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ABSTRACT

Mathematical Problems of Thermoacoustic
and Compton Camera Imaging. (August 2010)
Yulia Nekova Georgieva-Hristova, B.S., Sofia University

Chair of Advisory Committee: Dr. Peter Kuchment

The results presented in this dissertation concern two different types of tomographic
imaging. The first part of the dissertation is devoted to the time reversal method for
approximate reconstruction of images in thermoacoustic tomography. A thorough
numerical study of the method is presented. Error estimates of the time reversal
approximation are provided. In the second part of the dissertation a type of emis-
sion tomography, called Compton camera imaging is considered. The mathematical
problem arising in Compton camera imaging is the inversion of the cone transform.
We present three methods for inversion of this transform in two dimensions. Numer-
ical examples of reconstructions by these methods are also provided. Lastly, we turn
to a problem of significance in homeland security, namely the detection of geomet-
rically small, low emission sources in the presence of a large background radiation.
We consider the use of Compton type detectors for this purpose and describe an
efficient method for detection of such sources. Numerical examples demonstrating

this method are also provided.
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CHAPTER I

INTRODUCTION

Computerized tomography is a term which refers to technologies used for noninvasive
imaging of interiors of non-transparent objects, with applications in medical imaging,
industrial non-destructive testing, geophysics, astrophysics and homeland security.
All types of computerized tomography have one feature in common, namely, infor-
mation about the imaged object is obtained by measurements outside the object
and then mathematics is used to compute an image of the interior of the object.
Typically, different types of tomography pose different mathematical problems. For
example, one of the most important and well studied tomographic techniques is the
X-ray CT, which is mostly used in medicine. In order to reconstruct an image of the
interior of an object, one has to invert the Radon transform. We give some of the
basic properties of this transform in Section 1.1, as we will need them later.

In this dissertation two tomographic techniques are considered. Chapter II is
devoted to thermoacoustic tomography (TAT), which is a realtively new medical
imaging technique, aimed at detection of early stages of breast cancer. Thermoa-
coustic tomography achieves high contrast and high resolution images, while being
safe and inexpensive. The mathematical problem which arises in TAT is the inverse
observation problem for the wave equation. A closely related imaging method, called

optoacoustic tomography (OAT), leads to the same mathematical problem. Often

This dissertation follows the style of the IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control.



the term photocaoustic tomography (PAT) is used for both OAT and TAT. In this
dissertation we will refer to TAT, although the presented results hold also for OAT.
Surveys of PAT imaging and the mathematical problems arising in it can be found
in [2]-[9].

The second part of this dissertation considers a problem from emission tomog-
raphy, called Compton camera imaging. In emission tomography, particles emitted
from the inside of an object are detected on the boundary of the object. Then, one
attempts to find the distribution of sources inside the object. Compton cameras are
a type of vy-ray detectors that find application in fields like nuclear medicine, astro-
physics and monitoring nuclear power plants. The mathematical problem associated
with Compton camera imaging is that of inverting the so-called the cone transform.
This integral transform has been studied recently, however many questions remain
open. References to papers on Compton camera imaging can be found in Chap-
ter III. In the first part of this chapter some results regarding the two-dimensional
cone transform are presented. In the second part, we turn to the problem of detect-
ing illicit nuclear material and the use of Compton type detectors and the results
from the first part for this purpose.

The dissertation is organized as follows.

In Section 1.1 we define several integral transforms that are used in the later
chapters. We also give some of the basic properties of these transforms.

Chapter II is devoted to thermoacoustic tomography (TAT). Section 2.1 con-
tains a brief introduction to thermoacoustic tomography and some of the available

reconstruction techniques. The time reversal method for reconstruction in TAT is



described in detail in Section 2.2, and results of its numerical implementation are
provided and discussed in Section 2.3. An error estimate for the time reversal ap-
proximation is presented in Section 2.4 and numerical simulations confirming the
results from this section can be found in Section 2.5. Section 2.6 contains some con-
cluding remarks. The Matlab codes used for the numerical experiments discussed in
this chapter are provided in Appendix A.

In Chapter III we consider problems related to Compton camera imaging. Sec-
tion 3.1 contains an introduction to Compton camera imaging and a brief descrip-
tion of the available mathematical results. In Section 3.2 the two-dimensional cone
transform is studied and numerical reconstructions are presented in Section 3.3. In
Section 3.4 we consider the problem of detection of low emission geometrically small
sources and Section 3.5 contains the results of our numerical simulations. Concluding
remarks can be found in Section 3.6. The Matlab codes used for the computations

discussed in this chapter are provided in Appendix B.

1.1. Definitions and Properties of Some Integral Transforms

In this section we give some definitions and properties of integral transforms which
we be needed later. More details can be found, for example, in [10] and [11].

Let f(x) belong to the Schwartz space S(R™). The Fourier Transform of f is
defined as

f(&) = Ff(&) = (2m) ™ - fl@)e ™ dz, €eR" (1.1)



The inverse Fourier transform is
flo)y=F ' f(z)=@2n) " | flw)e™ da (1.2)
Rn

The Fourier transform can be extended as a bijection from L?(R") to itsself.
The Hilbert transform of a function wu is defined by the following principal value

integral (when it exists)

Hu(t) =p.v% /_OO t“(_sl ds = l%% (/t ;“(_‘9)8 ds + /: :ﬁsl ds,) (1.3)

which can also be written as

Hu(t) = lim ~ / Tult=s) —ult+s) 0 (1.4)

e—0t T S

If u is a-Hélder continuous and with compact support, then Hu(t) is a also Holder

continuous (e.g. [12]) and we write

Hu(t) = 1 /000 ut=s) = ull +5) ds. (1.5)

S

The Hilbert transform has the following properties:
L H?f(s) = —f(s)
2. F(Hf)(o) = —isgn(o)F f(o)

One of the most important integral transforms used in tomography is the n-
dimensional Radon transform, which we will denote by R : Lay(R™) — Ly(S"! x R).

The Radon transform maps each function f(z) € L*(R™) into the the set of its



integrals over hyperplanes, i.e.
Rfws) = [ fw)de= [ flsty)dy (1.6)
TWwW=Ss wl

Here w € S !, s € R and w' denotes the subspace perpendicular to w. The set
Lis = {r € R"|x - w = s} is the hyperplane perpendicular to w, which lies at
distance s from the origin.

We will mostly use the Radon transform in two dimensions, which maps a func-

tion f(z), * € R? into the set of its line integrals, i.e.
Rf(w,s) = / f(z) de = / f(sw+ twh) dt, (1.7)

where w® denotes the unit vector perpendicular to w. Then, L, is the line per-

pendicular to w which lies at distance s from the origin, see Fig. 1.1.

Fig. 1.1. The line L, ,) is defined by the unit vector w perpendicular to it, and by

the distance s from the origin.



The divergent beam transform (in 2D also fanbeam transform) is defined by

/f (a + tw) (1.8)
0

Thus, Df(a,w) is the integral of f along the half-line starting at the point a € R"

in the direction of w € S™~1.

The Radon transform has the following properties:
1. The function Rf(w,s) is even, i.e. Rf(—w, —s) = R(w, s).
2. Denote the unit ball in R™ by B™. Then

R : HY(B") — Hot(=D/2(gn=1 « R). (1.9)

3. The dual to R operator is called the backprojection operator and is given by

R*g(z) = / g(w,x - w) dw (1.10)
Sn—1
Here g(w, s) € Li(S™ ! x R).

4. Consider the backprojection operator, applied to R f

R¥Rf () /S /L y) dydw. (1.11)

(w,z- w)
We can say that, for every x, R*Rf(z) is the “sum® all line integrals of f
which pass through the point x. We will refer to R* R f(x) as backprojection

reconstruction.



5. The following relation holds
# n—2 1
RTRf =|S""7| =« f, (1.12)
x
where |S"7?| is the surface of the unit sphere in R"!.

6. The Fourier Slice Formula gives a connection between Radon and Fourier

transforms.

FiRf(w,0) = (2m)" V2 f(ow), oeR, (1.13)

where F; denotes the one-dimensional Fourier transform with respect to s. In
other words, the (n-dimensional) Fourier transform is the Fourier transform
with respect to the linear variable of the Radon transform. The Fourier Slice
Formula provides an inversion formula for the Radon transform. Indeed, one

only has to apply the inverse Fourier transform to (1.13) in order to recover f.

7. The Filtered Backprojection (FBP) Formula is a widely used formula for in-

version of the Radon transform. In 3D it reads

) = R (T ) (@) (114)
e 0s? '
In 2D FBP takes the form
o) = R* (HRF ) @) (1.15)
C A4r 0s ’ '

where the Hilbert transform is taken with respect to s.



CHAPTER II

TIME REVERSAL IN THERMOACOUSTIC TOMOGRAPHY

2.1. Introduction to Thermoacoustic Tomography

I Thermoacoustic tomography (TAT) is a hybrid medical imaging technique that
utilizes the electromagnetic energy absorption properties of tissue and ultrasound
propagation. TAT images are characterized by high resolution and high contrast
between cancerous and noncancerous tissues. Other advantages of TAT are safety
and low cost. The main application of thermoacoustic tomography is in detection of
early stages of breast cancer. A more detailed description of thermoacoustic imaging
and a mathematical model follows. The first step in TAT is the irradiation of an
object of interest with a short electromagnetic pulse. A part of the electromagnetic
energy is absorbed throughout the tissue, which causes a thermoelastic expansion.
This leads to a pressure wave propagating through the object. The pressure is
measured by ultrasound transducers located on an observation surface S surrounding
the object, see Fig. 2.1. The collected information is then used to reconstruct the
initial pressure at every point inside the object. Cancerous tissue absorbs significantly
more microwave energy than normal tissue [15], and it is known that the initial
pressure is roughly proportional to the amount of absorbed electromagnetic energy
[2], [16], [17]. This leads to a large contrast between cancerous and normal tissues in
TAT images [15]. On the other hand, the submillimeter resolution of TAT images is

ISome parts from this chapter were reproduced from [13], [14] with permission
from IOP Publishing Limited.



due to ultrasound [2], [15],[18].

transducer

Irradiation pulse

Fig. 2.1. Schematic representation of a TAT scanning system.

2.1.1. Mathematical Model of TAT

The equations describing thermoacoustic wave generation have been discussed in
detail in the literature. We give a brief derivation of the model here, and refer to
reader to [3, Ch. 12] and [16] for further details.

Let p(z,t) denote the acoustic pressure change at location z € R® and time ¢,
and let u(z,t) be the medium displacement. We say that thermal confinement holds,
when the heating pulse is shorter than the time of dissipation of the absorbed energy.

Under thermal confinement the temperature rise T'(x,t) satisfies the equation:

OT (x, )

S

= H(z, ). (2.1)

Here p is the mass density, Cy is the specific heat capacity at constant volume, and



10

H(x,t) is the heating function defined as thermal energy converted per unit volume
and unit time.

We assume that the mass density, p(x), varies slowly, i.e.
p=po(l+s), sk, (2.2)

where pq is the equilibrium mass density (for soft tissue pg &~ 1000kg/m?).

The thermal expansion equation (generalized Hooke’s law) reads as
divu(z,t) = —k(x)p(x,t) + BT (x,t) (2.3)

Here k is the isothermal compressibility and ( denotes the thermal coefficient of
volume expansion.

The linear inviscid force equation (the equation of motion), under the assump-
tion (2.2), reads

2

pozula,t) = V(.1 (2.4)

Taking divergence of the last equation leads to

82

Po @(divu) =—Ap

Substituting (2.3) into the above equation results in

rar(e )~ S = T (2.5

Here c?(x) = 1/k(x)po is the speed of sound in the imaged tissue. Relation (2.1)

implies

O wt) — s = L) 2 (2:6)
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Since the irradiation pulse is short, we can assume that H(x,t) = I(z)o(t),
where I(x) is the radiation intensity and ¢ is the delta function. Let us denote

flx) = C%CQ(ZE)I(QS). Then the equation for the pressure p(x,t) is

pu = (z)Ap, t>0, zeR"
p(z,0) = f(x), pi(z,0) =0, (2.7)

p(y,t) =g(y,t) foryeS, t>0.
Here S is the observation surface surrounding the object and B be the domain
bounded by S. The function g(y,t) is the value of the pressure at time ¢ measured
at transducer’s location y € S, and f(x) is the initial pressure, which we seek to
find. The function f(z) is assumed to have a compact support in B. One thus
faces the problem of inverting the mapping R: f — g from the initial pressure to the
measured data. It must be noted that a similar imaging modality, called optoacoustic
tomography, exists, in which the thermoelastic expansion is triggered by a laser. The

mathematical model for this type of tomography is the same as for TAT.

2.1.2. Reconstruction Methods in TAT

Here we describe briefly the main types of reconstruction procedures used in TAT.

One can find detailed surveys on this topic in [4]-[9].



12

2.1.2.1. Filtered Backprojection Formulas

In the case when the sound speed is constant, i.e. ¢(x) = ¢, the wave equation 2.7

can be solved using the well known Poisson-Kirchhoff formulas (e.g. [19]):

p(z,t) =cp [(%%) ) Rf| (z,ct), z€R" t>0 (2.8)
where ¢, > 0 is a constant and
(Rf)(z,t) = ’ flz +ty) dA(y) (2.9)
yl=1

is the spherical mean of f on the sphere centered at x with radius ¢, dA is the surface
area measure on this sphere. Thus, the knowledge of the values of the pressure on
the observation surface S implies the knowledge of the values of the spherical mean
transform of f, Rf(x,t), for points z € S. The aim now is to invert Rg - the spherical
mean operator with centers on S.

The filtered backprojection formulas are closed form formulas which provide
inversions of Rg. For the case when S is a sphere with radius r, such formulas were

provided in [20]-[22]. One of these formulas in three dimensions reads as follows:

10 =~ [ (atss0)

Recently, a family of filtered backprojection formulas, unifying all such previously

dA(y)

t=|y—z|

known formulas, was given in [23]. The filtered backprojection formulas are fast and
accurate, however the only available formulas are for spherical observation surfaces
and constant sound speed. Moreover, if the support of f has parts outside the do-

main surrounded by S, these formulas reconstruct f inside S incorrectly [5],[6].
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2.1.2.2. FKigenfunction Expansion Methods

The eigenfunction expansion methods work for arbitrary closed observation surfaces
S and initial pressures f with bounded support not necessarily inside S. The only
significant condition on the sound speed is that ¢(z) is non-trapping. This condition
will be discussed later in Section 2.2. In [24] the following, very general, reconstruc-

tion formula was provided:
fl@) =" firbe(),
k

where

JI /000 sin(A\gt)gr(t) dt ; gr(t) = /Sg(x,t)%(a:) dx

Vi), \f are the eigenfunctions and eigenvalues of —c?(z)A in the interior of S with
zero Dirichlet conditions on S. This method was shown to be very fast and precise
when the sound speed is constant and the observation surface is a cube [25]. How-
ever, if the sound speed is variable, the method is computationally very expensive,
as a large number of eigenvalues and eigenfunctions of —c?(z)A need to be computed

numerically.

2.1.2.3. Time Reversal Method

In essence, the time reversal method works by solving the wave equation inside
B in reversed time order, using the detected signals at S as boundary conditions.

At time ¢t = 0, the solution approximates the initial pressure f(x) we are looking
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for. Time reversal can be used for approximation of the initial pressure for a broad
range of sound speeds and arbitrary observation surfaces [13], [14], [26], [27]. The
method does not require the support of f to be constrained to the interior of the
imaged region. Moreover, time reversal is easy to implement numerically [13], [14],
[26]. All of these characteristics make time reversal the most versatile among the
reconstruction methods in TAT.

The time reversal method is the object of study in the first part of this dis-
sertation. It should be noted that, although we are interested in applications to
thermoacoustic tomography, the time reversal method for the wave equation has

been used in other applications [28]-[30]. Our results apply in all of these cases.

2.1.2.4. Algebraic Reconstruction Techniques

Algebraic reconstruction techniques are yet another option for reconstruction in TAT.
These methods allow for quality reconstructions when the observation surface is open
[31] and can be used in cases of heterogeneous acoustic media [32]. However, these are
iterative algorithms and as such are computationally expensive. Faster converging
algorithms were developed in [33], [34], where approximate analytic formulas were

used as a preconditioner for iterative solvers.

The remainder of this chapter is organized as follows. In Section 2.2 a non-
trapping condition on the sound speed is recalled and the time reversal method is

described. Numerical reconstructions based on time reversal are presented and dis-
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cussed in Section 2.3. In Section 2.4 an error estimate for the time-reversal approxi-
mation is proved. Numerical study of errors is provided in Section 2.5. Section 2.6

contains some concluding remarks.
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2.2.  Non-trapping Condition and the Time Reversal Method

In this section we recall the notion of a non-trapping sound speed and we give a more
detailed description of the time reversal method.

We will be interested in the initial value problem:

pu=@)Ap, 120, zER"

p(l’, 0) = fl(x)7 pt(ZB,O) = fQ(x)v

(2.10)

where c¢(x) > ¢ > 0, ¢(z) € C*(R"), and c(x) — 1, as well as fi(x) and fo(z), has
compact support. Consider the following Hamiltonian system in 2n real variables

(x,€&) with Hamiltonian H = @mz

o) = U = 2x)¢
§=-% =—3V(F@) (2.11)
z|=0 = o, &l1=0 = &o-

The solutions of this system are called bicharacteristics and their projections into

the z-space R are called rays.

Definition 1. We say that the non-trapping condition holds, if all rays (with & # 0)

tend to infinity when t — oo .

Let us assume that the speed ¢(z) of ultrasound in the tissue is smooth and
strictly positive ¢(z) > ¢ > 0, and that c¢(z) = 1 for large values of |z|. It is known
that the singularities of the solution of (2.10) propagate along bicharacteristics (e.g.
[35]-[37]). Therefore, due to the non-trapping condition imposed on ¢(z), it follows

that for any distributions f;, fo with compact supports, the singularities of the
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solution move away to infinity as t — oo. Then, for a sufficiently large ¢, the solution
p(z,t) is infinitely differentiable inside any given bounded domain B. Moreover, the

following estimates hold:

Theorem 2. (e.g. [38] ,[37]) Under the conditions imposed on the sound speed c(x)

and f(z) and for any bounded domain B, the solution of (2.10) satisfies the estimates

ak+|m|
‘ < One(t) (L1llz2 + [ follz2) , € B, t > To, (2.12)

or oy

for any multi-index (k,m), where n.(t) = t™"1=% for even n, and ny(t) = e~ for odd
n. Here § is a positive constant depending only on c(x), Ty depends on the domain

B, and the C' depends on B and the multi-index (k,m).

We will make use of the above theorem in estimating the error of time reversal
reconstructions. Note that in the case of trapping sound speed the local energy of
the solution of (2.10) still decreases in any compact domain, but, in general, there is
no uniform local energy decay estimate [39], [40].

We now turn to describing the time-reversal method in the way it is applied to
the thermoacoustic tomography problem.

The Huygens’ principle states that in odd dimensions and when the sound speed
is constant, for any initial source with bounded support and for any bounded domain,
there is a moment in time when the wave leaves the domain (e.g. [41]). Thus, given
an initial pressure f(z) with a bounded support, there is a time 7" when the wave
inside the domain B, bounded by the observation surface .S, vanishes for all t > T.
Then, to reconstruct f(z) we can simply "rewind” the solution, i.e. we can solve the

wave equation backwards in time inside B with zero initial conditions at ¢ = T" and



18

boundary conditions given by the measured data on S. At time ¢t = 0 the solution
of this problem will be equal to f(z).

In even dimensions or when the sound speed is variable, the Huygens’ principle
does not hold anymore. Nevertheless, we could still try to backpropagate the wave,
hoping to approximate the initial pressure. This is the main idea of the time reversal
method and we will now give a precise description of the method in the general case
of a variable sound speed and dimension n.

To reconstruct the initial pressure f(x) inside B, we try to reverse the time

(starting from time ¢ = T" and going back to ¢t = 0) and solve the following problem:

(

uy = A(z)Au in B x [0,T]

u(z,T) = p(z,T) (2.13)
u(z, T) = pe(z,T)

| uls(o,t) = g(x,t) on S x[0,7],

where g = p|gx[o, is the restriction of p onto S x [0,T]. At time ¢ = 0 the solution
of this problem equals f(x)2. Obviously, this reconstruction requires the knowledge
of the solution to (2.7) on the cylinder S x [0, 7] and inside B at time 7. The values
of p on the cylinder can be obtained from the measurements of the transducers
placed on S. However, the values of the pressure inside B at time 7" are not known.
Nevertheless, due to Theorem 2, we do know that the solution inside B decays with

time. Therefore, after some time 7" > Tj it is reasonable to approximate p(x,T") and

*Note that u(z,t) is simply the restriction of p(x, ) onto B x [0,T].
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pe(x, T') with zero. This is how we arrive to the approximate reconstruction problem:

vy = () Av in B x[0,7]
v(z, T) =0, v(z,T)=0 (2.14)
vls(x,t) = gz, t)p:(t) on S x [0,7].

Here ¢ (t) is a smooth cut-off function that equals to 1 in (—oo0,T — €] (where
T —e > Tp) and vanishes for t > 7. As it will be explained below, at time ¢t = 0 the
solution to (2.14) approximates f(x). In Section 2.4 we estimate the decay of this
error with respect to the cut-off time T in the case of a non-trapping sound speed.
Another variation of the time reversal procedure exists in the literature [27]. In

this version, the analogue of (2.14) is

vy = () Av in B x [0,T]
v(x,T) = ¢(x), v(z,T)=0
v|g(x,t) = g(z,1) on S x [0,7T],

where ¢(x) is the solution of

Ap=0in B, @ls=g(-T).

