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ABSTRACT

Mathematical Problems of Thermoacoustic

and Compton Camera Imaging. (August 2010)

Yulia Nekova Georgieva-Hristova, B.S., Sofia University

Chair of Advisory Committee: Dr. Peter Kuchment

The results presented in this dissertation concern two different types of tomographic

imaging. The first part of the dissertation is devoted to the time reversal method for

approximate reconstruction of images in thermoacoustic tomography. A thorough

numerical study of the method is presented. Error estimates of the time reversal

approximation are provided. In the second part of the dissertation a type of emis-

sion tomography, called Compton camera imaging is considered. The mathematical

problem arising in Compton camera imaging is the inversion of the cone transform.

We present three methods for inversion of this transform in two dimensions. Numer-

ical examples of reconstructions by these methods are also provided. Lastly, we turn

to a problem of significance in homeland security, namely the detection of geomet-

rically small, low emission sources in the presence of a large background radiation.

We consider the use of Compton type detectors for this purpose and describe an

efficient method for detection of such sources. Numerical examples demonstrating

this method are also provided.
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CHAPTER I

INTRODUCTION

Computerized tomography is a term which refers to technologies used for noninvasive

imaging of interiors of non-transparent objects, with applications in medical imaging,

industrial non-destructive testing, geophysics, astrophysics and homeland security.

All types of computerized tomography have one feature in common, namely, infor-

mation about the imaged object is obtained by measurements outside the object

and then mathematics is used to compute an image of the interior of the object.

Typically, different types of tomography pose different mathematical problems. For

example, one of the most important and well studied tomographic techniques is the

X-ray CT, which is mostly used in medicine. In order to reconstruct an image of the

interior of an object, one has to invert the Radon transform. We give some of the

basic properties of this transform in Section 1.1, as we will need them later.

In this dissertation two tomographic techniques are considered. Chapter II is

devoted to thermoacoustic tomography (TAT), which is a realtively new medical

imaging technique, aimed at detection of early stages of breast cancer. Thermoa-

coustic tomography achieves high contrast and high resolution images, while being

safe and inexpensive. The mathematical problem which arises in TAT is the inverse

observation problem for the wave equation. A closely related imaging method, called

optoacoustic tomography (OAT), leads to the same mathematical problem. Often

This dissertation follows the style of the IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control.
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the term photocaoustic tomography (PAT) is used for both OAT and TAT. In this

dissertation we will refer to TAT, although the presented results hold also for OAT.

Surveys of PAT imaging and the mathematical problems arising in it can be found

in [2]–[9].

The second part of this dissertation considers a problem from emission tomog-

raphy, called Compton camera imaging. In emission tomography, particles emitted

from the inside of an object are detected on the boundary of the object. Then, one

attempts to find the distribution of sources inside the object. Compton cameras are

a type of γ-ray detectors that find application in fields like nuclear medicine, astro-

physics and monitoring nuclear power plants. The mathematical problem associated

with Compton camera imaging is that of inverting the so-called the cone transform.

This integral transform has been studied recently, however many questions remain

open. References to papers on Compton camera imaging can be found in Chap-

ter III. In the first part of this chapter some results regarding the two-dimensional

cone transform are presented. In the second part, we turn to the problem of detect-

ing illicit nuclear material and the use of Compton type detectors and the results

from the first part for this purpose.

The dissertation is organized as follows.

In Section 1.1 we define several integral transforms that are used in the later

chapters. We also give some of the basic properties of these transforms.

Chapter II is devoted to thermoacoustic tomography (TAT). Section 2.1 con-

tains a brief introduction to thermoacoustic tomography and some of the available

reconstruction techniques. The time reversal method for reconstruction in TAT is
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described in detail in Section 2.2, and results of its numerical implementation are

provided and discussed in Section 2.3. An error estimate for the time reversal ap-

proximation is presented in Section 2.4 and numerical simulations confirming the

results from this section can be found in Section 2.5. Section 2.6 contains some con-

cluding remarks. The Matlab codes used for the numerical experiments discussed in

this chapter are provided in Appendix A.

In Chapter III we consider problems related to Compton camera imaging. Sec-

tion 3.1 contains an introduction to Compton camera imaging and a brief descrip-

tion of the available mathematical results. In Section 3.2 the two-dimensional cone

transform is studied and numerical reconstructions are presented in Section 3.3. In

Section 3.4 we consider the problem of detection of low emission geometrically small

sources and Section 3.5 contains the results of our numerical simulations. Concluding

remarks can be found in Section 3.6. The Matlab codes used for the computations

discussed in this chapter are provided in Appendix B.

1.1. Definitions and Properties of Some Integral Transforms

In this section we give some definitions and properties of integral transforms which

we be needed later. More details can be found, for example, in [10] and [11].

Let f(x) belong to the Schwartz space S(Rn). The Fourier Transform of f is

defined as

f̂(ξ) := Ff(ξ) := (2π)−n/2

∫

Rn

f(x)e−ix·ξ dx, ξ ∈ Rn (1.1)
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The inverse Fourier transform is

f(x) = F−1f̂(x) = (2π)−n/2

∫

Rn

f(x)eix·ξ dx (1.2)

The Fourier transform can be extended as a bijection from L2(Rn) to itsself.

The Hilbert transform of a function u is defined by the following principal value

integral (when it exists)

Hu(t) = p.v.
1

π

∫ ∞

−∞

u(s)

t− s
ds = lim

ε→0

1

π

(∫ t−ε

−∞

u(s)

t− s
ds+

∫ ∞

t+ε

u(s)

t− s
ds,

)
(1.3)

which can also be written as

Hu(t) = lim
ε→0+

1

π

∫ ∞

ε

u(t− s)− u(t+ s)

s
ds. (1.4)

If u is α-Hölder continuous and with compact support, then Hu(t) is a also Hölder

continuous (e.g. [12]) and we write

Hu(t) =
1

π

∫ ∞

0

u(t− s)− u(t+ s)

s
ds. (1.5)

The Hilbert transform has the following properties:

1. H2f(s) = −f(s)

2. F(Hf)(σ) = −i sgn(σ)Ff(σ)

One of the most important integral transforms used in tomography is the n-

dimensional Radon transform, which we will denote by R : L2(Rn) → L2(S
n−1×R).

The Radon transform maps each function f(x) ∈ L2(Rn) into the the set of its
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integrals over hyperplanes, i.e.

Rf(ω, s) =

∫

x·ω=s

f(x) dx =

∫

ω⊥

f(sω + y) dy (1.6)

Here ω ∈ Sn−1, s ∈ R and ω⊥ denotes the subspace perpendicular to ω. The set

L(ω,s) := {x ∈ Rn|x · ω = s} is the hyperplane perpendicular to ω, which lies at

distance s from the origin.

We will mostly use the Radon transform in two dimensions, which maps a func-

tion f(x), x ∈ R2, into the set of its line integrals, i.e.

Rf(ω, s) =

∫

x·ω=s

f(x) dx =

∫ ∞

−∞
f(sω + tω⊥) dt, (1.7)

where ω⊥ denotes the unit vector perpendicular to ω. Then, L(ω,s) is the line per-

pendicular to ω which lies at distance s from the origin, see Fig. 1.1.

Fig. 1.1. The line L(ω,s) is defined by the unit vector ω perpendicular to it, and by

the distance s from the origin.
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The divergent beam transform (in 2D also fanbeam transform) is defined by

Df(a, ω) =

∞∫

0

f(a+ tω) dt. (1.8)

Thus, Df(a, ω) is the integral of f along the half-line starting at the point a ∈ Rn

in the direction of ω ∈ Sn−1.

The Radon transform has the following properties:

1. The function Rf(ω, s) is even, i.e. Rf(−ω,−s) = R(ω, s).

2. Denote the unit ball in Rn by Bn. Then

R : Hα
0 (Bn) → Hα+(n−1)/2(Sn−1 × R). (1.9)

3. The dual to R operator is called the backprojection operator and is given by

R#g(x) :=

∫

Sn−1

g(ω, x · ω) dω (1.10)

Here g(ω, s) ∈ L1(S
n−1 × R).

4. Consider the backprojection operator, applied to Rf

R#Rf(x) :=

∫

Sn−1

∫

L(ω,x·ω)

f(y) dydω. (1.11)

We can say that, for every x, R#Rf(x) is the “sum“ all line integrals of f

which pass through the point x. We will refer to R#Rf(x) as backprojection

reconstruction.
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5. The following relation holds

R#Rf = |Sn−2| 1
x
∗ f, (1.12)

where |Sn−2| is the surface of the unit sphere in Rn−1.

6. The Fourier Slice Formula gives a connection between Radon and Fourier

transforms.

F1Rf(ω, σ) = (2π)(n−1)/2f̂(σω), σ ∈ R, (1.13)

where F1 denotes the one-dimensional Fourier transform with respect to s. In

other words, the (n-dimensional) Fourier transform is the Fourier transform

with respect to the linear variable of the Radon transform. The Fourier Slice

Formula provides an inversion formula for the Radon transform. Indeed, one

only has to apply the inverse Fourier transform to (1.13) in order to recover f .

7. The Filtered Backprojection (FBP) Formula is a widely used formula for in-

version of the Radon transform. In 3D it reads

f(x) =
1

4π2
R#

(
∂2

∂s2
Rf

)
(x) (1.14)

In 2D FBP takes the form

f(x) =
1

4π
R#

(
H
∂

∂s
Rf

)
(x), (1.15)

where the Hilbert transform is taken with respect to s.
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CHAPTER II

TIME REVERSAL IN THERMOACOUSTIC TOMOGRAPHY

2.1. Introduction to Thermoacoustic Tomography

1 Thermoacoustic tomography (TAT) is a hybrid medical imaging technique that

utilizes the electromagnetic energy absorption properties of tissue and ultrasound

propagation. TAT images are characterized by high resolution and high contrast

between cancerous and noncancerous tissues. Other advantages of TAT are safety

and low cost. The main application of thermoacoustic tomography is in detection of

early stages of breast cancer. A more detailed description of thermoacoustic imaging

and a mathematical model follows. The first step in TAT is the irradiation of an

object of interest with a short electromagnetic pulse. A part of the electromagnetic

energy is absorbed throughout the tissue, which causes a thermoelastic expansion.

This leads to a pressure wave propagating through the object. The pressure is

measured by ultrasound transducers located on an observation surface S surrounding

the object, see Fig. 2.1. The collected information is then used to reconstruct the

initial pressure at every point inside the object. Cancerous tissue absorbs significantly

more microwave energy than normal tissue [15], and it is known that the initial

pressure is roughly proportional to the amount of absorbed electromagnetic energy

[2], [16], [17]. This leads to a large contrast between cancerous and normal tissues in

TAT images [15]. On the other hand, the submillimeter resolution of TAT images is

1Some parts from this chapter were reproduced from [13], [14] with permission
from IOP Publishing Limited.
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due to ultrasound [2], [15],[18].

Fig. 2.1. Schematic representation of a TAT scanning system.

2.1.1. Mathematical Model of TAT

The equations describing thermoacoustic wave generation have been discussed in

detail in the literature. We give a brief derivation of the model here, and refer to

reader to [3, Ch. 12] and [16] for further details.

Let p(x, t) denote the acoustic pressure change at location x ∈ R3 and time t,

and let u(x, t) be the medium displacement. We say that thermal confinement holds,

when the heating pulse is shorter than the time of dissipation of the absorbed energy.

Under thermal confinement the temperature rise T (x, t) satisfies the equation:

ρCV
∂T (x, t)

∂t
= H(x, t). (2.1)

Here ρ is the mass density, CV is the specific heat capacity at constant volume, and
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H(x, t) is the heating function defined as thermal energy converted per unit volume

and unit time.

We assume that the mass density, ρ(x), varies slowly, i.e.

ρ = ρ0(1 + s), s¿ 1, (2.2)

where ρ0 is the equilibrium mass density (for soft tissue ρ0 ≈ 1000kg/m3).

The thermal expansion equation (generalized Hooke’s law) reads as

divu(x, t) = −κ(x)p(x, t) + βT (x, t) (2.3)

Here κ is the isothermal compressibility and β denotes the thermal coefficient of

volume expansion.

The linear inviscid force equation (the equation of motion), under the assump-

tion (2.2), reads

ρ0
∂2

∂t2
u(x, t) = −∇p(x, t) (2.4)

Taking divergence of the last equation leads to

ρ0
∂2

∂t2
(divu) = −∆p

Substituting (2.3) into the above equation results in

∂2

∂t2
p(x, t)− c2(x)∆p =

β

κ(x)

∂2T (x, t)

∂t2
(2.5)

Here c2(x) = 1/κ(x)ρ0 is the speed of sound in the imaged tissue. Relation (2.1)

implies

∂2

∂t2
p(x, t)− c2(x)∆p =

β

CP

c2(x)
∂H

∂t
(2.6)
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Since the irradiation pulse is short, we can assume that H(x, t) = I(x)δ(t),

where I(x) is the radiation intensity and δ is the delta function. Let us denote

f(x) = β
CP
c2(x)I(x). Then the equation for the pressure p(x, t) is





ptt = c2(x)∆p, t ≥ 0, x ∈ Rn

p(x, 0) = f(x), pt(x, 0) = 0,

p(y, t) = g(y, t) for y ∈ S, t ≥ 0.

(2.7)

Here S is the observation surface surrounding the object and B be the domain

bounded by S. The function g(y, t) is the value of the pressure at time t measured

at transducer’s location y ∈ S, and f(x) is the initial pressure, which we seek to

find. The function f(x) is assumed to have a compact support in B. One thus

faces the problem of inverting the mapping R : f → g from the initial pressure to the

measured data. It must be noted that a similar imaging modality, called optoacoustic

tomography, exists, in which the thermoelastic expansion is triggered by a laser. The

mathematical model for this type of tomography is the same as for TAT.

2.1.2. Reconstruction Methods in TAT

Here we describe briefly the main types of reconstruction procedures used in TAT.

One can find detailed surveys on this topic in [4]–[9].
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2.1.2.1. Filtered Backprojection Formulas

In the case when the sound speed is constant, i.e. c(x) ≡ c, the wave equation 2.7

can be solved using the well known Poisson-Kirchhoff formulas (e.g. [19]):

p(x, t) = cn

[(
∂

∂t

1

t

)n−1
2

Rf

]
(x, ct), x ∈ Rn, t > 0 (2.8)

where cn > 0 is a constant and

(Rf)(x, t) =

∫

|y|=1

f(x+ ty) dA(y) (2.9)

is the spherical mean of f on the sphere centered at x with radius t, dA is the surface

area measure on this sphere. Thus, the knowledge of the values of the pressure on

the observation surface S implies the knowledge of the values of the spherical mean

transform of f , Rf(x, t), for points x ∈ S. The aim now is to invert RS - the spherical

mean operator with centers on S.

The filtered backprojection formulas are closed form formulas which provide

inversions of RS. For the case when S is a sphere with radius r, such formulas were

provided in [20]–[22]. One of these formulas in three dimensions reads as follows:

f(x) = − 1

8π2r

∫

S

(
d2

dt2
RSf(y, t)

)∣∣∣∣
t=|y−x|

dA(y)

Recently, a family of filtered backprojection formulas, unifying all such previously

known formulas, was given in [23]. The filtered backprojection formulas are fast and

accurate, however the only available formulas are for spherical observation surfaces

and constant sound speed. Moreover, if the support of f has parts outside the do-

main surrounded by S, these formulas reconstruct f inside S incorrectly [5],[6].
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2.1.2.2. Eigenfunction Expansion Methods

The eigenfunction expansion methods work for arbitrary closed observation surfaces

S and initial pressures f with bounded support not necessarily inside S. The only

significant condition on the sound speed is that c(x) is non-trapping. This condition

will be discussed later in Section 2.2. In [24] the following, very general, reconstruc-

tion formula was provided:

f(x) =
∑

k

fkψk(x),

where

fk = −λ−1
k

∫ ∞

0

sin(λkt)gk(t) dt ; gk(t) =

∫

S

g(x, t)
∂ψk

∂ν
(x) dx

ψk(x), λ
2
k are the eigenfunctions and eigenvalues of −c2(x)∆ in the interior of S with

zero Dirichlet conditions on S. This method was shown to be very fast and precise

when the sound speed is constant and the observation surface is a cube [25]. How-

ever, if the sound speed is variable, the method is computationally very expensive,

as a large number of eigenvalues and eigenfunctions of −c2(x)∆ need to be computed

numerically.

2.1.2.3. Time Reversal Method

In essence, the time reversal method works by solving the wave equation inside

B in reversed time order, using the detected signals at S as boundary conditions.

At time t = 0, the solution approximates the initial pressure f(x) we are looking
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for. Time reversal can be used for approximation of the initial pressure for a broad

range of sound speeds and arbitrary observation surfaces [13], [14], [26], [27]. The

method does not require the support of f to be constrained to the interior of the

imaged region. Moreover, time reversal is easy to implement numerically [13], [14],

[26]. All of these characteristics make time reversal the most versatile among the

reconstruction methods in TAT.

The time reversal method is the object of study in the first part of this dis-

sertation. It should be noted that, although we are interested in applications to

thermoacoustic tomography, the time reversal method for the wave equation has

been used in other applications [28]–[30]. Our results apply in all of these cases.

2.1.2.4. Algebraic Reconstruction Techniques

Algebraic reconstruction techniques are yet another option for reconstruction in TAT.

These methods allow for quality reconstructions when the observation surface is open

[31] and can be used in cases of heterogeneous acoustic media [32]. However, these are

iterative algorithms and as such are computationally expensive. Faster converging

algorithms were developed in [33], [34], where approximate analytic formulas were

used as a preconditioner for iterative solvers.

The remainder of this chapter is organized as follows. In Section 2.2 a non-

trapping condition on the sound speed is recalled and the time reversal method is

described. Numerical reconstructions based on time reversal are presented and dis-
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cussed in Section 2.3. In Section 2.4 an error estimate for the time-reversal approxi-

mation is proved. Numerical study of errors is provided in Section 2.5. Section 2.6

contains some concluding remarks.
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2.2. Non-trapping Condition and the Time Reversal Method

In this section we recall the notion of a non-trapping sound speed and we give a more

detailed description of the time reversal method.

We will be interested in the initial value problem:





ptt = c2(x)∆p, t ≥ 0, x ∈ Rn

p(x, 0) = f1(x), pt(x, 0) = f2(x),
(2.10)

where c(x) > c > 0, c(x) ∈ C∞(Rn), and c(x) − 1, as well as f1(x) and f2(x), has

compact support. Consider the following Hamiltonian system in 2n real variables

(x, ξ) with Hamiltonian H = c2(x)
2
|ξ|2:





x′t = ∂H
∂ξ

= c2(x)ξ

ξ′t = −∂H
∂x

= −1
2
∇ (c2(x)) |ξ|2

x|t=0 = x0, ξ|t=0 = ξ0.

(2.11)

The solutions of this system are called bicharacteristics and their projections into

the x-space Rn
x are called rays.

Definition 1. We say that the non-trapping condition holds, if all rays (with ξ0 6= 0)

tend to infinity when t→∞ .

Let us assume that the speed c(x) of ultrasound in the tissue is smooth and

strictly positive c(x) > c > 0, and that c(x) ≡ 1 for large values of |x|. It is known

that the singularities of the solution of (2.10) propagate along bicharacteristics (e.g.

[35]–[37]). Therefore, due to the non-trapping condition imposed on c(x), it follows

that for any distributions f1, f2 with compact supports, the singularities of the
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solution move away to infinity as t→∞. Then, for a sufficiently large t, the solution

p(x, t) is infinitely differentiable inside any given bounded domain B. Moreover, the

following estimates hold:

Theorem 2. (e.g. [38] ,[37]) Under the conditions imposed on the sound speed c(x)

and f(x) and for any bounded domain B, the solution of (2.10) satisfies the estimates

∣∣∣∣
∂k+|m|p
∂k

t ∂
m
x

∣∣∣∣ ≤ Cηk(t) (‖f1‖L2 + ‖f2‖L2) , x ∈ B, t > T0, (2.12)

for any multi-index (k,m), where ηk(t) = t−n+1−k for even n, and ηk(t) = e−δt for odd

n. Here δ is a positive constant depending only on c(x), T0 depends on the domain

B, and the C depends on B and the multi-index (k,m).

We will make use of the above theorem in estimating the error of time reversal

reconstructions. Note that in the case of trapping sound speed the local energy of

the solution of (2.10) still decreases in any compact domain, but, in general, there is

no uniform local energy decay estimate [39], [40].

We now turn to describing the time-reversal method in the way it is applied to

the thermoacoustic tomography problem.

The Huygens’ principle states that in odd dimensions and when the sound speed

is constant, for any initial source with bounded support and for any bounded domain,

there is a moment in time when the wave leaves the domain (e.g. [41]). Thus, given

an initial pressure f(x) with a bounded support, there is a time T when the wave

inside the domain B, bounded by the observation surface S, vanishes for all t ≥ T .

Then, to reconstruct f(x) we can simply ”rewind” the solution, i.e. we can solve the

wave equation backwards in time inside B with zero initial conditions at t = T and
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boundary conditions given by the measured data on S. At time t = 0 the solution

of this problem will be equal to f(x).

In even dimensions or when the sound speed is variable, the Huygens’ principle

does not hold anymore. Nevertheless, we could still try to backpropagate the wave,

hoping to approximate the initial pressure. This is the main idea of the time reversal

method and we will now give a precise description of the method in the general case

of a variable sound speed and dimension n.

To reconstruct the initial pressure f(x) inside B, we try to reverse the time

(starting from time t = T and going back to t = 0) and solve the following problem:





utt = c2(x)∆u in B × [0, T ]

u(x, T ) = p(x, T )

ut(x, T ) = pt(x, T )

u|S(x, t) = g(x, t) on S × [0, T ],

(2.13)

where g = p|S×[0,T ] is the restriction of p onto S × [0, T ]. At time t = 0 the solution

of this problem equals f(x)2. Obviously, this reconstruction requires the knowledge

of the solution to (2.7) on the cylinder S× [0, T ] and inside B at time T . The values

of p on the cylinder can be obtained from the measurements of the transducers

placed on S. However, the values of the pressure inside B at time T are not known.

Nevertheless, due to Theorem 2, we do know that the solution inside B decays with

time. Therefore, after some time T > T0 it is reasonable to approximate p(x, T ) and

2Note that u(x, t) is simply the restriction of p(x, t) onto B × [0, T ].
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pt(x, T ) with zero. This is how we arrive to the approximate reconstruction problem:





vtt = c2(x)∆v in B × [0, T ]

v(x, T ) = 0, vt(x, T ) = 0

v|S(x, t) = g(x, t)ϕε(t) on S × [0, T ].

(2.14)

Here ϕε(t) is a smooth cut-off function that equals to 1 in (−∞, T − ε] (where

T − ε > T0) and vanishes for t ≥ T . As it will be explained below, at time t = 0 the

solution to (2.14) approximates f(x). In Section 2.4 we estimate the decay of this

error with respect to the cut-off time T in the case of a non-trapping sound speed.

Another variation of the time reversal procedure exists in the literature [27]. In

this version, the analogue of (2.14) is





vtt = c2(x)∆v in B × [0, T ]

v(x, T ) = φ(x), vt(x, T ) = 0

v|S(x, t) = g(x, t) on S × [0, T ],

where φ(x) is the solution of

∆φ = 0 in B, φ|S = g(·, T ).

2.3. Numerical Reconstructions Using Time Reversal

In this section we present 2D time reversal reconstructions from numerically gen-

erated data. Reconstructions for various sound speeds are shown. In all examples

below the observation surface S is the unit sphere and we reconstruct the initial

pressure inside the unit disk B. For our computations we used the rectilinear finite
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difference scheme, implemented in Matlab. For the simulation of phantom data the

following problem was solved





ptt − c20∆p = 0 in D × (0, T0]

p(x, 0) = f(x) pt(x, 0) = 0

p|∂D = 0,

where D = [−a, a]2 was a square containing S and large enough to ensure that no

reflections off its boundary would reach S for time T0. The values of the solution on S

were recorded for all time steps. The time T0, the domain D and the space and time

step-sizes were adjusted depending on the situation. For the reconstruction part, the

same equation and difference scheme were used (but with a different mesh, to avoid

committing inverse crime), this time on the square [−1.2, 1.2]2. On each time step

the prerecorded values of the forward wave on S were enforced on the solution of the

reconstruction problem. More details regarding the implementation, as well as the

actual programming codes, can be found in Appendix A.

2.3.1. Constant Sound Speed

We begin with the most favorable situation: a constant speed that we choose to

be equal to 1. Thus, it takes time t = 2 for the front of a wave moving with unit

speed to cross the disk B. Although the sound speed is constant, Huygens’ principle

does not hold in 2D, so the wave remains in B indefinitely. A numerical phantom

consisting of two round objects is shown in Fig. 2.2. On the same figure a couple of

time reversal reconstructions are shown. For the first reconstruction a cut-off time

T = 2 was used, while for the second we waited longer, until time T = 3, before
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initiating the reconstruction. We observe that taking larger cut-off times improves

the result, as is expected. In Fig. 2.3 one finds a reconstruction of the Shepp-Logan

phantom.

Fig. 2.2. The phantom and its axial profile (top), reconstruction for c = 1 and T = 2

(center), reconstruction for c = 1 and T = 3 (bottom).

These examples show that the time reversal method works well with a constant

sound speed in 2D, in spite of it being theoretically not exact and given the slow
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Fig. 2.3. Reconstruction for c = 1 and T = 3 of the Shepp-Logan phantom.

energy decay (see (2)).

Let us now illustrate some features of time reversal discussed before that are

not available with the known backprojection formulas.

First of all, presence of a part of the function f(x) outside the observation surface

S does not hinder the reconstruction of f inside S. Fig. 2.4 shows a phantom that

has a part of it outside the unit circle S and its reconstruction inside S. Clearly,

there are no artifacts, which one would get with the analytic inversion formulas [5],

[6].

Another interesting feature is that the initial velocity in (2.7) being zero (which

is assumed in all analytic inversion formulas) is not necessary. We will show a

corresponding example in the next section, with a variable sound speed. It works

even better with a constant speed.
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Fig. 2.4. Phantom (top left) with a part outside the observation surface and its re-

construction (top right) and comparison with the original (bttom).

2.3.2. Non-trapping Variable Speed

Let us now experiment with the time reversal method for a (known) variable speed

under the non-trapping condition. In Fig. 2.5 one can see the speed profile and the

phantom that were used in calculations, as well as the corresponding reconstructions.

