linear fit instead of an

exponential one:

P

P0
= e−cx ⇒ ln

P

P0
= −cx (5.2)

Thus we can plot lnP/P0 versus x and then get the extinction coefficent c of the

current water sample from the slope of the resulting line.
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CHAPTER VI

RESULTS

In this chapter we will present the experimental data obtained with our backscattering

instrument. First we will discuss the potential sources of error in this experiment,

followed by a discussion of the effects of extinction, before finally showing calibration

data for three different volume scattering functions.

The measured power P can be decomposed into the following contributions

P = Pelec + Pbkd +Kbb pw +Kbb part +Kbb PSL (6.1)

where Pelec is the electronic noise; Pbkd is the (optical) background due to reflections

off the tank and off the front face of the glass rod; Kbb pw is the signal from the water

molecules; Kbb PSL is the signal due to the added PSL sphere; and Kbb part is the

signal from any impurities in the water at the beginning of the experiment.

In order to obtain a true calibration of the instrument, we need to determine K.

From Eq (6.1) we see that the last term is the only one which is being changed during

the experiments. Therefore, it is straightforward to write

K =
dP

dbb PSL
(6.2)

and to see that this is just the slope of the curve obtained by plotting bb PSL vs the

measured signal.

A. Error Analysis

Despite the relative simplicity of the experiment, there are still a multitude of areas

in which errors can be introduced. These include errors caused by: impurities in the

pure water, errors in the quoted concentration of the particle samples, electronic noise
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of the photo multiplier tubes and lock-in amplifiers, optical noise due to reflections off

the tank and off the front face of the glass rod, and lastly, errors caused by unwanted

additions to the water tank during the experiment. We can separate these errors into

two groups. The first group consists of electronic and optical noise, the amount of

pure water in the tank, and impurities in the pure water. These errors, which do not

change over the course of one experiment, can be dealt with relatively easily, as we

will show in Section 1. The second group, however, containing the errors that directly

affect the measured signal, cannot as easily be accounted for because they can change

over the course of each experiment and affect each data point individually.

1. Electronic and Optical Noise, and Impurities in Pure Water

The electronic background noise Pelec can be determined by measuring the signal

with all instruments turned on except the laser. Without the light beam, all of the

collected signal must come from cross-talk between the electronic equipment. The

optical noise Pbkd, cannot be measured by simply turning on the instrument in the

empty tank, because of the complication of the difference in the refractive indices

between air and water, and the inherent scattering of the pure water. The optical

noise can only be determined in conjunction with the signal due to the water molecules

Kbb pw themselves and any additional impurities of the pure water Kbb part at the

beginning of the experiment. The difference in the relative changes of the indices of

refraction comes into play as the laser beam is leaving the glass rod and entering the

surrounding medium and as the scattered signal is leaving the medium and hitting the

front window of the detection cavity. Furthermore, there is a non-negligible, albeit

small, absorption in the water, which, compared to the absorption in air, might have

an effect on the measured signal. Fortunately, from Eq. (6.2) we see that all of these

errors disappear in the determination of K. Plotting the normalized signal vs the
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backscattering coefficient during a calibration measurement, the sum of these errors

can be easily distinguished as an offset on the signal-axis.

Another contributor to the offset on the signal-axis is the backscattered signal

of pure water. This signal is an integral part of the total backscattering coefficient bb

rather than a measurement error, and since it does not change over the course of the

experiment, it does not play a role in the determination of the calibration constant K.

Alternatively, since the theoretical value of bb pw is known, we can add this constant

contribution to the backscattering coefficient to the assumed total bb in the tank.

This latter method is used in the display of the results, since it allows for an absolute

calibration of our instrument.

2. Concentration Differences of the PSL Samples

In order to minimize pipetting error and the possibility of contamination, we diluted

our PSL samples in a specific manner. First, we determined that, ultimately, it is

irrelevant how much we dilute the samples. All that we are interested in - and must

make sure of - is that every time we add a sample tube containing the PSL solution

to the tank we know exactly by how much we increased the backscattering in the

water. The limit is that our sample size should be small enough to not significantly

change the total amount of water in the tank.

The following method takes these factors into account.