2.3.  Numerical Reconstructions Using Time Reversal

In this section we present 2D time reversal reconstructions from numerically gen-
erated data. Reconstructions for various sound speeds are shown. In all examples
below the observation surface S is the unit sphere and we reconstruct the initial

pressure inside the unit disk B. For our computations we used the rectilinear finite
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difference scheme, implemented in Matlab. For the simulation of phantom data the

following problem was solved

P — 2Ap =0 in D x (0,Tg)
p(x,0) = f(z) pi(z,0) =0

p|8D = 07

where D = [—a, a]® was a square containing S and large enough to ensure that no
reflections off its boundary would reach S for time 7. The values of the solution on S
were recorded for all time steps. The time T}, the domain D and the space and time
step-sizes were adjusted depending on the situation. For the reconstruction part, the
same equation and difference scheme were used (but with a different mesh, to avoid
committing inverse crime), this time on the square [—1.2,1.2]%2. On each time step
the prerecorded values of the forward wave on S were enforced on the solution of the
reconstruction problem. More details regarding the implementation, as well as the

actual programming codes, can be found in Appendix A.

2.3.1. Constant Sound Speed

We begin with the most favorable situation: a constant speed that we choose to
be equal to 1. Thus, it takes time ¢t = 2 for the front of a wave moving with unit
speed to cross the disk B. Although the sound speed is constant, Huygens’ principle
does not hold in 2D, so the wave remains in B indefinitely. A numerical phantom
consisting of two round objects is shown in Fig. 2.2. On the same figure a couple of
time reversal reconstructions are shown. For the first reconstruction a cut-off time

T = 2 was used, while for the second we waited longer, until time 7" = 3, before
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initiating the reconstruction. We observe that taking larger cut-off times improves
the result, as is expected. In Fig. 2.3 one finds a reconstruction of the Shepp-Logan

phantom.

Fig. 2.2. The phantom and its axial profile (top), reconstruction for c =1 and 7' = 2

(center), reconstruction for ¢ = 1 and 7" = 3 (bottom).

These examples show that the time reversal method works well with a constant

sound speed in 2D, in spite of it being theoretically not exact and given the slow
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Fig. 2.3. Reconstruction for ¢ = 1 and T' = 3 of the Shepp-Logan phantom.

energy decay (see (2)).

Let us now illustrate some features of time reversal discussed before that are
not available with the known backprojection formulas.

First of all, presence of a part of the function f(z) outside the observation surface
S does not hinder the reconstruction of f inside S. Fig. 2.4 shows a phantom that
has a part of it outside the unit circle S and its reconstruction inside S. Clearly,
there are no artifacts, which one would get with the analytic inversion formulas [5],
6].

Another interesting feature is that the initial velocity in (2.7) being zero (which
is assumed in all analytic inversion formulas) is not necessary. We will show a
corresponding example in the next section, with a variable sound speed. It works

even better with a constant speed.
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Fig. 2.4. Phantom (top left) with a part outside the observation surface and its re-

construction (top right) and comparison with the original (bttom).

2.3.2. Non-trapping Variable Speed

Let us now experiment with the time reversal method for a (known) variable speed
under the non-trapping condition. In Fig. 2.5 one can see the speed profile and the
phantom that were used in calculations, as well as the corresponding reconstructions.
We now present an example where the initial velocity is non-zero. Fig. 2.6 shows the

sound speed, the initial velocity and the initial value phantom (i.e., f(x) to be recon-
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Fig. 2.5. A non-trapping (radial) speed profile (top left) and a phantom (top right).
Reconstruction from time 7" = 1.7 (bottom left) and a profile plot of the

phantom and the reconstruction.

structed). The reconstruction of the phantom shown in Fig. 2.6 confirms that the
presence of a non-zero initial velocity does not hamper the reconstruction. Moreover,
although this is not of interest for TAT, the initial velocity can also be reconstructed
by the time reversal, although this reconstruction is (expectably) somewhat less sta-

ble.
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Fig. 2.6. Top: sound speed (left), initial velocity (middle), and density plot of the
phantom (right). Bottom: reconstruction from time 7' = 1.7 (left) and a

profile plot of the phantom and the reconstruction (right).

2.3.3. Trapping Variable Speed

We now turn to the worst case scenario: trapping speeds in 2D. The simplest
way to create a trapping speed is to use a speed with a “crater profile”, see the
graph on the left of Fig. 2.7. This radial sound speed equals |z| in the annulus
{z]0.5 < |z| < 1} and is constant elsewhere. On Fig. 2.7 (right) is a phantom we used
for the experiment with the “crater“ speed. Reconstructions for 7" = 4,10, and 15 (it
takes t = 3.3863 for the wave to go across the unit circle) are shown in Fig. 2.8. One
clearly sees that although it takes a longer time, one still eventually reconstructs the

phantom. There is, however, a phenomenon that can deteriorate the reconstructions
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Fig. 2.7. A “crater” trapping speed (left) and the phantom used for reconstructions
with this speed.

in the trapping situations, and which one should be aware of. We discuss it in the

next sub-section.

Fig. 2.8. The reconstructions for 7' = 4,10, and 15 with the “crater” trapping speed.
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2.3.4. Limited View Effects Due to a Trapping Speed

Let us use again the same “trapping crater” speed (Fig. 2.7). On Fig. 2.9 a quarter-
annulus phantom supported inside the trapping area and its reconstructions are

shown. These reconstructions exhibit blurring of the radial sides of the phantom, a
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Fig. 2.9. A phantom and its reconstructions for 7" = 4 and 6 with the “crater” trap-

ping speed.

phenomenon common to incomplete data problems [5], [6], [33], [42]-[45]. At a first
glance, one may be led to think that the data is as complete as possible, since it
is collected from the whole closed surface S. However, the "trapping crater” speed
traps all rays corresponding to bicharacteristics that start at points (g, &) such that
zo € {z]0.5 < |z| < 1} and zy L &. These rays are circular and thus never reach
S. Hence, as we briefly discussed in Section 2.2, singularities corresponding to wave
front vectors (xg, &) will never reach the observation surface. This means, that the
singularity of radial interfaces never show up as singularities in the measured data g.
It has been argued then [5], [6], [33], [42]-[46] that such interfaces cannot be stably
reconstructed and thus get blurred, no matter what reconstruction method is used.

Since the rays that start being normal to other parts of the phantom’s boundary
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are not trapped, these parts are reconstructed stably. One should also note that
if the phantom’s boundaries inside the trapping ring were not radial, they would
reconstruct sharply, since the related rays would reach S. This is confirmed by the

reconstructions in Figs. 2.9, 2.10 and 2.11. It is interesting to notice what happens

Fig. 2.10. A semi-circular phantom and its reconstructions for 7" = 4 with the “crater”
trapping speed. The parts of the boundaries that are in the trapping ring,

but such that the normal vectors produce non-trapped rays, are not blurred.

with the semi-circular phantom shown in Fig. 2.11. Here one notices a deterioration
near the point on the semi-circular part, where the boundary is tangential to the
radius. The reason is that the corresponding ray is trapped. In the reconstruction
shown in Fig. 2.10, this effect did not appear, since the corresponding point was not
in the trapping region and thus the relevant ray was escaping.

We now show another example of a trapping sound speed, which exhibits more
severe trapping than the “crater“one. The ”parabolic* speed equals |z|> 4 0.1 inside
the unit circle and is constant outside. In this case, for any x( there exists a cone of
directions &, such that the ray corresponding to the bicharacteristic starting at xg, &y

is trapped [46]. On Fig. 2.12, the sound speed, a phantom, and its reconstruction are



29

Fig. 2.11. A smaller semi-circular phantom and its reconstruction for 7" = 4 with
the “crater” trapping speed. There is a noticeable blurring on the circular
boundary at the point where the normal ray is trapped (i.e., where the

circle is tangential to the radius).

shown. In this case, the blurring of the image is very strong, and the reconstructions
do not improve with time, since the information about missing singularities never

reaches the detectors.

2.3.5.  Reconstruction with an Incorrect Speed

In the above discussions, we have always assumed that the sound speed was known,
while it is often not. To overcome this, one either tries to recover somehow the speed
(e.g., using transmission ultrasound tomography [47], [48]), or assumes some (usually
constant) speed. As it has been noted in previous studies (e.g., [47]-[49]), it is easy
to conclude that using an incorrect sound speed deteriorates both the amplitudes,
as well as locations of features (e.g., of interfaces) of the image. The example shown
below is provided to confirm this. On Fig. 2.13 a sound speed and a phantom are

shown. The sound speed equals 1, except at four circular inclusions, where it takes
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Fig. 2.12. Profile of the "parabolic* trapping speed (left), a phantom (middle) and

its reconstruction from 7" = 8 (right).

values 1.5, 1.2, 0.8 and 0.7. Fig. 2.14 shows the reconstruction for 7" = 2.5 with the
true speed and for T' = 5 with the average speed ¢ = 1.0118. One can easily see both
types of deterioration mentioned above. This example also shows the viability of
the time reversal in the case of more realistic sound speeds than used before (several

different “tissues” are present).

Fig. 2.13. A phantom (left) and a sound speed density plot (right).
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Fig. 2.14. The reconstruction with the correct speed map (left) and with the average
speed (right). One observes both location shifts and amplitude deteriora-

tion of the image reconstructed with the average speed.
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2.4. An Error Estimate

In this section we consider the error e(z,t;T) = u(x,t) — v(z,t) that results from
replacing the true solution of (2.13), u(x,t), with the time reversal solution v(z, ).
Recall that v(x,t) solves equation (2.14). Then, the error satisfies the following

equation:

(

ew(z,t;T) = *(x)Ae(z,t;T)  in B x [0,T]

e(z,T;T) = p(z,T) (2.15)

ez, T;T) = p(z, T)

els(z,t;T) = go(x,t): = (1 —.(t))g(z, 1) in S x [0,7].

\

To make the role of € more clear, we will specify our choice of a cut-off function
©:(t). Let p(t) be a smooth function that equals to 1 on (—oo, —1] and vanishes on
[0,00). When € < 1, we set ¢.(t) = ¢((t — T)/¢e) (Figure 2.15), and when € > 1, we

choose ¢.(t) = ¢1(t) = p(t — T'). This can also be written as ¢.(t) = ¢((t — T)/a),

A\

0 T Posg i t

where o = min{e, 1}.

P=(t)

Fig. 2.15. A sketch of a cut-off function ¢.(t).

Let the sound speed c(x) satisfy the following conditions: ¢(z) > ¢ > 0, ¢(x) €

C*(R"™), c¢(x) — 1 has a compact support and c¢(z) is non-trapping. Suppose also
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that the initial pressure f(z) belongs to L?*(R™) and is compactly supported (in B).

Then the following theorem holds.

Theorem 3. There exists Ty such that for any T > Ty and € > 0 satisfying T — e >

To, the error e(xz,t;T) can be estimated as follows:

e for even dimensions n

max (|le(t; T) | sy + llec(t; T) | 2m) < CENT — &) "\ fll 28

0<t<T

e for odd dimensions n

max (|le(t; T)l|m s + lle(t; T)llz2m) < Cle)e™ T fllz2m)-

0<t<T
Here C(g) = C/ min{e? 1}, for some constant C' depending on B and c(x).
In particular,

e(0: D)l gy = ILf = v(O)llz(m) < C(E)T =) fll2, for even n:

1e(0; D)y (m) = ILf = v(0)llmnr ) < Cle)e T2 fll 2wy, for odd n,

where v(0, x) is the approzimation to f(x) obtained by time reversal with cut-off time

T.

Proof. Let E: H*(S) — H*™/2(B) ,s > 0, be the operator of harmonic

extension that produces a harmonic function EF¢ in B from the Dirichlet boundary
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data ¢ (e.g. [50]). Then w: = e — Eg. satisfies

;

wy — A () Aw = —Fg.y, in B x[0,7T]

w(x,T) = p(x,T) - Egs(*T?T) - p(I,T) - Eg(x7T> (2.16)
wi(x,T) = pi(x,T) — Egey(x,T) = py(x,T) — Egi(x,T)

\ w|g(x,t) =0 on S x [0,T],

As noted at the beginning of this section, there exists a time Tj after which the
solution p(z,t) to (2.7) is infinitely smooth in B x [T, 00) for any T > T,. Let us
choose such T and let € be such that 7' — ¢ > Tj. Then the right hand side and the
initial conditions of (2.16) are infinitely smooth functions. Indeed, p(x,T’) is smooth,
as we discussed above. Recall that g. is a smooth cut-off of the trace of p(z,t).
Moreover, it is supported in [T — &,T] — a time interval where p(x,t) has already
become infinitely smooth. Thus Eg.(x,t) is a smooth function as well.

Next, we will apply the following theorem to the solution of (2.16).

Theorem 4. (e.g.[19]) Assume that G,H € C®(B),F € C*(B x [0,T]) and con-

sider the initial boundary value problem

Uy — A(x)AU = F in B x (0,T]
U=G, U =H on B x {t =0}, (2.17)
U=0 on S x [0,T]

Here c(x) € C*®(B) is such that c(x) > 0 for some § > 0. Let the following compat-

ibility conditions hold for 1 =1,2, ...



35

Go:=G € H}(B), H, :== H € H\(B),
G = L2E(.0) + 2(2)AGy_5 € HA(B), (2.18)

dt2l—2

Hopq = C5E(,0) + A(x)AHy_, € HY(B).

dt2l—1

Then (2.17) has a unique solution U € C*°(B x [0,T]) and

max (U ()| gy sy + 1Ue(t)] r2(m)) <

0<t<T

Ce (|1 Fllz0.r:22(8)) + Gl ma sy + 1 Hllz2(s)),
where the constants C' and Cy depend on B and c(x).

We will verify that the conditions of Theorem 4 are satisfied by (2.16), noting
that the compatibility conditions must hold at ¢t = T, since the direction of time is
reversed. Indeed, as we already discussed, F' = —Fg.,, G = p(z,T) — Eg(x,T) and
H = pi(z,T) — Egi(z,T) are infinitely smooth. It is clear that Gy = G and H, = H
belong to H(B), as g(z,t) has been defined to be the trace of p(x,t). The higher
order compatibility conditions hold as well:

d2l 2

Gou(r) = P gz Egey (2, T) + ¢ *AGo—p = —E;TZQ(SC,T) + CQAG2(1—1)
—EL9(2,T) + (PA)Gy = ~Ed59(z, T) + (A p(x, T).
We used here that AE = 0.

As we already know that p(z,T) is smooth in a neighborhood of T', we conclude

that

Gu(z)|g = —%p(w,T) + (2A)'p(x, T)}

so Gy € H(B) for | = 1,2... Similarly, one can check that Hyy € HJ(B) for | =

=0,
S

1,2....

Y
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Before applying Theorem 4 to the solution of (2.16) we notice that the energy
in B, defined by &(t) := 1 [, (|Vw|* + ¢ 2(z) |wy|?) dz, stays constant in [0,T — a,

where o« = min{e, 1}. Indeed, using (2.16) one easily shows that
é”(t) = / (Vw -Vw, + C’thwtt) de = —/ w;c 2 Eg.y, dx.
B B

The last integral vanishes in [0, T'—«/], because g.;;, = 01in [0, T'—a] and therefore,

Eg.,, = 0 in this interval. Then, by Theorem (4), it follows that

_ < 2 2 } <
max £(t) = max &) < C max {Jw(t)3 ) + o @3 | <

O{||EgEtt||%2(T—a,T;L2(B)) + lp(-, T)— EQ(HT)H?{&(B)
1 T) = B T g}
where C' depends on ¢(z) and B only, but not on 7" or . Here and in what follows

C will denote various constants, all of them independent on 7" or €.

As w = e — Eg., the above inequalities imply

s (et + s 2m) < 2.19)
€ guise {VED+ 1B0.0lmco+ 1Bl | <

C{ max (|| Eg=(t)]|m(5) + [1Eg=(t) | 2(8)) + | Egeull 2(r-aimi22(3))

T—a<t<T

T P(-T) = Eg( Tl iy + lpe(- T) — Egt<-,T>||Lz<B)}.

We used here that Fg. =01in [0,7 — «f.
Let 7: H*(B) — H*"Y/2(S),s > 1/2, denote the trace operator, which is known

to be continuous (e.g.[19]). Then, using the continuity of the linear operators E and
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7, we can estimate the terms in (2.19) as follows.

1EgO)l 18y < Cllge(®)llmrr2(sy = ClI( = () TPE) || 111/2(5) <
ClI(X = (O)p®)ll 15y < Cllp®)] ()

Similarly,

1EGe ()| 2(5) < IIEQet(t)Im1 ) < ClI[(1 = @e)p(®)]ell m5) <

— {||P Wes) + 1o ris) )

||Eg€tt<t>||L2(B SNEGey ()| a1y < Cl[(1 = @e)plecl| 1) <

pe {Ilp M) + 1Pl s) + e @)l e}

IEg(T)|[ a1y < Cllp(T) 1) and [|Eg(T) | r2(5) < Clip(T) |11 (5)-

Here we used that max loL(t)| < C"/a and max " (t)] < C”/a? for some constants

C" and C”. Then, the error can be estimated by

aax {lle(®)llmm) + el ; <

C
a? {T—%%%T (Hp(t)“Hl(B) + Hpt(t)HHl(B)) +

(2.20)
”pHL?(T—a,T;Hl(B)) + ||pt||L2(T—a,T;H1(B)) + ||Ptt||L2(T—a,T;H1(B))+

Ip(T) ey + Hpt(T)”Hl(B)}

Theorem 2 allows us to estimate the quantity inside the braces in right-hand side of

above inequality by a factor of
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{ s () + 0]+ Illoaiy + e

- + () 4 (D) YU e
The functions 7, (t) are monotonically decreasing, and n72(t) < ny(t) < 1(t) provided

t > 1. Therefore, the right hand side of (2.20) is less than

Cla? {no(T — ) + ol L2r-airy } |1 fll28)-

Taking into account that

2 2 2
||770||L2(T7Q,T) < OZTE?%XST%@) <n(T —e),

we arrive to

max (|[e(t)||z1m) + lle:() |l z2m)) < CE)no(T — )|l fllz2 ),

0<t<T
where 1o(T — &) = (T — )™ for even n, 7o(T — ¢) = ¢~ for odd n, and
C(e) = C/min{e? 1}.

This proves the theorem.
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2.5. Numerics of Errors

In this section we compare the errors of the numerical reconstructions of several
phantoms to their estimates given in Theorem 3. The numerical simulations were
done in two dimensions in media with variable sound speed. Both cases of non-
trapping and trapping sound speed are considered.

In order to observe the behavior of the error of reconstruction with respect to
the cut-off time T', multiple reconstructions from different cut-off times were made
and the error was graphed on a logarithmic scale (see Appendix A). For the examples
given in this section the spatial step-sizes varied case by case and were of the order
of 1072, This corresponds to using several hundred detectors on the boundary of the
unit circle.

On Figs. 2.16, 2.17, 2.18 and 2.19 we present various sound speeds and analyse
the errors of reconstruction as functions of the cut-off time 7. These figures show
the particular sound speed, phantoms and the corresponding errors, but not actual
reconstructions, as we already discussed those in length.

The plot of each error shows only values of the error after some minimal time,
specific to each sound speed, after which it makes sense to apply the time reversal

procedure.
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Namely, this minimal time is taken to be the time a wave needs to cross the
unit circle. After the error has decreased to a very small value it levels off, which
is due to the discretization of the model. Thus, the error plots do not show these
values. In order to easily observe the behavior of the error, the plots are made in a
logarithmic scale and the corresponding linear regression interpolations are graphed.
Figs. 2.16 and 2.17 show two examples of variable non-trapping sound speeds. In
both cases two different phantoms are considered and the H' error of reconstruction
as a function of the cut-off time T is plotted. In Theorem 3 we estimated that, in
two dimensions, the error behaves as T—!. The examples from Figs. 2.16 and 2.17
suggest even faster decay for those particular sound speeds. In the case shown in
Fig. 2.16 the H' error decays as T~'3. The decay of the error in the second example
(Fig. 2.17) is even faster: the plots suggest that it is of the order of T71¢. The next
two examples deal with trapping sound speeds. In these cases the behavior of the
error depends also on the initial condition, as there is no uniform local energy decay
unless additional smoothness is assumed (e.g. [51], [52]). The L? errors shown in

Figs. 2.18 and 2.19 decay as T' increases.
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Fig. 2.16. Axial profile of a radial non-trapping sound speed (top), density plot of
phantoms (left column) and the corresponding H' errors of reconstruction
as functions of the cut-off time 7" (right column). The plots of the errors are
in logarithmic scale, i.e. the horizontal axis represents InT" and the vertical
axis represents In(H"' error). The dotted lines show the linear regression
interpolation of the error. The decay of the error in the first example
(second row) is of the order of T7!%0 in the second one (third row) it is
T-1.28
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Fig. 2.17. Density plot of a non-radial non-trapping sound speed (top), density plot of
phantoms (left column) and the corresponding H' errors of reconstruction
as functions of the cut-off time 7" (right column). The plots of the errors
are in logarithmic scale. The dotted lines show the linear regression inter-
polation of the error. The decay of the error in the first example (second

row) is of the order of T71%8 in the second one (third row) it is 7161,
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14 1.8 22 26 3

Fig. 2.18. Axial profile of a radial ”trapping crater “ sound speed (top), density plot of
phantoms (left column) and the corresponding L? errors of reconstruction
as functions of the cut-off time 7" (right column). The plots of the errors

are in logarithmic scale.
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3.6

3.2

28

22 26 3 3.4

Fig. 2.19. Axial profile of a radial parabolic trapping sound speed (top), density plot
of a phantom (left column) and the corresponding L? error of reconstruction
as a function of the cut-off time 7" (right column). The plot of the error is

in logarithmic scale.
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Remarks

We have concentrated on the errors resulting from the time reversal approx-
imation. One is also interested in the stability of the method with respect
to errors in the data. This question is answered by the standard results on
stability of the mixed problem for the wave equation. If n(x,t) is the error in
the measured data g(z,t), then a stability estimate should bound a norm of

é(z,0;T), where é(x,t;T) solves the following mixed value problem:

(

eu(z,t;T) = *(x)Aé(z,t;T)  in B x[0,T)

é(x, T;T)=0 (2.21)

éls(z,t;T) = ne(z,t): = (1 —p(t))n(z,t) in S x [0,7T].