We now present an example where the initial velocity is non-zero. Fig. 2.6 shows the

sound speed, the initial velocity and the initial value phantom (i.e., f(x) to be recon-
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Fig. 2.5. A non-trapping (radial) speed profile (top left) and a phantom (top right).

Reconstruction from time T = 1.7 (bottom left) and a profile plot of the

phantom and the reconstruction.

structed). The reconstruction of the phantom shown in Fig. 2.6 confirms that the

presence of a non-zero initial velocity does not hamper the reconstruction. Moreover,

although this is not of interest for TAT, the initial velocity can also be reconstructed

by the time reversal, although this reconstruction is (expectably) somewhat less sta-

ble.
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Fig. 2.6. Top: sound speed (left), initial velocity (middle), and density plot of the

phantom (right). Bottom: reconstruction from time T = 1.7 (left) and a

profile plot of the phantom and the reconstruction (right).

2.3.3. Trapping Variable Speed

We now turn to the worst case scenario: trapping speeds in 2D. The simplest

way to create a trapping speed is to use a speed with a “crater profile”, see the

graph on the left of Fig. 2.7. This radial sound speed equals |x| in the annulus

{x|0.5 < |x| < 1} and is constant elsewhere. On Fig. 2.7 (right) is a phantom we used

for the experiment with the “crater“ speed. Reconstructions for T = 4, 10, and 15 (it

takes t = 3.3863 for the wave to go across the unit circle) are shown in Fig. 2.8. One

clearly sees that although it takes a longer time, one still eventually reconstructs the

phantom. There is, however, a phenomenon that can deteriorate the reconstructions
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Fig. 2.7. A “crater” trapping speed (left) and the phantom used for reconstructions

with this speed.

in the trapping situations, and which one should be aware of. We discuss it in the

next sub-section.

Fig. 2.8. The reconstructions for T = 4, 10, and 15 with the “crater” trapping speed.
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2.3.4. Limited View Effects Due to a Trapping Speed

Let us use again the same “trapping crater” speed (Fig. 2.7). On Fig. 2.9 a quarter-

annulus phantom supported inside the trapping area and its reconstructions are

shown. These reconstructions exhibit blurring of the radial sides of the phantom, a

Fig. 2.9. A phantom and its reconstructions for T = 4 and 6 with the “crater” trap-

ping speed.

phenomenon common to incomplete data problems [5], [6], [33], [42]–[45]. At a first

glance, one may be led to think that the data is as complete as possible, since it

is collected from the whole closed surface S. However, the ”trapping crater” speed

traps all rays corresponding to bicharacteristics that start at points (x0, ξ0) such that

x0 ∈ {x|0.5 < |x| < 1} and x0 ⊥ ξ0. These rays are circular and thus never reach

S. Hence, as we briefly discussed in Section 2.2, singularities corresponding to wave

front vectors (x0, ξ0) will never reach the observation surface. This means, that the

singularity of radial interfaces never show up as singularities in the measured data g.

It has been argued then [5], [6], [33], [42]–[46] that such interfaces cannot be stably

reconstructed and thus get blurred, no matter what reconstruction method is used.

Since the rays that start being normal to other parts of the phantom’s boundary
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are not trapped, these parts are reconstructed stably. One should also note that

if the phantom’s boundaries inside the trapping ring were not radial, they would

reconstruct sharply, since the related rays would reach S. This is confirmed by the

reconstructions in Figs. 2.9, 2.10 and 2.11. It is interesting to notice what happens

Fig. 2.10. A semi-circular phantom and its reconstructions for T = 4 with the “crater”

trapping speed. The parts of the boundaries that are in the trapping ring,

but such that the normal vectors produce non-trapped rays, are not blurred.

with the semi-circular phantom shown in Fig. 2.11. Here one notices a deterioration

near the point on the semi-circular part, where the boundary is tangential to the

radius. The reason is that the corresponding ray is trapped. In the reconstruction

shown in Fig. 2.10, this effect did not appear, since the corresponding point was not

in the trapping region and thus the relevant ray was escaping.

We now show another example of a trapping sound speed, which exhibits more

severe trapping than the “crater“one. The ”parabolic“ speed equals |x|2 + 0.1 inside

the unit circle and is constant outside. In this case, for any x0 there exists a cone of

directions ξ0, such that the ray corresponding to the bicharacteristic starting at x0, ξ0

is trapped [46]. On Fig. 2.12, the sound speed, a phantom, and its reconstruction are
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Fig. 2.11. A smaller semi-circular phantom and its reconstruction for T = 4 with

the “crater” trapping speed. There is a noticeable blurring on the circular

boundary at the point where the normal ray is trapped (i.e., where the

circle is tangential to the radius).

shown. In this case, the blurring of the image is very strong, and the reconstructions

do not improve with time, since the information about missing singularities never

reaches the detectors.

2.3.5. Reconstruction with an Incorrect Speed

In the above discussions, we have always assumed that the sound speed was known,

while it is often not. To overcome this, one either tries to recover somehow the speed

(e.g., using transmission ultrasound tomography [47], [48]), or assumes some (usually

constant) speed. As it has been noted in previous studies (e.g., [47]–[49]), it is easy

to conclude that using an incorrect sound speed deteriorates both the amplitudes,

as well as locations of features (e.g., of interfaces) of the image. The example shown

below is provided to confirm this. On Fig. 2.13 a sound speed and a phantom are

shown. The sound speed equals 1, except at four circular inclusions, where it takes
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Fig. 2.12. Profile of the ”parabolic“ trapping speed (left), a phantom (middle) and

its reconstruction from T = 8 (right).

values 1.5, 1.2, 0.8 and 0.7. Fig. 2.14 shows the reconstruction for T = 2.5 with the

true speed and for T = 5 with the average speed c = 1.0118. One can easily see both

types of deterioration mentioned above. This example also shows the viability of

the time reversal in the case of more realistic sound speeds than used before (several

different “tissues” are present).

Fig. 2.13. A phantom (left) and a sound speed density plot (right).
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Fig. 2.14. The reconstruction with the correct speed map (left) and with the average

speed (right). One observes both location shifts and amplitude deteriora-

tion of the image reconstructed with the average speed.
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2.4. An Error Estimate

In this section we consider the error e(x, t;T ) = u(x, t) − v(x, t) that results from

replacing the true solution of (2.13), u(x, t), with the time reversal solution v(x, t).

Recall that v(x, t) solves equation (2.14). Then, the error satisfies the following

equation:





ett(x, t;T ) = c2(x)∆e(x, t;T ) in B × [0, T ]

e(x, T ;T ) = p(x, T )

et(x, T ;T ) = pt(x, T )

e|S(x, t;T ) = gε(x, t) : = (1− ϕε(t))g(x, t) in S × [0, T ].

(2.15)

To make the role of ε more clear, we will specify our choice of a cut-off function

ϕε(t). Let ϕ(t) be a smooth function that equals to 1 on (−∞,−1] and vanishes on

[0,∞). When ε ≤ 1, we set ϕε(t) = ϕ((t− T )/ε) (Figure 2.15), and when ε > 1, we

choose ϕε(t) = ϕ1(t) = ϕ(t− T ). This can also be written as ϕε(t) = ϕ((t− T )/α),

where α = min{ε, 1}.

Fig. 2.15. A sketch of a cut-off function ϕε(t).

Let the sound speed c(x) satisfy the following conditions: c(x) > c > 0, c(x) ∈
C∞(Rn), c(x) − 1 has a compact support and c(x) is non-trapping. Suppose also
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that the initial pressure f(x) belongs to L2(Rn) and is compactly supported (in B).

Then the following theorem holds.

Theorem 3. There exists T0 such that for any T > T0 and ε > 0 satisfying T − ε >
T0, the error e(x, t;T ) can be estimated as follows:

• for even dimensions n

max
0≤t≤T

(‖e(t;T )‖H1(B) + ‖et(t;T )‖L2(B)) ≤ C(ε)(T − ε)−n+1‖f‖L2(B);

• for odd dimensions n

max
0≤t≤T

(‖e(t;T )‖H1(B) + ‖et(t;T )‖L2(B)) ≤ C(ε)e−δ(T−ε)‖f‖L2(B).

Here C(ε) = C/min{ε2, 1}, for some constant C depending on B and c(x).

In particular,

‖e(0;T )‖H1
0 (B) = ‖f − v(0)‖H1(B) ≤ C(ε)(T − ε)−n+1‖f‖L2, for even n;

‖e(0;T )‖H1
0 (B) = ‖f − v(0)‖H1(B) ≤ C(ε)e−δ(T−ε)‖f‖L2(B), for odd n,

where v(0, x) is the approximation to f(x) obtained by time reversal with cut-off time

T .

Proof. Let E : Hs(S) → Hs+1/2(B) , s > 0, be the operator of harmonic

extension that produces a harmonic function Eφ in B from the Dirichlet boundary



34

data φ (e.g. [50]). Then w : = e− Egε satisfies





wtt − c2(x)∆w = −Egεtt in B × [0, T ]

w(x, T ) = p(x, T )− Egε(x, T ) = p(x, T )− Eg(x, T )

wt(x, T ) = pt(x, T )− Egεt(x, T ) = pt(x, T )− Egt(x, T )

w|S(x, t) = 0 on S × [0, T ],

(2.16)

As noted at the beginning of this section, there exists a time T0 after which the

solution p(x, t) to (2.7) is infinitely smooth in B̄ × [T,∞) for any T > T0. Let us

choose such T and let ε be such that T − ε > T0. Then the right hand side and the

initial conditions of (2.16) are infinitely smooth functions. Indeed, p(x, T ) is smooth,

as we discussed above. Recall that gε is a smooth cut-off of the trace of p(x, t).

Moreover, it is supported in [T − ε, T ] – a time interval where p(x, t) has already

become infinitely smooth. Thus Egε(x, t) is a smooth function as well.

Next, we will apply the following theorem to the solution of (2.16).

Theorem 4. (e.g.[19]) Assume that G,H ∈ C∞(B̄), F ∈ C∞(B̄ × [0, T ]) and con-

sider the initial boundary value problem





Utt − c2(x)∆U = F in B × (0, T ]

U = G, Ut = H on B × {t = 0},
U = 0 on S × [0, T ]

(2.17)

Here c(x) ∈ C∞(B̄) is such that c(x) ≥ θ for some θ > 0. Let the following compat-

ibility conditions hold for l = 1, 2, ....
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G0 := G ∈ H1
0 (B), H1 := H ∈ H1

0 (B),

G2l := d2l−2F
dt2l−2 (·, 0) + c2(x)∆G2l−2 ∈ H1

0 (B),

H2l+1 := d2l−1F
dt2l−1 (·, 0) + c2(x)∆H2l−1 ∈ H1

0 (B).

(2.18)

Then (2.17) has a unique solution U ∈ C∞(B̄ × [0, T ]) and

max
0≤t≤T

(‖U(t)‖H1
0 (B) + ‖Ut(t)‖L2(B)) ≤

CeC1T (‖F‖L2(0,T ;L2(B)) + ‖G‖H1
0 (B) + ‖H‖L2(B)),

where the constants C and C1 depend on B and c(x).

We will verify that the conditions of Theorem 4 are satisfied by (2.16), noting

that the compatibility conditions must hold at t = T , since the direction of time is

reversed. Indeed, as we already discussed, F = −Egεtt, G = p(x, T )− Eg(x, T ) and

H = pt(x, T )−Egt(x, T ) are infinitely smooth. It is clear that G0 = G and H1 = H

belong to H1
0 (B̄), as g(x, t) has been defined to be the trace of p(x, t). The higher

order compatibility conditions hold as well:

G2l(x) =− d2l−2

dt2l−2Egεtt(x, T ) + c2∆G2l−2 = −E d2l

dt2l g(x, T ) + c2∆G2(l−1)

= −E d2l

dt2l g(x, T ) + (c2∆)lG0 = −E d2l

dt2l g(x, T ) + (c2∆)lp(x, T ).

We used here that ∆E = 0.

As we already know that p(x, T ) is smooth in a neighborhood of T , we conclude

that

G2l(x)|S =

[
− d2l

dt2l
p(x, T ) + (c2∆)lp(x, T )

]∣∣∣∣
S

= 0,

so G2l ∈ H1
0 (B) for l = 1, 2... Similarly, one can check that H2l+1 ∈ H1

0 (B) for l =

1, 2....



36

Before applying Theorem 4 to the solution of (2.16) we notice that the energy

in B, defined by E (t) := 1
2

∫
B

(|∇w|2 + c−2(x) |wt|2
)
dx, stays constant in [0, T − α],

where α = min{ε, 1}. Indeed, using (2.16) one easily shows that

Ė (t) =

∫

B

(∇w · ∇wt + c−2wtwtt

)
dx = −

∫

B

wtc
−2Egεtt dx.

The last integral vanishes in [0, T−α], because gεtt ≡ 0 in [0, T−α] and therefore,

Egεtt ≡ 0 in this interval. Then, by Theorem (4), it follows that

max
0≤t≤T

E (t) = max
T−α≤t≤T

E (t) ≤ C max
T−α≤t≤T

{
‖w(t)‖2

H1
0 (B)

+ ‖wt(t)‖2
L2(B)

}
≤

C
{
‖Egεtt‖2

L2(T−α,T ;L2(B)) + ‖p(·, T )− Eg(·, T )‖2
H1

0 (B)

+ ‖pt(·, T )− Egt(·, T )‖2
L2(B)

}
,

where C depends on c(x) and B only, but not on T or ε. Here and in what follows

C will denote various constants, all of them independent on T or ε.

As w = e− Egε, the above inequalities imply

max
0≤t≤T

(‖e(t)‖H1(B) + ‖et(t)‖L2(B)) ≤

C max
0≤t≤T

{√
E (t) + ‖Egε(t)‖H1(B) + ‖Egεt(t)‖L2(B)

}
≤

C

{
max

T−α≤t≤T
(‖Egε(t)‖H1(B) + ‖Egεt(t)‖L2(B)) + ‖Egεtt‖L2(T−α,T ;L2(B))

+ ‖p(·, T )− Eg(·, T )‖H1
0 (B) + ‖pt(·, T )− Egt(·, T )‖L2(B)

}
.

(2.19)

We used here that Egε ≡ 0 in [0, T − α].

Let T : Hs(B) → Hs−1/2(S), s > 1/2, denote the trace operator, which is known

to be continuous (e.g.[19]). Then, using the continuity of the linear operators E and
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T , we can estimate the terms in (2.19) as follows.

‖Egε(t)‖H1(B) ≤ C‖gε(t)‖H1/2(S) = C‖(1− ϕε(t))T p(t)‖H1/2(S) ≤

C‖(1− ϕε(t))p(t)‖H1(B) ≤ C‖p(t)‖H1(B).

Similarly,

‖Egεt(t)‖L2(B) ≤ ‖Egεt(t)‖H1(B) ≤ C‖[(1− ϕε)p(t)]t‖H1(B) ≤
C

α

{‖p(t)‖H1(B) + ‖pt(t)‖H1(B)

}
,

‖Egεtt(t)‖L2(B) ≤ ‖Egεtt(t)‖H1(B) ≤ C‖[(1− ϕε)p]tt‖H1(B) ≤
C

α2

{‖p(t)‖H1(B) + ‖pt(t)‖H1(B) + ‖ptt(t)‖H1(B)

}
,

‖Eg(T )‖H1(B) ≤ C‖p(T )‖H1(B) and ‖Egt(T )‖L2(B) ≤ C‖pt(T )‖H1(B).

Here we used that max
t
|ϕ′ε(t)| ≤ C ′/α and max

t
|ϕ′′ε(t)| ≤ C ′′/α2 for some constants

C ′ and C ′′. Then, the error can be estimated by

max
0≤t≤T

{‖e(t)‖H1(B) + ‖et(t)‖L2(B)

} ≤
C

α2

{
max

T−α≤t≤T

(‖p(t)‖H1(B) + ‖pt(t)‖H1(B)

)
+

‖p‖L2(T−α,T ;H1(B)) + ‖pt‖L2(T−α,T ;H1(B)) + ‖ptt‖L2(T−α,T ;H1(B))+

‖p(T )‖H1(B) + ‖pt(T )‖H1(B)

}
(2.20)

Theorem 2 allows us to estimate the quantity inside the braces in right-hand side of

above inequality by a factor of
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{
max

T−α≤t≤T
[η0(t) + η1(t)] + ‖η0‖L2(T−α,T ) + ‖η1‖L2(T−α,T )

+ ‖η2‖L2(T−α,T ) + η0(T ) + η1(T )

}
‖f‖L2(B)

The functions ηk(t) are monotonically decreasing, and η2(t) ≤ η1(t) ≤ η0(t) provided

t ≥ 1. Therefore, the right hand side of (2.20) is less than

C/α2
{
η0(T − α) + ‖η0‖L2(T−α,T )

} ‖f‖L2(B).

Taking into account that

‖η0‖2
L2(T−α,T ) ≤ α max

T−ε≤t≤T
η2

0(t) ≤ η2
0(T − ε),

we arrive to

max
0≤t≤T

(‖e(t)‖H1(B) + ‖et(t)‖L2(B)) ≤ C(ε)η0(T − ε)‖f‖L2(B),

where η0(T − ε) = (T − ε)−n+1 for even n, η0(T − ε) = e−δ(T−ε) for odd n, and

C(ε) = C/min{ε2, 1}.
This proves the theorem.
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2.5. Numerics of Errors

In this section we compare the errors of the numerical reconstructions of several

phantoms to their estimates given in Theorem 3. The numerical simulations were

done in two dimensions in media with variable sound speed. Both cases of non-

trapping and trapping sound speed are considered.

In order to observe the behavior of the error of reconstruction with respect to

the cut-off time T , multiple reconstructions from different cut-off times were made

and the error was graphed on a logarithmic scale (see Appendix A). For the examples

given in this section the spatial step-sizes varied case by case and were of the order

of 10−2. This corresponds to using several hundred detectors on the boundary of the

unit circle.

On Figs. 2.16, 2.17, 2.18 and 2.19 we present various sound speeds and analyse

the errors of reconstruction as functions of the cut-off time T . These figures show

the particular sound speed, phantoms and the corresponding errors, but not actual

reconstructions, as we already discussed those in length.

The plot of each error shows only values of the error after some minimal time,

specific to each sound speed, after which it makes sense to apply the time reversal

procedure.
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Namely, this minimal time is taken to be the time a wave needs to cross the

unit circle. After the error has decreased to a very small value it levels off, which

is due to the discretization of the model. Thus, the error plots do not show these

values. In order to easily observe the behavior of the error, the plots are made in a

logarithmic scale and the corresponding linear regression interpolations are graphed.

Figs. 2.16 and 2.17 show two examples of variable non-trapping sound speeds. In

both cases two different phantoms are considered and the H1 error of reconstruction

as a function of the cut-off time T is plotted. In Theorem 3 we estimated that, in

two dimensions, the error behaves as T−1. The examples from Figs. 2.16 and 2.17

suggest even faster decay for those particular sound speeds. In the case shown in

Fig. 2.16 the H1 error decays as T−1.3. The decay of the error in the second example

(Fig. 2.17) is even faster: the plots suggest that it is of the order of T−1.6. The next

two examples deal with trapping sound speeds. In these cases the behavior of the

error depends also on the initial condition, as there is no uniform local energy decay

unless additional smoothness is assumed (e.g. [51], [52]). The L2 errors shown in

Figs. 2.18 and 2.19 decay as T increases.



41

Fig. 2.16. Axial profile of a radial non-trapping sound speed (top), density plot of

phantoms (left column) and the corresponding H1 errors of reconstruction

as functions of the cut-off time T (right column). The plots of the errors are

in logarithmic scale, i.e. the horizontal axis represents lnT and the vertical

axis represents ln(H1 error). The dotted lines show the linear regression

interpolation of the error. The decay of the error in the first example

(second row) is of the order of T−1.36, in the second one (third row) it is

T−1.28.
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Fig. 2.17. Density plot of a non-radial non-trapping sound speed (top), density plot of

phantoms (left column) and the corresponding H1 errors of reconstruction

as functions of the cut-off time T (right column). The plots of the errors

are in logarithmic scale. The dotted lines show the linear regression inter-

polation of the error. The decay of the error in the first example (second

row) is of the order of T−1.68, in the second one (third row) it is T−1.61.
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Fig. 2.18. Axial profile of a radial ”trapping crater“ sound speed (top), density plot of

phantoms (left column) and the corresponding L2 errors of reconstruction

as functions of the cut-off time T (right column). The plots of the errors

are in logarithmic scale.
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Fig. 2.19. Axial profile of a radial parabolic trapping sound speed (top), density plot

of a phantom (left column) and the corresponding L2 error of reconstruction

as a function of the cut-off time T (right column). The plot of the error is

in logarithmic scale.
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2.6. Remarks

• We have concentrated on the errors resulting from the time reversal approx-

imation. One is also interested in the stability of the method with respect

to errors in the data. This question is answered by the standard results on

stability of the mixed problem for the wave equation. If n(x, t) is the error in

the measured data g(x, t), then a stability estimate should bound a norm of

ẽ(x, 0;T ), where ẽ(x, t;T ) solves the following mixed value problem:





ẽtt(x, t;T ) = c2(x)∆ẽ(x, t;T ) in B × [0, T ]

ẽ(x, T ;T ) = 0

ẽt(x, T ;T ) = 0

ẽ|S(x, t;T ) = nε(x, t) : = (1− ϕε(t))n(x, t) in S × [0, T ].

(2.21)

Theorem 5. Let c(x) be smooth. Then the following stability estimate holds

‖ẽ(x, 0;T )‖L2(B) ≤ C‖n(x, t)‖H1+δ,1+δ([0,T ]×S),

Here H1+δ,1+δ([0, T ]× S) = L2(0, T ;H1+δ(S)) ∩H1+δ(0, T ;L2(S)) and δ > 0.

Indeed, since c(x) is assumed to be smooth, classical results (e.g. [53, Ch. 5,

Sec. 5]) give the above inequality.

In a nutshell, the reconstruction is as stable as Radon inversion in the corre-

sponding dimension.

• Our numerical examples show decay of the error also in the trapping speed

case. One could probably get some estimates on this decay, assuming sufficient
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smoothness of the function f(x) to be reconstructed and using the results

of [52]. It is unlikely that one can get such estimates without a smoothness

assumption.
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CHAPTER III

MATHEMATICAL PROBLEMS OF COMPTON CAMERA IMAGING

3.1. Introduction to Compton Camera Imaging

Compton cameras, also called Compton scatter cameras or electronically collimated

cameras, are a type of highly efficient gamma cameras used in emission tomogra-

phy. They have received a lot of attention since they were first proposed in [54]

and a prototype was developed by Singh et al [55], [56]. Compton cameras were

first suggested for use in nuclear medicine (SPECT), but they also have applications

in astrophysics [57]–[59], monitoring nuclear power plants [60], [61], and other ar-

eas. Compton cameras offer several advantages over the conventional mechanically

collimated (Anger) gamma cameras. The most significant of these is the dramatic

increase of sensitivity – Compton cameras are reported to count at least an order of

magnitude more photons than Anger cameras [62], [63]. Another advantage is the

flexibility of geometrical design [60], [61], which even allows for hand-held devices

[64], [65].

A compton camera consists of two detectors, which, in the usual physical setup,

are planar and are placed one behind the other (see Fig. 3.1). A photon incident

on the camera undergoes Compton scattering in the first detector, which records

the location x1 and the energy of interaction E1. After the scattering, the photon

is absorbed in the second detector, where the position x2 and energy of absorption

E2 are measured. From the knowledge of E1 and E2 the scattering angle ψ can be
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Fig. 3.1. Schematic representation of a Compton camera.

determined by the formula (e.g. [54], [66])

cosψ = 1− mc2E1

(E1 + E2)E2

. (3.1)

Here m is the mass of an electron and c is the speed of light. The direction into

which a photon scatters is given by −β :=
x2 − x1

|x2 − x1| . From the knowledge of β and

the scattering angle ψ we conclude that the photon originated on the surface of the

cone with central axis β, vertex x1 and opening angle 2ψ. Therefore, although the

exact incoming direction of the detected particle is not available, one knows a cone

of such possible directions. The goal of Compton camera imaging is to recover the

distribution of the radiation sources from this data.

The rest of this chapter is organized as follows. In Section 3.1.1 the mathematical

problem of Compton camera imaging is formulated, and a brief discussion of known
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reconstruction formulas in three dimensions id provided. In Section 3.2, the 2D

problem is stated and several reconstruction formulas are presented. This section

also contains numerical reconstructions based on the above methods. The last part

of the chapter is devoted to the use of Compton cameras for detection of low emission

point sources in the presence of a large background. This study was motivated by a

homeland security project for detection of illicit radioactive materials.

The Matlab codes used in this chapter can be found in Appendix B.

3.1.1. The Cone Transform

Suppose that we want to image the distribution f(y) of radioactivity sources inside

a certain object in R3. From now on, we will assume that f(y) is supported on one

side of the Compton camera and that suppf does not intersect the camera. If a large

number of photons is detected, the Compton camera provides us with the projections,

which we denote by Cf(x,β, ψ), i.e. the integrals of f(y) on cones parameterized by

a vertex x lying on the detector, central axis β ∈ S3 and half-angle ψ ∈ [0, π] (see

Fig.3.2) [66]–[68]:

Cf(x,β, ψ) = K(ψ)

∫ 2π

0

∫ ∞

0

f(x+rα(φ))r sinψ dr dφ, where α·β = cosψ, α ∈ S2.

(3.2)

Here K(ψ) is the Klein-Nishina distribution of scattering angles. The function

Cf(x,β, ψ) provides the expectation of the number of hits, per unit time, from

the particles moving along the cone. In particular, when the particle count is low,

these values are not well determined by the data. This issue will be addressed in

Section 3.4. An important observation is that the problem of inverting the cone
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Fig. 3.2. A Compton cone with apex x, central axis β and half-angle ψ.

transform Cf(x,β, ψ) is overdetermined. Indeed, f(y) is a function of three vari-

ables, while Cf(x,β, ψ) depends on five parameters (here x is restricted to a 2D

detector surface). Most authors consider restricted versions of the cone transform,

reducing the number of parameters from five to three [66], [67], [69] . One little

known paper [70] presents an elegant closed form inversion formula that uses four

of the parameters. Only very recently, in [71], the whole set of data was used for

reconstructions, albeit the transformation considered in this paper somewhat from

the conical transform defined above.
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3.1.2. Reconstruction Techniques in Compton Camera Imaging

Below we give a brief survey of reconstruction methods in Compton cameras imag-

ing. Many of them reduce cone projections to Radon projections, i.e. integrals of f

over planes.