1. Determine the exact amount of water in the tank

2. Decide on the particle size and the highest backscattering coefficient bb PSL max

to be measured

3. Decide on the number of data points N between bb PSL = 0m−1 and bb PSL max
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4. Determine amount of PSL solution needed based on bb PSL max in step 2

5. Pipette the total amount of PSL solution out of the original container into a

beaker

6. Add an arbitrary, but rather large amount (∼ 100 ml) of pure H2O into the

beaker to dilute the PSL solution

7. Pipette equal amounts (1ml) of the diluted solution into N + 1 sample tubes

8. Repeat step 7 until the beaker contains only a small amount of diluted solution

9. Repeat steps 6 through 8 two to three times, i.e. use this small residual amount

of diluted solution to further dilute and distribute it in the N + 1 sample tubes

10. After these steps there will always be a residual amount of highly diluted solu-

tion. Equally distribute this small amount of highly diluted solution remaining

in the beaker among the N + 1 sample tubes

Our first error source is step 1, where we determine the total amount of water

in the tank. To fill the tank, 4 l bottles were filled with pure water, and the water

was then poured into the tank. The estimated error for each filling is 2.5%, i.e.

100ml. Typically, the tank was filled with 120 l of water, i.e. a total of 30 bottles was

necessary. Therefore, our error in the amount of water in the tank can be estimated

as

∆VTank =

√

30 · (100ml)2 ≈ 547.72ml. (6.3)

Our tank contains (120 ± 0.548) l of pure water, so we can expect an error in the

determination of the backscattering coefficient of about 0.5% due to the uncertainty

in the amount of the water in the tank. Potential error sources for the exact de-

termination of the backscattering coefficient in the tank occur every time we need
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to pipette, i.e. steps 5, 7 and 10. Despite a relative small inherent error in pipet-

ting of approximately ∆Pind = ±1.5% per individual pipetting, over the course of an

experiment with n = 10...15 data points this uncertainty increases to

∆Pind,tot =

√

n · (∆Pind)
2 ≈ 5% . (6.4)

The biggest contribution to the error due to pipetting is step 5, because even

small deviations from the necessary amount of PSL solution in this step will have a

direct influence on the whole slope which determines our calibration constant. We

reduce the pipetting error by always using an appropriately sized pipette to have the

minimum number of pipettings. The largest pipette available to us has a maximum

volume of 1 ml and the calibration measurement with the 4.3 µm particles needs

approximately 3.5ml of PSL solution. Thus the error in the total amount of particles

to be added to the tank is

∆PPSL,tot =

√

4 · (∆Pind)
2 = 0.03 = 3% , (6.5)

since a maximum of 4 samples of the solution with the pipette are necessary. Using

this method we reduced the potential error in the concentration of the PSL spheres

in the tank by 40% compared to a pipetting directly into the tank from one master

solution.

For the sake of completeness, we now also calculate the error ∆PPSL,var between

each individual sample using the dilution method.

After we complete step 10, this error is given by

∆PPSL,var =

√

n1 (c1 · ∆Pind)
2 + n2 (c2 · ∆Pind)

2 + n3 (c3 · ∆Pind)
2 (6.6)

where the ni are the respective individual pipettings of the particle solution with

concentration ci. Assuming typical concentrations of c1 = 1/50, c2 = 1/500, and
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Fig. 15. Increase in bb due to contamination of the samples

c3 = 1/5000, an equal number of pipettings ni = 10, and ∆Pind = ±1.5% as before,

we get

∆PPSL ≈ 0.001 = 0.1% . (6.7)

This value is the variability in the amount of PSL we are adding to the tank for each

data point. Any contamination that occurs after step 5 would be spread out over all

data points and thus could appear as an increase in the slope of the calibration curve.

If using a method of pipetting directly out of a master solution, all data points would

intrinsically have significantly larger individual error bars.

It is, however, possible to estimate the influence of the pipetting in steps 5, 7,

and 10 in combination with a possible contamination of the water tank during an

experiment by performing a calibration experiment without particles, i.e. all steps,

from the filling of the tank, dilution of the samples, and the adding and mixing of

those particle-less samples into the tank are done as usual. As no particles are added

to increase the backscattering coefficient, any change in signal must be caused by
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unwanted contaminants. The results of this measurement are shown in Fig. 15. The

data points are consistent with the expectation that there will be a small increase

in the backscattering in the tank due to contamination from the individual samples.

Using the calibration measurements, we can estimate that the increase per sample

corresponds to an increase in the backscattering coefficient of ∆bbcont ≈ 0.00005m−1,

or roughly 5 − 10% of the backscattering coefficient of pure water. This information

can be used to determine the optimum step size for the calibration measurements.

In order to obtain a valid calibration, each sample should increase the backscattering

coefficient in the tank significantly more than ∆bbcont. We deemed a minimum stepsize

of ∆bb,PSL = 0.005m−1, i.e. an error of ≤ 1% acceptable.