\

Theorem 5. Let c(x) be smooth. Then the following stability estimate holds
Hé(l’, 0; T) ||L2(B) < CHTL(Z’, t) ||H1+5v1+5([0,T]><S)7

Here HY149([0,T] x S) = L*(0,T; H*°(S)) N H'(0,T; L*(S)) and § > 0.

Indeed, since ¢(x) is assumed to be smooth, classical results (e.g. [53, Ch. 5,

Sec. 5]) give the above inequality.
In a nutshell, the reconstruction is as stable as Radon inversion in the corre-

sponding dimension.

Our numerical examples show decay of the error also in the trapping speed

case. One could probably get some estimates on this decay, assuming sufficient
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smoothness of the function f(z) to be reconstructed and using the results
of [52]. It is unlikely that one can get such estimates without a smoothness

assumption.
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CHAPTER III

MATHEMATICAL PROBLEMS OF COMPTON CAMERA IMAGING

3.1.  Introduction to Compton Camera Imaging

Compton cameras, also called Compton scatter cameras or electronically collimated
cameras, are a type of highly efficient gamma cameras used in emission tomogra-
phy. They have received a lot of attention since they were first proposed in [54]
and a prototype was developed by Singh et al [55], [56]. Compton cameras were
first suggested for use in nuclear medicine (SPECT), but they also have applications
in astrophysics [57]-[59], monitoring nuclear power plants [60], [61], and other ar-
eas. Compton cameras offer several advantages over the conventional mechanically
collimated (Anger) gamma cameras. The most significant of these is the dramatic
increase of sensitivity — Compton cameras are reported to count at least an order of
magnitude more photons than Anger cameras [62], [63]. Another advantage is the
flexibility of geometrical design [60], [61], which even allows for hand-held devices
[64], [65].

A compton camera consists of two detectors, which, in the usual physical setup,
are planar and are placed one behind the other (see Fig. 3.1). A photon incident
on the camera undergoes Compton scattering in the first detector, which records
the location x; and the energy of interaction F;. After the scattering, the photon
is absorbed in the second detector, where the position x5 and energy of absorption

E5 are measured. From the knowledge of F; and Ej the scattering angle ¢ can be
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4
i 15t detector

X, / Znd detector

Fig. 3.1. Schematic representation of a Compton camera.

determined by the formula (e.g. [54], [66])

mc*E

cosyp=1— ———.
4 (E1 + Ey)Es

(3.1)

Here m is the mass of an electron and ¢ is the speed of light. The direction into

X9 — X1

which a photon scatters is given by —3 := From the knowledge of 3 and

Xy — X
the scattering angle v we conclude that the| p2}10t0111|0riginated on the surface of the
cone with central axis 3, vertex x; and opening angle 2¢). Therefore, although the
exact incoming direction of the detected particle is not available, one knows a cone
of such possible directions. The goal of Compton camera imaging is to recover the
distribution of the radiation sources from this data.

The rest of this chapter is organized as follows. In Section 3.1.1 the mathematical

problem of Compton camera imaging is formulated, and a brief discussion of known
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reconstruction formulas in three dimensions id provided. In Section 3.2, the 2D
problem is stated and several reconstruction formulas are presented. This section
also contains numerical reconstructions based on the above methods. The last part
of the chapter is devoted to the use of Compton cameras for detection of low emission
point sources in the presence of a large background. This study was motivated by a
homeland security project for detection of illicit radioactive materials.

The Matlab codes used in this chapter can be found in Appendix B.

3.1.1. The Cone Transform

Suppose that we want to image the distribution f(y) of radioactivity sources inside
a certain object in R3. From now on, we will assume that f(y) is supported on one
side of the Compton camera and that suppf does not intersect the camera. If a large
number of photons is detected, the Compton camera provides us with the projections,
which we denote by Cf(x, 8,), i.e. the integrals of f(y) on cones parameterized by
a vertex x lying on the detector, central axis 3 € S* and half-angle ¢ € [0, 7] (see

Fig.3.2) [66]-[68]:

Cf(x,B,¢) = K() /27r /OO f(x+ra(¢))rsiney dr dp, where a-3 = cos®), a € S°.

S (3.2)
Here K () is the Klein-Nishina distribution of scattering angles. The function
Cf(x,B,1) provides the expectation of the number of hits, per unit time, from
the particles moving along the cone. In particular, when the particle count is low,
these values are not well determined by the data. This issue will be addressed in

Section 3.4. An important observation is that the problem of inverting the cone
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1st detector

Znd detector

Fig. 3.2. A Compton cone with apex x, central axis 3 and half-angle 1.

transform Cf(x, 3,1) is overdetermined. Indeed, f(y) is a function of three vari-
ables, while Cf(x,3,1) depends on five parameters (here x is restricted to a 2D
detector surface). Most authors consider restricted versions of the cone transform,
reducing the number of parameters from five to three [66], [67], [69] . One little
known paper [70] presents an elegant closed form inversion formula that uses four
of the parameters. Only very recently, in [71], the whole set of data was used for
reconstructions, albeit the transformation considered in this paper somewhat from

the conical transform defined above.
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3.1.2.  Reconstruction Techniques in Compton Camera Imaging

Below we give a brief survey of reconstruction methods in Compton cameras imag-
ing. Many of them reduce cone projections to Radon projections, i.e. integrals of f

over planes.

3.1.2.1. Algebraic Reconstruction Techniques

Algebraic reconstruction techniques, as elsewhere in tomography, are widely used in
Compton cameras imaging. This is partially due to the fact that analytic inversion
formulas were not available until the second half of 1990’s. Maximum likelihood
methods were developed in [72]-[74]. A maximum likelihood method was also used
in imaging with the COMPTEL telescope [57]. In [75] a matrix inversion technique
was utilized to solve the problem for a specific detector geometry. Fast backprojec-

tion algorithms were developed in [76], [77].

3.1.2.2.  Spherical Harmonics

A spherical harmonics solution was first proposed in [67]. For every point x on the
first detector, and a fixed in advance half-angle ) the authors relate the conical pro-
jection Cf(x,3,1) to the Radon projection (integral) of f over the plane passing
through = and perpendicular to 3. A fast algorithm for computing the spherical
harmonic series was also developed in this paper. Several other authors provided

spherical harmonics solutions, however their model for Compton data differs from
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(3.2), e.g. [78][80].

3.1.2.3. Closed Form Solutions

The first analytic inversion formula is due to Cree and Bones [66]. The authors con-
sidered only cones perpendicular to the detector plane, i.e. cones with central axis
B = z. Thus, the Compton data depends only on the vertex x := (x,y) and the open-
ing angle 1. Let us denote g(z,y,v) :=C f(x,z,v) and let F(u,v,-), G(u,v,-) be
the two-dimensional (z, y)-Fourier transforms of f(x,y, z) and g(x,y, 1) respectively.

Then the following relation holds:

13 B u? + v? "
Vi o) o [K(t)t\/l—H?G( ’ ’t)}

where £ = zyv/u? + v? and t = tan. Here H is the zero-order Hankel transform

F(u,v, ; (3.3)

t=¢

Hog(p) = 2 /0 ) g(r)rdo(2mrp) dr,

and Jo(y) = (2m)7! / " e1°%% d¢ is the zero-order Bessel function. Later, in [69],
more properties of thg same restricted cone transform were given.

In [71] the authors use yet another mathematical formulation for the forward
problem, which accounts for the efficiency of the detector at different incident an-
gles of particles. They extended the approach of Cree and Bones to show that the
radioactivity distribution can be reconstructed from any family of cones that have
central axes 3 such that the angle o between [ and the z-axis is fixed. Then aver-

aging of the solutions for different values of « is employed, thus making use of all
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available data and reducing noise.
In [70] the following relation between the cone and Radon transforms of f is

given:

HRFB.x0) =~ [ RIBOMcB—t) dt =~ [ gl pLodhteosv) dv (3.

Here H denotes the Hilbert transform and R is the Radon transform in three di-
mensions (see Section 1.1). Note that four out of five variables are used and that
the HRf(B,x - 3) is constant on the line L. := {x € detector plane|x - 8 = ¢}, for
any fixed constant c. The last observation shows that it is possible to reconstruct f
if the vertices of cones x are restricted to a curve. This also allows for averaging of
the solution on the lines L.. In Section 3.2.2 we will consider the two-dimensional

analog of this formula.

3.2. Compton Cameras in T'wo Dimensions

In the two dimensional setting we assume that the detectors x lie on a line, which
we call the detector line. A cone in two dimensions is defined by a point x, a cental
axis 3 and a half-angle . Such cones simply consist of two half-lines intersecting
at a point. More precisely, let 3 = (cos 3,sin 3) € S, 3 € [0, 7] be the central axis
of a cone with opening half-angle ¢ € [0, 7]. The two half-lines that constitute the
cone, pass through the detector point x and are given by {y € R : y = ray;, 7 > 0},
i =1,2, where a; = (cos(5 — 1), sin(8 — ¢)) and ay = (cos( + ©),sin(5 + 1)), see
Fig. 3.3. In what follows we will assume uniform distribution of scattering angles,

that is K(¢) = 1. Then the two dimensional cone transform Cf(x,3,1) is the
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projection of f(y) onto these lines:

€I B.0) = [ (FOxran) + fixt raw) dr = Dfx.an) + Df(x. ). (35)

Here Df(x, «) fo (x + ra) dr denotes the divergent beam (or fanbeam) trans-

form of f.

Fig. 3.3. Two-dimensional cone with apex x, central axis 3 and half-angle .

For convenience, we will sometimes express Cf and D f as functions of the angle

[ instead of the unit vector 8. Thus, we can write (3.5) as

Cf(x,8,4) =Df(x,0 =)+ Df(x,8+ ). (3.6)

The problem of inverting the two-dimensional transform is overdetermined as

well, because Cf(x, 3,1) depends on three parameters and f(y) only on two.
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3.2.1.  Reconstruction Formula by Basko et al.

The author is aware of only few papers devoted to compton cameras in two di-
mensions. In [81], [82] subsets of the cone projections of f(x) are represented
as line integrals of the function f added with its mirrored shear transformation.
In order to explain this approach in more detail, let us introduce the variables

ki1 = cot(B + 1), ko = cot(f — ). The cone transform can be written as

Cf(z,B,¢) = /Ooof(x—i-klz,z) dz—i—/ooo f(x + kaz, 2) dz, (3.7)

where the x— axis coinsides with the detector line and the z— axis is perpendicular
to the detectors. Let us fix the sum k; + ko = K and define the function
flz,2), if 2>0
fr(z,2) = (3.8)
fle — Kz,—2), if z<0.

Then, Cf(xz,8,¢) = [* fx(x + k12, 2). In this way, for each fixed value of K,
the cone projections are represented as line integrals of a certain function, so all that
remains is to invert the Radon transform. The reconstructed image will contain the
function f above the detector line and a mirrored shear transformation of f below the
detectors. Obviously, by fixing the parameter K, not all available data is used. The
case when K = 0 corresponds to using only those cones with central axes orthogonal
to the detector line.

Although there are not many papers devoted to the two-dimensional Comp-
ton problem, most inversion formulas for the three dimensional case should have

analogues in two dimensions.
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3.2.2.  Three Inversion Formulas
3.2.2.1. Method A
The following relation makes use of all parameters and is an analog of the three
dimensional result presented in [70].

Theorem 6. Let the closed unit ball lie on one side of and away from the detector

line, and let f(x) € Hy'>(B2). Denote h(t) = 1/t. Then

1 [~ 1 ["
HRf(xcB.8) = [ REGOMx-B—1)dt =~ [ Ci(x.B.u)htcosy) v
o 0
(3.9)
Here H is the Hilbert transform in the first (scalar) variable and the integrals are

understood in the principal value sense (see Section 1.1).

Proof. We will consider the following regularizations of the above improper integrals.

/_OORf(t,B)h(x.g—t) dt:/oooRf(X'ﬁ_t’ﬁ);Rf(x'ﬁﬁ’m dt (3.10)

" _ " Cf(X75,¢)—Cf(Xaﬁ7—w+7T)
/0 CF(x, B, ¥)hlcos ¥) di = / ) o @ (3.11)
Thus, we need to show that
\/W Cf<X7571/1>_Cf(XuB,—¢+7T) d@b:
/2 cosy (3.12)
_ [(RAcpotB) BRI prEB) ,
0 t

We first address the question of whether the integrals in (3.10) and (3.11) are well

defined. From the property (1.9) of Radon transforms it follows that Rf(s,3) be-
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longs to the space H'(R x S'). It is a standard result (e.g. [19, Chapter 5.6.2]) that
H'(R) is contained in the space of Holder continuous functions with exponent 1/2.
Therefore, for each fixed B, Rf(s,3) is Holder continuous, so the integral in (3.10)
is well defined (see Section 1.1).

The integral in (3.11) is the canonical regularization of a singular integral, in
the sense defined in [83]. Now we will show why (3.11) is well defined. The relations
between fanbeam coordinates (x,a) and parallel beam coordinates (s,w), where
w = (cos ¢, sin @) are

p=a—-7/2, s=x-w

Using the definition of cone transform, (3.6), and the assumption that f is supported

on one side of the detector, we can write

Cfx,0,0)=Rf(x-w,f—0—7/2)+ Rf(x -w,B+¢—7/2). (3.13)

From (1.9) it follows that, Cf(x,3,%) is in H'(R) with respect to 1, so it is Holder
continuous in ).

Let us change the variables in the integral on the right hand side of 3.9: ¢ =
1 — 7/2. Then the integral reads as follows

_/TF/Q Cf(X7ﬁaw_7T/2>

—7/2 sin w

i, (3.14)

where we have written ¢ instead of .

We note that the function p(x) :=

p(wa

is infinitely differentiable in (0, 7/2)
sin

and we can write — =
sin
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The integral (3.14) can be regularized using (1.5)

_i/WPWWﬂx@¢—Wﬁ%w:
— (0]
__/“”pﬁwcfbsﬁnb+ﬂ7%-—m&ﬂOCﬂXJi—w—%m@)dw
0 ¥ |
(3.15)

This integral is well defined, because Cf(x, 3,1) is Holder continuous with respect
to ¢, and therefore so is p(¢)) Cf(x, 5,9). After changing variables ¢ = ¢ + 7/2 we
come to equation (3.11)

Now, we write (3.12) as follows
/7T Cf(X,,@,@/J) —Cf(X,ﬂ,—¢+W) d¢ _
/2 cos Y N
"Df(x,B+¢)-Dfx,B-v+m)

/2 cos

dy +
"DfxB-¢)-DfxB+¢—7)

/2 cos Y

/;Am L (x4 r(cos(B 4+ ), sin(B + )

r cos

dip =

f(x+7r(cos(8— ¢ +),sin(8 — ¢ +)))] rdrdyp+
//2/0 1 [f(x 4 r(cos(f —),sin(B —)))—

r Ccos Y

f(x+r(cos(f+1¢ —m),sin(f+ ¢ —m)))| rdrdi.
(3.16)

If we consider the (positively oriented) coordinate system (3, 8"), the last two in-
tegrals can be written as integrals on the second (I1) and third (/1]) quadrant of

the plane. Indeed, if we make the change of variables y; = r(cos(8 + ¥), sin(5 + 1))
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and yo = r(cos(8 — ¢),sin(f — 1)) in the first and second integral respectively (see

Fig.3.4), the expression (3.16) equals

/1 ! (f(x+y1) = f(x—=¥1)) dy:1 ‘l'/ (f(x+y2) = f(x—¥2)) dya. (3.17)

1y 8 1 y2- B

Here y denotes the reflection of y with respect to 3, i.e. if y is given by y = t8+s8",

then y = t8 — s3".

Fig. 3.4. Variables of intergation: y; belongs to the second quadrant and ys - to the
third.
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The integrals in (3.17) can be written as

/ #(f(x 1y)— fx—3) dy =

y-8<0

0 e8]
/ / CLFOcH 18+ 58Y) — Fx — 18 + 58Y)] dsds =

-3 {/_Zf((ﬁ-x—t)msaﬂ ts— [ p(sx 08+ ") ds} dt =

TR xoLB) - RIEx 1B,
0 t

(3.18)

In the above string of equations we used the representation of x in the coordinate

system (3, 8") and made the change of variables B+ -x + s — s. ]
Corollary 7. Theorem 6 provides an inversion formula for the cone transform.

Indeed, computing the integral of the right hand side of (3.9) one recovers HR f,
where R is the 2D Radon transform, and H is the Hilbert transform with respect
to the linear variable. Then, the filtered backprojection formula (1.15) implies that
differentiating the right hand side of (3.9) with respect to the linear variable and

backprojecting, one recovers the function f.

Remark 8. On the left hand side of (3.9) one sees Rf(s,3), where s = x-3. Thus,
if one infinite detector line is used, if B is perpendicular to the detectors, we would
only know Rf(s,B) for s = 0. If the detector line is finite, as is the case in all
implementations, we would miss an even bigger chunk of data. One possible way to
obtain the complete Radon data in (s,3) € [—1,1] x S is, for ezample, to use three

finite size detectors placed on sides of the square, containing the object.
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3.2.2.2. Method B

Another, simpler way of obtaining Radon data from cone data is presented below.
Let us denote by u(x, «) the integral of f along the half-line starting at the point x

in direction of the unit vector a (i.e. the fanbeam projection of f):

u(x,a) =Df(x,a) := /000 f(x+ra) dr. (3.19)

Let us fix a detector position x and a direction e and try to recover the fanbeam data
u(x, o). For any ¢ € [—m, 7] we can write Cf(x, 5, [¢]) = u(x, B—|])+u(x, B+[¢]).

Thus, the following relation holds

u(x, ag) = Cf(x, a0 + 1, []) — u(ao + 2¢)

Fig. 3.5. In order to determine the integral of f along the line [y, add the integral on
cone consisting of [y and [; to the integral on the cone determined by [y and

l5. Then subtract the integral on the cone determined by [y and [5.

It is easily seen from Fig. 3.5 that for any two half-angles ¢, 1y € [—7, 7| the
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fanbeam data u(x, ag) can be obtained from cone data as follows:

u(x, ap) =

% [Cf(x, a0+, [U1]) + Cf(x, a0 + 2, |12]) — Cf (X, 0 + 1 + g, [P01 — o))
(3.20)

The angles v, and 15 were arbitrarily chosen, so one could average on ¢, and 5 in
order to use all available data. This averaging also helps reducing the effects of large
random background or noise.

If averaging on half-angles vy and v is used, the method described above is
computationally expensive. We propose a third reconstruction method, which is fast

and makes use of all available data.

3.2.2.3. Method C

Recall that the radioactivity function f(y) is compactly supported and suppf lies
on one side and away from the detector line. Let us fix a detector a. Then, u(a, )
is supported in (0, 7). The function u(a, ) can be extended periodically in « from
[0, 27] to (—o0,00). Let us define

i(a, a) :w—l/w_a Cfla,a+,|¢|) dy (3.21)

—Q



63

We can write,

T—CQ

i(a,a) =7 o u(a, o) dip + u(a,a +2¢) dyp} =
e,

u(a, o) + (277)1/0 7ru(a, «) da

In the above equation, the periodicity of u(a, @) in o was used. Then,

u(a, o) = u(a, o) + (47r)_1/ /OO fla+rw) drdw = Df(a,a) + (47) "R*Rf(a)

R (3.23)
Recall that R# denotes the backprojection operator, R#g(y) = szl 9y -w,w) dw.
Let us consider the second term on the right-hand side of (3.23) can be written
as D[(47) 'RFRf(a)d(a — y)]. Therefore, when the inverse fanbeam transform is
applied to @, the result equals the function f(y) we are after, plus a weighted 6—

function supported at the detector lines. Hence, we recover correctly functions f

supported away from the detectors.

3.3. Numerical Experiments

In this section we present reconstructions of 2D numerical phantoms via the methods

presented in Section 3.2.2.

3.3.1. Method A

We first note that the use of one finite size detector array results in limited view data.

This means that not all data needed for correct reconstruction of the phantom was
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available. Corollary 7 describes how to reduce cone data to Radon data. However,
the Radon data we obtain is not complete, i.e. we know only the integrals of the
phantom f along lines intersecting the detector. It is known in limited data X-
ray tomography that the values of the phantom will not be reconstructed correctly.
However, certain singularities of the phantom will be stably recovered. Namely, the
reconstructed image will contain only those singularities which have tangent line

crossing the detector array [43], [44]. The rest of the singularities will be smeared.

-1 05 0 05 1

Fig. 3.6. A phantom (left) and a reconstruction (right) using method A. Only one

-1 08 06 04 D2 a 02 04 06 08 1
b3

Compton detector array at the bottom side of the square is used.

The effect of limited view data is clearly visible on the reconstruction shown in
Fig. 3.6. The reconstruction was obtained via method A. We used one Compton
detector array containing 100 detectors, which was placed on the bottom side of
the unit square. The angular variable, which determines the direction of incident

particles, was discretized as 6; = iAf0, A = 7/100, i = 1,...,99. The phantom
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used for the reconstruction is zero everywhere except at three circular inclusions,
where it equals to 1, 0.6 and —0.4 respectively. We see that the boundary of the
circle closest to the detector array is reconstructed well, while only parts of the
boundaries of the other two circles are visible. The values of the reconstructed image
differ from that of the phantom. The arcs from the circles which are recovered are
exactly the ones for which the tangent lines intersect the detector array.

Next, we present reconstructions based on the methods B and C.

3.3.2. Methods B and C

In order to have complete Radon data for s € [—v/2,v/2], ¢ € (—7/2,7/2), we used
three detector arrays placed on sides of the unit square. Methods B and C reduce
the problem of inverting the 2D Cone transform to inverting the Radon transform
of the function f. In order to reconstruct f(y) from fanbeam data, we interpolated
u(x, o) from fanbeam coordinates (x, ) to parallel beam coordinates (s,w), where

s € [-v2,v/2] and w € S*. The convertion of coordinates is given by the relations
s=X-w, w=(sina,—cosa), p =a—1/2 (3.24)

Although more efficient algorithms for reconstruction from fanbeam data exist [10],
we chose interpolating parallel beam data for its simplicity and independence of the
geometry of detectors.

For all numerical results in this section the following setup was used. Each

detector array contained 100 detectors. The discretization step for the central axes
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B and half-angles ¢) was 27/128. Moreover, 3 could not take values 0 or 7, and 1
could not be equal to 7.