3.1.2.1. Algebraic Reconstruction Techniques

Algebraic reconstruction techniques, as elsewhere in tomography, are widely used in

Compton cameras imaging. This is partially due to the fact that analytic inversion

formulas were not available until the second half of 1990’s. Maximum likelihood

methods were developed in [72]–[74]. A maximum likelihood method was also used

in imaging with the COMPTEL telescope [57]. In [75] a matrix inversion technique

was utilized to solve the problem for a specific detector geometry. Fast backprojec-

tion algorithms were developed in [76], [77].

3.1.2.2. Spherical Harmonics

A spherical harmonics solution was first proposed in [67]. For every point x on the

first detector, and a fixed in advance half-angle ψ the authors relate the conical pro-

jection Cf(x,β, ψ) to the Radon projection (integral) of f over the plane passing

through x and perpendicular to β. A fast algorithm for computing the spherical

harmonic series was also developed in this paper. Several other authors provided

spherical harmonics solutions, however their model for Compton data differs from
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(3.2), e.g. [78]–[80].

3.1.2.3. Closed Form Solutions

The first analytic inversion formula is due to Cree and Bones [66]. The authors con-

sidered only cones perpendicular to the detector plane, i.e. cones with central axis

β = z. Thus, the Compton data depends only on the vertex x := (x, y) and the open-

ing angle ψ. Let us denote g(x, y, ψ) := C f(x, z, ψ) and let F (u, v, ·), G(u, v, ·) be

the two-dimensional (x, y)-Fourier transforms of f(x, y, z) and g(x, y, ψ) respectively.

Then the following relation holds:

F (u, v,
ξ√

u2 + v2
) = H0

[
u2 + v2

K(t)t
√

1 + t2
G(u, v, t)

]∣∣∣∣
t=ξ

, (3.3)

where ξ = z
√
u2 + v2 and t = tanψ. Here H0 is the zero-order Hankel transform

H0g(ρ) = 2π

∫ ∞

0

g(r)rJ0(2πrρ) dr,

and J0(γ) = (2π)−1

∫ 2π

0

eiγ cos φ dφ is the zero-order Bessel function. Later, in [69],

more properties of the same restricted cone transform were given.

In [71] the authors use yet another mathematical formulation for the forward

problem, which accounts for the efficiency of the detector at different incident an-

gles of particles. They extended the approach of Cree and Bones to show that the

radioactivity distribution can be reconstructed from any family of cones that have

central axes β such that the angle α between β and the z-axis is fixed. Then aver-

aging of the solutions for different values of α is employed, thus making use of all
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available data and reducing noise.

In [70] the following relation between the cone and Radon transforms of f is

given:

HRf(β,x·β) :=
1

π

∫ ∞

−∞
Rf(β, t)h(x·β−t) dt = − 1

π

∫ π

0

g(x,β, ψ)h(cosψ) dψ (3.4)

Here H denotes the Hilbert transform and R is the Radon transform in three di-

mensions (see Section 1.1). Note that four out of five variables are used and that

the HRf(β,x · β) is constant on the line Lc := {x ∈ detector plane|x · β = c}, for

any fixed constant c. The last observation shows that it is possible to reconstruct f

if the vertices of cones x are restricted to a curve. This also allows for averaging of

the solution on the lines Lc. In Section 3.2.2 we will consider the two-dimensional

analog of this formula.

3.2. Compton Cameras in Two Dimensions

In the two dimensional setting we assume that the detectors x lie on a line, which

we call the detector line. A cone in two dimensions is defined by a point x, a cental

axis β and a half-angle ψ. Such cones simply consist of two half-lines intersecting

at a point. More precisely, let β = (cos β, sin β) ∈ S1, β ∈ [0, π] be the central axis

of a cone with opening half-angle ψ ∈ [0, π]. The two half-lines that constitute the

cone, pass through the detector point x and are given by {y ∈ R2 : y = rαi, r ≥ 0},
i = 1, 2, where α1 = (cos(β − ψ), sin(β − ψ)) and α2 = (cos(β + ψ), sin(β + ψ)), see

Fig. 3.3. In what follows we will assume uniform distribution of scattering angles,

that is K(ψ) ≡ 1. Then the two dimensional cone transform Cf(x,β, ψ) is the
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projection of f(y) onto these lines:

Cf(x,β, ψ) =

∫ ∞

0

(f(x + rα1) + f(x + rα2)) dr = Df(x,α1) +Df(x,α2). (3.5)

Here Df(x, α) =
∫∞

0
f(x + rα) dr denotes the divergent beam (or fanbeam) trans-

form of f .

Fig. 3.3. Two-dimensional cone with apex x, central axis β and half-angle ψ.

For convenience, we will sometimes express Cf and Df as functions of the angle

β instead of the unit vector β. Thus, we can write (3.5) as

Cf(x, β, ψ) = Df(x, β − ψ) +Df(x, β + ψ). (3.6)

The problem of inverting the two-dimensional transform is overdetermined as

well, because Cf(x,β, ψ) depends on three parameters and f(y) only on two.
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3.2.1. Reconstruction Formula by Basko et al.

The author is aware of only few papers devoted to compton cameras in two di-

mensions. In [81], [82] subsets of the cone projections of f(x) are represented

as line integrals of the function f added with its mirrored shear transformation.

In order to explain this approach in more detail, let us introduce the variables

k1 = cot(β + ψ), k2 = cot(β − ψ). The cone transform can be written as

Cf(x, β, ψ) =

∫ ∞

0

f(x+ k1z, z) dz +

∫ ∞

0

f(x+ k2z, z) dz, (3.7)

where the x− axis coinsides with the detector line and the z− axis is perpendicular

to the detectors. Let us fix the sum k1 + k2 = K and define the function

fK(x, z) =





f(x, z), if z ≥ 0

f(x−Kz,−z), if z < 0.

(3.8)

Then, Cf(x, β, ψ) =
∫∞
−∞ fK(x + k1z, z). In this way, for each fixed value of K,

the cone projections are represented as line integrals of a certain function, so all that

remains is to invert the Radon transform. The reconstructed image will contain the

function f above the detector line and a mirrored shear transformation of f below the

detectors. Obviously, by fixing the parameter K, not all available data is used. The

case when K = 0 corresponds to using only those cones with central axes orthogonal

to the detector line.

Although there are not many papers devoted to the two-dimensional Comp-

ton problem, most inversion formulas for the three dimensional case should have

analogues in two dimensions.
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3.2.2. Three Inversion Formulas

3.2.2.1. Method A

The following relation makes use of all parameters and is an analog of the three

dimensional result presented in [70].

Theorem 6. Let the closed unit ball lie on one side of and away from the detector

line, and let f(x) ∈ H1/2
0 (B2). Denote h(t) = 1/t. Then

HRf(x · β,β) =
1

π

∫ ∞

−∞
Rf(β, t)h(x · β − t) dt = − 1

π

∫ π

0

Cf(x,β, ψ)h(cosψ) dψ

(3.9)

Here H is the Hilbert transform in the first (scalar) variable and the integrals are

understood in the principal value sense (see Section 1.1).

Proof. We will consider the following regularizations of the above improper integrals.

∫ ∞

−∞
Rf(t,β)h(x · β − t) dt =

∫ ∞

0

Rf(x · β − t,β)−Rf(x · β + t,β)

t
dt (3.10)

∫ π

0

Cf(x,β, ψ)h(cosψ) dψ =

∫ π

π/2

Cf(x,β, ψ)− Cf(x,β,−ψ + π)

cosψ
dψ (3.11)

Thus, we need to show that

∫ π

π/2

Cf(x,β, ψ)− Cf(x,β,−ψ + π)

cosψ
dψ =

−
∫ ∞

0

Rf(x · β − t,β)−Rf(x · β + t,β)

t
dt

(3.12)

We first address the question of whether the integrals in (3.10) and (3.11) are well

defined. From the property (1.9) of Radon transforms it follows that Rf(s,β) be-
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longs to the space H1(R× S1). It is a standard result (e.g. [19, Chapter 5.6.2]) that

H1(R) is contained in the space of Hölder continuous functions with exponent 1/2.

Therefore, for each fixed β, Rf(s,β) is Hölder continuous, so the integral in (3.10)

is well defined (see Section 1.1).

The integral in (3.11) is the canonical regularization of a singular integral, in

the sense defined in [83]. Now we will show why (3.11) is well defined. The relations

between fanbeam coordinates (x,α) and parallel beam coordinates (s,ω), where

ω := (cosφ, sinφ) are

φ = α− π/2, s = x · ω

Using the definition of cone transform, (3.6), and the assumption that f is supported

on one side of the detector, we can write

Cf(x, β, ψ) = Rf(x · ω, β − ψ − π/2) +Rf(x · ω, β + ψ − π/2). (3.13)

From (1.9) it follows that, Cf(x, β, ψ) is in H1(R) with respect to ψ, so it is Hölder

continuous in ψ.

Let us change the variables in the integral on the right hand side of 3.9: ψ̃ =

ψ − π/2. Then the integral reads as follows

−
∫ π/2

−π/2

Cf(x, β, ψ − π/2)

sinψ
dψ, (3.14)

where we have written ψ instead of ψ̃.

We note that the function p(x) :=
ψ

sinψ
is infinitely differentiable in (0, π/2)

and we can write
1

sinψ
= p(ψ)

1

ψ
.
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The integral (3.14) can be regularized using (1.5)

−
∫ π/2

−π/2

p(ψ)Cf(x, β, ψ − π/2)

ψ
dψ =

−
∫ π/2

0

p(ψ) Cf(x, β, ψ + π/2)− p(−ψ) Cf(x, β,−ψ + π/2)

ψ
dψ.

(3.15)

This integral is well defined, because Cf(x, β, ψ) is Hölder continuous with respect

to ψ, and therefore so is p(ψ) Cf(x, β, ψ). After changing variables ψ̃ = ψ + π/2 we

come to equation (3.11)

Now, we write (3.12) as follows

∫ π

π/2

Cf(x,β, ψ)− Cf(x,β,−ψ + π)

cosψ
dψ =

∫ π

π/2

Df(x,β + ψ)−Df(x,β − ψ + π)

cosψ
dψ +

∫ π

π/2

Df(x,β − ψ)−Df(x,β + ψ − π)

cosψ
dψ =

∫ π

π/2

∫ ∞

0

1

r cosψ
[f(x + r(cos(β + ψ), sin(β + ψ)))−

f(x + r(cos(β − ψ + π), sin(β − ψ + π)))] rdrdψ+
∫ π

π/2

∫ ∞

0

1

r cosψ
[f(x + r(cos(β − ψ), sin(β − ψ)))−

f(x + r(cos(β + ψ − π), sin(β + ψ − π)))] rdrdψ.

(3.16)

If we consider the (positively oriented) coordinate system (β,β⊥), the last two in-

tegrals can be written as integrals on the second (II) and third (III) quadrant of

the plane. Indeed, if we make the change of variables y1 = r(cos(β +ψ), sin(β +ψ))
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and y2 = r(cos(β − ψ), sin(β − ψ)) in the first and second integral respectively (see

Fig.3.4), the expression (3.16) equals

∫

II

1

y1 · β (f(x+y1)−f(x− ȳ1)) dy1+

∫

III

1

y2 · β (f(x+y2)−f(x− ȳ2)) dy2. (3.17)

Here ȳ denotes the reflection of y with respect to β, i.e. if y is given by y = tβ+sβ⊥,

then ȳ = tβ − sβ⊥.

Fig. 3.4. Variables of intergation: y1 belongs to the second quadrant and y2 - to the

third.
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The integrals in (3.17) can be written as

∫

y·β<0

1

y · β (f(x + y)− f(x− ȳ)) dy =

∫ 0

−∞

∫ ∞

−∞

1

t

[
f(x + tβ + sβ⊥)− f(x− tβ + sβ⊥)

]
dsdt =

−
∫ ∞

0

1

t

{∫ ∞

−∞
f((β · x− t)β + sβ⊥) ds−

∫ ∞

−∞
f((β · x + t)β + sβ⊥) ds

}
dt =

−
∫ ∞

0

Rf(β · x− t,β)−Rf(β · x + t,β)

t
dt.

(3.18)

In the above string of equations we used the representation of x in the coordinate

system (β,β⊥) and made the change of variables β⊥ · x + s→ s.

Corollary 7. Theorem 6 provides an inversion formula for the cone transform.

Indeed, computing the integral of the right hand side of (3.9) one recovers HRf ,

where R is the 2D Radon transform, and H is the Hilbert transform with respect

to the linear variable. Then, the filtered backprojection formula (1.15) implies that

differentiating the right hand side of (3.9) with respect to the linear variable and

backprojecting, one recovers the function f .

Remark 8. On the left hand side of (3.9) one sees Rf(s,β), where s = x ·β. Thus,

if one infinite detector line is used, if β is perpendicular to the detectors, we would

only know Rf(s,β) for s = 0. If the detector line is finite, as is the case in all

implementations, we would miss an even bigger chunk of data. One possible way to

obtain the complete Radon data in (s,β) ∈ [−1, 1]× S1 is, for example, to use three

finite size detectors placed on sides of the square, containing the object.
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3.2.2.2. Method B

Another, simpler way of obtaining Radon data from cone data is presented below.

Let us denote by u(x, α) the integral of f along the half-line starting at the point x

in direction of the unit vector α (i.e. the fanbeam projection of f):

u(x,α) = Df(x,α) :=

∫ ∞

0

f(x + rα) dr. (3.19)

Let us fix a detector position x and a direction α and try to recover the fanbeam data

u(x,α0). For any ψ ∈ [−π, π] we can write Cf(x, β, |ψ|) = u(x, β−|ψ|)+u(x, β+|ψ|).
Thus, the following relation holds

u(x, α0) = Cf(x, α0 + ψ, |ψ|)− u(α0 + 2ψ)

Fig. 3.5. In order to determine the integral of f along the line l0, add the integral on

cone consisting of l0 and l1 to the integral on the cone determined by l0 and

l2. Then subtract the integral on the cone determined by l1 and l2.

It is easily seen from Fig. 3.5 that for any two half-angles ψ1, ψ2 ∈ [−π, π] the
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fanbeam data u(x, α0) can be obtained from cone data as follows:

u(x, α0) =

1

2
[Cf(x, α0 + ψ1, |ψ1|) + Cf(x, α0 + ψ2, |ψ2|)− Cf(x, α0 + ψ1 + ψ2, |ψ1 − ψ2|)]

(3.20)

The angles ψ1 and ψ2 were arbitrarily chosen, so one could average on ψ1 and ψ2 in

order to use all available data. This averaging also helps reducing the effects of large

random background or noise.

If averaging on half-angles ψ1 and ψ2 is used, the method described above is

computationally expensive. We propose a third reconstruction method, which is fast

and makes use of all available data.

3.2.2.3. Method C

Recall that the radioactivity function f(y) is compactly supported and suppf lies

on one side and away from the detector line. Let us fix a detector a. Then, u(a, α)

is supported in (0, π). The function u(a, α) can be extended periodically in α from

[0, 2π] to (−∞,∞). Let us define

ũ(a, α) =π−1

∫ π−α

−α

Cf(a, α + ψ, |ψ|) dψ (3.21)
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We can write,

ũ(a, α) = π−1{
∫ π−α

−α

u(a, α) dψ +

∫ π−α

−α

u(a, α + 2ψ) dψ} =

u(a, α) + (2π)−1

∫ 2π

0

u(a, α) dα

(3.22)

In the above equation, the periodicity of u(a, α) in α was used. Then,

ũ(a, α) = u(a, α) + (4π)−1

∫

|ω|=1

∫ ∞

−∞
f(a + rω) drdω = Df(a, α) + (4π)−1R]Rf(a)

(3.23)

Recall that R# denotes the backprojection operator, R#g(y) =
∫
|ω|=1

g(y ·ω,ω) dω.

Let us consider the second term on the right-hand side of (3.23) can be written

as D[(4π)−1R]Rf(a)δ(a − y)]. Therefore, when the inverse fanbeam transform is

applied to ũ, the result equals the function f(y) we are after, plus a weighted δ−
function supported at the detector lines. Hence, we recover correctly functions f

supported away from the detectors.

3.3. Numerical Experiments

In this section we present reconstructions of 2D numerical phantoms via the methods

presented in Section 3.2.2.

3.3.1. Method A

We first note that the use of one finite size detector array results in limited view data.

This means that not all data needed for correct reconstruction of the phantom was
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available. Corollary 7 describes how to reduce cone data to Radon data. However,

the Radon data we obtain is not complete, i.e. we know only the integrals of the

phantom f along lines intersecting the detector. It is known in limited data X-

ray tomography that the values of the phantom will not be reconstructed correctly.

However, certain singularities of the phantom will be stably recovered. Namely, the

reconstructed image will contain only those singularities which have tangent line

crossing the detector array [43], [44]. The rest of the singularities will be smeared.

Fig. 3.6. A phantom (left) and a reconstruction (right) using method A. Only one

Compton detector array at the bottom side of the square is used.

The effect of limited view data is clearly visible on the reconstruction shown in

Fig. 3.6. The reconstruction was obtained via method A. We used one Compton

detector array containing 100 detectors, which was placed on the bottom side of

the unit square. The angular variable, which determines the direction of incident

particles, was discretized as θi = i∆θ, ∆θ = π/100, i = 1, . . . , 99. The phantom
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used for the reconstruction is zero everywhere except at three circular inclusions,

where it equals to 1, 0.6 and −0.4 respectively. We see that the boundary of the

circle closest to the detector array is reconstructed well, while only parts of the

boundaries of the other two circles are visible. The values of the reconstructed image

differ from that of the phantom. The arcs from the circles which are recovered are

exactly the ones for which the tangent lines intersect the detector array.

Next, we present reconstructions based on the methods B and C.

3.3.2. Methods B and C

In order to have complete Radon data for s ∈ [−√2,
√

2], φ ∈ (−π/2, π/2), we used

three detector arrays placed on sides of the unit square. Methods B and C reduce

the problem of inverting the 2D Cone transform to inverting the Radon transform

of the function f . In order to reconstruct f(y) from fanbeam data, we interpolated

u(x,α) from fanbeam coordinates (x,α) to parallel beam coordinates (s,ω), where

s ∈ [−√2,
√

2] and ω ∈ S1. The convertion of coordinates is given by the relations

s = x · ω, ω = (sinα,− cosα), φ = α− π/2 (3.24)

Although more efficient algorithms for reconstruction from fanbeam data exist [10],

we chose interpolating parallel beam data for its simplicity and independence of the

geometry of detectors.

For all numerical results in this section the following setup was used. Each

detector array contained 100 detectors. The discretization step for the central axes
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β and half-angles ψ was 2π/128. Moreover, β could not take values 0 or π, and ψ

could not be equal to π.

On Figs. 3.7 and 3.8 a grayscale plot and a profile plot of a reconstruction of an

analytic phantom using method B are shown. We used the same phantom as in the

example for method A.

Fig. 3.7. A phantom (left) and a reconstruction (right) using method B. The dotted

white lines represent the positions of Compton cameras.

On Fig. 3.9, a reconstruction of the phantom from Fig. 3.7 is shown. Note that

the values of the reconstructed function at the detectors were cut away. Although

the reconstruction with the method B (see Fig. 3.7) is somewhat better quality, the

latter method is considerably faster.
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Fig. 3.8. Profile plots of the reconstruction shown of Fig. 3.7. Both profiles are

through the center of the lowest disc, namely y = −0.7 profile (top) and

x = 0 profile (bottom).

Fig. 3.9. A reconstruction of the phantom shown on Fig. 3.7 using the method de-

scribed in C. The same setup as in Fig. 3.7 was used.
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3.4. Detection of Low Emission Geometrically Small Sources

One of the missions of the Department of Homeland Security is to prevent smuggling

of weapon-grade nuclear materials. It is expected that such materials, unlike those

needed for a ”dirty bomb”, will have low emission rates and will be well shielded,

so that very few gamma photons or neutrons would escape, and even less would be

detected. An additional hurdle for the detection of illicit nuclear substances is the

strong natural radiation background.

The most commonly used γ-ray cameras are mechanically collimated, which

means that they ”count” the particles coming from one direction and discard the

rest. Collimation is needed because it provides crucial directional information about

the particles, which can be used for mathematically reconstructing the location of

radiating sources. However, mechanical collimation dramatically reduces the sen-

sitivity of detectors. Typically, only one out of ten thousand emitted photons is

detected by a collimated camera. When dealing with low emission sources one wants

to capture as many of the emitted particles as possible, thus mechanical collimation

is unsuitable. On the other hand, if no directional information is available, the de-

tection of low emission sources against large noise would most likely be impossible.

The ability of Compton cameras to provide some directional information without

discarding any incoming particles make them of particular interest for use in such

applications.

The task of detecting low emission sources in the presence of a large background

would be impossible if the size of the source were large. Simulations of small enriched

uranium source placed in a cargo container estimate that only about 0.1% of the
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signal received by detectors might be due to ballistic (non-scattered) particles emitted

from the source. The remaining 99.9% of detected particles come from natural

sources and scattered source particles, and thus represents noise in the measurements.

It is clear that under such conditions standard tomographic methods will fail to

produce a satisfactory image. However, if smuggling is attempted, only a small

volume of radioactive substance could be transported. Thus, the source will appear

as almost a point singularity, and it is known in tomography that singular objects

are easier to detect. Another factor which gives hope to find such sources is that all

trajectories of ballistic source photons pass through the same small volume, which

will increase the local density of trajectories and could conceivably allow detection.

The latter argument will be discussed in detail below.

3.4.1. Source Detection by Standard Tomographic Techniques

We have attempted detecting a point source in 2D using standard tomographic re-

constructions from simulated Radon data as well as from Compton camera data (see

Section 3.2). We reconstructed images of radiation source density using FBP and

local tomography (see Chapter I). This approach worked to some extent, although

it was unreliable and started failing sooner than we expected.

There are a couple of reasons for the poor performance of these tomographic

methods. First, the use of standard tomography assumes that data represents line

(or cone) integrals of the source distribution function. This is the same to say that we

measure the expectation of the number of hits, per unit time, from particles moving

along a line (or cone). This assumption is reasonable when the source is strong,
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however it fails in the case of low emission sources. Hence, the Radon transform

type models are not appropriate. The second reason is that the high-pass filters

required in Radon transform inversions amplify the noise. This is very significant

factor, as the noise constitutes 99.9% of the data. Filtered backprojection worked

to some extent, but the strong local tomorgaphy filter made source detection almost

impossible.

Another drawback of the standard tomographic techniques is that the recon-

structed image cannot be easily interpereted in a qualitative way, for example, it is

hard to quantify the confidence level of detection.

All these considerations led us conclude that reconstruction by backprojection

would be more suitable for our purposes. Indeed, in this particular problem, back-

projection proved to be a considerable improvement over standard tomography. In

Section 3.5 examples of reconstructions using FBP and backprojection are compared.

Details of our numerical simulations are also provided there.

3.4.2. Source Detection Using Backprojection

Now we investigate why it is possible to detect small low emission sources by back-

projection. Suppose the detectors have information about the incident direction of

particles. Then backprojection “sends” the detected particles back along their in-

coming lines. In particular, the ballistic source particles would ”cross” the source

region. The background particles which scattered prior to detection will be backpro-

jected along lines that are different from their original trajectories. Therefore, in the
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considerations that follow, we assume that the trajectories of particles are straight

lines. We also assume that the (random) distribution of trajectories is uniform.

In a nutshell, our argument is that if the number of lines passing through a tiny

region deviates significantly from the mean of the background, then most probably

there is a source there (see Fig. 3.10).

Fig. 3.10. The local density of lines is higher in the gray region, which is likely due to

a source at this location.

Let us consider the trajectories of N particles in a ball BR with radius R. We will

determine the probability of k particles out of the total N contained in BR passing

through a small ball Br with radius r. Recall that a line L(ω,s) in R2 is defined

by a vector ω ∈ S1 perpendicular to it and a signed distance s from the origin

(see Fig. 1.1), i.e. L(ω,s) = {x ∈ R2|x · ω = s, s ∈ R, ω ∈ S1}. Thus, the lines on

the plane are mapped (bijectively) to the points on the half-cylinder S1
+× (−∞,∞),

where S1
+ = {ω = (cos θ, sin θ), θ ∈ [0, π)}, and these points are uniformly distributed

on the half-cylinder. All lines intersecting BR correspond to points on S1
+× (−R,R),

and those intersecting Br are bijectively mapped to points on S1
+ × (−r, r). Thus,
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the probability of a random line in BR passing through Br is

p =
area(S1

+ × (−r, r))
area(S1

+ × (−R,R))
=

r

R
.

The probability that n out of the total N lines cross Br is given by the Binomial

distribution B(N, p), and is equal to

(
N

n

)
pn(1−p)N−n. Since we are in the situation

when p is fixed by the dimension of the source and N is large, the Central Limit

Theorem applies. It follows that the Binomial distribution is approximated well

by the Normal distribution N(µ, σ2) with mean µ = Np and standard deviation

σ =
√
Np(1− p). If it happens that the number of lines n crossing Br deviates

significantly (in comparison with σ) from the mean µ, the probability of this occurring

just due to random reasons is very small. Therefore, one can be almost certain that

this clustering of trajectories is the result of a radioactive source located at Br. Now

we will make these statements more precise.

Suppose that the area we are imaging is divided intoNpix pixels. Suppose further

that n lines intersect a pixel Br with linear dimension r. We will write n = ns + nb,

where ns and nb are the number of source and background trajectories, respectively,

which cross Br. We will describe a method to determine whether there is a source

located at this pixel.

Let us choose a threshold value kt, such that if n > nt := µ+ ktσ, the pixel Br

is classified as containing a source (i.e. positive result). Otherwise there is no source

at Br. The probability of at least nt lines crossing Br due to random reasons is

approximately r := 0.5 erfc(kt/
√

2). We have to take into account the possibility of

such clustering of lines occurring inside some of the total Npix pixels. The probability
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of at least nt lines crossing at least one of the pixels due to random reasons can be

estimated by

fp rate = 1− (1− r)Npix . (3.25)

Here fp rate stands for false positive rate, which is the rate of false detections [84].

We must note that the above estimate assumed independence of the events “a pixel

is crossed by a line”. This is obviously not true, but a correct estimate would be

more complicated and would not make a significant difference in what follows next

(much cruder estimates exist and can be useful sometimes).