3. Machining and Construction Errors

As we have seen in Chapter IV, the instrument’s ability to make precise measure-

ments relies on the (partial) cancellation of the small portion of the detected forward

scattered light combined with the not-detected backward scattered light. If the glass

rod that carries the laser beam out of the instrument is not exactly centered on the

aperture, there could be a dependence on the shape of the volume scattering function

different than anticipated, since the forward and backward scattered portions do not

cancel as expected from Eq. (4.12). While the influence of the shape of the VSF on the

calibration can be minimized by choosing a small aperture, as discussed in Chapter

IV, potential errors in machining and assembling the instrument cannot be ignored.

A silica based marine sealant was used to seal the glass and metal pieces together.

This sealant takes 24 hours to set, so there is the possibility of the pieces becoming

slightly offset, leading to a mis-centered glass rod with respect to the aperture. As-

suming a variation of ∆Prod = ±0.5mm in fixing the the rod in its desired place and

an imprecision in machining the parts of ∆Pmach = ±0.001 in = ±0.0254mm we can
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ignore the latter and take ∆Prod as the error in the construction of the instrument.

4. Other Potential Sources of Error

There are several other potential sources for error that we should mention, although

we will not discuss them in detail since they are either outside of our control or are

difficult to quantify and thus there are limited options to handle them.

Every effort has been made to avoid any influence on the signal from reflections

off the walls of the tank: it has been lined with light-absorbing material and it is as

large as is practical for the laboratory experiment. Its size does increase the chance

of water contamination, since a larger tank takes longer to fill, and there is a larger

surface area exposed to the air. We saw no evidence of such influence, but it cannot

be completely ruled out.

Another variable in our calibration is the mean diameter and the size distribution

of the PSL spheres. Both of these parameters play a crucial role in determining the

necessary amount of PSL solution to be added to the tank. A small deviation from

the reported value in either one of these numbers can have a large influence on the

outcome of the measurement.

B. Absorption Effects

In order to investigate the effects of absorption on the signal, several measurements

were taken at a set backscattering coefficient while the absorption was increased.

The backscattering coefficient was chosen arbitrarily on the order of bb = 0.01 m−1,

such that small amounts of contaminants invariably introduced to the water sample

during the duration of the experiment did not make a noticeable difference in the

backscattered signal. Along with the initial backscattering signal, the extinction in
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Fig. 16. Absorption effects on the measured signal

the tank was measured using the method described in Chapter V, Section D. A

small amount of dye was added to the tank and thoroughly mixed in, after which

new measurements of bb and c were conducted. This was repeated until an extinction

of approximately c = 8 m−1 was reached, which is the limit that our extinction

measurements could reliably determine.

The results of one representative measurement, shown in Fig. 16, are consis-

tent with our expectations, since, as discussed in Chapter V Section D, our detector

will slightly underestimate the total extinction. Based on this measurement, we are

confident that the theory presented in Chapter IV, Section B correctly describes our

instrument and that the use of Eq. (4.30) to account for extinction is justified.
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C. Calibration

To obtain a valid calibration, the signal was measured for particle solutions of different

concentrations. First the tank was filled with a known amount of water from a

Millipore water purification system that in its final stage contained a 0.2 µm filter.

The signal from this water was assumed to be the signal for the backscatterring

coefficient for pure water, bb,pw = 8.95 · 10−4 m−1. Next, a known amount of particles

was added, evenly mixed, and the corresponding signal change was recorded. The step

size was chosen sufficiently large such that the unavoidable contamination discussed

at the end of Section A2 did not have any noticeable influence. Since the mean

particle diameter d and the width of the size distribution is known, one can use Mie

calculations to obtain the backscattering efficiency Qback. In addition, the amount of

water in the tank VTank, as well as the volume of the particle solution VPSLSolution and

its volume fraction f are known. We can use the equation

bb PSL =
3 · f · VPSLSolution

VTank

·Qback

2 · d (6.8)

to determine the backscattering coefficient bb = bb PSL + bb,pw in the tank.

Fig. 17 shows the results of these measurements for two different particle sizes,

namely d = 0.120 µm and d = 4.3 µm. Linear fits have been applied to both curves

and their equations are shown in the figure. We can thus read off the slopes of

the calibration curves and obtain values for the calibration constant K, as defined

in Eq. (6.2), of K0.120 = 56.70 ± 0.18 for a particle size of d = 0.120 µm and

K4.300 = 57.22 ± 0.50 for particles with mean diameter of d = 4.3 µm.