On Figs. 3.7 and 3.8 a grayscale plot and a profile plot of a reconstruction of an
analytic phantom using method B are shown. We used the same phantom as in the

example for method A.

R s 0 0s 1 i

Fig. 3.7. A phantom (left) and a reconstruction (right) using method B. The dotted

white lines represent the positions of Compton cameras.

On Fig. 3.9, a reconstruction of the phantom from Fig. 3.7 is shown. Note that
the values of the reconstructed function at the detectors were cut away. Although
the reconstruction with the method B (see Fig. 3.7) is somewhat better quality, the

latter method is considerably faster.
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y =-0.7 profile

——Reconstruction | 7
—Phantom

x =0 profile

——Reconstruction

Fig. 3.8. Profile plots of the reconstruction shown of Fig. 3.7. Both profiles are
through the center of the lowest disc, namely y = —0.7 profile (top) and
x = 0 profile (bottom).

y =-0.7 profile
: —Reconstruction | {
U | Phantom
0.6 .
ay ' .W
0.4
i x =0 profile
U —— Reconstruction
.......... Phantom
-0.2
0.4 - . VAH

Fig. 3.9. A reconstruction of the phantom shown on Fig. 3.7 using the method de-

scribed in C. The same setup as in Fig. 3.7 was used.
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3.4. Detection of Low Emission Geometrically Small Sources

One of the missions of the Department of Homeland Security is to prevent smuggling
of weapon-grade nuclear materials. It is expected that such materials, unlike those
needed for a "dirty bomb”, will have low emission rates and will be well shielded,
so that very few gamma photons or neutrons would escape, and even less would be
detected. An additional hurdle for the detection of illicit nuclear substances is the
strong natural radiation background.

The most commonly used ~-ray cameras are mechanically collimated, which
means that they "count” the particles coming from one direction and discard the
rest. Collimation is needed because it provides crucial directional information about
the particles, which can be used for mathematically reconstructing the location of
radiating sources. However, mechanical collimation dramatically reduces the sen-
sitivity of detectors. Typically, only one out of ten thousand emitted photons is
detected by a collimated camera. When dealing with low emission sources one wants
to capture as many of the emitted particles as possible, thus mechanical collimation
is unsuitable. On the other hand, if no directional information is available, the de-
tection of low emission sources against large noise would most likely be impossible.
The ability of Compton cameras to provide some directional information without
discarding any incoming particles make them of particular interest for use in such
applications.

The task of detecting low emission sources in the presence of a large background
would be impossible if the size of the source were large. Simulations of small enriched

uranium source placed in a cargo container estimate that only about 0.1% of the



69

signal received by detectors might be due to ballistic (non-scattered) particles emitted
from the source. The remaining 99.9% of detected particles come from natural
sources and scattered source particles, and thus represents noise in the measurements.
It is clear that under such conditions standard tomographic methods will fail to
produce a satisfactory image. However, if smuggling is attempted, only a small
volume of radioactive substance could be transported. Thus, the source will appear
as almost a point singularity, and it is known in tomography that singular objects
are easier to detect. Another factor which gives hope to find such sources is that all
trajectories of ballistic source photons pass through the same small volume, which
will increase the local density of trajectories and could conceivably allow detection.

The latter argument will be discussed in detail below.

3.4.1. Source Detection by Standard Tomographic Techniques

We have attempted detecting a point source in 2D using standard tomographic re-
constructions from simulated Radon data as well as from Compton camera data (see
Section 3.2). We reconstructed images of radiation source density using FBP and
local tomography (see Chapter I). This approach worked to some extent, although
it was unreliable and started failing sooner than we expected.

There are a couple of reasons for the poor performance of these tomographic
methods. First, the use of standard tomography assumes that data represents line
(or cone) integrals of the source distribution function. This is the same to say that we
measure the expectation of the number of hits, per unit time, from particles moving

along a line (or cone). This assumption is reasonable when the source is strong,
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however it fails in the case of low emission sources. Hence, the Radon transform
type models are not appropriate. The second reason is that the high-pass filters
required in Radon transform inversions amplify the noise. This is very significant
factor, as the noise constitutes 99.9% of the data. Filtered backprojection worked
to some extent, but the strong local tomorgaphy filter made source detection almost
impossible.

Another drawback of the standard tomographic techniques is that the recon-
structed image cannot be easily interpereted in a qualitative way, for example, it is
hard to quantify the confidence level of detection.

All these considerations led us conclude that reconstruction by backprojection
would be more suitable for our purposes. Indeed, in this particular problem, back-
projection proved to be a considerable improvement over standard tomography. In
Section 3.5 examples of reconstructions using FBP and backprojection are compared.

Details of our numerical simulations are also provided there.

3.4.2.  Source Detection Using Backprojection

Now we investigate why it is possible to detect small low emission sources by back-
projection. Suppose the detectors have information about the incident direction of
particles. Then backprojection “sends” the detected particles back along their in-
coming lines. In particular, the ballistic source particles would ”cross” the source
region. The background particles which scattered prior to detection will be backpro-

jected along lines that are different from their original trajectories. Therefore, in the
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considerations that follow, we assume that the trajectories of particles are straight
lines. We also assume that the (random) distribution of trajectories is uniform.

In a nutshell, our argument is that if the number of lines passing through a tiny
region deviates significantly from the mean of the background, then most probably

there is a source there (see Fig. 3.10).

Fig. 3.10. The local density of lines is higher in the gray region, which is likely due to

a source at this location.

Let us consider the trajectories of NV particles in a ball Br with radius R. We will
determine the probability of k£ particles out of the total N contained in Bg passing
through a small ball B, with radius r. Recall that a line L, ) in R? is defined
by a vector w € S! perpendicular to it and a signed distance s from the origin
(see Fig. 1.1), i.e. L, ={x€R*x-w=3s, s€R, we S'}. Thus, the lines on
the plane are mapped (bijectively) to the points on the half-cylinder S x (—oo, 00),
where S} = {w = (cos#,sind),d € [0,7)}, and these points are uniformly distributed
on the half-cylinder. All lines intersecting Bp correspond to points on St x (=R, R),

and those intersecting B, are bijectively mapped to points on S} x (—r,r). Thus,



72

the probability of a random line in By passing through B, is

area(S} x (—=r,7r)) 1

area(S} x (-R,R)) R’

The probability that n out of the total N lines cross B, is given by the Binomial
distribution B(N, p), and is equal to (ij) p"(1—p)N~". Since we are in the situation
when p is fixed by the dimension of the source and N is large, the Central Limit
Theorem applies. It follows that the Binomial distribution is approximated well
by the Normal distribution N(p,0?) with mean p = Np and standard deviation
o = \/m If it happens that the number of lines n crossing B, deviates
significantly (in comparison with o) from the mean p, the probability of this occurring
just due to random reasons is very small. Therefore, one can be almost certain that
this clustering of trajectories is the result of a radioactive source located at B,. Now
we will make these statements more precise.

Suppose that the area we are imaging is divided into IV, pixels. Suppose further
that n lines intersect a pixel B, with linear dimension r. We will write n = n, + ny,
where ng and n; are the number of source and background trajectories, respectively,
which cross B,. We will describe a method to determine whether there is a source
located at this pixel.

Let us choose a threshold value k;, such that if n > n, := pu + kyo, the pixel B,
is classified as containing a source (i.e. positive result). Otherwise there is no source
at B,.. The probability of at least n; lines crossing B, due to random reasons is
approximately 7 := 0.5 erfc(k,/v/2). We have to take into account the possibility of

such clustering of lines occurring inside some of the total N,;, pixels. The probability
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of at least n; lines crossing at least one of the pixels due to random reasons can be
estimated by

fp rate = 1 — (1 — r)"ei=, (3.25)

Here fp rate stands for false positive rate, which is the rate of false detections [84].
We must note that the above estimate assumed independence of the events “a pixel
is crossed by a line”. This is obviously not true, but a correct estimate would be
more complicated and would not make a significant difference in what follows next
(much cruder estimates exist and can be useful sometimes).

The true negative rate (or specificity), is given by tn rate = 1 — fp rate and
represents the rate of correctly classified negative outcomes. The true negative rate

is also a confidence probability that we have found a true source. We will write
tn rate = confidence := (1 — r)Nvie = [1 — 0.5 erfe(k, /v/2)]Vrie. (3.26)

Obviously, this confidence probability depends only on the threshold value k; and
the number of pixels N,;,. One could also choose to compute the confidence based
on the actual number of trajectories n crossing B,, which is higher than n;. Then,
the estimate of confidence probability will be larger and more accurate. We should
also note that the higher the number of pixels, the lower our confidence will be (see
the examples below).

Now suppose there is indeed a source present at a certain pixel B,. Suppose
also that we have an estimate of the number of detected source particles. We can
write ng = kso. Here kg is a positive constant and o is the standard deviation of

the distribution of the trajectories. Recall that o is determined by the total number
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of detected particles, which is known, and the ratios of the source dimension to the
dimension of the imaged region, for which we would, in practice, have a crude idea.
Then, the source would not be detected if the total number of lines crossing B,., n,

is smaller than the threshold ny, i.e. if
n=mny,+ns <ng=pu+kio=p+ (ki —ks)o+ kso, where ng = kso (3.27)

This implies that n, < pu+ (k; — ks)o, where n; is the number of background particles

crossing B,. The probability of this happening is given by

ks — k
fn rate = 0.5 erfc ( > t) : (3.28)
V2

In other words, we have determined the false negative rate (fn rate) of detection.

The sensitivity, or true positive rate (tp rate), is given by
tp rate = 1 — fn rate.

Note that the sensitivity of the method depends on the threshold value k; as well as
on our estimate of detected source particles.
Examples

In practice, a nuclear source with shielding could have a radius of the order
of several centimeters, while a vehicle or a cargo container has size in the order of

meters. Thus, we will assume that
R=1,r=001 =p=10"2 (3.29)

1. Suppose that we image an area in two dimensions and that it is divided into
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pixels with linear dimension equal to 1/ 100™ of the linear dimension of the
whole region. Then the probability of one line crossing a certain pixel is p ~
100~! and the total number of pixels is N, = 100%. Suppose further that we
have detected a total of N = 10° particles. We can determine the standard
deviation of the trajectory distribution to be o = \/Np(1 — p) ~ 99.5. As we
mentioned in Section 3.4, the expected SNR is about s = 0.001. This gives us

the approximate number of detected ballistic source particles,
ns = 10° = ks.0,

with ks, ~ 10. Let us set the threshold to k; = 5.

If we detect a source at a certain pixel, the true negative rate will be determined

by (see equation (3.26))
[1—0.5 erfe(5/v/2)]'% = 0.997

In other words we can be certain at least 99.7% that the source is a true one.

The probability that we fail to detect a source is given by (3.28)

10-5
0.5 erfc (O—> ~ 3.1077
V2

. In three dimensions, if the same resolution is used, the number of pixels is
N,z = 100%. Suppose we have detected the same level of particles as in the
example above, i.e. N = 10°. We note that the probability p = 100~! is the
same in two and three dimensions. Thus o =~ 99.5, and the total number of

detected ballistic source particles is ng &~ 100, as above.
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Let us set the threshold to k; = 5 as in 2D. Then the true negative rate will be
approximately 0.75, i.e. our confidence that we have found the source will be
at least 75%. This drop in confidence in three dimensions is due to the higher
number of pixels, 100®, compared to the number of pixles in 2D, which is 1002
(see equation (3.26)). The probability that we fail to detect a source will be as

in 2D: fn rate = 3.1077.

If we choose a threshold k; = 6, then we can be confident that a detected source

is a true one 99.9%. The false negative rate will be approximately 3.107°.

From the above discussion we see that in order to find sources reliably, we need
to detect ng > k,o particles from the source, where the threshold k; could be quite
large. We claim that for any k; > 0 it is possible to detect sources, provided N is
sufficiently large. Indeed, if a signal to noise ratio s is known, and if p < 1, the
number of detected source particles will be ngy &~ sN. Then, we requre the following

inequality to be satisfied

sN > ko = kiy/Np(1 —p). (3.30)

Since the left hand side of (3.30) grows linearly with /N, while the right hand side
grows only as v/N, the inequality will be satisfied for a sufficiently large N.

In practice, as we saw in the examples above, in order to detect ny ~ 100
particles from the source, we would need a total of 10° detected particles. This
number is realistic and could be achieved in at most a few minutes of detection.
Exact times will depend on the type of particles (y-photons or neutrons of some

specific energies) and of the type and size of detector arrays used.
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3.5.  Numerical Examples

For the numerical examples shown next, we simulated a point source placed inside
the unit square in two dimensions. The source emitted photons uniformly in all di-
rections and the background was uniformly distributed. The particles were detected
by three detector arrays placed on three sides of the square. The use of three detec-
tor arrays was deemed appropriate, because this configuration resembles a “gate”,
through which vehicles and cargo would pass. We simulated mechanically collimated
detectors, which render Radon type data, and also Compton camera type detectors,
which provide cone data. Each of the three detector arrays contained 100 detectors.
The angular variable, which determines the direction of incident particles, was dis-

cretized as 0; = iA0, A0 =7/200, i =1,...,199 (angular bins).

3.5.1.  Reconstruction by Standard Tomographic Techniques

First, we experimented with standard tomographic inversions. We assumed that the
collected data represented line (or cone) integrals of the source distribution function.
This means that, in the case of Radon-type detectors, we interpolated the fanbeam
data u(x, a) to parallel beam coordinates (s,w), exactly as described in Section 3.3.
On Fig. 3.11 an example of a reconstruction from (Radon) data collected by three
collimated detectors is shown. The number of detected source particles was 1039,
versus 10° background particles. The source was located at (0.203, —0.101). The
reconsruction peaks not only at the correct source location but also at a number of

other places. Even worse, some of those incorrect peaks are higher than the peak
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Radon, 3 detectors, Reconstruction by FBP, above mean +3 o
1039 source particles / 1000002 background particles

Radon, 3 detectors, Reconstruction by FBP, Source at (0.203,-0.101)
1039 source particles / 1000002 backg i particl
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Fig. 3.11. Filtered backprojection reconstruction from Radon data (left). The black
lines represent the detectors. The right picture shows only the peaks that
deviate more than 3 standard deviations from the mean. The correct source

location is circled.

at the source. The probabilistic considerations given in Section 3.4 suggest that the
source should be detectable. When Compton camera type detectors were used, data
from cone integrals was converted to line integrals data by method C, described in
Section 3.2.2. After this conversion we used filtered backprojection to reconstruct
the source distribution. On Fig. 3.12 a reconstruction from data obtained by three
Compton cameras is shown. The number of detected source particles was 1039,
versus 10° background particles. The source was located at (0.203,—0.101). The
result is similar to the previous example.

On the next figure, Fig. 3.13, we show a FBP reconstruction from Radon data.
We detected 994 particles from a source located at (—0.503,—0.101) and 10° uni-

formly distributed background particles. The particles were detected by Radon-type
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Compton, 3 detectors, Reconstruction by FBP, above mean +3 o
1039 source particles / 1000002 background particles

Compton, 3 detectors, Reconstruction by FBP, Source at (0 203,-0.101)
1039 source parti /1000002

Fig. 3.12. Filtered backprojection reconstruction from Compton data (left). The
black lines represent the detectors. The right picture shows only the peaks
that deviate more than 3 standard deviations from the mean. The correct

source location is circled.

detectors placed on three sides of a square. On Fig. 3.13 we show only peaks in
the reconstruction which deviate more than 4.5 standard deviations from the mean
(i.e. we have set up the threshold to be k; = 4.5). The true source is detected
and there are no false detections. Fig. 3.14 shows a successful detection of a source
from Compton camera data. For this simulation we used the same SNR, 0.001, but
a higher number of background particles - 1,500,000. The source was located at
(0.203,—0.101). The graph shows only the correct peak with value more than k4
standard deviations above the mean.

In summary, standard tomographic techniques fail to reliably detect sources at
the levels of SNR and total number of particles for which our probabilistic consid-

erations show that sources should be detectable. These techniques work well with
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Radon, 3 detectors,
994 source particles / 1000002 background particles, Source at (-0.503,-0.101)
Reconstruction by FBP, above mean+4.5 o
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Fig. 3.13. FBP reconstruction from Radon data, with 994 source particles and 10°
background particles. The graph shows only the peaks that deviate more
than 4.5 standard deviations from the mean. The black lines represent the

detector arrays. The position of the correct source location is circled.

higher SNRs, e.g. s = 0.01 [85].

3.5.2.  Reconstruction by Backprojection

Reconstructions by backprojection (see equation (1.11)) agree with our expectations
described in Section 3.4. As a first example, on Fig. 3.15 we present a typical
histogram of the number of lines crossing a pixel in the 2D unit square with a
uniform grid of 1002 pixels. The particles where detected by 4 collimated detectors
placed on the sides of the square. The signal to noise ratio was 0.001 and the
number of background particles particles was 1,333, 336. The detected particles were

backprojected, and after that the historgam of the backprojection reconstruction was
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Compton, 3 detectors,
1521 source particles / 1,500,000 background particles, Source at (0.203,-0.101)
Reconstruction by FBP, above mean +4

Fig. 3.14. FBP reconstruction from Compton data, with 1521 source particles and
1,500,000 background particles. The graph show only the peaks that de-
viate more than 4 standard deviations from the mean. The black lines

represent the detectors. The position of the correct source location is cir-
cled.

plotted. On the far right of the histogram one sees the contribution from the source,
which deviates more than 10 standard deviations from the mean. This result complies
with our predictions.

We first illustrate our processing of data on a typical example of Radon type
data. In fact, the data used for this backprojection reconstruction was the same used
for the unsuccessful FBP reconstruction shown on Fig. 3.11. We backprojected the
detected particles from each of the three detector arrays separately and then added
the results. The first picture on Fig. 3.16 shows a typical backprojection reconstruc-

tion. There is a drop of the values at the side of the square, due to the missing



82

16

14

12 4

deviation due to source
Mean + 10.95 standatd deviations

10

N T

6200 6400 6600 Mean 7000 200 7400 7600

Fig. 3.15. Histogram of a backprojection reconstruction from data collected by four
collimated detectors, placed on the sides of the unit square. The data
simulated a source at the point (0.202, —0.01), with SNR 0.1% and total
number of particles slightly more than 10°. The number of lines due to the

source deviates more than 10 standard deviations from the mean.

detector. Thus, effectively, there is a non-uniform distribution of the background.
However, this change in the non-uniformity is smooth, so we can assume that the
local distribution of trajectories is uniform. In order to apply our probabilistic argu-
ments described in Section 3.5.2 we estimated the local mean and standard deviation
at every point. This was done by analysis of the data on a 7 x 7 grid surrounding
each pixel. Then, the standard deviation from the local mean at every point was

computed and plotted (see bottom left plot on Fig. 3.16). The confidence probability
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was calculated by
confidence = (1 — 0.5 % erfc(ksource/\/ZQ)))1002>

where kgouree 18 the number standard deviations above the mean at the highest peak.

The calculated confidence level for this example was 99.99%.

5500
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Fig. 3.16. Backprojection reconstruction from Radon data (top). Number of (local)
standard deviations above the (local) mean at each pixel is shown on bottom
left. Peaks that deviate more than 3.5 (local) standard deviations from the
mean is shown on bottom right. Source located at (0.203,0.101) is detected
with confidence 99.99%.

For the reconstructions from Compton camera data, we used method C to con-
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vert cone data into Radon data. Afterwards, the procedures used for Radon data
(described above) were employed. The backprojection reconstruction from the same
data used in Fig. 3.12 is shown on Fig. 3.17. The results are similar to the recon-

struction from Radon data, only the confidence probability is slightly lower - 97.56%.

NoA o s n oW s

Fig. 3.17. Backprojection reconstruction from Compton data (top). Number of (local)
standard deviations above the (local) mean at each pixel is shown on bottom
left. Peaks that deviate more than 3.5 (local) standard deviations from the
mean is shown on bottom right. Source located at (0.203,0.101) is detected
with confidence 97.56%.

A couple of more examples of reconstructions from Compton camera data are
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provided below. The number of source particles was 986 versus 10° background
particles. The source on Fig. 3.18 is close to one of the detectors and is difficult to
detect. The local mean and o were estimated on a larger local grid, 11 x 11 pixels,
which raised the confidence level. We believe that larger local grids allow for more
precise estimation of the mean, thus raising the confidence level for the detected
source. However, if the local grids are too large, the distribution of trajectories in a
local grid would not be close to uniform anymore, and this will hamper our ability
for detection. The source on Fig. 3.19 is close to the side of the square on which a
detector is missing. The number of source particles was 994 versus 10° background
particles. The local mean and standard deviation were estimated on 7 x 7 local grids.
The confidence level is 96.7%.

Finally, we present an example of a successful detection of several sources
(Fig. 3.20). Three sources were placed inside the imaged area, and three Compton-
type detector arrays were used to detect particles. The total number of detected
source particles was 3061, each of the sources having roughly the same contribution.
Additional 10° random background particles were detected. We have set up the
threshold to k; = 4.30, which gives confidence of detection at least 91.97%. Note
that this confidence probability is estimated base on the threshold, and not on the
actual number of deviations at each peak, as in the previous examples. The local
grids we used for estimating the local means and standard deviations had dimensions

11 x 11.
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Fig. 3.18. Backprojection reconstruction from Compton data (top). Detected source
particles - 986, background particles - 1,000,002, source location -
(0.803,—0.7041). Number of (local) standard deviations above the (local)
mean at each pixel is shown on bottom left. The local mean and o were
computed on a 11 x 11 local grid. Peaks that deviate more than 3.5 (lo-
cal) standard deviations from the mean is shown on bottom right. Source
located at (0.803,0.7041) is detected with confidence 76.03%.
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Fig. 3.19. Backprojection reconstruction from Compton data (top). Detected source
particles - 994, background particles - 1,000,002, source location -
(—0.503,—0.101). Number of (local) standard deviations above the (lo-
cal) mean at each pixel is shown on bottom left. Peaks that deviate more
than 3.5 (local) standard deviations from the mean is shown on bottom
right. Source located at (0.503,0.101) is detected with confidence 96.7%.
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Fig. 3.20. Backprojection reconstruction from Compton data (top). Detected source
particles - 3061, background particles - 1,000,002, sources located at
(0.203,-0.101), (-0.301,0.4013) and (0.403,-0.601). Number of (local) stan-
dard deviations above the (local) mean at each pixel is shown on bottom
left. Peaks that deviate more than 4.3 (local) standard deviations from
the mean is shown on bottom right. Confidence of detection based on the
threshold &k, = 4.3 is 91.97%.
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3.6. Remarks

In this chapter we investigated three methods of inversion of the two-dimensional
cone transform, which arises in Compton camera imaging. All of these methods
use the complete set of available data, which is highly desirable in detection of low
emission sources. One of the presented methods, method C (see Section 3.2.2),
reconstructs the correct image away from the detectors, and, in addition, is simple
and numerically efficient. In 3D, the data set provided by Compton cameras is five
dimensional and computationally efficient methods are needed. Thus, an analog of
method C in three dimensions could be highly valuable.