The true negative rate (or specificity), is given by tn rate = 1 − fp rate and

represents the rate of correctly classified negative outcomes. The true negative rate

is also a confidence probability that we have found a true source. We will write

tn rate = confidence := (1− r)Npix = [1− 0.5 erfc(kt/
√

2)]Npix . (3.26)

Obviously, this confidence probability depends only on the threshold value kt and

the number of pixels Npix. One could also choose to compute the confidence based

on the actual number of trajectories n crossing Br, which is higher than nt. Then,

the estimate of confidence probability will be larger and more accurate. We should

also note that the higher the number of pixels, the lower our confidence will be (see

the examples below).

Now suppose there is indeed a source present at a certain pixel Br. Suppose

also that we have an estimate of the number of detected source particles. We can

write ns = ksσ. Here ks is a positive constant and σ is the standard deviation of

the distribution of the trajectories. Recall that σ is determined by the total number
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of detected particles, which is known, and the ratios of the source dimension to the

dimension of the imaged region, for which we would, in practice, have a crude idea.

Then, the source would not be detected if the total number of lines crossing Br, n,

is smaller than the threshold nt, i.e. if

n = nb + ns < nt = µ+ ktσ = µ+ (kt − ks)σ + ksσ, where ns = ksσ (3.27)

This implies that nb < µ+(kt−ks)σ, where nb is the number of background particles

crossing Br. The probability of this happening is given by

fn rate = 0.5 erfc

(
ks − kt√

2

)
. (3.28)

In other words, we have determined the false negative rate (fn rate) of detection.

The sensitivity, or true positive rate (tp rate), is given by

tp rate = 1− fn rate.

Note that the sensitivity of the method depends on the threshold value kt as well as

on our estimate of detected source particles.

Examples

In practice, a nuclear source with shielding could have a radius of the order

of several centimeters, while a vehicle or a cargo container has size in the order of

meters. Thus, we will assume that

R = 1, r = 0.01 ⇒ p = 10−2. (3.29)

1. Suppose that we image an area in two dimensions and that it is divided into
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pixels with linear dimension equal to 1/100th of the linear dimension of the

whole region. Then the probability of one line crossing a certain pixel is p ≈
100−1 and the total number of pixels is Npix = 1002. Suppose further that we

have detected a total of N = 106 particles. We can determine the standard

deviation of the trajectory distribution to be σ =
√
Np(1− p) ≈ 99.5. As we

mentioned in Section 3.4, the expected SNR is about s = 0.001. This gives us

the approximate number of detected ballistic source particles,

ns = 103 = ks.σ,

with ks ≈ 10. Let us set the threshold to kt = 5.

If we detect a source at a certain pixel, the true negative rate will be determined

by (see equation (3.26))

[1− 0.5 erfc(5/
√

2)]1002

= 0.997

In other words we can be certain at least 99.7% that the source is a true one.

The probability that we fail to detect a source is given by (3.28)

0.5 erfc

(
10− 5√

2

)
≈ 3.10−7

2. In three dimensions, if the same resolution is used, the number of pixels is

Npix = 1003. Suppose we have detected the same level of particles as in the

example above, i.e. N = 106. We note that the probability p = 100−1 is the

same in two and three dimensions. Thus σ ≈ 99.5, and the total number of

detected ballistic source particles is ns ≈ 10σ, as above.
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Let us set the threshold to kt = 5 as in 2D. Then the true negative rate will be

approximately 0.75, i.e. our confidence that we have found the source will be

at least 75%. This drop in confidence in three dimensions is due to the higher

number of pixels, 1003, compared to the number of pixles in 2D, which is 1002

(see equation (3.26)). The probability that we fail to detect a source will be as

in 2D: fn rate = 3.10−7.

If we choose a threshold kt = 6, then we can be confident that a detected source

is a true one 99.9%. The false negative rate will be approximately 3.10−5.

From the above discussion we see that in order to find sources reliably, we need

to detect ns > ktσ particles from the source, where the threshold kt could be quite

large. We claim that for any kt > 0 it is possible to detect sources, provided N is

sufficiently large. Indeed, if a signal to noise ratio s is known, and if p ¿ 1, the

number of detected source particles will be ns ≈ sN . Then, we requre the following

inequality to be satisfied

sN > ktσ = kt

√
Np(1− p). (3.30)

Since the left hand side of (3.30) grows linearly with N , while the right hand side

grows only as
√
N , the inequality will be satisfied for a sufficiently large N .

In practice, as we saw in the examples above, in order to detect ns ≈ 10σ

particles from the source, we would need a total of 106 detected particles. This

number is realistic and could be achieved in at most a few minutes of detection.

Exact times will depend on the type of particles (γ-photons or neutrons of some

specific energies) and of the type and size of detector arrays used.
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3.5. Numerical Examples

For the numerical examples shown next, we simulated a point source placed inside

the unit square in two dimensions. The source emitted photons uniformly in all di-

rections and the background was uniformly distributed. The particles were detected

by three detector arrays placed on three sides of the square. The use of three detec-

tor arrays was deemed appropriate, because this configuration resembles a “gate“,

through which vehicles and cargo would pass. We simulated mechanically collimated

detectors, which render Radon type data, and also Compton camera type detectors,

which provide cone data. Each of the three detector arrays contained 100 detectors.

The angular variable, which determines the direction of incident particles, was dis-

cretized as θi = i∆θ, ∆θ = π/200, i = 1, . . . , 199 (angular bins).

3.5.1. Reconstruction by Standard Tomographic Techniques

First, we experimented with standard tomographic inversions. We assumed that the

collected data represented line (or cone) integrals of the source distribution function.

This means that, in the case of Radon-type detectors, we interpolated the fanbeam

data u(x,α) to parallel beam coordinates (s,ω), exactly as described in Section 3.3.

On Fig. 3.11 an example of a reconstruction from (Radon) data collected by three

collimated detectors is shown. The number of detected source particles was 1039,

versus 106 background particles. The source was located at (0.203,−0.101). The

reconsruction peaks not only at the correct source location but also at a number of

other places. Even worse, some of those incorrect peaks are higher than the peak
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Fig. 3.11. Filtered backprojection reconstruction from Radon data (left). The black

lines represent the detectors. The right picture shows only the peaks that

deviate more than 3 standard deviations from the mean. The correct source

location is circled.

at the source. The probabilistic considerations given in Section 3.4 suggest that the

source should be detectable. When Compton camera type detectors were used, data

from cone integrals was converted to line integrals data by method C, described in

Section 3.2.2. After this conversion we used filtered backprojection to reconstruct

the source distribution. On Fig. 3.12 a reconstruction from data obtained by three

Compton cameras is shown. The number of detected source particles was 1039,

versus 106 background particles. The source was located at (0.203,−0.101). The

result is similar to the previous example.

On the next figure, Fig. 3.13, we show a FBP reconstruction from Radon data.

We detected 994 particles from a source located at (−0.503,−0.101) and 106 uni-

formly distributed background particles. The particles were detected by Radon-type
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Fig. 3.12. Filtered backprojection reconstruction from Compton data (left). The

black lines represent the detectors. The right picture shows only the peaks

that deviate more than 3 standard deviations from the mean. The correct

source location is circled.

detectors placed on three sides of a square. On Fig. 3.13 we show only peaks in

the reconstruction which deviate more than 4.5 standard deviations from the mean

(i.e. we have set up the threshold to be kt = 4.5). The true source is detected

and there are no false detections. Fig. 3.14 shows a successful detection of a source

from Compton camera data. For this simulation we used the same SNR, 0.001, but

a higher number of background particles - 1, 500, 000. The source was located at

(0.203,−0.101). The graph shows only the correct peak with value more than kt4

standard deviations above the mean.

In summary, standard tomographic techniques fail to reliably detect sources at

the levels of SNR and total number of particles for which our probabilistic consid-

erations show that sources should be detectable. These techniques work well with
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Fig. 3.13. FBP reconstruction from Radon data, with 994 source particles and 106

background particles. The graph shows only the peaks that deviate more

than 4.5 standard deviations from the mean. The black lines represent the

detector arrays. The position of the correct source location is circled.

higher SNRs, e.g. s = 0.01 [85].

3.5.2. Reconstruction by Backprojection

Reconstructions by backprojection (see equation (1.11)) agree with our expectations

described in Section 3.4. As a first example, on Fig. 3.15 we present a typical

histogram of the number of lines crossing a pixel in the 2D unit square with a

uniform grid of 1002 pixels. The particles where detected by 4 collimated detectors

placed on the sides of the square. The signal to noise ratio was 0.001 and the

number of background particles particles was 1, 333, 336. The detected particles were

backprojected, and after that the historgam of the backprojection reconstruction was
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Fig. 3.14. FBP reconstruction from Compton data, with 1521 source particles and

1, 500, 000 background particles. The graph show only the peaks that de-

viate more than 4 standard deviations from the mean. The black lines

represent the detectors. The position of the correct source location is cir-

cled.

plotted. On the far right of the histogram one sees the contribution from the source,

which deviates more than 10 standard deviations from the mean. This result complies

with our predictions.

We first illustrate our processing of data on a typical example of Radon type

data. In fact, the data used for this backprojection reconstruction was the same used

for the unsuccessful FBP reconstruction shown on Fig. 3.11. We backprojected the

detected particles from each of the three detector arrays separately and then added

the results. The first picture on Fig. 3.16 shows a typical backprojection reconstruc-

tion. There is a drop of the values at the side of the square, due to the missing
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Fig. 3.15. Histogram of a backprojection reconstruction from data collected by four

collimated detectors, placed on the sides of the unit square. The data

simulated a source at the point (0.202,−0.01), with SNR 0.1% and total

number of particles slightly more than 106. The number of lines due to the

source deviates more than 10 standard deviations from the mean.

detector. Thus, effectively, there is a non-uniform distribution of the background.

However, this change in the non-uniformity is smooth, so we can assume that the

local distribution of trajectories is uniform. In order to apply our probabilistic argu-

ments described in Section 3.5.2 we estimated the local mean and standard deviation

at every point. This was done by analysis of the data on a 7 × 7 grid surrounding

each pixel. Then, the standard deviation from the local mean at every point was

computed and plotted (see bottom left plot on Fig. 3.16). The confidence probability
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was calculated by

confidence = (1− 0.5 ∗ erfc(ksource/
√

(2)))1002

,

where ksource is the number standard deviations above the mean at the highest peak.

The calculated confidence level for this example was 99.99%.

Fig. 3.16. Backprojection reconstruction from Radon data (top). Number of (local)

standard deviations above the (local) mean at each pixel is shown on bottom

left. Peaks that deviate more than 3.5 (local) standard deviations from the

mean is shown on bottom right. Source located at (0.203, 0.101) is detected

with confidence 99.99%.

For the reconstructions from Compton camera data, we used method C to con-
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vert cone data into Radon data. Afterwards, the procedures used for Radon data

(described above) were employed. The backprojection reconstruction from the same

data used in Fig. 3.12 is shown on Fig. 3.17. The results are similar to the recon-

struction from Radon data, only the confidence probability is slightly lower - 97.56%.

Fig. 3.17. Backprojection reconstruction from Compton data (top). Number of (local)

standard deviations above the (local) mean at each pixel is shown on bottom

left. Peaks that deviate more than 3.5 (local) standard deviations from the

mean is shown on bottom right. Source located at (0.203, 0.101) is detected

with confidence 97.56%.

A couple of more examples of reconstructions from Compton camera data are
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provided below. The number of source particles was 986 versus 106 background

particles. The source on Fig. 3.18 is close to one of the detectors and is difficult to

detect. The local mean and σ were estimated on a larger local grid, 11 × 11 pixels,

which raised the confidence level. We believe that larger local grids allow for more

precise estimation of the mean, thus raising the confidence level for the detected

source. However, if the local grids are too large, the distribution of trajectories in a

local grid would not be close to uniform anymore, and this will hamper our ability

for detection. The source on Fig. 3.19 is close to the side of the square on which a

detector is missing. The number of source particles was 994 versus 106 background

particles. The local mean and standard deviation were estimated on 7×7 local grids.

The confidence level is 96.7%.

Finally, we present an example of a successful detection of several sources

(Fig. 3.20). Three sources were placed inside the imaged area, and three Compton-

type detector arrays were used to detect particles. The total number of detected

source particles was 3061, each of the sources having roughly the same contribution.

Additional 106 random background particles were detected. We have set up the

threshold to kt = 4.3σ, which gives confidence of detection at least 91.97%. Note

that this confidence probability is estimated base on the threshold, and not on the

actual number of deviations at each peak, as in the previous examples. The local

grids we used for estimating the local means and standard deviations had dimensions

11× 11.
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Fig. 3.18. Backprojection reconstruction from Compton data (top). Detected source

particles - 986, background particles - 1, 000, 002, source location -

(0.803,−0.7041). Number of (local) standard deviations above the (local)

mean at each pixel is shown on bottom left. The local mean and σ were

computed on a 11 × 11 local grid. Peaks that deviate more than 3.5 (lo-

cal) standard deviations from the mean is shown on bottom right. Source

located at (0.803, 0.7041) is detected with confidence 76.03%.
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Fig. 3.19. Backprojection reconstruction from Compton data (top). Detected source

particles - 994, background particles - 1, 000, 002, source location -

(−0.503,−0.101). Number of (local) standard deviations above the (lo-

cal) mean at each pixel is shown on bottom left. Peaks that deviate more

than 3.5 (local) standard deviations from the mean is shown on bottom

right. Source located at (0.503, 0.101) is detected with confidence 96.7%.
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Fig. 3.20. Backprojection reconstruction from Compton data (top). Detected source

particles - 3061, background particles - 1, 000, 002, sources located at

(0.203,-0.101), (-0.301,0.4013) and (0.403,-0.601). Number of (local) stan-

dard deviations above the (local) mean at each pixel is shown on bottom

left. Peaks that deviate more than 4.3 (local) standard deviations from

the mean is shown on bottom right. Confidence of detection based on the

threshold kt = 4.3 is 91.97%.
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3.6. Remarks

In this chapter we investigated three methods of inversion of the two-dimensional

cone transform, which arises in Compton camera imaging. All of these methods

use the complete set of available data, which is highly desirable in detection of low

emission sources. One of the presented methods, method C (see Section 3.2.2),

reconstructs the correct image away from the detectors, and, in addition, is simple

and numerically efficient. In 3D, the data set provided by Compton cameras is five

dimensional and computationally efficient methods are needed. Thus, an analog of

method C in three dimensions could be highly valuable.

In Sections 3.4 and 3.5 we considered the problem of detection of low emission

geometrically small sources in the presence of strong natural radiation background.

We presented a method for detection and discussed its application to a homeland

security project aimed at preventing the smuggling of nuclear substances. Examples

of source detection from numerically simulated data using Compton camera detec-

tors in 2D were shown. We described a technique for source detection when the

background is not uniform. Testing of our algorithm with more realistic data is in

process.
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CHAPTER IV

CONCLUSION

In the first part of this dissertation we described the time reversal method, as ap-

plied to thermoacoustic tomography. We presented a thorough numerical study of

the method, which included reconstructions with variable trapping and non-trapping

sound speed, non-zero initial velocity, phantoms partially supported outside the im-

aged area as well as reconstructions with averaged sound speed. We provided er-

ror estimates for the time reversal approximation, thus justifying the time reversal

method in any dimension under a non-trapping condition on the sound speed. Nu-

merical examples agree with the error estimates in the cases of non-trapping speeds

and show that time reversal works even when the sound speed is trapping. The

stability of the time reversal method with respect to errors in measured data was

also investigated.

The second part of this dissertation considered a problem from emission to-

mography, namely Compton camera imaging and the resulting cone transform. We

presented three methods for inversion of the two-dimensional cone transform and pro-

vided examples of reconstructions based on these methods. Next, we described the

problem of detection of geometrically small sources in the presence of a large back-

ground radiation and the use of Compton cameras for this purpose. We presented

an efficient method for detection of such sources and provided numerical examples

which demonstrate the method.
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APPENDIX A

TIME REVERSAL CODES

This appendix contains the author’s Matlab implementation of the time-reversal

method for thermoacoustic tomography.

There are two major parts of the code. In the first one, wave propagation is

simulated and data is recorded on an observation surface S. In the second part

wave propagation in reversed time order is performed, using the data recorded on

the previous step. Below we provide more details regarding the implementation as

well as the actual codes.

Step 1 The script forward.m is used to compute the forward propagation of waves

resulting form a given initial pressure f(x) (a phantom) and with initial velocity

g(x). In order to simulate wave propagation in the whole space, we solve the wave

equation 



utt = c2(x)∆u, t ∈ [0, T final], x ∈ D = [−a, a]2

u(x, 0) = f(x), ut(x, 0) = g(x),

u(x, t) |∂D= 0,

(A.1)

Here the domain D is large enough to guarantee that reflections of the waves off

its boundary δD do not reach the unit circle. Thus, the size of D depends on the

sound speed c(x) and the time Tfinal. The values of the wave are recorded on the

boundary of the unit circle, S. The simulation of wave propagation is done using

finite difference approximation, as described below. A similar implementation can

be found in [26]. First, the domain D is discretized as a uniform Cartesian grid with
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grid points (xi, yj) = (−a+ ih,−a+ jh), i, j = 0 . . . n, h = 2a/n. The time varable

t ∈ [0, T final] is discretized as tk = kτ, k = 0 . . . ,m, τ = Tfinal/m. The solution

of (A.1) at the space-time grid points, u(xi, yj, t
k), is approximated by the (finite

difference) solution uk
i,j of

uk+1
i,j = λ2

i,j

(
uk

i+1,j + uk
i−1,j + uk

i,j+1 + uk
i,j−1

)
+ (2− 4λ2

i,j)u
k
i,j − uk−1

i,j ,

i, j = 1, . . . , n− 1, k = 1, . . . ,m− 1

u0
i,j = fi,j, i, j = 0, . . . , n

u1
i,j = fi,j + τgi,j +

1

2
λ2

i,j (fi+1,j + fi−1,j + fi,j+1 + fi,j−1 − 4fi,j) ,

i, j = 0, . . . , n

uk
0,j = uk

i,0 = 0, i, j = 0, . . . , n, k = 0, . . . ,m

(A.2)

Here, we have denoted fi,j := f(xi, yj), gi,j := g(xi, yj) and λi,j :=
c(xi, yj)τ

h
. Equa-

tion A.2 is a second order finite difference approximation to A.1 with second order ap-

proximation of initial conditions. This numerical scheme is stable, if τ ≤ h√
2 max(c)

,

e.g. [86]. The observation surface S is approximated by points from the finite dif-

ference grid used for reconstruction (see Step 2) and the values of the wave at these

points are obtained by nearest neighbor interpolation in space and linear interpola-

tion in time. Care is taken so that the meshes for forward wave propagation and

reconstruction are different. The data collected on the observation surface is saved

in the file forward data.m.

Step 2 The time-reversal method is implemented in the script reconstruction.m.

The goal is to solve the wave equation inside the unit circle, starting at time T ≤
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Tfinal until time 0. The initial conditions at t = T are set to zero and the bound-

ary conditions, which were recorded at the previous step, are transmitted to S in

reversed time order. In the actual implementation we solve equation (A.2) inside the

square [−1.2, 1.2]2, from time t = T until time t = 0, with zero initial conditions at

t = T and zero boundary conditions. The values of the wave on S are enforced on

the solution on each time step. As a result, we obtain the correct solution of the

wave equation inside the unit disc, which is our area of intereset.

Below is the order in which the codes should be run:

1. In order to set up the parameters, modify and run configure.m

2. For simulating wave propagation, run forward.m.

3. Once the data on the observation surface is recorded, one can experiment with

reconstructions from different cut-off times T. In order to reconstruct the phan-

tom, run reconstruction.m. This last script will prompt for a value of the cut-off

time T.

Listing IV.1 ’configure.m’

% Forward problem : So lve the wave equat ion
% u t t = cˆ2\Del ta u in the domain
% D = [−a , a ]ˆ2 (a>2) wi th i n i t i a l c ond i t i on s
% u=phantom , % du/ dt=i n i t i a l v e l o c i t y and
% 0 va l u e s on the boundary . The va l u e s o f
% the s o l u t i o n are recorded on the boundary o f
% the un i t c i r c l e .
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clear a l l

% re q i r e : c∗Tf ina l /2 + 1 < a
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Parameters f o r the Forward Wave %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

% Compute the wave in [−a , a ]ˆ2
a = 3 ;

% h = 2∗a/n w i l l be the mesh s i z e
n = 800 ;

% The time t i l l which the s o l u t i o n
% w i l l be computed .

Tf ina l = 3 . 0 5 ;

% −−−−−−−−−− Soundspeed f o r the forward wave −−−−−−−−−−−−−−−
cd Speeds
c = n i c e c o s ( a , n ) ;
cd . .

%−−−−−−−−−−−− Set I n i t i a l Condi t ions −−−−−−−−−−−−−−−−−−−−−−−
cd Phantoms

% i n i t i a l p re s sure
phantom = comb1 phantom (a , n) ;

% i n i t i a l v e l o c i t y
i n i t i a l v e l o c i t y = zeros (n+1,n+1) ;
cd . .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Recons truc t ion Parameters %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

% Compute the r e con s t ru c t i on
% on [−ar , ar ]ˆ2

ar =1.2 ;
% hr = 2∗ar/nr w i l l be the mesh s i z e

nr = 400 ;
% The f o l l ow i n g i s done to ensure

the
% g r i d s f o r the forward wave and f o r
% the r e con s t ru c t i on are d i f f e r e n t

i f 2∗ ar /nr == 2∗a/n
nr = nr−10;

end

%−−−−−−−− Soundspeed f o r the r e con s t ru c t i on −−−−−−−−−−−−−−−−
cd Speeds
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cr = n i c e c o s ( ar , nr ) ;
cd . .

%−−−−−−−−− Limited View −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Data i s NOT a v a i l a b l e f o r pa r t s o f
% the boundary wi th po la r

coord ina t e s
% in ( ang1 , ang2 ) . ’ ang1 ’ and ’ ang2 ’
% must be g iven in rad ians and
% 0 <= ang1 < ang2 <= 2∗ p i .

ang1 = 0 ; ang2 = pi /4 ;

%−−−−−Create the phantom on the r e con s t r u c t i on mesh−−−−−−−−
% Used to compare wi th the r e con s t ru c t i on
cd Phantoms
phantomR = comb1 phantom ( ar , nr ) ;
cd . .

save c on f i g
disp ( ’ Con f igurat ion done . ’ )

Listing IV.2 ’forward.m’

clear al l , c l f reset
disp ( ’ forward s t a r t s . . . . ’ )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Setup %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Load parameters f o r the forward
% so lu t i on , i n c l u d i n g sound speed
% and i n i t i a l c ond i t i on s .

load c on f i g

x=linspace(−a , a , n+1) ; [X,Y]=meshgrid ( x ) ;
h = 2∗a/n ;

% Compute the approximation o f the
% c i r c l e Br wi th po in t s from the
% recon s t ru c t i on g r i d (UbX, UbY) , a t
% which the va l u e s o f the wave w i l l
% be recorded .

xr=linspace(−ar , ar , nr+1) ;
[UbX,UbY, indexX , indexY ] = f ind boundary (1 , xr ) ;
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% Plot i n i t i a l c ond i t i on s
ang = 0 : . 0 1 : 2 ∗ pi ;
g r ay p l o t (X,Y, phantom)
t i t l e ( ’ I n i t i a l Pres sure ’ )
hold
plot3 (UbX,UbY, zeros ( length (UbX) ) , ’ : ’ , ’ LineWidth ’ , 2 )
hold o f f
pause

g ray p l o t (X,Y, i n i t i a l v e l o c i t y )
t i t l e ( ’ I n i t i a l Ve loc i ty ’ )
hold
plot3 (UbX,UbY, zeros ( length (UbX) ) , ’ : ’ , ’ LineWidth ’ , 2 )
hold o f f
pause

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Fin i t e D i f f e r ence So lu t i on %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Parameters
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% time s t ep s a t i s f y i n g the s t a b i l i t y
% cond . f o r the forward mesh

tau f = h/(1 .42∗max( c ( : ) ) )
t ime s t ep s = ce i l ( T f i na l / tau f ) , t au f = Tf ina l / t ime s t ep s ;
fwdtimes = linspace (0 , Tf ina l , t ime s t ep s +1) ;

% Begin Algorithm
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t=0; t imestep = 1 ;
L=(c .∗ tau f /h) . ˆ 2 ;
Uoldest = phantom ;

% Record va l u e s at the c i r c l e Br
Ubound ( : , t imestep )= interp2 (X,Y, Uoldest ,UbX,UbY, ’ ∗ nea r e s t ’ ) ;

% Set the va l u e s f o r U at time ” tau”
% us ing 2nd order approx . o f
% i n i t i a l v e l o c i t y

t = t+tau f ; t imestep = t imestep + 1 ;
Uold = Uoldest + tau f ∗ i n i t i a l v e l o c i t y + (L . / 2 ) . ∗ . . .