Chapter IV, Section B discussed how the total extinction in the tank influences

the measurement. We will now include this effect in our calibration. To minimize

the possibility of contaminating the water, the extinction was only measured at the
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Fig. 17. Measured calibration data for particles with diameters of d = 120 nm and

d = 4.300 nm

beginning of each experiment, thus avoiding any unnecessary interference with the

water. For all subsequent data points the only additional contribution to the extinc-

tion was assumed to come from the scattering of the added particles. The extinction

in the tank was likely underestimated; however, this was deemed more acceptable

than potentially adding contaminants to the tank.

In Fig. 18 a correction for extinction has been applied to the measurements and

both curves have been approximated with linear fits, as before. We obtain values for
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Fig. 18. Measured calibration data for particles with diameters of d = 120 nm and

d = 4.300 nm, correction for extinction applied

the calibration constant K of

K0.120 = 57.16 ± 0.18 (0.120 µm) (6.9)

K4.300 = 59.56 ± 0.52 (4.300 µm) (6.10)

where the error only includes the uncertainty in calculating the straight line fit. This

error is quite small, thus proving that our method of preparing the individual samples

discussed in Section 2 is appropriate. Including the errors discussed earlier, we get

values for our calibration constant K of

K0.120 = 57.16 ± 1.63 (0.120 µm) (6.11)

K4.300 = 59.56 ± 1.77 (4.300 µm) (6.12)
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Fig. 19. Calibration data for three different VSF’s, correction for extinction applied

While these values for the calibration constant are not located within each other’s

uncertainty, their error bars overlap. Potential reasons for this have been discussed

in Section A and will not be repeated here.

To further investigate the behavior of our instrument, an additional measurement

was taken using particles with a mean diameter of d = 0.431µm. The resulting curve

of this measurement is shown in Fig. 19, along with the previous measurements. The

slope of the curve for the d = 0.431µm particles is distinctly different from the other

two particle sizes.

The reason for this difference is the error ε, defined in Eq. (4.13), due to the

asymmetry of the VSF. In Fig. 20 the phase functions for the used particle sizes are

shown.

The symmetries in the phase functions for the d = 0.120 µm and d = 4.300 µm

particles in the the area around 90 ◦ are clearly visible. Equally obvious, however, is

the asymmetry of the phase function for the 0.431 µm particles in the same region.

From the phase function for this particle size we can calculate the correction due
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Fig. 20. VSF’s for particles with mean diameters of d = 0.120µm, d = 0.431µm, and

d = 4.3µm

to the asymmetry and we obtain ε0.431 = 139 %, i.e. this is the factor that our

instrument overestimates bb in this case. Fig. 21 shows the calibration curves for

all three particle sizes; the curves for particles with diameters of d = 0.120µm and

d = 4.3µm have been corrected for extinction, and the curve for the particles with

diameter d = 0.431µm has been corrected for both extinction and asymmetry.

Comparing the adjusted slope Kadj
0.431 of the curve of the d = 0.431µm particles

to the previously obtained values for the calibration constant K,

Kadj
0.431 = 56.18 ± 1.85 (0.431 µm) (6.13)

K0.120 = 57.16 ± 1.63 (0.120 µm) (6.14)

K4.300 = 59.56 ± 1.77 (4.300 µm) (6.15)

we see that the adjusted slope for the d = 0.431µm lies within the uncertainty of

K0.120, and that the error regions of Kadj
0.431 and K4.300 overlap.

Based on these results we can draw several conclusions. Our experiments confirm
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Fig. 21. Calibration data for three different VSF’s, corrected for extinction (all) and

asymmetry (d = 0.431µm only)

that taking extinction into account improves the quality of our measurements, espe-

cially at higher absorptions. We have shown that the theory described in Chapter IV

describes our instrument very well and that it can predict our experimental results.

We have shown the proof-of-concept for a backscattering meter that avoids most

of the drawbacks of other currently used methods to determine the backscattering

coefficient.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

We have presented a novel instrument to directly measure the integrated backscat-

tering coefficient bb, both in theory and experiment. The theory shown explains the

workings of our instrument. A calibration was obtained using particles with different

volume scattering functions and confirms the accuracy of our understanding of our

backscattering meter. Additionally, the effects of extinction were investigated.

We have shown that our instrument is able to accurately measure the backscat-

tering coefficient with sufficient resolution over the full range typically occurring in

natural waters.

For an improved version of our instruments several modifications should be made.