In Sections 3.4 and 3.5 we considered the problem of detection of low emission
geometrically small sources in the presence of strong natural radiation background.
We presented a method for detection and discussed its application to a homeland
security project aimed at preventing the smuggling of nuclear substances. Examples
of source detection from numerically simulated data using Compton camera detec-
tors in 2D were shown. We described a technique for source detection when the
background is not uniform. Testing of our algorithm with more realistic data is in

process.
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CHAPTER IV

CONCLUSION

In the first part of this dissertation we described the time reversal method, as ap-
plied to thermoacoustic tomography. We presented a thorough numerical study of
the method, which included reconstructions with variable trapping and non-trapping
sound speed, non-zero initial velocity, phantoms partially supported outside the im-
aged area as well as reconstructions with averaged sound speed. We provided er-
ror estimates for the time reversal approximation, thus justifying the time reversal
method in any dimension under a non-trapping condition on the sound speed. Nu-
merical examples agree with the error estimates in the cases of non-trapping speeds
and show that time reversal works even when the sound speed is trapping. The
stability of the time reversal method with respect to errors in measured data was
also investigated.

The second part of this dissertation considered a problem from emission to-
mography, namely Compton camera imaging and the resulting cone transform. We
presented three methods for inversion of the two-dimensional cone transform and pro-
vided examples of reconstructions based on these methods. Next, we described the
problem of detection of geometrically small sources in the presence of a large back-
ground radiation and the use of Compton cameras for this purpose. We presented
an efficient method for detection of such sources and provided numerical examples

which demonstrate the method.
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APPENDIX A

TIME REVERSAL CODES

This appendix contains the author’s Matlab implementation of the time-reversal
method for thermoacoustic tomography.

There are two major parts of the code. In the first one, wave propagation is
simulated and data is recorded on an observation surface S. In the second part
wave propagation in reversed time order is performed, using the data recorded on
the previous step. Below we provide more details regarding the implementation as
well as the actual codes.

Step 1~ The script forward.m is used to compute the forward propagation of waves
resulting form a given initial pressure f(z) (a phantom) and with initial velocity

g(z). In order to simulate wave propagation in the whole space, we solve the wave

equation
uy = *(x)Au, t€0,Tfinal], x € D = [—a,a)?
u(z,0) = f(x), u(x,0) = g(x), (A.1)
u(z,t) lop=0,

Here the domain D is large enough to guarantee that reflections of the waves off
its boundary 6D do not reach the unit circle. Thus, the size of D depends on the
sound speed ¢(z) and the time T final. The values of the wave are recorded on the
boundary of the unit circle, S. The simulation of wave propagation is done using
finite difference approximation, as described below. A similar implementation can

be found in [26]. First, the domain D is discretized as a uniform Cartesian grid with
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grid points (x;,y;) = (—a +ih,—a+ jh), 1,7 =0...n, h = 2a/n. The time varable
t € [0, T final] is discretized as t* = k7, k =0...,m, 7 = T final/m. The solution
of (A.1) at the space-time grid points, u(z;,y;,t"), is approximated by the (finite

difference) solution uf; of

k+1 _ 2 k k k k 2 k k-1
wiyt = A (U g g g ) (2= AN —

ij=1,...n—1,k=1,....m—1

0 _ . .
u; ;= fij, 43=0,...,n

1 1, (A.2)
U; ;= fij + 79+ 5)‘2'73' (fixr;+ firy + fij + fijon —4fi5),

i,j=0,...,n

ko ok Co _
ug; =uo=0, 4,j=0,...,n, k=0,....,m

c(xi, )T
h

tion A.2 is a second order finite difference approximation to A.1 with second order ap-
h

proximation of initial conditions. This numerical scheme is stable, if 7 < ———
V2 max(c)

e.g. [86]. The observation surface S is approximated by points from the finite dif-

Here, we have denoted f;; := f(z4,y;), gij = g(xi,y;) and \;; == . Equa-

ference grid used for reconstruction (see Step 2) and the values of the wave at these
points are obtained by nearest neighbor interpolation in space and linear interpola-
tion in time. Care is taken so that the meshes for forward wave propagation and
reconstruction are different. The data collected on the observation surface is saved
in the file forward data.m.

Step 2 The time-reversal method is implemented in the script reconstruction.m.

The goal is to solve the wave equation inside the unit circle, starting at time 7T <
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T final until time 0. The initial conditions at ¢ = T" are set to zero and the bound-
ary conditions, which were recorded at the previous step, are transmitted to S in
reversed time order. In the actual implementation we solve equation (A.2) inside the
square [—1.2,1.2]% from time ¢t = T until time ¢ = 0, with zero initial conditions at
t = T and zero boundary conditions. The values of the wave on S are enforced on
the solution on each time step. As a result, we obtain the correct solution of the

wave equation inside the unit disc, which is our area of intereset.

Below is the order in which the codes should be run:
1. In order to set up the parameters, modify and run configure.m
2. For simulating wave propagation, run forward.m.

3. Once the data on the observation surface is recorded, one can experiment with
reconstructions from different cut-off times T. In order to reconstruct the phan-
tom, run reconstruction.m. This last script will prompt for a value of the cut-off

time T.

Listing IV.1 ’configure.m’

% Forward problem: Solve the wave equation

% u_tt = ¢"2\ Delta u in the domain

% D = [-a,a] 2 (a>2) with initial conditions
% u=phantom, % du/dt=initial_velocity and

% 0 values on the boundary. The values of

% the solution are recorded on the boundary of
% the wunit circle.
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clear all

% reqire: cx Tfinal/2 + 1 < a
(V4

G %
% Parameters for the Forward Wave %
% %
% Compute the wave in [—a,a] 2
a = 3;
% h = 2xa/n will be the mesh size
n = 800;
% The time till which the solution
% will be computed.
Tfinal = 3.05;
% ——— Soundspeed for the forward wave
cd Speeds
¢ = nice_cos(a,n);
cd
% Set Initial Conditions
cd Phantoms
% initial pressure
phantom = combl_phantom(a,n);
% initial velocity
initial_velocity = zeros(n+1,n+1);
cd
% %
% Reconstruction Parameters %
% %
% Compute the reconstruction
% on [—ar,ar]" 2
ar=1.2;
% hr = 2xar/nr will be the mesh size
nr = 400;

% The following is done to ensure
the
% grids for the forward wave and for
% the reconstruction are different
if 2xar/nr = 2xa/n
nr = nr—10;
end

%———— Soundspeed for the reconstruction

cd Speeds
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cr = nice_cos(ar,nr);

cd

%—————— Limited View
% Data is NOT available for parts of
% the boundary with polar

coordinates

% in (angl,ang2). ’‘angl’ and ’ang2’
% must be given in radians and
% 0 <= angl < ang2 <= 2% pi.

angl = 0; ang2 = pi/4;

%———Create the phantom on the reconstruction mesh

% Used to compare with the reconstruction
cd Phantoms

phantomR = combl _phantom (ar ,nr);

cd

save config
disp (’Configuration done.’)

Listing IV.2 *forward.m’

clear all, clf reset
disp ( 'forward starts....’)

Z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%g
0 Setup 0
T I I I I e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 66
% Load parameters for the forward
% solution , including sound speed
% and initial conditions.
load config

x=linspace(—a,a,n+1); [X,Y]=meshgrid(x);

h = 2xa/n;

Compute the approximation of the
circle Br with points from the
reconstruction grid (UbX, UbY), at
which the wvalues of the wave will
be recorded.

N NN XK

xr=linspace(—ar,ar ,nr+1);

[UbX,UbY, indexX , indexY ]

find_boundary (1,xr);
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% Plot initial conditions
ang = 0:.01:2xpi;
gray_plot (X,Y,phantom)
title(’Initial Pressure’)
hold
plot3 (UbX,UbY, zeros (length (UbX)),’:’ 'LineWidth’ ,2)
hold off
pause

gray_plot (X,Y,initial _velocity)
title (’Initial Velocity )

hold

plot3 (UbX,UbY, zeros (length (UbX) ), : ', ’LineWidth’ ,2)

hold off

pause

T e e e e e e e e o e o e e e e e e o b b b b b b B B B B B 6 6 6660606
% Finite Difference Solution %

oo

% Parameters

%

% time step satisfying the stability
% cond. for the forward mesh
tauf = h/(1.42xmax(c(:)))
time_steps = ceil (Tfinal/tauf), tauf = Tfinal/time_steps;
fwdtimes = linspace (0, Tfinal ,time_steps+1);

% Begin Algorithm
(V4

t=0; timestep = 1;
L=(c.xtauf/h)."2
Uoldest = phantom;
% Record wvalues at the circle Br
Ubound (: , timestep )= interp2(X,Y, Uoldest ,UbX,UbY, "«xnearest ’) ;

% Set the wvalues for U at time "tau”
% using 2nd order approx. of
% initial velocity
t = t+tauf; timestep = timestep + 1;
Uold = Uoldest + taufxinitial_velocity + (L./2) .%...
(circshift (Uoldest ,[1 0])+circshift (Uoldest,[—1 0]) +...
circshift (Uoldest ,[0 1])4circshift (Uoldest ,[0 —1]) —...
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4x Uoldest ) ;
% Set boundary of [—a,a]"2 to 0
Uold (1,:)=0; Uold(n+1,:)=0;
Uold (:,1)=0; Uold (:,n+1)=0;

Ubound (: , timestep ) = interp2(X,Y,Uold,UbX,UbY, "«nearest ’) ;

while t < Tfinal
t = t+tauf, timestep = timestep + 1;
Utemp=L.*( circshift (Uold,[1 0])+circshift (Uold,[—
cireshift (Uold,[0 1])+circshift (Uold,[0

1 0])
(2—4xL) .+ Uold — U

0]) +...
1)) +...
oldest ;

-+

Uoldest = Uold;

Uold = Utemp;

Uold (1,:)=0; Uold(n+1,:)=0;
Uold (:,1)=0; Uold (:,n+1)=0;

Ubound (: , timestep ) = interp2(X,Y, Uold ,UbX,UbY, "«nearest ’) ;
end

377777777777777777777777777777777777777777777777777777777775
Graphs
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gray_plot (X,Y, Uold)

title ( 'Solution at time Tfinal ")

hold

plot3 (UbX,UbY, zeros (length (UbX) ), :’, "LineWidth " ,2)

hold off

O L e e e VS eV e G e e V6 e eV e e V60 el
% Save Data %

I 0 67 67 06 7 6 7 0626 e 6 7 60 e e e 6% e e e e e e e e e i e e e e e e i e e e e 7 e e 66 %%
save forward_data Ubound UbX UbY indexX indexY fwdtimes
Tfinal tauf h

disp(’'E N D (forward)’)

Listing IV.3 ’reconstruction.m’

) )

‘% Reconstruct the wave inside the circle with radius ’r

clear all, clf reset

| I I 66 0606 |
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% Input Parameters %
%77777777777777777777777777777777777777777777777777777777777

load config
% Load data Ubound UbX
% UbY indexX indexY

% fwdtimes Tfinal tauf h
load forward_data

T = Tfinal;
while (T >= Tfinal)
fprintf(’Enter time from which to reconstruct’
"(must be less than %3.2f): \n’, Tfinal );
T = input(’'T = 7);
end

Ubound = limited_view (Ubound,angl ,ang?2);

% Reconstruction mesh
xr=linspace(—ar,ar ,nr+1); [Xr,Yr|=meshgrid(xr);
hr = 2%ar/nr;

% ’taur’ — reconstruction time step
taur = hr/(1.42xmax(c(:)));
time_steps = ceil (T/taur); taur = T/time_steps;

bkwdtimes = linspace (0,T, time_steps+1);
tauf, taur
% Interpolate boundary data
UB = interpolate_boundary (Ubound, fwdtimes , bkwdtimes) ;
% Flip the time
UB(:,1:end) = UB(:,end: —1:1);

T e e e e e e e e e e e e e e e b b b b b b b B B e 660606
% Begin Algorithm %

%‘777777777777777777777777777777777777?77?77777777?777?77?777
t =T, timestep = 1,

% Set initial conditions: U at times 0 and tau equals 0
Uoldest = zeros(nr+1,nr+1);

t = T—taur, timestep = timestep + 1;
Uold = Uoldest;

% enforce boundary conditions
for i=1:length (indexX)
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Uold (indexY (i) ,indexX(i)) = UB(i, timestep);
end

L=(cr.xtaur/hr)." 2;
while t >= taur

t=t—taur, timestep = timestep-+1;
Utemp = L.x( circeshift (Uold,[1 0]) +.
circshift (Uold,[—-1 0]) + 01rcsh1ft(Uold,[O 1)) +...
circshift (Uold,[0 —1]) ) + (2—4xL).xUold — Uoldest;
Uoldest = Uold;
Uold = Utemp;

% enforce boundary conditions
for i=1:length(indexX)
Uold (indexY (i) ,indexX (1)) = UB(i,timestep);

end
end % while

% Initial wvelocity reconstruction
velocity_-rec = (Uoldest—Uold) /taur— L/(2%taur) .x*...
( circshift (Uold,[1 0]) + cireshift (Uold,[—1 0]) +...
circshift (Uold,[0 1]) 4+ circshift (Uold,[0 —1]) —
4xUold );

?7777777777777777777777777777777777777777777777777777777775

Errors

I I 6 e e I I 6 6 e 606 0 06060600 e
% cut away the wvalues outside the
% unit circle

Uold_cut = Uold.*double (Xr."2+Yr."2<0.97);

Phantom_cut = phantomR.x double (Xr."24+Yr. 2<0.97);

error = Uold_cut—Phantom_cut;

[dedx ,dedy] = gradient (error h);

[dPhantom_dx ,dPhantom_dy|=gradient (Phantom_cut ,h) ;

12errP=100%sqrt (sum(sum(error.” ) )/sum(sum(Phantom cut.”2)))
hlerrP = 100xsqrt (sum(sum(error.”2+dedx. 2+dedy."
sum (sum( Phantom_cut.”2+dPhantom_dx. 2+dPhantom dy "9 )))

0 e et e e et e T e e e e e e e e e e e e e 6 e e e 66 e e Ve 6 e e e Vo6 6 e e Vo6 6 e e 7660676 %
% Graphs %
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| I VI I VI Ve |

% Call the scropt mygraphs.m
mygraphs

Below are the auxiliary functions and scripts used in the main scripts forward.m

and reconstruction.m.

Listing 1V .4 ’find_boundary.m’

function [UbX,UbY,indexX ,indexY | = find_boundary (r,x)

% Approzimates the boundary of the circle centered at 0 with
% radius 'r’ by points from the square mesh

% [X,Y] = meshgrid(z).

%

% A point from the mesh is a boundary point if at least one
% of its 4 neighbours is outside the circle.

% Output:

% UbX, UbY hold the coordinates of the boundary points. The
% vectors ’indexX ' and ’indexY ’ hold the indexes
% (corresponding to the mesh X,Y) of the boundary points.

[X,Y] = meshgrid(x);
UbX = [];

UbY = [];

indexX =][];

indexY =[];

h = X(1,2)-X(1,1); % mesh size
for i = l:max(size (X))

for jilimaX(Si'z'e(Y)) .
norm_ij = norm ([X(i,i ) YL

if (norm_ij<=ré&norm_ij>r—h«sqrt (2))
norm-mo = norm ([X(i—1,i—=1),Y(j,j)]);
norm-po = norm ([X(i+1,i+1),Y(] ,J)]) ;
norm_om = norm ([X(i,1),Y(j—1,j—1)]);
norm_op = norm([X(i, ) Y (j+1,i+1)]);
if (norm_mo>r | | norm_po>r || norm_-om>r | | norm_op>r)

UbX=[UbX, X(i,i)];
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UbY=[UbY, Y(j,j)];
indexX =[indexX, 1i];
indexY =lindexY, j];

end
end
end
end
% Sort UbX, UbY, indexX and indexY %
% by increasing angle coordinate of the boundary points
% JUVX (i) ,UbY(i)]
% %

% get the angular coordinates of the
% boundary points.

[phi,rho] = cart2pol (UbX,UbY) ;
% The angular coordinates "phi” are
% then sorted by increasing angle,
% 7order” is the wector of indeces
% such that phi-ordered=phi(order).

[phi_ordered ,order| = sort(phi);

clear phi rho phi_ordered

% Now reorder UbX, UbY, indexX and
% indexY .

UbX = UbX(order);

UbY = UbY(order);

indexX = indexX (order);

indexY = indexY (order);

Listing IV.5 ’limited_view.m’

function [LVUbound] = limited_view (Ubound,angl, ang2)

% Produces a limited view data by (smoothly) replacing the
% boundary data corresponding to points on the boundary with
% polar coordinates in (angl, ang2) by zero. ’angl’ and

% ang2’ must be given in radians and

% 0 <= angl < ang2 <= 2xpi.

alpha = angl;
beta= ang?2;

if (alpha — beta) ==
LVUbound = Ubound;
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else

% h_bound is approximately the

% discretization step along the

% boundary of the wunit circle.
h_bound = 2xpi/(length(Ubound(:,1))—1);

% alpha_i, beta_i are the indexes in
% Ubound that correspond to the
% angles alpha and beta

alpha_i = floor (alpha/h_bound)+1;

beta_i = ceil (beta/h_bound)+1;

% we will smoothly cut to zero
% within 20% from either side.
smooth = floor ((beta_i—alpha_i)/5);

LVUbound = Ubound;

LVUbound(alpha,i—i—lzbeta,i —1,:)= 0;

for j=1:length(Ubound(1,:))
LVUbound (alpha_i: alpha i+smooth , j) =
LVUbound(alpha_i,j).x(1+ cos(pl*(O smooth)/smooth))/?;
LVUbound(beta_i—smooth: beta_i,j)=
LVUbound(beta_i,j).*(1— cos(pix(0: smooth)/smooth))/Q;

end

end %if/else

Listing IV.6 ’interpolate_boundary.m’

function [UboundR] = interpolate_boundary (Ubound, fwdtimes,
bkwdtimes )

% Linear interpolation of Ubound given at fwdtimes to

% bkwrdtimes. Ubound(:,i) is the wector containing the

% values for time fwdtimes(i).

if fwdtimes (end)<bkwdtimes (end)
error (T must be less than to Tfinal’)

return
end
tauf = abs(fwdtimes(1)— fwdtimes(2));
taur = abs(bkwdtimes(1)— bkwdtimes(2));
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Nf = length(fwdtimes); Nr = length(bkwdtimes);
for i = 1:Nr
p = (i—1)xtaur;
k = floor (p/tauf)+1;
a = (Ubound (:,k+1)—Ubound (:,k))/tauf;
b = (1-k)*Ubound (: ,k+1)+k+Ubound (: ,k) ;
UboundR (:,1) = axp+b;
end

The next three functions are samples of a phantom and two sound speeds.

Listing IV.7 ‘comb]_phantom.m’

function [U] = combl_phantom (a,n)

% Produces the characteristic function of the part of the
% annulus {a<=[X|<=b} which lies in the first quadrant +
% two circles.

% The output U’ gives the wvalues of the phantom on the
% square grid on [—a,a] 2 with mesh size 2a/n.

[X,Y] = meshgrid(linspace(—a,a,n+1));
a=0; b = 0.7;
U=double ((X."24Y."2>=a"2)) .* ((X."24Y."2<=b"2) ) .%(X>=0) . % ...
(Y>=0)+0.7«xdouble ( (X+0.5)."24Y."2<=0.09 )+...
1.3xdouble (X."24(Y+0.5).72<=0.01) ;

Listing IV.8 'nice_cos.m’

function [c¢] = nice_cos(a,n)
% Time of travel though the wunit circle: = 1.69/4

[X,Y] = meshgrid(linspace(—a,a,n+1));
¢ = (140.2xcos(X."24Y."2) ) .xdouble (X."24Y."2<=1) +...
(140.2%cos(1)).xdouble(X."24Y."2>1);

Listing IV.9 'parabolic_speed.m’

‘function [¢c] = parabolic_speed (a,n)



HXY
‘c
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% c = 0.1 +X"2+Y"2
%Time it takes a wave to cross the unit circle: ~8

, Y] = meshgrid (linspace(—a,a,n+1));
—0.1+(X."24+Y."2) .+ double (X."24Y."2<=1)+double (X."24+Y."2>1) ;

The following script was used for numerical estimation of the error as a function

of cut-off time T (see 2.5).