( c i r c s h i f t ( Uoldest , [ 1 0 ] )+c i r c s h i f t ( Uoldest ,[−1 0 ] ) + . . .
c i r c s h i f t ( Uoldest , [ 0 1 ] )+c i r c s h i f t ( Uoldest , [ 0 −1]) − . . .
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4∗Uoldest ) ;
% Set boundary o f [−a , a ]ˆ2 to 0

Uold ( 1 , : ) =0; Uold (n+1 , :) =0;
Uold ( : , 1 ) =0; Uold ( : , n+1)=0;

Ubound ( : , t imestep ) = interp2 (X,Y, Uold ,UbX,UbY, ’ ∗ nea r e s t ’ ) ;

while t < Tf ina l
t = t+tauf , t imestep = timestep + 1 ;
Utemp=L . ∗ ( c i r c s h i f t (Uold , [ 1 0 ] )+c i r c s h i f t (Uold ,[−1 0 ] ) + . . .

c i r c s h i f t (Uold , [ 0 1 ] )+c i r c s h i f t (Uold , [ 0 −1]) ) + . . .
(2−4∗L) .∗Uold − Uoldest ;

Uoldest = Uold ;
Uold = Utemp ;
Uold ( 1 , : ) =0; Uold (n+1 , : ) =0;
Uold ( : , 1 ) =0; Uold ( : , n+1)=0;

Ubound ( : , t imestep ) = interp2 (X,Y, Uold ,UbX,UbY, ’ ∗ nea r e s t ’ ) ;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Graphs %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
g ray p l o t (X,Y, Uold )
t i t l e ( ’ So lu t i on at time Tf ina l ’ )
hold
plot3 (UbX,UbY, zeros ( length (UbX) ) , ’ : ’ , ’ LineWidth ’ , 2 )
hold o f f

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Save Data %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
save forward data Ubound UbX UbY indexX indexY fwdtimes
T f ina l tau f h

disp ( ’E N D ( forward ) ’ )

Listing IV.3 ’reconstruction.m’

% Reconstruct the wave i n s i d e the c i r c l e wi th rad ius ’ r ’

clear al l , c l f reset
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Input Parameters %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load c on f i g

% Load data Ubound UbX
% UbY indexX indexY
% fwdtimes T f ina l t au f h

load forward data

T = Tf ina l ;
while (T >= Tf ina l )

fpr intf ( ’ Enter time from which to r e c on s t ru c t ’
’ (must be l e s s than %3.2 f ) : \n ’ , T f i na l ) ;

T = input ( ’T = ’ ) ;
end

Ubound = l im i t ed v i ew (Ubound , ang1 , ang2 ) ;

% Reconstruc t ion mesh
xr=linspace(−ar , ar , nr+1) ; [ Xr , Yr]=meshgrid ( xr ) ;
hr = 2∗ ar /nr ;

% ’ taur ’ − r e con s t ru c t i on time s t ep
taur = hr /(1 .42∗max( c ( : ) ) ) ;
t ime s t ep s = ce i l (T/ taur ) ; taur = T/ t ime s t ep s ;

bkwdtimes = linspace (0 ,T, t ime s t ep s +1) ;
tauf , taur

% In t e r p o l a t e boundary data
UB = inte rpo la t e boundary (Ubound , fwdtimes , bkwdtimes ) ;

% Fl ip the time
UB( : , 1 : end) = UB( : , end :−1:1) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Begin Algorithm %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
t = T, t imestep = 1 ,

% Set i n i t i a l c ond i t i on s : U at t imes 0 and tau equa l s 0
Uoldest = zeros ( nr+1,nr+1) ;

t = T−taur , t imestep = t imestep + 1 ;
Uold = Uoldest ;

% enforce boundary cond i t i on s
for i =1: length ( indexX )
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Uold ( indexY ( i ) , indexX ( i ) ) = UB( i , t imestep ) ;
end

L=(cr .∗ taur /hr ) . ˆ 2 ;

while t >= taur

t=t−taur , t imestep = timestep +1;
Utemp = L . ∗ ( c i r c s h i f t (Uold , [ 1 0 ] ) + . . .

c i r c s h i f t (Uold ,[−1 0 ] ) + c i r c s h i f t (Uold , [ 0 1 ] ) + . . .
c i r c s h i f t (Uold , [ 0 −1]) ) + (2−4∗L) .∗Uold − Uoldest ;

Uoldest = Uold ;
Uold = Utemp ;

% enforce boundary cond i t i on s
for i =1: length ( indexX )

Uold ( indexY ( i ) , indexX ( i ) ) = UB( i , t imestep ) ;
end

end % whi l e

% I n i t i a l v e l o c i t y r e con s t ru c t i on
v e l o c i t y r e c = ( Uoldest−Uold ) / taur− L/(2∗ taur ) . ∗ . . .

( c i r c s h i f t (Uold , [ 1 0 ] ) + c i r c s h i f t (Uold ,[−1 0 ] ) + . . .
c i r c s h i f t (Uold , [ 0 1 ] ) + c i r c s h i f t (Uold , [ 0 −1]) − . . .

4∗Uold ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Errors %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% cut away the va l u e s ou t s i d e the
% un i t c i r c l e

Uold cut = Uold .∗ double (Xr.ˆ2+Yr .ˆ2<0.97) ;
Phantom cut = phantomR .∗ double (Xr.ˆ2+Yr .ˆ2<0.97) ;
error = Uold cut−Phantom cut ;
[ dedx , dedy ] = gradient ( error , h ) ;
[ dPhantom dx , dPhantom dy]=gradient ( Phantom cut , h ) ;

l 2 e r rP=100∗sqrt (sum(sum( error . ˆ 2 ) ) /sum(sum( Phantom cut . ˆ 2 ) ) )
h1errP = 100∗ sqrt (sum(sum( error .ˆ2+dedx .ˆ2+dedy . ˆ 2 ) ) / . . .

sum(sum( Phantom cut .ˆ2+dPhantom dx.ˆ2+dPhantom dy .ˆ2 ) ) )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Graphs %
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Cal l the s c rop t mygraphs .m

mygraphs

Below are the auxiliary functions and scripts used in the main scripts forward.m

and reconstruction.m.

Listing IV.4 ’find boundary.m’

function [UbX,UbY, indexX , indexY ] = f ind boundary ( r , x )

% Approximates the boundary o f the c i r c l e cen tered at 0 wi th
% rad ius ’ r ’ by po in t s from the square mesh
% [X,Y] = meshgrid ( x ) .
%
% A poin t from the mesh i s a boundary po in t i f a t l e a s t one
% of i t s 4 ne ighbours i s ou t s i d e the c i r c l e .
%
% Output :
% −−−−−−−−
% UbX, UbY ho ld the coord ina t e s o f the boundary po in t s . The
% vec t o r s ’ indexX ’ and ’ indexY ’ ho ld the indexes
% ( corresponding to the mesh X,Y) o f the boundary po in t s .

[X,Y] = meshgrid ( x ) ;
UbX = [ ] ;
UbY = [ ] ;
indexX = [ ] ;
indexY = [ ] ;

h = X(1 , 2 )−X(1 ,1 ) ; % mesh s i z e

for i = 1 :max( s ize (X) )
for j =1:max( s ize (Y) )

norm i j = norm ( [X( i , i ) ,Y( j , j ) ] ) ;
i f ( norm ij<=r&&norm ij>r−h∗sqrt (2 ) )
norm mo = norm ( [X( i −1, i −1) ,Y( j , j ) ] ) ;
norm po = norm ( [X( i +1, i +1) ,Y( j , j ) ] ) ;
norm om = norm ( [X( i , i ) ,Y( j −1, j−1) ] ) ;
norm op = norm ( [X( i , i ) ,Y( j +1, j +1) ] ) ;
i f (norm mo>r | | norm po>r | | norm om>r | | norm op>r )

UbX=[UbX, X( i , i ) ] ;
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UbY=[UbY, Y( j , j ) ] ;
indexX =[indexX , i ] ;
indexY =[indexY , j ] ;

end
end

end
end

%−−−−−−−−−−−Sort UbX, UbY, indexX and indexY−−−−−−−−−−−−−−−%
% by inc r ea s i n g ang l e coord ina te o f the boundary po in t s
% [UbX( i ) ,UbY( i ) ]
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

% ge t the angu lar coord ina t e s o f the
% boundary po in t s .

[ phi , rho ] = cart2pol (UbX,UbY) ;
% The angu lar coord ina t e s ” phi ” are
% then so r t ed by in c r ea s i n g angle ,
% ”order ” i s the vec t o r o f indeces
% such t ha t ph i o rde red=phi ( order ) .

[ ph i ordered , order ] = sort ( phi ) ;
clear phi rho ph i o rde red

% Now reorder UbX, UbY, indexX and
% indexY .

UbX = UbX( order ) ;
UbY = UbY( order ) ;
indexX = indexX ( order ) ;
indexY = indexY ( order ) ;

Listing IV.5 ’limited view.m’

function [ LVUbound ] = l im i t ed v i ew (Ubound , ang1 , ang2 )
% Produces a l im i t e d view data by ( smoothly ) r e p l a c i n g the
% boundary data corresponding to po in t s on the boundary wi th
% po la r coord ina t e s in ( ang1 , ang2 ) by zero . ’ ang1 ’ and
% ’ ang2 ’ must be g iven in rad ians and
% 0 <= ang1 < ang2 <= 2∗ p i .

alpha = ang1 ;
beta= ang2 ;

i f ( alpha − beta ) ==0
LVUbound = Ubound ;
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else

% h bound i s approx imate ly the
% d i s c r e t i z a t i o n s t ep a long the
% boundary o f the un i t c i r c l e .

h bound = 2∗pi /( length (Ubound ( : , 1 ) )−1) ;

% alpha i , b e t a i are the indexes in
% Ubound t ha t correspond to the
% ang l e s a lpha and be ta

a l pha i = f loor ( alpha /h bound )+1;
b e t a i = ce i l (beta/h bound )+1;

% we w i l l smoothly cut to zero
% wi th in 20% from e i t h e r s i d e .

smooth = f loor ( ( be ta i−a l pha i ) /5) ;

LVUbound = Ubound ;
LVUbound( a l pha i +1: be ta i −1 , :)= 0 ;
for j =1: length (Ubound ( 1 , : ) )

LVUbound( a l pha i : a l pha i+smooth , j ) = . . .
LVUbound( a lpha i , j ) .∗(1+ cos ( pi ∗ ( 0 : smooth ) /smooth ) ) /2 ;
LVUbound( be ta i−smooth : be ta i , j ) = . . .
LVUbound( be ta i , j ) .∗(1− cos ( pi ∗ ( 0 : smooth ) /smooth ) ) /2 ;

end
end %i f / e l s e

Listing IV.6 ’interpolate boundary.m’

function [ UboundR ] = inte rpo la t e boundary (Ubound , fwdtimes ,
bkwdtimes )

% Linear i n t e r p o l a t i o n o f Ubound g iven at fwdt imes to
% bkwrdtimes . Ubound ( : , i ) i s the v ec t o r con ta in ing the
% va lu e s f o r time fwdt imes ( i ) .

i f fwdtimes (end)<bkwdtimes (end)
error ( ’T must be l e s s than to T f ina l ’ )
return

end

tau f = abs ( fwdtimes (1 )− fwdtimes (2 ) ) ;
taur = abs ( bkwdtimes (1 )− bkwdtimes (2 ) ) ;
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Nf = length ( fwdtimes ) ; Nr = length ( bkwdtimes ) ;

for i = 1 :Nr
p = ( i −1)∗ taur ;
k = f loor (p/ tau f ) +1;
a = (Ubound ( : , k+1)−Ubound ( : , k ) ) / tau f ;
b = (1−k )∗Ubound ( : , k+1)+k∗Ubound ( : , k ) ;
UboundR ( : , i ) = a∗p+b ;

end

The next three functions are samples of a phantom and two sound speeds.

Listing IV.7 ’comb1 phantom.m’

function [U] = comb1 phantom(a , n)
% Produces the c h a r a c t e r i s t i c f unc t i on o f the par t o f the
% annulus {a<=|X|<=b} which l i e s in the f i r s t quadrant +
% two c i r c l e s .
% The output ’U’ g i v e s the va l u e s o f the phantom on the
% square g r i d on [−a , a ]ˆ2 wi th mesh s i z e 2a/n .

[X,Y] = meshgrid ( linspace(−a , a , n+1) ) ;
a=0; b = 0 . 7 ;
U=double ( (X.ˆ2+Y.ˆ2>=aˆ2) ) . ∗ ( (X.ˆ2+Y.ˆ2<=bˆ2) ) . ∗ (X>=0) . ∗ . . .

(Y>=0)+0.7∗ double ( (X+0.5) .ˆ2+Y.ˆ2<=0.09 ) + . . .
1 .3∗ double (X.ˆ2+(Y+0.5) .ˆ2<=0.01) ;

Listing IV.8 ’nice cos.m’

function [ c ] = n i c e c o s ( a , n )
% Time o f t r a v e l though the un i t c i r c l e : ˜ 1.694

[X,Y] = meshgrid ( linspace(−a , a , n+1) ) ;
c = (1+0.2∗ cos (X.ˆ2+Y.ˆ2 ) ) .∗ double (X.ˆ2+Y.ˆ2<=1) + . . .

(1+0.2∗ cos (1 ) ) .∗ double (X.ˆ2+Y.ˆ2>1) ;

Listing IV.9 ’parabolic speed.m’

function [ c ] = pa rabo l i c sp e ed (a , n)
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% c = 0.1 +Xˆ2+Yˆ2
%Time i t t a k e s a wave to cros s the un i t c i r c l e : ˜8

[X,Y] = meshgrid ( linspace(−a , a , n+1) ) ;
c=0.1+(X.ˆ2+Y.ˆ2 ) .∗ double (X.ˆ2+Y.ˆ2<=1)+double (X.ˆ2+Y.ˆ2>1) ;

The following script was used for numerical estimation of the error as a function

of cut-off time T (see 2.5).

Listing IV.10 ’reconstruction loop.m’

% This s c r i p t was wr i t t en to compute the dependence o f the
% approximation error on the cut−o f time T. In order to run
% th i s , comment the par t in r e con s t r u c t i on .m which d e f i n e s T
% as we l l as the ” c l e a r a l l ” command
% ( both are at the very beg inn ing o f r e con s t r u c t i on .m)

clear al l , c l f reset

load forward data T f ina l
% The r e con s t r u c t i on s are computed f o r T in [ t0 , Tf ina l −0.05]
t0 = 2 ;
r econs t ruc t ionT = [ t0 : 0 . 2 : Tf ina l −0 . 05 ] ;

E = [ ] ;
for recT = 1 : length ( r econs t ruct ionT )

T = recons t ruct ionT ( recT )
r e c on s t r u c t i on
E( recT , : ) = [ r econs t ruc t i onT ( recT ) l2e r rP h1errP ] ;

end

save er r wrt T E

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Graphs %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
plot (E( : , 1 ) ,E( : , 2 ) , ’−k ’ , ’ LineWidth ’ , 2 )
hold on
plot (E( : , 1 ) , t0∗E(1 , 2 ) . /E( : , 1 ) , ’ : k ’ , ’ LineWidth ’ , 2 )
legend ( ’Lˆ2 e r r o r ’ , ’C/T ’ )
%t i t l e ( ’ Trapping sound speed ’ )
xlabel ( ’ cut−o f f time T ’ )
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ylabel ( ’Lˆ2 e r r o r ’ )
hold o f f
pause
plot (E( : , 1 ) ,E( : , 3 ) , ’−k ’ , ’ LineWidth ’ , 2 )
hold on
plot (E( : , 1 ) , t0∗E(1 , 3 ) . /E( : , 1 ) , ’ : k ’ , ’ LineWidth ’ , 2 )
legend ( ’Hˆ1 e r r o r ’ , ’C/T ’ )
%t i t l e ( ’ Trapping sound speed ’ )
xlabel ( ’ cut−o f f time T ’ )
ylabel ( ’Hˆ1 e r r o r ’ )
hold o f f
pause

% Logari thmic Sca le and Linear Regress ion
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
logE=log (E) ;

p l 2 s t r=polyf it ( logE ( : , 1 ) , logE ( : , 2 ) , 1 ) ;
p l2=polyval ( p l 2 s t r , logE ( : , 1 ) ) ;
fpr intf ( ’ P o l y f i t f o r Lˆ2 e r r o r i s : %6.2 f x+%6.2 f \n ’ , p l 2 s t r )
ph1 s t r=polyf it ( logE ( : , 1 ) , logE ( : , 3 ) , 1 ) ;
ph1=polyval ( ph1 str , logE ( : , 1 ) ) ;
fpr intf ( ’ P o l y f i t f o r Hˆ1 e r r o r i s : %6.2 f x+%6.2 f \n ’ , ph1 s t r )

plot ( logE ( : , 1 ) , logE ( : , 2 ) , ’−k ’ , ’ LineWidth ’ , 2 )
hold on
plot ( logE ( : , 1 ) , pl2 , ’ : k ’ , ’ LineWidth ’ , 2 )
legend ( ’ l og o f Lˆ2 e r r o r ’ , [num2str( p l 2 s t r (1 ) ) , ’ x+’ ,

num2str( p l 2 s t r (2 ) ) ] )
xlabel ( ’ l og T ’ )
ylabel ( ’ l og o f Lˆ2 e r r o r ’ )
hold o f f
pause

plot ( logE ( : , 1 ) , logE ( : , 3 ) , ’−k ’ , ’ LineWidth ’ , 2 )
hold on
plot ( logE ( : , 1 ) , ph1 , ’ : k ’ , ’ LineWidth ’ , 2 )
legend ( ’ l og o f Hˆ1 e r r o r ’ , [num2str( ph1 s t r (1 ) ) , ’ x+’ ,

num2str( ph1 s t r (2 ) ) ] )
xlabel ( ’ l og T ’ )
ylabel ( ’ l og o f Hˆ1 e r r o r ’ )
hold o f f
pause
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% Sca led graphs f o r t rapp ing speeds ∗ only ∗
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
time = log ( log (E( : , 1 ) +2) ) ;

logE=log (E) ;

p l 2 s t r=polyf it ( time , logE ( : , 2 ) , 1 ) ;
p l2=polyval ( p l 2 s t r , time ) ;
fpr intf ( ’ P o l y f i t f o r Lˆ2 e r r o r i s : %6.2 f x+%6.2 f \n ’ , p l 2 s t r )
ph1 s t r=polyf it ( time , logE ( : , 3 ) , 1 ) ;
ph1=polyval ( ph1 str , time ) ;
fpr intf ( ’ P o l y f i t f o r Hˆ1 e r r o r i s : %6.2 f x+%6.2 f \n ’ , ph1 s t r )

plot ( time , logE ( : , 2 ) , ’−k ’ , ’ LineWidth ’ , 2 )
hold on
plot ( time , pl2 , ’ : k ’ , ’ LineWidth ’ , 2 )
legend ( ’ l og o f Lˆ2 e r r o r ’ , [num2str( p l 2 s t r (1 ) ) , ’ x+’ ,

num2str( p l 2 s t r (2 ) ) ] )
xlabel ( ’ l og l og (2+T) ’ )
ylabel ( ’ l og o f Lˆ2 e r r o r ’ )
hold o f f
pause

plot ( logE ( : , 1 ) , logE ( : , 3 ) , ’−k ’ , ’ LineWidth ’ , 2 )
hold on
plot ( logE ( : , 1 ) , ph1 , ’ : k ’ , ’ LineWidth ’ , 2 )
legend ( ’ l og o f Hˆ1 e r r o r ’ , [num2str( ph1 s t r (1 ) ) , ’ x+’ ,

num2str( ph1 s t r (2 ) ) ] )
xlabel ( ’ l og T ’ )
ylabel ( ’ l og o f Hˆ1 e r r o r ’ )
hold o f f

The next three files are used for the graphs.

Listing IV.11 ’mygraphs.m’

ang = ang1 :−.01:−2∗pi+ang2 ;
% Graysca le

f igure (1 )
subplot ( 1 , 2 , 1 ) ;
g r ay p l o t (Xr , Yr , Phantom cut )
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t i t l e ( ’Phantom ’ )
hold
plot3 ( cos ( ang ) , sin ( ang ) , ones (1 , length ( ang ) ) , ’ :w ’ ,

’ LineWidth ’ , 2 )
hold o f f
subplot ( 1 , 2 , 2 )
g r ay p l o t (Xr , Yr , Uold cut )
t i t l e ( [ ’ Reconstruct ion from time T=’ ,num2str(T) , ’ L2 e r r ’ ,

num2str( l 2 e r rP ) , ’ %, H1 e r r ’ ,num2str( h1errP ) , ’ %’ ] )
hold
plot3 ( cos ( ang ) , sin ( ang ) , ones (1 , length ( ang ) ) , ’ :w ’ ,

’ LineWidth ’ , 2 )
hold o f f

% Surface
f igure (2 )
subplot ( 1 , 2 , 1 ) ;
n i c e p l o t (Xr , Yr , Phantom cut )
t i t l e ( ’Phantom ’ )
hold
plot3 ( cos ( ang ) , sin ( ang ) , zeros (1 , length ( ang ) ) , ’ : ’ ,

’ LineWidth ’ , 2 )
hold o f f
subplot ( 1 , 2 , 2 )
n i c e p l o t (Xr , Yr , Uold cut )
t i t l e ( [ ’ Reconstruct ion from time T=’ ,num2str(T) , ’ L2 e r r ’ ,

num2str( l 2 e r rP ) , ’ %, H1 e r r ’ ,num2str( h1errP ) , ’ %’ ] )
hold
plot3 ( cos ( ang ) , sin ( ang ) , zeros (1 , length ( ang ) ) , ’ : ’ ,

’ LineWidth ’ , 2 )
hold o f f

% Pro f i l e p l o t s a t y= y0

y0 = 0 ;
% ’ at ’ determines the e n t r i e s o f
% the arrays corresponding to ’ y0 ’

at =f loor ( ( ar+y0 ) /hr ) ;
f igure (3 )
subplot ( 1 , 2 , 1 )
g r ay p l o t (Xr , Yr , Uold cut )
hold on
plot3 ( xr , y0∗ones ( s ize ( xr ) ) ,max(max( Uold cut ) )∗

ones ( s ize ( xr ) ) , ’− ’ , ’ LineWidth ’ , 1 )
hold o f f
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t i t l e ( ’ Reconstruct ion ’ )
subplot ( 1 , 2 , 2 )
plot ( xr , Uold cut ( at , : ) , ’−k ’ , ’ LineWidth ’ , 2 )
axis ([−1 1 −0.1 , 1 . 2 ] )
hold on
plot ( xr , Phantom cut ( at , : ) , ’ : k ’ , ’ LineWidth ’ , 2 )
xlabel ( ’ x ’ )
ylabel ( ’ y ’ )
legend ( [ ’ Reconstruct ion form T = ’ ,num2str(T) ] , ’Phantom ’ )
t i t l e ( [ ’ y=’ ,num2str( y0 ) , ’ p r o f i l e ; l 2 Error ’ ,

num2str( l 2 e r rP ) , ’ %, h1 e r r ’ ,num2str( h1errP ) , ’ %’ ] )
hold o f f

Listing IV.12 ’gray plot.m’

function [ ] = g ray p l o t (X,Y,U)
Uplot = U;
surf (X,Y, Uplot )
colorbar
xlabel ( ’ x ’ )
ylabel ( ’ y ’ )
colormap (gray )
view (0 , 90 )
shading i n t e rp

Listing IV.13 ’nice plot.m’

function [ ] = n i c e p l o t (X,Y,U)
Uplot = U;
surf (X,Y, Uplot )
colorbar
xlabel ( ’ x ’ )
ylabel ( ’ y ’ )
zlabel ( ’u ’ )
colormap ( jet )
view (7 , 43 )
shading i n t e rp
l i g h t a n g l e (−45 ,30)
set ( gcf , ’ Renderer ’ , ’ z bu f f e r ’ )
set ( f i ndob j (gca , ’ type ’ , ’ s u r f a c e ’ ) , . . .
’ FaceLight ing ’ , ’ phong ’ , . . .
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’ AmbientStrength ’ , . 3 , ’ D i f f u s eS t r eng th ’ , . 8 , . . .
’ Specu larStrength ’ , . 9 , ’ SpecularExponent ’ , 2 5 , . . .
’ BackFaceLighting ’ , ’ u n l i t ’ )
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APPENDIX B

COMPTON CAMERA IMAGING CODES

This appendix contains the author’s Matlab codes for inversion of 2D cone trans-

form and for simulation and detection of a geometrically small source in the presence

of a large background. Numerical examples based of these codes are presented in

Chapter III.

First, analytical cone projections of phantoms were computed. Four detector

arrays were placed on the sides of the unit square, i.e. the vertices of the cones

were restricted to the sides of the square. Methods A,B and C were used to convert

cone projections into Radon projections and then filtered backprojection (1.15) was

utilized to invert the Radon transform and obtain reconstructions of the phantoms.

Examples of reconstructions using data from one and three detector arays can be

found in Section 3.3.

We also simulated Compton and Radon emission data from point sources in

the presence of a large random background radiation. The same reconstruction

methods as for analytic data were used for detection of sources. The results of

these computations were not entirely satisfactory. Reconstructions and a discussion

were presented in Section 3.5.1. Next, backprojection was utilized to detect sources.

This approach offers several advantages over standard tomography reconstructions,

as described in Section 3.4.2. In particular, it allows for treatment of non-uniform

background. Reconstructions and a detailed discussion of the numerical results can

be found in Section 3.5.2.
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We proceed with a brief description of the codes and instructions for their use.

The set up of parameters is done in the script configure.m (Listing IV.14).

Here, the location and the centers of bins of detector arrays are specified, as well as

the discretization of cones’ central axes and scattering angles. The configuration is

saved in the file config.mat.

The script makephantom.m (Listing IV.15) creates phantom data based on the

saved configuration. Radon and cone projection data of phantoms consisting of

several circular inclusions can be created by choosing the option for analytic phantom.

If the source phantom option is chosen, the code simulates Radon and Compton-type

detector data coming from several point sources and a random background. The data

is saved in the file phantomdata.mat.

There are three codes which can be used for reconstruction. The script

cone inversionA.m (Listing IV.16) is an implementation of method A for inversion

of the cone transform. The script reconstruct.m (Listing IV.17) has an option for

using methods B or C for transforming cone into fanbeam data. Then filtered back-

projection is used to invert the Radon transform. The backprojection method for de-

tection of geometrically small sources is implemented in reconstruct pointsource.m

(Listing IV.18). The last script should be used for emission-type data only, while the

first two could be used for projection data as well as for emission type data. Both

reconstruct.m and reconstruct pointsource.m have an option for the number of

detector arrays used for reconstruction. These codes can used for reconstructions

from Radon or Compton type data.

The programs should be run in the following order:
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1. In order to set up the parameters, modify and run configure.m

2. To create a phantom, run makephantom.m. This script prompts for a type of

phantom (analytic projections or emission-type) and for its specifics.

3. Once the phantom data is computed, the phantom can be reconstructed by

cone inversionA.m, reconstruct.m or reconstruct pointsource.m. Dif-

ferent number of detector arrays can be used.