Most importantly, to be capable of in situ operations, a fully autonomous version has

to be built, since the instrument presented in this dissertation still requires laboratory-

based instrumentation like photomultiplier tubes, an oscilloscope, and a PC. Another

change that should be considered is to decrease the width of the aperture, as its

width is the single most important factor in the precision of the determination of the

backscattering coefficient for differently shaped volume scattering functions. Another

potential improvement could be made through the addition of a way to measure

the extinction in the water. Adding the capability to measure the backscattering

coefficient at multiple wavelengths is another modification that should be considered

for a second version of our instrument.
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DAvogadro,” Le Journal de Physique et le Radium 6, 129–142 (1920).

[13] R. Strutt, “The light scattered by gases: its polarization and intensity,” Pro-

ceedings of the Royal Society London A 95, 115–176 (1918).

[14] M. von Smoluchowski, “Molekular-kinetische Theorie der Opaleszenz von Gasen

im kritischen Zustande, sowie einiger verwandter Erscheinungen,” Annalen der

Physik 330, 205–226 (1908).

[15] A. Einstein, “Theorie der Opaleszenz von homogenen Flüssigkeiten und
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[20] G. Deželić, “Evaluation of light-scattering data of liquids from physical con-

stants,” Journal of Chemical Physics 45, 185–191 (1966).

[21] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small

Particles (Wiley, 1983).

[22] M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and

Emission of Light by Small Particles (Cambridge University Press, 2002).

[23] A. Morel, “Optical properties of pure water and pure sea water,” in Optical

Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic Press,

1974), pp. 1–24.

[24] C. D. Mobley, Light and Water (Academic Press, 1994).

[25] H. Buiteveld, J. Hakvoort, and M. Donze, “The optical properties of pure water,”

SPIE Ocean Optics XII 2258, 174–183 (1994).

[26] R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water.

II. Integrating cavity measurements,” Applied Optics 36, 8710–8723 (1997).

[27] M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical

volume scattering function in the upper ocean,” Journal of Atmospheric and

Oceanic Technology 20, 563–571 (2003).



74

[28] A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phyto-

plankters,” Limnology and Oceanography 28, 816–832 (1983).

[29] M. Kim and W. D. Philpot, “Development of a laboratory spectral backscattering

instrument: design and simulation,” Applied Optics 44, 6952–6961 (2005).

[30] N. G. Jerlov, “Particle distribution in the ocean,” in Deep Sea Expedition, vol. 3,

H. Pettersson, ed. (Swedish Natural Science Research Council, 1953), pp. 71–98.

[31] T. Oishi, “Significant relationship between the backward scattering coefficient of

sea water and the scatterance at 120 ◦,” Applied Optics 29, 4658–4665 (1990).

[32] R. Maffione and D. Dana, “Instruments and methods for measuring the

backward-scattering coefficient of ocean waters,” Applied Optics 36, 6057–6067

(1997).

[33] E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the

backward direction to the backscattering coefficient,” Applied Optics 40, 5503–

5507 (2001).

[34] H. R. Gordon and G. C. Boynton, “Radiance-irradiance inversion algorithm for

estimating the absorption and backscattering coefficients of natural waters: ho-

mogeneous waters,” Applied Optics 36, 2636–2641 (1997).

[35] H. R. Gordon and G. C. Boynton, “Radiance-irradiance inversion algorithm for

estimating the absorption and backscattering coefficients of natural waters: ver-

tically stratified water bodies,” Applied Optics 37, 3886–3896 (1998).

[36] G. C. Boynton and H. R. Gordon, “Irradiance inversion algorithm for estimat-

ing the absorption and backscattering coefficients of natural waters: Raman-

scattering effects,” Applied Optics 39, 3012–3022 (2000).



75

[37] G. C. Boynton and H. R. Gordon, “Irradiance inversion algorithm for estimat-

ing the absorption and backscattering coefficients of natural waters: Raman-

scattering effects,” Applied Optics 41, 2224–2227 (2002).

[38] H. R. Gordon, M. R. Lewis, S. D. McLean, M. S. Twardowski, S. A. Freeman,

K. J. Voss, and G. C. Boynton, “Spectra of particulate backscattering in natural

waters,” Optics Express 17, 16192–16208 (2009).

[39] C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel,

P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models

for computing underwater light fields,” Applied Optics 32, 7484–7504 (1993).



76

VITA

David Haubrich was born in 1978 in Mainz, Germany, and graduated from There-

sianum, Gymnasium des Johannesbundes, with the Abitur in 1997. He attended

Johannes Gutenberg-Universität Mainz where he got his B.S. in physics in 2000.

He joined Texas A&M University in Fall 2001. He can be reached at Texas A&M

University, Dept. of Physics, TAMU 4242, College Station, TX, 77843.