Listing IV.10 'reconstruction_loop.m’

% This script was written to compute the dependence of the
% approximation error on the cut—of time T. In order to run
% this, comment the part in reconstruction.m which defines T
% as well as the 7clear all” command

% (both are at the wvery beginning of reconstruction.m)

clear all, clf reset

load forward_data Tfinal

% The reconstructions are computed for T in [t0, Tfinal —0.05]
t0 = 2;

reconstructionT = [t0:0.2: Tfinal —0.05];

BE= 1

for recT = 1l:length(reconstructionT)
T = reconstructionT (recT)
reconstruction

E(recT ,:) = [reconstructionT (recT) 12errP hlerrP];
end

save err_wrt_. T E

ny7777777777777777777777777777777777777777777777777777777775
Graphs
W7777777777777777777777777777777777777777777777777777777777
plot(E(:,1) ,E(:,2),’=k’, LineWidth’ ,2)

hold on

plot(E(:,1) ,t0«E(1,2)./E(:,1), ’:k’, LineWidth " ,2)

legend (’L"°2 error ',’C/T")

%title ("Trapping sound speed’)

xlabel ('cut—off time T7)
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ylabel (’'L"2 error’)

hold off

pause

plot (E(:,1) ,E(:,3),’=k’, ’LineWidth’ ,2)

hold on

plot (E(:,1),t0«E(1,3)./E(:,1), :k’, LineWidth " ,2)
legend ( H°1 error ,'C/T7)

%title ("Trapping sound speed ’)

xlabel ('cut—off time T7)

ylabel( 'H"1 error’)

hold off

pause

% Logarithmic Scale and Linear Regression
(V4

%

logE=log (E) ;

pl2 _str= polyflt(logE( ,1),logE( ,2),1);

pl2= polyval(p12 str ,logE (:,1));

fprintf(’Polyfit for L°2 error is: %G6.2f x+%6.2f\n" ,pl2_str)
phl_str= polyflt(logE( 1), logE( ,3) ,1);

phl= polyval(phl str,logE (:,

fprintf(’Polyfit for H 1 error is: %6.2f x+%6.2f\n" ,phl_str)

plot (logE (:,1) ,logE (:,2),’=k’, ’LineWidth " ,2)

hold on

plot (logE (:,1) ,pl2,’:k’, " LineWidth’ 2)

legend (’log of L"2 error ’  [num2str(pl2_str (1)), x+’,
num2str( pl2_str(2))])

xlabel('log T7)

ylabel(’log of L"2 error’)

hold off

pause

plot (logE (:,1) ,logE (:,3),’=k’, LineWidth’ ,2)

hold on

plot (logE (:,1) ,phl,’:k’,’LineWidth’ 2)

legend('log of H'1 error ' ,[num2str(phl_str (1)), 'x+",
num2str(phl_str(2))])

xlabel('log T7)

ylabel(’log of H'1 error’)

hold off

pause
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% Scaled graphs for trapping speeds xonlyx

pl2_str=polyfit (time, logE (:,2) ,1);

pl2=polyval(pl2_str ,time) ;

fprintf(’Polyfit for L2 error is: %6.2f x+%6.2f\n’,pl2_str)
phl_str=polyfit (time,logE (:,3) ,1);

phl=polyval(phl_str , time);

fprintf(’Polyfit for H'1 error is: %6.2f x+%6.2f\n’,phl_str)

plot (time ,logE (:,2),’=k’, ’LineWidth’ ,2)

hold on

plot (time ,pl2,’:k’, "LineWidth’ ,2)

legend (’log of L"2 error ' [num2str(pl2_str (1)), x+’,
num?2str( pl2_str(2))])

xlabel ('log log (2+T)")

ylabel(’'log of L"2 error

hold off

pause

plot (logE (:,1) ,logE(:,3),’—k’, ’LineWidth " ,2)

hold on

plot (logE (:,1) ,phl,’:k’, ’LineWidth’ ,2)

legend (’log of H'1 error ’  [num2str(phl_str (1)), x+’,
num?2str(phl_str(2))])

xlabel ('log T7)

ylabel(’log of H'1 error’)

hold off

The next three files are used for the graphs.

Listing IV.11 'mygraphs.m’

‘ang = angl:—.01: —2xpitang?2;

| % Grayscale
| figure (1)

|subplot (1,2,1);

|gray_plot (Xr,Yr,Phantom_cut)
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title ( "Phantom )

hold

plot3(cos(ang) ,sin(ang),ones(1,length(ang)),’ :w’,
‘LineWidth ’ ,2)

hold off

subplot (1,2 ,2)

gray_plot (Xr,Yr, Uold_cut)

title (| 'Reconstruction from time T=’ num2str(T),’ L2 err 7,

num2str(12errP),’ %, Hl err ' ,num2str(hlerrP),” %’])

hold

plot3(cos(ang) ,sin(ang),ones(1,length(ang)),’ :w’,
"LineWidth ’ ,2)

hold off
% Surface

figure (2)

subplot (1,2 ,1);

nice_plot (Xr,Yr,Phantom_cut)

title (’Phantom’)

hold

plot3(cos(ang) ,sin(ang),zeros(1,length(ang)),’: ",
'LineWidth ,2)

Y.

hold off

subplot (1,2 ,2)

nice_plot (Xr,Yr, Uold_cut)

title (| 'Reconstruction from time T=’ num2str(T),’ L2 err 7,
num2str (12errP )’ %, Hl err > ,num2str(hlerrP),’” %’])

hold

plot3(cos(ang) ,sin(ang),zeros(1,length(ang)),’: ",

"LineWidth’ ,2)

[

hold off

% Profile plots at y= y0

% ’at’ determines the entries of

% the arrays corresponding to ’‘y0’
at =floor ((ar+y0)/hr);
figure (3)
subplot (1,2 ,1)
gray _plot (Xr,Yr, Uold_cut)
hold on
plot3 (xr,y0*ones(size(xr)) max(max(Uold_cut))=*

ones (size(xr)),’—’, LineWidth’ 1)

hold off
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title (’Reconstruction’)
subplot (1,2,2)

plot (xr,Uold_cut (at,:) ,’=k’, LineWidth’ ,2)
axis([-1 1 —0.1, 1.2])

hold on

plot (xr ,Phantom_cut(at ,:) ,’:k’, ’LineWidth’ ,2)

xlabel ('x")

ylabel('y’)

legend ([ 'Reconstruction form T = ' num2str(T)],  Phantom’)
title ([ 'y=",num2str(y0),’ profile; 12 Error 7,

num?2str(12errP),’ %, hl err’ num2str(hlerrP),’” %’])
hold off

Listing 1V.12 ’gray_plot.m’

function [] = gray_plot(X,Y,U)
Uplot = U;

surf(X,Y, Uplot)

colorbar

xlabel ('x7)

ylabel ('y’)

colormap (gray)

view (0,90)

shading interp

Listing 1V.13 'nice_plot.m’

function [] = nice_plot(X,Y,U)
Uplot = U;

surf(X,Y, Uplot)

colorbar

xlabel (’

x7)

ylabel ('y’)

zlabel (’'u’)

colormap(jet)

view (7,43)

shading interp

lightangle (—45,30)

set (gcf, "Renderer’, " zbuffer ’)

set (findobj (gca, 'type’, 'surface’) ...
"FaceLighting ', "phong’ ...
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"AmbientStrength’ ,.3,  DiffuseStrength’ ,.8 ,...
"SpecularStrength’ ,.9, SpecularExponent’ ,25 ;...
‘ "BackFaceLighting >, "unlit ")
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APPENDIX B

COMPTON CAMERA IMAGING CODES

This appendix contains the author’s Matlab codes for inversion of 2D cone trans-
form and for simulation and detection of a geometrically small source in the presence
of a large background. Numerical examples based of these codes are presented in
Chapter III.

First, analytical cone projections of phantoms were computed. Four detector
arrays were placed on the sides of the unit square, i.e. the vertices of the cones
were restricted to the sides of the square. Methods A,B and C were used to convert
cone projections into Radon projections and then filtered backprojection (1.15) was
utilized to invert the Radon transform and obtain reconstructions of the phantoms.
Examples of reconstructions using data from one and three detector arays can be
found in Section 3.3.

We also simulated Compton and Radon emission data from point sources in
the presence of a large random background radiation. The same reconstruction
methods as for analytic data were used for detection of sources. The results of
these computations were not entirely satisfactory. Reconstructions and a discussion
were presented in Section 3.5.1. Next, backprojection was utilized to detect sources.
This approach offers several advantages over standard tomography reconstructions,
as described in Section 3.4.2. In particular, it allows for treatment of non-uniform
background. Reconstructions and a detailed discussion of the numerical results can

be found in Section 3.5.2.
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We proceed with a brief description of the codes and instructions for their use.

The set up of parameters is done in the script configure.m (Listing IV.14).
Here, the location and the centers of bins of detector arrays are specified, as well as
the discretization of cones’ central axes and scattering angles. The configuration is
saved in the file config.mat.

The script makephantom.m (Listing IV.15) creates phantom data based on the
saved configuration. Radon and cone projection data of phantoms consisting of
several circular inclusions can be created by choosing the option for analytic phantom.
If the source phantom option is chosen, the code simulates Radon and Compton-type
detector data coming from several point sources and a random background. The data
is saved in the file phantomdata.mat.

There are three codes which can be used for reconstruction. The script
cone_inversionA.m (Listing IV.16) is an implementation of method A for inversion
of the cone transform. The script reconstruct.m (Listing IV.17) has an option for
using methods B or C for transforming cone into fanbeam data. Then filtered back-
projection is used to invert the Radon transform. The backprojection method for de-
tection of geometrically small sources is implemented in reconstruct_pointsource.m
(Listing IV.18). The last script should be used for emission-type data only, while the
first two could be used for projection data as well as for emission type data. Both
reconstruct.m and reconstruct_pointsource.m have an option for the number of
detector arrays used for reconstruction. These codes can used for reconstructions
from Radon or Compton type data.

The programs should be run in the following order:
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1. In order to set up the parameters, modify and run configure.m

2. To create a phantom, run makephantom.m. This script prompts for a type of

phantom (analytic projections or emission-type) and for its specifics.

3. Once the phantom data is computed, the phantom can be reconstructed by
cone_inversionA.m, reconstruct.m or reconstruct_pointsource.m. Dif-

ferent number of detector arrays can be used.

Listing IV.14 ’configure.m’

clear all
% #bins in each detector array +1

ndet = 100;
J# rays from each detector (alpha)

nalpha = 200;
% # central azes beta

nbeta = nalpha —2;
% # scattering angles psi

npsi = nbeta;
% alpha — rays from each detector, i.e.
% angular coordinates

alpha = linspace (0,pi,nalpha);% alpha = alpha (2:nalpha+1);
% phi=alpha—pi /2

phi = linspace(—pi/2,pi/2,nalpha);% phi = phi(2:nalpha+1);
% half—angles psi

psi = linspace (0,pi,npsi+2); psi = psi(2:npsi+1);
% central azes beta

beta = linspace (0,pi,nbeta+2); beta = beta(2:nbeta+1);

% %
% Detectors %
% %

disp('Detector arrays are placed on the sides of the unit
square. )

%

%

disp ('’ detector

disp ('’ array III

~—
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diSp(’ a)

disp ('’ detector | | detector ")

disp ("’ array IV | | array II ")

disp (" I )

disp (° | | )

disp ('’ ")

disp ('’ —1  detector 1 ")

disp ('’ array 1| M)
% Coordinates of the detectors.

x1(:,1) = linspace(—1,1,ndet);

x2(:,1) = —lxones(size(x1(:,1)));

x1(:,3) = linspace(— 1+1/(7*ndet) ,J1+1/(7+«ndet) ,ndet ) ;

x2(:,3) = 0.999xones (size(x1(:,2)));

x2(:,2) = linspace(—1—1/(11xndet),1—1/(11xndet) ,ndet);

x1(:,2) = ones(size(x2(:,3)));

x2(:,4) = linspace(—1+1/(13*ndet),1—1/(13xndet) ,ndet);

x1(:,4) = —lxones(size(x2(:,4)));

save config
disp(’'Configuration done!’)

Listing IV.15 'makephantom.m’

clear all
load conflg

phan = 7’

Whlle (phan "="a’ & phan"="s")
fprintf(’Phantom: a = analytic, s = source\n’);
phan = input(’Enter phantom type = ’,’s’);

end

) Y

a
disp(’Analytic phantom consisting of circular inclusions
)

ndisks = input(’Enter number of inclusions = 7);
for i=1:ndisks
c(:,1) = input(’Center of disk [x,y]=")";
r(i) input('radius = ’);
a(i) input ( "amplitude =");
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end
[C U] = .
analytlcphantom(c(l ;i) ,c(2,:),r,a,alpha,psi,beta,xl,x2);
save phantomdata C U ¢ r a x1 x2 alpha psi beta
else

disp ( 'Source phantom....")
nsources = input(’Enter number of sources = ’);
for i=Il:nsources
S(:,i) = input(’Location of point source inside unit
square [x,y]=")";
end
bkgd = input(’Number of background particles = 7);
ratio = input(’SNR (ratio of # particles from one source

to # background particles)=")
[C, U, sourcepart, bkgdpart] =

sourcephantom(S bkgd , ratio alpha psi,beta,x1,x2);
save phantomdata C U S sourcepart bkgdpart x1 x2.

alpha psi beta
end

disp ( 'Phantom data ready!’)
mybeep

Listing IV.16 'cone_inversionA.m - Inversion of the cone transform via method A’

% Inversion of 2D cone transform wvia method A. Here the
% vertices of cones (i.e. detectors) are

% restricted to a horizontal line. The phantom must be
% supported above the detector array.

clear all
o7

U %
% Setup %
% %
load phantomdata

ndet = length(x1); nalpha = length(alpha);

npsi = length(psi); nbeta = length(beta);

% %
% Integration with respect to psi %
% %

Gd(:,:,k) = ((psi(k)—pi/2)./sin(psi(k)—pi/2)).%C(:,: ,k,1);




127

% Take Hilbert transform
for i = 1l:ndet
for j = 1l:nbeta
HGd(i,j,:)=hilbert (squeeze (Gd(i,j,:)));
end
end
HGd = imag(HGd) ;
% Take the wvalue at 0
[Cd=—squeeze (HGA(: ,: ,npsi/2));

o7 o7
G 0
% Interpolate to parallel beam geometry %
% %
sd = x1(:,1)+*cos(beta)+x2(:,1)+*sin(beta);
nlines=4xndet ;
s=linspace(—sqrt (2) ,sqrt(2) ,nlines);
for j=1:nbeta

HEd(:,j)=interpl(sd(:,j),ICd(:,j),s, linear’);

nan = isnan (HFd(:,j)) ’;

[ml,atl] = min(nan); [m2,at2] = min(fliplr (nan));

at2 = length (HFd(:,j))—at2+1;

HFd(1:atl—1,j)=HFd(atl,j); HFd(at2+1:end,j)=HFd(at2,j);

clear nan ml m2 atl at2
end
% %
% Inverse Hilbert %
% %

for j=1:nbeta
Gd(:,j)="hilbert (HFd(:,j));
end
% 'Gd’ is the Radon transform of the phantom

Gd = imag(Gd) ;

% %
% Radon invesrion %
% %
res = ndet+20; % resolution of the output image
xb = linspace(—1.1,1.1,res); yb=xb;

% domain of the output image
[XB,YB|=meshgrid (yb,xb) ;

% Invert using FBP
Rec = radon_inversion (Gd,s,beta,xb,yb,1);
07 o7
G 0
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% Graphs

%

gray_plot (XB,YB, Rec) ;

view (0,90)

hold on

plot3(x1(:,1),x2(:,1) —0.01,0%x0nes(1,length(x1(:,1))) ,...
"¢’ ’LineWidth ' ,2)

R X

hold off
disp( 'Reconstruction done!’)

Listing IV.17 'reconstruct.m - Inversion of the cone transform via methods B and C’

% Filtered backprojection reconstruction of 2D Radon or

% Compton data, collected by detector arrays placed on sides
% of the wunit square. Radon data, which is given in fanbeam
% coordinates, is interpolated to parallel beam data.

% Then filtered backprojection is used for reconstructing

% the phantom. Compton data is converted to

% fanbeam data by the use of methods B or C

% (conelfanbeamB.m or conelfanbeamC.m),

% then the procedures described above are applied.

detector
array II1

detector | | detector
array 1V | * | array II
| |
| |

detector
array [
lear all

Setup

NRNR O, N NN TR RN N ERRK

RNNXN

while (phan "=’a’ & phan™="s’)
fprintf(’Phantom: a = analytic, s = source\n’)
phan = input(’Enter type =’,’s’);

end

data = 7 7
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while (data = ['r’,’¢’])
fprintf( 'Type of data: r — Radon, ¢ — Cone \n’)
data = input(’data = ’,’s’);
end
method = 7 7;
if data = ’c¢’
while (method™=['B’,’C’])
fprintf (...
"Choose method for reduction to fanbeam data — B or C\n’)
method = input( ’method = 7,’s");
end
end
numdet = 0;

while (numdet ™ =[1 2 3 4])

numdet = input(’Number detectors (1——4): 7);
end
Filters for inversion of Radon
transform. filter can be a wvector
containing integers from 1 to 8.
Filters are described in
radon_inversion.m

NN NREK

filter = [1];
% Load data from file
load phantomdata

ndet = length(x1); nalpha = length(alpha);
npsi = length(psi); nbeta = length(beta);
% %
% Convert Cone to Fanbeam %
% %
if data = ’c¢’
clear U
if method = ’'B’
for d=1:numdet
U(:,:,d) = cone2fanbeamB (C(:,:,:,d));
end
else
for d=1:numdet
U(:,:,d) = cone2fanbeamC (C(:,:,:,d) ,phan);
end
end

end
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Convert Fanbeam to Parallel Beam

RNXN

RN R

% Fanbeam coordinates of a line are
% a point (detector) (z1,z2) and
% an angle 7alpha” between the line
% and the positive zl—azxis.
% Radon coordinates are (s, phi),
% where "phi” is the angular
% coordinate of the wvector
% perpendicular to the line and 7s”
% is the distance of the line from
% the origin.

nlines=4xndet ;

s=linspace(—sqrt(2) ,sqrt(2) ,nlines);
% sfan (:,:,d) are the available
% "s"—wvalues for the corresponding
% detectors. For each fized wvalue of
% phi (i.e. phi(j)) sfan(:,5,d) is a
% column wvecor containing the values
% of 7"s” for the angle phi(j) and
% detector 7d”.

phi = alpha—pi/2;

for d=1:numdet

sfan (:,:,d) = x1(:,d)*cos(phi)4+x2(:,d)*sin(phi);

end
spar =[]; Upar = [];
for d=1:numdet
spar = [spar; sfan (:,:,d)];
Upar = [Upar; U(:,:,d)];
end

G(:,1)=zeros(nlines ,1); G(:,length(phi))=zeros(nlines ,1);
for j=2:length(phi)—1
G(:,j)=interpl(spar(:,j),Upar(:,j),s, linear’);
% Extrapolate by constant.
% atl and at2 are the first and last
% index of G(:,j) at which the wvalues
% were interpolated.
nan = isnan(G(:,j)) ’;
[ml,atl] = min(nan); [m2,at2] = min(fliplr (nan));
at2 = length(G(:,j))—at2+1;
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G(l:atl—1,j)=G(atl,j); G(at2+1:end,j)=G(at2,j);
end

% %
0 Reconstruct Image using Radon Inversion %
o7 o7
G 0
ndim = ndet;
xb = llnspace( 0.98.,0.98 ,ndim) ;
yb = linspace(—0.98,0.98 ,ndim);
[XB,YB|=meshgrid (xb, yb)
for f = filter
FBP(:,:,f) = radon_inversion(G(:,:) ,s,phi,xb,yb,f);
end
% %
% Error %
% %
if (phan = ’a’)
exact = zeros(size (XB));
for i = 1:length(c(1,:))
exact = exact+a(i)xball(c(1,i),c(2,i),r(i),XB,YB);
end

exact_cut = exact ((abs(XB) <0.98)&(abs(YB) <0.98)) ;
approx = squeeze (FBP(:,:,1));
approx_cut = approx ((abs(XB) <0.98)&(abs(YB) <0.98)) ;
error = exact_cut — approx_cut;
12errP=100%sqrt (error '« error) /sqrt (exact_cut '« exact_cut)
end
(V4

U
graphrec
disp ( "Compton reconstruction done !!!7)

Listing IV.18 'reconstruct_pointsource.m - Reconstruction of source distribution via

backprojection’

Backprojection of 2D source data (Radon or Compton),
collected by detector arrays placed on sides of the unit
square. Radon data, which is given in fanbeam
coordinates , 1s interpolated to parallel beam data. Then,
the data from each detector array is backprojected
separately , after which the backprojections are added
Local grids surrounding each pizel from the backprojected

NN RN NN N K
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% image are used to estimate the (local) mean and (local)

% standard deviation. A threshold wvalue for the number

% (local) standard deviations above the (local) mean is used
% for estimating the confidence of source detection .

% Compton data is converted to Radon data via

% method C (cone2fanbeamC.m), then the procedures described
% above are applied.