Listing IV.14 ’configure.m’

clear a l l
% #bins in each d e t e c t o r array +1

ndet = 100 ;
%# rays from each d e t e c t o r ( a lpha )

nalpha = 200 ;
% # cen t r a l axes be ta

nbeta = nalpha−2;
% # sc a t t e r i n g ang l e s p s i

nps i = nbeta ;
% alpha −− rays from each de t ec to r , i . e .
% angu lar coord ina t e s

alpha = linspace (0 , pi , nalpha ) ;% alpha = alpha (2 : nalpha+1) ;
% phi=alpha−p i /2

phi = linspace(−pi /2 , pi /2 , nalpha ) ;% phi = phi ( 2 : nalpha+1) ;
% ha l f−ang l e s p s i

p s i = linspace (0 , pi , nps i+2) ; p s i = ps i ( 2 : nps i+1) ;
% cen t r a l axes be ta

beta = linspace (0 , pi , nbeta+2) ; beta = beta ( 2 : nbeta+1) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Detec tors %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
disp ( ’ Detector a r rays are p laced on the s i d e s o f the un i t

square . ’ )
%
%
disp ( ’ d e t e c t o r ’ )
disp ( ’ array I I I ’ )
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disp ( ’ −−−−−−−−−−−−−−− ’ )
disp ( ’ d e t e c t o r | | de t e c t o r ’ )
disp ( ’ array IV | | array I I ’ )
disp ( ’ | ∗ | ’ )
disp ( ’ | | ’ )
disp ( ’ −−−−−−−−−−−−−−− ’ )
disp ( ’ −1 de t e c t o r 1 ’ )
disp ( ’ array I ’ )

% Coordinates o f the d e t e c t o r s .
x1 ( : , 1 ) = linspace (−1 ,1 , ndet ) ;
x2 ( : , 1 ) = −1∗ones ( s ize ( x1 ( : , 1 ) ) ) ;

x1 ( : , 3 ) = linspace (−1+1/(7∗ndet ) ,1+1/(7∗ ndet ) , ndet ) ;
x2 ( : , 3 ) = 0.999∗ ones ( s ize ( x1 ( : , 2 ) ) ) ;

x2 ( : , 2 ) = linspace (−1−1/(11∗ndet ) ,1−1/(11∗ ndet ) , ndet ) ;
x1 ( : , 2 ) = ones ( s ize ( x2 ( : , 3 ) ) ) ;

x2 ( : , 4 ) = linspace (−1+1/(13∗ndet ) ,1−1/(13∗ ndet ) , ndet ) ;
x1 ( : , 4 ) = −1∗ones ( s ize ( x2 ( : , 4 ) ) ) ;

save c on f i g
disp ( ’ Con f igurat ion done ! ’ )

Listing IV.15 ’makephantom.m’

clear a l l
load c on f i g
phan = ’ ’ ;
while ( phan ˜= ’ a ’ & phan˜= ’ s ’ )

fpr intf ( ’Phantom : a = ana ly t i c , s = source \n ’ ) ;
phan = input ( ’ Enter phantom type = ’ , ’ s ’ ) ;

end

i f phan == ’ a ’
disp ( ’ Analyt ic phantom con s i s t i n g o f c i r c u l a r i n c l u s i o n s

. . . ’ )
nd i sks = input ( ’ Enter number o f i n c l u s i o n s = ’ ) ;
for i =1: nd i sks

c ( : , i ) = input ( ’ Center o f d i sk [ x , y]= ’ ) ’ ;
r ( i ) = input ( ’ r ad iu s = ’ ) ;
a ( i ) = input ( ’ amplitude =’ ) ;
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end
[C U] = . . .
analyticphantom ( c ( 1 , : ) , c ( 2 , : ) , r , a , alpha , ps i , beta , x1 , x2 ) ;
save phantomdata C U c r a x1 x2 alpha p s i beta

else
disp ( ’ Source phantom . . . . ’ )
nsources = input ( ’ Enter number o f s ou r c e s = ’ ) ;
for i =1: nsources

S ( : , i ) = input ( ’ Locat ion o f po int source i n s i d e un i t
square [ x , y]= ’ ) ’ ;

end
bkgd = input ( ’Number o f background p a r t i c l e s = ’ ) ;
r a t i o = input ( ’SNR ( r a t i o o f # p a r t i c l e s from one source

to # background p a r t i c l e s )=’ )
[C, U, sourcepart , bkgdpart ] = . . .

sourcephantom (S , bkgd , r a t i o , alpha , ps i , beta , x1 , x2 ) ;
save phantomdata C U S sourcepar t bkgdpart x1 x2 . . .

alpha p s i beta
end
disp ( ’Phantom data ready ! ’ )
mybeep

Listing IV.16 ’cone inversionA.m - Inversion of the cone transform via method A’

% Inver s i on o f 2D cone transform v ia method A. Here the
% v e r t i c e s o f cones ( i . e . d e t e c t o r s ) are
% r e s t r i c t e d to a h o r i z on t a l l i n e . The phantom must be
% suppor ted above the d e t e c t o r array .

clear a l l
%==========================================================%
% Setup %
%==========================================================%
load phantomdata
ndet = length ( x1 ) ; nalpha = length ( alpha ) ;
nps i = length ( p s i ) ; nbeta = length (beta ) ;

%==========================================================%
% In t e g r a t i on wi th r e s p e c t to p s i %
%==========================================================%
for k=1: nps i
Gd( : , : , k ) = ( ( p s i ( k )−pi /2) . / sin ( p s i ( k )−pi /2) ) .∗C( : , : , k , 1 ) ;
end
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% Take H i l b e r t transform
for i = 1 : ndet

for j = 1 : nbeta
HGd( i , j , : )=h i l b e r t ( squeeze (Gd( i , j , : ) ) ) ;
end

end
HGd = imag(HGd) ;

% Take the va lue at 0
ICd=−squeeze (HGd( : , : , nps i /2) ) ;

%==========================================================%
% In t e r p o l a t e to p a r a l l e l beam geometry %
%==========================================================%
sd = x1 ( : , 1 ) ∗cos (beta )+x2 ( : , 1 ) ∗ sin (beta ) ;
n l i n e s=4∗ndet ;
s=linspace(−sqrt (2 ) , sqrt (2 ) , n l i n e s ) ;

for j =1: nbeta
HFd( : , j )=interp1 ( sd ( : , j ) , ICd ( : , j ) , s , ’ l i n e a r ’ ) ;
nan = isnan (HFd( : , j ) ) ’ ;
[m1, at1 ] = min( nan ) ; [m2, at2 ] = min( f l i p l r ( nan ) ) ;
at2 = length (HFd( : , j ) )−at2+1;
HFd( 1 : at1−1, j )=HFd( at1 , j ) ; HFd( at2+1:end , j )=HFd( at2 , j ) ;
clear nan m1 m2 at1 at2

end
%==========================================================%
% Inver se H i l b e r t %
%==========================================================%
for j =1: nbeta

Gd( : , j )=−h i l b e r t (HFd( : , j ) ) ;
end

% ’Gd’ i s the Radon transform of the phantom
Gd = imag(Gd) ;

%==========================================================%
% Radon inv e s r i on %
%==========================================================%
r e s = ndet+20; % re s o l u t i o n o f the output image
xb = linspace ( −1 .1 ,1 .1 , r e s ) ; yb=xb ;

% domain o f the output image
[XB,YB]=meshgrid (yb , xb ) ;

% Inve r t us ing FBP
Rec = radon inve r s i on (Gd, s , beta , xb , yb , 1 ) ;
%==========================================================%
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% Graphs %
%==========================================================%
g ray p l o t (XB,YB, Rec ) ;
view (0 , 90 )
hold on
plot3 ( x1 ( : , 1 ) , x2 ( : , 1 ) −0.01 ,0∗ ones (1 , length ( x1 ( : , 1 ) ) ) , . . .

’ : g ’ , ’ LineWidth ’ , 2 )
hold o f f
disp ( ’ Reconstruct ion done ! ’ )

Listing IV.17 ’reconstruct.m - Inversion of the cone transform via methods B and C’

% F i l t e r e d bac kp ro j e c t i on r e con s t r u c t i on o f 2D Radon or
% Compton data , c o l l e c t e d by d e t e c t o r arrays p laced on s i d e s
% of the un i t square . Radon data , which i s g i ven in fanbeam
% coord inates , i s i n t e r p o l a t e d to p a r a l l e l beam data .
% Then f i l t e r e d bac kp ro j e c t i on i s used f o r r e c on s t r u c t i n g
% the phantom . Compton data i s conver ted to
% fanbeam data by the use o f methods B or C
% ( cone2fanbeamB .m or cone2fanbeamC .m) ,
% then the procedures de s c r i b ed above are app l i e d .
%
% de t e c t o r
% array I I I
% −−−−−−−−−−−−−−−
% de t e c t o r | | d e t e c t o r
% array IV | ∗ | array I I
% | |
% | |
% −−−−−−−−−−−−−−−
% de t e c t o r
% array I
clear a l l
%==========================================================%
% Setup %
%==========================================================%
phan = ’ ’ ;
while ( phan ˜= ’ a ’ & phan˜= ’ s ’ )

fpr intf ( ’Phantom : a = ana ly t i c , s = source \n ’ )
phan = input ( ’ Enter type =’ , ’ s ’ ) ;

end

data = ’ ’ ;
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while ( data ˜= [ ’ r ’ , ’ c ’ ] )
fpr intf ( ’Type o f data : r − Radon , c − Cone \n ’ )
data = input ( ’ data = ’ , ’ s ’ ) ;

end

method = ’ ’ ;
i f data == ’ c ’

while (method˜=[ ’B ’ , ’C ’ ] )
fpr intf ( . . .
’ Choose method f o r r educt i on to fanbeam data − B or C\n ’ )
method = input ( ’method = ’ , ’ s ’ ) ;
end

end

numdet = 0 ;
while ( numdet˜=[1 2 3 4 ] )

numdet = input ( ’Number d e t e c t o r s (1−−4) : ’ ) ;
end

% F i l t e r s f o r i n v e r s i on o f Radon
% transform . f i l t e r can be a vec t o r
% conta in ing i n t e g e r s from 1 to 8 .
% F i l t e r s are de s c r i b ed in
% radon inver s i on .m

f i l t e r = [ 1 ] ;
% Load data from f i l e

load phantomdata
ndet = length ( x1 ) ; nalpha = length ( alpha ) ;
nps i = length ( p s i ) ; nbeta = length (beta ) ;

%==========================================================%
% Convert Cone to Fanbeam %
%==========================================================%
i f data == ’ c ’

clear U
i f method == ’B ’

for d=1:numdet
U( : , : , d ) = cone2fanbeamB (C( : , : , : , d ) ) ;

end
else

for d=1:numdet
U( : , : , d ) = cone2fanbeamC (C( : , : , : , d ) , phan ) ;

end
end

end
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%==========================================================%
% Convert Fanbeam to Pa r a l l e l Beam %
%==========================================================%

% Fanbeam coord ina t e s o f a l i n e are
% a po in t ( d e t e c t o r ) ( x1 , x2 ) and
% an ang le ” a lpha ” between the l i n e
% and the p o s i t i v e x1−ax i s .
% Radon coord ina t e s are ( s , ph i ) ,
% where ” phi ” i s the angu lar
% coord ina te o f the vec to r
% perpend i cu l a r to the l i n e and ” s”
% i s the d i s t ance o f the l i n e from
% the o r i g i n .

n l i n e s=4∗ndet ;
s=linspace(−sqrt (2 ) , sqrt (2 ) , n l i n e s ) ;

% sfan ( : , : , d ) are the a v a i l a b l e
% ”s”−va l u e s f o r the corresponding
% de t e c t o r s . For each f i x e d va lue o f
% phi ( i . e . ph i ( j ) ) s fan ( : , j , d ) i s a
% column vecor con ta in ing the va l u e s
% of ” s” f o r the ang l e phi ( j ) and
% de t e c t o r ”d ” .

phi = alpha−pi /2 ;
for d=1:numdet

s fan ( : , : , d ) = x1 ( : , d )∗cos ( phi )+x2 ( : , d )∗ sin ( phi ) ;
end

spar = [ ] ; Upar = [ ] ;
for d=1:numdet

spar = [ spar ; s f an ( : , : , d ) ] ;
Upar = [ Upar ; U( : , : , d ) ] ;

end

G( : , 1 )=zeros ( n l i n e s , 1 ) ; G( : , length ( phi ) )=zeros ( n l i n e s , 1 ) ;
for j =2: length ( phi )−1

G( : , j )=interp1 ( spar ( : , j ) ,Upar ( : , j ) , s , ’ l i n e a r ’ ) ;
% Ext rapo l a t e by cons tant .
% at1 and at2 are the f i r s t and l a s t
% index o f G( : , j ) a t which the va l u e s
% were i n t e r p o l a t e d .

nan = isnan (G( : , j ) ) ’ ;
[m1, at1 ] = min( nan ) ; [m2, at2 ] = min( f l i p l r ( nan ) ) ;
at2 = length (G( : , j ) )−at2+1;
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G( 1 : at1−1, j )=G( at1 , j ) ; G( at2+1:end , j )=G( at2 , j ) ;
end

%==========================================================%
% Reconstruct Image us ing Radon Inver s i on %
%==========================================================%
ndim = ndet ;
xb = linspace ( −0 .98 ,0 .98 , ndim) ;
yb = linspace ( −0 .98 ,0 .98 , ndim) ;
[XB,YB]=meshgrid (xb , yb ) ;
for f = f i l t e r

FBP( : , : , f ) = radon inve r s i on (G( : , : ) , s , phi , xb , yb , f ) ;
end

%==========================================================%
% Error %
%==========================================================%
i f ( phan == ’ a ’ )

exact = zeros ( s ize (XB) ) ;
for i = 1 : length ( c ( 1 , : ) )

exact = exact+a ( i )∗ ba l l ( c (1 , i ) , c (2 , i ) , r ( i ) ,XB,YB) ;
end
exac t cu t = exact ( ( abs (XB) <0.98)&(abs (YB) <0.98) ) ;
approx = squeeze (FBP( : , : , 1 ) ) ;
approx cut = approx ( ( abs (XB) <0.98)&(abs (YB) <0.98) ) ;
error = exac t cu t − approx cut ;
l 2 e r rP =100∗sqrt ( error ’∗ error ) / sqrt ( exact cut ’∗ exac t cu t )

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
graphrec
disp ( ’Compton r e c on s t ru c t i on done ! ! ! ’ )

Listing IV.18 ’reconstruct pointsource.m - Reconstruction of source distribution via

backprojection’

% Backpro jec t ion o f 2D source data (Radon or Compton) ,
% c o l l e c t e d by d e t e c t o r arrays p laced on s i d e s o f the un i t
% square . Radon data , which i s g i ven in fanbeam
% coord inates , i s i n t e r p o l a t e d to p a r a l l e l beam data . Then ,
% the data from each d e t e c t o r array i s bac kp ro j e c t ed
% separa t e l y , a f t e r which the b a c kp r o j e c t i on s are added
% Local g r i d s surrounding each p i x e l from the backp ro j e c t ed
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% image are used to es t imate the ( l o c a l ) mean and ( l o c a l )
% standard d e v i a t i on . A t h r e s h o l d va lue f o r the number
% ( l o c a l ) s tandard d e v i a t i on s above the ( l o c a l ) mean i s used
% fo r e s t ima t ing the con f idence o f source d e t e c t i on .
% Compton data i s conver ted to Radon data v ia
% method C ( cone2fanbeamC .m) , then the procedures de s c r i b ed
% above are app l i e d .
% The geometry o f the d e t e c t o r s i s as f o l l o w s
%
% de t e c t o r
% array I I I
% −−−−−−−−−−−−−−−
% de t e c t o r | | d e t e c t o r
% array IV | ∗ | array I I
% | |
% | |
% −−−−−−−−−−−−−−−
% de t e c t o r
% array I
clear a l l
%==========================================================%
% Setup %
%==========================================================%
data = ’ ’ ; numdet = 0 ;
while ( data ˜= [ ’ r ’ , ’ c ’ ] )

fpr intf ( ’Type o f data : r − Radon , c − Cone \n ’ ) ;
data = input ( ’ data = ’ , ’ s ’ ) ;

end
while ( numdet˜=[1 2 3 4 ] )

numdet = input ( ’Number d e t e c t o r s (1−−4) : ’ ) ;
end

% Load data from f i l e
load phantomdata
ndet = length ( x1 ) ; nalpha = length ( alpha ) ;
nps i = length ( p s i ) ; nbeta = length (beta ) ;

%==========================================================%
% Convert Compton to Fanbeam %
%==========================================================%
i f data == ’ c ’

clear U
for d=1:numdet

U( : , : , d ) = cone2fanbeamC (C( : , : , : , d ) , 1 ) ;
end
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end

%==========================================================%
% Convert Fanbeam to Pa r a l l e l Beam %
%==========================================================%

% Fanbeam coord ina t e s o f a l i n e are
% a po in t ( d e t e c t o r ) ( x1 , x2 ) and
% an ang le ” a lpha ” between the l i n e
% and the p o s i t i v e x1−ax i s .
% Radon coord ina t e s are ( s , ph i ) ,
% where ” phi ” i s the angu lar
% coord ina te o f the vec to r
% perpend i cu l a r to the l i n e and ” s”
% i s the d i s t ance o f the l i n e from
% the o r i g i n .

n l i n e s=4∗ndet ;
s=linspace(−sqrt (2 ) , sqrt (2 ) , n l i n e s ) ;

% sfan are the a v a i l a b l e
% ”s” −va l u e s f o r the corresponding
% de t e c t o r s . For each f i x e d va lue o f
% phi ( i . e . ph i ( j ) ) s fan ( : , j , d ) i s a
% column vec to r con ta in ing the

va l u e s
% of ” s” f o r the ang l e phi ( j ) and
% de t e c t o r ”d”

phi = alpha−pi /2 ;
for d=1:numdet
s fan ( : , : , d ) = x1 ( : , d )∗cos ( phi )+x2 ( : , d )∗ sin ( phi ) ;
end

for j =1: nalpha % phi = alpha−p i /2
for d=1:numdet

G( : , j , d )=interp1 ( s f an ( : , j , d ) ,U( : , j , d ) , s , ’ l i n e a r ’ , 0 ) ;
end

end

%==========================================================%
% Reconstruct Image us ing Backpro jec t ion %
%==========================================================%
ndim = ndet ;
xb = linspace ( −0 .98 ,0 .98 , ndim) ;
yb = linspace ( −0 .98 ,0 .98 , ndim) ;
[XB,YB]=meshgrid (xb , yb ) ;
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BP = zeros (ndim , ndim) ;
for d=1:numdet

BP( : , : ) = BP+backpro j ec t (G( : , : , d ) , s , phi , xb , yb ) ;
end

%==========================================================%
% Local Grids %
%==========================================================%

% Local g r i d s i z e f o r approximat ing
% the mean and standard d e v i a t i on

g r i d s i z e =11;
% ”adgr id ” − i n c r ea se the l o c a l g r i d
% with 2∗ adgr id po in t s to compute
% l o c a l s t d sigma . The g r i d f o r
% l o c a l mean s t a y s unchanged

adgr id = 0 ;
k = 3 ;

gr = f loor ( g r i d s i z e /2) ;
Rec = zeros ( s ize (BP) ) ;
de t e c t =zeros ( s ize (BP) ) ;
s i gma i j = zeros ( s ize (BP) ) ;

for i=gr+adgr id +1:ndim−gr−adgr id
for j = gr+adgr id +1:ndim−gr−adgr id

Reci ( 1 : g r i d s i z e , 1 : g r i d s i z e ) = BP( i−gr : i+gr , j−gr : j+gr ) ;
me = mean( Reci ( : ) ) ;

Rec i i ( 1 : ( g r i d s i z e +2∗adgr id ) , 1 : ( g r i d s i z e +2∗adgr id ) ) = . . .
BP( i−gr−adgr id : i+gr+adgrid , j−gr−adgr id : j+gr+adgr id ) ;

sigma = sqrt (mean( Rec i i ( : ) ) ) ;
s i gma i j ( i , j ) = sigma ;

% de t e c t = number o f sigmas
de te c t ( i , j ) = (BP( i , j )−me) /sigma ;
Recold ( i , j )=max( [ 0 ,BP( i , j )−me−k∗ sigma ] ) ;
clear me s igma old Reci

end
end

% Detect where the maximum number
% of sigmas occur

dx = xb (2)−xb (1) ; dy = yb (2)−yb (1) ;
[ kk , ind ] = max( de t e c t ( : ) )
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[ row , c o l ] = ind2sub ( s ize ( de t e c t ) , ind ) ;
xpos = yb (1)+(co l −1)∗dy
ypos = xb (1)+(row−1)∗dx

% Threshold
k t = 4 . 3 ;

% Confidence based on t h r e s h o l d
r = 0.5∗ erfc ( k t /sqrt (2 ) ) ;
np i x e l s = ( ndet−1) ˆ2 ;
conf = (1− r ) ˆ np i x e l s ;

%==========================================================%
% Graphs %
%==========================================================%
graphpo intsource
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
disp ( ’ Po intsource r e c on s t r u c t i on done ! ! ! ’ )

Below are the codes used for phantom genetarion.

Listing IV.19 ’analyticphantom.m’

function [C U] = analyticphantom (x0 , y0 , r , a , alpha , ps i , beta , x1
, x2 )

% Creates ana l y t i c Cone (C) and Radon (U) data f o r a phantom
% con s i s t i n g o f d i s k s wi th cons tant d en s i t y . The vecors ”x0”
% and ”y0” conta in the ( x , y ) − coord ina t e s c ene t r s o f the
% di sk s , the v ec t o r ”r” conta ins the r a d i i o f the d i s c s and
% ”a” g i v e s the ampl i tudes . ”x0 ” , ”y0 ” , ” r” and ”a” must
% have the same l en g t h . The r e s t o f the input parameters are
% as de s c r i b ed in con f i gu r e .m.
disp ( ’Computing p r o j e c t i o n s . . . ’ )
[X,Y] = meshgrid ( x1 ( : , 1 ) , x2 ( : , 2 ) ) ;
phan = zeros ( length ( x1 ( : , 1 ) ) , length ( x2 ( : , 2 ) ) ) ;
for i =1: length ( x0 )

phan = phan + a ( i )∗ ba l l ( x0 ( i ) , y0 ( i ) , r ( i ) ,X,Y) ;
end
c o l o r p l o t (X,Y, phan )
view (0 , 90 )
pause

ndet = length ( x1 ) ; nalpha = length ( alpha ) ;
nps i = length ( p s i ) ; nbeta = length (beta ) ;
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U = zeros ( ndet , nalpha , 4 ) ;
C = zeros ( ndet , nbeta , npsi , 4 ) ;

for d=1:4
for i = 1 : length ( x0 )
C( : , : , : , d ) = C( : , : , : , d ) + . . .
a ( i )∗acone ( x0 ( i ) , y0 ( i ) , r ( i ) , x1 ( : , d ) , x2 ( : , d ) ,beta , p s i ) ;
U( : , : , d ) = U( : , : , d ) + . . .
a ( i )∗afanbeam ( x0 ( i ) , y0 ( i ) , r ( i ) , x1 ( : , d ) , x2 ( : , d ) , alpha ) ;

end
end

Listing IV.20 ’afanbeam.m’

function [U] = afanbeam (x0 , y0 , r0 , det x , det y , alpha )
% func t i on [U] = afanbeam ( x0 , y0 , r0 , de t x , de t y , a lpha )
% f i n d s the exac t i n t e g r a l ( a n a l y t i c p r o j e c t i on ) o f the d i s c
% B(( x0 , y0 ) , r0 ) , cen tered at ( ’ x0 ’ , ’ y0 ’ ) and wi th rad ius
% ’ r0 ’ , a long the l i n e s s t a r i n g at the po in t s ( de t x , d e t y ) ,
% ( c a l l e d d e t e c t o r s ) and wi th s l o p e s tan ( ’ alpha ’ ) .
% The func t i on re turns 0 i f ’ alpha ’ i s not in [ 0 , p i ] .
%
%
%
% / \
% | ∗ |/
% \ //
% /
% /
% / ) a lpha
% −−−−−−−−∗−−−−−−−−−−−−
% ( det x , d e t y )
%
%
% Input :
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% ’ x0 ’ , ’ y0 ’ , ’ r0 ’ are s c a l a r s d e f i n i n g the c i r c u l a r
% in c l u s i on phantom B(( x0 , y0 ) , r0 ) .
%
% ’ de t x ’ and ’ de t y ’ must be v e c t o r s o f same l en g t h .
% The po in t s ( de t x , d e t y ) must not be long to the d i s c
%
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%’ de t x ’ , ’ de t y ’ are v e c t o r s o f same l en g t h cona t in ing the
% x− and y−coord ina t e s o f the d e t e c t o r s .
%
% ’ alpha ’ i s a s c a l a r or v ec t o r o f ang les , measured from the
% p o s i t i v e x−ax i s and g iven in radians , in [0 ,2∗ p i ] .
%
% Output :
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% I f ’ alpha ’ i s a sca la r , afanbeam re turns a column
% vec to r U. The i−th e lement o f U i s the i n t e g r a l a long the
% l i n e pass ing through the po in t [ d e t x ( i ) , d e t y ( i ) ] and
% with s l o p e tan ( ’ alpha ’ ) .
% I f ’ alpha ’ i s a vec tor , the method re turns an array o f
% dimension l en g t h ( ’ de t x ’ ) x l e n g t h ( ’ alpha ’ ) . The j−th
% column corresponds to the ang l e ’ alpha ’ ( j ) , i−th row
% corresponds to the d e t e c t o r [ ’ de t x ’ ( i ) , ’ de t y ’ ( i ) ] .

for j =1: length ( alpha )
for i =1: length ( det x )

i f (norm ( [ x0−det x ( i ) , y0−det y ( i ) ] )<r0 )
disp ( ’ Detector s cannot belong to the d i s c B( [ x0 , y0

] , r0 ) ’ )
return

end
% di s t ance between the cen te r o f the
% d i s c and the d e t e c t o r

c = norm ( [ x0−det x ( i ) , y0−det y ( i ) ] ) ;
i f det y ( i )<=y0

a = x0−det x ( i ) ;
else

a = det x ( i )−x0 ;
end
gamma1 = acos ( a/c ) ;

% ang le b/w the l i n e o f i n t e g r a t i o n and
% the l i n e connect ing the cen ter o f the
% c i r c l e to the d e t e c t o r

gamma2 = abs (gamma1−alpha ( j ) ) ;

i f ( ( alpha ( j ) < 0) | | ( alpha ( j ) > pi ) )
U( i , j )=0;

else
h = c∗ sin (gamma2) ;

i f (h>r0 )



138

U( i , j )=0;
else

U( i , j ) = 2∗ sqrt ( r0ˆ2−hˆ2) ;
end
end

end
end

Listing IV.21 ’acone.m’

function [C] = acone ( x0 , y0 , r0 , det x , det y , beta , p s i )
%
% func t i on [C] = acompton2D( x0 , y0 , r0 , det , the ta ,N)
% computes the ana l y t i c 2D con i ca l transform of a
% phantom = c h a r a c t e r i s t i c f unc t i on o f the b a l l wi th cen ter
% ( ’ x0 ’ , ’ y0 ’ ) and rad ius ’ r0 ’ .
%
% Output :
% −−−−−−−−−−−−−−
% C i s a th r ee dimensiona l array wi th dimensions
% ( l en g t h ( ’ de t x ’ ) , l e n g t h ( ’ beta ’ ) , l e n g t h ( ’ ps i ’ ) ) .
% C( i , : , : ) i s the data f o r a f i x e d d e t e c t o r
% C( i , j , : ) − data f o r f i x e d de t ec to r , f i x e d cone ax i s
% (and vary ing ha l f−ang l e s ) .
%
% Input :
% −−−−−−−−−−−−−−
% ’ x0 ’ , ’ y0 ’ , ’ r0 ’ d e s c r i b e the c i r c u l a r phantom and
% must be s c a l a r s .
%
% ’ beta ’ i s a v ec t o r con ta in ing the angu lar coord ina t e s o f
% the c en t r a l axes o f the cones .
%
% The apexes o f the cones ( i . e . d e t e c t o r s ) have ca r t e s i an
% coord ina t e s ( x1 i , x 2 i ) =( ’ de t x ’ ( i ) , ’ de t y ’ ( i ) ) , where
% ’ de t x ’ and ’ de t y ’ are v e c t o r s o f same l en g t h .
% The d e t e c t o r s ( de t x , d e t y ) must not be long to the d i s c
% with cen te r ( ’ x0 ’ , ’ y0 ’ ) and rad ius ’ r0 ’ .
%
% ’ psi ’ i s a v ec t o r o f ha l f−ang l e s o f cones . ’ ps i ’ must be
% uni formly d i s t r i b u t e d in [ 0 , p i ]

for i = 1 : length ( det x ) % loop on d e t e c t o r s
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for j = 1 : length (beta ) % loop on cone axes , i . e . on be ta
for k = 1 : length ( p s i ) % loop on h a l f ang l e s p s i

C( i , j , k )= . . .
afanbeam (x0 , y0 , r0 , det x ( i ) , det y ( i ) ,beta ( j )−p s i ( k ) )

+ . . .
afanbeam (x0 , y0 , r0 , det x ( i ) , det y ( i ) ,beta ( j )+ps i ( k ) ) ;

end
end

end

Listing IV.22 ’ball.m’

function [U] = ba l l ( xo , yo , r ,X,Y)
% crea t e s phantom = c h a r a c t e r i s t i c f unc t i on o f the b a l l B( [

xo , yo ] , r )
% [X,Y]− the mesh on which the func t i on i s de f ined , shou ld be

produced
% by meshgrid

%[X,Y]=meshgrid ( l i n s p a c e (−d , d , k ) ) ;
U = double ( (X−xo ) .ˆ2+(Y−yo ) .ˆ2<=r ˆ2) ;

Listing IV.23 ’sourcephantom.m’

function [C, U, sourcepart , bkgdp ] = sourcephantom (S , bkgd ,
r a t i o , alpha , ps i , beta , x1 , x2 )

% Simula tes data d e t e c t e d by Compton and Radon type
% emiss ion de t e c t o r s , where the phantom con s i s t s o f s e v e r a l
% po in t source s and background rad i a t i on .
%
% Output :
% −−−−−−−−−
% C − Compton data , array o f dimension
% l en g t h ( x1 ) x l en g t h ( be ta ) x l e n g t h ( p s i ) x4 ,
% U − Radon data , array o f dimension
% l en g t h ( x1 ) x l en g t h ( a lpha ) x4 .
% ” sourcep ” and ”bkgdp” are 1x4 vec tor , such t ha t
% sourcep ( i ) and bkgdp ( i ) are the number o f source
% and background p a r t i c l e s , correspond ing ly , d e t e c t e d by
% de t e c t o r i .
% Input :
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% −−−−−−−−−
% ”S” i s a 2 xnsource array , where nsource i s the number o f
% po in t sources . S ( : , i ) are the ( x , y )−coord ina t e s o f the
% i−th source . ” bkgd” i s the t o t a l number o f background
% pa r t i c l e s , ” r a t i o ” i s the r a t i o o f the source p a r t i c l e s
% coming from ONE of the sources to the background . The r e s t
% of the input parameters are as de s c r i b ed in con f i gu r e .m.

disp ( ’Computing source phantom . . . ’ )
npart = ce i l ( bkgd∗ r a t i o ) ;
ndet = length ( x1 ) ; nalpha = length ( alpha ) ;
nps i = length ( p s i ) ; nbeta = length (beta ) ;
U = zeros ( ndet , nalpha , 4 ) ;
C = zeros ( ndet , nbeta , npsi , 4 ) ;

sourcepar t=zeros ( 1 , 4 ) ;
for i =1: length (S ( 1 , : ) )

fpr intf ( ’ Source p a r t i c l e s from source %1.0 f \n ’ , i )
[ Ci , Ui , s ou r c ep i ] = . . .

po in t sour ce (S ( : , i ) ’ , npart , alpha , ps i , beta , x1 , x2 ) ;
C = C+Ci ; U=U+Ui ; sourcepar t = sourcepar t+sou r c ep i ;

end
[ Cbkgd , Ubkgd , bkgdp ] = . . .

background (bkgd , alpha , ps i , beta , x1 , x2 ) ;

C = C+Cbkgd ; U = U+Ubkgd ;

Listing IV.24 ’pointsource.m’

function [C, U, sourcepar t ] = po in t source (S , npart , alpha , ps i ,
beta , x1 , x2 )

% Simula tes data d e t e c t e d by Compton and Radon type
% emiss ion de t e c t o r s , p laced on the s i d e s o f the un i t
% square . The p a r t i c l e s are emi t ted by a po in t source wi th
% coord ina t e s (S (1) ,S (2) ) .
%
% Input :
% −−−−−−−−−−−−
% S i s a vec to r conta ing the two coord ina t e s o f a
% point−source .
% ”npart ” = number o f p a r t i c l e s coming from the source
% The r e s t o f the input parameters are as de s c r i b ed in
% con f i gu r e .m
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%
% Output :
% −−−−−−−−−−−−
% ”C” conta ins d e t e c t t i o n data from Compton type de t e c t o r s ,
% ”U” conta ins data from Radon type d e t e c t o r s .
% ”C” has dimensions l e n g t h ( x1 ) x l en g t h ( be ta ) x l e n g t h ( p s i ) x4 ,
% ”U” has dimensions l en g t h ( x1 ) x l e n g t h ( a lpha ) x4 .
%
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% 1. A photon i s emi t ted from the source S in to a random
% d i r e c t i o n in [0 ,2∗ p i ) and h i t s a d e t e c t o r . The incoming
% d i r e c t i o n a lpha in [0 , p i ] i s determined .
% 2. The photon then s c a t t e r s , wi th a s c a t t e r i n g ang l e ” p s i ”
% ” p s i ” i s ( uni formly ) randomly chosen in (−alpha , pi−a lpha ) .
% In o ther words , ” p s i ” i s the ang le the new d i r e c t i o n
% ( a f t e r the s c a t t e r i n g ) forms wi th the o r i g i n a l d i r e c t i on ,
% counted from the o r i g i n a l d i r e c t i o n .
%
% sca t . o r i g o r i g s ca t
% \ang | |−ang/
% \ | | / here ang i s in (0 , p i )
% \ | |/
% o o
% de t e c t o r d e t e c t o r
%
% 3. The c en t r a l a x i s be ta i s determined by be ta=alpha+ps i .
% The Compton data C( i , j , k , d ) con ta ins the number o f
% p a r t i c l e s which h i t d e t e c t o r array ”d” at d e t e c t o r b in
% ” i ” , s c a t t e r e d wi th an ang l e ” p s i ( k ) ” or −”p s i ( k ) ” in t o
% d i r e c t i o n ” be ta ( j ) ” .
% The Radon data U( i , j , d ) con ta ins the number o f p a r t i c l e s
% tha t h i t d e t e c t o r array ”d” at d e t e c t o r b in ” i ” , from
% incoming d i r e c t i o n ” a lpha ( j ) ” .

%==========================================================%
% Setup %
%==========================================================%
ndet = length ( x1 ) ; nalpha = length ( alpha ) ;
nps i = length ( p s i ) ; nbeta = length (beta ) ;
U = zeros ( ndet , nalpha , 4 ) ;
C = zeros ( ndet , nbeta , npsi , 4 ) ;

% detc w i l l ho ld the l o c a t i o n s o f
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% h i t s f o r the 4 de t e c r o r s
detc = c e l l ( 1 , 4 ) ;

% alphac w i l l ho ld the d i r e c t i o n s
% of incoming p a r t i c l e s f o r the 4
% de t e c t o r s

alphac = c e l l ( 1 , 4 ) ;
% Sca t t e r i n g ang l e s

p s i c = c e l l ( 1 , 4 ) ;
% Centra l axes

betac = c e l l ( 1 , 4 ) ;
% I n i t i a l i z e rand to a d i f f e r e n t
% s t a t e each time

rand ( ’ s t a t e ’ , sum(100∗ clock ) ) ;

%==========================================================%
% Photons Emitted and Detected %
%==========================================================%

% A photon i s emi t ted in t o
% a random d i r e c t i o n wi th po la r
% coord ina te A in [0 ,2∗ p i )

A = (2∗pi−0.001)∗rand (1 , npart ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Hit a d e t e c t o r %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

% Determine which d e t e c t o r array
% i s h i t and record the l o c a t i o n
% and incoming d i r e c t i o n o f the
% h i t .

for i = 1 : npart

i f 0<A( i ) & A( i )<pi % Go UP
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

x20 = x2 (1 , 3 ) ;
x10 = S (1) + ( x20−S (2) )∗cos (A( i ) ) / sin (A( i ) ) ;

i f x1 (1 , 3 )<= x10 && x10<=x1 (end , 3 )
% Detec tor I I I i s h i t . . .
% x10 i s the exac t l o c a t i o n o f the
% h i t on t h i s d e t e c t o r array

detc {3} =[detc {3} ; x10 ] ;
% incoming d i r e c t i o n o f the p a r t i c l e

alphac {3} = [ alphac {3} ; A( i ) ] ;
else
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i f x10 < x1 (1 , 3 )
% Detec tor IV i s h i t

x10 = x1 (1 , 4 ) ;
x20 = S (2)+(x10−S (1) )∗ sin (A( i ) ) /cos (A( i ) ) ;
detc {4} = [ detc {4} ; x20 ] ;
a lphac {4} = [ alphac {4} ; A( i ) ] ;

else
% Detec tor I I i s h i t

x10 = x1 (1 , 2 ) ;
x20 = S (2)+(x10−S (1) )∗ sin (A( i ) ) /cos (A( i ) ) ;
detc {2} = [ detc {2} ; x20 ] ;
a lphac {2} = [ alphac {2} ; A( i ) ] ;

end
end

else
i f pi<A( i ) && A( i )<2∗pi % Go DOWN

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x20 = x2 (1 , 1 ) ;
x10 = S (1) + ( x20−S (2) )∗cos (A( i ) ) / sin (A( i ) ) ;

i f x1 (1 , 1 )<= x10 && x10<=x1 (end , 1 )
% Detec tor I i s h i t

detc {1} = [ detc {1} ; x10 ] ;
a lphac {1} = [ alphac {1} ; A( i )−pi ] ;

else
i f x10 < x1 (1 , 1 )

% Detec tor IV ( l ) i s h i t
x10 = x1 (1 , 4 ) ;
x20 = S (2)+(x10−S (1) )∗ sin (A( i ) ) /cos (A( i ) )

;
detc {4} = [ detc {4} ; x20 ] ;
a lphac {4} = [ alphac {4} ; A( i )−pi ] ;

else
% Detec tor I I ( r ) i s h i t

x10 = x1 (1 , 2 ) ;
x20 = S (2)+(x10−S (1) )∗ sin (A( i ) ) /cos (A( i ) )

;
detc {2} = [ detc {2} ; x20 ] ;
a lphac {2} = [ alphac {2} ; A( i )−pi ] ;

end
end
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else % A=0 or A=pi , i . e . go s t r a i g h t RIGHT or LEFT
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f A( i )==0
% Go to d e t e c t o r I I

detc {2} = [ detc {2} ; S (2 ) ] ;
a lphac {2} = [ alphac {2} ; A( i ) ] ;

else
% A=pi , go to d e t e c t o r IV

detc {4} = [ detc {4} ; S (2 ) ] ;
a lphac {4} = [ alphac {4} ; A( i ) ] ;

end
end

end

end % for c y c l e on npart
%keyboard
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Sca t t e r i n g ang l e p s i and ax i s be ta %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

% For each alpha , the p a r t i c l e s s c a t t e r
% randomly wi th a ( s i gned ) s c a t t e r i n g ang l e
% in (−alpha , pi−a lpha ) \{0} , more p r e c i s e l y ,
% in [−a lpha+dps i /2,− dps i /2−0.0001] U
% [ dps i /2 , pi−alpha−dps i /2−0.0001]. Thus ,
% p a r t i c l e s t h a t s c a t t e r very l i t t l e are not
% de t e c t e d . The chosen i n t e r v a l s guarantee
% tha t d e t e c t i on occurs . Note that , as we
% took care dps i = dbeta , the i n t e r v a l s we
% chose f o r p s i guarantee t ha t
% be ta \ in [ dbe ta /2 , pi−dbe ta / 2 ] .

dps i = ps i (2 )−p s i (1 ) ; eps = 0 .0001 ;
for d=1:4

p s i c {d} = (pi−2∗dpsi−2∗eps )∗rand ( length ( a lphac {d}) , 1 ) ;
end
for d=1:4

p s i c {d}( p s i c {d}<=alphac {d}−eps−dps i ) = . . .
p s i c {d}( p s i c {d}<=alphac {d}−eps−dps i ) − . . .

a lphac {d}( p s i c {d}<=alphac {d}−eps−dps i )+dps i /2 ;
p s i c {d}( p s i c {d}>alphac {d}−eps−dps i ) = . . .

p s i c {d}( p s i c {d}>alphac {d}−eps−dps i ) − . . .
a lphac {d}( p s i c {d}>alphac {d}−eps−dps i )+eps+3∗dps i /2 ;

end
% Determine the c en r t a l axes o f cones ’ beta ’
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% beta = alpha + ps i
for d=1:4

betac {d} = alphac {d}+ps i c {d } ;
end

% Take the a b s o l u t e va lue o f ’ ps i ’ , becuase
% compton data on ly ’ knows ’ cos ( p s i ) ,
% i . e . | p s i | .

for d=1:4
p s i c {d} = abs ( p s i c {d}) ;
end

%==========================================================%
% Binning %
%==========================================================%
de t i = c e l l ( 1 , 4 ) ; a lpha i = c e l l ( 1 , 4 ) ;
p s i i = c e l l ( 1 , 4 ) ; b e t a i = c e l l ( 1 , 4 ) ;

% Si z e s o f b in s o f each d e t e c t o r array
dx (1) = x1 (2 , 1 )−x1 (1 , 1 ) ; dx (2 ) = x2 (2 , 2 )−x2 (1 , 2 ) ;
dx (3 ) = x1 (2 , 3 )−x1 (1 , 3 ) ; dx (4 ) = x2 (2 , 4 )−x2 (1 , 4 ) ;

% Binning o f d e t e c t o r s
for d=[1 3 ]

d e t i {d} = round( ( detc {d}−x1 (1 , d) ) /dx (d) )+1;
end
for d=[2 4 ]

d e t i {d} = round( ( detc {d}−x2 (1 , d) ) /dx (d) )+1;
end

% Binning o f incoming d i r e c t i o n s a lpha
% This i s f o r Radon data on ly

dalpha = alpha (2 )−alpha (1 ) ;
for d=1:4

a lpha i {d} = round( a lphac {d}/dalpha )+1;
end

% Binning o f s c a t t e r i n g ang l e s p s i
for d=1:4

p s i i {d} = round( p s i c {d}/ dps i ) ;
end

% Binning o f c en t r a l axes be ta
dbeta = beta (2 )−beta (1 ) ;
for d=1:4

be ta i {d} = round( betac {d}/dbeta ) ;
end

%=========================================================%
% F i l l Compton and Radon arrays %
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%=========================================================%
C = zeros ( ndet , nbeta , npsi , 4 ) ;
U = zeros ( ndet , nalpha , 4 ) ;
%keyboard
for d=1:4

for i =1: length ( d e t i {d})
C( d e t i {d}( i ) , b e t a i {d}( i ) , p s i i {d}( i ) ,d ) = . . .

C( d e t i {d}( i ) , b e t a i {d}( i ) , p s i i {d}( i ) ,d )+1;
U( d e t i {d}( i ) , a lpha i {d}( i ) ,d ) = . . .

U( d e t i {d}( i ) , a lpha i {d}( i ) ,d ) +1;
end

end

for d=1:4
sourcepar t (d) = sum(sum(sum(C( : , : , : , d ) ) ) ) ;

end

fprintf ( ’%1.0 f source p a r t i c l e s h i t d e t e c t o r array I \n ’ , . . .
s ourcepar t (1 ) )

fpr intf ( ’%1.0 f source p a r t i c l e s h i t d e t e c t o r array I I \n ’
, . . .
s ourcepar t (2 ) )

fpr intf ( ’%1.0 f source p a r t i c l e s h i t d e t e c t o r array I I I \n ’
, . . .
s ourcepar t (3 ) )

fpr intf ( ’%1.0 f source p a r t i c l e s h i t d e t e c t o r array IV \n ’
, . . .
s ourcepar t (4 ) )

fpr intf ( ’%1.0 f TOTAL SOURCE p a r t i c l e s \n\n ’ ,sum( sourcepar t ) )

Listing IV.25 ’background.m’

function [ Cbkgd , Ubkgd , bkgdpart ] = background (bkgd , alpha , ps i ,
beta , x1 , x2 )

% Uniform background f o r Compton and Radon data ,
% c o l l e c t e d by four d e t e c t o r arrays l y i n g on the s i d e s o f
% the un i t square

bkgd4 = round( bkgd /4) ;
% I n i t i a l i z e rand to a d i f f e r e n t s t a t e
% each time
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rand ( ’ s t a t e ’ , sum(100∗ clock ) ) ;

%==========================================================%
% Data c o l l e c t i o n %
%==========================================================%

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Hit a d e t e c t o r %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

% Par t i c l e s h i t the d e t e c t o r s .
det ( : , 1 ) = x1 (1 , 1 )+(x1 (end , 1 )−x1 (1 , 1 ) )∗rand ( bkgd4 , 1 ) ;
det ( : , 2 ) = x2 (1 , 2 )+(x2 (end , 2 )−x2 (1 , 2 ) )∗rand ( bkgd4 , 1 ) ;
det ( : , 3 ) = x1 (1 , 3 )+(x1 (end , 3 )−x1 (1 , 3 ) )∗rand ( bkgd4 , 1 ) ;
det ( : , 4 ) = x2 (1 , 4 )+(x2 (end , 4 )−x2 (1 , 4 ) )∗rand ( bkgd4 , 1 ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Direc t i ons o f the incoming p a r t i l c e s %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

% Choose d i r e c t i o n s o f incoming p a r t i c l e s
% ’ alpha ’ uni formly d i s t r i b u t e d in the
% i n t e r v a l [ 0 , p i ] .

dalpha = alpha (2 )−alpha (1 ) ;
a lphac = pi∗rand ( bkgd4 , 4 ) ;

% For each alpha , the p a r t i c l e s s c a t t e r
% randomly wi th a ( s i gned ) s c a t t e r i n g ang l e
% in (−alpha , pi−a lpha ) \{0} , more p r e c i s e l y ,
% in [−a lpha+dps i /2,− dps i /2−0.0001] U
% [ dps i /2 , pi−alpha−dps i /2−0.0001]. Thus ,
% p a r t i c l e s t h a t s c a t t e r very l i t t l e are not
% de t e c t e d . The chosen i n t e r v a l s guarantee
% tha t d e t e c t i on occurs . Note that , as we
% took care dps i = dbeta , the i n t e r v a l s we
% chose f o r p s i guarantee t ha t
% be ta \ in [ dbe ta /2 , pi−dbe ta / 2 ] .

dps i = ps i (2 )−p s i (1 ) ; eps = 0 .0001 ;
p s i c = (pi−2∗dpsi−2∗eps )∗rand ( bkgd4 , 4 ) ;
for d=1:4
p s i c ( p s i c ( : , d )<=alphac ( : , d )−eps−dpsi , d ) = . . .

p s i c ( p s i c ( : , d )<=alphac ( : , d )−eps−dpsi , d ) − . . .
a lphac ( p s i c ( : , d )<=alphac ( : , d )−eps−dpsi , d )+dps i /2 ;

p s i c ( p s i c ( : , d )>alphac ( : , d )−eps−dpsi , d ) = . . .
p s i c ( p s i c ( : , d )>alphac ( : , d )−eps−dpsi , d ) − . . .

a lphac ( p s i c ( : , d )>alphac ( : , d )−eps−dpsi , d )+eps+3∗dps i /2 ;
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end
% Determine the c en r t a l axes o f cones ’ beta ’
% be ta = alpha + ps i

dbeta = beta (2 )−beta (1 ) ;
betac = alphac+ps i c ;

% Take the a b s o l u t e va lue o f ’ ps i ’ , becuase
% compton data on ly ’ knows ’ cos ( p s i ) ,
% i . e . | p s i | .

ps i c a = abs ( p s i c ) ;

%==========================================================%
% Binning %
%==========================================================%

% Si z e s o f b in s o f each d e t e c t o r array
dx (1) = x1 (2 , 1 )−x1 (1 , 1 ) ; dx (2 ) = x2 (2 , 2 )−x2 (1 , 2 ) ;
dx (3 ) = x1 (2 , 3 )−x1 (1 , 3 ) ; dx (4 ) = x2 (2 , 4 )−x2 (1 , 4 ) ;

% Binning o f d e t e c t o r s
det ind ( : , 1 ) = round( (det ( : , 1 )−x1 (1 , 1 ) ) /dx (1 ) )+1;
de t ind ( : , 2 ) = round( (det ( : , 2 )−x2 (1 , 2 ) ) /dx (2 ) )+1;
de t ind ( : , 3 ) = round( (det ( : , 3 )−x1 (1 , 3 ) ) /dx (3 ) )+1;
de t ind ( : , 4 ) = round( (det ( : , 4 )−x2 (1 , 4 ) ) /dx (4 ) )+1;

% Binning o f incoming d i r e c t i o n s a lpha
% This i s f o r Radon data on ly

a lpha ind = round( a lphac /dalpha ) +1;
% Binning o f c en t r a l axes be ta

beta ind = round( betac /dbeta ) ;
% Binning o f opening ang l e s p s i

p s i i n d = round( p s i c a / dps i ) ;

%==========================================================%
% F i l l Compton and Radon arrays %
%==========================================================%
ndet = length ( x1 ( : , 1 ) ) ; nalpha = length ( alpha ) ;
nbeta = length (beta ) ; nps i = length ( p s i ) ;

Ubkgd = zeros ( ndet , nalpha , 4 ) ;
Cbkgd = zeros ( ndet , nbeta , npsi , 4 ) ;
for d = 1 :4

for i =1:round( bkgd /4)
Cbkgd( de t ind ( i , d ) , be ta ind ( i , d ) , p s i i n d ( i , d ) ,d ) = . . .

Cbkgd( de t ind ( i , d ) , be ta ind ( i , d ) , p s i i n d ( i , d ) ,d )+1;
Ubkgd( de t ind ( i , d ) , a lpha ind ( i , d ) ,d ) = . . .

Ubkgd( de t ind ( i , d ) , a lpha ind ( i , d ) ,d ) +1;
end
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end

for d=1:4
bkgdpart (d) = sum(sum(sum(Cbkgd ( : , : , : , d ) ) ) ) ;

end

fprintf ( ’%1.0 f bkgd p a r t i c l e s h i t d e t e c t o r array I \n ’ , . . .
bkgdpart (1 ) )

fpr intf ( ’%1.0 f bkgd p a r t i c l e s h i t d e t e c t o r array I I \n ’ , . . .
bkgdpart (2 ) )

fpr intf ( ’%1.0 f bkgd p a r t i c l e s h i t d e t e c t o r array I I I \n ’ , . . .
bkgdpart (3 ) )

fpr intf ( ’%1.0 f bkgd p a r t i c l e s h i t d e t e c t o r array IV \n ’ , . . .
bkgdpart (4 ) )

fpr intf ( ’%1.0 f TOTAL BACKGROUND p a r t i c l e s \n ’ ,sum( bkgdpart ) )
fpr intf ( ’%1.0 f background p a r t i c l e s detec ted by de t e c t o r

a r rays I , I I and I I I \n\n ’ , bkgdpart (1 )+bkgdpart (2 )+
bkgdpart (3 ) )

The next two listings are of the implementations of methods B and C.

Listing IV.26 ’cone2fanbeamB.m’

function [U] = cone2fanbeamB (C)
% Given compton data C f i nd the Radon data in fanbeam
% coord inates , U = Rf (( x1 , x2 ) , a lpha ) . For a f i x e d d i r e c t i o n
% alpha0 , Rf ( ( x1 , x2 ) , a lpha0 ) i s found by manipu la t ing data
% from three Compton cones . Averaging on such cones i s used ,
% so which r e s u l t s in theuse o f a l l a v a i l a b l e data and
% decrease s no i se .
%
% Output :
% −−−−−−−−−−−−
% U i s an array o f dimension ndet x nalpha , where
% ndet = l en g t h (C( : , 1 , 1 ) ) , nalpha = ( lengthC (1 , : , 1 )+2) .
% This i s c on s i s t e n t wi th the se tup de f ined in con f i gu r e .m,
% namely , the ang l e s a lpha change in [ 0 , p i ] , wh i l e
% be ta and p s i are in (0 , p i ) . alpha , beta , p s i are
% pa r t i t i o n e d wi th the same s t ep s i z e , but a lpha has 2 more
% elements , corresponding to 0 and p i .
%
% Input :
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% −−−−−−−−−−−
% ”C” i s a Compton data array o f dimension
% ndet x nbeta x nps i .
fpr intf ( ’ s t a r t i n g cone2fanbeam v2 . . . ’ )
t ic

ndet = length (C( : , 1 , 1 ) ) ;
nbeta = length (C( 1 , : , 1 ) ) ;
nps i = length (C( 1 , 1 , : ) ) ;
nalpha = nps i +2;

p s i i nd ex = [−nps i :−1 ,1: nps i ] ;

U = zeros ( ndet , nalpha ) ;

for i = 1 : ndet % loop on d e t e c t o r s
i

for j = 1 : nalpha % loop on a lpha
c=1;
for k = ps i i nd ex % loop on p s i k

for l= p s i i nd ex % loop on p s i l
cond i t i on = . . .
(1<=j+k−1)&( j+k−1<=nbeta ) & . . .
(1<=j+l −1)&( j+l−1<=nbeta ) & . . .
(1<=j+k+l −1)&( j+k+l−1<=nbeta ) & . . .
(1<=abs (k−l ) )&(abs (k−l )<=nbeta ) ;
i f cond i t i on
U( i , j ) = ( C( i , j+k−1,abs ( k ) )+C( i , j+l −1,abs ( l ) ) − . . .