% The geometry of the detectors is as follows

%
% detector
% array III
%
% detector | | detector
% array IV | * | array II
% | |
7% | |
%
% detector
% array I
clear all
% %
4 Setup %
% %
data = 7 7; numdet = 0;
while (data = ['r’,’¢’])

fprintf( ’Type of data: r — Radon, ¢ — Cone \n’);

data = input(’'data = ’,’s’);
end
while (numdet™=[1 2 3 4])

numdet = input(’Number detectors (1——4): 7);
end

% Load data from file

load phantomdata
ndet = length(x1); nalpha = length(alpha);
npsi = length(psi); nbeta = length (beta);
% %
% Convert Compton to Fanbeam %
o7 o7
G 0
if data = ’c¢’

clear U

for d=1:numdet

U(:,:,d) = cone2fanbeamC (C(:,:,:,d),1);

end




133

end

% %
% Convert Fanbeam to Parallel Beam %
07 07
(G 0

% Fanbeam coordinates of a line are
% a point (detector) (z1,z2) and
% an angle 7alpha” between the line
% and the positive zl—azis.
% Radon coordinates are (s, phi),
% where "phi” is the angular
% coordinate of the wvector
% perpendicular to the line and 7s”
% is the distance of the line from
% the origin .

nlines=4xndet ;

s=linspace(—sqrt (2) ,sqrt(2) ,nlines);

% sfan are the awvailable
% 7s” —wvalues for the corresponding
% detectors. For each fized wvalue of
% phi (i.e. phi(j)) sfan(:,5,d) is a
% column vector containing the
values

% of 7s” for the angle phi(j) and
% detector 7d”

phi = alpha—pi/2;

for d=1:numdet

sfan (:,:,d) = x1(:,d)*cos(phi)+x2(:,d)*sin(phi);

end

for j=Il:nalpha % phi = alpha—pi/2
for d=1:numdet
G(:,j,d)=interpl(sfan(:,j,d),U(:,j,d),s, linear’ 0);

end
end
% %
% Reconstruct Image using Backprojection %
or o7
(G 0
ndim = ndet ;
xb = linspace(—0.98,0.98,ndim);
b = linspace(—0.98,0.98,ndim) ;

XB,YB]=meshgrid (xb yb K
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BP = zeros(ndim,ndim);
for d=1:numdet
BP(:,:) = BP+backproject (G(:,:,d),s,phi,xb,yb);

% %

% Local Grids %

” %
% Local grid size for approximating
% the mean and standard deviation

% "adgrid” — increase the local grid
% with 2xadgrid points to compute
% local std sigma. The grid for
% local mean stays unchanged
adgrid = 0;
k = 3;

) ;

gr = floor(gr1d51ze/2
Rec = zeros(size(BP));
detect =zeros(size (BP));

sigmaij = zeros(size (BP));

for i=gr+adgrid+1l:ndim—gr—adgrid
for j = gr+adgrid+1:ndim—gr—adgrid
Reci(l gridsize ,1:gridsize) = BP(i—gr:itgr,j—gr:j+gr);
me = mean(Reci(:));

Recu(l (gridsize+2+adgrid) ,1:(gridsize+2+adgrid)) =...
(1—gr—adgr1d 1+gr+adgr1d j—gr—adgrid : j+gr+adgrid) ;
sigma = sqrt (mean(Recii(:)));
sigmaij(i,j) = sigma;
7 detect = number of sigmas
detect (i,j) = (BP(1i, )—me)/mgma
Recold (i, j)=max([0, BP( )—me—k*mgma]) ;
clear me sigma_old Reci
end
end
% Detect where the maximum number
% of sigmas occur
dx = xb(2)-xb(1); dy = yb(2)-yb(1);
[kk,ind ]| = max(detect (:))
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[row, col] = ind2sub(size(detect) ,ind);
xpos = yb(1)+(col —1)xdy
ypos = xb(1)+(row—1)%dx

% Threshold
k.t = 4.3;

% Confidence based on threshold
r = 0.5xerfc(k_t/sqrt(2));

npixels = (ndet—1)"2;

conf = (1—r) npixels;

% %
% Graphs %
% %
graphpointsource

o7

disp ( 'Pointsource reconstruction done !!!7)

Below are the codes used for phantom genetarion.

Listing IV.19 ’analyticphantom.m’

function [C U] = analyticphantom (x0,y0,r,a,alpha, psi,beta,xl
,X2)

% Creates analytic Cone (C) and Radon (U) data for a phantom
% consisting of disks with constant density. The vecors "xz0”
% and "y0” contain the (z,y) — coordinates cenetrs of the

% disks, the wvector "r” contains the radii of the discs and
% 7a” gives the amplitudes. "xz07, "y0”, "r” and "a” must

% have the same length. The rest of the input parameters are
% as described in configure.m.

)

disp ( "Computing projections ...
[X,Y] = meshgrid(x1(:,1),x2(:,2));
phan = zeros(length(x1(:,1)), length(x2(:,2)));
for i =1l:length(x0)
4 phan = phan + a(i)xball(x0(i).,y0(i),r(i),X,Y);
en
color_plot (X,Y, phan)
view (0,90)

pause
ndet = length(x1); nalpha = length(alpha);
npsi = length(psi); nbeta = length(beta) ;
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zeros (ndet ,nalpha ,4) ;
zeros (ndet ,nbeta ,npsi ,4);

for d=1:4
for i = 1:1ength(x0
C(:,:,:,d) = C(:
(1)*acone(x0(1

(( ,d) =U(:,

: + ...
| r(i),x1(:,d),x2(:,d) beta, psi);
1)’*afanbeam( O’( )

,r(i),x1(:,d),x2(:,d),alpha);

end

Listing 1V.20 ’afanbeam.m’

function [U] = afanbeam (x0,y0,r0,det_x ,det_y ,alpha)

% function [U] = afanbeam (z0,y0,70, det_x ,det_y , alpha)

% finds the exact integral (analytic projection) of the disc
% B((z0,y0),7r0), centered at (’z0’, y0’) and with radius

% 'r0’, along the lines staring at the points (det_xz,det_y),
(called detectors) and with slopes tan(’alpha’).

The function returns 0 if ’alpha’ is not in [0, pi].

NN

/N

| |/
\-—-//
/

/
/ ) alpha
(det_x ,det_y)

Input:

NN NN RN RN RN R NN R R RN K

‘x0°, ‘y0’, 'r0’ are scalars defining the circular
inclusion phantom B((z0,y0),r0).

NN

% 'det_x’ and ’det_y’ must be wvectors of same length .
% The points (det-xz ,det_y) must not belong to the disc

A
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A

"det_x 7, "det_y ’ are wvectors of same length conatining the
z— and y—coordinates of the detectors.

“alpha > 1s a scalar or wvector of angles, measured from the
positive z—axis and given in radians, in [0,2%xpi].

Output :

If ’alpha’ is a scalar, afanbeam returns a column

vector U. The i—th element of U is the integral along the
line passing through the point [det_z(i),det_y(i)] and
with slope tan( alpha’).

If ’alpha’ is a vector, the method returns an array of
dimension length (’det_x ’) x length( alpha’). The j—th
column corresponds to the angle ’“alpha ’(j), i—th row
corresponds to the detector [’det_x (i), det_y '(i)].

N NN NN RN RRRNEK

for j=1:length(alpha)
for i=1:length(det_x)

if (norm([x0—det_x(1i),y0—det_y(i)])<r0 )
disp('Detectors cannot belong to the disc B([x0,y0
,10) "’
retl]lrn ')
end
% distance between the center of the
% disc and the detector
¢ = norm ([x0—det_x (i) ,y0—det_y(i)]);
if det_y(i)<=y0
a = x0—det_x(1);

else

a = det_x(1)—x0;
end
gammal = acos(a/c);

% angle b/w the line of integration and
% the line connecting the center of the
% circle to the detector

gamma2 = abs(gammal—alpha(j));

(alpha(j) < 0)|[(alpha(j) > pi))
U(MJ):

h = cx*sin(gamma2) ;
if (h>r0)
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U(i,j) = 2xsqrt(r0"2—h"2);

end
end
end

Listing IV.21 ’acone.m’

function [C] = acone(x0,y0,r0,det_x ,det_y ,beta, psi)
%

% function [C] = acompton2D (z0,y0,10, det,theta ,N)
% computes the analytic 2D conical transform of a

% phantom = characteristic function of the ball with center
% (’xz0’,’y0’) and radius 'r0’.

%

% Output :

%

% C is a three dimensional array with dimensions

% (length (’det_x ’),length (’beta’),length(’psi’)).

% C(i,:,:) is the data for a fized detector

% C(i,j,:) — data for fized detector, fizxed cone axis
% (and wvarying half—angles).

%

% Input:

%
% 'x0°, ’y0’,’r0’° describe the circular phantom and
must be scalars.

R

"beta ’ is a wvector containing the angular coordinates of
the central axes of the cones.

The apexes of the cones (i.e. detectors) have cartesian
coordinates (x1_i,x2_i) =("det_x (i), ’det_y (1)), where
"det_x’ and ’det_y’ are wvectors of same length .

The detectors (det_-xz,det_y) must not belong to the disc
with center (’xz07,’y0’) and radius 'r0’.

'psi’ is a wvector of half—angles of comes. ’‘psi’ must be
uniformly distributed in [0, pi]

NN RN RN RN R KRR N K

for i = l:length(det_x) % loop on detectors
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for j = 1l:length(beta) % loop on cone axes, i.e. on beta
for k = 1l:length(psi) % loop on half angles psi
C(i,j k)= .
afanbeam(xO,yO r0,det_x(i),det_y(i),beta(j)—psi(k))
+
afanbeam(XO y0,10,det_x(i),det_y (i) ,beta(j)+psi(k));
end
end
end

Listing IV.22 "ball.m’

function [U] = ball(xo,yo,r ,X.Y)
% creates phantom = characteristic function of the ball B(/[

ro,yo/,r)

% [X,Y]—the mesh on which the function is defined, should be
produced

% by meshgrid

%[X,Y/:meshgm’d(linspace(—d, k));

U = double ((X—x0)."24+(Y=yo)." rAQ),

Listing V.23 ’sourcephantom.m’

function [C, U, sourcepart, bkgdp] = sourcephantom (S,bkgd,
ratio ,alpha , psi, beta,xl,6 x2)

% Simulates data detected by Compton and Radon type

% emission detectors, where the phantom consists of several

% pointsources and background radiation .

%

% Output :

%

% C — Compton data, array of dimension

% length (x])xlength(beta)xlength(psz)x4,

% U — Radon data, array of dimension

% length(x])a:length(alpha)x4.

% 7sourcep” and "bkgdp” are 1z wvector, such that

% sourcep (i) and bkgdp (i) are the number of source

% and background particles , correspondingly, detected by

% detector .

% Input:




140

%

% 7S” is a 2xzmsource array, where nsource is the number of
% point sources. S(:,i) are the (xz,y)—coordinates of the

% i—th source. “bkgd” is the total number of background

% particles, "ratio” is the ratio of the source particles

% coming from ONE of the sources to the background. The rest
% of the input parameters are as described in configure.m.

disp ('Computing source phantom... )
npart = ceil (bkgd*ratio);

ndet = length(x1); nalpha = length(alpha);
npsi = length(psi); nbeta = length(beta);
U = zeros(ndet ,nalpha ,4);

C zeros (ndet ,nbeta ,npsi ,4);
sourcepart=zeros (1,4);
for i=1:length(S(1,:))
fprintf(’Source particles from source %1.0f \n’, i)
[Ci,Ui,sourcepi]=...
pointsource(S(:,i)’,npart,alpha, psi,6 beta,xl,x2);
C = C+Ci; U=+Ui; sourcepart = sourcepart+sourcepi;
end
[Cbkgd , Ubkgd , bkgdp] =...
background (bkgd , alpha , psi ,beta,x1,x2);

C = C+Cbkgd; U = U+Ubked;

Listing 1V.24 'pointsource.m’

function [C, U, sourcepart| = pointsource(S,npart,alpha, psi,
beta,x1,x2)

Simulates data detected by Compton and Radon type
emission detectors, placed on the sides of the unit
square. The particles are emitted by a point source with

coordinates (S(1),5(2)).

Input:

S is a vector containg the two coordinates of a
point—source.

"npart” = number of particles coming from the source
The rest of the input parameters are as described in
configure.m
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Output :

"C” contains detecttion data from Compton type detectors,
"U” contains data from Radon type detectors.

"C” has dimensions length (x1)xzlength (beta)zlength (psi)zs,
"U” has dimensions length (z1)xzlength (alpha)zs.

1. A photon is emitted from the source S into a random
direction in [0,2%pi) and hits a detector. The incoming
direction alpha in [0,pi] is determined.

2. The photon then scatters , with a scattering angle "psi”
"psi” is (uniformly) randomly chosen in (—alpha,pi—alpha).
In other words, "psi” 1s the angle the new direction
(after the scattering) forms with the original direction ,
counted from the original direction.

scat. orig orig scat
\ang| |—ang/
\ | |/ here ang is in (0,pi)
\| |/
0 0
detector detector

3. The central azxis beta 1s determined by beta=alpha+psi.
The Compton data C(i,j,k,d) contains the number of
particles which hit detector array "d” at detector bin
7i”7, scattered with an angle "psi(k)” or —"psi(k)” into
direction "beta(j)”.

The Radon data U(i,j,d) contains the number of particles
that hit detector array ”d” at detector bin 717, from

incoming direction “alpha(j)”.

N NN RN AR TR NN TR AR NN RN N ERREKR

% %
% Setup %
7 %
ndet = length(x1); nalpha = length(alpha);
npsi = length(psi); nbeta = length(beta);

U = zeros(ndet ,nalpha ,4) ;
C = zeros(ndet ,nbeta ,npsi, 4);
% detc will hold the locations of
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hits for the 4 detecrors
detc = cell (1,4);
alphac will hold the directions
of itncoming particles for the /
detectors
alphac = cell (1,4);

psic = cell(1,4);
Central azes

betac = cell (1,4);
Initialize rand to a different
state each time

%

%

%

%

% Scattering angles
%

%

%

rand( 'state’, sum(100xclock));

07 o7
G 0
% Photons Emitted and Detected %
(VA o7
G 0
% A photon is emitted into
% a random direction with polar
% coordinate A in [0,2% pi)
A = (2%pi—0.001)*rand (1 ,npart);
% %
% Hit a detector %
% %
% Determine which detector array
% is hit and record the location
% and incoming direction of the
% hit .
for i = 1l:npart
if 0<A(i) & A(i)<pi % Go UP
(V4
x20 = x2(1,3);
x10 = S(1) + (x20-S(2))*cos(A(i))/sin(A(i));
if x1(1,3)<= x10 && x10<=x1(end,3)

% Detector III is hit...
% x10 is the exact location of the
% hit on this detector array
detc{3} =[detc{3}; x10];
% incoming direction of the particle
alphac{3} = [alphac{3}; A(i)];
else
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if x10 < x1(1,3)
% Detector IV is hit
x10 = 4);
= (x10—S(1))*sin(A(i))/cos(A(1));
detc{4}; x20];
[alphac{4}; A(i)];

}
% Detector II is hit

2) 5
+éx10—8(1))*sin(A(i))/cos(A(i));

etc{2}; x20];
[alphac{2}; A(i)];

if pi<A(i) && A(i)<2xpi % Go DOWN

1);
+ (x20—S(2))*cos(A(i))/sin(A(1));

1,1)<= x10 && x10<=x1(end,1)
% Detector I is hit
detc{1} = [detc{1}; x10];
alphac{l} = [alphac{1l}; A(i)—pi];
else
if x10 < x1(1,1)
% Detector IV (1) is hit
x1(1,4);
S(2)+(x10-S(1))*sin(A(i))/cos(A(i))

x10
x20

detc{4} = [detc{4}; x20];
l alphac{4} = [alphac{4}; A(i)—pi];
% Detector II (r) is hit
x10 = x1(1,2);
x20 = S(2)+(x10-S(1))*sin(A(i))/cos(A(i))

detc{2} = [detc{2}; x20];
alphac{2} = [alphac{2}; A(i)—pi];
end
end
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else % A=0 or A=pi, i.e. go straight RIGHT or LEFT

%
if A(i)==
% Go to detector II
detc{2} = [detc{2}; S(2)];:
alphac{2} = [alphac{2}; A(1)];
else
% A=pi, go to detector IV
detc{4} = [detc{4}; S(2)];
alphac{4} = [alphac{4}; A(i)];
end
end
end

end % for cycle on npart

Zkeyboard

A %
% Scattering angle psi and axis beta %
" %

For each alpha, the particles scatter
randomly with a (signed) scattering angle
in (—alpha ,pi—alpha)\{0}, more precisely,
in [—alpha+dpsi/2,—dpsi/2—0.0001] U
[dpsi/2,pi—alpha—dpsi/2—0.0001]. Thus,
particles that scatter very little are not
detected. The chosen intervals guarantee
that detection occurs. Note that, as we
took care dpsi = dbeta, the intervals we
chose for psi guarantee that

beta \in [dbeta/,? pi—dbeta /2].

(1); eps = 0.0001
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dpsi = psi(2)—psi
for d=1:4

psic{d} = (pi—2«dpsi—2xeps)x*rand(length (alphac{d})  1);

end
for d=1:4
psic{d}(psic{d}<=alphac{d}—eps—dpsi)=...
psic{d}(psic{d}<=alphac{d}—eps—dpsi) —...
alphac{d}(psic{d}<=alphac{d}—eps—dpsi)+dpsi/2;
psic{d}(psic{d}>alphac{d}—eps—dpsi)=...
psic{d}(psic{d}>alphac{d}—eps—dpsi) —...
alphac{d}(psic{d}>alphac{d}—eps—dpsi)+eps+3xdpsi/2;
end

% Determine the cenrtal azxes of cones ’beta’
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% beta = alpha + psi

for d=1:4
betac{d} = alphac{d}+psic{d};
end
% Take the absolute wvalue of ’'psi’, becuase
% compton data only ’knows’ cos(psi),
% i.e. |psil.
for d=1:4
psic{d} = abs(psic{d});
end
% %
% Binning %
% %
deti = cell(1,4); alphai = cell(1,4);
psii = cell(1,4); betai = cell(1,4);
% Sizes of bins of each detector array
dx (1) = x1(2,1)—x1(1,1); dx(2) = x2(2,2)—x2(1,2);
dx(3) = x1(2,3)—x1(1,3); dx(4) = x2(2,4)—=x2(1.,4);
% Binning of detectors
for d=[1 3]
deti{d} = round( (detc{d}—x1(1,d))/dx(d) )+1;
end
for d=[2 4]
deti{d} = round( (detc{d}—x2(1,d))/dx(d) )+1;
end
% Binning of incoming directions alpha
% This is for Radon data only
dalpha = alpha(2)—alpha(1);
for d=1:4
alphai{d} = round(alphac{d}/dalpha)-+1;
end
% Binning of scattering angles psi
for d=1:4
psii{d} = round(psic{d}/dpsi);
end
% Binning of central azes beta
dbeta = beta(2)—beta(1);
for d=1:4
betai{d} = round(betac{d}/dbeta);
end
% %
% Fill Compton and Radon arrays %
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% %
C = zeros(ndet ,nbeta,npsi 4);
U = zeros(ndet ,nalpha ,4) ;
%keyboard
for d=1:4
for i=1:length(deti{d})
C(deti{d}(i),betai{d}(i)
C(deti{d}(i),betai{
U(deti{d}(i),alphai{d}(i
U(deti{d}(i),alphai
end
end

for d=1:4
sourcepart (d) = sum(sum(sum(C(:,:,:,d))));
end

fprintf(’%1.0f source particles hit detector array I \n’ ,...
sourcepart (1) )

fprintf(’'%1.0f source particles hit detector array II \n’

7s'c').ulrce];)alrt(Q)

fprintf(’%1.0f source particles hit detector array III \n’

sourcepart (3) )

fprintf(’%1.0f source particles hit detector array IV \n’

7s.(.).urcepalrt (4)
fprintf(’%1.0f TOTAL SOURCE particles \n\n’ ,sum(sourcepart))

Listing 1V.25 "background.m’

function [Cbkgd,Ubkgd, bkgdpart| = background (bkgd,alpha , psi,
beta,x1,x2)

% Uniform background for Compton and Radon data,

% collected by four detector arrays lying on the sides of

% the wunit square

bkgd4 = round (bkgd/4);
% Initialize rand to a different state
% each time




147

rand( 'state’, sum(100xclock));

% %
% Data collection %
% %
% %
% Hit a detector %
% %
% Particles hit the detectors.
det(:,1) = x1(1,1)+(x1(end,1)— Xl(l 1))*rand(bkgd4,1),
det(:,2) = x2(1,2)+(x2(end,2)—x2(1,2))*rand(bkgd4 1) ;
det (:,3) = X1(1,3)+(X1(end,3) x1(1,3))*rand(bkgd4 1) ;
det (:,4) = x2(1,4)+(x2(end,4)—x2(1,4) )xrand(bkgd4 1) ;
% %
% Directions of the incoming partilces %
% %
% Choose directions of incoming particles
% alpha’ uniformly distributed in the
% interval [0,pi].
dalpha = alpha(2)—alpha(1);
alphac = pixrand(bkgd4 ,4) ;

For each alpha, the particles scatter
randomly with a (signed) scattering angle
in (—alpha ,pi—alpha)\{0}, more precisely,
in [—alpha+dpsi/2,—dpsi/2—0.0001] U
[dpsi/2,pi—alpha—dpsi/2—0.0001]. Thus,
particles that scatter wvery little are not
detected. The chosen intervals guarantee
that detection occurs. Note that, as we
took care dpsi = dbeta, the intervals we
chose for psi guarantee that
beta \in [dbeta/2,pi—dbeta /2].
dpsi = psi(2)—psi(1l); eps = 0.0001;
psic = (pi—2+dpsi—2*eps)s*rand(bkgd4 4) ;
for d=1:4
psic(psic (:,d)<=alphac (:,d)— eps dpsi,d)=...
psic(psic (:,d)<= alphac( d)—eps—dpsi, d)
alphac(psm( )< alphac (:,d)—eps— dpsi,d)+dpsi/2;
psic(psic (:,d)>alphac (: ,d)—eps—dpsi ,d)=...
psic(psic (:,d)>alphac(:,d)—eps—dpsi,d) —...
alphac (psic (:,d)>alphac (:,d)—eps—dpsi,d)+eps+3xdpsi/2;
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end
% Determine the cenrtal axes of cones ’beta’
% beta = alpha + psi
dbeta = beta(2)—beta(1);
betac = alphac+psic;
% Take the absolute wvalue of ’psi’, becuase
% compton data only ’knows’ cos(psi),
% i.e. |psil.
psica = abs(psic);
% %
% Binning %
% %
% Sizes of bins of each detector array
dx (1) = x1(2,1)—=x1(1,1); dx(2) = x2(2,2)—=x2(1,2);
dx(3) = x1(2,3)—x1(1,3); dx(4) = x2(2,4)—x2(1,4);
% Binning of detectors
det_ind (:,1) = round( (det(:,1)—x1(1,1))/dx(1) )-+1;
det_ind (:,2) = round( (det(:,2)—x2(1,2))/dx(2) )+1;
det_ind (:,3) = round( (det(:,3)—x1(1,3))/dx(3) )+1;
det_ind (:,4) = round( (det(:,4)—x2(1,4))/dx(4) )-+1;
% Binning of incoming directions alpha
% This 1is for Radon data only
alpha_ind = round(alphac/dalpha)+1;
% Binning of central azes beta
beta_ind = round(betac/dbeta);
% Binning of opening angles psi
psi_ind = round(psica/dpsi);
% %
% Fill Compton and Radon arrays %
o %

r;det = length(x1(:,1)); nalpha = length(alpha);
nbeta = length(beta); npsi = length(psi);

Ubkgd = zeros(ndet ,nalpha ,4);
Cbkgd = zeros(ndet ,nbeta ,npsi ,4);
for d = 1:4

for i=1:round(bkgd/4)
Cbkgd(det_ind (i,d),beta_ind(i,d),psi-ind(i,d),d) = ...
Cbkgd(det_ind (i,d),beta_ind(i,d),psi-ind (i,d),d)+1;
Ubkgd(det_ind (i,d),alpha_ind(i,d),d) = ...
Ubkgd(det_ind (i,d),alpha_ind(i,d),d) +1;
end
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end
for d=1:4

bkgdpart (d) = sum(sum(sum(Cbkgd (:,:,:,d))));
end

fprintf(’%1.0f bkgd particles hit detector array I\n’ ,...
bkgdpart (1))

fprintf(’%1.0f bkgd particles hit detector array II\n’ ...
bkgdpart (2))

fprintf(’%1.0f bkgd particles hit detector array III \n’ ,...
bkgdpart (3))

fprintf(’%1.0f bkgd particles hit detector array IV \n’ ...
bkgdpart (4))

fprintf(’%1.0f TOTAL BACKGROUND particles \n’,sum(bkgdpart))

fprintf(’%1.0f background particles detected by detector
arrays I, Il and III \n\n’,bkgdpart(1)+bkgdpart(2)+
bkgdpart (3))

The next two listings are of the implementations of methods B and C.

Listing IV.26 'cone2fanbeamB.m’

function [U] = cone2fanbeamB (C)

Given compton data C find the Radon data in fanbeam
coordinates, U = Rf((z1,z2),alpha). For a fized direction
alpha0, Rf((z1,z2),alpha0) is found by manipulating data
from three Compton cones. Awveraging on such cones is used,
so which results in theuse of all available data and
decreases mnoise.

Output :

U is an array of dimension ndet x nalpha, where

ndet = length (C(:,1,1)), nalpha = (lengthC(1,:,1)+2).
This is consistent with the setup defined in configure.m,
namely , the angles alpha change in [0,pi], while

beta and psi are in (0,pi). alpha, beta, psi are
partitioned with the same step size, but alpha has 2 more
elements, corresponding to 0 and pi.
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Input:
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%

% 7C” is a Compton data array of dimension
% ndet T nbeta x npsi.

fprintf(’'starting cone2fanbeam _v2...")
tic

ndet = length (C(:,1,1));

nbeta = length(C(1,:,1));

npsi = length(C(1,1,:));

nalpha = npsi+2;

psi_index = [-npsi:—1,1:npsi];

U = zeros(ndet ,nalpha);

for i = 1l:ndet % loop on detectors
i
for j = 1l:nalpha % loop on alpha
c=1;
for k = psi_index % loop on psi_k
for 1= psi_index % loop on psi_l
condition =
(I<=j+k—-1)&
(I<=j+1-1)&
(1<=j+k+1 -1
(1<=abs (k-1
if condition
U(i,j) = ( C(i,j+k—1,abs(k))+C(i,j+l—1,abs(1l)) —...
C(i, j+ktl —1,abs(k-1)) )/24U(i.]);
c=c+1;
end % end if condtion
end % psi_l
end %psi_k
U(i,j)=U(i,j)/(c=1);%nalphaxU(i,j)/c; %c+1?
end %alpha
end %detectors
fprintf(’time = %4.2f \n’,toc)

j+k—l<=nbeta) &...
j+l—l<=nbeta) &...
&(j+k+l—l<=nbeta) &...
)&(abs (k—1)<=nbeta) ;

— N ——

Listing V.27 ’cone2fanbeamC.m’

ifunction[U] = cone2fanbeamC (C, phan) i
|% Given compton data C find the Radon data in fanbeam |
\% coordinates, U= Rf((x1,22),alpha). For a fized direction |
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alpha0, Rf((z1,z2),alpha0) is approximated by the average
of all cones that have one side parallel to alpha0.

Output :

U is an array of dimension ndet x nalpha, where

ndet = length(C(:,1,1)), nalpha = (lengthC(I ,1)+2).

This s conszstent wzth the setup defined in confzgure m,
namely, the angles alpha change in [0,pi], while

beta and psi are in (0,pi). alpha, beta, psi are
partitioned with the same step size, but alpha has 2 more
elements, corresponding to 0 and pi.

Input:

"C” is a Compton data array of dimension
ndet x nbeta = npsi.
If 7"phan” is ’s’, then U((xl,z2),alpha0) is not the

N NN TR NN AR QRN RN RN AR RN K

average of cones with side || alphaO, but the sum of these
cones. When "pointsource” is not 1, an average of this sum
1s taken.

fprlntf( starting cone2fanbeamC ... )

tic

Ndet = length(C(:,1,1));
Nbeta = length (C(1,:,1));
Npsi = length(C(1,1,:));
Nalpha = Nbeta+2;

psi_index = [—Npsi:—1,1:Npsi|;
U = zeros(Ndet, Nalpha) ;

for i = 1:Ndet % loop on detectors
for j = 1:Nalpha % loop on alpha
c=0;
for k = psi_index % loop on psi_k
if (I<=j+k—1)&(j+k—1<=Nbeta)
UG, 1) = U(E,1) + C(i, j+k—T,abs(k))

c=c+1;
end
end %psi_k
if phan "="g’
U(i,j) =U(i,j)/c;

end
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| end %alpha
lend %detectors
‘fprintf(’time = %4.2f \n’  toc)

The auxiliary codes follow.

Listing 1V.28 'radon_inversion.m’

function [FBP| = radon_inversion (G,s,theta ,xb,yb, filter)
Inverts the 2D Radon (X-ray) transform wusing filtered
backprojection .

Input:

"G’ — Radon data; a matriz in which every column
corresponds to one projection (’theta '(j)) and conatins
the wvalues of the line integrals of F, parametrized by S.

"theta > — a wvector of projection angles.

‘s’ — lines in each projection (’s’ — distances of the
lines form the origin).

‘b7, "yb 7 are wvectors containing the coordinates of the
points where the reconstructed image is to be found.
"filter * — an integer which determines the type of filter

to be used: 1 —> FBP filter Hxd/ds, 2 —> modified FBP
filters with zero frequency cut, 3 —> modified FBP with
high frequencies killed , 4—> local tomography d"2/ds "2,
5—>local tomo filter with high frequencies killed ,

7—> local tomo filter implemented using finite differences
6—> backprojection , &> backprojection with high
frequencies cut.

Output :

Returns the matriz FBP of the filtered backprojection
reconstruction. FBP has dimensions

[length (yb),length (xzb)].

fprintf(’Starting radon inversion... )

tic

nlines length (s
a :max( )—min(s) ;

E NGNS NSO S S SN SN S S SN S N S SN SN

); nproj = length(theta);

7
U

R
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% Filtration %
% %
% %
% Regular filter: Hxd/ds filters 1,2,3 %
% %

switch filter

case {1,2,3} %'fbp’ filter /\

fprintf(’filter %d : FBP filter |sigma| ’, filter)

pad = 2xnlines;

mid = round ((nlines+pad)/2);
% Smoothly pad every column of G
% with 7pad” zeros at the end and
% then take FFT of each column

” ”

% (i.e. row—wise), on "s” wvariable

KO = 14;
smooth=[0.54+0.5%xcos ((0:k0—1)*pi/k0) ,zeros (1, pad/2—k0) |;
sm_r = smooth ’*G(nlines ,:) ;

sm_1 = flipud (smooth ') *G(1,:);
FG = [G;sm_r;sm_l];
FG = fft (FG);

% Flt is a /\ filter in frequency

% domain .
Flt = (2«pi/a)xnlines x...

linspace (0,1, ceil ((nlines+pad) /2)+1);

Flt = [Flt Flt(end—1:-1:2)];

if (filter — 2)
% fop filter with smoothly cut 0 frequency
disp('with 0 frequency killed )
% cut 0 frequency smoothly
% filter = 0 when |sigmal<=£k0,
% filter 1is smooth when
% k0<|sigma| <=kl
% otherwise filter = |sigmal
k1l = round(length (Flt)*1/100);
k2=round (length (Flt)*5/100) ;
k = (k1+1):(k1+k2);
sm0 = [zeros(1,kl),0.5—cos((k—kl)*xpi/k2)*0.5,...
ones (size (kl+k2+1:(nlines+pad)/2)) |;
sm0 = [sm0, fliplr (sm0) ];
Flt = Flt.xsm0;
end
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if (filter ==3)
% fbp filter with smoothly cut high frequences
disp(’ with high freqiencies cut’)

k3 = round(mid*5/100) ;
k4 = round(mid*10/100) ;
kk = mid—k4 : mid—k3;

c = 0;

Flt (mid—k3:mid+k3) = c;
smhl = (Flt (mid—k4)—c) *...

(14+cos ((kk—mid+k4)*pi/(kd—k3)))/24+c;
smh2 = fliplr (( Flt (mid+k4)—c) *...

(1+cos ((kk—mid+k4 ) xpi/(k4—k3)))/2+c);
Flt (kk) = smhl; FIt (kk+k34+k4) = smh2;

end
% %
% Local Tomography filters d"2/ds"2 filters 4,5 and 7 %
% %

case {4.,56} % Filter implemented using FFT
fprintf(’'filter %d : local filter using FFT’ filter)
FG = fft (Q);
% Flt = (2xpi/a)xnlinesxlinspace (0, 1, nlines/2+1);
% Flt = [Flt Flt(end—1:—1:2)]."2;
abs_sigma = abs((1l:nlines)—nlines/2);
Flt = fftshift (abs_sigma. 2);

if filter 4 % high frequences cut—off
fprintf(’ and high frequences cut—off’)
mid=round(nlines /2);
k3 = round(mid*70/100);
kk = mid—k4:mid—k3; c
Flt (mid—k3: mid+k3) = c;
smhl = (Flt (mid—k4)—c) ...
( 1+cos ((kk—mid+k4)*pi/(kd—k3)) )/2+4c;
smh2 = fliplr (( Flt (mid+k4)—c) *...
(14+cos ((kk—mid+k4)xpi/(kd—k3)))/2+c);
Flt (kk) = smhl; FIt (kk+k3+k4) = smh2;
end

k4 = round(mid*75/100);
0

I

?

case 7
% Filter implemented using finite differences —> smoothing
fprintf(’'filter %d : Local filter using finite
differences’, filter)
FlItG = zeros(size(G));




155

ds = a/(nlines —1);
for i=1:length(theta)

for j = 2:length(s)—1

FItG(j,i) = —(G(j+1,i) — 2.0%G(j,i)...
+ G(j—1,i) )/(dsxds);

end
end

Backprojection filters 6,8

RN R X

RN K

case 6 % No filter , only backprojection
fprintf(’filter %d : Only backprojection’, filter)
FItG = G;

case 8 %backprojection with high frequences cut
fprintf(’filter %d : backprojection with high
frequencies cut’, filter)
FG = fft (G);
mid=round (nlines /2);
k0 = round(mid*70/100);
k1l = round(mid*75/100) ;
Flt = ones(1,nlines);
kk = mid—k1:mid—kO;
c = 0;%F1t (mid—k3);
Flt (mid—k0: mid+k0) = c;
smhl = (Flt (mid—kl)—c) *...
(14+cos ( (kk—mid+k1)*pi/(k1-k0)))/2+c;
smh2 = fliplr (( F1t (mid+kl)—c) *...
(1+cos ((kk—mid+k1)*pi/(kl1-k0)))/2+c);
Flt (kk) = smhl; FIt(kk+k0+kl) = smh2;
end % end switch

NN KR

Apply Filter

ESES e

if (filter <=5| filter = 8)

% convert filter to a matriz in order to
% avoid a loop on columns when applying
% filter

Flt = Flt "xones(1,nproj);
% Apply filter

% Take inverse FFT

FItG = FC.x Flt ;
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FItG = ifft (FItG);
% Cut irrelevant wvalues (if any)
FItG = real (FItG (1:nlines ,:));
end
% %
% Backprojection %
% %
ndimx = length(xb) ;ndimy = length(yb);
stepx = xb(2)—xb(1); stepy = yb(2)-yb(1);
anglestep = theta(Z) theta (1) ;
sstep = s(2)—s(1);
FBP = zeros(ndimy ,ndimx) ;
for ix = 1:ndimx
= xb(ix);
for iy = 1:ndimy
y = yb(iy);
if( x*x + yxy < (a/2)°2 — 0.001)
for npr = 1:nproj
angle = theta(l) + (npr—1)xanglestep;
co = cos(angle); si = sin(angle);

S = X*¥CO + y*S1;

position = (nlines+1)/2 + s/sstep ;

nline0 = floor (position);
nlinel = nline0 + 1;

alphal = position — nline0;
alpha0 = 1 — alphal;

if (alphal>1 | alphal<0 | nlinel>nlines | nline0 <1)
display (’linear interpolation is not working’);
return

end

value=alpha0«FItG (nline0 ,npr)+alphal*«FI1tG(nlinel ,npr);

trapweight = anglestep;

if(npr = 1 | npr = nproj)
trapweight = 0.5xanglestep ;
end

FBP(iy ,ix) = FBP(iy,ix) + valuextrapweight /(4.0xpi);




end %if

end % for i

lend % for iz
‘fprlntf( \n time = %4.2f \n’, toc)

| end % for npr
|
|
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Listing 1V.29 "backproject.m’

function [BP| = backproject (G,s,theta ,xb,yb)

fprintf(’Starting backprojection ... )
tic

nlines length(s); nproj = length(theta);
a = max( )—min(s) ;

,nd1my length (yb) ;

)—xb (1)
)—yb(1);

the (2 ) theta( )
a/(nlines —1);

stepx
stepy
anglestep
sstep

S
);
ndimx = length( b)
b (2
yb (2
ta

BP = zeros(ndimy ,ndimx) ;

for ix = 1:ndimx
x = xb(ix);
for iy = 1:ndimy
y = yb(iy);
if( xxx + yxy < (a/2)"2 — 0.001)
for npr = 1:nproj
angle = theta(l) + (npr—1)xanglestep;
co = cos(angle);
si = sin(angle);
S = X*CO + y*si;

position = (nlines+1)/2 4+ s/sstep;

nline0 = floor (position);
nlinel = nline0 + 1;

alphal = position — nline0;
alpha0 = 1 — alphal;

if (alphal>1 | alphal<0 | nlinel>nlines

| nline0 <1)

display (’linear interpolation is not working’);

return

end % if
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value = alpha0+G(nline0 ,npr)+alphal*G(nlinel ,npr);
trapweight = anglestep;
if(npr = 1 | npr = nproj)
trapweight = 0.5%xanglestep;
end % if
BP(iy ,ix) = BP(iy,ix) + value;
end % for
end %if
end % for
end % for
fprintf(’ time = %4.2f \n’, toc)
Listing IV.30 'graphrec.m’
if phan = ’a’ % reconstruction of analytic phantom
for i=filter
Rec = squeeze (FBP(:,:,i));
figure (2xi—1)
subplot (1,2,1);
gray_plot (XB,YB, exact)
view (0,90)
title (’Phantom’)
subplot (1,2,2)
gray_plot (XB,YB, Rec); view(0,90)
title ([ "Reconstruction using filter ', num2str(i)])
hold on
for d=1:numdet
plot3(x1(:,d),x2(:,d),0xones(1,length(x1(:,d))), *xg’ ,...
"LineWidth’ ,2)
end
hold off
% Profile plots at y = yi and x = xi
yi = c(2,1);
xi = ¢(1,1);
hr = xb(2)—xb(1);
% 'at’ determines the entries of
% the arrays corresponding to ’‘y0’




aty =floor ((1.14+yi)/hr
atx = floor ((1.1+xi)/h
figure (2x1)

subplot (2,1,1)

plot (xb,Rec(aty,:),’=k’, LineWidth’ ,2)
axis([—-1 1 —0.1, 1.2])

) ;
r);

hold on

plot (xb,exact (aty ,:),’:k’, LineWidth’ 2)
xlabel ('x")

legend ( ’Reconstruction’, "Phantom ")

title ([ 'y =’ ,num2str(yi),’ profile’ |)
hold off

subplot (2,1,2)
plot (yb,Rec(:,atx),’=k’, ’LineWidth’ ,2)
axis([-1 1 —0.1, 1.2])

hold on
plot (yb,exact (:,atx),’:k’, LineWidth’ ,2)
xlabel (y’)
legend (’Reconstruction ', "Phantom ")
title (| 'x =’ ,num2str(xi),’ profile’])
hold off
end
else % reconstruction of source phantom

for i=filter

Rec = squeeze (FBP(:,:,i));

me = mean(Rec(:));

sigma = std(Rec(:));

Rec_cut = (Rec—me)/sigma;
Rec_cut4d = Rec_cut.x(Rec_cut >4);
ang = 0:0.01:2xpi;

sourcep = 0; bkgdp=0;

for d=1:numdet

sourcep = sourcep + sourcepart(d);
bkgdp = bkgdp + bkgdpart(d);
end
datastr =~ 7;
if data = "¢’
datastr = ’Compton’
elseif data 't
datastr = ’Radon’
end
figure (1)

color_plot (XB,YB, Rec) ;
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title ({[datastr ,’, ’ ,num2str(numdet),’ detectors, ’];...
[num2str(sourcepart), ' source particles / 7 ...

num?2str (bkgdpart),’ background particles , Source at (7 ,...
num2str(S(1)),’,’ ;num2str(S(2)),’) " ];...

[ "Reconstruction by FBP, filter ', num2str(i)]} ,...
"FontSize’ ,14)

hold on

for d=1:numdet

plot3(x1(:,d),x2(:,d),0%ones(1,length(x1(:,d))), *k’ ...
"LineWidth ’ ,2)

end

hold off

figure (i+1)
color_plot (XB,YB, Rec_cut4) ;

view (0,90)

title ({[datastr ,’, '’ ,num2str(numdet),’ detectors, ’];...
[num2str (sourcepart), ' source particles / 7 ...

num?2str (bkgdpart),’ background particles , Source at (' ...
num2str(S(1)),’,  ,num2str(S(2)),’) " |;...

[ "Reconstruction by FBP, above mean+4\sigma, filter
num2str(i)]}, FontSize’ ,14)
zlabel ( 7\sigma )
hold on
for d=1:numdet
plot3(x1(:,d),x2(:,d),0xones(1,length(x1(:,d))), «k’ ...
"LineWidth ’ ,2)

PERER

end

plot3(0.05%cos(ang)+S(1) ,0.05*sin (ang)+S(2) ,...
Oxones (1,length(ang)),’b’, LineWidth’ ,2)

hold off

end % for
end % if pointsource

Listing 1V.31 ’graphpointsource.m’

% Graphs for pointsource reconstructions via backprojection

sourcep = 0; bkgdp=0;
for d=1:numdet

sourcep = sourcep + sourcepart(d);
bkgdp = bkgdp + bkgdpart(d);
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end
datastr ="";
if data = ¢’
datastr = “Compton’;
elseif data = ’r’
datastr = ’"Radon’;
end

detect_cut = detect;
detect_cut (detect_cut<=k_t)=0;

figure (1)
color_plot (XB,YB, detect_cut ) ;
title ({[datastr,’, ', num2str(numdet),’ detectors’];...
[ "Loc mean on ’,num2str(gridsize),’x’ ,num2str(gridsize) ,...
‘grid , Loc \sigma on ', num2str(gridsize42xadgrid),’'x’ ,...
num2str( gridsize+2xadgrid),’ grid, max num loc \sigma ' ...
num?2str(kk) ]; [’Source detected at (’,num2str(xpos),’,’ ...
num?2str(ypos),’ ), confidence ' ,num2str(100xconf), %’ |;
[ "Plot of (Reconstruction — mean—' num2str(k_t) ,...
"\sigma)/ \sigma’']}, FontSize’ , 14)
hold on

for d=1:numdet

plot3(x1(:,d),x2(:,d),0%ones(1,length(x1(:,d))), *k’ ...
"LineWidth’ ,2)

end

hold off

figure (2)

meandetect = mean(detect (:));
color_plot (XB,YB, detect ) ;
title ({[datastr,’, ', num2str(numdet),’ detectors’]|;...
[ 'Loc mean on ' ,num2str(gridsize),’x’ ,num2str(gridsize) ,...
‘grid , Loc \sigma on ', num2str(gridsize+2xadgrid),’x’ ,...
num2str( gridsize+2xadgrid),’ grid, max num loc \sigma ' ...
num?2str(kk) ];[ "Source detected at (’,num2str(xpos),’,’ ...
num?2str(ypos),’), confidence ' ,num2str(100xconf), %’ ];
[ "Plot of (Reconstruction — mean)/ \sigma’|}, FontSize’ ,14)
hold on
for d=1:numdet
plot3(x1(:,d),x2(:,d),meandetect*ones(1,length(x1(:,d))) ,...
"sk’, LineWidth ' ,2)
end
hold off
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figure (3)

color_plot (XB,YB,BP) ;

title ({[datastr,’, ', num2str(numdet) ,...
’ detectors, Source at (’,num2str(S(1)),’,’ ,...
num2str(S(2)),’)’ |; [num2str(sourcep) ,
’ source particles / ', num2str(bkgdp) ,

Y

background particles’];...
[ "Reconstruction by Backpojection’]}, FontSize’  14)

Listing IV.32 "color_plot.m’

function [] = color_plot (X,Y,U)
% creates a "color plot” of U
Uplot = U;

surf(X,Y, Uplot)

colorbar

colormap (jet)

view (10,90)

axis([—1.1 1.1 —1.1 1.1 min(min(U)) max(max(U))+0.01])
shading interp

Listing IV.33 "gray_plot.m’

function [] = gray_plot(X,Y,U)

Uplot = U;

surf(X,Y, Uplot)

colorbar

colormap (gray )

view (0,90)

axis ([X(1,1) X(end,end) Y(1,1) Y(end,end) min(min(U)) max(
max(U) ) +0.01])

xlabel ('x")

ylabel (’y’)

shading interp
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