C( i , j+k+l −1,abs (k−l ) ) )/2+U( i , j ) ;
c=c+1;

end % end i f condt ion
end % p s i l

end %ps i k
U( i , j )= U( i , j ) /( c−1) ;%nalpha∗U( i , j ) /c ; %c+1?
end %alpha

end %de t e c t o r s
fpr intf ( ’ time = %4.2 f \n ’ , toc )

Listing IV.27 ’cone2fanbeamC.m’

function [U] = cone2fanbeamC (C, phan )
% Given compton data C f i nd the Radon data in fanbeam
% coord inates , U = Rf (( x1 , x2 ) , a lpha ) . For a f i x e d d i r e c t i o n
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% alpha0 , Rf ( ( x1 , x2 ) , a lpha0 ) i s approximated by the average
% of a l l cones t ha t have one s i d e p a r a l l e l to a lpha0 .
%
% Output :
% −−−−−−−−−−−−
% U i s an array o f dimension ndet x nalpha , where
% ndet = l en g t h (C( : , 1 , 1 ) ) , nalpha = ( lengthC (1 , : , 1 )+2) .
% This i s c on s i s t e n t wi th the se tup de f ined in con f i gu r e .m,
% namely , the ang l e s a lpha change in [ 0 , p i ] , wh i l e
% be ta and p s i are in (0 , p i ) . alpha , beta , p s i are
% pa r t i t i o n e d wi th the same s t ep s i z e , but a lpha has 2 more
% elements , corresponding to 0 and p i .
%
% Input :
% −−−−−−−−−−−
% ”C” i s a Compton data array o f dimension
% ndet x nbeta x nps i .
% I f ”phan” i s ’ s ’ , then U(( x1 , x2 ) , a lpha0 ) i s not the
% average o f cones wi th s i d e | | alpha0 , but the sum of t h e s e
% cones . When ” po in t source ” i s not 1 , an average o f t h i s sum
% i s taken .
fpr intf ( ’ s t a r t i n g cone2fanbeamC . . . ’ )
t ic
Ndet = length (C( : , 1 , 1 ) ) ;
Nbeta = length (C( 1 , : , 1 ) ) ;
Npsi = length (C( 1 , 1 , : ) ) ;
Nalpha = Nbeta+2;

p s i i nd ex = [−Npsi :−1 ,1: Npsi ] ;

U = zeros (Ndet , Nalpha ) ;

for i = 1 : Ndet % loop on d e t e c t o r s
for j = 1 : Nalpha % loop on a lpha

c=0;
for k = ps i i nd ex % loop on p s i k

i f (1<=j+k−1)&( j+k−1<=Nbeta )
U( i , j ) = U( i , j ) + C( i , j+k−1,abs ( k ) ) ;
c=c+1;

end
end %ps i k
i f phan ˜= ’ s ’

U( i , j ) = U( i , j ) /c ;
end
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end %alpha
end %de t e c t o r s
fpr intf ( ’ time = %4.2 f \n ’ , toc )

The auxiliary codes follow.

Listing IV.28 ’radon inversion.m’

function [FBP] = radon inve r s i on (G, s , theta , xb , yb , f i l t e r )
% Inve r t s the 2D Radon (X−ray ) transform us ing f i l t e r e d
% backp ro j e c t i on .
%
% Input :
%−−−−−−−−−−−−−
% ’G’ − Radon data ; a matrix in which every column
% corresponds to one p r o j e c t i on ( ’ the ta ’ ( j ) ) and conat ins
% the va l u e s o f the l i n e i n t e g r a l s o f F, parametr i zed by S .
% ’ the ta ’ − a vec t o r o f p r o j e c t i on ang l e s .
% ’ s ’ − l i n e s in each p r o j e c t i on ( ’ s ’ − d i s t anc e s o f the
% l i n e s form the o r i g i n ) .
% ’ xb ’ , ’ yb ’ are v e c t o r s con ta in ing the coord ina t e s o f the
% po in t s where the r e cons t ruc t ed image i s to be found .
% ’ f i l t e r ’ − an i n t e g e r which determines the type o f f i l t e r
% to be used : 1 −> FBP f i l t e r H∗d/ds , 2 −> modi f ied FBP
% f i l t e r s wi th zero f requency cut , 3 −> modi f ied FBP with
% high f r e qu en c i e s k i l l e d , 4−> l o c a l tomography dˆ2/ ds ˆ2 ,
% 5−> l o c a l tomo f i l t e r wi th h igh f r e qu enc i e s k i l l e d ,
% 7−> l o c a l tomo f i l t e r implemented us ing f i n i t e d i f f e r e n c e s
% 6−> backpro j ec t i on , 8−> ba c kp ro j e c t i on wi th h igh
% f r e qu enc i e s cut .
%
% Output :
%−−−−−−−−−−−−−
% Returns the matrix FBP of the f i l t e r e d bac kp ro j e c t i on
% recon s t ru c t i on . FBP has dimensions
% [ l en g t h ( yb ) , l e n g t h ( xb ) ] .
fpr intf ( ’ S t a r t i ng radon i nv e r s i o n . . . ’ )
t ic
n l i n e s = length ( s ) ; nproj = length ( theta ) ;
a = max( s )−min( s ) ;

%==========================================================%
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% F i l t r a t i o n %
%==========================================================%

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Regular f i l t e r : H∗d/ds f i l t e r s 1 ,2 ,3 %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
switch f i l t e r

case {1 ,2 ,3} %’ fbp ’ f i l t e r /\
fpr intf ( ’ f i l t e r %d : FBP f i l t e r | sigma | ’ , f i l t e r )
pad = 2∗ n l i n e s ;
mid = round ( ( n l i n e s+pad ) /2) ;

% Smoothly pad every column of G
% with ”pad” zeros at the end and
% then take FFT of each column
% ( i . e . row−wise ) , on ” s” v a r i a b l e

k0 = 14 ;
smooth=[0.5+0.5∗ cos ( ( 0 : k0−1)∗pi/k0 ) , zeros (1 , pad/2−k0 ) ] ;
sm r = smooth ’∗G( n l i n e s , : ) ;
sm l = fl ipud ( smooth ’ ) ∗G( 1 , : ) ;
FG = [G; sm r ; sm l ] ;
FG = f f t (FG) ;

% Fl t i s a /\ f i l t e r in f requency
% domain .

Flt = (2∗pi/a )∗ n l i n e s ∗ . . .
linspace (0 , 1 , ce i l ( ( n l i n e s+pad ) /2)+1) ;

F l t = [ Fl t Fl t (end−1:−1:2) ] ;

i f ( f i l t e r == 2)
% fbp f i l t e r wi th smoothly cut 0 f requency
disp ( ’ with 0 f requency k i l l e d ’ )

% cut 0 f requency smoothly
% f i l t e r = 0 when | sigma|<=k0 ,
% f i l t e r i s smooth when
% k0<| sigma | <=k1
% otherw i s e f i l t e r = | sigma |

k1 = round( length ( F l t ) ∗1/100) ;
k2=round( length ( F l t ) ∗5/100) ;
k = ( k1+1) : ( k1+k2 ) ;
sm0 = [ zeros (1 , k1 ) ,0.5−cos ( ( k−k1 )∗pi/k2 ) ∗ 0 . 5 , . . .

ones ( s ize ( k1+k2+1:( n l i n e s+pad ) /2) ) ] ;
sm0 = [ sm0 , f l i p l r ( sm0) ] ;
F l t = Flt .∗ sm0 ;

end
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i f ( f i l t e r ==3)
% fbp f i l t e r wi th smoothly cut h igh f r equence s
disp ( ’ with high f r e q i e n c i e s cut ’ )
k3 = round(mid∗5/100) ;
k4 = round(mid∗10/100) ;
kk = mid−k4 : mid−k3 ;
c = 0 ;
Fl t (mid−k3 : mid+k3 ) = c ;
smh1 = ( Flt (mid−k4 )−c ) ∗ . . .

(1+cos ( ( kk−mid+k4 )∗pi /( k4−k3 ) ) )/2+c ;
smh2 = f l i p l r ( ( F l t (mid+k4 )−c ) ∗ . . .

(1+cos ( ( kk−mid+k4 )∗pi /( k4−k3 ) ) )/2+c ) ;
F l t ( kk ) = smh1 ; Fl t ( kk+k3+k4 ) = smh2 ;

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Local Tomography f i l t e r s dˆ2/ ds ˆ2 f i l t e r s 4 ,5 and 7 %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

case {4 ,5} % F i l t e r implemented us ing FFT
fpr intf ( ’ f i l t e r %d : l o c a l f i l t e r us ing FFT ’ , f i l t e r )
FG = f f t (G) ;
% Fl t = (2∗ p i /a )∗ n l i n e s ∗ l i n s p a c e (0 , 1 , n l i n e s /2+1) ;
% F l t = [ F l t F l t ( end−1:−1:2) ] . ˆ 2 ;
abs s igma = abs ( ( 1 : n l i n e s )−n l i n e s /2) ;
F l t = f f t s h i f t ( abs s igma . ˆ 2 ) ;

i f f i l t e r == 4 % high f r equence s cut−o f f
fpr intf ( ’ and high f r equence s cut−o f f ’ )
mid=round( n l i n e s /2) ;
k3 = round(mid∗70/100) ; k4 = round(mid∗75/100) ;
kk = mid−k4 : mid−k3 ; c = 0 ;
Fl t (mid−k3 : mid+k3 ) = c ;
smh1 = ( Flt (mid−k4 )−c ) ∗ . . .

( 1+cos ( ( kk−mid+k4 )∗pi /( k4−k3 ) ) )/2+c ;
smh2 = f l i p l r ( ( F l t (mid+k4 )−c ) ∗ . . .

(1+cos ( ( kk−mid+k4 )∗pi /( k4−k3 ) ) )/2+c ) ;
F l t ( kk ) = smh1 ; Fl t ( kk+k3+k4 ) = smh2 ;

end

case 7
% F i l t e r implemented us ing f i n i t e d i f f e r e n c e s −> smoothing

fpr intf ( ’ f i l t e r %d : Local f i l t e r us ing f i n i t e
d i f f e r e n c e s ’ , f i l t e r )

FltG = zeros ( s ize (G) ) ;
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ds = a/( n l i n e s −1) ;
for i =1: length ( theta )

for j = 2 : length ( s )−1
FltG ( j , i ) = −(G( j +1, i ) − 2 .0∗G( j , i ) . . .

+ G( j −1, i ) ) /( ds∗ds ) ;
end

end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Backpro jec t ion f i l t e r s 6 ,8 %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

case 6 % No f i l t e r , on ly ba c kp ro j e c t i on
fpr intf ( ’ f i l t e r %d : Only backpro j e c t i on ’ , f i l t e r )
FltG = G;

case 8 %backp ro j e c t i on wi th h igh f r e quence s cut
fpr intf ( ’ f i l t e r %d : backpro j e c t i on with high

f r e qu en c i e s cut ’ , f i l t e r )
FG = f f t (G) ;
mid=round( n l i n e s /2) ;
k0 = round(mid∗70/100) ;
k1 = round(mid∗75/100) ;
F l t = ones (1 , n l i n e s ) ;
kk = mid−k1 : mid−k0 ;
c = 0 ;%Fl t (mid−k3 ) ;
Flt (mid−k0 : mid+k0 ) = c ;
smh1 = ( Flt (mid−k1 )−c ) ∗ . . .

(1+cos ( ( kk−mid+k1 )∗pi /( k1−k0 ) ) )/2+c ;
smh2 = f l i p l r ( ( F l t (mid+k1 )−c ) ∗ . . .

(1+cos ( ( kk−mid+k1 )∗pi /( k1−k0 ) ) )/2+c ) ;
F l t ( kk ) = smh1 ; Fl t ( kk+k0+k1 ) = smh2 ;

end % end swi t ch

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Apply F i l t e r %
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
i f ( f i l t e r <=5| f i l t e r == 8)

% conver t f i l t e r to a matrix in order to
% avoid a loop on columns when app l y ing
% f i l t e r

Flt = Flt ’∗ ones (1 , nproj ) ;
% Apply f i l t e r

FltG = FG.∗ Flt ;
% Take inv e r s e FFT
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FltG = i f f t ( FltG ) ;
% Cut i r r e l e v a n t va l u e s ( i f any )

FltG = real ( FltG ( 1 : n l i n e s , : ) ) ;

end

%==========================================================%
% Backpro jec t ion %
%==========================================================%
ndimx = length ( xb ) ; ndimy = length ( yb ) ;
stepx = xb (2)−xb (1) ; stepy = yb (2)−yb (1) ;
ang l e s t ep = theta (2 )−theta (1 ) ;
s s t ep = s (2 )−s (1 ) ;
FBP = zeros (ndimy , ndimx ) ;

for i x = 1 : ndimx
x = xb ( ix ) ;
for i y = 1 : ndimy

y = yb ( iy ) ;
i f ( x∗x + y∗y < ( a /2) ˆ2 − 0 .001 )

for npr = 1 : nproj
angle = theta (1 ) + ( npr−1)∗ ang l e s t ep ;
co = cos ( angle ) ; s i = sin ( angle ) ;
s = x∗co + y∗ s i ;

p o s i t i o n = ( n l i n e s +1)/2 + s / s s t ep ;
n l i n e0 = f loor ( p o s i t i o n ) ;
n l i n e1 = n l i n e0 + 1 ;
alpha1 = po s i t i o n − n l i n e0 ;
alpha0 = 1 − alpha1 ;

i f ( alpha1>1 | alpha1<0 | nl ine1>n l i n e s | nl ine0 <1)
d i sp l ay ( ’ l i n e a r i n t e r p o l a t i o n i s not working ’ ) ;
return

end

value=alpha0∗FltG ( n l ine0 , npr )+alpha1∗FltG ( n l ine1 , npr ) ;

t rapweight = ang l e s t ep ;
i f ( npr == 1 | npr == nproj )

trapweight = 0.5∗ ang l e s t ep ;
end

FBP( iy , i x ) = FBP( iy , i x ) + value ∗ trapweight / (4 . 0∗ pi ) ;
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end % for npr
end %i f

end % for i y
end % for i x
fpr intf ( ’\n time = %4.2 f \n ’ , toc )

Listing IV.29 ’backproject.m’

function [BP] = backpro j ec t (G, s , theta , xb , yb )

fpr intf ( ’ S t a r t i ng backpro j e c t i on . . . ’ )
t ic
n l i n e s = length ( s ) ; nproj = length ( theta ) ;
a = max( s )−min( s ) ;

ndimx = length ( xb ) ; ndimy = length ( yb ) ;
stepx = xb (2)−xb (1) ;
stepy = yb (2)−yb (1) ;
ang l e s t ep = theta (2 )−theta (1 ) ;
s s t ep = a/( n l i n e s −1) ;

BP = zeros (ndimy , ndimx ) ;

for i x = 1 : ndimx
x = xb ( ix ) ;
for i y = 1 : ndimy

y = yb( iy ) ;
i f ( x∗x + y∗y < ( a /2) ˆ2 − 0 . 001 )

for npr = 1 : nproj
angle = theta (1 ) + ( npr−1)∗ ang l e s t ep ;
co = cos ( angle ) ;
s i = sin ( angle ) ;
s = x∗co + y∗ s i ;
p o s i t i o n = ( n l i n e s +1)/2 + s/ s s t ep ;
n l i n e0 = f loor ( p o s i t i o n ) ;
n l i n e1 = n l i n e0 + 1 ;
alpha1 = po s i t i o n − n l i n e0 ;
alpha0 = 1 − alpha1 ;

i f ( alpha1>1 | alpha1<0 | nl ine1>n l i n e s | nl ine0 <1)
d i sp l ay ( ’ l i n e a r i n t e r p o l a t i o n i s not working ’ ) ;
return

end % i f
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value = alpha0∗G( nl ine0 , npr )+alpha1∗G( nl ine1 , npr ) ;

t rapweight = ang l e s t ep ;
i f ( npr == 1 | npr == nproj )

trapweight = 0.5∗ ang l e s t ep ;
end % i f

BP( iy , i x ) = BP( iy , i x ) + value ;

end % for
end %i f

end % for
end % for

fpr intf ( ’ time = %4.2 f \n ’ , toc )

Listing IV.30 ’graphrec.m’

i f phan == ’ a ’ % recons t ru c t i on o f a n a l y t i c phantom
for i=f i l t e r
Rec = squeeze (FBP( : , : , i ) ) ;
f igure (2∗ i −1)
subplot ( 1 , 2 , 1 ) ;
g r ay p l o t (XB,YB, exact )
view (0 , 90 )
t i t l e ( ’Phantom ’ )
subplot ( 1 , 2 , 2 )
g r ay p l o t (XB,YB, Rec ) ; view (0 , 90 )
t i t l e ( [ ’ Reconstruct ion us ing f i l t e r ’ , num2str( i ) ] )
hold on
for d=1:numdet
plot3 ( x1 ( : , d ) , x2 ( : , d ) ,0∗ ones (1 , length ( x1 ( : , d ) ) ) , ’ ∗g ’ , . . .

’ LineWidth ’ , 2 )
end
hold o f f

% −−−−−−−−−−−−−−−−−− Pro f i l e p l o t s a t y = y i and x = x i
y i = c (2 , 1 ) ;
x i = c (1 , 1 ) ;
hr = xb (2)−xb (1) ;

% ’ at ’ determines the e n t r i e s o f
% the arrays corresponding to ’ y0 ’
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aty =f loor ((1 .1+ y i ) /hr ) ;
atx = f loor ((1 .1+ x i ) /hr ) ;
f igure (2∗ i )
subplot ( 2 , 1 , 1 )
plot (xb , Rec ( aty , : ) , ’−k ’ , ’ LineWidth ’ , 2 )
axis ([−1 1 −0.1 , 1 . 2 ] )
hold on
plot (xb , exact ( aty , : ) , ’ : k ’ , ’ LineWidth ’ , 2 )
xlabel ( ’ x ’ )
legend ( ’ Reconstruct ion ’ , ’Phantom ’ )
t i t l e ( [ ’ y =’ ,num2str( y i ) , ’ p r o f i l e ’ ] )
hold o f f
subplot ( 2 , 1 , 2 )
plot (yb , Rec ( : , atx ) , ’−k ’ , ’ LineWidth ’ , 2 )
axis ([−1 1 −0.1 , 1 . 2 ] )
hold on
plot (yb , exact ( : , atx ) , ’ : k ’ , ’ LineWidth ’ , 2 )
xlabel ( ’ y ’ )
legend ( ’ Reconstruct ion ’ , ’Phantom ’ )
t i t l e ( [ ’ x =’ ,num2str( x i ) , ’ p r o f i l e ’ ] )
hold o f f

end
else % recons t ru c t i on o f source phantom
for i=f i l t e r
Rec = squeeze (FBP( : , : , i ) ) ;
me = mean(Rec ( : ) ) ;
sigma = std (Rec ( : ) ) ;
Rec cut = (Rec−me) /sigma ;
Rec cut4 = Rec cut . ∗ ( Rec cut>4) ;
ang = 0 : 0 . 0 1 : 2 ∗ pi ;
sourcep = 0 ; bkgdp=0;
for d=1:numdet

sourcep = sourcep + sourcepar t (d) ;
bkgdp = bkgdp + bkgdpart (d) ;

end

data s t r =’ ’ ;
i f data == ’ c ’

da ta s t r = ’Compton ’
e l s e i f data == ’ r ’

da ta s t r = ’Radon ’
end

figure ( i )
c o l o r p l o t (XB,YB, Rec ) ;
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t i t l e ( { [ datast r , ’ , ’ ,num2str( numdet ) , ’ d e t e c to r s , ’ ] ; . . .
[num2str( sourcepar t ) , ’ source p a r t i c l e s / ’ , . . .
num2str( bkgdpart ) , ’ background pa r t i c l e s , Source at ( ’ , . . .
num2str(S (1 ) ) , ’ , ’ ,num2str(S (2 ) ) , ’ ) ’ ] ; . . .
[ ’ Reconstruct ion by FBP, f i l t e r ’ , num2str( i ) ] } , . . .
’ FontSize ’ , 14)
hold on
for d=1:numdet
plot3 ( x1 ( : , d ) , x2 ( : , d ) ,0∗ ones (1 , length ( x1 ( : , d ) ) ) , ’ ∗k ’ , . . .

’ LineWidth ’ , 2 )
end
hold o f f

f igure ( i +1)
c o l o r p l o t (XB,YB, Rec cut4 ) ;
view (0 , 90 )
t i t l e ( { [ datast r , ’ , ’ ,num2str( numdet ) , ’ d e t e c to r s , ’ ] ; . . .
[num2str( sourcepar t ) , ’ source p a r t i c l e s / ’ , . . .
num2str( bkgdpart ) , ’ background pa r t i c l e s , Source at ( ’ , . . .
num2str(S (1 ) ) , ’ , ’ ,num2str(S (2 ) ) , ’ ) ’ ] ; . . .
[ ’ Reconstruct ion by FBP, above mean+4\sigma , f i l t e r ’ , . . .
num2str( i ) ]} , ’ FontSize ’ , 14)
zlabel ( ’\ sigma ’ )
hold on
for d=1:numdet
plot3 ( x1 ( : , d ) , x2 ( : , d ) ,0∗ ones (1 , length ( x1 ( : , d ) ) ) , ’ ∗k ’ , . . .

’ LineWidth ’ , 2 )
end
plot3 (0 . 05∗ cos ( ang )+S (1) ,0 . 05∗ sin ( ang )+S (2) , . . .

0∗ ones (1 , length ( ang ) ) , ’b ’ , ’ LineWidth ’ , 2 )
hold o f f

end % for
end % i f po in t source

Listing IV.31 ’graphpointsource.m’

% Graphs f o r po in t source r e con s t r u c t i on s v ia ba c kp ro j e c t i on

sourcep = 0 ; bkgdp=0;
for d=1:numdet

sourcep = sourcep + sourcepar t (d) ;
bkgdp = bkgdp + bkgdpart (d) ;
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end

data s t r =’ ’ ;
i f data == ’ c ’

da ta s t r = ’Compton ’ ;
e l s e i f data == ’ r ’

da ta s t r = ’Radon ’ ;
end

de t e c t cu t = detec t ;
d e t e c t cu t ( de t ec t cu t<=k t )=0;

f igure (1 )
c o l o r p l o t (XB,YB, d e t e c t cu t ) ;
t i t l e ( { [ datast r , ’ , ’ , num2str( numdet ) , ’ d e t e c t o r s ’ ] ; . . .
[ ’ Loc mean on ’ ,num2str( g r i d s i z e ) , ’ x ’ ,num2str( g r i d s i z e ) , . . .
’ gr id , Loc \ sigma on ’ , num2str( g r i d s i z e +2∗adgr id ) , ’ x ’ , . . .
num2str( g r i d s i z e +2∗adgr id ) , ’ gr id , max num lo c \ sigma ’ , . . .
num2str( kk ) ] ; [ ’ Source detec ted at ( ’ ,num2str( xpos ) , ’ , ’ , . . .
num2str( ypos ) , ’ ) , c on f id ence ’ ,num2str(100∗ conf ) , ’%’ ] ;
[ ’ Plot o f ( Reconst ruct ion − mean− ’ ,num2str( k t ) , . . .
’\ sigma ) / \ sigma ’ ]} , ’ FontSize ’ , 14)

hold on
for d=1:numdet
plot3 ( x1 ( : , d ) , x2 ( : , d ) ,0∗ ones (1 , length ( x1 ( : , d ) ) ) , ’ ∗k ’ , . . .

’ LineWidth ’ , 2 )
end
hold o f f

f igure (2 )
meandetect = mean( de t e c t ( : ) ) ;
c o l o r p l o t (XB,YB, de t e c t ) ;
t i t l e ( { [ datast r , ’ , ’ , num2str( numdet ) , ’ d e t e c t o r s ’ ] ; . . .
[ ’ Loc mean on ’ ,num2str( g r i d s i z e ) , ’ x ’ ,num2str( g r i d s i z e ) , . . .
’ gr id , Loc \ sigma on ’ , num2str( g r i d s i z e +2∗adgr id ) , ’ x ’ , . . .
num2str( g r i d s i z e +2∗adgr id ) , ’ gr id , max num lo c \ sigma ’ , . . .
num2str( kk ) ] ; [ ’ Source detec ted at ( ’ ,num2str( xpos ) , ’ , ’ , . . .
num2str( ypos ) , ’ ) , c on f id ence ’ ,num2str(100∗ conf ) , ’%’ ] ;
[ ’ Plot o f ( Reconst ruct ion − mean) / \ sigma ’ ]} , ’ FontSize ’ ,14)

hold on
for d=1:numdet
plot3 ( x1 ( : , d ) , x2 ( : , d ) , meandetect∗ones (1 , length ( x1 ( : , d ) ) ) , . . .

’∗k ’ , ’ LineWidth ’ , 2 )
end
hold o f f
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f igure (3 )
c o l o r p l o t (XB,YB,BP) ;
t i t l e ( { [ datast r , ’ , ’ , num2str( numdet ) , . . .

’ d e t e c to r s , Source at ( ’ ,num2str(S (1 ) ) , ’ , ’ , . . .
num2str(S (2 ) ) , ’ ) ’ ] ; [num2str( sourcep ) , . . .
’ source p a r t i c l e s / ’ , num2str( bkgdp ) , . . .
’ background p a r t i c l e s ’ ] ; . . .
[ ’ Reconstruct ion by Backpoject ion ’ ]} , ’ FontSize ’ , 14)

Listing IV.32 ’color plot.m’

function [ ] = c o l o r p l o t (X,Y,U)
% crea t e s a ” co l o r p l o t ” o f U
Uplot = U;
surf (X,Y, Uplot )
colorbar
colormap ( jet )
view (10 ,90)
axis ( [−1.1 1 .1 −1.1 1 .1 min(min(U) ) max(max(U) ) +0.01 ] )
shading i n t e rp

Listing IV.33 ’gray plot.m’

function [ ] = g ray p l o t (X,Y,U)
Uplot = U;
surf (X,Y, Uplot )
colorbar
colormap (gray )
view (0 , 90 )
axis ( [X(1 , 1 ) X(end , end) Y(1 , 1 ) Y(end , end) min(min(U) ) max(

max(U) ) +0.01 ] )
xlabel ( ’ x ’ )
ylabel ( ’ y ’ )
shading i n t e rp
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